Document downloaded from:
http://hdl.handle.net/10251/151298
This paper must be cited as:
Mingueza, D.; Montoro, ME.; Roca Martinez, A. (2016). The characteristic subspace lattice of a linear transformation. Linear Algebra and its Applications. 506:329-341.
https://doi.org/10.1016/j.laa.2016.06.003

The final publication is available at
https://doi.org/10.1016/j.laa.2016.06.003

Copyright Elsevier

Additional Information

The characteristic subspace lattice of a linear transformation

David Mingueza
Accenture, Av. Diagonal 615, 08028 Barcelona, Spain
M. Eulàlia Montoro ${ }^{1, *}$
Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain.
Alicia Roca ${ }^{2, *}$
Dept. of Matemática Aplicada, IMM, Polytechnic U. Valencia.

Abstract

Given a square matrix $A \in M_{n}(\mathbb{F})$, the lattices of the hyperinvariant $(\operatorname{Hinv}(A))$ and characteristic $(\operatorname{Chinv}(A))$ subspaces coincide whenever $\mathbb{F} \neq G F(2)$. If the characteristic polynomial of A splits over \mathbb{F}, A can be considered nilpotent. In this paper we investigate the properties of the lattice Chinv (J) when $\mathbb{F}=G F(2)$ for a nilpotent matrix J. In particular, we prove it to be self-dual.

Keywords: Hyperinvariant subspaces, characteristic subspaces, lattices . 2008 MSC: 06F20, 06D50, 15A03, 15A27.

1. Introduction

Let \mathbb{F}^{n} be the n-dimensional vector space over a field \mathbb{F}, and $A \in M_{n}(\mathbb{F})$ a square matrix corresponding to an endomorphism of \mathbb{F}^{n} in a fixed basis. A vector subspace $V \subseteq \mathbb{F}^{n}$ is called invariant with respect to the endomorphism if $A V \subseteq V$. The subspace V is hyperinvariant if it is invariant for every matrix $T \in Z(A)$ (i.e. commuting with A). Weakening the latter condition, if it is only satisfied for every nonsingular matrix T commuting with A, the subspace is called characteristic. Obviously

$$
\operatorname{Hinv}(A) \subseteq \operatorname{Chinv}(A) \subseteq \operatorname{Inv}(A)
$$

[^0]where $\operatorname{Hinv}(A), \operatorname{Chinv}(A)$ and $\operatorname{Inv}(A)$ denote the lattices of hyperinvariant, characteristic and invariant subspaces, respectively.

For an arbitrary field \mathbb{F}, the lattice $\operatorname{Inv}(A)$ is studied in [3], where it is proven to be self-dual, and characterizations of some other properties are given, for instance when it is distributive or Boolean, among others. A full description of $\operatorname{Hinv}(A)$ when $\mathbb{F}=\mathbb{C}$ or \mathbb{R} can be found in [5], where it is proven to be a distributive and self-dual lattice, and tight bounds for its cardinality are provided. Concerning Chinv (A), if the characteristic polynomial of A splits over \mathbb{F} and $\operatorname{card}(\mathbb{F})>2, \operatorname{Chinv}(A)=\operatorname{Hinv}(A)([1])$. When $\operatorname{card}(\mathbb{F})=2, \operatorname{Chinv}(A)$ and $\operatorname{Hinv}(A)$ in general do not coincide. Morevover, if all of the eigenvalues of A are in \mathbb{F}, the study of $\operatorname{Hinv}(A)$ and $\operatorname{Chinv}(A)$ can be reduced to the case where A has a unique eigenvalue (see, for instance [1], [2] and [5]). Therefore, if the characteristic polynomial of A splits over \mathbb{F}, we can assume A to be a nilpotent matrix.

If A is a nilpotent matrix, and $\operatorname{card}(\mathbb{F})=2$, Shoda's Theorem (see for instance [2]) characterizes the existence of characteristic non hyperinvariant subspaces. General conditions for their existence, as well as some examples, can be found in $[1,2]$. A construction to explicitly obtain all of the characteristic non hyperinvariant subspaces of A is given in [7].

Our aim in this paper is to analyze basic properties of the lattice of the characteristic subspaces $\operatorname{Chinv}(A)$ of a nilpotent matrix A when $\mathbb{F}=G F(2)$. In particular we will prove that it is a self-dual lattice.

The paper is organized as follows: In section 2 we introduce the notation and basic results. We present here the structure of the characteristic nonhyperinvariant subspaces of A as obtained in [7]. In section 3 we analyze the properties of the lattice $\operatorname{Chinv}(A)$. In particular, we give an anti-isomorphism from $\operatorname{Chinv}(A)$ to $\operatorname{Chinv}(A)$, hence proving that the lattice is self-dual.

2. Preliminaries

Throughout the paper we will assume that $\mathbb{F}=G F(2)$ and $A=J$ a nilpotent Jordan matrix. Given a set of vectors $\left\{v_{1}, \ldots, v_{t}\right\} \subset \mathbb{F}^{n}$, we represent by $\operatorname{span}\left\{v_{1}, \ldots, v_{t}\right\}$ the vector subspace of linear combinations of the vectors $\left\{v_{1}, \ldots, v_{t}\right\}$. If E, F are vector subspaces of \mathbb{F}^{n}, the notation $E \cong F$ means that they are isomorphic.

