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Specific Growth Rate Estimation in (Fed-)Batch Bioreactors Using Second-Order
Sliding Observers

Hernán De Battista∗,1, Jesús Picó2, Fabricio Garelli1, Alejandro Vignoni2

Abstract

This paper addresses the estimation of specific growth rate of microorganisms in bioreactors using sliding observers. In
particular, a second-order sliding observer based on biomass concentration measurement is proposed. Differing from
other proposals that only guarantee bounded errors, the proposed observer provides a smooth estimate that converges
in finite time to the time-varying parameter. Stability is proved using a Lyapunov approach. The observer exhibits
also robustness to process uncertainties since no model of the reaction is used for its design. In addition, the off-surface
coordinate of the sliding observer is useful to determine the convergence time as well as to identify sensor faults and
unexpected behaviors. Because of the structure of the output error injection, chattering phenomena of conventional
sliding mode algorithms are substantially reduced. The features of the proposed observer are assessed by numerical and
experimental data.
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1. Introduction

Bioprocesses are characterized by complex dynamic be-
havior, nonlinearities, model uncertainty, unpredictable
parameter variations, etc.. Furthermore, most representa-
tive variables are typically not accessible for on-line mea-
surement. In this context, the development of robust and
reliable algorithms to estimate key variables and parame-
ters is of prime interest, both for process control and mon-
itoring [1].
The existing algorithms differ each other with respect

to the measured and estimated variables, the parameters
which are assumed to be known, the type of convergence,
robustness issues, etc.. A summary of several approaches
under different scenarios can be found in [1, 2]. Asymp-
totic observers for state and parameter estimations ap-
peared for the first time in [3]. Adaptive high-gain ob-
servers for the same purposes were presented in [4]. Appli-
cations of high-gain observers to bioreactors were treated
also in [5, 6]. More recently, hybrid observers combining
asymptotic with exponential observers to estimate states
and identify confidence of the kinetic model were devel-
oped [7, 8]. Sliding mode observers have been proposed
also to deal with model uncertainties [9, 10]. An observer
that estimates the substrate consumption rate based on
substrate concentration measurement was designed in [9].
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In [10], sliding mode techniques were exploited to estimate
kinetic rates and concentration variables from biomass
measurement.

In this paper we focus on the estimation of reaction rates
and, particularly, of specific growth rates. The motivation
is that, in many cases, specifications are related with the
growth rate of microorganisms, whether the objective is to
maximize biomass production or to maintain a metabolic
steady state [11]. Besides, growth rate provides valuable
information to monitor the development of microorgan-
isms in the broth.

Substrate concentrations are the key variables in the
kinetic models. So, by measuring them, good estimates
of the specific growth rate can be obtained by using high-
performance observers. However, substrates are usually
very difficult to measure on-line and with good precision,
particularly when they are in low concentrations.

Alternatively, there currently exist reliable biomass sen-
sors (see for example [12, 13]). That is why much research
has been oriented to develop observers based on biomass
sensors, although biomass is a much less informative sig-
nal from the point of view of kinetics than substrate. In
this approach, the kinetic rate is traditionally treated as
an unknown parameter. High-gain observers with some
kind of adaptation of the unknown parameter have been
extensively used. The observer dynamics are typically en-
larged with integral states to adapt the parameter esti-
mates. Advances in the field can be traced back to the
work of [4], where an adaptive Luenberger-like observer is
designed so that it achieves bounded error under the as-
sumption that the specific growth rate has bounded time
derivative. These results were extended and improved by
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further work of the authors and contributions of other col-
leagues [1, 14, 15, 16]. In [15] theoretical rules to tune
the observer are provided that assign linear error dynam-
ics –further, the observer is generalized so that as many
unknown as measured variables can be estimated–. Later,
particular choices of observer parameters are done, for in-
stance, in [16, 17], such that the observer becomes equiv-
alent to the high-gain observer proposed in [6].
Convergence rate of the observers is an important issue

