Trabajo Fin de Máster

Elaboración del modelo matemático del abastecimiento de agua potable de la ciudad de Esmeraldas (Ecuador).

Análisis del funcionamiento actual y propuestas de mejora.

Intensificación: Hidráulica Urbana

Autor: MARCO ALFONSO DE LA TORRE BRAVO

Tutor: DR. JAVIER SORIANO OLIVARES

SEPTIEMBRE, 2020

Resumen del Trabajo Fin de Master

Datos del proyecto

Título del TFM en español: Elaboración del modelo matemático del abastecimiento de agua potable de la ciudad de Esmeraldas (Ecuador). Análisis del funcionamiento actual y propuestas de mejora.

Título del TFM en inglés: Elaboration of the mathematical model of the drinking water supply of the city of Esmeraldas (Ecuador). Analysis of the current operation and proposals for improvement.

Título del TFM en Valenciano: Elaboració del model matemàtic del proveïment d'aigua potable de la ciutat de Maragdes (l'Equador). Anàlisi del funcionament actual i propostes de millora.

Alumno: MARCO ALFONSO DE LA TORRE BRAVO.

Tutor: DR. JAVIER SORIANO OLIVARES.

Cotutor/es:

Director experimental:

Fecha de Lectura: SEPTIEMBRE, 2020

Resumen

En español (máximo 5000 caracteres)

El presente trabajo analiza el proyecto de "Mejoramiento y Ampliación del sistema regional de agua potable de Esmeraldas y su zona de influencia, en la provincia de Esmeraldas" con el objetivo de establecer mejoras en el sistema mediante un modelo matemático. Dicho modelo pretende comparar el funcionamiento actual y simular ciertas mejoras que se pueden establecer en el sistema para mejorar la calidad del servicio mediante reducción de fugas mejorando las presiones mediante la implementación de válvulas reductoras de presión, cambio o eliminación de tuberías.

El sistema de agua potable de la provincia de Esmeraldas, contiene 20 redes de distribución, la longitud de las redes es de 444,941 metros y abastece a una población de 540,722 de habitantes aproximadamente, el proyecto esta previsto con un funcionamiento hasta el año 2040.

El parámetro para determinar el mejoramiento del sistema de agua potable es la presión, por tanto, el objetivo es disminuir los sectores con presiones que estén debajo de la mínima requeridas y con el mismo criterio reducir los sectores que sobre pasen las presiones máximas, utilizando el programa EPANET para las simulaciones y análisis.

En valenciano (máximo 5000 caracteres)

El present treball analitza el projecte de "Millorament i Ampliació del sistema regional d'aigua potable de Maragdes i la seua zona d'influència, a la província

de Maragdes" amb l'objectiu d'establir millores en el sistema mitjançant un model matemàtic. Aquest model pretén comparar el funcionament actual i simular certes millores que es poden establir en el sistema per a millorar la qualitat del servei mitjançant reducció de fugides millorant les pressions mitjançant la implementació de vàlvules reductores de pressió, canvi o eliminació de canonades.

El sistema d'aigua potable de la província de Maragdes, conté 20 xarxes de distribució, la longitud de les xarxes és de 444,941 metres i proveeix a una població de 540,722 d'habitants aproximadament, el projecte aquesta previst amb un funcionament fins a l'any 2040.

El paràmetre per a determinar el millorament del sistema d'aigua potable és la pressió, per tant, l'objectiu és disminuir els sectors amb pressions que estiguen davall de la mínima requerides i amb el mateix criteri reduir els sectors que sobre passen les pressions màximes, utilitzant el programa *EPANET per a les simulacions i anàlisis.

En inglés (máximo 5000 caracteres)

This paper analyzes the project "Improvement and Expansion of the regional drinking water system of Esmeraldas and its area of influence, in the province of Esmeraldas" with the objective of establishing improvements in the system through a mathematical model. This model aims to compare the current operation and simulate certain improvements that can be established in the system to improve service quality by reducing leaks by improving pressures by implementing pressure reducing valves, changing or removing pipes.

The drinking water system of the province of Esmeraldas, contains 20 distribution networks, the length of the networks is 444,941 meters and supplies a population of approximately 540,722 inhabitants, the project is planned to run until 2040.

The parameter to determine the improvement of the drinking water system is the pressure, therefore, the objective is to reduce the sectors with pressures that are below the minimum required and with the same criteria reduce the sectors that exceed the maximum pressures, using the EPANET program for simulations and analysis.

Palabras clave español (máximo 5): Modelo hidráulico, Epanet, Esmeraldas, suministro de agua.

Palabras clave valenciano (máximo 5): Model hidràulic, Epanet, Esmeraldas, subministrament d'aigua.

Palabras clave inglés (máximo 5): Hydraulic model, Epanet, Esmeraldas, water supply.

ÍNDICE DE CONTENIDO

1.	INT	ROE	DUCCIÓN	11
1	.1.	Obj	etivos	11
1	.1.1.	0	bjetivo Principal	11
1	.1.2.	0	bjetivos Específicos	11
1	.2.	Res	umen	11
1	.3.	Des	cripción de la población	12
	1.3.	1.	Ubicación	12
	1.3.	2.	Topografía	13
	1.3.	3.	Habitantes	15
	1.3.	4.	Clima	16
2.	DE	SCR	IPCIÓN DEL ABASTECIMIENTO	21
2	.1.	Esq	uema Simplificado	21
2	.2.	Inve	entario	23
	2.2.	1.	Fuentes de Abastecimiento	23
	2.2.	2.	Puntos de Captación	23
	2.2.	3.	Impulsión de agua cruda	26
	2.2.	4.	Sistema de Bombeo	27
	2.2.	4.1.	Bombeo de Agua Cruda	28
	2.2.	4.2.	Estación de Bombeo de Agua Potable	29
	2.2.	5.	Lagunas de Reserva	31
	2.2.	6.	Planta de Potabilización	32
	2.2.	7.	Tanque de carga	36
	2.2.	8.	Tanques de Reserva	37
	2.2.	9.	Tubería	38
	2.2.	10.	Válvulas	48
3.	AN	ÁLIS	SIS DE LA SITUACIÓN	52
3	.1.	Bala	ance Hídrico	52
	3.1.	1.	Volumen Inyectado	52
	3.1.	2.	Volumen Registrado	54
	3.1.	3.	Diferencia de Volumen Inyectado y Registrado	55
	3.1.	4.	Volumen Incontrolado	56
	3.1.	5.	Balance Hídrico Técnico	57
3	.2.	Dot	ación Bruta	60
4.	EL	ABO	RACIÓN DEL MODELO	63

4.	1. Re	copilación de información	63
4.2	2. Es	quematización de la Red	84
4.3	3. Pa	rámetros de Diseño	86
	4.3.1.	Caudal Medio Diario (QMD)	87
	4.3.2.	Caudal Máximo Horario (QMH)	88
4	4.3.3.	Caudal contra Incendios (QIN)	88
	4.3.4.	Caudal de Diseño	88
	4.3.5.	Caudal de Fugas	89
4	4.3.6.	Pérdidas de Carga	91
4	4.3.7.	Velocidades máximas	92
4	4.3.8.	Presiones de servicio en la red de distribución	92
4	4.3.9.	Consideraciones Generales para el Diseño	93
4	4.3.10.	Área de Cobertura	95
	4.3.11.	Población Servida	95
4.4	4. Es	tructuración del Sistema de Distribución	98
4.5	5. Mc	delo Matemático	101
5	ANÁLI	SIS Y DIAGNÓSTICO	104
5.	1. Pre	esiones en la Red	104
5.2	2. Ve	locidades en la Red	106
5.3	3. Ca	udales en la Red	106
6.	PROP	UESTAS DE MEJORAS	109
6.	1. Tu	berías de la red	110
6.2	2. Vá	Ivulas en la Red	113
6.3	3. Pre	esiones en la Red	115
6.4	4. Ca	udales en la Red	117
7.	CONC	LUSIONES Y RECOMENDACIONES	120
7.	1. Co	nclusiones	120
		comendaciones	
8.	BIBLIC	OGRAFÍA	123
9.	ANEJO	OS	125

ÍNDICE DE TABLAS

Tabla 1. Población Esmeraldas	15
Tabla 2. Temperatura Media Esmeraldas	16
Tabla 3. Precipitación Media Esmeraldas	17
Tabla 4. Volumen de Tanques de Reserva	38
Tabla 5. Datos Generales de Línea de Conducción	39
Tabla 6. Conducciones del Sistema de TC ESM/Balnearios	40
Tabla 7. Conducciones del Sistema de TC Rocafuerte	40
Tabla 8. Longitudes de las Redes de Distribución	43
Tabla 9. Volumen de Inyectado a los Tanques de Reserva	53
Tabla 10. Volumen de Inyectado a los Tanques de Reserva	54
Tabla 11. Diferencia de Volumen Inyectado y Registrado	55
Tabla 12. Balance Hídrico Técnico	
Tabla 13. Balance Hídrico Técnico	
Tabla 14. Coeficiente para Diseño Hidráulico	
Tabla 15. Coeficiente para Diseño Hidráulico	
Tabla 16. Coeficientes del Exponente Emisor	
Tabla 17. Distribución Poblacional por las zonas de Servicios	
Tabla 18. Caudal Medio Diario por Zona	
Tabla 19. Longitud de Tuberías en Metros	
Tabla 20. Número de Elementos del sistema	
Tabla 21. Presiones de Servicio en la Red Original	
Tabla 22. Caudales de las Redes	
Tabla 24. Tuberías por Diámetros Diseño Optimizado	
Tabla 25. Tuberías por Diámetros Diseño Original y Optimizado 1	
Tabla 26. Tuberías por Diámetros Diseño Original y Optimizado 2	
Tabla 27. Datos comparativos de las Redes	
Tabla 28. Número de Válvulas en la Red Original	
Tabla 29. Número de Válvulas en la Red Original	
Tabla 30. Presiones en las Redes de Servicio Diseño Original	
Tabla 31. Presiones en las Redes de Servicio Diseño Original	
Tabla 32. Caudales de la Red Optimizada	
Tabla 32. Diferencia de Caudales Original y Optimizado	118

ÍNDICE DE GRÁFICOS

Gráfico 1. Población Esmeraldas	15
Gráfico 2. Temperatura Media Esmeraldas	16
Gráfico 3. Precipitación Media Esmeraldas	17
Gráfico 4. Longitudes de las Redes de Distribución	44
Gráfico 5. Volumen de Inyectado a los Tanques de Reserva	54
Gráfico 6. Volumen de Inyectado a los Tanques de Reserva	55
Gráfico 7. Diferencia de Volumen Inyectado y Registrado	56
Gráfico 8. Balance Hídrico Técnico	60
Gráfico 9. Presiones de Servicio en la Red Original	. 105
Gráfico 10. Presiones en las Redes de Servicio Diseño Original	. 116
Gráfico 11. Presiones en las Redes de Servicio Diseño Original	. 117
ÍNDICE DE ILUSTRACIONES	
Ilustración 1. Ubicación de la Provincia de Esmeraldas	
Ilustración 2. Plano general Agua Potable de la Provincia de Esmeraldas	
Ilustración 3. Río Esmeraldas	
Ilustración 4. Esquema Simplificado por zonas de los Tanques	
Ilustración 5. Esquema Simplificado por zonas	
Ilustración 6. Punto de captación San Mateo	
Ilustración 7. Características Bombeo de Agua Cruda	
Ilustración 8. Estación de Bombeo de Agua	
Ilustración 9. Características del Bombeo Agua Potable	
Ilustración 10. Lagunas de Reserva San Mateo	
Ilustración 11. Planta de Tratamiento	
Ilustración 12. Tanque 15 de marzo y Buen Pastor Alto	
Ilustración 13. Tanque Winchele y Esmeraldas Norte	
lustración 14. Conducción Tanque de Carga a Esmeraldas y Balnearios	
Ilustración 15. Conducción Tanque de Carga a Esmeraldas y Balnearios	
Ilustración 16. Mapa Tramo Tanque de Carga – Chone	
Ilustración 17. Mapa Tramo Tanque de Carga – Chone	
Ilustración 18 Mapa Tramo Tanque de Carga – Rocafuerte	
Ilustración 19. Balance Hídrico Técnico	
Ilustración 20. Red Esmeraldas Norte – Chone	
Ilustración 21. Red Esmeraldas Centro Alto – Betania	
Ilustración 22. Red Esmeraldas Centro Alto – Betania	
Ilustración 23. Red Esmeraldas Sur Alto – La Guacharaca	
Ilustración 24. Red Esmeraldas Sur Bajo – Aire Libre	
Ilustración 25. Red 15 de Marzo	
Illustración 26. Red Buen Pastor Alto	
Illustración 27. Red Winchele	
Illustración 28. Red San Rafael	
Illustración 29. Red Buen Pastor	
Ilustración 30. Red Tonsupa	/6

Ilustración 31. Red Atacames	77
Ilustración 32. Red Sua	78
Ilustración 33. Red Same	79
Ilustración 34. Red Tonchigüe	79
Ilustración 35. Red San Rafael Alto	80
Ilustración 36. Red San Mateo	81
Ilustración 37. Red Tachina	82
Ilustración 38. Red Piedras	83
Ilustración 39. Red Camarones	83
Ilustración 40. Red Pegue	84
Ilustración 41. Esquema General Epanet Red Esmeralda Norte 01	85
Ilustración 42 Esquema Presiones Epanet Red Esmeralda Norte 01	85
Ilustración 43. Modelo Matemático Red Esmeraldas Norte 01	101
Ilustración 44. Velocidades en la Red Esmeraldas Norte 01	106

CAPITULO 1 INTRODUCCIÓN

1. INTRODUCCIÓN

1.1. Objetivos

1.1.1. Objetivo Principal

El presente trabajo tiene como objetivo principal elaborar un modelo matemático del sistema de agua potable en la provincia de Esmeraldas, determinando su funcionamiento actual de la red y encontrar posibles mejoras que puedan beneficiar al sistema, para posteriormente realizar una valoración entre el sistema actual y el sistema optimizado.

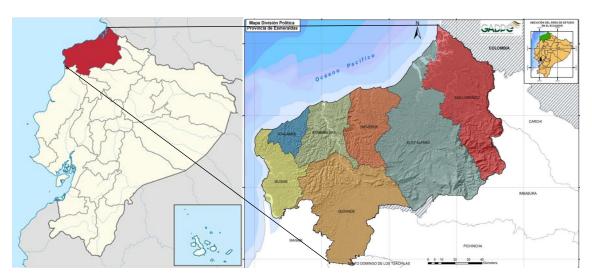
1.1.2. Objetivos Específicos

El parámetro para determinar el mejoramiento del sistema de agua potable es la presión, por tanto, el objetivo es disminuir los sectores con presiones que estén debajo de la mínima requeridas y con el mismo criterio reducir los sectores que sobre pasen las presiones máximas, utilizando el programa EPANET para las simulaciones y análisis.

1.2. Resumen

El presente trabajo analiza el proyecto de "Mejoramiento y Ampliación del sistema regional de agua potable de esmeraldas y su zona de influencia, en la provincia de Esmeraldas" con el objetivo de establecer mejoras en el sistema mediante un modelo matemático. El sistema de agua potable de la provincia de Esmeraldas, contiene 20 redes de distribución, la longitud de las redes es de 444,941 metros y abastece a una población de 540,722 de habitantes aproximadamente, el proyecto está previsto con un funcionamiento hasta el año 2040.

Dicho modelo pretende comparar el funcionamiento actual y simular ciertas mejoras que se pueden establecer en el sistema y aumentar la calidad del servicio mediante reducción de fugas y optimizar el sistema teniendo en consideración como parámetro principal las presiones en los distintos sectores del sistema.



1.3. Descripción de la población

1.3.1. Ubicación

La red de estudio pertenece a la provincia de Esmeraldas, ubicada al norte en la región costa del Ecuador, limitada por el norte con el Departamento de Nariño de Colombia, al sur con la provincia de Manabí, Pichincha e Imbabura, al este con las provincias de Imbabura y Carchi, y al oeste con Océano Pacífico. La provincia de Esmeraldas consta de 8 cantones: Esmeraldas, Atacames, Rioverde, Eloy Alfaro, San Lorenzo, Muisne, Quinindé, La Concordia. La *Ilustración 1* localiza la región de la provincia de Esmeraldas y su división política.

Ilustración 1. Ubicación de la Provincia de Esmeraldas Fuente: GSP – GADPE

La región tiene una extensión aproximada da de 15.954 km², siendo la capital de la provincia la ciudad de Esmeraldas.

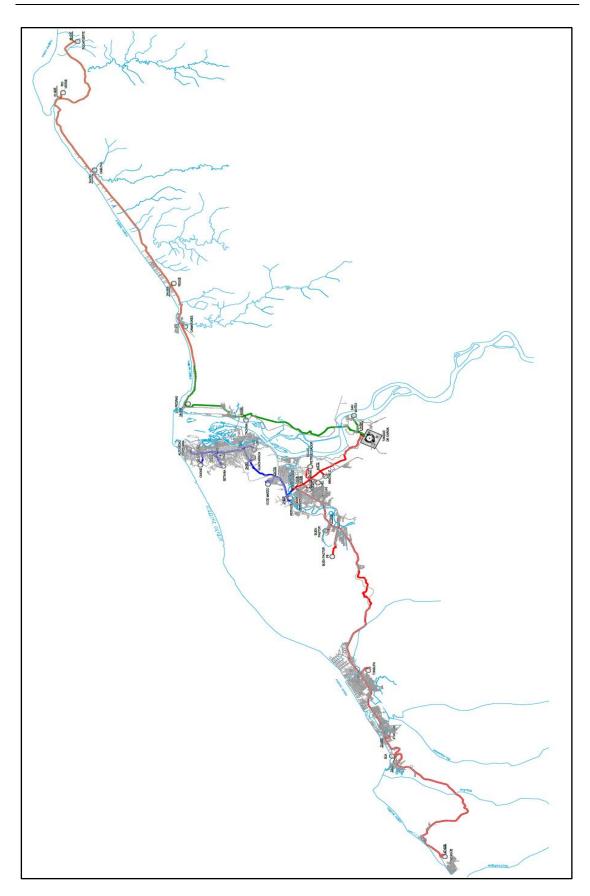
Existe tres reservas ecológicas dentro de la provincia:

- Cotacachi-Cayapas.
- Mache-Chindul.
- Manglares Cayapas-Mataje.

Estas reservas han sido modificadas debido al desarrollo de la población, en el sector agrícola y la creación de laderas han causado un aumentando considerable de erosión del suelo.

1.3.2. Topografía

Durante la fase de Factibilidad, se realizaron algunos trabajos topográficos realizados para la elaboración de los diseños de factibilidad. Para complementar los trabajos topográficos desarrollados durante la fase de factibilidad, y al conocer las obras a ser diseñadas de manera definitiva en la primera etapa del sistema de agua potable, se realizaron los siguientes trabajos de topografía:


Colocación de 34 puntos GPS georreferenciados (con placa fija y estable) distribuidos espacialmente de manera estratégica de tal forma de que puedan ser utilizados como puntos de partida para el replanteo de las obras durante la etapa de construcción.

- Elaboración de la cartografía de las zonas de proyecto: levantamiento topográfico con curvas de nivel cada metro, enlazado a los puntos GPS instalados en el presente proyecto.
- Levantamiento de las rutas y sitios de implantación de obras del proyecto.
- Levantamiento de vías faltantes y de interés para el proyecto en su primera etapa.
- Levantamiento topográfico del área donde se encuentran y/o donde se construirán las obras de los tanques de reserva.
- Levantamiento topográfico y batimétrico del sitio de ubicación de la captación en el río Esmeraldas.
- Levantamiento topográfico de las conducciones existentes, aunque no se realicen intervenciones en el presente proyecto.

Los trabajos topográficos fueron efectuados con la ayuda de una estación total de ingeniería y las nivelaciones geométricas mediante niveles automáticos. Es necesario recalcar que, los levantamientos se encuentran enlazados a la red de los puntos GPS y éstos enlazados a la red de IGMs de la región. Todos los trabajos topográficos están georreferenciados con el sistema WGS84, pudiendo identificarse información de coordenadas y cotas en cada una de las obras que se han diseñado. Todos los trabajos topográficos se presentan en archivo digital del proyecto. Se muestra en la *Ilustración 2* un plano general del proyecto de agua potable de la provincia de Esmeraldas.

Ilustración 2. Plano general Agua Potable de la Provincia de Esmeraldas Fuente: ACSAM Cia.Ltda.

1.3.3. Habitantes

Esmeraldas cuenta con una población de 1'011.201 habitantes, representa el 3,2% del total a nivel nacional, la población económicamente activa (PAE) de la región corresponde al 5.97 % los cuales se distribuyen en los sectores de Esmeraldas, Ríoverde y Quinindé con un porcentaje de 70,16 % es decir 89.744 personas, mientras que los sectores de menor oferta laboral corresponden a los cantones de Muisne y Atacames con el 14 %.

La distribución poblacional por cantones de la provincia de Esmeraldas se detalla en la *Tabla 1*, la mayor concentración poblacional se encuentra en el cantón de Esmeraldas con un 189,504, valor que representa el 36 % del total de la provincia como se muestra en el *Gráfico 1*.

Población Esmeraldas				
		Viviendas		
Cantones	Población	Particulares Colectivas	Particulares	Personas Presentes
Atacames	41,526	16,115	16,082	10,249
Eloy Alfaro	39,739	11,182	11,174	8,867
Esmeraldas	189,504	55,299	55,284	47,457
La Concordia	42,924	12,969	12,964	10,662
Muisne	28,474	8,246	8,246	6,628
Quinindé	122,570	36,076	36,064	29,388
Río Verde	26,869	7,927	7,925	6,137
San Lorenzo	42,486	11,597	11,586	9,522
Total	534,092	159,411	159,325	128,910

Tabla 1. Población Esmeraldas Fuente: INEC

Población Esmeraldas

Atacames
Eloy Alfaro
Esmeraldas
La Concordia
Muisne
Quinindé
Río Verde
San Lorenzo

Gráfico 1. Población Esmeraldas

Fuente: INEC

1.3.4. Clima

La temperatura va entre los 24 y 28 ° C como muestra la *Tabla 2*, las temperaturas más bajas se registran en los meses de julio, agosto y septiembre. La temporada de verano es corto muy caliente y generalmente seco durante todo el año.

Temperatura Media Esmeraldas			
Mes	Alto Temp (°C)	Bajo Temp (°C)	
Ene	28	24	
Feb	28	24	
Mar	28	24	
Abr	28	24	
May	28	24	
Jun	28	24	
Jul	28	23	
Ago	28	23	
Sep	28	23	
Oct	28	24	
Nov	28	24	
Dic	28	24	

Tabla 2. Temperatura Media Esmeraldas Fuente: Weather Atlas

Temperatura Media Esmeraldas 28 28 28 28 28 28 28 28 **Lemberatura** [°C] 28 27 26 25 24 23 24 24 24 24 24 24 24 24 24 23 23 23 22 Ene Feb Ago Nov Dic Tiempo [Mes] -Alto Temp (°C) -----Bajo Temp (°C)

Gráfico 2. Temperatura Media Esmeraldas Fuente: Weather Atlas

Los meses con mayor humedad se han registrado a comienzos de año en los meses enero, febrero y marzo como se demuestra en la *Tabla 3* y la *Gráfica 3*.

Precipitación Media Esmeraldas				
Mes Precipitaciones (mm)				
Ene	89			
Feb	89			
Mar	142			
Abr	74			
May	53			
Jun	33			
Jul	20			
Ago	15			
Sep	15			
Oct	10			
Nov	10			
Dic	23			

Tabla 3. Precipitación Media Esmeraldas Fuente: Weather Atlas

Gráfico 3. Precipitación Media Esmeraldas Fuente: Weather Atlas

1.3.5. Ríos

El sistema hidrográfico de Esmeraldas está constituido por 4 ríos principales:

• Río Esmeraldas : Este río es el más extenso de la región abarca aproximadamente 20.000 km², está formado por los ríos Blanco, Guayllabamba, Toachi y Quinindé, tiene una longitud de 80 km, nacimiento de los deshielos y del río Guayllabamba y su desembocadura se encuentra a 3 km de la ciudad de Esmeraldas (capital de la provincia), el río se muestra en la *llustración* 3.

Ilustración 3. Río Esmeraldas Fuente: Geofundaciones

 Río Santiago : Nace de la cordillera occidental, los efluentes son los ríos Uimbí, Bogotá, Tululbí y el Palabí.

• Río Cayapas : Tiene los mismos efluentes del río Santiago, riega toda la zona norte de la provincia.

Río Blanco : Nace en el Pichincha sus afluentes son Toachi,
 Quinindé y Caoní.

1.4. Antecedentes

Con objeto de ampliar la cobertura y mejorar las condiciones del servicio de abastecimiento de agua en la ciudad de Esmeraldas, así como de las parroquias y cantones adyacentes, durante los últimos años se desarrollaron los siguientes proyectos:

- Estudios para el cambio de tuberías de asbesto cemento por PVC y sectorización de las redes de distribución de la zona central de la ciudad de Esmeraldas, desarrollados por la Empresa de Agua Potable y Alcantarillado San Mateo (EAPA San Mateo), contando con la colaboración técnica de la Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito (EPMAPS), la Escuela Politécnica Nacional (EPN) y la Subsecretaría de Saneamiento Ambiental (SSA).
- Implementación de las obras contempladas en el estudio previamente citado, por parte del Cuerpo de Ingenieros del Ejército.
- Estudios integrales de "Evaluación, Factibilidad y Diseños Definitivos del Sistema Regional de Agua Potable Esmeraldas", desarrollados por la consultora ACSAM Cía. Ltda., en el período 2012-2014 mediante contrato suscrito con la empresa pública PETROECUADOR EP.

CAPITULO 2 DESCRIPCIÓN DEL ABASTECIMIENTO

2. DESCRIPCIÓN DEL ABASTECIMIENTO

2.1. Esquema Simplificado

El sistema de agua potable de Esmeraldas se lo ha dividido en tres zonas:

- Zona Esmeraldas Norte.
- Zona Esmeraldas.
- Zona Balnearios.

Las zonas distribuyen agua potable a los diferentes tanques de reserva teniendo la siguiente distribución como se muestra en la *Ilustración 4.* Los diferentes sectores para la distribución de agua potable para la provincia se observan en la *Ilustración 5.*

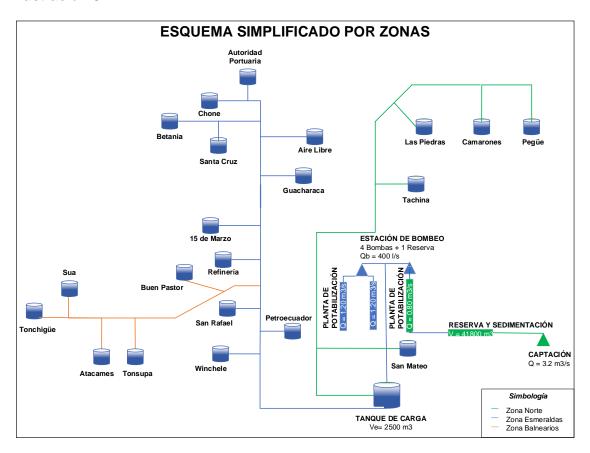


Ilustración 4. Esquema Simplificado por zonas de los Tanques

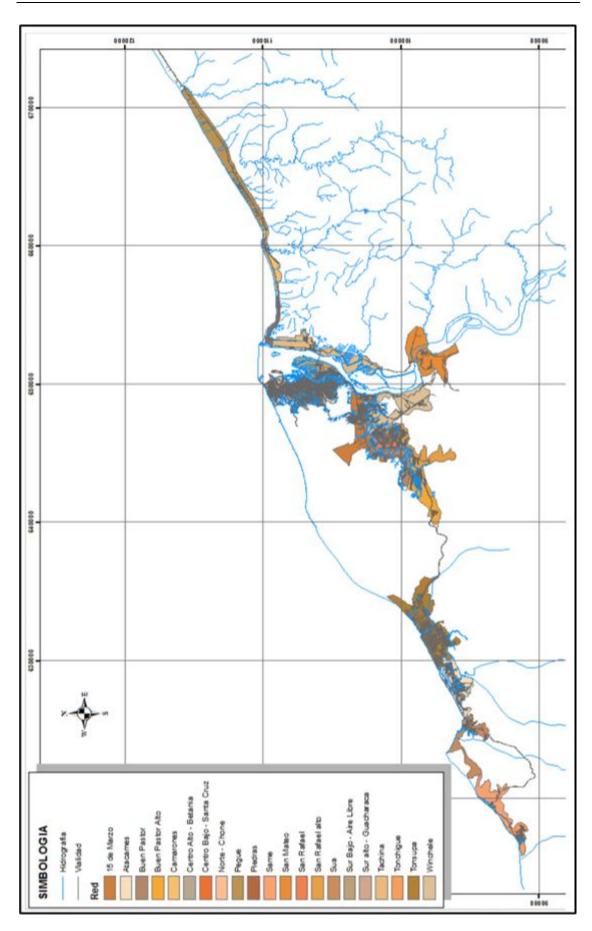


Ilustración 5. Esquema Simplificado por zonas

2.2. Inventario

2.2.1. Fuentes de Abastecimiento

La cuenca de abastecimiento de agua para el sistema regional de agua potable Esmeraldas, cumple satisfactoriamente las demandas de caudal para el proyecto, sin embargo, es necesario tomar las medidas y acciones que se indican en el numeral siguiente, a fin de controlar el estado de conservación de la cuenca y el monitoreo de los parámetros de producción de agua de la misma. En cuanto a calidad de agua del río, el análisis de los parámetros básicos, mantiene características adecuadas para el tipo de planta que la procesa. Los caudales del río en el sitio de captación, en la época invernal el caudal se incrementa considerablemente, mientras que en época seca (agosto a diciembre) para una garantía del 98%, los caudales mínimos esperados son un poco superiores a 119 m3/s.

Por otra parte, el caudal de proyecto está alrededor de 3,2 m3/s, que comparado con los caudales medios esperados durante los meses críticos (septiembre, octubre, noviembre y diciembre) alcanza un porcentaje menor al 1%; el caudal de proyecto, comparado con el caudal mínimo (98% de garantía), está entre el 2 y 3%. Estos porcentajes no son significativos, lo que asegura que se dispone de caudal permanente para el proyecto.

2.2.2. Puntos de Captación

La captación de agua cruda está ubicada en la margen izquierda del río Esmeraldas, aproximadamente a 8 km de la desembocadura del río Esmeraldas en el océano Pacífico, a la altura de San Mateo, en el sitio conocido como el Peñón. En la estructura de captación, se han implementado los cárcamos de bombeo.

La captación incluye los siguientes componentes principales:

- Canal lateral de ingreso de agua (5 compartimentos).
- Cámara de succión (5 unidades independientes).
- Casa de máquinas y Múltiple de impulsión.

- Sistema de Transformación eléctrica.
- Oficina, bodegas y talleres, Casa de guardián, Patio de maniobras y caminos.

La captación está ubicada en la parte convexa de la curva que forma el peñón de San Mateo, sitio en el que de acuerdo al análisis de hidráulica fluvial (hidro morfológico del río), es el sitio en que se inicia la deposición de sedimentos y la consecuente formación de la playa típica de estas zonas. La cota del umbral de la bocatoma está en la cota +1.00 msnm, prácticamente la misma del nivel esperado del río (+1.27 msnm) en épocas de estiaje (Julio-agosto-septiembre-octubre); debido a que las compuertas se asientan sobre una base de 20 cm de alto, la lámina de agua que alimenta a los pozos de bombeo es de apenas 7 cm, lo que representa un caudal de 750 l/s con los 5 módulos funcionando (150 l/s cada unidad).

La captación existente dispone de obras civiles estructuralmente confiables, la tubería de impulsión instalada con capacidad para 3.2 m/s en buenas condiciones, las instalaciones hidráulicas de la estación de bombeo, y, las instalaciones eléctricas y de fuerza. Presenta dos aspectos básicos que limitan su operación: acarreo de sedimentos (debido a que se encuentra en la parte convexa de la curva del río), y, la cota del umbral de la bocatoma es ligeramente menor a la de nivel de estiaje. Estos dos aspectos influyen directamente en los equipos de bombeo, el acarreo de sedimentos y concentración de arena conducen a un desgaste acelerado de los impulsores de las bombas, los niveles bajos de agua crean las condiciones para el desarrollo de cavitación.

Por otra parte, las estructuras existentes son susceptibles de adecuaciones para el alojamiento de las nuevas bombas, el trabajo más importante es el de bajar la cota de fondo (1 metro), de esta manera se asegura que exista la altura de sumergencia necesaria para las bombas, especialmente cuando el río esté con niveles bajos, con lo que se supera en un alto porcentaje el problema de cavitación. Los pozos de bombeo -cárcamo de bombeo- están diseñados para un caudal suficiente que permita la operación continua de las bombas, con un

tiempo adecuado entre arranque y parada de las mismas. En horas de alto consumo estarán trabajando todas las unidades, mientras que en horas nocturnas –cuando el consumo es menor- algunas bombas podrán descansar y alternarse de tal manera que se igualen las horas de funcionamiento de todas las unidades.

Las bombas que se necesitan en esta alternativa son bombas de poca altura de bombeo, puesto que la cota mínima de salida de la cámara de bombeo en la 1.2 msnm y la cota de llegada a las lagunas de presedimentación y reserva está en los 22.06 msnm, lo que significa una carga estática de 21.86 metros; las bombas para primera etapa se han diseñado para un caudal de 550 l/s y TDH de 26.54 m (para el año 2025). La línea de impulsión de agua cruda (existente) tiene capacidad (3.2 m3/s), lo que cubre la demanda del proyecto hasta el año 2040; sin embargo, es necesario el cambio de la válvula de aire ubicada en el tramo de San Mateo.

La captación está se localiza en la margen derecha del río Esmeraldas, a unos 200 m aguas arriba del puente colgante vehicular, en las coordenadas: 99092 N y 651825 E. La captación se ubica en la parte cóncava de la curva al frente de San Mateo, el sitio fue definido en vista de que guarda las características ideales para la toma de agua, esto es presenta una gran profundidad de borde y la ausencia de depósito de sedimentos.

Las instalaciones hidráulicas incluyen: en primer lugar está la reja de retención de gruesos, por la cual ingresará el caudal de 3.2 m3/s, inmediatamente una compuerta para control de paso de agua en niveles bajos del río, un poco más elevada para el paso del agua en niveles medios y altos del río; en cualquier condición del nivel del río, el agua pasará luego por una rejilla fina tipo canasto y descenderá inmediatamente al pozo de succión, en donde se encuentra la bomba sumergible, la cual elevará el agua hasta la cámara de llegada de las lagunas de presedimentación y reserva.

