
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/151295

Moreno-Navarro, P.; Pérez-Aparicio, JL.; Gómez-Hernández, JJ. (2017). Optimization of
pulsed thermoelectric materials using simulated annealing and non-linear finite elements.
Applied Thermal Engineering. 120:603-613.
https://doi.org/10.1016/j.applthermaleng.2017.04.036

https://doi.org/10.1016/j.applthermaleng.2017.04.036

Elsevier



Optimization of pulsed thermoelectric materials using simulated annealing and

non-linear finite elements.
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Abstract

The objective of this work is to determine the optimal shape, gains and duration of an electric pulse applied to a Peltier

cell, together with the length of the thermoelectric to maximize cooling while minimizing electric consumption. For

this purpose, a fully coupled, multiphysics, dynamic finite-element model, which solves for the thermal, electric and

mechanical fields is used. Because of the demanding computing requirements of the optimization process, a special

mesh is designed and a convergence analysis is carried out before using the multiphysics model. The highly non-

linear optimization is done by simulated annealing, a heuristic algorithm in the Markov chain Monte-Carlo family. A

preliminary parametric investigation is presented, analyzing the impact of some of the parameters. The results of this

preliminary analysis help to understand the effect of the different shapes in the evolution of the cold face temperature.

Some of these results are expected and have already been discussed elsewhere, but others can only be explained after

further analysis and a full system modeling. Pulse optimization is multiobjective and multiparametric, i.e., it can

consider several targets such as maximizing the cooling temperature, the cooling duration or others. The trade-offs

between the different targets are studied. In all cases, stresses inside the thermoelement are examined at all points,

and the pulses must meet the restriction that an equivalent stress is not above the allowable value.

Keywords: Pulsed thermoelectrics, non-linear dynamic finite elements, multiphysics, pulse shape optimization,

simulated annealing, multiobjective-multiparameter

Nomenclature

n Nodes per edge –

l Length m

x Spatial coordinates m

P Pulse gain –

T Temperature ◦C

t Time s

θ Annealing temperature –

λa Reduction factor of θ –

K Maximum number of iterations –

S p Stopping number –

O Objective function –

p Set of input parameters

ϕ Set of weight parameters

T Equivalent stress MPa

σ Standard deviation

S Optimization goal

Sub-, Supra-indices

i Spatial direction, counter

�̄ Prescribed property for �

h Hot side (T ), holding (t)

c Cold side

0 Reference

ac Accepted

r j Rejected

p Pulse

pp Post-pulse

op Optimal

css Cold face at steady-state

mn Minimum

mx Maximum

I, II, III Principal directions

tr Tresca

ad Admissible

1. Introduction

In spite of the many papers published on pulsed ther-

moelectrics (PT), the study of the pulse shape itself has
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attracted limited attention and the most common shape

is a step (in reality, slightly trapezoidal), see for in-

stance [1]. Given the advances in quality and price of

electric and electronic control equipment, it is pertinent

to improve PT’s performance and consumption.

The purpose of the present paper is to determine pulse

optimal shapes for thermoelectric material (TM) refrig-

eration with Peltier cells; these pulses will not have a

predefined shape but will be within a bounding envelop.

The shape is closely related with the thermoelement

(TE) length l (of “boxed” parallelepipedal geometry),

and the duration of the pulse itself; both of them are in-

put parameters to the optimization algorithm. It will be

shown that suitable (although not easy to guess) combi-

nations of shapes and lengths can substantially improve

the performance of the Peltier cell, for eight different

scenarios.

Recently, [2] considered several predetermined

pulses (step, linear and quadratic) to differentiate the

overcooling of micro and nanoscales, deciding by in-

spection, the two best pulses for each scale. The

Maxwell-Cattaneo constitutive equations and dissipa-

tive flows were considered, with thermal and elec-

tric conductivities as a function of the layer thickness.

Also, [3] carried out a parametric study of pulses for re-

frigeration; no elastic coupling was considered since the

models were purely thermoelectric, although the bound-

ary conditions (BC) were realistic with convection in the

hot face and constant prescribed heat flux in the cold

face. The model was validated and the differences be-

tween constant and variable properties studied. No op-

timization algorithm was applied, instead conclusions

were drawn from the extensive parametric set of cases.

Another parametric study was presented in [4] analyz-

ing, in a rather simple manner for constant pulses, the

influence of parameters such as pulse gain and dura-

tion, using an one-dimensional (1D) model. Constant

pulses were also analyzed in [5] but an experimental

parametric investigation instead of a numerical model

was presented. This work was focused more on bound-

ary conditions than on pulse parameters and the pulse

train influence was shown as well.

Other types of optimizations have been published.

For instance, [6] optimized the material properties and

the ratio of TE area and length using simple analytical

models and experimental results. In [7] and [8], cooling

applications were optimized, in the former with electric

network models and finite elements (FE) for refrigera-

tors, and in the latter with 1D analytical formulae for

radiating air conditioning.

In [9], ANSYS was used on a novel and predeter-

mined pulse shape for a practical application; the opti-

mization goals were similar to the ones of the present

article. The work presented a parametric study on pulse

gain, duration for basic pulse shapes (constant, triangu-

lar, ramps), quantifying the overcooling produced by the

pulse with respect to the stationary state.