in process control and monitoring, particularly in batch
and fed-batch processes [18]. Although they offer com-
prehensive solutions, the existing high-gain adaptive ob-
servers can only guarantee asymptotic convergence up to
certain degree of accuracy, even in the absence of noise.
In fact, asymptotic convergence is accomplished only for
constant or slowly varying rates. From a closed-loop con-
trol viewpoint, this is a theoretical limitation because the
separation principle –that allows analyzing observer and
controller stability separately– does not hold. This prob-
lem is strengthened by the inherent nonlinear dynamics of
biotechnological processes. Another key issue in process
estimation is robustness to model and parameter uncer-
tainties. In essence, there is an integral relationship be-
tween growth rate and population. So, estimators based
on biomass concentration measurements are much more
robust than those based on substrate measurement which
rely on the kinetic model. Summarizing, high-gain adap-
tive observers inspired by [4] usually exhibit satisfactory
performance in practice, although their tuning is critical
in batch and fed-batch processes (see [17]). Besides, they
should be used with care in closed-loop control applica-
tions because the observer adds its own dynamics to the
loop.
A different approach is suggested in [10], where reaction

rates are treated as unknown time-varying signals rather
than as unknown parameters. There, a sliding mode ob-
server is designed to estimate the specific growth rate un-
der the same assumptions as in [4] and related papers.
The observer includes a discontinuous term in the esti-
mate that allows achieving finite time convergence to the
unknown growth rate. Actually, the estimate converges
to the real signal up to a very high frequency component.
This discontinuous estimate can be used in turn for sub-
strate observers, being the discontinuity removed by the
observer dynamics. A continuous estimate of the specific
growth rate can be obtained by means of a low-pass filter
of arbitrary order. Alternatively, the discontinuous term
of the sliding observer can be approximated by a contin-
uous function. Of course, finite time convergence does no
longer hold when the estimate is smoothed in these ways.
In this paper we further exploit the potentialities of the

previous approach with the aim of obtaining observers
with superior convergence features than the already ex-
isting ones. The new observer differs in the structure of
the discontinuous output error injection so that disconti-
nuity does not appear in the estimate but in its derivative,
thus reducing noise effects. It is actually a super-twisting

algorithm [19], modified to deal with the nonlinearities of
the process. Unlike any other approach found in the tech-
nical literature, the algorithm proposed here provides a
smooth estimate globally converging to the unknown sig-
nal in finite time. This is a particularly attractive prop-
erty in closed-loop applications. In fact, the separation
principle applies, therefore observer and controller can be
designed separately. Additionally, the information about
the process required by the observer is the same as in [4]
and related papers, thereby similar robustness features are
expected. The present approach has also interesting ap-
plications in fault detection and monitoring. Effectively,
since the switching function is very sensitive to fast vari-
ations in biomass concentration, observer divergence can
be associated to sensor failures or sudden changes in the
dynamic structure of the bioreaction.
The work is organized as follows. The next section

presents some general assumptions and preliminaries. In
section 3, the proposed second-order sliding mode observer
is developed and its stability is proved using Lyapunov the-
ory and semi-definite programming tools. Section 4 shows
the observer performance using numerical analysis whereas
experimental results are presented in section 5. Finally,
the main conclusions of the work and future research lines
are given.

2. Problem formulation and background material

Consider a biomass growth, which dynamics accept the
following description in state-space [14, 20]:

P :

{

ẋ = (µ−D(x, t))x

µ̇ = ρ(x, µ, t)x
(1)

where the state variables are the biomass concentration x
and the specific growth rate µ. The dilution rate D(x, t) is
a function of time and, possibly, of x. The specific growth
rate µ is an unknown nonlinear function of biochemical
and environmental variables such as substrate, biomass
and some product concentration, dissolved oxygen, tem-
perature, pH, etc. In the second line of (1), a biomass-
proportional representation for the µ-dynamics has been
used. This is a sensible choice, particularly for batch pro-
cesses as well as for fed-batch processes with exponential
growth (in which feeding laws of the form D(x, t) = λ(t)x,
are used). An explicit expression for ρ(·), as function of
process parameters, can be derived for some simple –and
most commonly found in literature– kinetic models such
as Monod and Haldane. However, our purpose is to design
robust observers that do not rely on the knowledge of the
kinetic structure and process parameters. Therefore, the
function ρ(x, µ, t) is supposed to be unknown.

2.1. Main assumptions

The observer to be presented in the following section is
designed under the following main assumptions:
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Assumption 1. Biomass concentration is measured.

Assumption 2. Uncertainty ρ is uniformly bounded by
|ρ(·)| < ρ̄

Assumption 3. The dilution rate D is known and uni-
formly bounded.