El detalle más importante de la estructura radica en fondo de los pozos de bombeo, ya que éstos se ubican un metro más bajo que el nivel mínimo minimorun de agua del río, de tal manera que se asegura el ingreso de agua y el funcionamiento de las bombas aún en las condiciones extremas de caudal del río, y por otra parte, para los niveles medios y máximos del río, se prevé un mínimo arrastre de sedimentos hacia las bombas, asegurando así un óptimo funcionamiento y durabilidad de los equipos electromecánicos.

Ilustración 6. Punto de captación San Mateo

2.2.3. Impulsión de agua cruda

La línea de impulsión será nueva, parte de la estación de bombeo nueva y descarga en las lagunas de presedimentación y reserva; se desarrolla por la margen derecha del río Esmeraldas, hasta el puente colgante vehicular existente, el cruce del río se realiza sobre un puente -puente colgante ubicado junto al puente existente- exclusivo para las tuberías de agua del sistema regional (impulsión de agua cruda hacia las lagunas y conducción Norte de agua potable) y luego por un camino existente junto a los terrenos del Consejo Provincial, y descarga en la cámara de las existentes. El diseño de la línea de impulsión se realiza integrado con el diseño de la estación de bombeo, de los cual se tiene las siguientes características: Longitud 1462 m, Diámetro 1500 mm, Material acero, capacidad 3.2 m3/s, velocidad para capacidad máxima 3.2 m/s.

2.2.4. Sistema de Bombeo

El bombeo de agua potabilizada está conformado por tres componentes básicos: cárcamo-succión, equipos electromecánicos, línea de impulsión a tanque de carga. El agua desinfectada, a través de una cámara derivadora es repartida a los dos compartimentos que integran el cárcamo de bombeo (separados por una pantalla -vertedero), cada uno de ellos puede funcionar independientemente, lo que facilita operaciones de limpieza y mantenimiento; a su vez, cada compartimento alimenta independientemente a las dos cámaras de succión laterales, mientras que la cámara de succión central es alimentada por ambos compartimentos. Bajo esta configuración hidráulica, las cámaras de succión mantienen igual nivel de agua y bajo el nivel del eje de las bombas -de tal manera que la succión es negativa-. Cada bomba conecta al manifold, y desde allí, a través de la línea de impulsión descarga el agua en el tanque de carga.

La geometría del cárcamo permite el almacenamiento de 1938 m3 de agua potable, se conecta directamente al pozo de succión de cada bomba mediante orificios, no tiene elementos de aislamiento entre cárcamo y pozo de succión.

La EB tiene instalaciones para 5 unidades, fue concebida para operar con 4 unidades (una en stand by) en el pico de la demanda, la instalación hidráulica es mediante succión negativa (no es la más recomendable cuando se tienen grandes alturas), los tableros tienen tecnología antigua y ya no es posible obtener repuestos ni partes para reparación y/o reposición de los elementos de protección de los equipos.

En la actualidad se encuentran operando únicamente cuatro bombas centrifugas horizontales –la quinta está desmantelada-, cada bomba tiene motores de 800 HP, en resumen, tiene una potencia instalada de 4.0 Mw. Los equipos y sistema de bombeo existente, son los mismos que fueron instalados desde el inicio de operación de la planta de potabilización (1995), éstos vienen trabajando con paralizaciones reparaciones continuas emergentes; los análisis ٧ electromecánicos hidráulicos determina que los equipos bomba/motor/tableros- ya cumplieron su vida útil.

La línea de impulsión de agua potable es de acero, inicia desde el manifold de bombeo, tiene diámetro de 1200 mm, a 170 m se encuentra una cámara de bifurcación, mediante la cual se deriva el diámetro de 1200 mm en dos diámetros de 900 mm, lo que se mantiene hasta la descarga en el tanque de carga.

La línea cuenta con un sistema de protección mediante dos válvulas aliviadoras de presión de 400 mm cada una, instaladas en paralelo, conectadas a la línea de impulsión, cuya descarga, luego de pasar por una cámara de disipación hidráulica, se conecta a la tubería de lavado de filtros y de allí descarga en el río Esmeraldas. Junto a la estación de bombeo se encuentra la subestación eléctrica (10 MW), ésta se alimenta directamente del Sistema Nacional Interconectado, por lo que el sistema de fuerza se suspende únicamente cuando el sistema nacional interconectado falla. La línea de impulsión, además de llevar el agua al tanque de carga, tiene conexiones para los servicios y operación de la propia planta, y también para servicio de los usuarios de la parroquia San Mateo.

2.2.4.1. Bombeo de Agua Cruda

La estación de bombeo consta de: Cárcamo de bombeo, Estación de bombeo, Energía y comunicación; y, camino de acceso a la captación. Los pozos de bombeo -cárcamo de bombeo- diseñados para un caudal suficiente en operación continua de las bombas, con un tiempo adecuado entre arranque y parada. Las bombas que se necesitan en esta alternativa son bombas de poca altura de bombeo, puesto que la cota mínima de salida de la cámara de bombeo está en -0.53 msnm y la cota de llegada en las lagunas de presedimentación y bombeo está en los 22.06 msnm, lo que significa una carga estática de 22.59 metros.

Puesto que la vida útil de los equipos de bombeo, se ha estimado en 5 años, las bombas inicialmente para una primera etapa se han diseñado para un caudal de 640 l/s y TDH de 27.74 m; se instalarán 5 bombas de igual capacidad, 4 en operación y una en stand by, con lo que el caudal máximo de bombeo es de 2560 l/s, que es un poco mayor al caudal máximo de primera etapa.

Como la planta de tratamiento tendrá capacidad para procesar 3.2 m3/s al final del período de diseño, esta demanda será únicamente con la adición de una

bomba, por lo que el caudal máximo de bombeo será cubierto con 5 bombas de 640 l/s, funcionando en paralelo; por lo tanto, la estación de bombeo se diseña con 6 pozos de bombeo. Las bombas serán sumergibles (localizadas dentro del cárcamo de bombeo). Se muestra el esquema de las características del bombeo de agua cruda en la *llustración 7*.

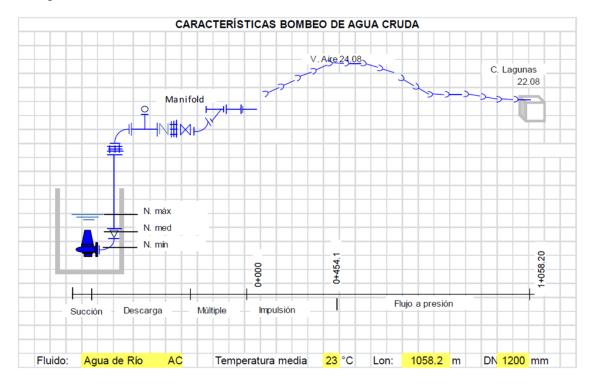


Ilustración 7. Características Bombeo de Agua Cruda

2.2.4.2. Estación de Bombeo de Agua Potable

La configuración definitiva del sistema de potabilización (un módulo de 0.8 m3/s y dos módulos de 1.2 m3/s cada uno) y bajo el criterio de mantener la flexibilización de operación y el funcionamiento del sistema —caudal/altura-, conlleva a la implementación de una estación de bombeo de agua potable por cada módulo. La estación de bombeo consta de: Estación de Bombeo, bombas y sistemas de alimentación eléctrica y control. Desde la cámara de contacto de cloro, se alimenta a los pozos de bombeo y desde allí se eleva el agua hacia el tanque de carga existente.

Ilustración 8. Estación de Bombeo de Agua

Los pozos de bombeo -cárcamo de bombeo- están diseñados para un caudal suficiente que permita la operación continua de las bombas, con un tiempo adecuado entre arranque y parada de las mismas. En horas de alto consumo estarán trabajando todas las unidades, mientras que en horas nocturnas – cuando el consumo es menor- algunas bombas podrán descansar y alternarse de tal manera que se igualen las horas de funcionamiento de todas las unidades. Las bombas que se necesitan son bombas de altura de bombeo elevada (carga estática 173.2 m), por lo que se vió la necesidad de estandarizar el caudal unitario de bombeo, de tal manera que tanto las bombas de la estación rehabilitada como las de los módulos nuevos operen en condiciones similares de caudal y altura total de bombeo, tanto para la primera etapa como para la segunda; se analiza además la vida útil de los equipos de bombeo, estimando que para este tipo de bombas, con funcionamiento permanente, se tendrá una vida útil de 10 años; bajo estas consideraciones se modula los caudales de demanda -2400 l/s en primera etapa y 3200 en segunda etapa-.

Por lo indicado, las bombas inicialmente para una primera etapa (caudal total de 2400 l/s) se han diseñado para un caudal de 270 l/s y TDH de 179 m. En la estación existente se utilizan los 5 pozos de succión, dadas las limitaciones de

producción del módulo de tratamiento rehabilitado, durante todo el período de diseño se mantendrán 3 bombas operativas y 2 bombas en stand by (cada una para Qb=270 l/s y TDH=179 m). Mientras que en cada módulo nuevo, en primera etapa se instalarán 3 bombas operativas (Qb=270 l/s y TDH=179 m) y una en stand by de la misma capacidad; para la segunda etapa, cada módulo nuevo mantendrá 5 bombas en operación y una en stand by, mientras que la estación rehabilitada funcionará de modo permanente con dos bombas operativas, y con 3 bombas cuando la demanda así lo requiera, con lo que se cubre el caudal máximo de bombeo es de 3200 l/s. La *Ilustración 9* muestra el esquema de conducción de la planta de tratamiento hacia el tanque de carga.

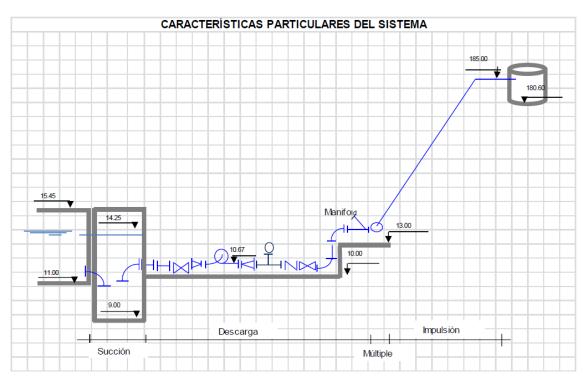


Ilustración 9. Características del Bombeo Agua Potable

2.2.5. Lagunas de Reserva

Existen en total cuatro lagunas, de las cuales dos se encuentran en funcionamiento, a la fecha de este informe, se están construyendo dos nuevas lagunas, con lo cual se completa el número de unidades previstas en el diseño original. La geometría de las lagunas es de 100x55x3.20m, volumen útil de cada laguna es de 10450 m3. El agua cruda presedimentador es conducida mediante

una tubería de 1200 mm a la planta de potabilización, el recorrido de esta línea es dentro de las instalaciones de la planta.

El objetivo del diseño de las lagunas fue para almacenar agua cruda; sin embargo, como resultado de su tiempo de retención hidráulico y del área superficial, estas unidades presentan condiciones favorables para la sedimentación de partículas discretas (entre 3 y 5 micrones), arenas y limo, transportados por el sistema de bombeo de la captación, lo que fue determinado mediante el análisis de la eficiencia de remoción de turbiedad a partir de sus registros de operación.

Ilustración 10. Lagunas de Reserva San Mateo

2.2.6. Planta de Potabilización

La planta de potabilización de agua es de tipo convencional, fue diseñada para procesar un caudal máximo de 1,05 m3/s, está seccionada en tres módulos que pueden funcionar independientemente cada uno. Luego del medidor Parsall y la mezcla rápida, cada módulo está integrado por un floculador mecánico de cuatro cámaras, un sedimentador con cuatro corridas de placas y dos filtros, cada filtro sub-divididos en dos compartimentos. Luego de los procesos de clarificación, el agua pasa a la cámara de contacto de cloro, en la cual se inyecta cloro gas desde

la unidad de desinfección –bascula electrónica, dosificador del cloro gas y agua a presión (desde la red interna)-; la cámara de contacto, ésta ubicada antes del cárcamo de bombeo, al pie del vertedero de control. Los cilindros de cloro se almacenan en la plataforma de cloración, desde la cual mediante un sistema de puente grúa se ubican y retiran los cilindros de la balanza; la plataforma de cloración tiene capacidad para 52 cilindros de 1 tonelada.

Ilustración 11. Planta de Tratamiento

La planta cuenta además con las instalaciones para fluoración, aunque es de anotar que este sistema no funcionó en ningún momento. El edificio de dosificación es de dos plantas, con una superficie de construcción de 1.100 m2 donde funcionan las oficinas de administración, las bodegas de productos químicos y los dosificadores. En la planta baja se encuentran las bodegas y dosificadores de sulfato de aluminio y cal, también se ha previsto un espacio para almacenar antracita y arena. El sistema de dosificación de cal no está en operación. El análisis de los reactores de la planta de potabilización concluye en:

Mezcla Rápida: El comportamiento hidráulico del canal Parshall es fuertemente influenciado por el cambio brusco de dirección en un ángulo de 90° en la salida; y, por la ausencia de vertederos de regulación de nivel, a la entrada a los módulos de floculación. La falta de regulación de nivel provoca que el resalto hidráulico se traslade aguas abajo, lejos del sitio de aplicación del coagulante.

La mayor disipación de energía ocurre en un volumen de agua localizado luego del Parshall, debido al impacto del flujo sobre la pared frontal, y del cambio de dirección, al ingresar al canal de distribución a floculadores.

Floculación: Mediante pruebas de trazadores se determinó un desvío importante en la distribución de caudal a los tres módulos, siendo éste del orden del 42%. La explicación de estos resultados se encontró en las características del canal de distribución; el tipo de las salidas (vertederos laterales); y, en la posición de éstos, con relación al ingreso de agua coagulada. En el módulo 3, la agitación es casi nula, debido a que únicamente uno de los cuatro agitadores se encuentra en funcionamiento. Los gradientes de floculación obtenidos en los ensayos en cada cámara (56 s-1, 33 s-1, 18,5 s-1 y 10 s-1), resultan inferiores a los ensayos experimentales de tratabilidad, realizado en laboratorio.

El sistema de agitación de paletas, no posee características geométricas acordes a los criterios de diseño: el diámetro del rotor es muy inferior al requerido; el ancho de las paletas es superior al rango recomendado; el área de paletas con relación al área transversal de la cámara, es superior al valor recomendado, pudiendo generar movimiento circular del agua.

El sistema de agitación requiere ser modificado o remplazado por uno nuevo.

Decantación: La velocidad crítica de sedimentación de los flóculos capaces de ser removidos en las unidades de decantación, fue afectada al modificarse el sistema de placas de madera marina y remplazarse por un sistema de ductos plásticos (ABS) de sección cuadrada. La velocidad de sedimentación de flóculos actual en el sistema fue estimada en 2 cm/min; mientras que en un sistema de placas es de 0,89 cm/min. Esta situación conlleva a optimizar la etapa de floculación, a fin de incrementar las velocidades de sedimentación; situación a la cual se puede llegar: optimizando los gradientes de floculación y empleando un polímero sintético como ayudante de floculación. La distribución de agua floculada a lo largo de la unidad a través del canal central, fue calculada. Los resultados indican que el caudal tiende a incrementarse aceleradamente desde el inicio hasta el final de la unidad.

Apenas el 10% del caudal se distribuye en el primer tercio del decantador; el 38,37% en el segundo tercio; y el 51,58% en el último tercio. La modificación de estas condiciones resulta difícil, debido a los cambios estructurales que implica. El sistema de recolección de lodo en el fondo de las tolvas consiste en los restos de un sistema de extracción mediante sifones que fue desmantelado. Durante el vaciado permanece un gran porcentaje de lodos en las tolvas, debido a la longitud de la unidad y, a la deficiente capacidad del sistema de extracción. Debido a esto, es necesario proceder a la reforma de este sistema.

Filtración: El sistema de filtración de la planta de tratamiento, tiene una configuración que le permite operar mediante el método de tasa declinante variable; y, dispone de un sistema de lavado multicelular, mediante los efluentes de los filtros en operación. Considerando la tasa de diseño del sistema, se determinó que la carga hidráulica de filtración disponible en la batería es de 1,43 m; de la cual, las pérdidas de carga que ocurren en los componentes es de 1,19m; y, únicamente la diferencia de 0,24 m, es la fracción disponible para la retención de las impurezas.

En consecuencia, las carreras de filtración son cortas, llegando a la pérdida de carga límite, sin aprovechamiento de la capacidad de almacenamiento de impurezas del medio filtrante; esta situación va asociada a un mayor consumo de agua para el lavado de las unidades. No existe mayor posibilidad de incrementar la carga hidráulica de filtración, debido a las limitaciones que impone el sistema de lavado; por lo tanto, la capacidad real del sistema de filtración es inferior a la de diseño. Mediante modelación matemática del sistema, se analizó diferentes tasas medias de filtración, determinándose para una tasa media de 220 m3/m2 día, la cual corresponde a un caudal de producción de 0,80 m3/s, que la carga hidráulica de filtración aprovechable en el sistema es de 1,56 m. La pérdida de carga calculada en los elementos del sistema al final de una carrera, resultó en 0,68m; y una carga hidráulica para la retención de las impurezas, de 0,88 m.

En la fase de lavado se comprobó que existe el caudal y la carga hidráulica, necesarios en el sistema para que se produzca la velocidad ascendente de lavado y la expansión óptima del medio filtrante (30%). Sin embargo, experimentalmente se determinó un caudal y expansión menores a los requeridos, aspecto que requiere ser corregido en el procedimiento de mantenimiento. No existe ningún orden secuencial para el lavado de filtros; la operación mediante tasa declinante variable requiere un proceso secuencial para el lavado.

Desinfección: El sistema de desinfección cuenta sólo con un dosificador, la calidad de los materiales de las tuberías del sistema presenta un elevado grado de deterioro; y, constituye un riesgo permanente para el personal que labora en la PTAP. Es fundamental para garantizar la seguridad del personal y la continuidad del suministro de cloro, la implementación de un nuevo sistema de cloración con todos sus componentes necesarios. El área de almacenamiento de cloro, es suficiente para cubrir un requerimiento mayor a los 75 días.

2.2.7. Tanque de carga

El tanque se encuentra en un terreno ubicado junto a la planta de tratamiento, en la parte alta, el acceso actual a este tanque es por un sendero, inicialmente el ingreso se lo hacía por un camino carrozable, a la fecha, el camino se ha cubierto de mucha vegetación. La concepción inicial –diseño 1987- del tanque de carga fue orientada a que esta unidad mantenga la presión hidráulica en todas líneas de conducción que se abastecen; posteriormente, se convirtió en elemento de regulación y control de funcionamiento de las bombas de agua potabilizada.

Desde el tanque de carga se inician las conducciones del sistema regional, una tubería de 900 mm en acero (para Esmeraldas y Balnearios) y otra de 355 mm PVC, para Rocafuerte; tiene instalaciones para otra tubería de 900 mm y para otra de 355 mm. Existe una tubería de limpieza Ø 400 mm de acero, con una válvula de compuerta; el desagüe se realiza mediante una tubería de 1000 mm que descarga en una quebrada. En esta misma tubería se han instalado

dispositivos que están conectados a un caudalímetro, pero esta unidad al momento se encuentra sin funcionamiento.

2.2.8. Tanques de Reserva

El análisis hidráulico de los tanques de reserva se concreta en definir el volumen de agua requerido para la demanda futura, considerando que estas estructuras son permanentes y las áreas de cobertura de las redes no tendrán cambios importantes a lo largo del período de diseño. El volumen requerido para el proyecto –al final de la segunda etapa, año 2040-, alcanza a 63800 m3, mientras que el volumen en 18 tanques existentes es de 22020 m3, incluyendo los tanques que se encuentran en construcción (2012); por lo tanto, se deben construir en primera etapa (2012) 15 tanques que representan un volumen neto de 25200 m3 y en segunda etapa (2024) 11 tanques con un volumen neto de 21500 m3.

Ilustración 12. Tanque 15 de marzo y Buen Pastor Alto

Ilustración 13. Tanque Winchele y Esmeraldas Norte

	VOLUMEN DE TANQUES DE RESERVA						
Nº	Tanque	Volumen [m³]					
IN-	ranque	Ve	V1	V2	Total		
1	15 de Marzo	2,500	2,500	1,500	6,500		
2	Chone	2,500	1,000	-	3,500		
3	Betania	2,500	1,000	1,000	4,500		
4	Santa Cruz	2,500	2,500	-	5,000		
5	Guacharaca	1,000	2,500	1,500	5,000		
6	Aire Libre	3,500	2,000	ı	5,500		
7	Buen Pastor	300	1,000	1,000	2,300		
8	Winchele	2,500	2,000	2,000	6,500		
9	San Rafael	2,000	2,500	2,000	6,500		
10	Tonsupa	2,000	2,000	2,000	6,000		
11	Atacames	2,500	1,500	1,500	5,500		
13	Sua	1,000	1,500	-	2,500		
14	Same - Tonchigue	1,000	1,500	1,500	4,000		
15	San Mateo	100	500	-	600		
16	Tachina	300	1,500	-	1,800		
17	Piedras	30	300	-	330		
18	Camarones	100	300	-	400		
19	Pegue	90	100	-	190		
	Total						

Tabla 4. Volumen de Tanques de Reserva

2.2.9. Tubería

2.2.9.1. Tubería de Conducción

El sistema regional está integrado por varias líneas de conducción principal que en su trayecto abastecen a los tanques de reserva. Por sus características de abastecimiento, se las identifica así:

- Conducción "Tanque de carga Esmeraldas".
- Conducción "Tanque de carga Rioverde".
- Conducción "Balnearios del sur".
- Conducción de agua cruda.

El sistema principal de conducciones parte del tanque de carga, todas ellas alimentan a sendos tanques de reserva, a excepción de la red de distribución de aire libre, cuya conducción conecta directamente a la red de distribución.

La longitud de tuberías de conducción es de 110,97 km, las características por cada diámetro es la siguiente:

Datos Generales de Línea de Conducción						
Línea de Conducción Diámetro [mm] Longitud [m] Materia						
Tanque de carga - Esmeraldas	110 a 900	25,733.22	Acero y PVC			
Tanque de carga - Rioverde	355 a 200	48,362.30	PVC			
Balneario Sur	600 a 200	36,645.17	Acero y PVC			
Agua cruda - Planta	1200	225.85	Acero			
Total	110 a 1200	25733.22	Acero y PVC			

Tabla 5. Datos Generales de Línea de Conducción

Fuente: EAPA San Mateo, 2012

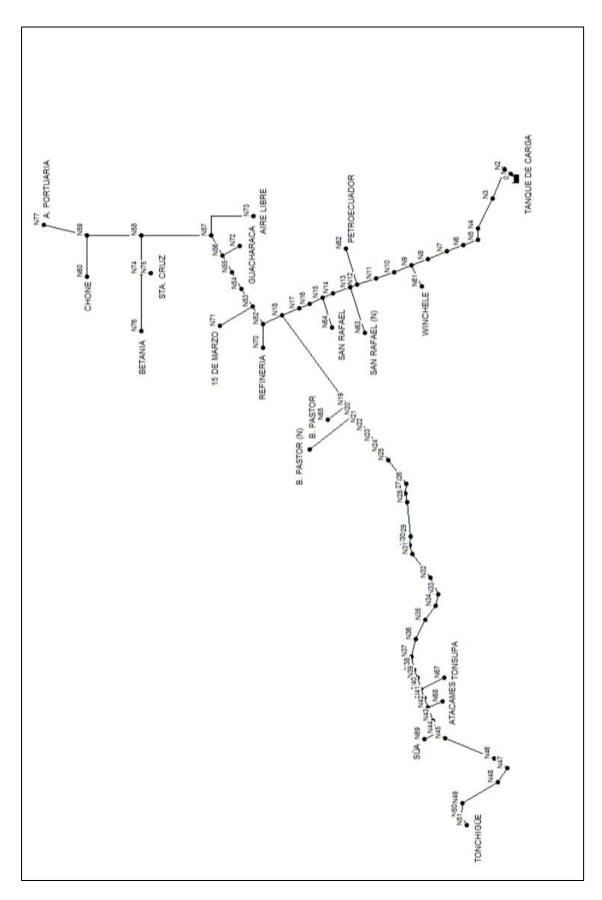
Varias zonas donde se ubica la línea de conducción son terrenos inestables, arcillosos y limosos, propensos a deslizamientos, lo que pone en riesgo la estabilidad de la línea. En varios sitios de la conducción principal se encontraron conexiones clandestinas (identificadas así, ya que el equipo consultor no espera que los haya realizado la EAPA), con instalaciones fuera de toda norma, algunas con escapes considerables de agua; en otros casos como en el cruce del río Teaone, una fuga de la tubería principal es aprovechada por la ciudadanía (baño, lavadero de ropa, etc.).

La ruta de la línea no cuenta con señalización; antes del cruce del río Teaone, se ha construido un edificio (KIA) sobre la conducción.

Las conducciones no tienen la cantidad necesaria de válvulas de aire, además, las pocas válvulas de aire instaladas no tienen la capacidad requerida por el sistema. Los puntos de purga están descargando a corta distancia de la zona de influencia de la tubería; a la altura de las comunidades Tagüe, junto a la escuela N° 47 existe un escape de la válvula de purga, ya también de una conexión que se ha realizado para abastecer a las comunidades indicadas. El análisis hidráulico, manteniendo las condiciones de instalación actual (diámetro, longitud, cota y material), y la demanda del año 2012 (demanda actual), determina que:

- La línea Tanque de Carga Esmeraldas tiene capacidad para 602 l/s, mientras que la demanda es de 1274 l/s.
- La línea a balnearios del sur tiene capacidad para transporte de 169.2 l/s, mientras que la demanda es de 399 l/s.
- La línea tanque de Carga Rocafuerte, tiene una capacidad de transporte de 94.5 l/s, y su demanda actual es de 98 l/s.

Características de las Conducciones del Sistema de						
Agua Potable TC ESM/Balnearios						
Tubería de Acero						
Diámetro Nominal						
	2772	19.1				
4500	700	22	4770			
1500	340	24	4772			
	960	25.4				
	560	22				
4000	2938	20	0745			
1200	788	19.1	6715			
	1761	17.5				
	4612	14.3				
900	1460	12.7	9456			
	3384	11.9				
	1679	12.7				
800	3047	11.9	12662			
	7936	11.1				
600	6834	9.5	6834			
500	824	9.5	824			
	5157	9.5	-			
400	16751	9.5	21908			
Total tu	bería de acer	0	63171			
	Tubería de					
Diámetro Nominal [mm]	Longitud [m]	Pres. [Mpa]	Lon. Total [m]			
315	4160	1.25	4160			
250	963	Existente	963			
160	964	1.25	964			
160	346	Existente	346			
110	540	1.25	540			
110	595 Existente		595			
Total to	7568					
Total tuber	70739					


Tabla 6. Conducciones del Sistema de TC ESM/Balnearios Fuente: ACSAM Cía. Ltda.

Características de las Conducciones del Sistema de Agua Potable TC Rocafuerte Tubería de PVC							
Diámetro Nominal Longitud [m] Pres. [Mpa] Lon. Total [m]							
355	18000	Existente	18000				
355	23925	1.25	23925				
315	2615	1.25	2615				
200	4707	1.25	4707				
200	340	Existente	340				
160	254	Existente	254				
110	1238	Existente	1238				
110	438	1.25	438				
50	92	Existente	92				
50	207	207 1.25					
Total tube	Total tubería de PVC Rocafuerte 51862						

Tabla 7. Conducciones del Sistema de TC Rocafuerte Fuente: ACSAM Cía. Ltda.

lustración 14. Conducción Tanque de Carga a Esmeraldas y Balnearios

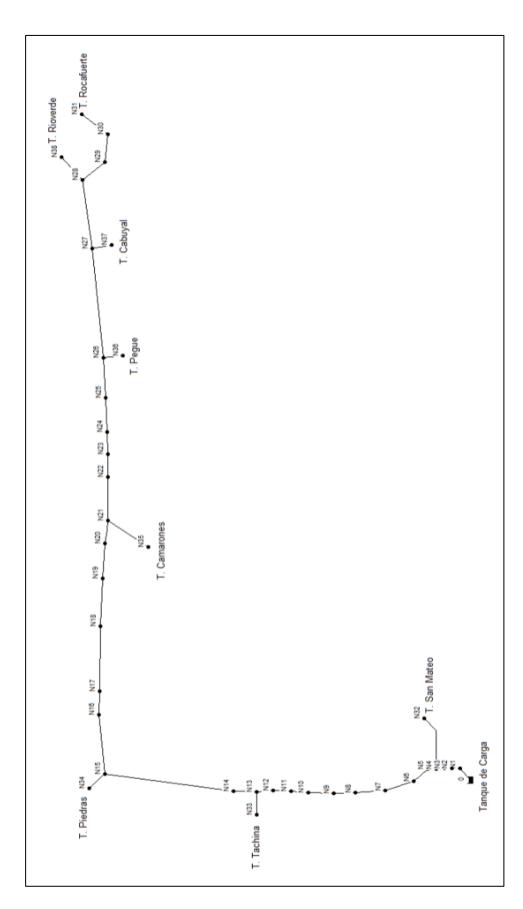


Ilustración 15. Conducción Tanque de Carga a Esmeraldas y Balnearios

2.2.9.2. Tubería de Distribución

El sistema de distribución para el nuevo sistema regional de agua potable Esmeraldas concibe 20 zonas de distribución con sus respectivos tanques de reserva, esto es se realizan ajustes a la delimitación del sistema existente (2012) en el que se tienen 30 redes de distribución y 26 tanques de reserva.

	ONGITUD DE LA RED D	E DISTRIBUCIÓN
Νº	Red de Distribución	Longitud [m]
1	15 de Marzo	26572.7
2	Chone	8719.6
3	Betania	9435.5
4	Santa Cruz	9819.1
5	Guacharaca	16952.7
6	Aire Libre	42777.7
7	Buen Pastor Alto	26428.2
8	Winchele	31337.4
9	San Rafael Bajo	18908.1
10	Buen Pastor Bajo	7891.2
11	Tonsupa	64408.8
12	Atacames	40477.3
13	Same	12377.9
14	Sua	11652.4
15	Tonchigue	15583.0
16	San Rafael Alto	26017.1
17	San Mateo	16004.4
18	Tachina	21290.3
19	Piedras	5609.1
20	Camarones	9068.9
21	Pegue	23609.2
Tot		444,941

Tabla 8. Longitudes de las Redes de Distribución

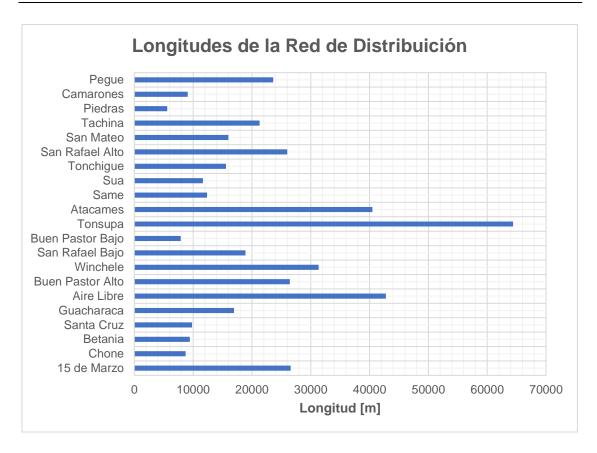


Gráfico 4. Longitudes de las Redes de Distribución

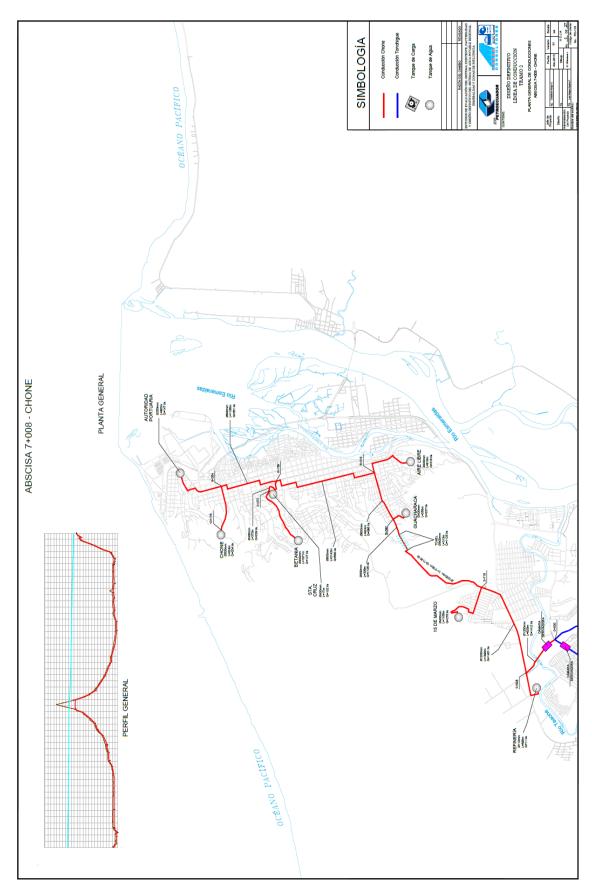


Ilustración 16. Mapa Tramo Tanque de Carga – Chone

Fuente: ACSAM Cía. Ltda.

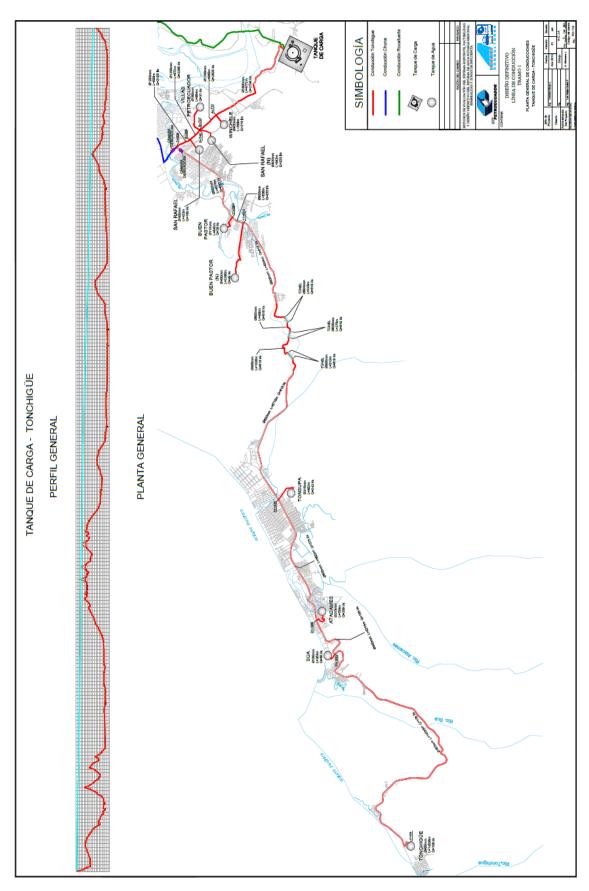


Ilustración 17. Mapa Tramo Tanque de Carga – Chone

Fuente: ACSAM Cía. Ltda.