Let $J \in M_{n}(G F(2))$ be a nilpotent Jordan matrix. We write $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ for its Segre characteristic; that is to say, $m=\operatorname{dim} \operatorname{ker}(J)$ and $\alpha_{1} \geq \cdots \geq \alpha_{m}$ are the orders of the Jordan blocks. We fix a Jordan basis for J and denote by u_{1}, \ldots, u_{m} the generators of the Jordan chains,

$$
u_{j}, J u_{j}, \ldots, J^{\alpha_{j}-1} u_{j}, \quad 1 \leq j \leq m
$$

We write V^{1}, \ldots, V^{m} for the corresponding monogenic subspaces,

$$
V^{j}=\operatorname{span}\left\{u_{j}, J u_{j}, \ldots\right\}
$$

They satisfy that $(G F(2))^{n}=V^{1} \oplus \cdots \oplus V^{m}$.
For a vector $w \in(G F(2))^{n}, w \neq 0$, its exponent $p=\exp (w) \geq 1$ and its depth $q=\operatorname{depth}(w)$ are defined by

$$
\begin{array}{ll}
w \in \operatorname{ker} J^{p}, & w \notin \operatorname{ker} J^{p-1} \\
w \in \operatorname{Im} J^{q}, & w \notin \operatorname{Im} J^{q+1}
\end{array}
$$

In particular, $\exp \left(J^{k} u_{j}\right)=\alpha_{j}-k$ and $\operatorname{depth}\left(J^{k} u_{j}\right)=k$.
We understand the lattice $\operatorname{Chinv}(J)$ as

$$
\operatorname{Chinv}(J)=\operatorname{Hinv}(J) \cup(\operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J))
$$

The hyperinvariant subspaces have been characterized in [5] and [2], and the characteristic non-hyperinvariant subspaces in [7]. We recall now both results.

Let $J \in M_{n}(G F(2))$ be a nilpotent Jordan matrix and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ its Segre characteristic. Given a partition $\left(k_{1}, \ldots, k_{m}\right)$ such that

$$
\begin{equation*}
0 \leq k_{j} \leq \alpha_{j} \tag{1}
\end{equation*}
$$

we denote by $V_{k_{j}}^{j}$ the vector subspace spanned by the last k_{j} vectors of the corresponding Jordan chain:

$$
V_{k_{j}}^{j}=\operatorname{span}\left\{J^{\alpha_{j}-k_{j}} u_{j}, \ldots, J^{\alpha_{j}-1} u_{j}\right\}
$$

and set

$$
\begin{equation*}
V\left(k_{1}, \ldots, k_{m}\right)=V_{k_{1}}^{1} \oplus \cdots \oplus V_{k_{m}}^{m} \tag{2}
\end{equation*}
$$

(we take $V_{k_{j}}^{j}=0$ if $k_{j} \leq 0$).
Theorem 2.1 (Gohberg \& al. [5]). The subspaces in $\operatorname{Hinv}(J)$ are of the form:

$$
V\left(k_{1}, \ldots, k_{m}\right)
$$

with

$$
\begin{array}{r}
k_{1} \geq \cdots \geq k_{m} \geq 0 \\
\alpha_{1}-k_{1} \geq \cdots \geq \alpha_{m}-k_{m} \geq 0 \tag{4}
\end{array}
$$

In particular, if $\alpha_{j+1}=\alpha_{j}$, then $k_{j+1}=k_{j}$.
The tuples $\left(k_{1}, \ldots, k_{m}\right)$ satisfying conditions (1), (3) and (4) will be called hyper-tuples. They can be visualized as decreasing both in exponent and depth.

Example 2.2. For $\alpha=(4,2,2,1)$, the possible non-trivial hyper-tuples are: $(1,0,0,0),(1,1,1,0),(1,1,1,1),(2,0,0,0),(2,1,1,0),(2,1,1,1),(2,2,2,1)$, $(3,1,1,0),(3,1,1,1),(3,2,2,1)$.

We recall next an explicit construction of the characteristic non hyperinvariant subspaces, which has been given in [7]. According to Shoda's theorem (see for instance [2]), there exists $X \in \operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$ if and only if there exist at least two Jordan blocks of unique order (i.e., no other block has the same order) which differ in more than 1 . We will refer to this property as the "Shoda condition".

We denote by Ω the set of indexes corresponding to blocks of unique order:

$$
\Omega:=\left\{1 \leq i_{1}<\cdots<i_{l} \leq m: \text { only one Jordan block has order } \alpha_{i_{j}}\right\} .
$$

Let us consider a tuple of the form

$$
b=\left(b_{i_{1}}, \ldots, b_{i_{t}}\right), \quad t \geq 2, \quad\left\{i_{1}, \ldots, i_{t}\right\}=\Omega_{t} \subset \Omega
$$

with $1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq m$. The tuple $b=\left(b_{i_{1}}, \ldots, b_{i_{t}}\right)$ is said to be a char-tuple associated to Ω_{t} if

$$
\begin{array}{r}
b_{i_{1}}>b_{i_{2}}>\cdots>b_{i_{t}}>0 \\
\alpha_{i_{1}}-b_{i_{1}}>\alpha_{i_{2}}-b_{i_{2}}>\cdots>\alpha_{i_{t}}-b_{i_{t}} \geq 0
\end{array}
$$

Given a char-tuple $b=\left(b_{i_{1}}, \ldots, b_{i_{t}}\right)$ associated to Ω_{t}, two families of vector subspaces can be associated to b, in order to describe the characteristic nonhyperinvariant subspaces:

1. A hyperinvariant subspace Y is associated to b if it is of the form:

$$
\begin{aligned}
Y=V\left(k_{1}, \ldots,\right. & k_{i_{1}-1}, b_{i_{1}}-1, k_{i_{1}+1}, \ldots \\
& \left.\ldots, k_{i_{2}-1}, b_{i_{2}}-1, k_{i_{2}+1}, \ldots, k_{i_{t}-1}, b_{i_{t}}-1, k_{i_{t}+1}, \ldots, k_{m}\right),
\end{aligned}
$$

and the following subspace is also hyperinvariant:

$$
\begin{aligned}
& V\left(k_{1}, \ldots, k_{i_{1}-1}, b_{i_{1}}, k_{i_{1}+1}, \ldots\right. \\
& \\
& \left.\ldots, k_{i_{2}-1}, b_{i_{2}}, k_{i_{2}+1}, \ldots, k_{i_{t}-1}, b_{i_{t}}, k_{i_{t}+1}, \ldots, k_{m}\right) .
\end{aligned}
$$

Observe that the required conditions are (see Theorem 2.1) $k_{i_{j}-1} \geq b_{i_{j}}$ and $\alpha_{i_{j}}-b_{i_{j}} \geq \alpha_{i_{j}+1}-k_{i_{j}+1}, j=1, \ldots, t$.
2. Define z_{1}, \ldots, z_{t} as

$$
z_{j}=J^{\alpha_{i_{j}}-b_{i_{j}}} u_{i_{j}}, \quad 1 \leq j \leq t .
$$

The subspace Z is called a minext subspace associated to b if:
a) $z \in Z \Rightarrow z=z_{j_{1}}+\cdots+z_{j_{p}}, 1 \leq j_{1}<j_{2}<\ldots<j_{p} \leq i_{t}, p \leq t$.
b) $z_{j} \notin Z$, for $j=1, \ldots, t$.
c) Each z_{j} appears as a summand of some $z \in Z$, i.e.

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{span}\left\{z_{1}, \ldots, \tilde{z_{j}}, \ldots, z_{t}\right\}+Z\right)=t, \quad \forall j=1, \ldots, t \tag{5}
\end{equation*}
$$

Notice that, by construction, $z_{j} \notin Y$ and $z_{j} \notin Z$ for $1 \leq j \leq t$, and Y, Z as above. Moreover,

$$
z_{1}, \ldots, z_{t} \notin Z \oplus Y
$$

In fact, the subspace Z plays the role of a direct "extension" of Y such that the sum $Z \oplus Y$ is still characteristic but non-hyperinvariant ([7]).

Finally, a characterization of the subspaces $\operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$ is given in the next result.

Theorem $2.3([7])$. A subspace $X \in \operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$ if and only if $X=$ $Z \oplus Y$ for some Z and Y defined as above; i.e., if and only if there exists a char-tuple such that Z and Y are, respectively, a minext and a hyperinvariant subspaces associated to it.
Remark 2.4. Notice that in the above theorem the subspaces Z and Y can not be zero.

Example 2.5. Let $J \in M_{31}(G F(2))$ be a nilpotent Jordan matrix with Segre characteristic $\alpha=(12,7,4,4,3,1)$. Then,

$$
\Omega=\{1,2,5,6\}
$$

Taking $\Omega_{3}=\{1,5,6\}$, the tuple $b=(10,2,1)$ is a char-tuple associated to Ω_{3}. In this case there is only one hyperinvariant subspace associated to b, namely,

$$
Y=V(9,5,2,2,1,0)
$$

Moreover, for

$$
z_{1}=J^{2} u_{1}, \quad z_{2}=J u_{5} \quad, z_{3}=J^{0} u_{6}=u_{6}
$$

there are only two minext subspaces Z associated to b :

$$
\left\{\begin{array}{l}
\operatorname{span}\left\{z_{1}+z_{2}+z_{3}\right\} \\
\operatorname{span}\left\{z_{1}+z_{2}, z_{2}+z_{3}\right\}
\end{array}\right.
$$

Therefore,

$$
\left\{\begin{array}{l}
X_{1}=\operatorname{span}\left\{z_{1}+z_{2}+z_{3}\right\} \oplus V(9,5,2,2,1,0) \\
X_{2}=\operatorname{span}\left\{z_{1}+z_{2}, z_{2}+z_{3}\right\} \oplus V(9,5,2,2,1,0)
\end{array}\right.
$$

are characteristic non-hyperinvariant subspaces.

3. Properties of the lattice $\operatorname{Chinv}(J)$

A lattice is a partially order set where each pair of elements X_{1}, X_{2} has a meet $\left(X_{1} \cap X_{2}\right)$ and a join $\left(X_{1}+X_{2}\right)$. By the definition of a characteristic subspace, if $X_{1}, X_{2} \in \operatorname{Chinv}(J)$, then $X_{1} \cap X_{2} \in \operatorname{Chinv}(J)$ and $X_{1}+X_{2} \in$ $\operatorname{Chinv}(A)$. Therefore, $\operatorname{Chinv}(J)$ is a lattice with inclusion as order, intersection as meet and linear sum as join. In particular, $\operatorname{Chinv}(J)$ is a sublattice of $\operatorname{Inv}(J)$. Given a lattice L, a linear application $\phi: L \longrightarrow L$ is an anti-isomorphism if it is an isomorphism which reverses the order. Therefore, $\phi\left(X_{1} \cap X_{2}\right)=$ $\phi\left(X_{1}\right)+\phi\left(X_{2}\right)$ and $\phi\left(X_{1}+X_{2}\right)=\phi\left(X_{1}\right) \cap \phi\left(X_{2}\right)$.