Additionally, to show observer convergence, we state the
following assumptions which are quite obvious and do not
restrict the validity of the proposed observer:

Assumption 4. D and ρ are Lebesgue-measurable func-
tions.

Assumption 5. Biomass concentration is strictly posi-
tive and bounded, that is, for any initial condition x(0) > 0
there exist x > 0 and x̄ < ∞ such that x < x(t) < x̄ ∀t >
0.

2.2. Preliminaries

High-gain observers are based on the works of Bastin
and Dochain [4]. They have the form

OB&D :

{

˙̂x = (µ̂−D(x, t) + 2ζω(x− x̂)) x

˙̂µ = ω2(x− x̂)x
(2)

This is a Luenberger observer for the measured signal
x with an integral state that adapts the estimation of the
unknown parameter µ. That is, the error in the estima-
tion of a measured variable is used in turn to estimate
the unknown parameter. The adaptive observer effectively
behaves as a low-pass second-order filter of the unknown
growth rate µ. Several tunings, variations and extensions
of this observer have been proposed in the literature. In
any case, perfect tracking of a time-varying µ(t) cannot
be achieved and only steady state errors in µ̂ can be elim-
inated. This sort of observer is said to be non-exact in the
sense that the real signal cannot be recovered even in the
absence of noise. In feedback control loops, these observer
dynamics add to the controller dynamics, so that the sep-
aration principle does not apply. In the last sections we
will use this traditional observer to make a comparative
analysis with the proposed sliding one.
On other side, the first-order sliding mode observer for

(1) presented in [10] is of the form:

O1SM :























˙̂x =

(

z −D(x, t) + ω(1 + a(x))(x − x̂) +
M

ω
sign(x− x̂)

)

x

ż =
(

ω2a(x)(x − x̂) +M sign(x− x̂)
)

x

µ̂ = z +
M

ω
sign(x− x̂)

(3)
with ω > 0, M ≥ ρ̄ and a(x) ≥ 0 ∀x.
Note that it has the same form as the B&D observer, but

discontinuous terms are added to the observer dynamics
and output. Thus, the estimated biomass perfectly tracks

the measured one after a finite converging time, whereas
the resulting specific growth rate estimate is discontinuous.
Further, this estimate coincides with the real growth rate
except for a very high (ideally infinite) frequency discon-
tinuous error. Two options have been explored in [10] to
recover the continuous signal from the discontinuous esti-
mate. The first, and most obvious one, consists in passing
the observer output through a low-pass filter of arbitrary
order and cut-off frequency. In the second one, the dis-
continuous sign(·) function is replaced by a continuous
function with high gain at the origin. In both cases, the
continuous estimate no longer converges in finite time to
the real time-varying growth rate but just to a ball cen-
tered around. Hence, this observer is not exact either. It
is however more flexible and it has been shown to be less
noisy in many circumstances than observer (2) [10].

3. Second-order sliding mode observer

The new observer differs from (3) in the structure of
the discontinuous output error injection. It falls within
the category of second-order sliding mode observers since
the switching argument must be differentiated twice for
discontinuity to appear. Further, it is a variation of the
so-called super-twisting algorithm, specifically designed to
deal with bioprocess nonlinearities. Those readers unfa-
miliar with high-order sliding modes are referred to the
comprehensive works [21, 22] where the main concepts
used in this paper can be found.
Consider the biomass dynamic system (1), where ρ and

D are input signals satisfying Assumptions 3 a 4. There-
fore, a well-defined solution exists for any initial condition.
Further, any solution to (1) satisfies also the differential
inclusion3

PU

{

ẋ = (µ−D(x, t))x

µ̇ ∈ Uρ̄x
(4)

where U is the set U = [−1,+1]. This differential inclusion
represents the family of solutions for any unknown specific
growth rate satisfying assumption 2.

Theorem 1. Let (x(t), µ(t)) be a solution of the differ-
ential inclusion (4), with x(t) satisfying Assumption 5.
Then, the observer

O2SM :







˙̂x =
(

µ̂−D(x, t) + 2β(ρ̄|(x− x̂)|) 1

2 sign(x− x̂)
)

x

˙̂µ = (αρ̄ sign(x− x̂)) x

(5)
converges in finite-time to (x(t), µ(t)) for suitable gains α
and β.