An optimization of a two-stage TM refrigerator with

a 1D numerical method was presented in [10], but the

optimization was not for the pulse itself but for the po-

sitions of the thermocouple (TC). Analytical formulae

were developed to calculate the optimal intensity, and

based on these, the optimal coefficient of performance

(COP) and extracted heat were determined; this was

achieved varying the number of TCs and the hot face

temperature Th although in static operation. The arti-

cles [11] and [12] were also related with two-stage re-

frigerators. In the former, a multiparametric study—

changing the heat source, sink and current—is devel-

oped, comparing it with experimental results. In the lat-

ter, a more realistic model with convection is run for

another multiparametric study, in which the pulse dura-

tion, gain and shape as well as basic parameters of the

geometry are varied.

Finally, [13] developed a simplified 1D model (not in-

cluding the Thomson effect) based on a Fourier sums of

eigenvalues, to analytically predict the cold face temper-

ature Tc. The next step was to optimize the distributions

of the Seebeck coefficient α and electric conductivity γ

along the TE (as in graded materials) under a constant

pulse. Empirical expressions for maximum overcooling

and time to reach it as a function of the pulse gain were

developed.

In the current work, it will be assumed that, both

for steady and transient states, the intensity is the same

for all TCs of the cell; therefore, a single TC is dis-

cretized under appropriate BC. The cold face is sub-

jected to a cooling optimal intensity calculated from

semi-analytical formulae taken from [14] prior to the

application of the pulse. The hot face is considered at-

tached to an infinite medium so that its temperature re-

mains constant at T̄h = 50 ◦C. Regarding the mechanical

BC, both hot and cold faces are mechanically hinged.

To reduce the FE mesh, two planes of symmetry and a

plane of repetition will be applied.

The FE model, developed in [15], [16] and [17], has

been shown to be very efficient for the modeling of cool-

ing using Peltier cells. FEAP, a research code with spe-

cial elements developed by [18] is used.

The optimization model is heuristic in nature, which

is both an advantage and a shortcoming; an advan-

tage, because it will search for global optimal solutions,

avoiding local optima, and a shortcoming, because it re-

quires many runs of the FE model needing much CPU
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time to reach the optimum. This optimization algorithm

was chosen for its power to minimize complex functions

involving non-linearities, fully coupled processes, sys-

tem dynamics and 3D geometry without imposing any

restrictions in the potential outcomes.
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Figure 1: Schematic diagram of temperature evolution at the ther-

moelement cold face subjected to a pulse of undetermined shape.

Boxed symbols indicate optimization targets.

In Fig. 1, a conceptualization of the temperature Tc

evolution at the cold face is shown. From the steady-

state Tcss and after a pulse of gain P is applied at time

tss (set to zero), the temperature descends drastically un-

til it reaches a minimum Tcss − ∆Tp at time tmn; this is

the transient overcooling phase. Close to the end of the

pulse, of duration tp, the temperature bounces back and

reaches a value Tcss + ∆Tpp (both ∆Tp and ∆Tpp are

positive); this is the transient overheating phase. If no

other pulse is introduced, the temperature slowly lowers

back to the initial Tcss. The description and related dy-

namic calculations of a PT have thoroughly been stud-

ied in [14].

Before launching the optimization algorithm and its

thousands of runs, a convergence study of the fully cou-

pled FE code is performed in Section 2. The usefulness

of this convergence study is to find the mesh with the

minimum number of elements that gives reasonable re-

sults, for the mechanical, thermal and electric fields.

A parametric study is carried out in Section 3 with

simple pulse geometries, as defined by one or two

straight or curved lines; also, the different goals are

described in this section. This parametric study will

help us understand why some pulse shapes are benefi-

cial or harmful for a given goal, and will provide critical

knowledge for the interpretation of the final shapes.

The optimization algorithm is described in Section 4.

Its application will permit one to develop optimal pulses

automatically (not based on physical or engineering

insight), which can provide unsuspected and virtually

impossible-to-guess solutions. Finally, in Section 5 op-

timal pulses are computed for eight cases, the first four

aiming at the optimization of a single goal, and the other

four at the joint optimization of several goals. The re-

sulting pulses are then described and analyzed.

2. Finite Element model

The governing equations, and the special finite ele-

ment developed, are thoroughly described in [15] (gen-

eral multicoupled formulation) and [14] (pulse dynam-

ics) and will not be repeated here. However, given the

high computational requirements of the optimization al-

gorithm, a convergence study for various FE meshes

is presented to determine the minimum number of el-

ements that achieves a good compromise between error

and computation time.

The structured mesh is parametrized with a variable

number of elements in some directions and materials,

except for Cu, Al2O3 and solder S n2Pb3 in x3, which

will be discretized considering only one element in the

vertical direction (see Fig. 2). For the solder, and to in-

crease the realism of the simulation, a small element

is added outside of the TE line along x1 to simulate

the burrs that often protrude after the welding process.

Given the low elastic modulus of tin-lead and in spite

of its very low thickness (viz. [19]), it is important to

include these burrs in the simulation, since they can re-

lieve or concentrate the stresses close to the TE corners.

Only the stresses in the TE will be monitored, since

it is the only active material. The stresses of the other

materials can be high due to their high relative stiffness,

entering in plastic regime and affecting the TE in their

junctions. This plasticity is ignored in the present work,

but in an article recently published [20] it is considered

in all materials of the cell.

The main parameter that defines the level of refine-

ment is n3, the TE number of nodes in the x3 direction.

The choice of this number also depends on l, a criti-

cal dimension for PTs. To capture stress concentrations

at corners (viz. [14]), a maximum height along x3 of

3 × 10−3 m for each quadratic 27-node finite element

will be set for the variable l (half of this height for lin-

ear 8-node elements).