Remark 3.1. a) Notice that $\operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$ is not a lattice. For instance, let X_{1}, X_{2} be the characteristic non-hyperinvariant subspaces given in Example 2.5. Then, $X_{1} \cap X_{2}=V(9,5,2,2,1,0)$, which is hyperinvariant, therefore, it is not in $\operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$.
b) Observe that given $V_{1}=V\left(k_{1}, \ldots, k_{m}\right), V_{2}=V\left(k_{1}^{\prime}, \ldots, k_{m}^{\prime}\right)$ as in (2), then

$$
V_{1} \cap V_{2}=V\left(\min \left\{k_{1}, k_{1}^{\prime}\right\}, \ldots, \min \left\{k_{m}, k_{m}^{\prime}\right\}\right) .
$$

In particular, we remark that if $V_{1}, V_{2} \in \operatorname{Hinv}(J)$ are nontrivial subspaces, they have nontrivial intersections.

We recall next some general definitions:
Definition 3.2. Let $L(A)$ be a lattice of subspaces of \mathbb{F}^{n} with zero element $\{0\}$ and unit element \mathbb{F}^{n}. We say that

1. $L(A)$ is distributive if for every $X_{1}, X_{2}, X_{3} \in L(A)$ the following identity is satisfied

$$
\begin{equation*}
\left(X_{1}+X_{2}\right) \cap X_{3}=\left(X_{1} \cap X_{3}\right)+\left(X_{2} \cap X_{3}\right) . \tag{6}
\end{equation*}
$$

and $L(A)$ is modular if (6) holds whenever $X_{1} \subseteq X_{3}$.
2. $L(A)$ is complemented if for every $X_{1} \in L(A)$ there exist $X_{2} \in L(A)$ such that

$$
X_{1} \cap X_{2}=\{0\} \quad \text { and } \quad X_{1} \oplus X_{2}=\mathbb{F}^{n} .
$$

3. $L(A)$ is a Boolean algebra if it is distributive and complemented.
4. $L(A)$ is finite if it has a finite number of elements.
5. $L(A)$ is self-dual if there exist an anti-isomorphism from $L(A)$ to $L(A)$.

For the lattice $\operatorname{Hinv}(J)$ we have the following results.
Proposition 3.3 ([4]). Let $J \in M_{n}(G F(2))$ be a nilpotent Jordan matrix and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ its Segre characteristic. Then,

1. $\operatorname{Hinv}(J)$ is distributive. In particular, $\operatorname{Hinv}(J)$ is modular.
2. $\operatorname{Hinv}(J)$ is complemented if and only if $\alpha=(1, \ldots, 1)$.
3. $\operatorname{Hinv}(J)$ is finite.
4. $\operatorname{Hinv}(J)$ is self-dual.

Let us analyze these properties on $\operatorname{Chinv}(J)$.
Lemma 3.4. Let $J \in M_{n}(G F(2))$ be a nilpotent Jordan matrix and $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ its Segre characteristic. Assume that the Shoda condition is satisfied. Then,

1. $\operatorname{Chinv}(J)$ is not distributive, but it is modular.
2. $\operatorname{Chinv}(J)$ is not complemented.
3. $\operatorname{Chinv}(J)$ is finite.

Proof. 1. We give a counterexample. Let $\alpha=(8,6,4)$. Let

$$
\begin{gathered}
Y=V(6,4,2) \\
X_{1}=\operatorname{span}\left\{z_{1}+z_{2}+z_{3}\right\} \oplus V(5,4,3) \\
X_{2}=\operatorname{span}\left\{z_{1}+z_{2}, z_{2}+z_{3}\right\} \oplus V(5,4,3)
\end{gathered}
$$

where $z_{1}=J^{2} u_{1}, z_{2}=J u_{2}$ and $z_{3}=u_{3}$. Then, $X_{1}, X_{2}, Y \in \operatorname{Chinv}(J)$ and

$$
\begin{aligned}
\left(X_{1}+X_{2}\right) & \cap Y=V(6,5,4) \cap Y=V(6,4,2) \neq \\
& \neq\left(X_{1} \cap Y\right)+\left(X_{2} \cap Y\right)=V(5,4,2)
\end{aligned}
$$

The property of $\operatorname{Chinv}(J)$ being modular follows from the fact that the lattice $\operatorname{Inv}(J)$ is modular ([3]).
2. As in this case $\alpha_{1}>1, \operatorname{Hinv}(J)$ is not complemented. Therefore, there exists a subspace $X_{1} \in \operatorname{Hinv}(J)$ not complemented in $\operatorname{Hinv}(J)$.
Assume that X_{1} is complemented in $\operatorname{Chinv}(J)$. Then, there exists a subspace $X_{2} \in \operatorname{Chinv}(J)$ such that $X_{1} \cap X_{2}=\{0\}$ and $X_{1} \oplus X_{2}=(G F(2))^{n}$. Observe that $X_{2} \in \operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$. By Theorem 2.3, there exists a char-tuple such that if Y is a hyperinvariant subspace and Z a minext subspace associated to it, $X_{2}=Z \oplus Y$.
But this implies that $X_{1} \cap Y \subset X_{1} \cap X_{2}=\{0\}$, what is a contradiction because $X_{1} \cap Y \neq\{0\}$ (see Remark 2.4 and Remark 3.1.b). This proves that $\operatorname{Chinv}(J)$ is never complemented.
3. Given α, the number of char-tuples is finite (they are a particular type of hyper-tuples, and this is a finite number ([5])). Moreover, given a char-tuple, the number of minext subspaces is finite because the minext subspaces are linear subspaces of a finite dimension space over a finite field $G F(2)$ and the number of hyperinvariant subspaces associated to this char-tuple are finite too because the number of hyper-tuples is finite (see [4]). Therefore, the order of $\operatorname{Chinv}(J)$ is always finite.