Note. Convergence is understood here in the sense
that the estimation error vanishes for any solution to

3In this paper, solutions are understood in the Filippov sense.
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(4). Note that weaker concepts of convergence are also
used in the literature, meaning that the estimation error
reaches a neighborhood of the origin for any solution to
(4), or that it exponentially or asymptotically approaches
the origin for solutions satisfying µ̇ → 0. Finite-time
convergence means that there exists T < ∞ such that
(x̂(t), µ̂(t)) ≡ (x(t), µ(t)) ∀ t > T .
Observer (5) is a variation of the super-twisting slid-

ing mode algorithm, modified here to deal with bioprocess
nonlinearity. A conventional super-twisting observer could
alternatively be used, but at the cost of using too conserva-
tive gains to cope with the large excursions of biomass con-
centration along batch and fed-batch processes. Conver-
gence of the super-twisting algorithm was originally proved
by means of a geometric approach using majorant curves
(see for instance [23]). Recently, a Lyapunov-based proof
was obtained in [24]. Convergence of the modified super-
twisting observer (5) is proved here using the more com-
prehensive Lyapunov approach together with semi-definite
programming tools. To this end, consider the following
proposition.

Proposition 1. Let

ż = A(t)z, A(t) ∈ A (6)

be a polytopic linear differential inclusion with

A = conv(A1, A2)

A1 =

[

−β 1/2
−(α− 1) 0

]

A2 =

[

−β 1/2
−(α+ 1) 0

]

(7)

Then, for every α > 1 there exist suitable values of β such
that (6) is quadratically stable for all A(t) ∈ A.

Note. The polytopic linear differential inclusion is said
quadratically stable if there exists V (z) = zTPz, P ≻ 0
that decreases along every nonzero trajectory of (6).
Since V̇ (z) = zT (A(t)TP + PA(t))z, a necessary and

sufficient condition for quadratic stability is

P ≻ 0

AT (t)P + PA(t) + νI ≺ 0 ∀A(t) ∈ A
(8)

This is equivalent to determine the existence of a common
Lyapunov matrix P for all the vertices of the polytope A,
i.e. that verifies the following constraints

F =















P ≻ 0;

Q1
△
= −(AT

1 P + PA1) ≻ 0;

Q2
△
= −(AT

2 P + PA2) ≻ 0















(9)

Now rewriting A1 and A2 in a convenient way,

A1 = βA0 +A∗
1

A2 = βA0 +A∗
2

(10)

where

A0 =

[

−1 0
0 0

]

A∗
1 =

[

0 1/2
−(α− 1) 0

]

A∗
2 =

[

0 1/2
−(α+ 1) 0

]

(11)

The existence of a common Lyapunov P for any α can
be determined by checking the feasibility of the following
generalized eigenvalue problem (GEVP) in P and β [25]:

min β
s.t. P ≻ 0, β > 0, F∗ (12)

where

F∗ =











P ≻ 0;

(A∗T
1 P + PA∗

1) + β(AT
0 P + PA0) ≺ 0;

(A∗T
2 P + PA∗

2) + β(AT
0 P + PA0) ≺ 0;











(13)

A GEVP is a quasi-convex problem. In this case, it can
be solved using a bisection algorithm on β and determining
the feasibility of the remaining linear matrix inequality
(LMI). We made a grid covering the desired values of α
and solved the LMIs with YALMIP [26]. Figure 1 shows
the set of values of α and β for which the LMI problem is
feasible. For all points within this set of parameters, (6)
is quadratically stable.

Proof 1 ( of Th. 1). From the process (4) and observer
(5), the error dynamics is







˙̃x =
(

µ̃− 2β(ρ̄|x̃|) 1

2 sign(x̃)
)

x(t)

˙̃µ ∈ (U − α sign(x̃)) ρ̄x(t)
(14)

where x̃
△
= (x − x̂) and µ̃

△
= (µ − µ̂). Note that it de-

pends on the process state x, i.e. it is not an autonomous
dynamics. Apply now to (14) the following global homeo-
morphism [24]

ξ =

[

(|ρ̄x̃|) 1

2 signx̃
µ̃

]

(15)

Taking into account that sign(ξ1) = sign(x̃) and that
ξ̇1 = ρ̄

2|ξ1|
˙̃x, this coordinate transformation yields

ξ̇ ∈ ρ̄x(t)

|ξ1|
Aξ (16)

with A defined in (7). Consider now the energy function
V (ξ) = ξTPξ, where P ≻ 0 satisfies (8). Then,