The simulation of the electric and thermal fields

requires a discretization of very few elements and

nodes due to their vectorial nature, but the mechan-

ical field is much more demanding due to its ten-

sorial nature and the appearance of stress concentra-

tions. Figure 3 shows the maximum Tresca stress Ttr =

max (|TI − TII | , |TII − TIII | , |TI − TIII |) inside the TE,

3



l

x1

x2

x3

CR

FVS

S VS

Figure 2: Finite element mesh for 1/4 thermocouple: FVS , plane of

x1-x3 vertical symmetry with itself; CR two “cuts” for repetitions with

other thermocouple; S VS , plane of x2-x3 vertical symmetry with the

other thermoelement. Length l = 6×10−3 m with n3 = 20 elements;

from higher to lower grey: Al2O3, S nPb, Cu, Bi2Te3 materials.

in which roman number subindices mean principal di-

rections. This is an equivalent stress that combines sev-

eral of the stress tensor components into a unique value,

and it is based in the classical failure criterion of Tresca,

very similar to that of Von Mises.

These stresses are calculated at any integration point

of the TE at steady-state for different refinements and

with l = 6 × 10−3 m. It can be observed that the max-

imum stresses converge quickly to a stable value as a

function of the number of elements along the horizon-

tal axes. For both 8-node and 27-node elements, a dis-

cretization of 9 nodes per edge is enough to approxi-

mate the maximum stress, even 5 nodes per edge could

be considered acceptable given the small difference of

2 MPa between 5 and 9 nodes. The oscillation in the

maximum stress observed for the lower values of n3

when using the 27-node elements is probably due to

the imprecision resulting from the proximity of a rather

thin element in the TE to the thick element in Cu. The

8-node element tends to predict slightly higher stresses

than the 27-node one due to the simplicity of the linear

FE formulation.

The vertical discretization is critical and a fine mesh

is needed in this direction to properly approximate max-

imum stresses. Fig. 4 shows the convergence of the

maximum Tresca stress as a function of n3 at the three

significant moments defined before in Fig. 1. For n3 >

41, the stress increase is very small and convergence has

been achieved. In Fig. 4, the calculated stresses for the

27-node are in general higher than those of the 8-node,
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Figure 3: Maximum Tresca stress (on any point at steady-state) as a

function of lateral thermoelement refinement along x1 or x2 , for dif-

ferent n3 along x3 , see Fig. 2. Solid line for 27-node 3D isoparametric

finite element, dashed line for 8-node elements.

since the integration Gauss point of the former is much

closer to the corner than that of the latter (viz. [21]).

The difference is more noticeable when dynamics are

present, in particular at pulse removal, but for high n3

the results almost coincide for both elements. It was

also found that refinements in other materials such as

Cu or Al2O3 have little influence in the approximation

of the maximum Tresca stress inside the TE.

Finally, 5 nodes per edge in the horizontal directions,

and 41 nodes in the vertical direction are chosen; in re-

ality only 3 nodes will be used in the x2 direction due

to symmetry considerations. Also, for only a slightly

higher computational cost (with the same number of de-

grees of freedom) the more accurate 27-node element

will be chosen (viz. [21]). The concluding mesh, com-

prising 88 elements, 1686 nodes and 6755 degrees of

freedom (five per node: three displacements plus tem-

perature and voltage) is shown in Fig. 2. The computa-

tion time of a single run ranges from 170 s for n3 = 11

to 320 s for n3 = 61 in an Intel Core i7-4930K CPU run-

ning at 3.40 GHz and compiled in gfortran for linux,

version 4.6.3.

3. Parametric study

A review of practical applications taken from the lit-

erature: [22], [23], [24], indicates that an optimal pulse

should, at least, aim to the following four goals S j:

• S1: minimization of 1/∆Tp, to maximize the over-

cooling between Tcss and the minimum Tc.
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Figure 4: Convergence of maximum Tresca stress at any point for

thermoelement refinement n3 along x3 , see Fig. 2. Curves for steady-

state tss ≡ 0, maximum overcooling tmn and pulse removal tp. Solid

line for 27-node, dashed for 8-node 3D isoparametric finite elements.

• S2: minimization of tmn, the time to reach the min-

imum Tc.

• S3: minimization of ∆Tpp, the overheating be-

tween Tcss and maximum Tc.

• S4: minimization of 1/th, to maximize the hold-

ing time during which the overcooling is at least

0.8∆Tp.

Each goal is directly or inversely related to one of the

four targets: ∆Tp, tmn, ∆Tpp, th; the last one is often

called overcooling uptime. The overheating ∆Tpp is a

detrimental effect for PTs not only because increases the

temperature of the cold face but also because large val-

ues induce a long time of recovery to the second steady-

state Tcss.

A parametric study is performed in this section to

have an a-priori estimate of the results that will be ob-

tained by the optimization process, in particular what

type of pulse is best for each goal or combinations of

them. The predefined pulse shapes shown in Fig. 5 are

considered; some of them have been already studied in

the past and some are new. Other important parameters

and their range of values to be analyzed in the paramet-

ric study are: the TE length, l ∈ [2, 7] mm at increments

of 1 mm, the pulse gain P ∈ [1.5, 3.5] at increments of

0.5 and the pulse duration tp ∈ [2, 8] s at increments

of 2 s. The 720 combinations of parameters (6 shapes

times 6 TE lengths times 5 pulse gains times 4 pulse

durations) are run and the values of the four goals S j

computed.