Remark 3.5. As Chinv (J) is neither distributive nor complemented, $\operatorname{Chinv}(J)$ is not a Boolean lattice.

In what follows we prove that $\operatorname{Chinv}(J)$ is self-dual.
Given a subset S of \mathbb{F}^{n}, we denote by $\operatorname{Ann}(S)$ the annihilator of S :

$$
\operatorname{Ann}(S)=\left\{u \in \mathbb{F}^{n} \mid u \cdot v=0, \quad \forall v \in S\right\}
$$

where '.' is the standard scalar product of the components of the vectors, with respect to the canonical basis (notice that if $\mathbb{F}=G F(2)$, the scalar product is a bilinear form, non positive definite).

We will also find annihilators of subsets with respect to subspaces of \mathbb{F}^{n} instead of with respect to the whole space. In that case, we will specify the subspace in the notation. Given a vector subspace $V \subset \mathbb{F}^{n}$,

$$
\operatorname{Ann}(S, V)=\{u \in V \mid u \cdot v=0, \quad \forall v \in S\}
$$

In particular, $\operatorname{Ann}\left(S, \mathbb{F}^{n}\right)=\operatorname{Ann}(S)$.
Proposition 3.6. If Z is a minext subspace associated to a char-tuple $b=$ $\left(b_{i_{1}}, \ldots, b_{i_{t}}\right)$ and $\mathcal{Z}_{t}=\operatorname{span}\left\{z_{1}, \ldots, z_{t}\right\}$, then

1. $\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)$ is a minext subspace associated to the same char-tuple.
2. The $\operatorname{Ann}(Z)$ is

$$
\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \oplus V\left(\alpha_{1}, \ldots, \alpha_{i_{1}-1}, \tilde{\alpha}_{i_{1}}, \alpha_{i_{1}+1}, \ldots, \alpha_{i_{t}-1}, \tilde{\alpha}_{i_{t}}, \alpha_{i_{t}+1}, \ldots, \alpha_{m}\right)
$$

where,

$$
\begin{aligned}
& \quad V\left(\alpha_{1}, \ldots, \alpha_{i_{1}-1}, \tilde{\alpha}_{i_{1}}, \alpha_{i_{1}+1}, \ldots, \alpha_{i_{t}-1}, \tilde{\alpha}_{i_{t}}, \alpha_{i_{t}+1}, \ldots, \alpha_{m}\right)= \\
& = \\
& =V^{1} \oplus \ldots \oplus V^{i_{1}-1} \oplus \tilde{V}^{i_{1}} \oplus V^{i_{1}+1} \oplus \ldots \oplus V^{i_{t}-1} \oplus \tilde{V}^{i_{t}} \oplus V^{i_{t}+1} \oplus \ldots \oplus V^{m},
\end{aligned}
$$

with

$$
\tilde{V}^{i_{j}}=\operatorname{span}\left\{u_{i_{j}}, \ldots, J^{\alpha_{i_{j}}-b_{i_{j}}-1} u_{i_{j}}, J^{\alpha_{i_{j}}-b_{i_{j}}+1} u_{i_{j}}, \ldots, J^{\alpha_{i_{j}}-1} u_{i_{j}}\right\}, j=1, \ldots, t .
$$

Proof. 1. Assume that the minext space Z can be written as

$$
Z=\operatorname{span}\left\{w_{1}, \ldots, w_{d}\right\} \subseteq \operatorname{span}\left\{z_{1}, \ldots, z_{t}\right\}=\mathcal{Z}_{t}
$$

Taking $F_{i}=\operatorname{span}\left\{z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{t}\right\}$ for $i=1, \ldots, t$, then

$$
\operatorname{Ann}\left(F_{i}, \mathcal{Z}_{t}\right)=\operatorname{span}\left\{z_{i}\right\}
$$

Conditions (5b) and (5c) in the definition of Z can be written as:

- $\operatorname{span}\left\{z_{i}\right\} \nsubseteq Z$.
- $Z \nsubseteq F_{i}$.

Using annihilator properties ([6]),

- $\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \nsubseteq \operatorname{Ann}\left(\operatorname{span}\left\{z_{i}\right\}, \mathcal{Z}_{t}\right)=F_{i}$.
- $\operatorname{Ann}\left(F_{i}, \mathcal{Z}_{t}\right)=\operatorname{span}\left\{z_{i}\right\} \nsubseteq \operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)$.

It means that $\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)$ is a minext subspace associated to the same char-tuple as Z.
2. It is straightforward.