V̇ (ξ, t) =
ρ̄x(t)

|ξ1|
ξT

(

A(t)TP + PA(t)
)

ξ (17)

Using (8) and recalling assumption 5,
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V̇ (ξ, t) ≤ − ρ̄xν

|ξ1|
‖ξ‖2 < 0 ∀ξ 6= 0. (18)

where ν > 0 is the minimum among all eigenvalues of Q1

and Q2. That is, V (ξ) is a Lyapunov function decreas-
ing along all nonzero solutions of (16). Note that (15) is
continuously differentiable everywhere except on the line
x̃ = 0. Anyway, this line is not an invariant set except
the origin. Thus, (18) also proves stability of the original
observer error dynamics (14).
We will prove now that V vanishes in finite time. Let

L > l > 0 be the maximum and minimum eigenvalues of
P . Then, l‖ξ‖2 ≤ V (ξ) ≤ L‖ξ‖2. It then follows, using
|ξ1| ≤ ‖ξ‖, that

V̇ ≤ − ρ̄xν
√
l

L
V

1

2 . (19)

The comparison lemma establishes that

‖ξ(t)‖ ≤
√
λ‖ξ(0)‖ − ρ̄xν

2L
t. (20)

where λ =
√

L/l. This means that

‖µ̃(t)‖ ≡ 0, ∀t > T =
2L

ρ̄xν

√
λ‖µ̃(0)‖ (21)

where it has been supposed without loss of generality that
the observer was initialized with x̂(0) = x(0).
This finishes the proof.

�

Remark 1. Notice that the proposed observer can be used
to estimate the kinetic rate r(t) in any reaction of the form

ṗ = r(t) · p+ f(p, t) (22)

provided p is measured and analogous assumptions to the
ones made here are fulfilled.

4. Simulation results

This section presents a pair of numerical examples that
illustrate the previous analysis and theoretical results. In
the next section, experimental data is provided to assess
the observer performance in a realistic scenario.
Let consider the fed-batch process

PE :

{

ẋ = (µ(s)− λ(t)x)x

ṡ = (−ysµ(s) + λ(t)(si − s))x
(23)

with haldane kinetics µ(s) = µm
s

ks+s+s2/ki

and feeding

profile D(x, t) = λ(t)x. The parameters are µm = 0.22,
ks = 0.14, ki = 0.4, ys = 1.43 and si = 20. Note that
(23) can be rewritten as (1) after the change of variable
(x, s) 7→ (x, µ(s)).
For comparative purposes, both the adaptive (2) and

the proposed sliding observer (5) have been implemented
to estimate µ.

Open-loop simulation. The process input λ(t) is a piece-
wise constant signal switching every 2.5 hours. Observers
(2) and (5) are tuned with ω = 1.5, ζ = 2−1/2, ρ̄ = .4,
α = 1.1 and β = 1.8. Their initial conditions are
(x̂(0), µ̂(0)) = (x(0), µm). The simulation results are
shown in Fig. 2. The top plot depicts the input λ(t)
whereas the real and estimated specific growth rates are
displayed in the bottom plot. The real µ(t) is shown in
solid line (thick trace), the sliding observer estimate is
plotted with solid thin trace and the adaptive observer
estimate is plotted in dashed line. It is seen that the slid-
ing observer output converges in less than 2 hours and
perfectly tracks µ(t) thereafter, whereas the adaptive ob-
server (2) reaches a neighborhood of µ(t) but does not con-
verge to it. Naturally, since the measurement is not cor-
rupted with noise, the bandwidth of the adaptive observer
can be increased to exhibit a faster response. Anyway,
the aim of this example is to illustrate qualitatively and
comparatively the theoretical convergence features of the
proposed sliding observer. Performance under real mea-
surement conditions is evaluated in the next section.