A B C

D E F

Figure 5: The six generic pulse shapes used in the parametric study:

A: Rectangular, B: Quadratic, C: Inverse Quadratic, D: Sinusoidal,

E: Sinusoidal-Rectangular, F : Quadratic-Rectangular. Pulses’ cen-

ters of gravity indicated by crossed circles.

In Fig. 6, the transient evolutions of Tc for the pulses

of Fig. 5 are shown for a representative length, gain and

pulse duration. As published elsewhere, very different

pulses induce radically different responses, during the

pulse itself and during the post pulse. In spite of the

large duration considered, some of the evolutions are

interrupted at pulse removal (remarkably B), meaning

that a longer duration would only slightly increase ∆Tp,

but surely also increase ∆Tpp. The contrary can be said

about pulses that reach their minimum Tc substantially

before the end of the pulse (A and C): a shorter duration

would improve their performance.

A smooth introduction of the pulse is convenient for

overcooling, since the bulk of the Joule effect will be

generated later and then take longer to reach the cold

face by conduction. In fact, the best pulse to maximize

∆Tp is F closely followed byD and E (pulse B will be

commented later). The evolutions of D and E coincide

during the first instants, since the pulses are equal in

their first half.

On the contrary, A and C have an initial sharp pulse

and thus they produce the worst overcooling of all

pulses. Of the two of them, C yields the lower value

as a result of its smaller Peltier effect, proportional to

the electric energy of the pulse as measured by the area

under it. The Joule effect is also proportional to the

pulse area, but quadratically: there is then a competition

between both effects that depends on several parame-

ters. In the figure it can be seen that the overcooling

of C stops at 2 s for lack of extra energy while that of

A continues at least 1,5 s more.

Again, the more sudden the introduction of the pulse

at the first instant, the higher the slope of the Tc evo-

lution. The minimum temperature is also reached the

fastest for pulses that start with a sharp impulse, for this
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reason C is only advantageous for tmn.
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Figure 6: Transient evolution of the cold face temperature for the

generic pulses of Fig. 5 for thermoelement length 5×10−3 m, maxi-

mum pulse gain P = 2.5 and pulse duration tp = 8 s.

The best pulses to minimize the overheating∆Tpp are

B and C, while the worst ones areA and E. This behav-

ior is easily explained considering again that the Joule

effect and, consequently the overheating, is proportional

to the pulse area square: comparing the similar shapes

D and E, the first produces a smaller overheating due to

its smaller area than the second one.

Finally, the pulses that produce the best uptime areA,

E and F for the reasons that will be better understood

in Section 5 based on the results of the optimization ex-

ercise. It can be observed that a long tp will improve th
but it will go against a good ∆Tp, and viceversa.

The position of the pulse center of gravity (cg, see

Fig. 5) is related to the area under the pulse, and is the

other important factor explaining the Tc evolution. In

general, the closer the cg to the pulse top, the higher

∆Tp and ∆Tpp, see shapesA, E, F andD. As explained,

minimum overheating occurs for C, since it is the pulse

with the cg closest to P = 1. The time tmn is related to

the position of the cg along the time axis: when the cg

is close to the pulse beginning, as is the case for C, all

the energy is quickly injected into the system and the

minimum Tc is reached fast although with a low value;

whereas when the cg is close to the end of the pulse,

as is the case for B, the minimum Tc is reached more

slowly. Note that if the C curvature would be convex

(decreasing slowly after the spike) instead of concave,

the cg would move towards the right and top, its ∆Tp

should increase and ∆Tpp decrease.

If any of the previous trends is considered alone,

wrong conclusions can be drawn. For instance, it can

be thought that B should have a low ∆Tp since it intro-

duces low energy (cg towards the bottom), but the result

is among the best since this introduction is smooth and

consequently the cg falls off towards the right.

After analyzing the values of the parameters associ-

ated with the four targets, the instances that produce the

best values for each goal are identified and listed in Ta-

ble 1. There was no optimization involved, simply a

combinatorial search. The maximum overcooling is a

significant 50% higher than that of the steady-state; the

minimum temperature is reached as early as 3.3% of

tp, the optimal overheating is close to zero and the best

holding time is as long as 77% of tp. As expected, the

maximum ∆Tp and th happen for the longest possible

tp; also the maximum ∆Tp and the minimum tmn are ob-

tained for the pulses with the highest P.

Analyzing the TE lengths, it can be noted that the

larger l, the longer for the Joule effect to overcome the

Peltier effect near the cold face, therefore, the maximum

l is the one that maximizes the ∆Tp. The optimal l is

close to its minimum value for C when targeting the

minimization of tmn because the slope of Tc at the begin-

ning is the highest and therefore the Joule effect arrives

to the cold face sooner. The relationship between a high

Tc slope and a short l is due to the high optimal intensity

at steady-state Iop, which is proportionally inverse to l,

see [14] and Table 1.

Target Shp. tp P l Iop Val. Ttr

∆Tp F 8 3.5 7 0.76 16.1 72.8

tmn C 2 3.5 2 2.62 0.27 77.6

∆Tpp C-B 2 1.5 6 0.89 0.27 24.4

th A 8 1.5 5 1.06 6.16 31.6

Table 1: Optimal pulse shapes and corresponding target values found

by combinatorial search. Temperature in ◦C, time in s, length in mm,

electric intensity in A and Tresca equivalent stress in MPa.

None of these pulses is able to produce good val-

ues for the four targets simultaneously; in fact, some of

these targets are contradictory among themselves. For

instance, the high energy of A will produce high over-

cooling but also high overheating.