Corollary 3.7. Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, let $b=\left(b_{i_{1}}, \ldots, b_{i_{t}}\right)$ be a char-tuple associated to α. If Z and Y are a minext subspace and an hyperinvariant subspace associated to b, then

$$
\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \subset \operatorname{Ann}(Y)
$$

Proof. By the above proposition, $\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)$ is a minext subspace associated to b. For $Y=V\left(k_{1}, \ldots, b_{i_{1}}-1, \ldots, b_{i_{t}}-1, \ldots, k_{m}\right)$, it is obvious that

$$
\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \subset \mathcal{Z}_{t}=\operatorname{span}\left\{z_{1}, \ldots, z_{t}\right\} \subset \operatorname{Ann}(Y)
$$

Let

$$
\mathcal{B}=\left\{u_{1}, J u_{1}, \ldots, J^{\alpha_{1}-1} u_{1}, \ldots, u_{m}, \ldots, J^{\alpha_{m}-1} u_{m}\right\}
$$

be a Jordan basis for $(G F(2))^{n}$. Let S be the matrix of the change of basis from the basis \mathcal{B} to the basis

$$
\mathcal{B}^{\prime}=\left\{J^{\alpha_{1}-1} u_{1}, \ldots, J u_{1}, u_{1}, \ldots, J^{\alpha_{m}-1} u_{m}, \ldots, u_{m}\right\}
$$

It is known (see $[5,6]$) that the application

$$
\begin{array}{clc}
D: \operatorname{Inv}(J) & \longrightarrow & \operatorname{Inv}(J) \\
X & \longrightarrow & S^{-1} \operatorname{Ann}(X) \tag{7}
\end{array}
$$

is an anti-isomorphism.
We prove next that $\operatorname{Chinv}(J)$ is self-dual.
Theorem 3.8. Let $J \in M_{n}(G F(2))$ be a nilpotent Jordan matrix and $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ its Segre characteristic. Then, the lattice $\operatorname{Chinv}(J)$ is self-dual.

Proof. It is enough to prove that

$$
X \in \operatorname{Chinv}(J) \Rightarrow D(X) \in \operatorname{Chinv}(J)
$$

In fact, the application D in (7) transforms subspaces of $\operatorname{Hinv}(J)$ into subspaces of $\operatorname{Hinv}(J)$, and subspaces of $\operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$ into subspaces of $\operatorname{Chinv}(J) \backslash$ $\operatorname{Hinv}(J)$ as we show next.

1. Let $V\left(k_{1}, \ldots, k_{m}\right) \in \operatorname{Hinv}(J)$. Then,
```
\(\operatorname{Ann}\left(V\left(k_{1}, \ldots, k_{m}\right)\right)=\)
\(\operatorname{Ann}\left(\operatorname{span}\left\{J^{\alpha_{1}-k_{1}} u_{1}, \ldots, J^{\alpha_{1}-1} u_{1} ; \ldots ; J^{\alpha_{m}-k_{m}} u_{m}, \ldots, J^{\alpha_{m}-1} u_{m}\right\}\right)=\)
\(=\operatorname{span}\left\{u_{1}, \ldots, J^{\alpha_{1}-k_{1}-1} u_{1} ; \ldots ; u_{m}, \ldots, J^{\alpha_{m}-k_{m}-1} u_{m}\right\}\).
```

Therefore,

$$
\begin{aligned}
& D\left(V\left(k_{1}, \ldots, k_{m}\right)\right)=S^{-1}\left(\operatorname{Ann}\left(V\left(k_{1}, \ldots, k_{m}\right)\right)\right)= \\
& S^{-1} \operatorname{span}\left\{u_{1}, \ldots, J^{\alpha_{1}-k_{1}-1} u_{1} ; \ldots ; u_{m}, \ldots, J^{\alpha_{m}-k_{m}-1} u_{m}\right\}= \\
& \operatorname{span}\left\{J^{k_{1}} u_{1}, \ldots, J^{\alpha_{1}-1} u_{1} ; \ldots ; J^{k_{m}} u_{m}, \ldots, J^{\alpha_{m}-1} u_{m}\right\}= \\
& =V\left(\alpha_{1}-k_{1}, \ldots, \alpha_{m}-k_{m}\right) \in \operatorname{Hinv}(J) .
\end{aligned}
$$

2. Let $X \in \operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$. Assume that $X=Z \oplus Y$ with

$$
Y=V\left(k_{1}, \ldots, k_{i_{1}-1}, b_{i_{1}}-1, k_{i_{1}+1}, \ldots, k_{i_{t}-1}, b_{i_{t}}-1, k_{i_{t}+1}, \ldots, k_{m}\right)
$$

where $b=\left(b_{i_{1}}, \ldots, b_{i_{t}}\right)$ is the char-tuple associated to X, and Z a minext subspace associated to b. Let us find $\operatorname{Ann}(X)$.
Taking into account Proposition 3.6,

$$
\begin{aligned}
& \operatorname{Ann}(X)=\operatorname{Ann}(Z) \cap \operatorname{Ann}(Y)= \\
& \quad\left(\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \oplus V\left(\alpha_{1}, \ldots, \tilde{\alpha}_{i_{1}}, \ldots, \tilde{\alpha}_{i_{t}}, \ldots, \alpha_{m}\right)\right) \cap \operatorname{Ann}(Y)= \\
& \quad=\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \oplus\left(V\left(\alpha_{1}, \ldots, \tilde{\alpha}_{i_{1}}, \ldots, \tilde{\alpha}_{i_{t}}, \ldots, \alpha_{m}\right) \cap \operatorname{Ann}(Y)\right)
\end{aligned}
$$