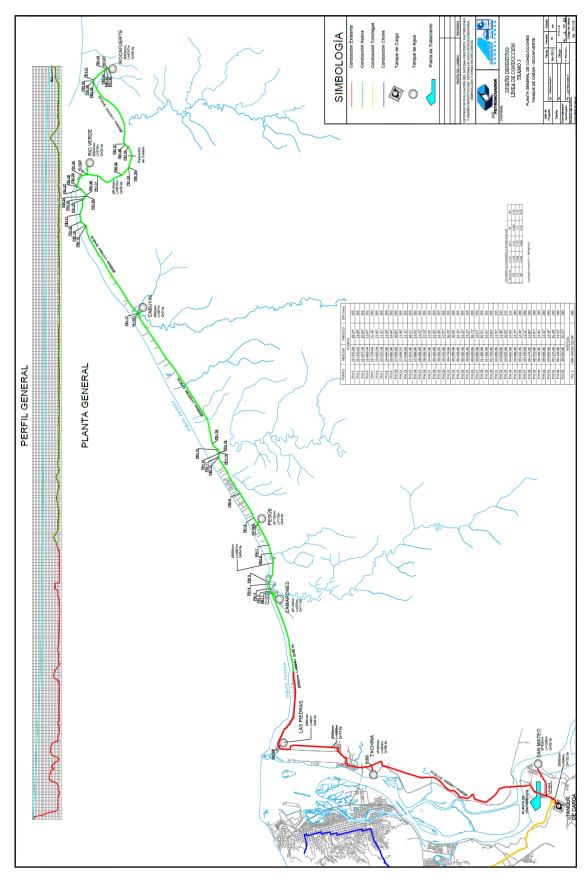


Ilustración 18 Mapa Tramo Tanque de Carga – Rocafuerte
Fuente: ACSAM Cía. Ltda.

2.2.10. Válvulas

Las válvulas de aire y de purga en las conducciones están dimensionadas como elementos de seguridad del sistema, por lo que tanto su diseño como implementación se sujetan a estrictas condiciones operacionales, a fin de asegurar el funcionamiento hidráulico de las líneas de conducción, y también para garantizar la vida útil de las instalaciones, los criterios y procesos de diseño se aplican tanto para tuberías de acero como para tuberías de PVC.

a.-Válvulas de aire

Como ya se ha dicho en otros apartados de este proyecto el dimensionamiento de los equipos de entrada y salida de aire se realiza independientemente, para garantizar el correcto funcionamiento de los mismos. Para el diseño de válvulas de aire se utiliza el modelo dinámico, mediante el cual se determina el uso de válvulas combinadas (admisión y expulsión de grandes cantidades de aire; y, alivio de ariete para condiciones de sobrepresión y subpresión, las que están ubicadas en puntos estratégicos de la línea.

Para su dimensionamiento, se consideraron los siguientes criterios:

- Una expulsión de aire de elevado caudal, durante el llenado de la conducción.
- Una expulsión controlada de pequeñas cantidades de aire, que son evacuadas cuando la línea está bajo presión –operación normal-.
- Una entrada de aire (función antagónica de las anteriores) durante las fases de vaciado de la conducción, para evitar el colapsamiento de la misma o el deterioro de las juntas por la depresión que se crea en su interior; para este caso se considera el vaciado controlado de la línea (para operación normal de limpieza); y en casos extremos, por fallas de la línea, con sección máxima de falla de 50% de la sección del tramo en análisis.
- En caso de vaciado del tanque de carga o paradas repentinas de las bombas, a fin de reducir o limitar los efectos del ariete; para ello, se prevé la inclusión de aire cuando se produce la separación de columna de líquido y oscilaciones del líquido, simultáneamente expulsión de aire

cuando la columna de líquido separado vuelve a unirse –generación de altas presiones-.

Las ecuaciones de cálculo para las funciones de:

a) expulsión de aire con el tubo a presión, b) admisión y expulsión de grandes cantidades de aire, son las mismas tanto para válvulas combinadas comunes, como para las válvulas antisurge, ya que estas funciones siguen el mismo principio dinámico; la diferencia radica en el diseño y funcionamiento específico para disminuir o atenuar los efectos del ariete en sus dos modalidades (sobrepresión y subpresión), funciones que únicamente cumplen las válvulas diseñadas específicamente para dichas condiciones de funcionamiento.

Experimentalmente se sabe que el aire disuelto en una tubería a presión está entre el 5% y el 2% del caudal circulante por la misma, y que el caudal máximo de purga de la tubería a presión está dado por la velocidad sónica 200 m/s.El caudal de aire requerido en el momento del vaciado de la tubería, es el mismo caudal que es evacuado por la tubería, por lo que en primer lugar en cada sitio de desagüe se determínala capacidad de desagüe de la tubería entre los puntos altos anterior y posterior que producen el mayor desnivel al sitio de desagüe; este criterio se basa en la relación directa con el desnivel y la sección de apertura, cuando se trata de purgas controladas; para casos de purgas no controladas –accidentales-debido a roturas de tubería, se calcula como máximo para el 50% de la sección del tubo.

Para el llenado de las tuberías, el caudal de aire a incorporar corresponde al caudal generado por el fluido circulando por la tubería, con una velocidad máxima de 0,5 m/s. El análisis para alivio del golpe de ariete -protección antishock-, considera dos aspectos:

- La cantidad de aire a ser descargado para reducir los efectos de la sobrepresión generada por el ariete.
- Para el análisis de las condiciones de vacío por efectos de subpresiones, se determina la cantidad de aire a introducir para compensar la presión de colapso del tubo (material, espesor, diámetro y factor de seguridad).

La recomendación técnica sobre el tipo de válvulas se basa en las características de las presiones de servicio, estáticas, sobrepresiones por ariete y presión de colapso, por lo tanto, las válvulas cumplirán estrictamente a los siguientes requerimientos:

Cuerpo y carcaza : Hierro Dúctil,

Asientos y sellos : EPDM,

Flotadores : Polietileno de alta densidad en (HDPE),

Tornillos y arandelas : Acero inoxidable.

Conexiones estándar : Bridada ANSI 150 (19 bar)

Conexiones específicas : Bridada ANSI 300 (25 bar)

Debe realizar las cuatro funciones en un solo cuerpo:

Venteo en el llenado de la tubería (separación de columna)

Protección automática contra sobre presiones (golpes de ariete)

Venteo de aire en tubería a presión (eliminación de bolsones de aire)

 Protección contra el creador de vacío al drenar las tuberías (descarga controlada y roturas accidentales)

b.-Desagües

Para asegurar el normal funcionamiento de la red, es necesario disponer de cámaras y válvulas de desagües en los puntos bajos, con las finalidades de limpieza de sedimentos y vaciado total de la tubería, en caso de reparación o mantenimiento de la instalación.

La ubicación de válvulas de desagüe depende de las zonas de depresión entre dos puntos altos, el tiempo mínimo de evacuación (30 minutos); se establece como limitante que el área de la purga no sobrepase del 25% del área de la línea principal, por otra parte, se han previsto válvulas de purga en sitios donde sea posible la descarga en cuerpos receptores que se encuentren cercanos a las líneas; bajo estos criterios se han diseñado las válvulas de purga.

Tanto las válvulas de aire como las de purga se instalarán en sendas cámaras de hormigón, y con respectivos elementos de control y seguridad, las mismas que deben ser operadas únicamente por personal asignado para tal función.

CAPITULO 3 ANÁLISIS DE LA SITUCIÓN

3. ANÁLISIS DE LA SITUACIÓN

3.1. Balance Hídrico

El Balance Hídrico de la red permite evaluar las pérdidas de agua en el sistema, para determinar dichas pérdidas es necesario obtener los consumos registrados y consumos incontrolados. Según Bartolín Ayala (2013) "el balance hídrico más sencillo queda definido a partir del volumen inyectado y del volumen registrado en los contadores de los abonados, lo cual permite conocer el porcentaje de agua registrada". Mientras más datos se dispone de los volúmenes de agua de la red tales como: autorizados no registrados, no autorizados (tomas ilegales), errores de mediciones se puede obtener un balance hídrico más real, pero aumentando la complejidad del mismo. La empresa encargada de la gestión del recurso puede mejorar el control del agua determinando el porcentaje de agua fugada los rendimientos volumétricos del sistema y el porcentaje del agua consumida.

Para el balance hídrico se utilizará los datos más cercanos a la fecha entregados por la Empresa de Agua Potable EAPA-San Mateo, los registros más completos y con mayor fiabilidad corresponden al año del 2012, dichos datos corresponden a las mediciones obtenidas de los macro medidores a la entrada de los tanques de reserva de cada sector y a los consumos facturados por los usuarios.

3.1.1. Volumen Inyectado

Para determinar el volumen inyectado al sistema se obtuvieron las lecturas de los macro medidores a la entrada los tanques de los diferentes sectores en los que se inyecta a las redes de distribución. Los datos más completos y verificados corresponden al año 2012 entregados por la empresa EAPA - San Mateo, se muestra en la Tabla 9 se muestra los datos, donde el Caudal promedio diario se lo obtuvo de tomas entre las 12:00 a.m y la 01:00 p.m. durante cada uno de los meses.

Los resultados se muestran en la *Tabla 9* junto con las mediciones de caudal promedio, se representa los resultados en la *Gráfica 5*. Para el volumen promedio diario, mensual y anual se los obtienen con las siguientes fórmulas:

• El volumen promedio diario

$$V_{PD}[m^3] = Q_{PD} \left[\frac{l}{s} \right] \cdot \frac{3600 \cdot 24}{1000}$$

Donde: $V_{PD} = Volumen Promedio Diario [m^3].$

 Q_{PD} = Caudal Promedio Diario $\left[\frac{1}{s}\right]$.

El volumen promedio mensual

$$V_{PM}[m^3] = V_{PD} \cdot 30\,$$

Donde: $V_{PM} = Volumen Promedio Mensual [m^3].$

 V_{PD} = Volumen Promedio Diario $[m^3]$.

• El volumen promedio mensual

$$V_{PA}[m^3] = V_{PM} \cdot \mathbf{12}$$

Donde: $V_{PA} = Volumen Promedio Anual [m^3].$

 V_{PM} = Volumen Promedio Mensual $[m^3]$.

	Volumen Inyectado a los Tanques de Reserva 2012							
		Volumen Promedio		Volumen Promedio				
Mes	diario [lt/s]	Diario [m3]	Mensua [m3]	Anual [m3]				
Enero	282.93	24,445.44	733,363.06	8,800,356.74				
Febrero	273.18	23,602.49	708,074.68	8,496,896.16				
Marzo	220.56	19,056.60	571,698.05	6,860,376.62				
Abril	204.53	17,671.76	530,152.85	6,361,834.25				
Mayo	143.91	12,433.45	373,003.63	4,476,043.51				
Junio	437.29	37,782.05	1,133,461.38	13,601,536.59				
Julio	448.44	38,745.41	1,162,362.39	13,948,348.68				
Agosto	384.33	33,206.05	996,181.60	11,954,179.17				
Septiembre	331.02	28,599.96	857,998.66	10,295,983.87				
Octubre	271.78	23,482.07	704,462.05	8,453,544.65				
Noviembre	197.22	17,039.55	511,186.57	6,134,238.81				
Diciembre	289.21	24,987.33	749,619.88	8,995,438.54				
Total	3,484.40	301,052.16	9,031,564.80	108,378,777.60				

Tabla 9. Volumen de Inyectado a los Tanques de Reserva

Fuente: EAPA - San Mateo

Gráfico 5. Volumen de Inyectado a los Tanques de Reserva

3.1.2. Volumen Registrado

El volumen registrado del sistema de agua potable se lo determinó mediante el promedio de consumo facturado por los usuarios del sistema en el año del 2012 por la empresa EAPA – San Mateo. Utilizando el mismo método del volumen inyectado se determinó el volumen promedio diario, mensual y anual para el volumen de consumo registrado, en la *Tabla 10* se observa los resultados obtenidos para el volumen de consumos y se representa los resultados en la *Gráfica 6*.

	Volumen de Consumos Registrados 2012							
	Q Promedio	Volumen Promedio	Volumen Promedio	Volumen Promedio				
Mes	Diario [l/s]	Diario [m3]	Mensua [m3]	Anual [m3]				
Enero	130.18	11,247.55	337,426.56	4,049,118.72				
Febrero	105.20	9,089.28	272,678.40	3,272,140.80				
Marzo	81.80	7,067.52	212,025.60	2,544,307.20				
Abril	74.98	6,478.27	194,348.16	2,332,177.92				
Mayo	69.81	6,031.58	180,947.52	2,171,370.24				
Junio	183.50	15,854.40	475,632.00	5,707,584.00				
Julio	197.80	17,089.92	512,697.60	6,152,371.20				
Agosto	188.45	16,282.08	488,462.40	5,861,548.80				
Septiembre	137.42	11,873.09	356,192.64	4,274,311.68				
Octubre	104.80	9,054.72	271,641.60	3,259,699.20				
Noviembre	79.18	6,841.15	205,234.56	2,462,814.72				
Diciembre	85.04	7,347.46	220,423.68	2,645,084.16				
Total	1,438.16	124,257.02	3,727,710.72	44,732,528.64				

Tabla 10. Volumen de Inyectado a los Tanques de Reserva

Fuente: EAPA – San Mateo

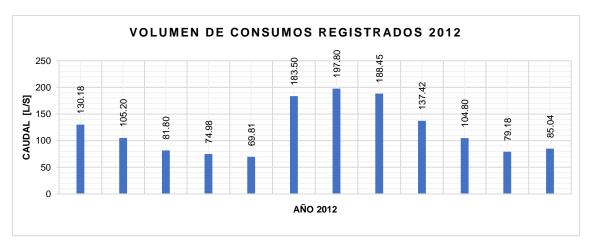


Gráfico 6. Volumen de Inyectado a los Tanques de Reserva

3.1.3. Diferencia de Volumen Inyectado y Registrado

Obtenidos los caudales inyectados y de registro calculamos la diferencia entre los dos para determinar las pérdidas que se dan en el sistema, la *Tabla 11* y el *Gráfico 7* dan los resultados.

	Diferencia de Volumen Inyectado y Registrado 2012							
	Q Promedio	Volumen Promedio	Volumen Promedio	Volumen Promedio				
Mes	Diario [l/s]	Diario [m3]	Mensua [m3]	Anual [m3]				
Enero	152.75	13,197.88	395,936.50	4,751,238.02				
Febrero	167.98	14,513.21	435,396.28	5,224,755.36				
Marzo	138.76	11,989.08	359,672.45	4,316,069.42				
Abril	129.55	11,193.49	335,804.69	4,029,656.33				
Mayo	74.10	6,401.87	192,056.11	2,304,673.27				
Junio	253.79	21,927.65	657,829.38	7,893,952.59				
Julio	250.64	21,655.49	649,664.79	7,795,977.48				
Agosto	195.88	16,923.97	507,719.20	6,092,630.37				
Septiembre	193.60	16,726.87	501,806.02	6,021,672.19				
Octubre	166.98	14,427.35	432,820.45	5,193,845.45				
Noviembre	118.04	10,198.40	305,952.01	3,671,424.09				
Diciembre	204.17	17,639.87	529,196.20	6,350,354.38				
Total	3,484.40	301,052.16	9,031,564.80	108,378,777.60				

Tabla 11. Diferencia de Volumen Inyectado y Registrado

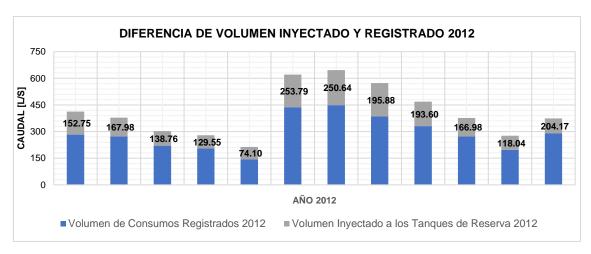


Gráfico 7. Diferencia de Volumen Inyectado y Registrado

3.1.4. Volumen Incontrolado

Las pérdidas reales y aparentes representan el volumen incontrolado. Las pérdidas reales se presentan en las fugas de tuberías principales y secundarias, y la mayor cantidad de fugas se encuentran en las acometidas; mientras que las pérdidas aparentes representan los errores en los contadores, consumos ilegales consumos autorizados no registrados, entre otros.

• Errores en los micromedidores

Según un estudio realizado por la Empresa consultora ACSAM Cía. Ltda. y la Empresa de Agua Potable EAPA – San Mateo aproximadamente los contadores pueden tener un error entre el 3 y 5 %, los medidores fueron renovados en ciertos sectores el 2018.

Usuarios sin medidor

El estudio mencionado también cuantifica la pérdida de caudal por usuarios sin medidor (tomas clandestinas), el estudio determino que en promedio debería existir un 14.08% del caudal registrado, el estudio contabilizo ciertas tomas ilegales en campo en el 2018.

3.1.5. Balance Hídrico Técnico

El balance hídrico técnico permite determinar el porcentaje que se esta fugando en el sistema mediante los datos obtenidos anteriormente de volumen y caudal que se registra e ingresa en el sistema, los resultados permitirán optimizar la gestión del recurso hídrico y controlar las fugas en el sistema de distribución de agua potable de la población, se muestra en la *Ilustración 19* del balance hídrico técnico realizado por el IWA.

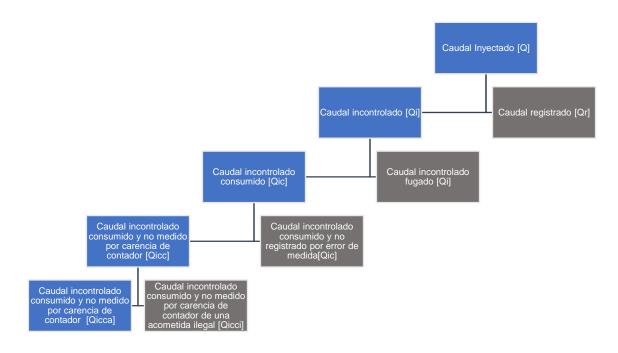


Ilustración 19. Balance Hídrico Técnico

Fuente: Cabrera et al., 1999

Caudal Inyectado (Q)

El caudal inyectado a la red se lo considera con la lectura los macromedidores de ingreso a los tanques de los diferentes sectores que mostró en la *Tabla 9*.

$$Q\left[\frac{l}{s}\right] = 3,484.40$$

• Caudal Registrado (Qr)

El caudal registrado se lo obtiene de los consumos facturados de los usuarios contemplado en la *Tabla 10*.

$$Q_r\left[\frac{l}{s}\right] = 1,438.16$$

• Caudal Incontrolado (Qicc)

El caudal incontrolado se lo calcula con la diferencia entre el caudal inyectado y registrado

$$Q_{i} \left[\frac{l}{s} \right] = Q_{r} - Q$$

$$Q_{i} \left[\frac{l}{s} \right] = 3,484.40 - 1,438.16$$

$$Q_{i} \left[\frac{l}{s} \right] = 2,046.24$$

 Caudal incontrolado consumido y no medido por carencia de contador (Qicc)

Este caudal se lo obtiene por un estudio realizado por la empresa ACSAM Cía. Ltda. y EAPA – San Mateo.

$$Q_{icc} \begin{bmatrix} \frac{l}{s} \end{bmatrix} = Q \cdot 14.08 \%$$

$$Q_{icc} \begin{bmatrix} \frac{l}{s} \end{bmatrix} = 3,484.40 \cdot 14.08 \%$$

$$Q_{icc} \begin{bmatrix} \frac{l}{s} \end{bmatrix} = 202.49$$

 Caudal incontrolado consumido y no registrado por error de medida (Qice)

Este caudal se lo obtiene por un estudio realizado por la empresa ACSAM Cía. Ltda. y EAPA – San Mateo, de ensayos realizados a los contadores antiguos y nuevos colocados en el sistema.

$$Q_{ice} \left[\frac{l}{s} \right] = Q \cdot 5.00 \%$$

$$Q_{icc} \left[\frac{l}{s} \right] = 3,484.40 \cdot 5.00 \%$$

$$Q_{ice} \left[\frac{l}{s} \right] = 174.22$$

• Caudal incontrolado consumido (Qic)

Es la suma entre el Caudal incontrolado consumido y no medido por carencia de contador (Qicc) y Caudal incontrolado consumido y no registrado por error de medida (Qice).

$$Q_{ic} \left[\frac{l}{s} \right] = Q_{icc} + Q_{ice}$$

$$Q_{ic} \left[\frac{l}{s} \right] = 202.49 + 174.22$$

$$Q_{ic} \left[\frac{l}{s} \right] = 376.71$$

Caudal incontrolado fugado (Qif)

Es la diferencia entre el caudal incontrolado y el caudal incontrolado consumido.

$$Q_{if} \left[\frac{1}{s} \right] = Q_i - Q_{ic}$$

$$Q_{if} \left[\frac{1}{s} \right] = 2,046.24 - 1,669.53$$

$$Q_{ice} \left[\frac{1}{s} \right] = 1,669.53$$

La *Tabla 12* y *Gráfico 8* detallan los resultados del balance hídrico técnico del sistema de agua potable de Esmeraldas, el porcentaje de agua fugada alcanza el 47.97% del agua inyectada, se debe considerar que el porcentaje podría ser mayor debido a las posibles fugas en la tubería de conducción desde el tanque de carga hasta los distintos tanques

BALANCE HÍDRICO TÉCNICO					
Descripción	Simbolo	Observación	Valor		
Cuadal Inyectado	Q	Registro	3,484.40		
Caudal Registrado	Qr	Registro	1,438.16		
Caudal Incontrolado	Qi	Q-Qr	2,046.24		
Cuadal incontrolado consumido y no medido por la					
carencia del medidor	Qicc	14.08%	202.49		
Cuadal incontrolado consumido y no medido por error					
de Media	Qice	5%	174.22		
Caudal incontrolado consumido	Qic	Qicc + Qice	376.71		
Caudal incontrolado Fugado	Qif	Qi - Qic	1,669.53		
Procentaje de Agua Fugada	%Af	Q/Qif	47.91%		

Tabla 12. Balance Hídrico Técnico

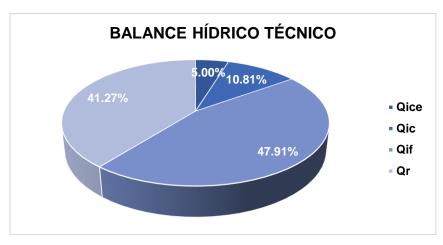


Gráfico 8. Balance Hídrico Técnico

3.2. Dotación Bruta

Para el diseño de las redes de agua potable se estableció una dotación bruta general para todas las redes de 230 l/hab/d, resultado que se obtiene de un promedio general entre las 21 redes. Para ratificar esta dotación se ha procedido a determinarlo con los datos de población y con los caudales máximos diarios (QMD) de cada uno de los sectores.

• Caudal Máximo Diario (QMD)

El dato se lo obtiene según los informes de la empresa EAPA – San Mateo como se observa en la *Tabla 13*.

Caudal Medio Diario (Qmd)

Representa el caudal de consumo medio anual diario máximo de una hora presentado durante un año.

$$\mathbf{Q_{md}} = \frac{\mathbf{Q_{MD}}}{\mathbf{k_{MD}}}$$

Donde: $k_{MD} = 1.5$, Coeficiente de variación de consumo máximo horario.

Se considera un valor de 2 para el coeficiente de variación de consumo máximo horario de acuerdo a las normas del Ex-IEOS.

• Dotación Bruta

Representa el caudal consumido por cada habitante, es el resultado de la relación entre el caudal medio diario (Qmd) y el número de habitantes de la región. Los resultados se muestran en la *Tabla 13*.

	Dotación Bruta de las Redes de Distribución							
	Red		Población	Caudal				
	Neu	Área [ha]	[hab]	QMD	Qmd		Dotación	
Ν	Descripción		[IIab]	[l/s]	[l/s]	Qmd [l/d]	[l/(hab*d)]	
01	Esmeraldas Norte	297.99	44,390	134.27	89.51	7,733,664	174.22	
02	Esmeraldas Centro Alta	140.01	27,473	91.22	60.81	5,253,984	191.24	
03	Esmeraldas Centro Baja	64.82	22,113	71.12	47.41	4,096,224	185.24	
04	Esmeraldas Sur Alta	224.14	49,178	171.42	114.28	9,873,504	200.77	
05	Esmeraldas Sur Baja	602.34	68,929	228.12	152.08	13,139,424	190.62	
06	15 de Marzo	759.30	52,581	199.46	132.97	11,488,896	218.50	
07	Buen Pastor Alto	203.60	2,079	22.21	14.80	1,279,008	615.20	
80	Winchele	535.26	40,426	114.75	76.50	6,609,312	163.49	
09	San Rafael	415.14	27,562	131.05	87.37	7,548,480	273.87	
10	Buen Pastor	199.03	3,557	17.60	11.73	1,013,760	285.00	
11	Tonsupa	1,380.34	46,841	143.06	95.37	8,240,256	175.92	
12	Atacames	313.85	38,077	137.06	91.37	7,894,656	207.33	
13	Sua	351.68	11,630	37.28	24.85	2,147,040	184.61	
14	Same	66.36	2,035	19.00	12.66	1,094,112	537.64	
15	Tonchigue	452.33	13,872	62.17	41.44	3,580,704	258.13	
16	San Rafael Alto	215.24	39,731	90.00	60.00	5,184,000	130.48	
17	San Mateo	395.35	4,865	16.34	10.89	941,184	193.46	
18	Tachina	640.93	12,798	41.56	27.71	2,393,856	187.05	
19	Piedras	124.19	1,288	4.00	2.67	230,400	178.88	
20	Camarones	219.20	2,373	7.80	5.20	449,280	189.33	
21	Pegue	672.33	802	2.76	1.84	158,976	198.22	
TO	TAL PROYECTO	8,273.43	512,600	82.96	55.31	4,778,605.71	235.20	

Tabla 13. Balance Hídrico Técnico

El promedio de las 21 redes de abastecimiento es igual a 235.20 [l/(hab*d)] un valor muy cercano a los 230 [l/(hab*d)] establecido para el diseño por lo que los valores se dan por válidos. Los sectores de Buen Pastor Alto, Same y San Rafael Alto tienen valores distorsionados. Para los sectores de Buen Pastor Alto y Same no son fiables debido a que se consideraron caudales en sectores que fueron desalojados tanto domestica como industrial, mientras que en San Rafael Alto hubo un incremento poblacional importante después de que el sector fuera censado, caudales se registran cada día, pero la población se lo considera entre 5 a 10 años, por lo que dificulta la obtención de este dato.

CAPITULO 4 ELABORACIÓN DEL MODELO

4. ELABORACIÓN DEL MODELO

El modelo matemático permite representar de manera simplificada el comportamiento de la red de distribución. El objetivo principal del TFM es la elaboración del modelo matemático de la red de abastecimiento de la provincia de Esmeraldas, para obtener el modelo matemático se realiza un procedimiento, dicho procedimiento se agrupa de la siguiente manera:

Gran parte de los datos se obtuvieron mediante la Empresa EAPA – San Matero encargada de la distribución de agua potable en la provincia, junto con la Consultora ACSAM Cía. Ltda.

4.1. Recopilación de información

Gran parte de los datos se obtuvieron mediante la Empresa EAPA – San Matero encargada de la distribución de agua potable en la provincia, junto con la Consultora ACSAM Cía. Ltda. mediante un estudio realizado en el año 2012, en el cual se elaboró planos de las tuberías existentes y los consumos ya establecidos por EAPA – San Mateo. Los primeros planos en realizarse fueron los topográficos Planos de la red.

El proyecto regional de agua Esmeraldas, fue diseñado en 1987, la construcción se realiza entre los años 1992 a 1994 y el sistema entra a operar recién en el año 1995; en estos períodos, la tecnología de dibujo digital no existió, por lo tanto, la cartografía, planos y más documentos del sistema fueron desarrollados en papel y tinta. Bajo estas circunstancias, en este proyecto, el primer paso consistió en recuperar la mejor información relacionada con la cartografía del proyecto y transformarla al sistema digital.

Los planos digitalizados fueron ajustados y georeferenciados al sistema WGS 84; se toma como base digital el plano urbano de Esmeraldas (2011), que contiene la cuadrícula urbana actualizada y georeferenciada, en dicho plano se ha colocado los datos georeferenciados de los componentes principales del sistema (tanques de reserva y conducciones principales), y la información topográfica con levantamiento de campo (realizada en este proyecto) de: la captación, la planta de potabilización, el tanque de carga y la conducción Tanque de Carga-Esmeraldas; la información digital de las redes de distribución tuvo que ser ajustada a la nueva traza urbana debido a que los planos que dispone al EAPA no están georeferenciados ni actualizados. Se muestra

Los planos de las edificaciones, obras civiles y estructuras del sistema, así como los de despiece de partes y accesorios solo son referenciales, debido a que en este estudio no se contempla el levantamiento catastral de las instalaciones. En esta fase del estudio, los trabajos topográficos se desarrollan con los siguientes alcances y propósitos:

Colocación de una red "principal" de puntos de control horizontal y vertical (coordenadas y cotas), mediante el sistema de posicionamiento geodésico (GPS). Esta red de puntos servirá al presente y futuros proyectos de toda índole para replantear sitios de interés específicos. A la fecha, se ha colocado 29 placas de control principal, las cuales sumadas a seis placas preexistentes ubicadas por el IGM para el control horizontal y/o vertical, dan como resultado una densa red primaria de control topográfico en toda el área del proyecto.

- Colocación de una red "secundaria" de puntos de control vertical enlazados a la red principal y cartas del IGM, a base de levantamientos de precisión (estaciones totales y niveles automáticos). Esta red secundaria está destinada a servir de base para los trabajos topográficos de evaluación de los sistemas existentes y levantamientos horizontales y verticales de las urbanizaciones en las cuales se proyectarán los nuevos sistemas.
- Actualización del plano base del área del proyecto, el cual sirva de base para registrar la información de los estudios.

Para el enlace horizontal con la red nacional del IGM, se ha considerado los dos hitos existentes –IGM- correspondientes a los vértices: "Esmeraldas T.N." (TN1), ubicado en la loma "Quitito" y P.E.12838-X (TN3), ubicado en el rompeolas del puerto comercial.

Para el control vertical (con enlace a la red nacional), se dispone de información para tres hitos del IGM: VIII-L3-60 (BM1), VIII-L3-56(BM2) y VIII-L3-67(BM4), tomado como base para todo el proyecto, la cota correspondiente al primero, ubicado en el parque central.

Los puntos colocados son referenciados por placas de bronce de 10cm de diámetro adecuadamente empotradas en estructuras muy estables.

A continuación, se presenta un breve resumen con las características y un mapa general de cada red:

Esmeraldas Norte - Chone

La red se abastece del tanque ubicado en el punto de coordenadas E648.850 y N108.400 WGS84 17N, el tanque se encuentra emplazado en el sector denominado barrio Chone. El subsistema Chone se encuentra subdividido en 11 sectores y en 2 zonas de presión, la zona de presión alta se encuentra limitado por el subsector 11 mientras que los otros 10 subsectores se encuentran en la

zona baja. Dentro del área de servicio encontramos importantes Equipamientos como en el caso de la zona de autoridad aeroportuaria y el puerto. El esquema a continuación muestra los sectores planteados para el efecto.

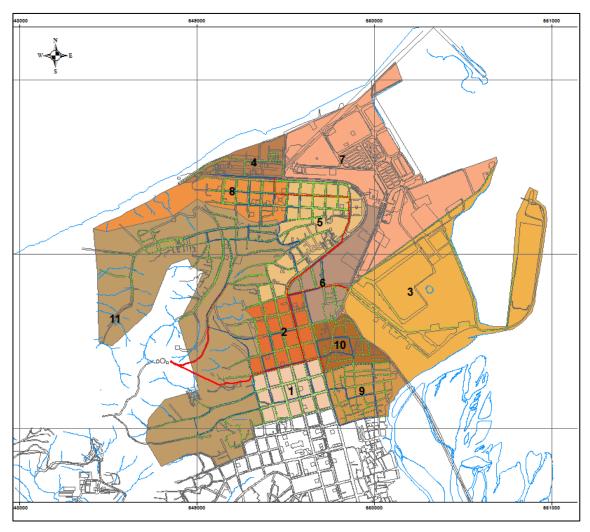


Ilustración 20. Red Esmeraldas Norte - Chone

Esmeraldas Centro Alto - Betania

La red se abastece el tanque ubicado en las coordenadas E648.658, N 106.974 WGS84 17N ubicado en el sector denominado Betania. El subsistema encuentra dividido en dos zonas de presión y en siete sectores servicio. Una particularidad la red Betania es la morfología de sus sectores de servicio como es evidente todos los sectores tiene una forma alargada debido a que se encuentran emplazados siguiendo la Orografía del sector. Para la red Betania existe presiones menores a la mínima recomendada a lo largo de la calle Santa Cruz

emplazada en la cordillera que abastece al centro de reserva y en la parte alta de la calle río Teone cuya cota promedio es 100 msnm. El esquema a continuación muestra los sectores planteados para el efecto.