Closed-loop simulation. We present here a closed-loop nu-
merical example to illustrate the potential advantages of
the sliding mode observer in closed-loop applications. The
input signal used in this case is the nonlinear feed-back
law:

λ(µ) =
ysµr

si − µ−1(µr)
(1− k (µ− µr)) . (24)

It is shown in [27] that λ(µ) stabilizes the specific growth
rate. Moreover, global stability can be achieved even in
the presence of kinetic multiplicity by properly tuning the
feed-back gain k. Anyway, the purpose here is not to eval-
uate the controller performance but the sliding-mode ob-
server one. Then, µ(t) in (24) is replaced by µ̂(t). Here,
we choose k = 15.
The simulation run is planned to show the convergence

and tracking properties of the observer. With this purpose,
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the observer is reset at t = 0h, whereas a set-point step
from µr = .15 to µr = .1 is produced at t = 10h.
The tuning parameters of the sliding observer are ρ̄ = .1,

α = 1.1 and β = 1.8. In this example, its performance is
compared with the performance of observer (2) for two
different tunings (ω = 1.5 and ω = 4.5).
Fig. 3 shows the growth rate and its estimates when the

real µ -not any of its estimates- is used in the feedback law
(24). That is, the loop is not closed through an observer.
The thick line, labeled with µi, is the time evolution of
the real growth rate. The estimates provided by observer
(2) for both tunings and by observer (5) are also plotted.
After restarting, the adaptive observer estimates exhibit
large overshoots that increase with ω. After the set-point
step, the adaptive observer estimate lags the real signal,
particularly for low ω. On the other hand, the sliding
observer perfectly tracks µ(t) during the transient that
follows the set-point step, whereas initial convergence after
restarting is significantly better.
Fig. 4 shows what happens when the observer estimates

are used to construct the feeding law. The first two
plots depict responses obtained with the adaptive observer
whereas the remaining ones correspond to the sliding ob-
server. Note that the adaptive observer estimates are out
of scale during the first hours after restarting. The top
plot shows that the closed-loop response becomes highly
oscillatory when the slow adaptive observer is used to close
the loop. This is because it adds its slow dynamics to the
loop. When the fast adaptive observer is used, oscillations
are almost eliminated, but an undesirable initial transient
still occurs because of the large observer overshoot. In
the third plot, the response obtained with the proposed
sliding observer is shown. It is seen that the observer con-
verges rapidly, whereas the tracking response is similar to
the ideal one. The bottom plot illustrates how the sliding
function, which continuously switches after convergence,
can be used to improve further the initial transient. In
this case, the feed-back loop is closed just after the sliding
function switches for the first time.
Fig. 5 shows the same responses when gaussian noise is

added to biomass concentration measurement. All com-
ments regarding the initial transient remain valid. Re-
garding tracking after the set-point step, it is seen that
the sliding and fast adaptive observers exhibit similar re-
sponses, but the adaptive observer is noisier. Anyway,
since both observers smooth out the measured signal in
two different ways, noise performance may differ depend-
ing on the noise structure. Performance of these observers
in a real scenario is presented in the following section.

5. Experimental results

A batch fermentation of the industrial strain Saccha-
romyces Cerevisiae T73 (wild type) was run. Biomass con-
centration was measured using the sensor described in [12].
Sampling was carried out each 12 seconds, and a filtered
value over a window of 2 minutes was provided. Growth

rate was estimated using the proposed sliding observer,
which was tuned as in the previous numerical example, i.e.
ρ̄ = 0.1, α = 1.1 and β = 1.8. For comparative purposes,
a second estimation was obtained using the high-gain ob-
server (2) tuned with ω = 1.5. Obviously, the real growth
rate is not available to assess the observers performance.
We use instead a crude estimate obtained by directly dif-
ferentiating the measured biomass concentration:

µd =
ẋm

xm
(25)

Under the assumption that biomass measurement is ac-
curate and noiseless, µd provides the real specific growth
rate. In reality, µd is highly corrupted with noise. Any-
way, in the figures shown below, the real µ can be guessed
behind the noisy µd.
Figure 6a plots the evolution of the measured biomass

concentration xm, whereas Figure 6b displays the esti-
mates of the specific growth rate obtained from xm. The
noisiest estimate was crudely obtained by differentiating
the measured signal: µ̂d(t) = ẋm

xm

. The estimate plot-
ted in dashed line was obtained by the high-gain observer.
This estimate coincides with that obtained by smoothing
µ̂d(t) with a 2nd-order filter with cut-off frequency ωx.
The estimate is particularly noisy –as measurement is–
around t = 35h. This noise is hardly filtered by the ob-
server because their bandwidths overlap. A lower observer
bandwidth would help to reduce noise but at the cost of
poorer tracking response. Finally, the signal plotted in
solid line is the output of the sliding observer (5) The
estimate is smoother than the previous one, particularly
around t = 35 hours. This is because the observer is less
sensitive to fast, and unfeasible, signal gradients. Fig 6c
displays the biomass estimation error x̃ smoothed out by
a low-pass filter, showing that the observer converges in
11 hours. During this period, the sliding observer is less
sensitive to large measurement errors that are typical of
the initial phase of batch processes when biomass concen-
tration is too low.
It is of particular interest to analyze the observer out-