Some of the pulses give very good results but they

induce stresses above the maximum allowable Tad =

60 MPa taken from [25]; the values are reported in the

last column of Table 1. Stresses will be maximum in

general at pulse removal when they almost double those

of the steady-state (see Fig. 4). This is logical since an

increase of electric intensity implies a strong increase of

temperature and consequently of stresses (the reference

temperature of 20 ◦C remains constant).
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In Section 5 the optimization will automatically in-

clude restrictions for the maximum allowable stress.

But no restrictions will be introduced with respect to

the maximum temperature allowable, since the values

observed in this parametric study appear reasonable for

all pulse shapes and the present PT configuration.

4. Simulated Annealing

Simulated Annealing (SA), viz. [26], is a heuristic

global optimization method based on Markov chains

that minimizes a given multiobjective function O. The

name is inspired by the thermal heat treatment called

annealing: during the cooling phase of a steel forge, the

steel is reheated at some moments of the cooling pro-

cess to ensure the relieve of residual stresses; the metal-

lic grains will attain, in this way, a relaxed configuration

of the lowest energy (global minimum).

The main idea of this numerical method is to con-

tinually perturb the input parameters, until O reaches a

global minimum. Every perturbation that reduces O is

accepted, but to avoid that the optimization gets trapped

at a local minimum, certain unfavorable perturbations

(i.e., which do not reduce O) are also accepted.

Several variables define the algorithm:

• θ: “annealing temperature”, θ0 initial value.

• λa: reduction factor of θ.

• Krj: maximum number of rejected iterations, ir, be-

fore modifying annealing temperature.

• Kac: maximum number of accepted iterations, ia,

before modifying annealing temperature.

• Sp: stopping number indicating the maximum

number of times that Krj can been reached.

• O, Õ: objective function value for the previous it-

eration, and for the current parameter proposal.

The temperature reduction factor is bounded by 0 <

λa < 1 and the typical Sp is 2 or 3. Kac and Krj are

often taken as 10 and 100 times the number of input

parameters [26], respectively; once any of these values

is reached, θ is reduced by λa and the corresponding

counter, ia for accepted iterations, or ir for rejected iter-

ations, is reset to zero.

At the initialization step of SA, the O is evaluated

for a proposed set of input parameters p, the values

of which are set by the user or drawn randomly from

predefined probability distribution functions; this first

value of O is saved for posterior evaluation of the SA

performance. Then, a new parameter proposal is built

by selecting at random one of the parameters being opti-

mized, and then drawing a value for this parameter from

its probability distribution function (see Section 4.1).

Then, the value of the objective function is recalculated,

Õ.

If Õ ≤ O, the proposal is always accepted (it im-

proves the value of the objective function), and a new

iteration is started, p ← p̃ and O ← Õ. However, if

Õ > O the proposal will be rejected with a certain prob-

ability that depends on the magnitude of the difference

O − Õ; the larger this magnitude, the larger the prob-

ability of rejection. This probability of rejection also

depends on the annealing temperature, the cooler the

temperature, the larger the probability. Such a proba-

bility can be modeled with a Boltzmann’s distribution

function:

f
B
= exp

(

O − Õ

θ

)

(1)

with this distribution, as the number of iteration pro-

gresses (and the annealing process cools down) the

probability of accepting a proposal that increases the ob-

jective function approaches zero.

The most critical decision for an efficient conver-

gence of the algorithm is the choice of θ0 and λa. If

both are very small, then θ “cools” rapidly and the SA

can be trapped in a local minimum; otherwise, if both

are high the convergence may be very slow. In the lit-

erature, analytical SA guides can be found to guarantee

convergence, see for instance [27].

After some trial and error, the chosen values in the

present study are λa = 0.85 and θ0 = 0.215. SA ends

when it has rejected Sp · Krj iterations.

In Fig. 7 a complete flow diagram of the SA algorithm

is presented, using the notation described in this section.

4.1. Input parameters

A sketch of the typical piecewise pulse to be calcu-

lated is shown in Fig. 8. The input parameters that de-

fine this pulse and the TE are:

• Vector of equally-spaced pulse gains Pi ∈ [1, 6],

1 ≤ i ≤ 12.

• Total pulse duration tp ∈ [2, 11] s.

• TE length l ∈ [2.5, 7] × 10−3 m defined in Fig. 2.

Virtually any practical shape can be found by SA. The

vector p that groups the input parameters has entries

noted pi with 1 ≤ i ≤ n = 14. In order to avoid

non-plausible shapes, interpolation between pulse gains
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p = {p1, .., pi, .., pn}

Objective fnct. O

Proposal

p̃ = {p1, .., p̃i, .., pn}

Objective fnct. Õ

Õ > O ?

Calculation of
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B
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(

O−Õ
θ

)
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B

?

REJECTED

ACCEPTED

p = p̃ ; O = Õ
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END
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Figure 7: Flow diagram of the Simulated Annealing algorithm applied to optimization of thermoelectric pulses.

is made piecewise with the Matlab c© function pchip

(shape-preserving piecewise cubic) [28]. (Previous tests

done using splines resulted in irregular pulse shapes.)

1

P
u

ls
e

g
ai

n
P

(–
)

P1 P2 P3 P4 Pn−2 Pn−1 Pn

tp
t (s)

Figure 8: Typical pulse gain evolution vs. time to be calculated by the

simulated annealing optimization algorithm.