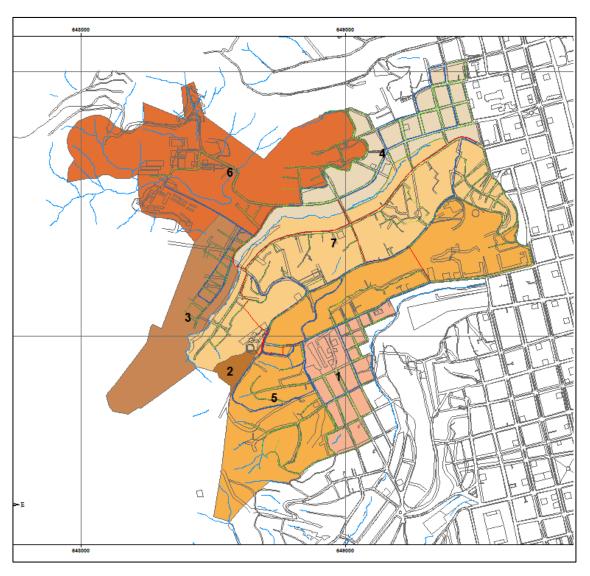


Ilustración 21. Red Esmeraldas Centro Alto – Betania

Esmeraldas Centro Alto - Betania

La red centro bajo se encuentra abastecida por el tanque Santa Cruz en las coordenadas E649.511 N107.463. La red se encuentra constituida por cinco sectores de servicio de forma más o menos regular, existiendo una sola zona de presión. El área de servicio abastecida por la red Centro bajo ha sido reducida con la finalidad de emplear la Totalidad del volumen disponible en el tanque de Santa Cruz. La zona de alta presión ubicada en las inmediaciones del tanque será abastecida por la red centro alto, dado que las condiciones topográficas y

morfológicas de la red centro bajo no permiten emplazar un nuevo tanque de reserva que garantice un adecuado abastecimiento paria dicho sector. Con la finalidad de mantener presiones servicio dentro del rango recomendado, en la zona ha sido necesaria la implementación de una válvula reductora de presión que garantice el adecuado funcionamiento de la red de distribución. El esquema a continuación muestra los sectores planteados para el efecto.

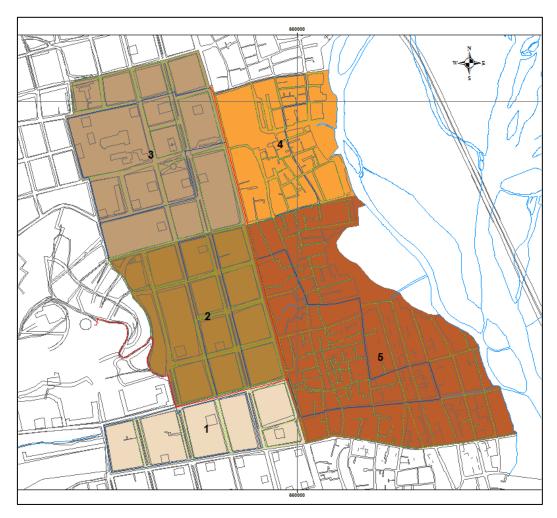


Ilustración 22. Red Esmeraldas Centro Alto – Betania

Esmeraldas Sur Alto - La Guacharaca

La red sur alto se encuentra abastecida por el tanque ubicado en las coordenadas649069 E 104890 N, en el sector denominado La Guacharaca. La red Sur alto se encuentra conformada por dos zonas de presión y once sectores de servicio. Los sectores abastecidos por la red de alta presión son los sectores 3, 4, 5, 6, 8, 11; mientras que los sectores 1, 2, 7, 9 y 10 se encuentran abastecidos por la red de presión baja. En esta red existe una válvula reductora de presión que permite garantizar que la presión de suministro de todos los

sectores de servicio sean las adecuadas garantizando el adecuado funcionamiento de la red. El esquema a continuación muestra los sectores planteados para el efecto.

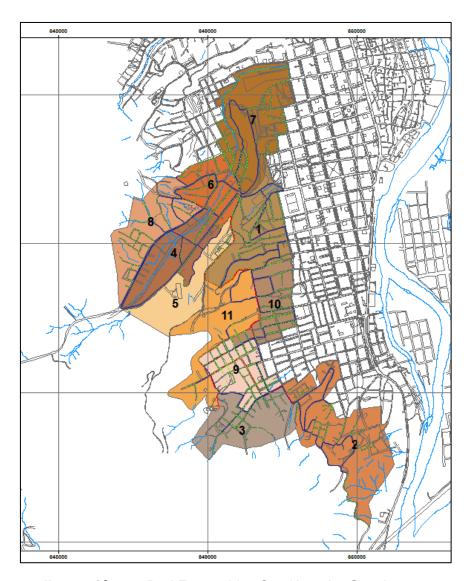


Ilustración 23. Red Esmeraldas Sur Alto - La Guacharaca

Esmeraldas Sur Bajo - Aire Libre

La Sur baja se encuentra abastecida por el tanque denominado Aire Libre.

El sector se encuentra dividido en 17 zonas de servicio, la distribución principal se la realiza mediante una red cerrada que alimenta a cada una de los barrios.

Dentro de los sectores de servicio se cuenta con los sectores 5, 6 y 7 que al momento no cuenta con una planificación urbana, ni trama vial que permita el trazo de redes de distribución sin embargo se considera como áreas de

crecimiento potencial. El esquema a continuación muestra los sectores planteados para el efecto.

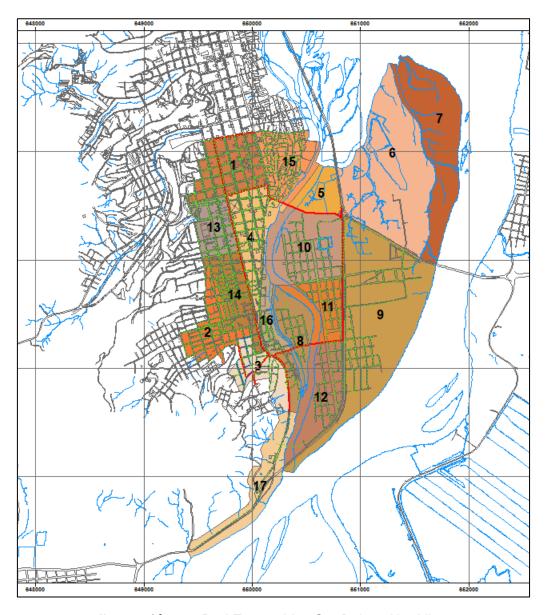


Ilustración 24. Red Esmeraldas Sur Bajo - Aire Libre

15 de Marzo

El sector denominado 15 de Marzo se abastece desde el centro de reserva emplazado en el punto de coordenadas UTM WGS84 17N E647294.84 N103908.99 ubicado a 96.50msnm. Para efectos de garantizar una correcta operación y mantenimiento de las redes de distribución se ha fraccionado la red de distribución en DOS (2) categorías: Considerando la orografía del área del

proyecto se considera pertinente distribuir el área en DOS (2) zonas de presión que cuentan con abastecimiento directo desde la reserva. Desde el punto de vista operativo y en cumplimiento de la normativa nacional vigente se procede a fraccionar la red en DIECISÉIS (16) sectores de servicio. De los cuales UNO (1) pertenece a la zona alta, mientras que los otros ONCE (14) forman parte de la red de la zona baja. El sector CATORCE (14) corresponde al área de Petrocomercial, el cual se abastece de forma directa mediante una reserva independiente alimentada desde la línea de conducción. El esquema a continuación muestra los sectores planteados para el efecto.

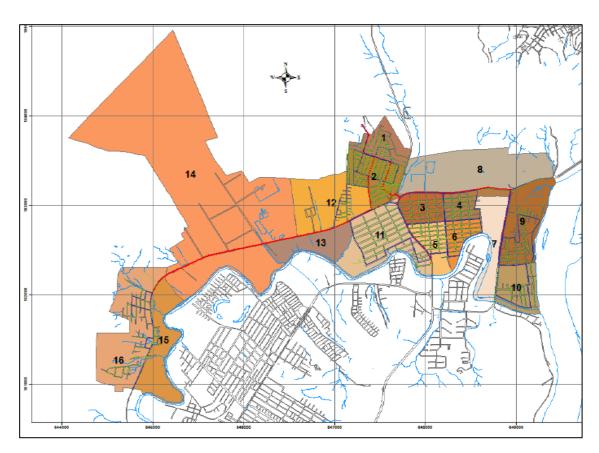


Ilustración 25. Red 15 de Marzo

Buen Pastor Alto

La de buen pastor alto corresponde a la parte sur del sector denominado buen pastor la zona se caracteriza por su elevado crecimiento urbanístico, En las zonas está compensaciones tales como casa bonita reorganizaciones judiciales y organización gatazo del ministerio desarrollo urbano y vivienda MIDUVI. El

subsistema encuentra subdividido en 8 sectores de servicio y en dos zonas de presión para efectos de un adecuado funcionamiento de se implementa dos válvulas reductoras de presión una en la red principal y una segunda válvula en la distribución secundaria para abastecimiento de la zona seis.

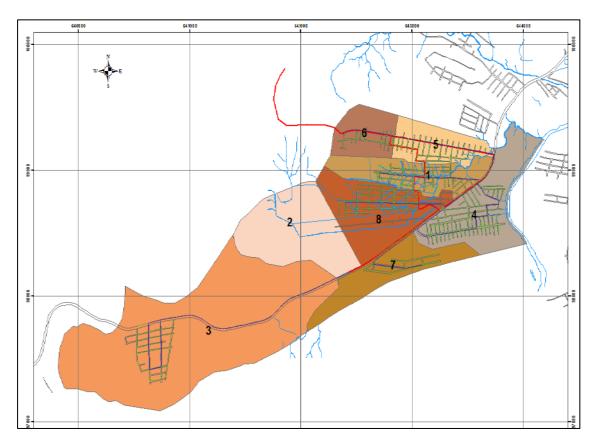


Ilustración 26. Red Buen Pastor Alto

Winchele

Comprenden los sectores de las Tolitas, la urbanización Julio Estupiñan y la parte baja de la red 15 de marzo de igual manera comprende aquellos sectores que estaba haciendo abastecidos directamente desde la conducción. En la red de Winchele se registraba 11 puntos en los cuales las presiones son menores de 10 mca sin embargo estos puntos se encuentran ubicados en los extremos de la red y en las proximidades de los tanques. El esquema a continuación muestra los sectores planteados para el efecto.

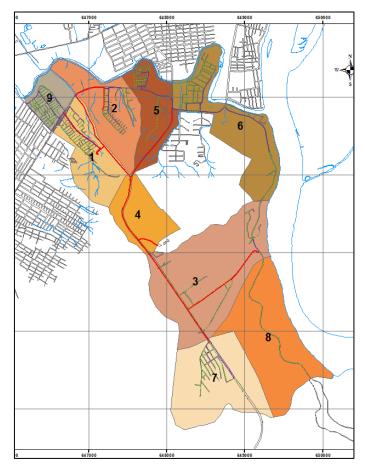


Ilustración 27. Red Winchele

De igual manera se tiene sectores con presiones elevadas por lo cual se recomienda que al momento de construir las acometidas domiciliarias se considere la implementación de válvulas reductoras de presión a nivel de acometida estas circunstancias se sucita en particular en esa zona baja de la urbanización Julia Estupiñán en la cual se registran presiones alrededor de los 70 y 80 mca y en la vía marginal al río esmeraldas Para una adecuada distribución y abastecimiento sea previsto en implementar cinco válvulas reductoras de presiones a diferentes alturas generando de esta manera tres zonas de presión bien definidas.

La red de distribución para el subsistema Winchele se encuentra dividido en 9 zonas de servicio, una particularidad adicional del subsistema es que enmarca las villas de Petroecuador que en caso de un eventual desabastecimiento de su reserva podrían ser abastecidos desde la reserva de Winchele. Dentro de la concepción del subsistema se considera la reutilización de los tanques gemelos de las

Tolitas como tanques de cola de la red, estas reservas son las encargadas de regular la presión de suministro para los sectores 1 y 9 correspondientes a las urbanizaciones Tolitas 1 y 2.

San Rafael

Se abastece directamente desde el tanque existente para el sector se registra una presión máxima de abastecimiento de 54.7 mca y presión mínima de 9 mca. El subsistema se encuentra fraccionado en 6 sectores. El esquema a continuación muestra los sectores planteados para el efecto.

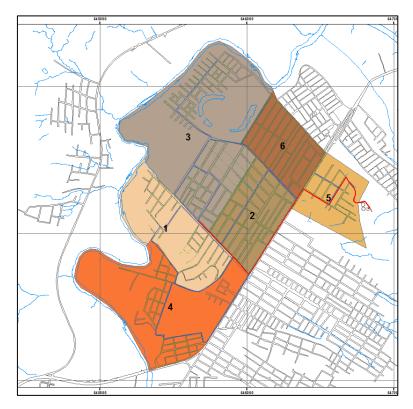


Ilustración 28. Red San Rafael

Buen Pastor

Se abastece de la reserva existente del mismo nombre emplazada en el punto de coordenadas UTM WGS84 17N E643560, N99810. El subsistema se encuentra dividido en CINCO (5) sectores de servicio que operan de forma independiente. El esquema a continuación muestra los sectores planteados para el efecto.

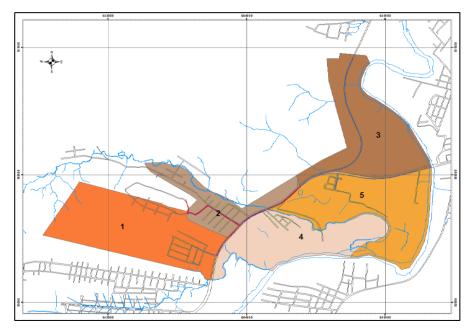


Ilustración 29. Red Buen Pastor

Tonsupa

La zona de Tonsupa considerada la más grande dentro de los sectores de abastecimiento, Conformada por dos Zonas de presión. El sector tiene elevada tendencia de crecimiento sin embargo se encuentra limitada por su cota de servicio por lo cual existen urbanizaciones nuevas que deberán buscar sus propios sistemas de presurización para un adecuado abastecimiento tal es el caso de la urbanización que se encuentra ubicada en el extremo sureste de la zona, En la cual las presiones se encuentran por debajo de la mínima requerida. La red de distribución se discretiza en CATORCE (14) sectores de servicio, de los cuales los sectores 1-7-11-12 pertenecen a la red alta, mientras que para los sectores 2-3-4-5-6-8-9-10-13-14, se abastecen de la línea de distribución que cuenta con regulación de presión mediante una estacion reductora de presión. El esquema a continuación muestra los sectores planteados para el efecto.

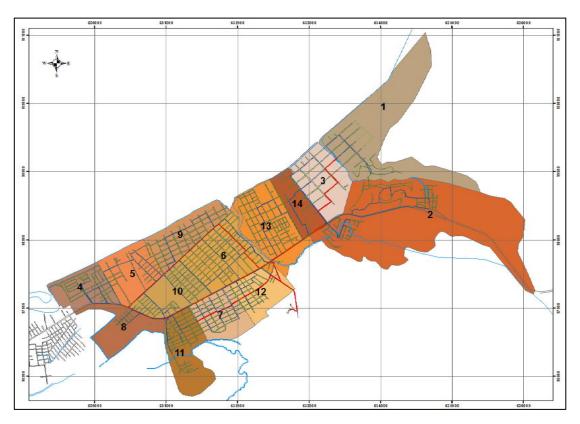


Ilustración 30. Red Tonsupa

Atacames

El subsistema Atacames se emplaza en una zona con un relieve bastante variable lo cual dificulta la zonificación y sectorización de la red de distribución. Existen nudos ubicados en el extremo sur oeste de la red está Atacames que registran presiones inferiores a las mínimas permisibles, debido a que se encuentran sobre la cota máxima de servicio, sin embargo, han sido consideradas dentro de las redes de abastecimiento pues al encontrarse aisladas en el extremo de la red, no pueden ser abastecidos desde ningún otro sector. La red de distribución de Atacames se sectoriza en ONCE (11) unidades de distribución. El esquema a continuación muestra los sectores planteados para el efecto.

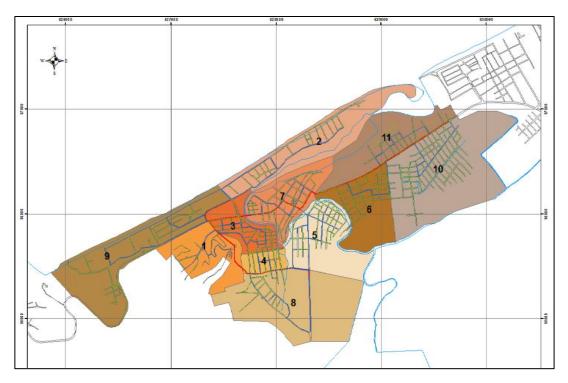


Ilustración 31. Red Atacames

Sua

El subsistema Sua se abastece desde el centro de reserva ubicado en las coordenadas UTM WGS84 17N E625810, N95300. La distribución se encuentra dividida en SEIS (6) sectores de servicio, los 5 primeros corresponden al casco urbano de Sua, mientras que el sector (6) corresponde a un área proyectada para crecimiento. El esquema a continuación muestra los sectores planteados para el efecto.

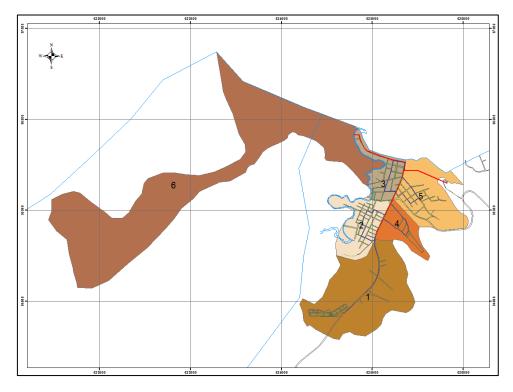


Ilustración 32. Red Sua

Same y Tonchigüe

Los subsistemas Same y Tonchigüe se abastecen desde el mismo centro de reserva emplazado en las coordenadas E618150, N91980, La red se encuentra dividida en DOS (2) zomas independientes. La primera correspondiente a Same que a su vez se encuentra subdividida en TRES (3) sectores de servicio. El esquema a continuación muestra los sectores planteados para el efecto. Mientras que la segunda corresponde al área de servicio de Tonchigüe la cual se encuentra fraccionada en SEIS (6) sectores de servicio.

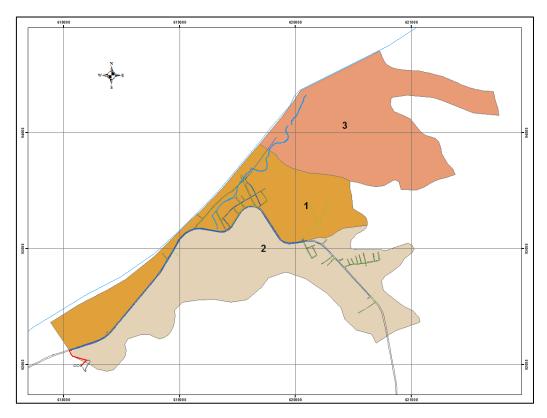


Ilustración 33. Red Same

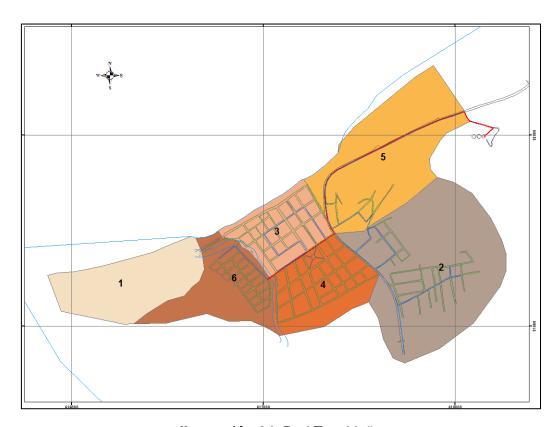


Ilustración 34. Red Tonchigüe

San Rafael Alto

El sector denominado San Rafael alto se encuentra emplazado en la parte sur de San Rafael la ubicación de la nueva reserva obedece a que el crecimiento urbanístico ha llevado a que la cota de servicio se lleve sobre la cota de la reserva existente. El subsistema de distribución se divide en 13 sectores de servicio, distribuidas en DOS (2) Zonas de Presión, en donde los sectores 9 y 13 corresponden a la zona alta, mientras que los demás sectores se encuentran reguladas por una válvula reductora de presión. El esquema a continuación muestra los sectores planteados para el efecto.

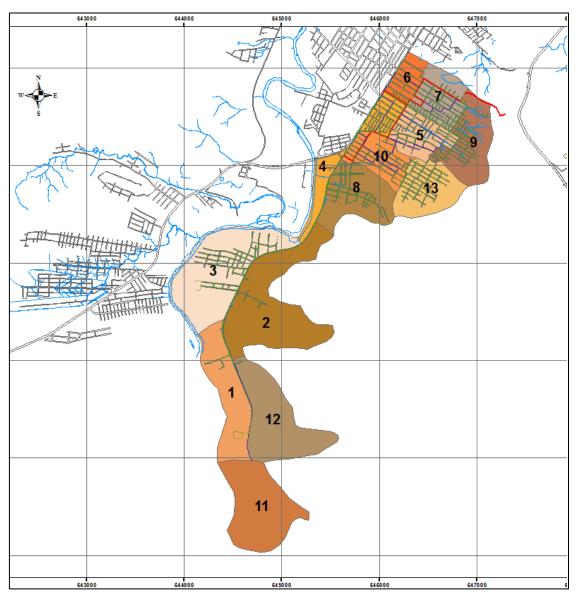


Ilustración 35. Red San Rafael Alto

San Mateo

El sector de San Mateo ubicado en la parte sur de la planta de tratamiento, corresponde a una parroquia rural. Para el adecuado abastecimiento de la urbanización ubicada en el extremo sur oeste del sector es necesario la implementación de una estación de bombeo con capacidad suficiente para abastecer de 1 lt/s y una carga de 30 mca para, cabe recalcar que dicha urbanización no puede ser abastecida por ninguno de los otros sectores excepto desde el tanque de carga. El esquema a continuación muestra los sectores planteados para el efecto.

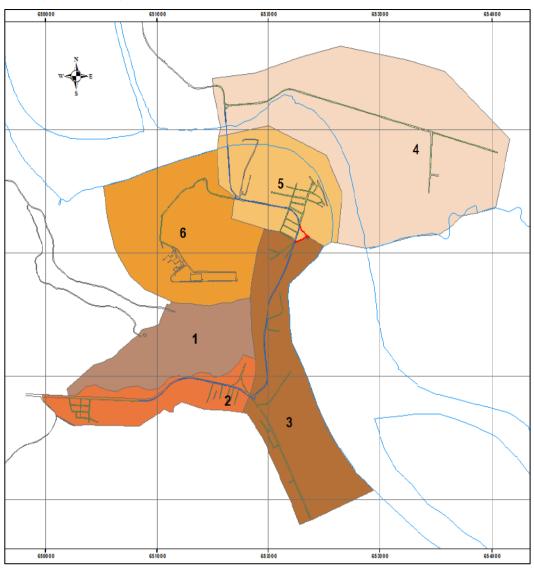


Ilustración 36. Red San Mateo

Tachina

La red de Tachina se desarrolla en la orilla Derecha del río Esmeraldas, para el abastecimiento toma el agua desde la reserva ubicada en el punto de coordenadas E 652314, N105380 WGS84 17N A excepción de dos puntos al extremo norte con cota similar a la cota de la reserva la presión de suministros se registra sobre los 7.9 metros de columna de agua. El área se divide en CUATRO (4) sectores que se caracteriza por estar dividida en sectores alargados que se desarrollan paralelas a la vía principal y al aeropuerto. El esquema a continuación muestra los sectores planteados para el efecto.

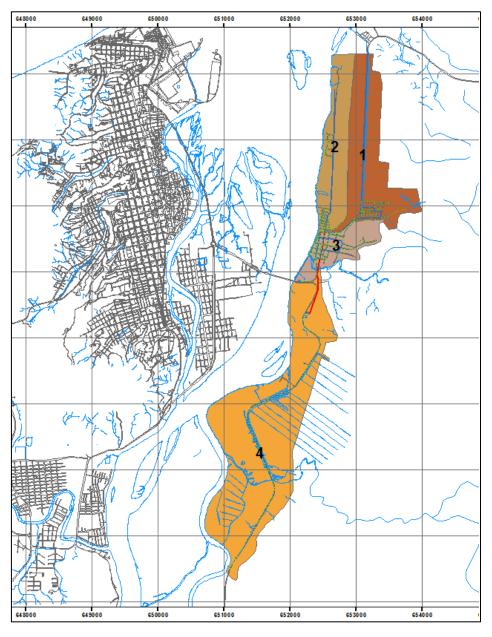


Ilustración 37. Red Tachina

Piedras

El sector de Piedras ubicado en la parte norte de Tachina se encuentra limitado por la línea costanera, corresponde a una zona dispersa que se desarrolla en la margen de la vía Esmeraldas – Rio Verde. La red se encuentra fraccionada en TRES (3) sectores de servicio, de los cuales el sector TRES (3) corresponde a un subsector del sector UNO. El esquema a continuación muestra los sectores planteados para el efecto.

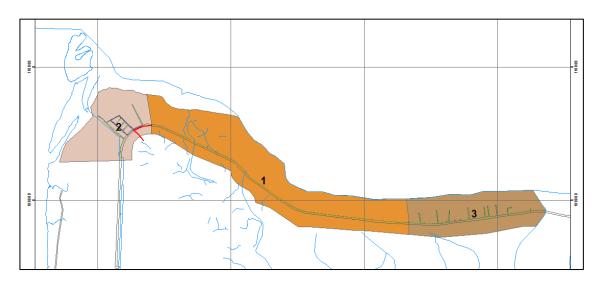


Ilustración 38. Red Piedras

Camarones

Se encuentra limitado por la línea costanera, corresponde a una zona dispersa que se desarrolla en la margen de la vía Esmeraldas – Rio Verde, entre las redes de Piedras y Pegue. La red se encuentra fraccionada en TRES (3) sectores de servicio, de los cuales el sector DOS (2) corresponde a un subsector del sector TRES. El esquema a continuación muestra los sectores planteados para el efecto.

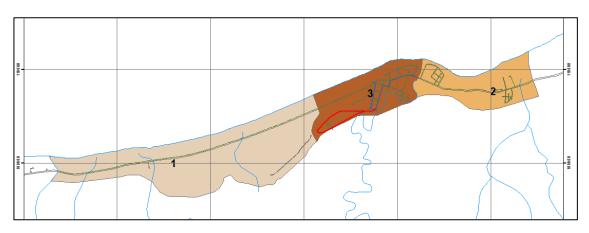


Ilustración 39. Red Camarones

Pegue

Se encuentra limitado por la línea costanera, corresponde a una zona dispersa que se desarrolla en la margen de la vía Esmeraldas – Rio Verde, se extiende en el extremo norte del sistema de distribución hasta el sector el Cabuyal del cantón Rio Verde. La red se encuentra fraccionada en TRES (3) sectores de servicio, de los cuales el sector UNO (1) corresponde a un subsector del sector TRES. El esquema a continuación muestra los sectores planteados para el efecto.

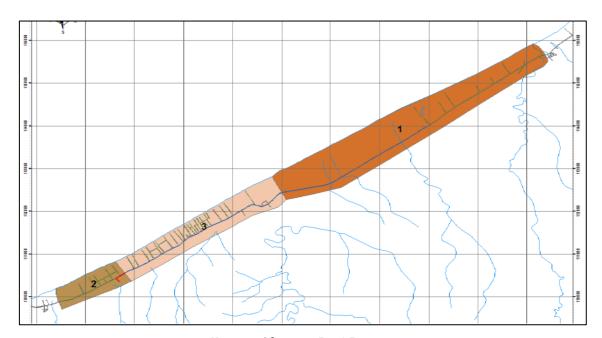


Ilustración 40. Red Pegue

4.2. Esquematización de la Red

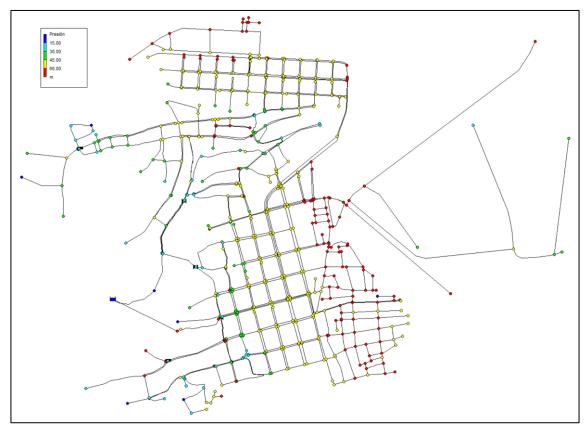

Las redes fueron esquematizadas y trasladas en el programa Epanet 2.0 y WaterCAD v8i, por la consultora ACSAM por lo que se cuenta con 21 archivos de extensión. inp de cada una de las redes, por lo que se cuenta con las alturas y los nudos de consumo de cada sector como se muestran en las *ilustraciones* 41 y 42.

Ilustración 41. Esquema General Epanet Red Esmeralda Norte 01 Fuente: ACSAM Cía. Ltda.

Ilustración 42 Esquema Presiones Epanet Red Esmeralda Norte 01 Fuente: ACSAM Cía. Ltda.

4.3. Parámetros de Diseño

Para el diseño hidráulico se considera la fórmula de Hazen-Williams, apropiada para flujo de agua en régimen turbulento:

$$Hfi = \frac{\text{Ki} \cdot 10.65 \cdot \text{L} \cdot \text{Q}^{1.851}}{\text{C}^{1.851} \cdot \text{Di}^{4.87}}$$

Donde:

Hfi = Pérdida de carga por fricción en la línea [m].

 Ki = Factor de mayoración de la longitud real de la línea de impulsión para considerar el efecto de las pérdidas menores en accesorios.

L = Longitud de la línea de impulsión [m].

 C = Coeficiente de pérdidas de carga, dependiente del material de la tubería.

Di = Diámetro real interno de la tubería [m].

Los valores de los coeficientes a ser aplicados en el sistema se muestran en la *Tabla 14*.

Coeficientes aplicados para el diseño hidráulico						
Factor de mayoración de longitud	Ki	1.00				
Coeficiente de fricción						
Para tubos de PVC	С	120				
Para tubos de HD y acero	С	120				

Tabla 14. Coeficiente para Diseño Hidráulico

Las pérdidas localizadas debido a los accesorios de las instalaciones se calcularon con la ecuación de Darcy-Weisback, aplicando los coeficientes tabulados para cada accesorio; la expresión matemática de esta ecuación es:

$$hf = Ks \cdot \frac{V^2}{2g}$$

Donde:

Hf = Pérdida de carga en un accesorio [m].

Ks = Sumatoria de los coeficientes de pérdida de carga en

accesorios.

V = Velocidad del flujo [m/s].

g = Aceleración de la gravedad [9.81 m/s²].

El coeficiente de pérdidas de la ecuación de Darcy-Weisback K, es independiente del diámetro, velocidad y naturaleza del fluido. Se presenta un la *Tabla 15* un resumen de los criterios generales de diseño

Criterios y Parámetros de Servicio de Agua Potable de Esmeraldas							
Parámetros principales							
Horizonte de servicio	2040						
Dotación pecápita de agua para la población residente	230 l/hab/d						
Dotación pecápita de agua para la población flotante	180 l/hab/d						
Porcentaje asumido de pérdidas físicas	25%						
Caudal de diseño de las redes de distribución	Máximo horario						
Material de las tuberías	PVC						
Modelo de cálculo de pérdidas hidráulicas	Hazen-William						
Coeficiente global de rugosidad de conductos y accesorios	130						
Rango de velocidad de operciones							
Mínima	0.3 m/s						
Máxima	3.0 m/s						
Rango de presiones de servicio							
Mínima dinámica	10 mca						
Mínima dinámica	15 a 45 mca						
Máxima dinámica aceptable	70 mca						

Tabla 15. Coeficiente para Diseño Hidráulico

4.3.1. Caudal Medio Diario (Q_{MD})

Representa el consumo medio anual diario

$$Q_{MD} = \frac{P \cdot D_{Bruta}}{86400} \Big[\frac{l}{s} \Big]$$

Donde: P = Población servida [hab]

 $D_{Bruta} = Dotación bruta \left[\frac{1}{hab \cdot día} \right]$

4.3.2. Caudal Máximo Horario (Q_{MH})

Representa el consumo máximo de una hora presentado durante un año

$$Q_{MH} = K_{MH} \cdot Q_{MD}$$

$$Q_{MH} = k_{MH} \cdot k_{MD} \cdot Q_{MD}$$

$$Q_{MH} = k_2 \cdot Q_{MD}$$

Donde: $k_{MH} = 2$, Coeficiente de variación de consumo máximo horario.

Se considera un valor de 2 para el coeficiente de variación de consumo máximo horario de acuerdo a las normas del Ex-IEOS.

4.3.3. Caudal contra Incendios (Q_{IN})

El caudal de incendios se basó según lo especificado a las normas del Ex-IEOS, el caudal

Se adopta lo señalado en las normas del Ex-IEOS, cuyo número y caudal depende de la población servida futura. Para este proyecto, aplicando como norma general, en cada red cuatro hidrantes de 10 l/s cada uno, ubicados dos en el centro y dos en la periferia.

4.3.4. Caudal de Diseño

Para el diseño de los componentes, se aplica la normativa prevista en las normas del Ex-IEOS, según el componente a diseñar, esto es:

Captación de aguas superficiales = QMD + 20%

Conducción de aguas superficiales = QMD + 10%

Planta potabilizadora = QMD + 10%

Conducción agua tratada a gravedad = QMD

Red de distribución = QMD + incendio (comprobando

las presiones con QMH)

De estos datos, se asumen todos, a excepción de las conducciones de agua potable a gravedad, para lo cual, en este proyecto, se asume un 3% adicional, debido al conocimiento del sistema actual en el que se ha constatado que existen desperdicios en la conducción principal del sistema.

Con todo lo señalado, los caudales de diseño adoptados para el sistema de agua potable de la ciudad de Esmeraldas son los siguientes:

Por otra parte, debido al desbalance que se produce en una red de distribución al aplicar en un punto determinado el caudal de incendio, para el diseño de este componente se adopta el diseño con QMH y la comprobación para QMD + incendio, de esta manera, se asegura que, en cualquier tramo de la tubería principal, se disponga permanentemente del caudal adecuado para el combate de incendios.

Del análisis de población se obtienen los valores de los diferentes sectores de densidad para el final del periodo de diseño, esto es el año 2040, además para períodos intermedios. Determinada la población, se determinan los caudales medios diarios a ser abastecidos para cada nudo y por tanto por cada reserva. Las simulaciones hidráulicas para cada red de distribución se realizan para caudales correspondientes al máximo horario para el fin del periodo de diseño, esto es el año 2040.