puts around t = 23h. As observed in the biomass evo-
lution, the growth almost stops at t = 18h, most proba-
bly due to the depletion of some essential substrate. Af-
ter that, a pulse of conjugated linoleic acid vaccine was
administered at t = 23h, reactivating the microorganism
growth. As seen in Figure 6b this sudden change in be-
havior clearly affects both observers. Indeed, from the
point of view of the observers, an unpredicted oscillation
of the biomass measurement occurred. It is observed that
the B&D observer responds with a large undershoot that
vanishes just after 1.5 hours. On the contrary, the slid-
ing observer is much less sensitive to this perturbation.
In fact, Fig 6c shows that the observer diverges and then
converges rapidly, putting in evidence the occurrence of an
abrupt fault. Note that the surface coordinate is an effec-
tive residual to indicate bioreactor malfunctions as well as
sensor faults or changes in system behavior (both abrupt
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and gradual). Thus, on one hand, the observer output is
less sensitive to the perturbation while on the other its
sliding coordinate is very sensitive to it.

6. Conclusions

In the article, a second-order sliding mode observer has
been developed and analyzed for the estimation of the spe-
cific growth rate of microorganisms from measurements of
biomass concentration. The resultant observer can be ap-
plied to either batch or fed-batch fermentation processes
in which the bioreaction exhibits either monotonic or non-
monotonic kinetics. Actually, the observer does not use
any model of the kinetics of the reaction, just a bound
on its time derivative. The proposed observer is based
on high-gain observers, to which discontinuous correcting
terms have been added in order to cancel the estimation
error on the measured variable. The structure of the dis-
continuous output error injection is modified with respect
to previous developments, thus providing a smooth esti-
mate without the need of filtering. In contrast with con-
tinuous observers, perfect tracking after finite convergence
time can be achieved in the absence of noise. Although
convergence to a small ball can only be guaranteed in the
presence of noise, this theoretical property has important
implications in control. In fact, the separation principle
applies, so that observer and controller in the loop can be
designed independently. Simulation and experimental re-
sults confirm the distinctive convergence properties of the
observer, as well as its potential use in fault detection.
Further research is oriented to the estimation of multi-

ple rates. The main problem is that an extra unknown
function must be incorporated to the algorithm in order
to avoid too conservative bounds. Stability proof of the
generalized algorithm is the key issue. The semi-definite
programming approach used in this paper provides pow-
erful tools for this purpose.
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Figure Captions

Figure 1. Set of pairs (α, β) for which Proposition 1 holds.

Figure 2. Open-loop simulation results. (a) Input signal
λ(t). (b) Real (µ) and estimated growth rate using adap-
tive (µ̂BD) and sliding (µ̂SM ) observers.

Figure 3. Closed-loop simulation results when the real µ is
used in the feed-back law (observers are not in loop). µi:
growth rate using ideal feed-back law (24); µ̂BD1, µ̂BD2:
adaptive observer estimates for ω = 1.5 and ω = 4.5, re-
spectively; µ̂SM : sliding observer estimate.

Figure 4. Closed-loop simulation results when observers
are in the loop. a) Adaptive observer with ω = 1.5, b)
adaptive observer with ω = 4.5, c) sliding observer, d)
sliding observer in the loop after first switching.

Figure 5. Closed-loop simulation results when observers
are in the loop, noise added to the measured signal. a)
Adaptive observer with ω = 1.5, b) adaptive observer with
ω = 4.5, c) sliding observer, d) sliding observer in the loop
after first switching.

Figure 6. Experimental results. (a) Measured biomass
concentration (xm). (b) Estimates of the specific growth
rate obtained by sensor output differentiation (µ̂d) and us-
ing B&D (µ̂BD) and sliding (µ̂SM ) observers. (c) Biomass
estimation error (x̃) of the sliding observer.
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Figure 2: Open-loop simulation results. (a) Input signal λ(t). (b)
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Figure 4: Closed-loop simulation results when observers are in the
loop. a) Adaptive observer with ω = 1.5, b) adaptive observer with
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