The objective function O is defined as:

O =

4
∑

j=1

ϕ j

S j(p) − S̄ j

σ j

(2)

where ϕ = {ϕ1, ϕ2, ϕ3, ϕ4} is a set of weights adding

up to one defining the relative importance given by the

user to each target S j. In addition, S̄ j and σ j are the

mean and the standard deviation of n = 20 trial runs

with random parameter values in the specified ranges.

These statistics are used to normalize the values of the

targets ensuring that when considered in the optimiza-

tion function they have contributions of the same order

of magnitude.

The values obtained are listed in Table 2. The mean of

the inverse of maximum overcooling is 1/6.5 ◦C−1, the

mean of the time to reach it is 3 s, the mean overheating

is 12 ◦C and the mean holding time is 0.84 s.

The mean holding time th is a rather small value and

the mean time to reach maximum overcooling tmn is a

rather big one. These values are clearly not optimal, the

optimal values that will result after SA are quite far from

these mean values as will be shown later.

Goal 1 2 3 4

S̄ j 1/6.45 3.02 11.82 1/0.84

σ j 0.066 1.82 5.012 0.6

Table 2: Means and standard deviations to be used to normalize the

target values in the optimization equation.

4.2. Cases

The weights in Table 3 define the eight cases ana-

lyzed. In the first four cases, the optimal pulses for each

goal considered alone are determined. In the last four

cases, the optimal pulses for different combinations of

more than one goal are computed.
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Case ϕ1 ϕ2 ϕ3 ϕ4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1/4 1/4 1/4 1/4

6 1/3 1/3 1/3 0

7 1/3 0 1/3 1/3

8 1/2 0 1/2 0

Table 3: Optimization function weights for the eight cases analyzed.

In all cases, the initial proposal of parameters are: a

pulse of constant P = 2, tp = 5.5 s and l = 4.75×10−3

m. With this proposal set the FE code is run, the values

of the four targets, S j, computed and the first value of

O obtained. Then, iterations start selecting randomly

one parameter out of the 14 parameters, and proposing

a new value for it. This new value is randomly drawn

from a cumulative probability distribution function with

the following expression:

Prob(pi ≤ p̃i) = f ( p̃i) =

(

p̃i − pimn

pimx − pimn

)1/m

(3)

with pimn and pimx being the minimum and maximum

values of the parameter, respectively, and m a coefficient

controlling the skewness of the distribution. For m =

1, the distribution is symmetric and uniform, and for

positive values the skewness is positive, meaning that

the probability of drawing values closer to the minimum

is larger than closer to the maximum. The value of m is

set to 1 for ∆Tp and l, and to 3 for the gains Pi, so that

low gains are favored.

A typical evolution of the objective function with the

number of iterations can be seen in Fig. 9 for the third

case. At the beginning, when the temperature is still

high, the probabilities of accepting bad proposals is also

high, which is reflected with the high oscillations; these

oscillations dampen with the number of iterations, al-

most disappearing at the latest stages when the objective

function reaches its minimum.

Each case takes about three weeks of continuous

computing, with over 7,000 iterations (each iteration

implies a FE run). To reduce the waiting time, the eight

cases were run in parallel in a computer cluster with

12 virtual cores. A smaller number of iterations (for

instance 2,500 in Fig. 9) could have been accepted, al-

though at the risk of not reaching the global optimum.
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−1.5

−1
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# accepted iterations ia × 103

O
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je
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fu
n

ct
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n
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Figure 9: Evolution of the objective function O vs. number of ac-

cepted iterations for the third case of Table 3.

5. Optimized pulses

In this section, the results of the eight cases defined in

Table 3 are studied. The top plots of Figs. 10 and 11 are

for the optimized pulse shape, the bottom ones for the

induced Tc evolution during the transient process. Note

that the time axes span different ranges. During the opti-

mization of each pulse, at each iteration, the prescribed

BC are equal to those of Section 3, but the optimal in-

tensity is analytically recalculated for the TE length at

that iteration.

Any proposed parameter set that violates the criteria

of maximum Tresca stress is automatically discarded.

As a result, the optimal pulses not only give the best val-

ues for the selected goals, but also an admissible stress

level.

5.1. Optimized pulses for single goals

The first case optimizes the main target of a PT: max-

imum overcooling ∆Tp. The optimal pulse obtained

(Fig. 10 top left) does not resemble any of the simple

shapes of Fig. 5, but rather it looks like a “two-step” se-

quence of slightly quadratic ramps followed by a rapid

descend to finish the pulse. Some resemblance with the

generic pulse F , identified as optimal in Table 1 exists,

although the second flat stretch is reduced. There is an

abrupt and short descend between both ramps that helps

to relieve stresses.

As can be appreciated in Fig. 10 bottom left and Ta-

ble 4, the overcooling is a significant 12 ◦C although

the Tresca stress is very close to the maximum allow-

able. The stress restriction is an important limiting fac-

tor in the optimization process: recall that, case F in

the parametric analysis reaches an overcooling 16.1 ◦C,
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Figure 10: Optimized pulses (top) and cold face temperature distribution (bottom) with variable thermoelement length, for cases 1 to 4.

although under an inadmissible stress of 72.8 MPa. The

high stress reached in the optimization is mostly due

to the pulse duration, close to the highest permitted tp,

and the pulse maximum is close to the highest allowed

P. Note that the overheating tends to be very important

since this case does not take this target into account.

The minimum Tc happens at the end of the pulse

when most of the Peltier flux has accumulated and the

Joule flux has not arrived yet to the cold face thanks to

the smooth pulse introduction. Other reasons that limit

heat flux and its arrival are: a relatively short pulse of

only 4.5 s, a maximum gain close to its possible maxi-

mum P = 6 and a TE length close to its maximum, too.