4.3.5. Caudal de Fugas

Las fugas se las han considerado dependientes de la presión, se ha representado mediante un emisor en cada uno de los puntos de consumo de las distintas redes. El cálculo del caudal se lo ha estimado con la siguiente fórmula:

$$Q_i = N \cdot C_{emisor,i} \cdot P_i^n$$

Donde: Q_i = Caudal fugado del nudo

N = Número de nudos del sistema.

 $C_{emisor,i}$ = Coeficiente emisor del nudo.

 P_i = Presión del nudo

n = Exponente de los emisores

El valor del coeficiente emisor (n) se lo ha considerado con un valor igual a 1, se muestra en la *tabla 16* de los valores del exponente según el tipo de flujo.

Coefic	Coeficientes del Exponente Emisor						
Valores Tipo de Flujo							
n = 0.5	Completamente turbulento						
0.5< n < 0.7	Parcialmente turbulento						
0.7< n < 1.0	Inestable o crítico						
n = 1.0	Laminar						

Tabla 16. Coeficientes del Exponente Emisor Fuente: Keller & Karmeli, 1974

Conociendo que el caudal inyectado es resultado del caudal consumido más el caudal fugado, mediante iteraciones se puede variar el coeficiente emisor hasta que el caudal inyectado represente los datos mas reales, tiene el siguiente procedimiento:

- a. Obtener la presión media de la red, mediante la exportación de datos del Epanet se tiene las presiones en cada nudo.
- b. Se determina el valor del Coeficiente Emisor mediante la siguiente formula:

$$C_{emisor} = \frac{Q}{N \cdot P^n}$$

- c. Ingresar el valor del coeficiente emisor en cada uno de los nudos de la red.
- d. Si el caudal inyectado no es igual al que se tiene como dato se debe modificar el coeficiente emisor mediante iteraciones.

Se muestra el resultado en la Tabla 17 del procedimiento realizado para cada una de las redes.

N	Red Descripción	Caudal Inyectado	Caudal Fugado	Número de Nudos	Presión [mca]	Coeficiente Emisor
01	Esmeraldas Norte	268.53	128.66	584.00	51.07	0.0043
02	Esmeraldas Centro Alta	182.43	87.41	339.00	43.79	0.0059
03	Esmeraldas Centro Baja	142.23	68.15	387.00	69.62	0.0025
04	Esmeraldas Sur Alta	342.83	164.26	509.00	45.10	0.0072
05	Esmeraldas Sur Baja	456.23	218.60	1,053.00	48.68	0.0043
06	15 de Marzo	398.92	191.14	621.00	46.94	0.0066
07	Buen Pastor Alto	44.41	21.28	407.00	38.26	0.0014
80	Winchele	229.49	109.96	361.00	42.99	0.0071
09	San Rafael	262.10	125.58	358.00	35.85	0.0098
10	Buen Pastor	35.20	16.87	99.00	46.16	0.0037
11	Tonsupa	286.12	137.09	1,070.00	37.82	0.0034
12	Atacames	274.12	131.34	622.00	53.22	0.0040
13	Sua	74.55	35.72	168.00	39.08	0.0054
14	Same	37.99	18.20	99.00	35.41	0.0052
15	Tonchigue	124.33	59.57	199.00	45.40	0.0066
16	San Rafael Alto	180.00	86.25	606.00	49.57	0.0029
17	San Mateo	32.68	15.66	92.00	27.49	0.0062
18	Tachina	83.12	39.83	155.00	25.41	0.0101
19	Piedras	8.00	3.83	44.00	19.33	0.0045
20	Camarones	15.60	7.47	96.00	58.68	0.0013
21	Pegue	5.52	2.64	121.00	26.58	0.0008

4.3.6. Pérdidas de Carga

Para el cálculo de tuberías a presión, se propone el empleo de la fórmula experimental de Hazen-Williams, cuya expresión es:

$$J = 10.643 \cdot L \cdot Q^{1.85} \cdot C^{-1.85} \cdot D^{-4.87}$$

Donde: J = Pérdida de carga por fricción [m].

L = Longitud de la tubería [m].

C = Coeficiente de pérdida de carga, dependiente

del material y estado de la tubería.

Q = Caudal [m³/s].

D = Diámetro de la tubería [m].

Los valores del coeficiente de pérdida de carga, C, adoptados para la evaluación y diseño del sistema son:

Para tuberías de PVC : 130
Para tuberías de acero : 130
Tuberías de hierro dúctil : 120

4.3.7. Velocidades máximas

Para el diseño de las conducciones de agua cruda y agua tratada el criterio de las normas del Ex-IEOS, que recomiendan los siguientes valores de velocidades máximas:

Acero : 6 [m/s].

Hierro : 4 a 5 [m/s].

Plástico : 4.5 [m/s].

A pesar del criterio del Ex-IEOS, según otra bibliografía técnica, las velocidades en las conducciones se limitan a 3 m/s o inclusive a 2 m/s. Considerando lo uno y lo otro, para el proyecto, se ha limitado la velocidad máxima a 3 m/s.

4.3.8. Presiones de servicio en la red de distribución

Se proponen presiones mínimas de servicio de 10 mca y 15 mca para las zonas rural y urbana, respectivamente. En casos excepcionales en zona urbana, se propone adoptar 10 mca. La presión estática máxima propuesta es de 50 mca. Los tanques de reserva se ubicarán aproximadamente en una cota 20 m más arriba que el límite superior de la correspondiente zona de servicio, con la finalidad de garantizar presiones adecuadas en los sectores más alejados; definiendo además que los rangos de desnivel topográfico entre zonas de presión sean de aproximadamente 40 m.

4.3.9. Consideraciones Generales para el Diseño

Los principales aspectos considerados en el diseño de las redes, se indican a continuación.

La modelación de las redes se ha realizado con el software EPANET, como datos de partida se requiere un esquema de ubicación de los tanques de reserva, cotas de los mismos, así como de los nudos ya sean estos de demanda o simplemente de paso, diámetros de las tuberías y longitudes de las mismas.

Todos los datos de partida arriba indicados son obtenidos de los planos del sistema, la distribución poblacional, densidad de uso del suelo, demandas por sectores y zonas de servicio, recorridos de campo, ubicación de grandes consumidores; se ha respetado las longitudes y cotas del levantamiento topográfico; además con el criterio de aprovechar al máximo las tuberías existentes, se incorporan al diseño de las redes nuevas, los diámetros de las tuberías existentes y las longitud de las mismas, obtenidas de la medición en plano.

El criterio de diseño aplicado incluye:

- Definir los sectores de servicio de acuerdo a cotas homogéneas, esto es para zonas altas con un abastecimiento independiente del sector de las zonas bajas.
- Delimitar los sectores de servicio en función de la capacidad de la reserva que lo alimenta.
- Delimitar sectores de servicio de fácil control operacional, esto es que mediante dos o máximo 3 válvulas de control se puedan aislar del sistema de distribución, sin afectar a los sectores vecinos o colindantes.
- Definir transmisiones (alimentación de tanque a red) de manera independiente para áreas ubicadas en cotas bajas y altas, de tal manera de que la zonificación del servicio tenga como cota máxima dinámica alrededor de 50 mca y la cota estática controlada con métodos hidráulicos.
- En vista que no se dispone de un área industrial definida, el caudal previsto para usos industriales se lo distribuye en las redes: 15 de Marzo, Buen Pastor, Tonsupa, Atacames, Súa, Same y Tonchigue, la distribución

considera la variación de la demanda durante el período de diseño del proyecto.

- La aplicación del modelo implica determinar el área global a la que cada uno de las redes sirve, con ello, mediante el uso de sistemas de información geográfica (SIG) la sectorización del servicio, lo que conlleva a determinar el caudal que le correspondían a cada sector. Posteriormente se procedió a subdividir este caudal asignando para cada nudo su correspondiente demanda, de acuerdo a la división demográfica establecida para el proyecto.
- Por otra parte, en el diseño se controla que la velocidad en cada tubo sea menor a 3 m/s, que la pérdida de carga sea menor a 7 m/km; todo ello con el fin de los costos de las redes mantengan un equilibrio entre servicio y duración.
- En general el material de las tuberías de las redes y transmisiones es PVC, la presión de trabajo de las tuberías en 1 MPa y los diámetros internos de acuerdo a lo especificado para la presión indicada, mientras que en los planos se indica el valor del diámetro comercial correspondiente,

Las simulaciones hidráulicas para cada red de distribución se realizan para caudales correspondientes al máximo horario para el fin del periodo de diseño, esto es el año 2040, considerando el valor de coeficiente de mayoración como coeficiente máxima horario. Se ha hecho uso también de una curva de variación de consumos, para analizar el comportamiento de la red para condiciones extremas.

Como se mencionó, debido a condiciones topográficas, la red distribución de agua potable la ciudad de la Esmeraldas se encuentra dividida en varias zonas de distribución, los mismos que han sido delimitados básicamente considerando: rangos de presión (entre 20 y 45 mca); cota del centro de reserva; tuberías existentes; configuración de calles y avenidas.

Las longitudes de los diferentes tramos son obtenidas del plano urbano de la ciudad, y levantamiento de complementación y verificación,

realizados en campo.

Una vez configuradas las diferentes mallas, se procedió a determinar las cotas de los diferentes nudos (levantamientos taquimétricos).

4.3.10. Área de Cobertura

La zona de influencia del sistema de agua potable, se divide en dos grandes áreas: la primera corresponde a los Balnearios en la parte Sur Oeste de Esmeraldas, en donde está ubicada prácticamente la totalidad de la ciudad, y la segunda corresponde a la zona Norte, que comprenden importantes equipamientos urbanos como es el Aeropuerto y zonas de expansión urbanas. En la *ilustración* 9 se presenta el área de servicio del sistema de agua potable de la ciudad de Esmeraldas y la potencial zona de servicio.

Configuradas las diferentes mallas en tramos y nudos, se procede a definir las áreas servidas por cada nudo para lo cual de manera general se trazó por los puntos medios de los tramos perpendiculares a los mismos de manera que cada nudo tenga un área cerrada.

4.3.11. Población Servida

La cobertura del servicio de agua potable para cualquier período de análisis, es el 100%; en el cuadro siguiente se presenta la población (fija y flotante) en cada zona de servicio.

	Distribución Poblacional por las zonas de Servicios							
Zona de Servicios	Área [ha]			Po	oblación [hab			
Zona de Servicios	Area [ria]	2013	2015	2020	2025	2030	2035	2040
Chone	297.99	39,139	39,498	40,416	41,364	42,341	43,349	44,390
Betania	140.01	18,163	17,251	20,332	22,081	23,866	25,693	27,473
Santa Cruz	64.82	19,033	19,240	19,772	20,325	20,898	21,494	22,113
Guachacaraca	224.14	36,431	37,240	39,347	41,586	43,965	46,492	49,178
Aire Libre	602.34	50,444	51,610	54,654	57,895	61,344	65,017	68,929
15 de Marzo	759.30	39,479	44,722	49,114	50,254	51,109	51,811	52,581
V. Petroecuador	36.31	3,574	4,721	5,643	5,846	6,101	6,379	6,679
San Rafael	415.14	18,798	20,780	21,568	23,043	24,538	26,065	27,562
Winchile	535.26	24,874	29,646	33,997	35,743	37,347	38,884	40,426
Total Esmeraldas	3,075.31	249,935	264,707	284,844	298,137	311,509	325,184	339,331
San Rafael Nuevo	215.24	26,998	31,623	32,575	34,350	36,131	37,941	39,731
Buen Pastor	203.60	1,436	1,487	1,610	1,728	1,845	1,962	2,079
Buen Pastor Nuevo	199.03	2,456	2,544	2,755	2,956	3,156	3,358	3,557
Tonsupa	1,380.34	25,938	27,456	31,267	35,115	38,976	42,893	46,841
Atacames	313.85	21,254	22,566	25,786	28,944	32,036	35,089	38,077
Sua	351.68	6,675	7,090	8,086	9,036	9,941	10,809	11,630
Tonchigue - Same	518.69	8,799	9,342	10,682	12,007	13,316	14,619	15,907
Total Balniarios	3,182.43	93,557	102,108	112,761	124,137	135,400	146,672	157,823
Tachina	640.93	7,823	10,293	12,280	12,722	12,861	12,821	12,798
Piedras	124.19	890	921	998	1,070	1,143	1,216	1,288
Camarones	219.20	1,639	1,698	1,838	1,972	2,106	2,240	2,373
Pegue	672.33	554	574	621	667	712	757	802
Cabuyal		588	612	670	727	782	835	887
Rioverde	595.33	6,661	6,926	7,582	8,226	8,852	9,458	10,042
Rocafuerte	286.12	6,721	7,024	7,771	8,506	9,207	9,877	10,513
Total Norte	2,538.10	24,877	28,048	31,760	33,889	35,663	37,204	38,704
San Mateo	395.35	3,360	3,480	3,768	4,043	4,317	4,593	4,865
Total Proyecto	8,795.84	371,728	398,343	433,133	460,206	486,889	513,653	540,722

Tabla 17. Distribución Poblacional por las zonas de Servicios Fuente: ACSAM Cía. Ltda.

Caudal Medio Diario por Zonas										
		Jauuai II				, ıudal Es _l	pecial [lt	/s1		
Zona de Servicios	2010	2011	2012	2013	2015	2020	2025	2030	2035	2040
Chone	125.8	126.4	127.0	127.7	128.9	132.1	135.4	138.8	142.4	147.0
Autoridad Portuaria	94	95	97	98	101	109	117	126	136	147
Betania	61	61	60	59	56	67	73	79	85	91
Santa Cruz	61	61	62	62	63	65	67	68.68	70.77	72.94
Guachacaraca	115	116	118	119	122	129	136	144	153	162
Aire Libre	159	161	163	165	169	179	190	202	214	227
Especial 15 de Marzo	10.1	10.5	10.9	11.4	12.3	15	18.2	22.1	26.9	32.8
15 de Marzo	121	127	133	140	159	176	183	190	198	206
Refenería	6	6	6	6	6	7	8	9	10	11
V. Petroecuador	8	9	10	12	15	19	19	20	21	22
Especial San Rafael Existente	10.1	10.5	10.9	11.4	12.3	15	18.2	22.1	26.9	32.8
San Rafael	62	66	69	73	80	86	94	103	113	124
Especial Winchele	15.2	15.8	16.4	17	18.4	22.4	27.3	32.2	40.4	49.1
Winchile	78	84	91	98	115	134	145	156	169	182
Total Esmeraldas	890	912	935	960	1,016	1,101	1,167	1,237	1,311	1,391
Especial San Rafael Nuevo	15.2	15.8	16.4	17	18.4	22.4	27.3	32.2	40.4	49.1
San Rafael Nuevo	84.1	90.8	97.8	105.3	121.9	129.3	140.2	152.1	165.4	180.2
Especial Buen Pastor Existente	5.1	5.3	5.5	5.7	6.1	7.5	9.1	11.1	13.5	16.4
Buen Pastor	9.5	9.8	10.1	10.4	11.0	12.8	14.8	17.1	19.9	23.2
Especial Buen Pastor Nuevo	10.1	10.5	10.9	11.4	12.3	15	18.2	22.1	26.9	32.8
Buen Pastor Nuevo	17.7	18.2	18.8	19.4	21	24	28	33	38	44
Especial Tonsupa	10.1	10.5	10.9	11.4	12.3	15	18.2	22.1	26.9	32.8
Tonsupa	85	88	91	94	100	115	130	147	164	183
Especial Atacames	10.1	10.5	10.9	11.4	12.3	15	18.2	22.1	26.9	32.8
Atacames	73	76	78	81	86	100	113	128	143	158
Especial Sua	5.1	5.3	5.5	5.7	6.1	7.5	9.1	11.1	13.5	16.4
Sua	25	26	27	27	29	34	39	44	49	55
Especial Tonchigue-Same	10.1	10.5	10.9	11.4	12.3	15	18.2	22.1	26.9	32.8
Tonchigue - Same	36	37	39	40	43	50	58	66	75	85
Total Balniarios	330	346	361	377	411	464	523	586	654	729
Tachina	14	20	22	26	34	40	42	42	42	42
Piedras	3	3	3	3	3	3	4	4	4	4
Camarones	5	5	5	5	6	6	6	7	7	8
Pegue	2	2	2	2	2	2	2	2	3	3
Cabuyal	2	2	2	2	2	2	2	3	3	3
Rioverde	20	20	21	21	22	24	26	29	31	32
Rocafuerte	20	21	21	23	25	28	30	33	33	35
Total Norte	66	72	77	81	94	106	113	119	122	127
San Mateo	10	11	11	11	11	12	13	14	15	16
Total Proyecto	1,296	1,341	1,384	1,429	1,530	1,681	1,814	1,953	2,102	2,263

Tabla 18. Caudal Medio Diario por Zona Fuente: ACSAM Cía. Ltda.

Se ha hecho uso también de una curva de variación de consumos, para analizar el comportamiento de la red para condiciones extremas.

El sistema de agua potable, a parte de la población, abastece a otros usuarios especiales (Autoridad portuaria, Refinería y sector industrial); la demanda total (población fija, flotante, usos especiales e industrial), se presenta en el cuadro siguiente.

Se aclara que demanda del sector industrial, no se centralizada no se dispone de un área específica para la distribución, en este proyecto se considera que la misma puede desarrollar en las futuras zonas de expansión (dentro del área de proyecto), por tal razón, el caudal de demanda industrial se distribuye proporcionalmente en las redes que al momento presentan amplias áreas de expansión.

Para los sectores Cabuyal, Rioverde y Rocafuerte, no se realizan diseños a detalle (debido a que disponen un sistema propio), pero se incluye el caudal remanente (demanda prevista en el proyecto regional, menos lo disponible en su sistema), de tal manera que siguen siendo parte del sistema regional de la EAPA San Mateo.

4.4. Estructuración del Sistema de Distribución

El sistema de distribución está integrado por 19 redes independientes que son abastecidas de igual número de centros de reserva; cada una de las redes, dependiendo de su tamaño u orografía, está integrada por una o varias zonas de presión; y, éstas a su vez tiene varios sectores de servicio. Esta estructuración obedece al principio de optimización del proceso operacional, lo que engloba los siguientes conceptos:

Zonas de Presión: depende básicamente de la topografía del área de servicio, el tamaño de la red, las políticas de operación, y, la cota de la reserva; específicamente en nuestro sistema de distribución, la zonificación o división en zonas de presión se realiza en los sectores que sobrepasan las presiones admisibles en la red de distribución, es decir, al cumplir con la presión mínima requerida en una parte de la red se sobrepasa la presión máxima permisible en otra parte de la misma, debido a que la topografía es muy irregular.

La mayoría de las zonas de presión se abastecen de los centros de reserva, sin embargo, cuando las zonas altas se encuentran muy distantes de los centros de reserva, se ha previsto la instalación de cámaras de regulación -rompe presión-

- Sectores de Servicio: Conformada por áreas con rangos de presión similares, y se realiza para la el aislamiento de una zona de abastecimiento; desde el punto de vista operativo, la alimentación a estas áreas se realiza a través de un mínimo número de válvulas, de tal manera que se pueda realizar el trabajo en un mínimo tiempo y con el manipuleo de pocas válvulas; por otra parte, facilita el control de pérdidas de agua. Estas zonas pueden interconectarse -momentáneamente-con sectores adyacente.
- Redes principales: Se implementan para desarrollar el trabajo hidráulico del sistema de distribución, éstas rigen el funcionamiento de la red, alimentan a la red secundaria; no se permiten conexiones domiciliaras a la red principal. Las tuberías principales existentes se incorporan al nuevo sistema, sea como red principal o como red secundaria, de tan manera que forman los circuitos hidráulicos que alimentan a redes auxiliares que garantizan el balance hidráulico de cada red.
- Redes Secundarias: Estas líneas de distribución son las encargadas de direccionar el flujo de agua dentro de cada sector desde los puntos de interconexión con la red principal. De igual manera, no se permiten conexiones domiciliarias, las redes de este tipo abastecen a las redes terciarias a fin de contar con un servicio uniforme dentro de toda la red.
- Redes Terciarias: Las redes terciarias o también llamadas de relleno son aquellas con las cuales se puede llegar a cubrir los niveles de cobertura planteados dentro de los objetivos del proyecto. Las conexiones domiciliarias solo son permitidas a estas tuberías. Si bien las redes de relleno se encargan de distribuir el agua a todos los extremos del sector a la vez que garantiza una distribución equitativa de los caudales, dada la densificación de estas redes representa un aporte importante en la capacidad y eficiencia del sistema de distribución.

La aplicación de los criterios y parámetros explicados, el sistema de distribución del Sistema Regional de Agua Potable Esmeraldas deberá tener al final del período de diseño 840.51 km de red de agua potable, de lo cual el 45% corresponde a red existente, y el 55% corresponde a tubería que debe implementarse periódicamente (nueva y de sustitución), en función de la saturación de los sectores de servicio.

En el cuadro siguiente se aprecia la cantidad de tubería de la red de distribución, tal como se espera al final del período de diseño; del total de tubería (840.51 km de tubería), el 8% corresponde a tubería principal, el 21 % a tubería secundaria y el 71 % a red de relleno o terciaria.

Tubería	Red							
Tuberra	Principal	Secundaria	Terciaria	Total				
Existente	20076	74725	281574	376375				
Nueva	50035	99921	314175	464131				
Total	70111	174646	595749	840506				

Tabla 19. Longitud de Tuberías en Metros Fuente: ACSAM Cía. Ltda.

De estos valores, se debe emprender de manera inmediata la reposición (sustitución) de 120.48 km de tubería, que, de acuerdo al diseño, corresponde a tramos sin capacidad hidráulica, tramos cortos que se convierten en cuello de botella dentro de los circuitos y que básicamente se encuentra conformando la red de relleno.

La tubería de relleno, al igual que las conexiones domiciliarias, se instalarán conforme a la demanda, esto es únicamente cuando los sectores urbanos se encuentren consolidados.

La tubería nueva, que corresponde en su mayor parte a tuberías de relleno, deberá instalarse en función de la demanda y de acuerdo al crecimiento y saturación del área urbana, por lo tanto, ésta no requiere construcción inmediata, a excepción de las tuberías principales, necesarias para el balance hidráulico de las redes.

Las válvulas de corte y aislamiento de las redes de distribución se colocarán conjuntamente con la tubería instalada, las válvulas desde 300 mm en adelante se colocarán en caja de hormigón y tapa metálica para alto tráfico, para diámetros menores, se instalarán directamente en la zanja, éstas deben tener caja válvula para su operación.

4.5. Modelo Matemático

Registrados los valores registrados en la cada red, procedemos a la resolución computacional se muestra en la *llustración 43* la resolución de una de las redes en el sistema Epanet 2.0. Se obtienen 21 archivos de formato inp, el número de elementos que comprende cada una de estas redes se muestra en la *Tabla 20*.

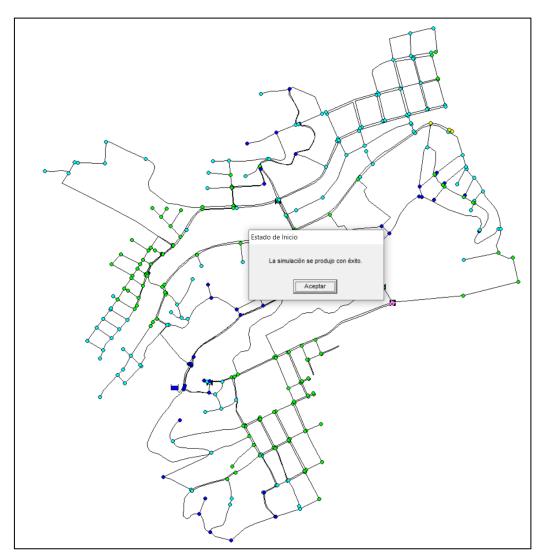


Ilustración 43. Modelo Matemático Red Esmeraldas Norte 01

NUMERO DE	ELEMENTOS D	E LA RED DEI	SISTEMA DE	AGUA POTAB	LE ORIGINAL
Red	Número de	Número de	Número de	Número de	Número de
Reu	Conexiones	Embalses	Depósitos	Tuberías	Válvulas
01	584	1	0	772	3
02	339	1	0	417	3
03	387	1	0	521	0
04	509	1	0	646	3
05	1053	1	0	1504	0
06	621	1	0	902	1
07	407	1	0	522	2
08	361	1	1	451	7
09	358	1	0	488	0
10	99	1	0	118	0
11	1070	1	0	1524	1
12	622	1	0	865	0
13	168	1	0	235	0
14	99	1	0	108	0
15	199	1	0	280	0
16	606	1	0	832	1
17	92	1	0	108	0
18	155	1	0	205	0
19	44	1	0	50	0
20	96	1	0	116	0
21	121	1	0	133	0
TOTAL	7990	21	1	10797	21

Tabla 20. Número de Elementos del sistema

No se puede realizar un análisis horario o diario de la red debido a la falta de caudalímetro en las redes, el diseño de las redes está establecido para el caso más crítico, es decir, para el caudal máximo horario. Por lo que podemos asumir que el funcionamiento correcto de las redes (cumplir con los parámetros previamente establecidos), de esta forma la red va a funcionar adecuadamente en cualquier escenario, para las distintas demandas que tenga la red.

CAPITULO 5 ANÁLISIS Y DIAGNÓSTICO

5. ANÁLISIS Y DIAGNÓSTICO

5.1. Presiones en la Red

Conforme lo previamente indicado, el objetivo de esta evaluación es precisar para cada subsistema de distribución, los sectores y porcentajes de su área de servicio que cuenta con presiones adecuadas, así como inferiores a las mínimas y superiores a las máximas deseables.

Para este efecto, se partió de los modelos digitales de las redes de distribución presentados por el proyectista (ACSAM) en software EPANET. Con objeto de flexibilizar el procesamiento y análisis de la información, los modelos de las redes fueron importados y evaluados empleando el software EPANET.

Conforme lo previamente expuesto, los datos de presiones en los nudos fueron clasificados en los siguientes rangos:

- <15 mca, implica presiones reducidas que limitan la calidad del servicio y hacen potencialmente necesario el uso de reservas y sistemas de presurización a nivel intradomiciliario.
- 15 a 45 mca: constituye el rango óptimo deseable de presiones que garantiza un servicio adecuado con bajos desperdicios y fugas de agua.
- 45 a 6 mca: representa un rango elevado de presiones (aunque dentro de los valores aceptados para el diseño), que representan moderados incrementos de desperdicios en el consumo y generación de fugas.
- > 60 mca: presiones inadecuadas que además de potenciar los desperdicios y fugas, representarían alto riesgo de daño a los accesorios de las redes públicas y especialmente intradomiciliarias (grifos y válvulas, por efectos de cavitación). Por tanto, este rango de presiones es admisible solamente en las líneas de principales de alimentación a los subsectores de servicio, por tanto, no deben derivarse desde estas conexiones domiciliarias.

Se muestra en la *Tabla 21* la clasificación de las presiones en cada una de las redes, junto con el *Gráfico 9* que muestra los porcentajes de la categoría de cada una de las presiones.

	PRESIONES EN LAS REDES DE SERVICIO ORIGINAL							
	Red	Porcent	tajes Según P	resiones de S	ervicio Origina	al [mca]		
Ν	Descripción	< 15	15-45	46-60	61-75	>75		
01	Esmeraldas Norte	1.2%	23.8%	51.0%	23.3%	0.7%		
02	Esmeraldas Centro Alta	9.7%	36.9%	36.3%	16.2%	0.9%		
03	Esmeraldas Centro Baja	0.3%	0.3%	4.1%	84.2%	11.1%		
04	Esmeraldas Sur Alta	4.5%	41.8%	34.6%	16.7%	2.4%		
05	Esmeraldas Sur Baja	0.8%	28.2%	64.1%	6.9%	0.0%		
06	15 de Marzo	2.9%	33.8%	39.8%	23.5%	0.0%		
07	Buen Pastor Alto	2.2%	90.2%	4.7%	2.0%	1.0%		
08	Winchele	4.2%	54.0%	27.4%	8.0%	6.4%		
09	San Rafael	0.8%	75.7%	23.5%	0.0%	0.0%		
10	Buen Pastor	0.0%	19.2%	79.8%	1.0%	0.0%		
11	Tonsupa	1.5%	86.1%	10.3%	2.1%	0.0%		
12	Atacames	0.8%	10.0%	60.6%	28.6%	0.0%		
13	Sua	0.0%	76.8%	23.2%	0.0%	0.0%		
14	Same	7.1%	64.6%	28.3%	0.0%	0.0%		
15	Tonchigue	3.5%	20.6%	75.9%	0.0%	0.0%		
16	San Rafael Alto	1.2%	38.0%	35.6%	22.8%	2.5%		
17	San Mateo	8.7%	91.3%	0.0%	0.0%	0.0%		
18	Tachina	7.7%	92.3%	0.0%	0.0%	0.0%		
19	Piedras	9.1%	90.9%	0.0%	0.0%	0.0%		
20	Camarones	2.1%	3.1%	43.8%	51.0%	0.0%		
21	Pegue	5.0%	95.0%	0.0%	0.0%	0.0%		
	Promedio	3.5%	51.1%	30.6%	13.6%	1.2%		

Tabla 21. Presiones de Servicio en la Red Original

Gráfico 9. Presiones de Servicio en la Red Original

5.2. Velocidades en la Red

Se analiza las velocidades en las tuberías de cada una de las redes, donde se observa que ciertos tramos de tuberías tienen velocidades casi nulas se muestra como ejemplo la red de Esmeraldas Norte 01 en la *llustración 44*. Las redes están diseñadas con el sistema de tipo malla y existen ciertos nudos de consumo que tienen más de una de conexión, es decir, poseen mas de una tubería por el criterio de sectorización.

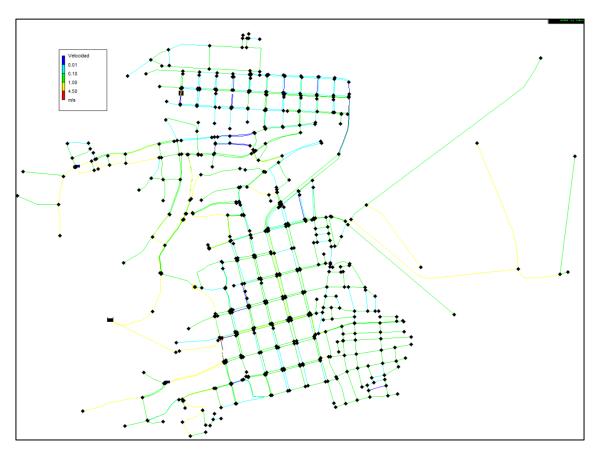


Ilustración 44. Velocidades en la Red Esmeraldas Norte 01

5.3. Caudales en la Red

Los Caudales e en la red permiten identificar las redes principales, determinando las tuberías que tienen mayor relevancia en la red y pueden cambiar más crítica las condiciones del abastecimiento.

La *Tabla 22* muestra los valores de los caudales en cada una de las redes, el caudal inyectado total es de 3484.4 l/s y el caudal fugado es igual a 1669.52 l/s,

el caudal de fugas representa el 47.91 %, se puede considerar un porcentaje alto En la Tabla 23 se muestra las longitudes de las tuberías clasificados según el diámetro en cada uno de los abastecimientos de la provincia de Esmeraldas.

	Dotación Bruta de las Redes de Distribución								
N	Red	Caudal Inyectado [l/s]	Caudal Fugado [l/s]	Número de Nudos	Presión [mca]				
	Descripción			504.00	F4 07				
	Esmeraldas Norte	268.53	128.66	584.00	51.07				
_	Esmeraldas Centro Alta	182.43	87.41	339.00	43.79				
	Esmeraldas Centro Baja	142.23	68.15	387.00	69.62				
04	Esmeraldas Sur Alta	342.83	164.26	509.00	45.10				
05	Esmeraldas Sur Baja	456.23	218.60	1,053.00	48.68				
06	15 de Marzo	398.92	191.14	621.00	46.94				
07	Buen Pastor Alto	44.41	21.28	407.00	38.26				
08	Winchele	229.49	109.96	361.00	42.99				
09	San Rafael	262.10	125.58	358.00	35.85				
10	Buen Pastor	35.20	16.87	99.00	46.16				
11	Tonsupa	286.12	137.09	1,070.00	37.82				
12	Atacames	274.12	131.34	622.00	53.22				
13	Sua	74.55	35.72	168.00	39.08				
14	Same	37.99	18.20	99.00	35.41				
15	Tonchigue	124.33	59.57	199.00	45.40				
16	San Rafael Alto	180.00	86.25	606.00	49.57				
17	San Mateo	32.68	15.66	92.00	27.49				
18	Tachina	83.12	39.83	155.00	25.41				
19	Piedras	8.00	3.83	44.00	19.33				
20	Camarones	15.60	7.47	96.00	58.68				
21	Pegue	5.52	2.64	121.00	26.58				
	Total	3,484.40	1,669.53						

Tabla 22. Caudales de las Redes

CAPITULO 6 PROPUESTA DE MEJORAS

6. PROPUESTAS DE MEJORAS

Las propuestas en el sistema de red de agua potable se establecen con la optimización de las presiones, es decir, disminuyendo las presiones en los sectores donde la presión sobre pase los límites máximos, y de igual forma, aumentando en los sectores donde estén por debajo de lo mínimo establecido. Para este objetivo se modificó la red mediante el cambio de tuberías y la implementación de válvulas reductoras de presión, con el diseño de red secundaria de bloques en dos planos dentro del bloque tiene las siguientes ventajas:

De proyecto

- El cálculo de revisión de la red es más sencillo.
- La distribución de las demandas para el cálculo hidráulico de la red primaria se simplifica notablemente debido a que la alimentación de los bloques se realiza de manera concentrada en dos puntos de cada uno de los bloques
- El modelo del cálculo hidráulico es más es más preciso debido a que no hay consumos en ruta en las tuberías principales.
- Economía de tiempo horas-hombre al disminuir el número de ceros pro diseñar, comparación con una red convencional.

De construcción

- La instalación de las tuberías secundarias se realiza en forma más rápida, puesto que no se tienen cruceros, ni cajas de operación de válvulas dentro de la red secundaria.
- Las pruebas de presión hidrostática se facilitan.

De operación, mantenimiento y control de fugas:

- Como cada tubería secundaria se alimenta mediante uno o dos puntos, se facilitan notablemente la operación de la red en las labores de corrección de fugas y en la conexión de tomas nuevas.
- Un establecimiento natural de zonas de presión.