The last identity is a consequence of the fact that $\operatorname{Chinv}(J)$ is modular and $\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \subset \operatorname{Ann}(Y)$ (see Lemma 3.4, condition (6) and Corollary 3.7). We have that

$$
\begin{array}{r}
\operatorname{Ann}(Y)=\operatorname{span}\left\{u_{1}, \ldots, J^{\alpha_{1}-k_{1}-1} u_{1} ; \ldots ; u_{i_{1}}, \ldots, J^{\alpha_{i_{1}}-b_{i_{1}}-1} u_{i_{1}} ; \ldots ;\right. \\
\left.u_{i_{t}}, \ldots, J^{\alpha_{i_{t}}-b_{i_{t}}-1} u_{i_{t}} ; \ldots ; u_{m}, \ldots, J^{\alpha_{m}-k_{m}-1} u_{m}\right\},
\end{array}
$$

then,

$$
\begin{gathered}
V\left(\alpha_{1}, \ldots, \alpha_{i_{1}-1}, \tilde{\alpha}_{i_{1}}, \alpha_{i_{1}+1}, \ldots, \alpha_{i_{t}-1}, \tilde{\alpha}_{i_{t}}, \alpha_{i_{t}+1}, \ldots, \alpha_{m}\right) \cap \operatorname{Ann}(Y)= \\
\operatorname{span}\left\{u_{1}, \ldots, J^{\alpha_{1}-1} u_{1} ; \ldots ; u_{i_{1}}, \ldots, J^{\alpha_{i_{1}}-b_{i_{1}}-1} u_{i_{1}}, J^{\alpha_{i_{1}}-b_{i_{1}}+1} u_{i_{1}}, \ldots\right. \\
J^{\alpha_{i_{1}}-1} u_{i_{1}} ; \ldots ; u_{i_{t}}, \ldots, J^{\alpha_{i_{t}}-b_{i_{t}}-1} u_{i_{t}}, J^{\alpha_{i_{t}}-b_{i_{t}}+1} u_{i_{t}}, \ldots, J^{\alpha_{i_{t}}-1} u_{i_{t}} ; \ldots ; \\
\left.u_{m}, \ldots, J^{\alpha_{m}-1} u_{m}\right\} \cap \operatorname{span}\left\{u_{1}, \ldots, J^{\alpha_{1}-k_{1}-1} u_{1} ; \ldots ; u_{i_{1}}, \ldots, J^{\alpha_{i_{1}}-b_{i_{1}}} u_{i_{1}} ;\right. \\
\left.\ldots ; u_{i_{t}}, \ldots, J^{\alpha_{i_{t}}-b_{i_{t}}} u_{i_{t}} ; \ldots ; u_{m}, \ldots, J^{\alpha_{m}-k_{m}-1} u_{m}\right\}= \\
=\operatorname{span}\left\{u_{1}, \ldots, J^{\alpha_{1}-k_{1}-1} u_{1} ; \ldots ; u_{i_{1}}, \ldots, J^{\alpha_{i_{1}}-b_{i_{1}}-1} u_{i_{1}} ; \ldots ;\right. \\
u_{i_{t}}, \ldots, J^{\left.\alpha_{i_{t}-b_{i_{t}}-1} u_{i_{t}} ; \ldots ; u_{m}, \ldots, J^{\alpha_{m}-k_{m}-1} u_{m}\right\}}
\end{gathered}
$$

Applying the inverse of the change of basis S to this set, we obtain

$$
\begin{aligned}
& S^{-1}\left(V\left(\alpha_{1}, \ldots, \tilde{\alpha}_{i_{1}}, \ldots, \tilde{\alpha}_{i_{t}}, \ldots, \alpha_{m}\right) \cap \operatorname{Ann}(Y)\right)= \\
& \operatorname{span}\left\{J^{\alpha_{1}-1} u_{1}, \ldots, J^{k_{1}+1} u_{1} ; \ldots ; J^{\alpha_{i_{1}}-1} u_{i_{1}}, \ldots, J^{b_{i_{1}}+1} u_{i_{1}} ; \ldots ;\right. \\
& \left.J^{\alpha_{i_{t}}-1} u_{i_{t}}, \ldots, J^{b_{i_{t}}+1} u_{i_{t}} ; \ldots ; J^{\alpha_{m}-1} u_{m}, \ldots, J^{k_{m}+1} u_{m}\right\}= \\
& \quad=V\left(\alpha_{1}-k_{1}, \ldots, \alpha_{i_{1}}-b_{i_{1}}, \ldots, \alpha_{i_{t}}-b_{i_{t}}, \ldots \alpha_{m}-k_{m}\right) .
\end{aligned}
$$

On the other hand,

$$
\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)=\left\{w \in \mathcal{Z}_{t}=\operatorname{span}\left\{z_{1}, \ldots, z_{t}\right\} \mid w \cdot z=0, \forall z \in Z\right\}
$$

which by Proposition 3.6 is a minext subspace associated to the char-tuple b. Applying the inverse of the change of basis S to this subspace, we obtain that $S^{-1}\left(\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)\right)$ is a minext subspace generated by the elements

$$
z_{i}^{\prime}=J^{\alpha_{i_{j}}-b_{i_{j}}} u_{i_{j}}, j=1, \ldots, t
$$

As a consequence, $D(X)=S^{-1} \operatorname{Ann}(X)$ is the subspace

$$
\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right) \oplus V\left(\alpha_{1}-k_{1}, \ldots, \alpha_{i_{1}}-b_{i_{1}}, \ldots, \alpha_{i_{t}}-b_{i_{t}}, \ldots \alpha_{m}-k_{m}\right)
$$

and, by Theorem 2.3, $D(X) \in \operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$ associated to the chartuple

$$
b^{\prime}=\left(\alpha_{i_{1}}-b_{i_{1}}+1, \ldots, \alpha_{i_{t}}-b_{i_{t}}+1\right)
$$