For case 2, the SA finds the optimal pulse for the min-

imum time to reach maximum overcooling. It is a dou-

ble impulse that, in the shortest possible time, tries to

provide a very high gain of P ≈ 6 (maximum permitted,

out of the ordinate axis). The target is achieved with an

extremely short tmn of 0.025 s but at the cost of a disap-

pointing ∆Tp = 3 ◦C. Again the maximum stress is the

main limiting factor, since the initial P is high and the

pulse is introduced abruptly; the associated optimal TE

length is close to its minimum allowable value.

Such a pulse would not make much sense in real

applications because it provokes the appearance of a

strong and sudden Joule effect. Additionally, this shape

is not good for any of the other targets as seen in Table 4.

For case 3, the SA searches for the optimal pulse with

minimum overheating to find, not surprisingly, that the

pulse is the absence of a pulse. The pulse is flat, and

so is the temperature response. This case serves as a

validation of the algorithm rather than being a practical

result.

For case 4, the SA looks for the pulse that holds the

overcooling as long as possible. The optimized shape is

a succession of three irregular subpulses with low gain

P < 2 since a low ∆Tp = 3.9 ◦C makes it easier to main-

tain the overcooling. The first subpulse has the highest

relative P to quickly reach the maximum overcooling as

in case 2. The other two subpulses come into action at

the instants when Tc looses the 80% of ∆Tp. These two

subpulses present a lower P to achieve an approximate

constant Tc evolution: not as much energy is needed

now to maintain the ∆Tp as in the first subpulse. The

final th is a compelling 9.8 s or 90% of the total pulse

duration.

The maximum stress is low since the gain is also low

and introduced smoothly, and the optimal length is close

to its allowable maximum to retard the arrival of over-

heating; the pulse duration is the longest permitted.
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Figure 11: Optimized pulses (top) and cold face temperature evolution (bottom) with variable thermoelement length, for cases 5 to 8.

5.2. Optimized pulses for several goals

In this subsection, four cases combining several of the

previous single goals are presented. In all of them, the

optimal pulse will attempt, at least, to attain maximum

overcooling ∆Tp and minimum overheating ∆Tpp and

the different goals are equally weighted in their contri-

bution to the optimization function.

For case 5, the SA finds the optimal pulse jointly ac-

counting for all targets. The resulting pulse is rather

complicated, in particular with a high gain at the pulse

beginning to reduce tmn followed by other smaller sub-

pulses to increase th. To keep ∆Tpp at bay, this pulse

must not increase the Joule effect much above that of the

steady state, something that can be achieved decreasing

P quickly after the first peak.

Analyzing in detail the pulse, it can be observed that

the gain of the first subpulse is higher than that of the

second one, inducing a sharp Tc descend and moderat-

ing the stresses before reaching an acceptable ∆Tp. An

interesting point is that the pulse does not start with the

maximum gain although climbs to it quickly; this so-

lution is a trade-off between targets ∆Tp and tmn. After

the first subpulse, the targets that control the pulse shape

are the minimization of ∆Tpp and the maximization of

th. The optimal length of the TE is high although not at

its maximum since the pulse tries to minimize tmn. The

pulse duration is long to favor th, since the extra energy

to maintain the overcooling is low given that the gains

are low.

From these results it is clear that there is an important

trade-off between tmn and th, making difficult to obtain a

pulse with values close to their optimal when each target

is considered individually (see Table 4). It will be seen

next that removing the minimization of tmn from the op-

timization function, improves significantly the optimal

values of the rest of the goals.

For case 6, the SA looks for the optimal pulse ac-

counting for all the targets except the maximization of

the holding time. The resulting pulse has a first subpulse

like in the previous case, but since th is not a target the

maximum P is higher, which improves ∆Tp. For the

same reason, the second subpulse observed in the previ-

ous case is missing and, consequently, the total pulse is

shorter and ∆Tpp smaller than in case 5.

For case 7, the SA analyzes a more practical case in

which all targets are optimized jointly except the mini-

mization of tmn. The resulting pulse starts at P = 1, pro-

gresses smoothly as in case 1 but with a limit since min-

imizing ∆Tpp and maximizing th are also sought. After

three discontinuous ramps, a shorter subpulse follows,
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Case ∆Tp tmn ∆Tpp th Pmx tp l Ttr O Ratio
◦C s ◦C s – s mm MPa – –

1 12.1 7.3 14.4 1.1 5.2 11 6.9 59.4 -1.2 1.9

2 3.1 0.03 11.1 0.001 5.9 2.2 2.5 59.5 -1.6 121

3 0.1 2.1 0.01 0.46 1.25 2.2 5.6 23.0 -2.4 985

4 3.8 6.8 2.9 9.8 2 11 6.4 28.9 -1.8 12

5 5.6 1.2 4.9 3.8 3 8.8 6.6 33.6 -0.9 0.9/2.5/2.4/4.7

6 6.5 1.2 4.5 0.75 3.9 5.5 6.7 35.2 -0.8 1.0/2.5/2.6/-

7 7.4 6.4 4.5 3.8 2.3 11 6.9 33.8 -1.1 1.2/-/2.6/4.6

8 8.5 9.9 4.3 0.96 3.4 9.9 7.0 35.4 -1.1 1.3/-/5.3/-

Table 4: Optimization of pulses for the eight cases, see Table 3 for corresponding weights. Definitions in Figs. 1 and 2. Last column shows up to

four values with the ratio between the target(s) value(s) obtained for the optimal pulse and the corresponding target(s) value(s) computed with the

average parameters in Table 2. The target values that are subject to optimization for each case are shown in bold.

which maintains th. The long duration of the pulse is

compensated by low values of P to limit the pulse to-

tal energy. The maximum overcooling ∆Tp reaches an

interesting 7.5 ◦C with an acceptable overheating ∆Tpp

of 4.5 ◦C. This solution is comparable to pulse D from

Fig. 5 that gave good results for the three targets, see

Table 1.