- Facilidades para hacer mediciones del consumo en la red. Éstas son utilizadas para la ejecución de estudios de fugas no visibles.
- Posibilidad de sustituir, reforzar o rehabilitar redes primarias afectando a un menor número de usuarios.

En costos de inversión:

- Economía en el suministro e instalación de piezas especiales debido al menor número de válvulas de seccionamiento.
- El número de cajas de operación disminuye y se logra mayor economía por este concepto.

Para lograr dichas mejoras se realiza una identificación de las tuberías

6.1. Tuberías de la red

Se realiza una comparativa de la longitud de tuberías entre el diseño original y el diseño optimizado, se muestran la *Tabla 24* que contienen la longitud de las tuberías según el sector y el diámetro de la tubería para el diseño.

Para el cambio de tuberías se tomó el criterio de reemplazar como prioridad en orden jerárquico las terciarias, secundarias y las primarias, aumentado el diámetro para aquellas zonas donde la presión es alta y disminuyendo el diámetro para los sectores con presión baja.

	US	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	RED No.		
LONGITUD TOTAL GENERAL	SUBTOTALES POR DIAMETRO	PEGUE	CAMARONES	PIEDRAS	TACHINA	SAN MATEO	SAN RAFAEL ALTO	TONCHIGUE	SAME	SUA	ATACAMES	TONSUPA	BUEN PASTOR	SAN RAFAEL	WINCHELE	BUEN PASTOR ALTO	15 DE MARZO	ESMERALDAS SUR BAJO	ESMERALDAS SUR ALTO	ESMERALDAS CENTRO BAJO	ESMERALDAS CENTRO ALTO	ESMERALDAS NORTE	. DESCRIPCION	SUBSISTEMA	RE
	271,999.0	18,318.9	8,090.2	4,965.7	17,520.2	8,794.0	17,849.0	8,404.8	3,069.3	7,886.3	29,017.5	42,141.4	3,056.7	11,087.5	10,766.5	15,990.8	4,967.7	32,228.3	8,681.2	8,096.0	5,522.5	5,544.5	63/58.2		RESUMEN DE REQUERIMIENTOS DE LOS SUBSISTEMAS - DISEÑO
	27,872.3	1,448.2	579.7	380.3	1,062.0	0.0	2,248.0	1,026.7	1,680.0	1,247.7	1,932.5	6,152.7	0.0	537.9	1,844.5	1,180.5	61.8	4,497.3	341.8	632.0	745.7	273.0	90/83.0		EQUERIMIEN
	57,271.7	399.3	26.8	158.6	749.5	5,218.2	813.8	2,696.3	2,009.7	2,505.1	4,279.0	6,433.8	3,431.6	2,116.7	6,688.5	2,303.8	7,839.8	1,163.7	4,116.1	1,072.7	1,789.2	1,459.5	110/101.6		ITOS DE LO
	32,832.6	3,442.8	372.2	104.5	684.5	1,992.2	1,712.2	1,343.4	686.0	164.6	2,388.2	2,534.1	610.3	1,628.0	3,723.1	1,009.7	4,934.7	1,387.8	1,914.0	1.6	1,298.6	900.1	160/147.6	LONGIT	S SUBSISTE
445,561.0	19,991.4	0.0	0.0	0.0	92.8	0.0	950.2	704.6	3,933.4	0.0	515.0	694.0	229.9	1,513.8	3,944.2	3,517.0	1,048.8	2,227.6	595.2	0.0	11.8	13.1	200/184.6	LONGITUDES SEGÚN D	EMAS - DISE
61.0	10,955.6	0.0	0.0	0.0	315.3	0.0	1,833.6	54.7	274.0	78.5	125.9	2,233.9	562.7	571.2	668.9	931.5	1,711.1	1,156.1	183.2	13.6	67.7	173.7	250/230.8	IN DIAMETROS (m)	ÑO OPTIMIZADO
	14,525.4	0.0	0.0	0.0	0.0	0.0	0.0	1,352.5	0.0	495.7	1,480.7	3,814.5	0.0	0.0	1,436.5	1,494.9	4,179.4	116.9	0.0	3.2	0.0	151.1	315/290.8	OS (m)	\D0
	4,903.9	0.0	0.0	0.0	866.0	0.0	0.0	0.0	0.0	0.0	389.8	39.9	0.0	598.2	1,057.8	0.0	754.6	0.0	993.0	0.0	0.0	204.6	355/327.6		
	4,588.7	0.0	0.0	0.0	0.0	0.0	610.3	0.0	0.0	0.0	348.7	364.5	0.0	854.8	1,207.4	0.0	1,074.8	0.0	128.2	0.0	0.0	0.0	400/369.2		
	620.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	620.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Acero 450		

Tabla 23. Tuberías por Diámetros Diseño Optimizado

Al realizar una comparación entre el diseño original y el diseño optimizado se observa que existe una diminución en la cantidad de tuberías en los diámetros de: 63, 90, 250 y 315; mientras que las tuberías con diámetros de: 110, 160, 200, 355 aumentan su cantidad, la tubería de diámetro de acero de 450 conserva su longitud. Se detalla en las *TABLAS 25 y 26* donde se muestran las longitudes totales, se observa en color verde la longitud total de la optimizada cuando la longitud del diseño optimizado es menor que el diseño original y se resalta en color rojo cuando el diseño optimizado es mayor que el diseño original.

					QUERIMIENT	OS DE LOS S	SUBSISTEMA	S			
	SUBSISTEMA	LONGITUDES	SEGÚN DIA	METROS (m)							
DI	AMETRO DE TUBERÍA	63/5	8.2	90/8	3.0	110/1	101.6	160/1	147.6	200/1	84.6
RED No.	DESCRIPCION	ORI	OPT	ORI	OPT	ORI	OPT	ORI	OPT	ORI	OPT
01	ESMERALDAS NORTE	16,201.7	5,544.5	363.9	273.0	428.5	1,459.5	347.9	900.1	90.9	13.1
02	ESMERALDAS CENTRO ALTO	6,544.6	5,522.5	1,040.8	745.7	2,978.4	1,789.2	576.4	1,298.6	1,010.9	11.8
03	ESMERALDAS CENTRO BAJO	12,265.8	8,096.0	525.2	632.0	1,249.0	1,072.7	1.6	1.6	8.6	0.0
04	ESMERALDAS SUR ALTO	14,506.4	8,681.2	776.6	341.8	5,593.8	4,116.1	1,594.6	1,914.0	473.9	595.2
05	ESMERALDAS SUR BAJO	42,877.6	32,228.3	5,439.7	4,497.3	1,236.9	1,163.7	1,632.6	1,387.8	1,695.0	2,227.6
06	15 DE MARZO	5,100.6	4,967.7	61.8	61.8	7,848.3	7,839.8	5,556.5	4,934.7	774.1	1,048.8
07	BUEN PASTOR ALTO	15,809.8	15,990.8	2,609.3	1,180.5	2,796.7	2,303.8	1,945.9	1,009.7	0.0	3,517.0
08	WINCHELE	10,984.5	10,766.5	1,965.4	1,844.5	3,709.3	6,688.5	3,517.9	3,723.1	4,166.7	3,944.2
09	SAN RAFAEL	10,640.6	11,087.5	537.9	537.9	1,427.5	2,116.7	2,976.1	1,628.0	801.7	1,513.8
10	BUEN PASTOR	3,056.7	3,056.7	0.0	0.0	2,942.0	3,431.6	607.7	610.3	229.9	229.9
11	TONSUPA	42,653.6	42,141.4	6,461.8	6,152.7	5,922.1	6,433.8	2,518.2	2,534.1	1,115.1	694.0
12	ATACAMES	29,268.6	29,017.5	2,377.5	1,932.5	4,831.7	4,279.0	1,607.1	2,388.2	62.6	515.0
13	SUA	3,641.3	7,886.3	225.8	1,247.7	352.0	2,505.1	0.0	164.6	0.0	0.0
14	SAME	3,069.3	3,069.3	1,680.0	1,680.0	3,485.0	2,009.7	1,940.1	686.0	1,473.9	3,933.4
15	TONCHIGUE	8,221.8	8,404.8	1,026.7	1,026.7	2,712.4	2,696.3	1,206.0	1,343.4	704.6	704.6
16	SAN RAFAEL ALTO	18,556.3	17,849.0	2,925.4	2,248.0	670.3	813.8	539.0	1,712.2	107.0	950.2
17	SAN MATEO	11,466.5	8,794.0	1,226.5	0.0	1,470.4	5,218.2	1,833.3	1,992.2	0.0	0.0
18	TACHINA	17,520.2	17,520.2	1,158.8	1,062.0	715.9	749.5	564.1	684.5	408.1	92.8
19	PIEDRAS	4,965.7	4,965.7	380.3	380.3	263.1	158.6	0.0	104.5	0.0	0.0
20	CAMARONES	8,090.2	8,090.2	512.7	579.7	26.8	26.8	378.2	372.2	0.0	0.0
21	PEGUE	18,318.9	18,318.9	1,448.2	1,448.2	3,296.7	399.3	545.4	3,442.8	0.0	0.0
SUBTO	OTALES POR DIAMETRO	303,760.7	271,999.0	32,744.3	27,872.3	53,956.8	57,271.7	29,888.6	32,832.6	13,123.0	19,991.4

Tabla 24. Tuberías por Diámetros Diseño Original y Optimizado 1

		RESUM	EN COMPAR	ATIVO DE RE	QUERIMIENT	OS DE LOS S	SUBSISTEMA	S			
	SUBSISTEMA				LONG	ITUDES SEGI	JN DIAMETRO	OS (m)			
DI	AMETRO DE TUBERÍA	250/2	30.8	315/2	290.8	355/3	327.6	400/3	869.2	Acero	450
RED No.	DESCRIPCION	ORI	OPT	ORI	OPT	ORI	OPT	ORI	OPT	ORI	OPT
01	ESMERALDAS NORTE	87.2	173.7	151.1	151.1	204.6	204.6	0.0	0.0	0.0	0.0
02	ESMERALDAS CENTRO ALTO	67.6	67.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
03	ESMERALDAS CENTRO BAJO	13.6	13.6	3.2	3.2	0.0	0.0	0.0	0.0	0.0	0.0
04	ESMERALDAS SUR ALTO	2,053.5	183.2	666.0	0.0	1,544.0	993.0	253.4	128.2	0.0	0.0
05	ESMERALDAS SUR BAJO	1,336.7	1,156.1	116.9	116.9	0.0	0.0	0.0	0.0	0.0	0.0
06	15 DE MARZO	1,656.3	1,711.1	5,514.0	4,179.4	0.0	754.6	496.0	1,074.8	0.0	0.0
07	BUEN PASTOR ALTO	931.5	931.5	1,494.9	1,494.9	0.0	0.0	0.0	0.0	0.0	0.0
08	WINCHELE	668.9	668.9	1,436.5	1,436.5	1,057.8	1,057.8	1,207.4	1,207.4	0.0	0.0
09	SAN RAFAEL	13.8	571.2	349.9	0.0	159.3	598.2	845.4	854.8	0.0	0.0
10	BUEN PASTOR	562.7	562.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	TONSUPA	1,518.6	2,233.9	4,120.1	3,814.5	39.9	39.9	364.5	364.5	620.4	620.4
12	ATACAMES	441.9	125.9	1,102.1	1,480.7	389.8	389.8	348.7	348.7	0.0	0.0
13	SUA	495.7	78.5	0.0	495.7	0.0	0.0	0.0	0.0	0.0	0.0
14	SAME	0.0	274.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	TONCHIGUE	54.7	54.7	1,352.5	1,352.5	0.0	0.0	0.0	0.0	0.0	0.0
16	SAN RAFAEL ALTO	1,427.0	1,833.6	448.9	0.0	0.0	0.0	604.2	610.3	0.0	0.0
17	SAN MATEO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	TACHINA	0.0	315.3	866.0	0.0	0.0	866.0	0.0	0.0	0.0	0.0
19	PIEDRAS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
20	CAMARONES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	PEGUE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUBT	OTALES POR DIAMETRO	11,329.7	10,955.6	17,622.1	14,525.4	3,395.4	4,903.9	4,119.6	4,588.7	620.4	620.4

Tabla 25. Tuberías por Diámetros Diseño Original y Optimizado 2

Se muestra la *Tabla 27* que contiene los datos comparativos de los diseños original y optimizado.

DATOS COMPARATIVOS DE REDE	S
LONGITUD TOTAL DISEÑO ORIGINAL [m]	470,560.6
LONGITUD TOTAL DISEÑO OPTIMIZADO [m]	445,561.0
DIFERENCIA DE LONGITUDES [OR-OP]	24,999.6
PORCENTAJE DE DISMINUCIÓN [%]	5.31%

Tabla 26. Datos comparativos de las Redes

Se observa que existe una diferencia de 25 km (24,999.6 m), lo que representa una disminución de 5.31% de longitud de tubería del diseño original, por lo tanto, el diseño optimizado disminuye los costos de construcción, operación y mantenimiento.

6.2. Válvulas en la Red

El diseño de red secundaria de bloques en dos planos dentro del bloque se ha aumentado la cantidad de válvulas reductoras de presión y se ha realizado una comparación entre el diseño original y el diseño optimizado.

El Diseño original contiene válvulas de 100 mm hasta 400 mm, siendo un total de 22 en los 21 sectores de la red potable como se indica en la *Tabla 28* el diseño optimizado tiene un aumento drástico de válvulas reductoras de presión siendo un total de 70 válvulas, se observa el detalle de las válvulas en cada uno de los sectores con el diámetro y la cantidad a lo que corresponde en la *Tabla 29*.

	NUM	ERO DE	VÁLV	ULAS EI	N LA RE	D ORIG	SINAL			
	Red			Dia	ametro	de Válv	ulas [m	m]		
N	Descripción	50	75	100	150	200	250	300	400	Total
01	Esmeraldas Norte				3					3
02	Esmeraldas Centro Alta				3					3
03	Esmeraldas Centro Baja									0
04	Esmeraldas Sur Alta					2	1		1	4
05	Esmeraldas Sur Baja									0
06	15 de Marzo							1		1
07	Buen Pastor Alto			1			1			2
08	Winchele			2	4		1			7
09	San Rafael									0
10	Buen Pastor									0
11	Tonsupa				1					1
12	Atacames									0
13	Sua									0
14	Same									0
15	Tonchigue									0
16	San Rafael Alto				1					1
17	San Mateo									0
18	Tachina									0
19	Piedras									0
20	Camarones									0
21	Pegue									0
	Total	0	0	3	12	2	3	1	1	22

Tabla 27. Número de Válvulas en la Red Original

	NUME	RO DE '	VÁLVUI	AS EN	LA RED	OPTIN	IIZADO			
	Red			Di	ametro	de Válv	ulas [m	m]		
Ν	Descripción	50	75	100	150	200	250	300	400	Total
01	Esmeraldas Norte	2		6		1	1			10
02	Esmeraldas Centro Alta		1	3						4
03	Esmeraldas Centro Baja				2	1				3
04	Esmeraldas Sur Alta	4	4	7	1					16
05	Esmeraldas Sur Baja									0
06	15 de Marzo				2			1		3
07	Buen Pastor Alto	1			1					2
08	Winchele	4		7	1					12
09	San Rafael							1		1
10	Buen Pastor			1						1
11	Tonsupa	1		1			2			4
12	Atacames				1			1		2
13	Sua			2						2
14	Same		1	1						2
15	Tonchigue	1	1			1				3
16	San Rafael Alto				4					4
17	San Mateo									0
18	Tachina									0
19	Piedras									0
20	Camarones		1							1
21	Pegue									0
	Total	13	8	28	12	3	3	3	0	70

Tabla 28. Número de Válvulas en la Red Original

6.3. Presiones en la Red

La presión es uno de los parámetros fundamentales para determinar si el diseño optimizado mejora las condiciones iniciales, como se indica en el objetivo del trabajo. Se analiza las presiones en 5 secciones: menores a 15; entre 15 y 45; entre 46 y 60; entre 61 y 75; y mayores a 75 mca, se presenta un cuadro resumen representando en porcentaje.

En la *Tabla 30* se muestra las presiones por sector del diseño original, donde se obtiene un promedio general de todos los sectores, las presiones se representan en la *Gráfico 10*, se observa que la mayor parte de la red tienen presiones entre el 15 y 75 mca, más de la mita de las tuberías tienen una presión entre el rango de 15 a 45.

	PRESI	ONES EN LAS	S REDES DE S	ERVICIO ORIO	SINAL	
	Red	Porcen	tajes Según P	resiones de S	ervicio Origina	al [mca]
Ν	Descripción	< 15	15-45	46-60	61-75	>75
01	Esmeraldas Norte	1.2%	23.8%	51.0%	23.3%	0.7%
02	Esmeraldas Centro Alta	9.7%	36.9%	36.3%	16.2%	0.9%
03	Esmeraldas Centro Baja	0.3%	0.3%	4.1%	84.2%	11.1%
04	Esmeraldas Sur Alta	4.5%	41.8%	34.6%	16.7%	2.4%
05	Esmeraldas Sur Baja	0.8%	28.2%	64.1%	6.9%	0.0%
06	15 de Marzo	2.9%	33.8%	39.8%	23.5%	0.0%
07	Buen Pastor Alto	2.2%	90.2%	4.7%	2.0%	1.0%
08	Winchele	4.2%	54.0%	27.4%	8.0%	6.4%
09	San Rafael	0.8%	75.7%	23.5%	0.0%	0.0%
10	Buen Pastor	0.0%	19.2%	79.8%	1.0%	0.0%
11	Tonsupa	1.5%	86.1%	10.3%	2.1%	0.0%
12	Atacames	0.8%	10.0%	60.6%	28.6%	0.0%
13	Sua	0.0%	76.8%	23.2%	0.0%	0.0%
14	Same	7.1%	64.6%	28.3%	0.0%	0.0%
15	Tonchigue	3.5%	20.6%	75.9%	0.0%	0.0%
16	San Rafael Alto	1.2%	38.0%	35.6%	22.8%	2.5%
17	San Mateo	8.7%	91.3%	0.0%	0.0%	0.0%
18	Tachina	7.7%	92.3%	0.0%	0.0%	0.0%
19	Piedras	9.1%	90.9%	0.0%	0.0%	0.0%
20	Camarones	2.1%	3.1%	43.8%	51.0%	0.0%
21	Pegue	5.0%	95.0%	0.0%	0.0%	0.0%
	Promedio	3.5%	51.1%	30.6%	13.6%	1.2%

Tabla 29. Presiones en las Redes de Servicio Diseño Original

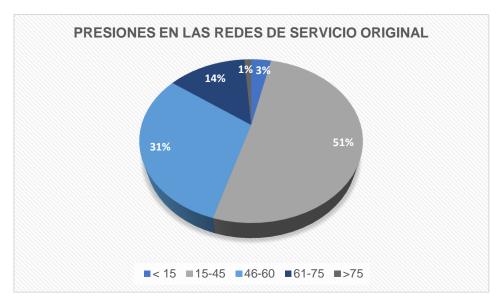


Gráfico 10. Presiones en las Redes de Servicio Diseño Original

Con las presiones establecidas de la red de diseño original, y el diseño optimizado en la *Tabla 31* y la *Gráfico 11*; se puede realizar una comparativa, donde las presiones entre 15 y 45 mca aumentan de manera considerable (88.8%) en el diseño optimizado disminuyendo para el resto de los rangos 2.7% para menores de 15 mca, 7.5% entre 46 y 60 mca, 0.5% entre 61 y 75 mca y 0.5% para mayores de 75 mca.

	PRESIO	NES EN LAS	REDES DE SE	RVICIO OPTIN	MIZADO	
	Red	Porcentaje	es Según Pres	iones de Serv	icio Mejorami	ento [mca]
Ν	Descripción	< 15	15-45	46-60	61-75	>75
01	Esmeraldas Norte	2.8%	78.9%	15.9%	1.6%	0.9%
02	Esmeraldas Centro Alta	10.9%	63.9%	23.1%	2.2%	0.0%
04	Esmeraldas Centro Baja	0.3%	97.7%	2.0%	0.0%	0.0%
05	Esmeraldas Sur Alta	4.0%	73.6%	18.6%	2.6%	1.2%
06	Esmeraldas Sur Baja	1.7%	73.4%	24.9%	0.0%	0.0%
07	15 de Marzo	0.5%	90.8%	7.9%	0.8%	0.0%
80	Buen Pastor Alto	1.5%	93.1%	3.7%	0.7%	1.0%
09	Winchele	3.1%	77.1%	12.5%	1.6%	5.7%
10	San Rafael	1.4%	97.5%	1.1%	0.0%	0.0%
11	Buen Pastor	0.0%	99.0%	1.0%	0.0%	0.0%
12	Tonsupa	1.8%	90.3%	7.4%	0.6%	0.0%
13	Atacames	1.0%	98.1%	0.8%	0.2%	0.0%
14	Sua	0.6%	97.1%	2.3%	0.0%	0.0%
15	Same	1.0%	92.0%	7.0%	0.0%	0.0%
16	Tonchigue	3.4%	92.2%	4.4%	0.0%	0.0%
17	San Rafael Alto	2.5%	72.6%	23.1%	1.2%	0.7%
18	San Mateo	7.5%	92.5%	0.0%	0.0%	0.0%
19	Tachina	1.9%	98.1%	0.0%	0.0%	0.0%
20	Piedras	9.1%	90.9%	0.0%	0.0%	0.0%
21	Camarones	2.0%	96.0%	2.0%	0.0%	0.0%
23	Pegue	0.8%	99.2%	0.0%	0.0%	0.0%
	Promedio	2.7%	88.8%	7.5%	0.5%	0.5%

Tabla 30. Presiones en las Redes de Servicio Diseño Original

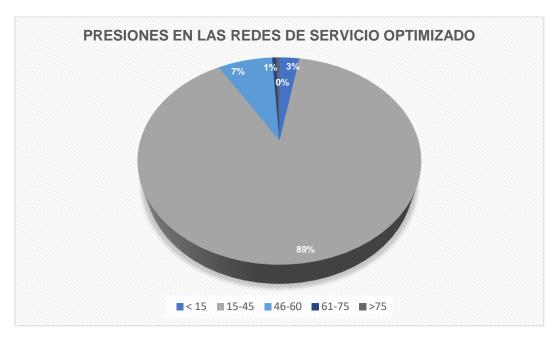


Gráfico 11. Presiones en las Redes de Servicio Diseño Original

6.4. Caudales en la Red

Los nuevos caudales se presentan en la Tabla 32, donde se muestra el total del caudal inyectado y del del fugado, se puede realizar una comparativa como se muestra en la Tabla 33 donde se puede destacar que el diseño optimizado de la red tiene un porcentaje de fugas del 38.81% menor al del diseño original, al disminuir las presiones el caudal de fuga disminuye en el modelo.

	Dotación Br	uta de las R	edes de Dis	tribución	
	Red	Caudal Inyectado	Caudal Fugado	Número de Nudos	Presión [mca]
N	Descripción	[l/s]	[l/s]	Nuuos	[iiica]
01	Esmeraldas Norte	179.79	86.15	584.00	36.20
02	Esmeraldas Centro Alta	73.62	35.27	339.00	34.68
03	Esmeraldas Centro Baja	93.03	44.58	387.00	36.42
04	Esmeraldas Sur Alta	229.00	109.73	509.00	40.15
05	Esmeraldas Sur Baja	282.34	135.28	1,053.00	35.87
06	15 de Marzo	309.93	148.50	621.00	36.69
07	Buen Pastor Alto	31.68	15.18	407.00	37.86
80	Winchele	165.69	79.39	361.00	31.96
09	San Rafael	173.58	83.17	358.00	37.74
10	Buen Pastor	28.82	13.81	99.00	38.22
11	Tonsupa	136.47	65.39	1,070.00	31.34
12	Atacames	228.67	109.57	622.00	40.24
13	Sua	60.67	29.07	168.00	35.58
14	Same	24.18	11.59	99.00	35.68
15	Tonchigue	77.94	37.35	199.00	38.37
16	San Rafael Alto	146.24	70.07	606.00	27.57
17	San Mateo	30.24	14.49	92.00	29.03
18	Tachina	70.82	33.93	155.00	20.34
19	Piedras	3.88	1.86	44.00	35.14
20	Camarones	15.43	7.39	96.00	32.45
21	Pegue	5.46	2.62	121.00	32.45
	Total	2,367.50	1,134.37		

Tabla 31. Caudales de la Red Optimizada

Caudal	Original	Optimizado
Inyectado	3484.40	2922.84
Fugado	1669.53	1134.37
Porcentaje	47.91%	38.81%

Tabla 32. Diferencia de Caudales Original y Optimizado

CAPITULO 7 CONCLUSIONES Y RECOMENDACIONES

7. CONCLUSIONES Y RECOMENDACIONES

7.1. Conclusiones

Se desarrolló una propuesta de optimización de las distintas redes de distribución, bajo los siguientes criterios:

- Ajustar la sectorización inicial, considerando los rangos altitudinales de las áreas de servicio de las distintas redes o subsistemas, para posibilitar adecuadas presiones de servicio.
- Incluir válvulas reductoras de presión adicionales a las originalmente previstas para regular las presiones de servicio en los nuevos subsectores conformados.
- Prever en lo posible un solo punto de alimentación a cada subsector de servicio, para facilitar las futuras actividades del programa de control de pérdidas. En algunos casos de subsectores de servicio extensos, conformados mayoritariamente por tuberías existentes, se mantienen hasta dos puntos de alimentación, para evitar ajustes mayores de sustitución o reforzamiento de capacidad de tuberías principales y/o secundarias.
- Efectuar los ajustes necesarios de trazado y/o diámetro en los tramos de tuberías proyectadas, evitando sustitución de tuberías existentes.
- Se adoptan los parámetros de diseño fundamentales del proyecto (consumos, per cápita, factores de mayoración y similares), es decir se mantienen los datos de consumos en los nudos establecidos en el proyecto original.

Las propuestas planteadas tienen como objetivo mejorar el sistema de agua potable de la provincia de Esmeraldas, aunque algunos de los cambios pueden resultar drásticos como el cambio de tuberías puede significar un ahorro a futuro del caudal fugado.

7.2. Recomendaciones

Se ha realizado un análisis general de todo el proyecto, con el objetivo de optimizar el funcionamiento de cada una de las 21 redes, dicho proyecto necesita de datos más específicos en cada una de las redes como es el caso de Buen Pastor Alto, Same y Rafael Bajo, para realizar un modelo mas cercano a la realidad.

La instalación de micro y macro medidores en la red es emergente, para mantener un control del sistema, el manejarlo como uno solo sin independizar algunos sectores genera ciertos problemas al momento de hacer una evolución del mismo, lo que ocasiona pérdidas económicas para la empresa encargada en el caudal no facturado y optimizar las operaciones mantenimiento.

Las válvulas colocadas en el sistema optimizado periten facilitar el mantenimiento de la red disminuyendo el área de el corte agua y generando menos incomodidad para los pobladores.

CAPITULO 8 BIBLIOGRAFÍA

8. BIBLIOGRAFÍA

ACSAM CIA. LTDA, «Diseños Definitivos Proyecto Sistema Regional de Agua Potable de la Provincia de Esmeraldas y su zona de Influencia», Esmeraldas, 2012.

COMISIÓN NACIONAL DEL AGUA, «Redes de Distribución, Manual de Diseño de Agua Potable y Saneamiento», México, 1996.

E. Cabrera, J. Almandoz, F. Arruegui y J. García-Serra, «Auditoria de redes de distribución de agua,» p. 13, 1999.

E. Gómez, «Gestión técnica de abastecimientos de agua urbanos sostenibles: Pérdidas de agua,» Valencia, 2015.

GLOBAL OMNIUM, «Global Omnium Aguas de Valencia,» 2019. [En línea]. Available: https://www.aguasdevalencia.es/Grupo/Inicio/.

INAMHI, «Instituto Nacional de Meteorología e Hidrología,» 2019. [En línea]. Available: https://www.gob.ec/inamhi.

INSTITUTO NACIONAL DE ESTADISTICAS Y CENSOS, «INEC,» 2019. [En línea]. Available: https://www.ecuadorencifras.gob.ec/censo-de-poblacion-yvivienda/.

IGM. (2019). Instituto Geográfico Militar Ecuador. [En línea]. Available: http://www.geoportaligm.gob.ec/visorIEE/composer/

INGENIERIA DE FLUIDOS, «INGENIERIA DE FLUIDOS,» 2019. [En línea]. Available: https://www.ingenieriadefluidos.com/valvula-reductora-de-presion.

IWA, W. L. (2007). Leak Location and Repair: Guidance Notes.

Martínez Solano, F. J. (2019). Calibración de modelos con fugas - Ajuste de la curva de modulación de un modelo con fugas. Curso de Posgrado Análisis y modelación de redes de distribución de agua, Universidad Politécnica de Valencia. España.

ORGANIZACIÓN DE LAS NACIONES UNIDAS, «Agua y ciudades,» 2010.

- P. Iglesias Rey y J. Martinez Solano, Análisis y diseño de redes de distribución de agua mediante Epanet 2 VE, Universidad Politécnica de Valencia, 2012.
- S. X. Molina, Metodología para reducción de pérdidas técnicas en el sistema de distribución de agua potable del suburbio oeste de la ciudad de Guayaquil, Guayaquil, 2009, p. 391.
- X. V. Delgado, Tesis Doctoral: Aplicación del método de jerarquías análiticas a la gestión de pérdidas de agua en redes de abastecimiento, Valencia, 2011.