Example 3.9. Let $\alpha=(12,7,4,2,1)$ be the Segre partition of a Jordan matrix J and $\Omega_{t}=\{2,4\}$. Let $b=(6,2)$ be a char-tuple. $Y=V(9,5,3,1,1)$ is a hyperinvariant subspace associated to $b(V(9,6,3,2,1)$ is also hyperinvariant). Define $z_{1}=J u_{2}, z_{2}=u_{4}$ and $Z=\operatorname{span}\left\{z_{1}+z_{2}\right\}$. Then $X=Z \oplus Y \in$ $\operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J)$. Let S be the change of basis matrix from the basis \mathcal{B} to the basis \mathcal{B}^{\prime} mentioned above. We find $D(X)$:

$$
\begin{gathered}
V(9,5,3,1,1)=\operatorname{span}\left\{J^{3} u_{1}, \ldots, J^{11} u_{1} ; J^{2} u_{2}, \ldots, J^{6} u_{2} ; J u_{3}, \ldots, J^{3} u_{3} ; J u_{4} ; u_{5}\right\} \\
\operatorname{Ann}(V(9,5,3,1,1))=\operatorname{span}\left\{u_{1}, J u_{1}, J^{2} u_{1} ; u_{2}, J u_{2} ; u_{3} ; u_{4}\right\} \\
V(12, \tilde{7}, 4, \tilde{2}, 1)=\operatorname{span}\left\{u_{1}, \ldots, J^{11} u_{1} ; u_{2}, J^{2} u_{2}, \ldots, J^{6} u_{2} ; u_{3} \ldots J^{3} u_{3} ; J u_{4} ; u_{5}\right\} \\
V(12, \tilde{7}, 4, \tilde{2}, 1) \cap \operatorname{Ann}(V(9,5,3,1,1))=\operatorname{span}\left\{u_{1}, J u_{1}, J^{2} u_{1} ; u_{2} ; u_{3}\right\} \\
D(X)=S^{-1} \operatorname{span}\left\{u_{1}, J u_{1}, J^{2} u_{1} ; u_{2} ; u_{3}\right\}= \\
\operatorname{span}\left\{J^{11} u_{1}, J^{10} u_{1}, J^{9} u_{1} ; J^{6} u_{2} ; J^{3} u_{3}\right\}= \\
=V(12-9,7-6,4-3,2-2,1-1)=V(3,1,1,1,0) \in \operatorname{Hinv}(J)
\end{gathered}
$$

associated t the char-tuple $b^{\prime}=(7-6+1,2-2+1)=(2,1)$.

$$
\begin{aligned}
\operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)= & \left\{w \in \operatorname{span}\left\{z_{1}, z_{2}\right\} \mid w \cdot\left(z_{1}+z_{2}\right)=0\right\}=\operatorname{span}\left\{z_{1}+z_{2}\right\} \\
& S^{-1} \operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)=\operatorname{span}\left\{J^{5} u_{2}+J u_{4}\right\}
\end{aligned}
$$

therefore, $S^{-1} \operatorname{Ann}\left(Z, \mathcal{Z}_{t}\right)$ is a minext subspace associated to the char-tuple $b^{\prime}=(2,1)$.

Finally,

$$
D(X)=S^{-1} \operatorname{Ann}(X)=\operatorname{span}\left\{J^{5} u_{2}+J u_{4}\right\} \oplus V(3,1,1,1,0) \in \operatorname{Chinv}(J) \backslash \operatorname{Hinv}(J) .
$$

Acknowledgments

The second author is partially supported by MINECO, grant MTM2015-65361-P and third author is partially supported by MINECO, grant MTM2013-40960-P, and by Gobierno Vasco, grant GIC13/IT-710-13.

Bibliography

[1] P. Astuti, H.K. Wimmer. Hyperinvariant, characteristic and marked subspaces. Oper. Matrices 3, (2009) 261-270.
[2] P. Astuti, H.K. Wimmer. Characteristic and hyperinvariant subspaces over the field GF(2). Linear Algebra and its Applications, 438, 4, (2013), 15511563.
[3] L. Brickman, P.A. Fillmore. The invariant subspace lattice of a linear transformation. Can. J. Math., 19, 35, (1967), 810-822.
[4] P.A. Fillmore, D.A. Herrero and W.E. Longstaff. The hyperinvariant subspace lattice of a linear transformation. Linear Algebra and its Applications, 17 (1977), 125-132.
[5] I. Gohberg, P. Lancaster, L. Rodman. Invariant Subspaces of Matrices with Applications. SIAM, 1986.
[6] N. Jacobson, Lectures in abstract algebra, Vol. I, Princeton, N.J., 1953.
[7] D. Mingueza, M.E. Montoro, J.R. Pacha. Description of the characteristic non-hyperinvariant subspaces over the field $G F(2)$. Linear Algebra and its Applications, 439 (2013), 3734-3745.

[^0]: * Corresponding author

 Email addresses: david.mingueza@ya.com (David Mingueza), eula.montoro@ub.edu (M. Eulàlia Montoro), aroca@mat.upv.es (Alicia Roca)
 ${ }^{1}$ Partially supported by MINECO, grant MTM2015-65361-P.
 ${ }^{2}$ Partially supported by MINECO, grant MTM2013-40960-P, and by Gobierno Vasco, grant GIC13/IT-710-13.