Finally, for case 8, the SA looks for a pulse producing

maximum overcooling and minimum overheating. The

resulting pulse has two initial peaks as in case 1, but

with smaller P and slightly lower duration. It ends with

a high peak, resulting in the maximum overcooling and

minimum overheating of all of the multi-goal cases an-

alyzed. Not taking into account the low-gain train at the

beginning, this shape is similar to B from Fig. 5. In the

last two cases the length of the TE is almost maximum

since tmn is not considered in the optimization.

5.3. Discussion

From a practical point of view, the optimal pulses ob-

tained by SA could be post-processed with “engineer-

ing” sense. For case 1, the optimal pulse show two small

subpulses before and after the main double pulse that

could be removed. Also in this case, a flat transition

from the first subpulse to the second would give basi-

cally the same results. For case 2, the second “spike”

could be removed not affecting much the final results.

For cases 5 and 6 the small subpulses after 5 s are al-

most irrelevant due to the small energy that they in-

troduce (they only have some influence in the value of

∆Tpp). Note also that the probability distribution of Pi

has higher densities for (and therefore higher chances to

draw) low gain values.

Table 4 shows the values of the different targets, the

maximum pulse gain, the total pulse duration, the TE

length, the maximum Tresca stress and the final O, for

the eight cases. A bold font has been used to highlight

the target that is subject to optimization for each case.

The last column shows up to four values associated to

the targets being analyzed for each case. These values

are the ratio of the optimal result obtained with respect

to the result obtained when the mean values of the pa-

rameters in Table 2 are used. Besides the trivial case

3 and the not very practical case 2, these ratios show

important improvements.

The TE internal distribution of stresses was studied in

detail in [14] for constant pulses and it is important for

the understanding of general pulses. Recall that the pa-

rameters that are specially important for the generation

of stresses inside the TE are:

• The TE length l.

• The maximum P, specially at the pulse beginning.

• The pulse duration tp.

Indeed, if l is short, most of the TE cannot expand freely

in the plane x1 − x3 and the ends are highly loaded

due to the restrictions with other materials and with the

mechanical BC. Tresca stress increases linearly, pro-

portionally to the initial P, at the beginning and then

tends towards an asymptote; however, after tp, the stress

growth stops slowly returning to that of steady state.

Contour maps inside the TE for cases 1, 2, 5, 7 and 8

are shown in Fig. 12. The Tresca stresses are plotted, for

each case, at the instant when they are maximum. The

high stress appears at the faces in contact with other ma-

terials, (thin solder, conducting Cu) and concentrates at

the lower left corner. For all cases except 2, the rest of

the TE is approximately under free expansion and devel-

ops strains instead of stresses. The stress distributions
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and their maximums are similar for cases 1, 2 on one

side and 5, 7, 8 on the other, with maximums higher in

the first two cases. These similarities are due to equal

BC and analogous energies; for cases 1 and 2 they are

also due to a comparable combination between energy

and pulse slope at the beginning of the pulse.

6. Conclusions

Optimal pulse shapes and durations, together with

optimal thermoelement lengths have been obtained for

a variety of single and combined goals, which include

maximum overcooling, minimum overheating, mini-

mum time to maximum overcooling and maximum

holding time. After a parametric study to understand

how different simple pulse shapes influence the values

of the different goals, simulated annealing optimiza-

tion allows to determine the optimal pulses of irregular

shapes.

Several main conclusions can be established:

• Multiobjective optimizations with relatively few

parameters are computationally costly since non-

linear, dynamic, coupled numerical methods and

heuristic optimization algorithms must be used.

• Non-regular pulse shapes can substantially im-

prove the performance of pulsed thermoelectrics,

but the stresses can be so high as to cause failure

of the device.

• There is an important trade-off between the differ-

ent goals. No pulse can attain very good values for

all goals when compared with the values obtained

for pulses optimal for a single goal.

• Optimizations with combined targets are necessary

for practical applications, the choice of the targets

will influence substantially the final shape of the

optimal pulse.
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[17] R. Palma, J.L. Pérez-Aparicio, and R. Bravo. Study of hys-

teretic photovoltaic behavior using the finite element method,

extended thermodynamic and inverse models. Energy Conver-

sion and Management, 65:557–563, 2013.

13



10.5

18.7

26.8

35.0

43.1

51.3

59.4

4.52

13.7

22.8

32.0

41.2

50.3

59.5

2.23

7.46

12.7

17.9

23.1

28.4

33.6

2.39

7.63

12.9

18.1

23.3

28.6

33.8

2.88

8.30

13.7

19.1

24.6

30.0

35.4

Figure 12: Contour plots of Tresca equivalent stresses in MPa for thermoelements of cases 1, 2, 5, 7 and 8, see Table 2. Three dimensional finite

elements with meshes similar to that of Fig. 2.

[18] R.L. Taylor. FEAP A Finite Element Analysis Program:

User Manual. University of California, Berkeley, 2010.

http://www.ce.berkeley.edu/feap.
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