CAPITULO 9 ANEJOS

9. ANEJOS

		DISEÑO	RED CHONE (F	REPOR	TE DE	TUBERÍAS	5)					Dia	metros	D (REPOR	TE DE NUDOS)		\Box
Label	long.	Nodo Inicial	Nodo Final	DN	C	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	×	y	Red
T_no-001			N_no-274	315	130	134.67	2.03	12.98	_	P	N_no-001	130.87	0.79	9.7	649,025.72	108,420.83	$\overline{}$
T_no-002 T_no-011		N_no-003 N_no-410	N_no-001 N_no-361	355 160	130	109.49 7.89	0.46	4.951 1.843		P P	N_no-002 N_no-010	122.27 107.27	4.62 0.73	12.9 9.3	648,910.35 648,455.43	107,936.92	$\overline{}$
T no-011			N_no-301 N_no-278	315	130	134.64	2.03	12.974		P	N no-010	91.56	0.73	4.6	649,126.95	108,288.32	Ť
T_no-044		N_no-433	N_no-402	110	130	0.51	0.06	0.072		5	N_no-041	68.35	2.71	67.7	648,989.88	108,163.28	_
T_no-054	41.39	N_no-170	N_no-169	250	130	4.64	0.11	0.078	e	5	N_no-051	61.16	2.61	74.5	648,983.64	108,055.75	5
T_no-074		N_no-368	N_no-338	160	130	1.18	0.07	0.055		5	N_no-071	53.99	1	84.5	649,303.58	108,298.69	-
T_no-077	73.84	N_no-218	N_no-171	250	130	0.33	0.01	0.001		5	N_no-074	51.24	1.93	84.9	649,074.96	108,116.30	\rightarrow
T_no-152 T_no-163	5.76 102.61	_	N_no-003 N_no-037	160 315	130	45.75 3.18	2.67 0.05	47.796 0.013		S S	N_no-148 N_no-159	33.57 32.29	0.13	66.4	649,437.59 649,316.35	109,122.52	T
T_no-171		_	N_no-216	250	130	0.16	0.00	0.025		5	N_no-166	29.49	0.42	69.8	649,444.16	109,087.96	\rightarrow
T_no-575	94.21	N_no-424	N_no-439	63	130	0.27	0.1	0.339		Т	N_no-571	66.91	0	65.2	649,285.35	108,096.38	-
T_no-580	65.32	N_no-039	N_no-047	63	130	0.36	0.14	0.576	n	Т							-
T_no-581	64.78	N_no-508	N_no-500	63	130	0.44	0.17	0.82		T							-
T_no-582	52.06	N_no-457	N_no-489	63	130	0.57	0.21	1.317	_	T							-
T_no-583	85.83	N_no-342	N_no-328	63	130	0.92	0.34	3.176		T T							-
T_no-584 T_no-585	12.71 54.3	N_no-347 N_no-473	N_no-328 N_no-445	63 63	130	0.83 1.63	0.31	9.272		T							-
T no-586		N_no-474	N_no-473	63	130	1.08	0.01	4.28		Ť	_						-
T no-587	41.92	N_no-489	N no-473	63	130	0.36	0.14	0.57		T							-
T_no-588	61.2	N_no-483	N_no-474	63	130	0.54	0.2	1.215		Т							-
T_no-589	127.33	N_no-481	N_no-474	63	130	0.25	0.09	0.284	n	T							-
T_no-590		N_no-469	N_no-475	63	130	0.19	0.07	0.177		T							-
T_no-591		_	N_no-484	63	130	0.38	0.14	0.621		T							-
T_no-592		N_no-563	N_no-488	63	130	0.36	0.13	0.562		T							-
T_no-593	27.54 38.23	N_no-487	N_no-489	63	130	0.64	0.24	1.632		T T							-
T_no-594 T_no-595	38.23 27.12	N_no-457 N_no-456	N_no-445 N_no-457	63 63	130	1.88	0.71	12.004 3.921		T T				\vdash			-
T_no-596	53.24		N_no-487	63	130	0.17	0.06	0.134		Ť							-
T no-597	31.04	N_no-479	N_no-487	63	130	0.56	0.21	1.29		T							-
T_no-598	30.72		N_no-456	63	130	0.59	0.22	1.417	n	Т							-
T_no-599	54.56	N_no-460	N_no-479	63	130	0.11	0.04	0.067	n	T							-
T_no-600	26.14	_	N_no-479	63	130	0.47	0.18	0.921		Т							-
T_no-601	68.42	N_no-484	N_no-483	63	130	0.12	0.04	0.069		T							-
T_no-602	84.43	N_no-139	N_no-067	63 63	130	0.27	0.1	0.331		T T							-
T_no-603 T_no-604	68.35 66.71	N_no-259 N_no-427	N_no-310 N_no-430	63	130	0.3	0.11	0.298		T							-
T no-605			N no-200	63	130	1.98	0.74	13.209		Ť							-
T_no-606		_	N_no-198	63	130	1.36	0.51	6.636		Т							-
T_no-607	68.91	N_no-247	N_no-262	63	130	0.82	0.31	2.573	e	Т							-
T_no-608		N_no-242	N_no-247	63	130	0.9	0.34	3.055	e	Т							-
T_no-609		N_no-234	N_no-261	63	130	0.69	0.26	1.89		T							-
T_no-610		N_no-419	N_no-415	63	130	0.27	0.1	0.332		T							-
T_no-611 T_no-612	2.92	N_no-067 N_no-415	N_no-068 N_no-421	63 63	130	0.59	0.22	1.386 0.026		T T							-
T no-613	93.47	_	N no-156	63	130	0.75	0.28	2.217		Ť							-
T_no-614	91.55	N_no-314	N_no-294	90	130	1.76	0.33	1.901		Т							-
T_no-615	70.4	N_no-289	N_no-317	63	130	0.37	0.14	0.579	e	Т							-
T_no-616		N_no-226	N_no-224	63	130	0.34	0.13	0.504	e	Т							-
T_no-617		N_no-253	N_no-294	63	130	0.71	0.27	2.001		T							-
T_no-618	6.9		N_no-253	63	130	0.99	0.37	3.687		T							-
T_no-619 T_no-620		N_no-257 N_no-385	N_no-307 N_no-380	63 63	130	0.38	0.14	0.617		T T	-						-
T no-621		_	N_no-234	63	130	0.28	0.35	3.319		<u>'</u>							-
T_no-622		N_no-189	N_no-141	200	130	0.51	0.02	0.004		T T							-
T_no-623		N_no-078	N_no-063	110		11.43	1.41	22.601		Т							-
T_no-624	4.03	N_no-218	N_no-222	63	130	0.49	0.19	1.01	_	Т							-
T_no-625		N_no-211	N_no-222	63	130	0.36	0.14	0.572		Т							-
T_no-626		N_no-216	N_no-178	63	130	0.53	0.2	1.169	_	T							-
T_no-627		N_no-224	N_no-216	63	130	0.24	0.09	0.27		T		—					-
T_no-628 T_no-629	179.17	N_no-503 N_no-513	N_no-506 N_no-503	63 63	130	0.07	0.03	0.03		T T	<u> </u>						-
T_no-630	4.59	N_no-430	N_no-425	63	130	0.25	0.09	0.301		'							-
T_no-631	71.02	_	N_no-207	110	130	7.35	0.91	9.968		Ť				\vdash			-
T_no-632		_	N_no-259	63	130	0.34	0.13	0.498		Т							-
T_no-633	91.37	N_no-259	N_no-289	63	130	0.35	0.13	0.543	s	T							-
T_no-634		N_no-257	N_no-259	63	130	0.71	0.27	1.982		T							-
T_no-635		N_no-245	N_no-257	63	130	0.13	0.05	0.081		T							-
T_no-636		N_no-289	N_no-290	63	130	0.96	0.36	3.439		T	<u> </u>	—					-
T_no-637		N_no-290	N_no-286	63	130	0.22	0.08	0.234		T T				\vdash			-
T_no-638 T_no-639		N_no-286 N_no-253	N_no-253 N_no-252	63 63	130	0.42	0.16	0.752 3.405		T T				\vdash			-
T_no-640		N_no-252	N_no-232 N_no-241	63		0.93	0.38	2.132		-							-
T_no-641		N_no-343	N_no-379	63	130	0.09	0.03	0.043		Ť							-
T_no-642		N_no-123	N_no-030	63	130	3.32	1.25	34.47		T							-
T_no-643	6.51	N_no-255	N_no-257	63	130	0.91	0.34	3.125	e	Т							-
T_no-644		N_no-072	N_no-013	110	130	0.54	0.07	0.078	_	T							-
T_no-645	179.67		N_no-293	63	130	0.48	0.18	0.962		T		_					-
T_no-646		N_no-534	N_no-568	63	130	4.36	1.64	57.249	_	T		_					-
T_no-647	176.17	N_no-135	N_no-087	63	130	0.19	0.07	0.178	5	T	I	ı					i - I

		DISEÑO	RED CHONE (F	REPOR	TE DE	TURFRÍAS	a .			_				In (REPO	RTE DE NUDOS)		
							_	Perd.					metrns				Τ, .
Label	long.	Nodo Inicial	Nodo Final	DN	C	Caudal	Vel.	Unit.	Notas	Red	Label	Cota	Qdem	Presión	×	У	Red
T_no-648 T_no-649	169.7 169.32	N_no-080 N_no-191	N_no-035 N_no-062	63 63	130	2.25 1.76	0.85	16.793 10.683	_	T T		+	┝				-
T_no-650	194.13		N_no-031	200	130	7	0.26	0.497		P							-
T_no-651		N_no-339	N_no-349	63	130	0.46	0.17	0.904		T							-
T_no-652 T_no-653		N_no-112 N_no-215	N_no-029 N_no-325	63 63	130	2.27 0.25	0.85	17.083 0.281	_	T T		+	\vdash				-
T_no-654	157.56		N_no-060	63	130	0.46	0.17	0.893		T T							-
T_no-655		N_no-366	N_no-364	63	130	0.22	0.08	0.225	s	T							-
T_no-656 T_no-657		N_no-335 N_no-092	N_no-301 N_no-099	90 63	130 130	4.21 0	0.78	9.505 0.001		T T		+	-				-
T_no-658	122.1	N_no-118	N_no-054	63	130	1.37	0.51	6.685	5	T							-
T_no-659		N_no-491	N_no-494	63	130	0.06	0.02	0.02	e	T							-
T_no-660 T_no-661		N_no-219 N_no-130	N_no-287 N_no-166	63 63	130 130	0.07	0.03	0.023 1.551		T		+					-
T_no-662	563.7	N_no-534	N_no-509	63	130	3.54	1.33	38.97	e	Т							-
T_no-663		N_no-250	N_no-252	63	130	0.25	0.09	0.278	s	T							-
T_no-664 T_no-665		N_no-252 N_no-292	N_no-292 N_no-276	63 90	130 130	0.73 3.81	0.27	2.097 7.909	s e	T		+					+ -
T_no-666	8.02	_	N_no-292	90	130	2.77	0.51	4.39	e	T							-
T_no-667		N_no-176	N_no-177	63	130	1.51	0.57	8.044	e	T							-
T_no-668 T_no-669		N_no-172 N_no-497	N_no-176 N_no-565	63 63	130	0.52	0.12	1.122 0.451	e s	T T	\vdash	1	\vdash				-
T_no-670	191.95	N_no-030	N_no-111	63	130	2.1	0.79	14.78	e	Т							-
T_no-671		N_no-486	N_no-523	110	130	2.45	0.3	1.306	e	T							-
T_no-672 T_no-673		N_no-380 N_no-568	N_no-220 N_no-566	63 110	130	0.02 2.98	0.01	0.01 1.872	s e	T T	\vdash	+	\vdash				-
T_no-675		N_no-497	N_no-499	63	130	5.14	1.93	77.697	s	Т							-
T_no-676		N_no-058	N_no-088	63	130	2	0.75	13.485	e	T							-
T_no-677 T_no-678		N_no-055 N_no-086	N_no-026 N_no-157	200	130	0.94 1.42	0.35	3.33 0.026	s e	T T		+	-				-
T_no-679		N_no-215	N_no-180	63	130	0.28	0.11	0.365		T							-
T_no-680		N_no-199	N_no-227	110	130	0.67	0.08	0.118	e	T							-
T_no-681 T_no-683		N_no-485 N_no-555	N_no-534 N_no-468	110	130	10.84 2.54	0.31	20.475		T T		+	-				-
T_no-684		N_no-014	N_no-007	110	130	1.06	0.13	0.277	e	T							-
T_no-685		N_no-111	N_no-125	63	130	1.86	0.7	11.804	n	T							-
T_no-686 T_no-687		N_no-125 N_no-133	N_no-124 N_no-125	63 63	130	0.74 2.59	0.28	2.161	n n	T		+					-
T_no-688	60.77	N_no-124	N_no-194	63	130	0.87	0.33	2.908	n	T							-
T_no-689		N_no-112	N_no-124	63	130	1.67	0.63	9.677		T		+					-
T_no-690 T_no-691		N_no-008 N_no-045	N_no-002 N_no-038	110	130	4.62 14.05	0.57 1.73	4.222		T T		+	_				-
T_no-692	68.94	N_no-008	N_no-005	63	130	1.77	0.66	10.716	n	T							·
T_no-693 T_no-694		N_no-010 N_no-038	N_no-038 N_no-033	63 110	130	0.73 9.6	0.27 1.18	2.063 16.363		T T		+	_				-
T_no-695		N_no-258	N_no-299	63	130	0.51	0.19	1.067		T		+					+ -
T_no-696		N_no-266	N_no-258	63	130	0.17	0.07	0.146		T							·
T_no-697 T_no-698		N_no-330 N_no-283	N_no-281 N_no-331	63 63	130	0.5 1.16	0.19	1.035 4.89		T T	-	+	├				-
T_no-699		N_no-558	N_no-542	160	130	0.17	0.01	0.001		T T		+					-
T_no-700		N_no-222	N_no-250	63	130	0.64	0.24	1.617		T							-
T_no-701 T_no-702		N_no-045 N_no-075	N_no-023 N_no-113	63 63	130	0.41	0.15	0.711 1.758		T T		+	 				-
T_no-703		N_no-179	N_no-113	63	130	0.45	0.25	0.855	-	T							-
T_no-704	90.71	N_no-032	N_no-039	63	_	0.14	0.05	0.092		T							-
T_no-705 T_no-706		N_no-036 N_no-047	N_no-032 N_no-036	63 63	_	0.24	0.09	0.268		T T		+	-				-
T_no-707	67.42	N_no-046	N_no-134	63		0.54	0.12	1.199		T							-
T_no-708	68.15	N_no-017	N_no-046	63	130	2.62	0.99	22.351		T							-
T_no-709 T_no-710		N_no-101 N_no-009	N_no-081 N_no-008	63 110	130	0.23 7.36	0.09	0.246 9.988		T T	-	+	-				-
T_no-711		N_no-113	N_no-101	63	130	0.54	0.32	1.216		T T							-
T_no-712	51.54	N_no-547	N_no-543	110	130	3.17	0.39	2.095		T							-
T_no-713 T_no-714		N_no-028 N_no-028	N_no-075 N_no-017	63 63	130	3.48	0.38	3.756 37.737		T T	-	-	-				-
T_no-715		N_no-024	N_no-028	63	130	5.32	2	82.576		T T							-
T_no-716		N_no-020	N_no-024	63	130	5.69	2.14	93.747		T							-
T_no-717 T_no-718		N_no-020 N_no-018	N_no-016 N_no-020	63 63	130	0.55 6.43	2.42	1.224		T T	—	+	\vdash				-
T_no-719		N_no-018	N_no-571	63	130	7.54	2.83	157.593		T T							-
T_no-720		N_no-008	N_no-572	63	130	0	0	0		T							-
T_no-721 T_no-722		N_no-101 N_no-291	N_no-159 N_no-288	63 63	130 130	0.14	0.05	0.101		T T	-	+	 				-
T_no-723		N_no-547	N_no-556	110	130	3.48	0.43	2.497		T T							-
T_no-724	69.65	N_no-239	N_no-275	110	130	4.55	0.56	4.11		T							-
T_no-725 T_no-726		N_no-207 N_no-083	N_no-239 N_no-186	110 63	130	5.71 0.83	0.7	6.251 2.642		T T	<u> </u>	+	\vdash				-
T_no-727	_	N_no-329	N_no-359	63	130	0.56	0.31	1.271	_	T							-
T_no-728		N_no-353	N_no-329	63	130	0.41	0.15	0.721		T							·
T_no-729	78.34	N_no-329	N_no-364	63	130	0.47	0.18	0.923	s	T							-

		DISEÑO	RED CHONE (F	REPOR	TE DE	TUBERÍA:	S)					Dia	metros	D (REPOR	RTE DE NUDOS)		
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	x	у	Red
T_no-730	67.1	N_no-459	N_no-458	63	130	0.22	0.08	0.23	s	T							-
T_no-731	39.34	N_no-288	N_no-228	63	130	0.37	0.14	0.582	e	T							-
T_no-732	74.41	N_no-458	N_no-448	63	130	0.18	0.07	0.154	s	T							-
T_no-733	3.67	N_no-187	N_no-188	63	130	0.58	0.22	1.342	n	T							-
T_no-734	136.73	N_no-188	N_no-229	160	130	1.11	0.06	0.049	e	T							-
T_no-735		N_no-143	N_no-188	160	130	1.84	0.11	0.124	e	Т							-
T_no-736		N_no-433	N_no-441	63	130	0.18	0.07	0.154	e	Т							-
T_no-738		N_no-282	N_no-283	110	130	9.37	1.16	15.627	e	S							-
T_no-739		N_no-298	N_no-282	110	130	6.32	0.78	7.54	e	T							-
T_no-740		N_no-376	N_no-380	160	130	0.77	0.05	0.026	e	Т		-					-
T_no-741		N_no-325	N_no-329	63	130	0.35	0.13	0.539	5	Т		-					-
T_no-742		N_no-198	N_no-186	63	130	0.56	0.21	1.281	s	T		-					-
T_no-743		N_no-031	N_no-035	63	130	3.79	1.42	44.031	e	T			<u> </u>				-
T_no-744		N_no-055	N_no-076	110	130	3.59	0.44	2.651	e	T			<u> </u>				-
T_no-745		N_no-051	N_no-012	63	130	3.74	1.41	43.013	e	T							٠.
T_no-746		N_no-151	N_no-573	63	130	4.94	1.86	71.982	e	T			<u> </u>				-
T_no-747		N_no-059	N_no-052	63	130	3.88	1.46	46.064	e	T		+	<u> </u>				-
T_no-748		N_no-234	N_no-246	63	130	0.21	0.08	0.215	5	Т		-					-
T_no-749		N_no-235	N_no-234	63	130	0.33	0.12	0.47	s	Т		-					-
T_no-750		N_no-201	N_no-215	63	130	0.31	0.12	0.418	s	Т		-					-
T_no-751		N_no-246	N_no-247	63	130	0.35	0.13	0.53	s	T							-
T_no-752		N_no-064	N_no-070	110	130	9.16	1.13	15	e	T		-					-
T_no-753		N_no-197	N_no-198	63	130	1.44	0.54	7.398	s	Т		-					٠-
T_no-754		N_no-180	N_no-201	63	130	0.22	0.08	0.235	s	Т		-					-
T_no-755		N_no-170	N_no-180	63	130	0.56	0.21	1.266	5	T							-
T_no-756		N_no-379	N_no-311	63	130	0.06	0.02	0.019	e	T							-
T_no-757		N_no-377	N_no-379	63	130	0.07	0.03	0.028	e	T							-
T_no-758		N_no-104	N_no-083	63	130	1.35	0.51	6.504	e	T							-
T_no-759		N_no-106	N_no-104	63	130	3.06	1.15	29.736	e	T							-
T_no-760		N_no-185	N_no-184	250	130	7.84	0.19	0.208	e	T		-					-
T_no-761		N_no-247	N_no-244	63	130	0.16	0.06	0.128	s	T							٠.
T_no-762		N_no-071	PRV-1	315	130	154.57	2.33	16.753	n	P		-	_				-
T_no-763		PRV-1	N_no-073	315	130	154.57	2.33	16.753	n	P		+	⊢—				-
T_no-764		N_no-279	N_no-282	110	130	15.97	1.97	41.978	n	5		+	⊢				-
T_no-765		N_no-027	PRV-2	315	130	40.62	0.61	1.411	e	5		+	⊢				-
T_no-766	155.66		N_no-006	315	130	40.62	0.61	1.41	e	5		+	⊢				-
T_no-767		N_no-015	PRV-3	315	130	21.77	0.33	0.443	e	P P		+	⊢				-
T_no-768	257.25		N_no-003	315	130	21.77	0.33		e			+					-
T_no-769		N_no-074	N_no-051	63	130	0.97	0.37	3.57	e	T		+					-
T_no-770		N_no-151	N_no-153	63	130	5.38	2.02	84.405	e	T		+	⊢				-
T_no-771		N_no-573	PMP-1	110	130	26.53	3.27	107.454	n	5		+	\vdash				-
T_no-772		PMP-1	N_no-074	200	130	26.53	0.99	5.861	n	5		+	\vdash				-
T_no-773		N_no-043	N_no-066	110	130	1.61	0.2	0.6	e	5		+	\vdash				٠.
T_no-774		N_no-042	N_no-574	63	130	6.83	2.57	131.259	e	T		+	⊢				-
T_no-775		N_no-574	N_no-091	63	130	0.72	0.27	2.016	e	T		+	⊢			 	-
T_no-776		N_no-055	N_no-574	63	130	6.11	2.3	106.908	n	T		+					-
T_no-778		N_no-093	N_no-575	110	130	29.56	3.65	131.294	s	5		+	⊢				-
T_no-779		N_no-575	N_no-011	160	130	29.56	1.73	21.291	s	5		+	\vdash				-
T_no-780		N_no-052	PMP-2	110	130	15.98	1.97	42.031	e	T		+				-	٠-
T no-781	64.16	PMP-2	N_no-045	110	130	15.98	1.97	42.03	e	T	1	1	1	1		I	-

			DISEÑO R	ED BETAN	NIA (REPO	RTE DE T	UBERÍAS)			
		Nodo	Nodo					Perd.		
Label	long.	Inicial	Final	DN	С	Caudal	Vel.	Unit.	Notas	Red
T_ca-001	67.65	N_ca-160	N_ca-142	250	130	42	1	4.62	s	Р
T ca-002	287.29	N ca-003	N ca-134	315	130	81.81	1.23	5.16	e	Р
T_ca-004	34.76	N_ca-197	N_ca-183	160	130	11.73	0.69	3.85	e	Р
T ca-005	110.11	N ca-200	N_ca-197	160	130	7.47	0.44	1.66	e	Р
T_ca-006	5.07	_	N ca-005	315	130	90.48	1.36	6.21	e	Р
T_ca-007	352.99	_	N_ca-024	250	130	38.29	0.92	3.89	e	Р
T ca-008	158.75	N ca-224	_	160	130	15.61	0.91	6.52	e	P
T ca-010	108.58	_	N ca-021	200	130	37.79	1.41	11.28		P
T ca-012		N_ca-010	_	250	130	17.53	0.42	0.92	e	P
T ca-013	77.64		N ca-159	160	130	20.84	1.22	11.14	s	P
T ca-014	180.21	_	N ca-030	160	130	21.91	1.28	12.23	e	P
T ca-015	41.35	_	N ca-179	160	130	20.83	1.22	11.13		P
T_ca-016	75.33	_	N_ca-145	160	130	16.7	0.98	7.39	e	s
T ca-018	18.85	_	N ca-134	315	130	65.78	0.99	3.44	e	P
T ca-019	9.1	_	N_ca-146	200	130	23.67	0.88	4.75	e	Р
T_ca-020	446.86		N_ca-224	200	130	23.18	0.87	4.57	e	P
T_ca-020	43.18	_	_	63	130	3.55	1.33	39.05	_	S
T ca-046	38.29	_	N_ca-251	110	130	6.09	0.75	7.03		S
T_ca-233	4.45	_	N_ca-144 N_ca-209	63	130	1.7	0.75	9.97	n n	T
		_	_							
T_ca-234 T_ca-243	43.95	_	N_ca-272 N_ca-079	63 63	130 130	1.02	0.38 0.54	3.87 7.4	S	T
	56.87	_	_							
T_ca-269	5.77	_	N_ca-052	63	130	2.26	0.85	16.96	_	T
T_ca-316	51.32	_	N_ca-243	63	130	0.36	0.14	0.57	n	T
T_ca-326		_	N_ca-025	110	130	3.53	0.44	2.57	S	T
T_ca-334		N_ca-051	_	160	130	0.93	0.05	0.04	 	T
T_ca-352	32.78	_	N_ca-172	63	130	0.37	0.14	0.6		T
T_ca-353	150.73	_	N_ca-286	63	130	0.76	0.28	2.23	e	T
T_ca-354		_	N_ca-207	160	130	2.04	0.12	0.15	e	T
T_ca-355		N_ca-203	_	63	130	0.83	0.31	2.62	e	T
T_ca-356		N_ca-298	_	63	130	0.8	0.3	2.46		T
T_ca-357	119.02	N_ca-094	N_ca-061	63	130	1.1	0.41	4.45	e	T
T_ca-358		_	N_ca-235	63	130	3.61	1.36	40.36	e	T
T_ca-359	115.65	_	N_ca-016	63	130	0.77	0.29	2.31	e	T
T_ca-360	122.75	_	N_ca-234	160	130	1.17	0.07	0.05	e	T
T_ca-361		N_ca-044	_	160	130	1.94	0.11	0.14		T
T_ca-362	107.78	N_ca-105	N_ca-083	63	130	2.54	0.96	21.06	S	T
T_ca-363		_	N_ca-206	63	130	0.32	0.12	0.44	e	T
T_ca-364	205.95	N_ca-086	N_ca-056	63	130	1.23	0.46	5.47	e	T
T_ca-365	75.74	N_ca-324	N_ca-325	90	130	11.02	2.04	56.53	n	S
T_ca-366	263.34	N_ca-097	N_ca-095	63	130	2.29	0.86	17.41	e	T
T_ca-367	178.9	N_ca-202	N_ca-161	63	130	0.28	0.11	0.36	e	T
T_ca-368	48.92	N_ca-309	N_ca-324	90	130	10.76	1.99	54.12	n	S
T_ca-369	329.07	N_ca-011	N_ca-025	63	130	1.86	0.7	11.76	e	T
T_ca-370	76.75	N_ca-245	N_ca-309	90	130	5.92	1.09	17.89	n	S
T_ca-371	67.43	N_ca-132	N_ca-155	63	130	0.98	0.37	3.59	n	T
T_ca-372	6.42	N_ca-185	N_ca-179	63	130	1.06	0.4	4.14	e	T
T_ca-373	72.52	N_ca-318	N_ca-319	63	130	0.33	0.13	0.49	e	T
T_ca-374	102.96	N_ca-179	N_ca-091	63	130	0.56	0.21	1.28	n	T
T_ca-375	33.76	N_ca-091	N_ca-166	63	130	0.13	0.05	0.09	n	T
T_ca-376	46.34	N_ca-091	N_ca-047	63	130	0.34	0.13	0.51	n	T
T_ca-377			N_ca-043	63	130	0.17	0.07	0.15	n	Т
T_ca-378		N_ca-043	_	63	130	0.09	0.04	0.05	n	T
T_ca-379			N_ca-205	63	130	0.26	0.1	0.3		Т
T_ca-380			N_ca-070		130	0.12	0.05	0.08		T
T_ca-381		_	N_ca-208		130	0.41	0.15	0.71		T
T_ca-382			N_ca-194		130	2.37	0.89	18.46		T
T_ca-383			N_ca-104		130	0.42	0.05	0.05		T
T_ca-384			N_ca-046		130	3.7	0.46	2.8		T
T_ca-385		_	N ca-288		130	0.73	0.40	2.09		T
T_ca-386		_	N_ca-299		130	0.83	0.27	2.66		T
T_ca-387		_	N_ca-259		130	0.46	0.31	0.87		T
T_ca-388			N_ca-231	63	130	1.24	0.17	5.58		T
_		_	N_ca-251							T
T_ca-389 T_ca-390			_	90	130 130	5.89 6.08	0.73 1.12	6.61 18.78		T
			N_ca-131					18.78		_
T_ca-391	43.55	IN_Ca-2/4	N_ca-302	63	130	0.56	0.21	1.29	e	T

			RED (RI
		netros	
Label	Cota	Qdem	Presión
N_ca-001 N_ca-002	116.33	1.78 0.16	0.7 1.9
N_ca-002 N_ca-003	113.69 113.5	1.12	2.6
N_ca-004			
N_ca-009	113.38	0.07	2.8
N_ca-006	113.26	0.06	2.2
N_ca-009 N_ca-009	112.88 112.6	0.21	3.3 3.5
N_ca-010		0.23	3.6
N_ca-011	110.42	0.87	5.6
N_ca-012	107.4	2.67	3.2
N_ca-013 N_ca-014	106.54 105.2	0.35	7.3 8.6
N_ca-015		0.56	6.4
N_ca-016	102.31	3.39	8.2
N_ca-017		0.2	9.8
N_ca-026	98.34	1.88	6.9
N_ca-043 N_ca-224	87.15 41.12	0.27	9.8 71.3
N_ca-225	41.02	0.28	71.3
N_ca-234	39.43	1.17	72.9
N_ca-260	34.63	1.38	73.5
N_ca-304	25.64	0.32	86.2
N_ca-313 N_ca-320	23.43 22.32	0.16	88.4 89.5
		0.01	

			DISEÑO R	ED BETAI	NIA (REPO	RTE DE T	UBERÍAS)			
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red
T_ca-392	4.47	N_ca-317	N_ca-318	63	130	0.9	0.34	3.09	e	T
T_ca-393	140.3	N_ca-221	N_ca-116	63	130	0.16	0.06	0.13	e	T
T_ca-394	79.29	N_ca-315	N_ca-317	63	130	0.62	0.23	1.54	e	T
T_ca-395	100.64	N_ca-114	N_ca-259	63	130	0.28	0.11	0.37	e	T
T_ca-396	57.28	N_ca-240	N_ca-227	63	130	0.36	0.14	0.57	S	T
T_ca-397	6.24	N_ca-227	N_ca-226	63	130	0.07	0.03	0.03	S	T
T_ca-398	56.93	N_ca-329	N_ca-274	63	130	0	0	0	e	T
T_ca-399	16.35	N_ca-171	N_ca-176	63	130	0.3	0.11	0.4	n	T
T_ca-400	54.35	N_ca-319	N_ca-306	63	130	0.07	0.03	0.03	e	T
T_ca-401	3.33	N_ca-306	N_ca-305	63	130	0.43	0.16	0.78	e	T
T_ca-402	6.63	N_ca-129	N_ca-132	63	130	1.7	0.64	9.95	n	T
T_ca-403	106.61	N_ca-126	N_ca-231	110	130	2.2	0.27	1.07	e	T
T_ca-404	224.26	N_ca-225	N_ca-112	160	130	9.68	0.57	2.69	n	Р
T_ca-405	18.76	N_ca-082	N_ca-073	63	130	1.55	0.58	8.4	e	T
T_ca-406	3.46	N_ca-232	PRV-2	160	130	19.07	1.11	9.45	e	P
T_ca-407	101.11	PRV-2	N_ca-224	160	130	19.07	1.11	9.45	e	P
T_ca-408	29.9	N_ca-034	PRV-3	160	130	17.25	1.01	7.85	e	P
T_ca-409	5.58	PRV-3	N_ca-055	160	130	17.25	1.01	7.85	e	S
T_ca-410	5.27	N_ca-224	N_ca-225	200	130	19.72	0.74	3.38	e	P
T_ca-411	164.74	N_ca-044	N_ca-020	160	130	8.55	0.5	2.14	n	T
T_ca-412	4.4	N_ca-069	N_ca-080	63	130	4.84	1.82	69.41	n	T
T_ca-413	4.42	N_ca-204	N_ca-326	63	130	0.57	0.22	1.34	e	S
T_ca-414	46.42	N_ca-326	N_ca-218	63	130	0.4	0.15	0.68	e	S
T_ca-415	4.47	N_ca-207	N_ca-326	160	130	2.98	0.17	0.3	e	T
T_ca-416	96.62	N_ca-326	N_ca-210	160	130	2.8	0.16	0.27	e	T
T_ca-417	5.14	N_ca-218	N_ca-327	63	130	0.16	0.06	0.12	e	S
T_ca-418	52.19	N_ca-327	N_ca-236	63	130	0.21	0.08	0.21	e	S
T_ca-419	94.68	N_ca-227	N_ca-327	110	130	0.04	0	0	e	Т
T_ca-420	107.04	N_ca-327	N_ca-219	110	130	0.09	0.01	0	e	T
T_ca-421	54.09	N_ca-294	N_ca-328	160	130	15.62	0.91	6.53	e	Р
T_ca-422	2.78	N_ca-328	PRV-4	160	130	16.09	0.94	6.9	e	Р
T_ca-423	101.09	PRV-4	N_ca-030	160	130	16.09	0.94	6.9	e	Р
T_ca-424	536.71	N_ca-225	N_ca-304	200	130	9.76	0.36	0.92	e	Р
T_ca-425	83.66	N_ca-280	N_ca-331	63	130	0	0	0	n	T
T_ca-426	60.4	N_ca-332	N_ca-297	63	130	0	0	0	n	Т
T_ca-427	40.85	N_ca-333	N_ca-289	63	130	0	0	0	n	Т
T_ca-428	227.04	N_ca-031	N_ca-113	63	130	1.03	0.39	3.94	n	Т
T_ca-429	5.77	N_ca-030	N_ca-028	160	130	5.56	0.32	0.96	e	S
T_ca-430	73.34	N_ca-017	N_ca-028	110	130	3.87	0.48	3.04	n	S
T_ca-431	100.88	N_ca-028	N_ca-023	110	130	8.93	1.1	14.29	n	S
T_ca-432	9.68	N_ca-032	N_ca-031	110	130	0.23	0.03	0.02	n	S
T_ca-433	32.57	N_ca-031	N_ca-040	110	130	3.78	0.47	2.91	n	S
T_ca-434	127.41	N_ca-334	N_ca-250	63	130	0	0	0	n	Т
T_ca-435		_	N_ca-250	63	130	0.48	0.18	0.97	n	Т
		_								

	Dia	metros	D RED (RI
Label	Cota	Qdem	Presión

		DISEÑO REI	D SANTA CRUZ	(REPC	ORTE	DE TUBER	ÍAS)			$\overline{}$	DISEÑO	NE Dia	motros	NUDOS)	\neg
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
T_cb-001	298.58	N_cb-122	N cb-140	200	130	66.332	2.48	31.991	e	P	N_cb-001	79.66	0	4.7	Р
T_cb-044	46	N_cb-319	N_cb-310	110	130	6.881	0.85	8.826	e	S	N_cb-044	16.4	0.709	65.3	S
T_cb-066		N_cb-156	N_cb-185	110	130	16.805	2.07			S	N_cb-066	14.66	0.407	66.9	S
T_cb-069		N_cb-110	N_cb-107	110	130	10.751	1.33	20.168	_	S	N_cb-068	14.66	0.44	66.9	T
T_cb-071 T cb-072		N_cb-347 N_cb-223	N_cb-300 N_cb-324	110 110	130	4.645 7.335	0.57	4.263 9.934	_	S S	N_cb-070 N_cb-071	14.4 14.31	0.716	65.6 65.6	S
T_cb-089		N_cb-071	N_cb-083	110	130	10.482	1.29	19.243	e	S	N_cb-089	13.06	0.427	68.4	T
T_cb-090	8.17	N_cb-097	N_cb-091	110	130	10.135	1.25	18.081	e	S	N_cb-091	12.92	0.465	66.8	S
T_cb-091	7.97	N_cb-099	N_cb-104	250	130	7.315	0.17	0.181	e	S	N_cb-092	12.91	0.378	67	T
T_cb-093 T cb-094		N_cb-058 N cb-193	N_cb-099 N_cb-189	250 110	130	5.73 1.625	0.14	0.116	e e	S S	N_cb-094 N_cb-095	12.88 12.85	0.498	65.8 67	S
T_cb-095		N_cb-012	N_cb-019	63	130	1.15	0.43	4.845	n	S	N_cb-096	12.84	0.42	65.8	T
T_cb-096	140.05	N_cb-102	N_cb-121	63	130	0.318	0.12	0.448	s	S	N_cb-097	12.67	0.422	66.9	S
T_cb-097		N_cb-042	N_cb-054	250	130	10.356	0.25	0.346		S	N_cb-098	12.63	0.263	65.4	T
T_cb-101		N_cb-045 N_cb-094	N_cb-046	110 63	130	7.138 1.586	0.88	9.446 8.788	e e	S S	N_cb-102	12.32 12.03	0.469	66.2	S
T_cb-108 T_cb-110		N_cb-094 N cb-172	N_cb-061 N cb-223	110	130	10.548	1.3	19.468		S	N_cb-109 N cb-111	11.93	0.494	66.2	T
T_cb-112		N_cb-195	N_cb-183	110	130	2.127	0.26	1.004		S	N_cb-112	11.92	0.385	66.2	Т
T_cb-113	4.99	N_cb-180	N_cb-179	110	130	1.205	0.15	0.35	e	S	N_cb-113	11.92	0.398	65.5	T
T_cb-114		N_cb-189	N_cb-180	110	130	1.425	0.18	0.478	_	S	N_cb-114	11.9	0.42	65.4	T
T_cb-115 T_cb-116		N_cb-005 N_cb-024	N_cb-006 N cb-045	315 160	130	3.228	0.19	0.352	e e	S S	N_cb-115 N cb-116	11.87 11.71	0.417	66.3 66.2	S
T cb-117		N_cb-024 N cb-361	N_cb-045 N_cb-246	63	130	1.811	0.19	11.244		S	N_cb-116 N cb-117	11.71	0.427	65.5	S
T_cb-118		N_cb-123	N_cb-126	63	130	2.914	1.1	27.121	n	S	N_cb-118	11.66	0.44	65.6	S
T_cb-119	17.14	N_cb-062	N_cb-049	110	130	4.15	0.51	3.46	n	S	N_cb-119	11.57	1.229	66.5	T
T_cb-120		N_cb-392	N_cb-172	110	130	13.564	1.67	31.019	_	S	N_cb-120	11.54	0.432	68.1	T
T_cb-121		N_cb-048 N_cb-140	N_cb-046	90 200	130	5.43 43.633	1.63	15.24 14.728		S	N_cb-121	11.46 11.35	0.251	66.8 68.2	S
T_cb-124 T cb-125		N_cb-140	N_cb-138 N cb-345	110	130	1.448	0.18	0.493		S	N_cb-124 N cb-125	11.16	0.403	67	T
T_cb-128		N_cb-126	N_cb-183	63	130	0.688	0.26	1.871	n	S	N_cb-128	10.46	0.676	67.6	T
T_cb-129	1.9	N_cb-325	N_cb-326	110	130	0.852	0.11	0.184	e	S	N_cb-129	10.45	0.458	66.7	T
T_cb-130		N_cb-310	N_cb-282	63	130	1.257	0.47	5.719	_	S	N_cb-130	10.41	0.436	66.8	T
T_cb-131		N_cb-126	N_cb-127	63	130	0.149	0.06		_	S S	N_cb-131	10.32	0.517	67.9	T
T_cb-132 T cb-134		N_cb-019 N_cb-036	N_cb-027 N_cb-079	63 63	130	0.628	0.24	1.253	n s	T	N_cb-132 N_cb-134	10.31 10.24	0.442	66.3 67.9	T
T_cb-144		N_cb-111	N_cb-113	63	130	1.533	0.58	8.253	n	T	N_cb-144	10.03	0.417	68	T
T_cb-147	5.68	N_cb-147	N_cb-098	63	130	0.34	0.13	0.509	n	T	N_cb-147	9.85	0.07	68.2	T
T_cb-187		N_cb-006	N_cb-007	315	130	31.332	0.47	0.872	e	T	N_cb-187	4.18	0.19	65.4	T
T_cb-192 T_cb-210		N_cb-064 N_cb-337	N_cb-065 N_cb-358	63 63	130	1.665 0.651	0.63	9.614		T	N_cb-192 N_cb-210	4.02 3.25	0.2	66.6 65.9	T
T cb-250		N_cb-337	N_cb-336	63	130	0.822	0.24	2.603	_	T	N_cb-210	2.91	0.418	65.2	T
T_cb-392		N_cb-105	N_cb-127	63	130	0.623	0.23	1.559		T					-
T_cb-393	23.59	N_cb-093	N_cb-105	110	130	1.705	0.21	0.666	n	T					-
T_cb-394		N_cb-282	N_cb-307	63	130	0.942	0.35			T					-
T_cb-395 T_cb-396		N_cb-120 N_cb-307	N_cb-124 N_cb-352	63 63	130	2.355 2.031	0.89	18.288 13.901		T T					-
T_cb-390		N_cb-006	N_cb-026	200	130	31.031	1.16	7.834		T					-
T_cb-398		N_cb-129	N_cb-132	63	130	1.335	0.5	6.39		Т					-
T_cb-399		N_cb-130	N_cb-129	63	130	1.478	0.56	7.718		T					-
T_cb-400		N_cb-144	N_cb-130	63	130	1.555	0.58	8.473	_	T					-
T_cb-401 T_cb-402		N_cb-022 N_cb-010	N_cb-021 N_cb-022	63 63	130	0.49	0.18	0.997		T T		\vdash			-
T_cb-403		N_cb-037	N_cb-010	63	130	0.099	0.04	0.04	_	T					-
T_cb-404	82.3	N_cb-022	N_cb-040	63	130	0.046	0.02	0.012	e	Т					-
T_cb-405		N_cb-040	N_cb-030	63	130	0.242	0.09	0.27		T					-
T_cb-406		N_cb-063	N_cb-037	63	130	0.089	0.03	0.037	_	T					-
T_cb-407 T_cb-408		N_cb-058 N_cb-042	N_cb-057 N_cb-038	250 63	130	7.446 0.831	0.18	0.188 2.657	_	T T					-
T_cb-408		N_cb-042 N_cb-244	N_cb-233	63	130	0.831	0.04	0.067		T					-
T_cb-410		N_cb-138	N_cb-149	200	130	13.24	0.49	1.618	_	T					-
T_cb-411	22.37	N_cb-146	N_cb-145	63	130	3.073	1.16	29.923	n	T					-
T_cb-412		N_cb-354	N_cb-356	63	130	0.431	0.16	0.787	_	T					-
T_cb-413 T cb-414		N_cb-182	N_cb-181 N_cb-008	63 63	130	3.358 0.084	0.03	35.263		T T		\vdash			-
T_cb-414		N_cb-004 N_cb-155	N_cb-161	63	130	0.084	0.03	0.038	_	T					-
00 415	0.27	200	00 101	- 00	200	0.000	0.02	0.027		-					ш

		DISEÑO REI	D SANTA CRUZ	(REPO	ORTE	DE TUBER	ÍAS)				DISEÑ	IO RE Dia	motros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Qdem	Presión	Red
T cb-416	16 16	N cb-155	N cb-168	63	130	0.076	0.03	Unit. 0.032	n	Т					-
T_cb-410		N_cb-150	N_cb-108	63	130	0.076	0.03		n	T		+			-
T_cb-418		N_cb-135	N_cb-150	63	130	1.821	0.68		n	T		1			-
T_cb-419	12.2	N_cb-135	N_cb-133	90	130	9.479	1.75	42.773	n	T					-
T_cb-420	38.5	N_cb-142	N_cb-135	90	130	7.588	1.4	28.323	n	T					-
T_cb-421	48.05	N_cb-182	N_cb-152	63	130	0.138	0.05	0.096	n	T					-
T_cb-422		N_cb-186	N_cb-182	63	130	3.052	1.15	29.543	n	T					-
T_cb-423		N_cb-244	N_cb-267	63	130	0.179	0.07	0.155	n	T		+			-
T_cb-424 T cb-425		N_cb-145 N cb-157	N_cb-148 N cb-158	63 90	130	0.45 4.738	0.17	0.853 11.837	n n	T		+	 		-
T cb-426		N_cb-137	N_cb-136	63	130	3.157	1.19	31.456	n	Ť		+	\vdash		-
T cb-427		N cb-136	N cb-142	63	130	4.333	1.63	56.54	n	T		1			-
T_cb-428	12.82	N_cb-170	N_cb-178	63	130	2.218	0.83	16.361	n	Т					-
T_cb-429	5.16	N_cb-170	N_cb-167	63	130	0.037	0.01	0.008	n	T					-
T_cb-430		N_cb-165	N_cb-170	63	130	2.289	0.86		n	T					-
T_cb-431		N_cb-165	N_cb-164	63	130	0.275	0.1		n	T					-
T_cb-432		N_cb-157	N_cb-154	63	130	2.061	0.77			T T		1	<u> </u>		-
T_cb-433 T_cb-434		N_cb-153 N_cb-176	N_cb-157 N_cb-164	63 63	130	2.692	1.01 0.88	18.045	n n	T		+	<u> </u>		-
T cb-435		N_cb-176	N_cb-164 N cb-178	63	130	1.252	0.47	5.676	n n	T		1	 		-
T_cb-436		N_cb-154	N_cb-153	63	130	0.487	0.18	0.988	n	T		1			-
T_cb-437		N_cb-133	N_cb-153	63	130	3.262	1.23	33.421	n	T					-
T_cb-438	61.77	N_cb-145	N_cb-186	63	130	2.287	0.86	17.314	n	Т					-
T_cb-439		N_cb-199	N_cb-309	63	130	2.527	0.95	20.832	n	T					-
T_cb-440		N_cb-137	N_cb-123	110	130	5.142	0.63	5.145	n	T					-
T_cb-441		N_cb-143	N_cb-137	90	130	4.138	0.76		n	T		-			-
T_cb-442		N_cb-126	N_cb-179	90	130	0.835	0.15		n	T		+	<u> </u>		-
T_cb-443 T cb-444		N_cb-302 N_cb-302	N_cb-305 N_cb-318	63 63	130	0.11 1.507	0.04	0.063 7.997	n n	T		+	 		-
T_cb-445		N_cb-251	N_cb-302	63	130	1.65	0.62		n	T		+	 		-
T_cb-446		N_cb-318	N_cb-354	63	130	0.82	0.31	2.591	n	Т		1			-
T_cb-447		N_cb-354	N_cb-343	63	130	0.132	0.05	0.088	n	Т					-
T_cb-448	13.22	N_cb-317	N_cb-298	63	130	0.11	0.04	0.063	n	T					-
T_cb-449		N_cb-298	N_cb-284	63	130	0.138	0.05	0.095	n	T					-
T_cb-450		N_cb-316	N_cb-298	63	130	0.385	0.14	0.639	n	T					-
T_cb-451		N_cb-329	N_cb-368	63	130	0.716	0.27	2.015	n	T		+			-
T_cb-452 T cb-453		N_cb-169 N_cb-288	N_cb-181 N cb-309	63 63	130	0.076 1.038	0.03	0.032 4.01	n n	T T		+	 		-
T cb-454		N_cb-266 N cb-165	N_cb-309 N cb-158	63	130	2.058	0.39	14.243	n	T		+			-
T cb-455		N_cb-199	N cb-198	110	130	1.333	0.16	0.422	e	T		1			-
T_cb-456		N_cb-183	N_cb-199	110	130	4.207	0.52	3.548	e	Т					-
T_cb-457	26.3	N_cb-329	N_cb-297	63	130	0.209	0.08	0.206	n	Т					-
T_cb-458	33.21	N_cb-252	N_cb-202	63	130	0.948	0.36	3.388	n	T					-
T_cb-459		N_cb-202	N_cb-251	63	130	2.493	0.94		n	T					-
T_cb-460		N_cb-175	N_cb-202	63	130	1.641	0.62	9.364		T		+			-
T_cb-461 T_cb-462		N_cb-198 N_cb-198	N_cb-252 N cb-175	63 110	130	1.135 0.159	0.43	4.729 0.008		T T		+	-		-
T_cb-463		N_cb-198	N_cb-1/5 N_cb-316	63	130	1.625	0.02	9.196		T		+			-
T_cb-464		N_cb-251	N_cb-288	63	130	0.726	0.01	2.067		T		1			-
T_cb-465		N_cb-158	N_cb-164	63		2.646	0.99	22.676		T		1			-
T_cb-466		N_cb-166	N_cb-173	160	130	2.554	0.15	0.229	e	T					-
T_cb-467		N_cb-309	N_cb-329	63	130	1.303	0.49	6.109		T					-
T_cb-468		N_cb-237	N_cb-232	63	130	0.304	0.11	0.413		T		1			-
T_cb-469		N_cb-133	N_cb-141	110	130	12.903	1.59	28.278		T		+			-
T_cb-470 T cb-471		N_cb-277 N_cb-239	N_cb-285	63 63	130	2.822 2.567	1.06 0.96	25.549 21.443	_	T		+			-
T_cb-471		N_cb-235	N_cb-226 N_cb-239	63	130	2.567	0.90	22.649	_	T		+	 		-
T_cb-472		N_cb-235	N_CD-239 N_Cb-212	90	130	5.328	0.99	14.718	_	T		+			-
T_cb-473		N_cb-233	N_cb-212	63	130	2.834	1.07	25.766		T		1			-
T_cb-475		N_cb-206	N_cb-212	90	130	8.25	1.52	33.071		T		1			-
T_cb-476		N_cb-277	N_cb-290	63	130	0.179	0.07	0.155	n	T					-
T_cb-477	15.14	N_cb-230	N_cb-277	63	130	3.061	1.15	29.702	n	T					-
T_cb-478		N_cb-234	N_cb-232	63	130	1.573	0.59	8.657		T					-
T_cb-479		N_cb-231	N_cb-234	63	130	1.513	0.57	8.056		T		+	<u> </u>		-
T_cb-480	3.98	N_cb-230	N_cb-231	63	130	1.48	0.56	7.734	n	T				L	-

T_cb-482 27.4 T_cb-483 26.3 T_cb-484 26.5 T_cb-485 27.8 T_cb-486 46.9 T_cb-487 33.0 T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.0 T_cb-492 31.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 58.3 T_cb-499 58.3 T_cb-490 54.3 T_cb-496 16.9 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.3 T_cb-509 28.6 T_cb-510 33.6 T_cb-510 33.6 T_cb-510 33.6 T_cb-510 33.6 T_cb-501 33.6 T_cb-503 33.6 T_cb-504 16.6 T_cb-505 34.9 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 33.6 T_cb-510 33.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.3	Nodo Inicial 1 N_cb-285 7 N_cb-208 33 N_cb-226 22 N_cb-237 4 N_cb-178 77 N_cb-178 17 N_cb-178 18 N_cb-241 19 N_cb-241 19 N_cb-243 4 N_cb-243 4 N_cb-243 10 N_cb-173 10 N_cb-173 11 N_cb-173 12 N_cb-240 1 N_cb-391 17 N_cb-137 2 N_cb-226 3 N_cb-226 4 N_cb-264 4 N_cb-265 4 N_cb-136	N_cb-248 N_cb-248 N_cb-242 N_cb-242 N_cb-266 N_cb-188 N_cb-242 N_cb-186 N_cb-242 N_cb-186 N_cb-391 N_cb-391 N_cb-361 N_cb-361 N_cb-361 N_cb-242	DN 63 63 63 63 63 63 63 63 63 63 63 63 63	C 130 130 130 130 130 130 130 130 130 130	0.432 1.611 3.226 1.212 6.779 5.909 0.153 1.503 2.446 3.648 4.254 0.227 1.669	Vel. 0.16 0.61 1.21 0.46 1.25 1.09 0.06 0.56 0.92 1.37 0.25 0.09	Perd. Unit. 0.79 9.054 32.745 5.344 22.99 17.822 0.116 7.959 19.616 41.106	Notas n n n n n n	Red T T T T T T T T T T T T T T T T T T	Label	Cota	Qdem	Presión	Red
T_cb-482 27.4 T_cb-483 26.3 T_cb-484 26.5 T_cb-485 27.8 T_cb-486 46.9 T_cb-487 33.0 T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.0 T_cb-492 31.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 58.8 T_cb-490 58.3 T_cb-491 40.0 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.3 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	77 N_cb-208 3 N_cb-226 2 N_cb-237 44 N_cb-178 77 N_cb-178 77 N_cb-241 12 N_cb-242 44 N_cb-247 66 N_cb-173 33 N_cb-173 36 N_cb-173 46 N_cb-187 47 N_cb-391 47 N_cb-391 47 N_cb-391 47 N_cb-226 48 N_cb-240 41 N_cb-240 44 N_cb-255	N_cb-237 N_cb-248 N_cb-242 N_cb-266 N_cb-188 N_cb-242 N_cb-186 N_cb-242 N_cb-186 N_cb-391 N_cb-391 N_cb-361 N_cb-351 N_cb-230 N_cb-230 N_cb-217	63 63 90 90 63 63 63 160 63 63 63	130 130 130 130 130 130 130 130 130 130	1.611 3.226 1.212 6.779 5.909 0.153 1.503 2.446 3.648 4.254 0.227	0.61 1.21 0.46 1.25 1.09 0.06 0.56 0.92 1.37	9.054 32.745 5.344 22.99 17.822 0.116 7.959 19.616 41.106	n n n n n	T T T T T T T					- - -
T_cb-483	3 N_cb-226 2 N_cb-237 4 N_cb-178 7 N_cb-178 7 N_cb-241 12 N_cb-242 4 N_cb-247 6 N_cb-173 3 N_cb-173 6 N_cb-173 16 N_cb-162 16 N_cb-162 16 N_cb-391 17 N_cb-391 17 N_cb-391 17 N_cb-391 17 N_cb-266 13 N_cb-226 13 N_cb-226 14 N_cb-255	N_cb-248 N_cb-242 N_cb-206 N_cb-188 N_cb-242 N_cb-186 N_cb-186 N_cb-391 N_cb-391 N_cb-391 N_cb-361 N_cb-351 N_cb-230 N_cb-230 N_cb-217	63 90 90 63 63 63 160 63 63 63	130 130 130 130 130 130 130 130 130 130	3.226 1.212 6.779 5.909 0.153 1.503 2.446 3.648 4.254 0.227	1.21 0.46 1.25 1.09 0.06 0.56 0.92 1.37 0.25	32.745 5.344 22.99 17.822 0.116 7.959 19.616 41.106	n n n n	T T T T T					-
T_cb-484 26.9 T_cb-485 27.8 T_cb-486 46.9 T_cb-487 33.0 T_cb-488 17.8 T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.6 T_cb-492 31.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-499 58.1 T_cb-500 27.8 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-511 11.1	2 N_cb-237 4 N_cb-178 7 N_cb-178 7 N_cb-241 12 N_cb-242 4 N_cb-287 6 N_cb-173 3 N_cb-173 6 N_cb-162 6 N_cb-162 1 N_cb-391 17 N_cb-391 17 N_cb-391 17 N_cb-391 17 N_cb-266 11 N_cb-266 13 N_cb-266 14 N_cb-255	N_cb-242 N_cb-206 N_cb-188 N_cb-242 N_cb-186 N_cb-242 N_cb-186 N_cb-391 N_cb-391 N_cb-391 N_cb-361 N_cb-391 N_cb-361 N_cb-230 N_cb-217	63 90 90 63 63 63 160 63 63 63	130 130 130 130 130 130 130 130 130	1.212 6.779 5.909 0.153 1.503 2.446 3.648 4.254 0.227	0.46 1.25 1.09 0.06 0.56 0.92 1.37 0.25	5.344 22.99 17.822 0.116 7.959 19.616 41.106	n n n n	T T T T					-
T_cb-485 27.8 T_cb-486 46.9 T_cb-487 33.0 T_cb-488 17.3 T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.6 T_cb-491 40.6 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 58.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-505 9.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 33.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	4 N_cb-178 7 N_cb-178 7 N_cb-241 12 N_cb-242 4 N_cb-287 16 N_cb-173 13 N_cb-173 16 N_cb-162 16 N_cb-162 17 N_cb-391 17 N_cb-391 17 N_cb-37 12 N_cb-226 13 N_cb-206 14 N_cb-255	N_cb-206 N_cb-188 N_cb-242 N_cb-186 N_cb-242 N_cb-186 N_cb-391 N_cb-156 N_cb-391 N_cb-361 N_cb-361 N_cb-230 N_cb-217	90 90 63 63 63 160 63 63 63	130 130 130 130 130 130 130 130	6.779 5.909 0.153 1.503 2.446 3.648 4.254 0.227	1.25 1.09 0.06 0.56 0.92 1.37 0.25	22.99 17.822 0.116 7.959 19.616 41.106	n n n	T T T					-
T_cb-486 46.9 T_cb-487 33.0 T_cb-488 17.8 T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.6 T_cb-491 40.6 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 58.3 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.6 T_cb-502 12.7 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	77 N_cb-178 77 N_cb-241 78 N_cb-242 44 N_cb-287 66 N_cb-173 33 N_cb-173 66 N_cb-162 66 N_cb-391 77 N_cb-391 77 N_cb-37 12 N_cb-226 33 N_cb-206 44 N_cb-255	N_cb-188 N_cb-242 N_cb-186 N_cb-242 N_cb-186 N_cb-391 N_cb-156 N_cb-391 N_cb-361 N_cb-361 N_cb-230 N_cb-217	90 63 63 63 160 63 63 63	130 130 130 130 130 130 130	5.909 0.153 1.503 2.446 3.648 4.254 0.227	1.09 0.06 0.56 0.92 1.37 0.25	17.822 0.116 7.959 19.616 41.106	n n n	T T					-
T_cb-487 33.0 T_cb-488 17.8 T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.6 T_cb-491 40.6 T_cb-492 31.2 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-490 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 33.9 T_cb-510 33.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	77 N_cb-241 27 N_cb-242 44 N_cb-287 66 N_cb-173 33 N_cb-173 66 N_cb-162 61 N_cb-240 11 N_cb-391 77 N_cb-137 12 N_cb-226 33 N_cb-206 44 N_cb-255	N_cb-242 N_cb-186 N_cb-242 N_cb-186 N_cb-191 N_cb-156 N_cb-391 N_cb-391 N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 63 63 160 63 63 63	130 130 130 130 130 130	0.153 1.503 2.446 3.648 4.254 0.227	0.06 0.56 0.92 1.37 0.25	0.116 7.959 19.616 41.106	n n	T T					-
T_cb-488 17.8 T_cb-489 107.7 T_cb-490 54.8 T_cb-491 40.6 T_cb-491 40.6 T_cb-492 31.2 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-496 58.8 T_cb-497 19.7 T_cb-498 58.8 T_cb-500 27.8 T_cb-501 30.6 T_cb-501 30.6 T_cb-504 16.6 T_cb-505 9.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-506 34.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-510 33.6	12 N_cb-242 14 N_cb-287 16 N_cb-173 13 N_cb-173 16 N_cb-162 16 N_cb-240 17 N_cb-391 17 N_cb-37 17 N_cb-226 13 N_cb-226 14 N_cb-255	N_cb-186 N_cb-242 N_cb-186 N_cb-391 N_cb-156 N_cb-391 N_cb-361 N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 63 160 63 63 63 63	130 130 130 130 130	1.503 2.446 3.648 4.254 0.227	0.56 0.92 1.37 0.25	7.959 19.616 41.106	n n	T					$\overline{}$
T_cb-489 107.7 T_cb-490 54.3 T_cb-491 40.6 T_cb-492 31.2 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-499 58.3 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.6 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-509 33.6 T_cb-509 33.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.3	4 N_cb-287 6 N_cb-173 3 N_cb-173 6 N_cb-162 6 N_cb-240 1 N_cb-391 7 N_cb-137 12 N_cb-226 3 N_cb-206 4 N_cb-255	N_cb-242 N_cb-186 N_cb-391 N_cb-156 N_cb-391 N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 160 63 63 63 63	130 130 130 130 130	2.446 3.648 4.254 0.227	0.92 1.37 0.25	19.616 41.106	n	-					-
T_cb-490 54.3 T_cb-491 40.6 T_cb-491 40.6 T_cb-492 31.2 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	16 N_cb-173 13 N_cb-173 16 N_cb-162 16 N_cb-240 11 N_cb-391 17 N_cb-137 12 N_cb-226 13 N_cb-206 14 N_cb-255	N_cb-186 N_cb-391 N_cb-156 N_cb-391 N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 160 63 63 63 63	130 130 130 130	3.648 4.254 0.227	1.37 0.25	41.106		Т			l .		-
T_cb-491 40.6 T_cb-492 31.2 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-511 11.1	33 N_cb-173 66 N_cb-162 66 N_cb-240 11 N_cb-391 17 N_cb-137 12 N_cb-226 13 N_cb-206 14 N_cb-255	N_cb-391 N_cb-156 N_cb-391 N_cb-361 N_cb-151 N_cb-230 N_cb-217	160 63 63 63 63	130 130 130	4.254 0.227	0.25								-
T_cb-492 31.2 T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.3 T_cb-508 20.3 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	66 N_cb-162 66 N_cb-240 .1 N_cb-391 .7 N_cb-137 .2 N_cb-226 .3 N_cb-206 .4 N_cb-255	N_cb-156 N_cb-391 N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 63 63	130 130	0.227		0.587	n	Т					-
T_cb-493 60.2 T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 58.2 T_cb-499 58.2 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6 T_cb-513 10.3	6 N_cb-240 1 N_cb-391 17 N_cb-137 12 N_cb-226 13 N_cb-206 14 N_cb-255	N_cb-391 N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 63 63	130		0.09		e	Т		1			-
T_cb-494 94 T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-500 27.8 T_cb-501 30.0 T_cb-501 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6.0 T_cb-510 33.6.0	1 N_cb-391 37 N_cb-137 12 N_cb-226 13 N_cb-206 14 N_cb-255	N_cb-361 N_cb-151 N_cb-230 N_cb-217	63 63		1.669		0.24	n	Т					-
T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.6 T_cb-502 12.7 T_cb-503 26.6 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-512 35.6	7 N_cb-137 2 N_cb-226 3 N_cb-206 4 N_cb-255	N_cb-151 N_cb-230 N_cb-217	63	130		0.63	9.661	n	Т		1			-
T_cb-495 44.8 T_cb-496 16.9 T_cb-497 19.7 T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.6 T_cb-502 12.7 T_cb-503 26.6 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-508 20.2 T_cb-509 28.6 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.9	7 N_cb-137 2 N_cb-226 3 N_cb-206 4 N_cb-255	N_cb-230 N_cb-217			1.164	0.44	4.955	n	T		1			-
T_cb-497 19.1 T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.0 T_cb-505 9.0 T_cb-506 34.5 T_cb-507 25.0 T_cb-508 20.0 T_cb-509 28.0 T_cb-510 33.0 T_cb-511 11.1 T_cb-512 35.0 T_cb-513 10.1	73 N_cb-206 84 N_cb-255	N_cb-217	63	130	0.54	0.2	1.195	n	Т					-
T_cb-498 5.8 T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.0 T_cb-505 9.0 T_cb-506 34.9 T_cb-507 25.0 T_cb-508 20.0 T_cb-509 28.0 T_cb-510 33.0 T_cb-511 11.3 T_cb-512 35.0 T_cb-513 10.3	4 N_cb-255	-		130	1.61	0.61	9.035	n	Т		1			-
T_cb-499 58.3 T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.6 T_cb-508 20.0 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.3 T_cb-512 35.6 T_cb-513 10.3			63	130	1.506	0.57	7.983	n	Т					-
T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.0 T_cb-505 9.0 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.0 T_cb-509 28.0 T_cb-510 33.0 T_cb-511 11.1 T_cb-512 35.0 T_cb-513 10.1	4 N_cb-136	N cb-244	63	130	0.043	0.02	0.011	n	Т		1			-
T_cb-500 27.8 T_cb-501 30.0 T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.0 T_cb-505 9.0 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.0 T_cb-509 28.0 T_cb-510 33.0 T_cb-511 11.1 T_cb-512 35.0 T_cb-513 10.1		N cb-166	160	130	3.092	0.18	0.325	e	Т		1			-
T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.3	34 N cb-283	N cb-247	63	130	0.075	0.03	0.031	n	Т					-
T_cb-502 12.7 T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.3	08 N_cb-283	N_cb-293	63	130	1.966	0.74	13.089	n	Т		1			-
T_cb-503 26.0 T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-508 20.2 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.1	2 N_cb-261	N cb-283	63	130	2.19	0.82	15.984	n	Т		1			-
T_cb-504 16.6 T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.9	2 N cb-268	N cb-191	63	130	0.074	0.03	0.03	n	т		1			-
T_cb-505 9.6 T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.2 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.9	9 N_cb-268	N cb-258	63	130	0.251	0.09	0.289	n	Т		1			-
T_cb-506 34.9 T_cb-507 25.9 T_cb-508 20.3 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.3 T_cb-512 35.6 T_cb-513 10.9	7 N cb-261	N cb-268	63	130	0.377	0.14	0.615	n	Т		1			-
T_cb-508 20.2 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.2 T_cb-512 35.6 T_cb-513 10.9	7 N cb-258	N cb-197	63	130	0.132	0.05	0.088	n	Т		1			-
T_cb-508 20.2 T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.2 T_cb-512 35.6 T_cb-513 10.9	6 N_cb-258	N cb-204	63	130	0.054	0.02	0.017	n	т		1			-
T_cb-509 28.6 T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.9	6 N cb-187	N cb-185	63	130	2.511	0.94	20.583	n	T		1			-
T_cb-510 33.6 T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.9	64 N cb-217	N cb-207	90	130	1.706	0.32	1.785	n	T		1			-
T_cb-511 11.1 T_cb-512 35.6 T_cb-513 10.5	9 N cb-248	N cb-261	63	130	2.633	0.99	22,482	n	T		1			-
T_cb-512 35.6 T_cb-513 10.5	.8 N cb-217	N cb-222	63	130	0.081	0.03	0.036	n	Т		1			-
T_cb-513 10.5	7 N cb-166	N cb-163	63	130	0.259	0.1	0.307	n	T		1			-
_	55 N cb-221	N cb-238	160	130	1.025	0.06	0.042	e	T					-
	1 N cb-391	N_cb-221	160	130	1.21	0.07	0.057	e	T		1			-
T cb-515 10.3	5 N cb-270	N cb-221	63	130	0.156	0.06	0.12	n	T		1			-
_	1 N cb-238	N cb-353	63	130	0.384	0.14	0.636	n	T		1	 		-
_	7 N cb-238	N cb-271	160	130	0.575	0.03	0.014	e	Ť		1	†		-
_	35 N cb-254	N cb-303	63	130	0.223	0.08	0.232	n	Ť		 			-
	7 N cb-303	N cb-278	63	130	2.794	1.05	25.095	n	Ť					-
_		N cb-303	63	130	3.173	1.19	31.761	n	T		<u> </u>			-
_	91N CD-285	N cb-235	63	130	2.622	0.99	22.298	n	i		 			-
	9 N_cb-285 05 N_cb-225	N cb-225	63	130	1.33	0.55	6.343	n	T		 	 		-
	5 N_cb-225	N cb-226	63	130	2.347	0.88	18.165	n	T		 			-
_	05 N_cb-225 05 N_cb-232	N_cb-225	63	130	1.127	0.42	4.669	n	Ť		 			-
	05 N_cb-225 05 N_cb-232 03 N_cb-225	00 223	63	130	0.044	0.02	0.012	n	'		 			-
	05 N_cb-225 05 N_cb-232	N cb-219	- 55	100	0.044	0.02	0.012		\vdash		1			-

Liber Image			DISEÑO RED	GUACHARAC	A (REP	ORTE	DE TUBER	RÍAS)				DISEÑO	RE Dia	metros	NUDOS)	
Tabe	Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.		Notas	Red	Label			Presión	Red
Tabe	T_sa-001	72.1	N_sa-122	N_sa-184	355	130	95.67	1.14	3.86	s	P	N_sa-001	136.87	3.67	4.5	S
Tage-004	T_sa-002		_	N_sa-048	315	130		0.88	2.78	n		N_sa-002	135.88	0.49	-2.86	-
Taylor T			_	_						n	-	_	-			-
Tag-2010	_		_	_	-						<u> </u>					-
Tabe	_		_	_				_			<u> </u>	_				-
Table Tabl	_		_	_	$\overline{}$						-	_				-
T3-90-91 177-7 N N N 9-90	_		_	_				$\overline{}$		e c		_				-
T3-9-104	_		_	_						5	-	_				-
Table 101.31 N 10 10 10 10 10 10 10	_		_	_	-	-				e		_	-			-
Tabe 19	_		_	_				_		S	\rightarrow					-
T_25-241	T_sa-128	113.76	N_sa-378	N_sa-418	110	130	3.45	0.43	2.46	S	S	N_sa-128	89.91	1.87	1.86	S
Type-248	T_sa-213	84.76	N_sa-207	N_sa-183	90	130	4.87	0.9	12.45	e	S	N_sa-211	76.45	2.16	66.43	P
T39-246	T_sa-241	145.06	N_sa-250	N_sa-413	250	130	49.42	1.18	6.25	n	S	N_sa-239	74.04	0.03	66.77	P
T_59-274 R.2. 89 N_52-355 M_52-388 63 130 0.23 0.09 0.25 T T M_52-262 66.77 0.6 72.28 P T_59-273 S.5 N_52-455 N_52-455 0.6 130 0.4 0.15 0.68 0.7 T.5 N_52-273 68.89 0.07 71.61 5 T_59-286 90.89 N_52-448 N_52-455 63 130 121 0.45 5.33 T N_52-284 68.07 0.5 0.7 71.15 T T_59-301 77.61 N_52-251 N_52-248 63 130 0.26 0.1 0.32 T N_52-284 68.07 0.5 0.5 67.21 T T_59-304 7.61 N_52-251 N_52-248 63 130 0.26 0.1 0.32 T N_52-390 66.19 0.98 67.21 T T_59-309 7.83 N_52-258 N_52-77 63 130 0.15 0.06 0.15 0.06 0.15 0.06 0.15 T_59-328 61.59 N_52-385 N_52-377 63 130 0.15 0.06 0.15 0.06 0.15 0.06 0.15 T_59-399 65.73 N_52-168 N_52-215 63 130 0.10 0.00 0.00 5 T T_59-399 65.73 N_52-168 N_52-215 63 130 0.11 0.00 0.00 5 T T_59-390 65.73 N_52-266 N_52-29 N_52-266 0.10 0.00 0.00 5 T T_59-3420 45.85 N_52-477 N_52-425 110 130 5.95 0.73 6.73 N T T_59-3431 55.45 N_52-077 N_52-111 63 130 0.12 0.47 5.96 N T T_59-3431 55.45 N_52-278 N_52-285 0.13 0.11 0.01 0.00 0.	_		_	_	-	_				e	\longrightarrow	_	_			-
Type 278 3.51 N 22-457 M 22-456 110 130 2.61 0.32 1.47 to 5.8 N 22-771 68.89 0.07 71.61 P Type 278 B 422 N 28-055 N 28-055 68 130 0.4 0.15 0.68 e T N 28-272 0.68.67 0.26 70.11 5 T T 28-2801 90.88 N 28-448 N 12-042 0.68 130 1.21 0.45 5.38 e T N 28-272 0.68.67 0.26 70.11 5 T T 28-301 75.46 N 28-22 N 18-2424 0.68 130 1.84 0.69 11.57 5 N 18-299 0.66.63 0.54 0.78 8 N 28-279 0.66.63 0.54 0.78 8 N 28-299 0.66.73 0.98 6.72 1 T N 28-290 0.65.7 0.58 0.98 0.98 6.72 1 T N 28-290 0.65.72 0.58 0.98 0.98 6.72 1 T N 28-290 0.99 0.98 0.72 1 T N 28-290 0.99 0.98 0.98 0.72 1 T N 28-290 0.99 0.98 0.98 0.98 0.72 1 T N 28-290 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.	_		_	_	-	_				S	\longrightarrow	_	-			_
T_par-244 94.22 N_par-955 N_par-970 63 130 0.4 0.15 0.68 cm T N_par-226 0.08 0 N_par-448 N_par-246 63 130 1.21 0.45 (0.58) T N_par-228 68.07 0.9 71.15 T N_par-284 68.07 0.9 71.15 T N_par-284 68.07 0.9 71.15 T N_par-280 66.68 0.54 67.28 7 N_par-280 66.68 0.54 67.28 7 7 N_par-280 66.68 0.54 67.28 7 N_par-280 66.57 0.56 0.1 0.0	_		_	_		_				5	\longrightarrow		_			-
T_SP-266 99.98 N_SP-448 N_SP-455 63 130 1.21 0.45 5.33 T N_SP-284 68.07 0.9 71.15 T T_SP-301 97.46 N_SP-422 N_SP-244 63 130 1.84 0.69 11.57 T N_SP-302 66.63 0.54 67.88 5 T_SP-309 97.83 N_SP-236 N_SP-3111 63 130 1.55 0.58 8.38 e T N_SP-307 65.72 0.58 69.11 7 T_SP-309 97.83 N_SP-248 N_SP-307 63 130 1.01 0.07 0.18 T N_SP-307 65.72 0.58 69.11 5 T_SP-399 65.24 N_SP-249 N_SP-366 63 130 0.01 0.0 0.0 T N_SP-397 55.30 0.15 65.21 T T_SP-403 35.54 N_SP-407 N_SP-356 63 130 0.01 0.0 0.0 0.0 T N_SP-397 55.30 0.15 65.80 7 T_SP-4420 45.25 N_SP-488	_		_	_						5	$\overline{}$	_				-
T_pa-901 97.46 N_pa-422 N_pa-424 63 130 1.84 0.69 11.57 T N_pa-299 66.63 0.54 67.88 5 T_pa-304 7.61 N_pa-251 N_pa-248 63 130 0.26 0.1 0.32 T N_pa-302 66.19 0.59 67.21 T N_pa-302 66.19 0.59 67.21 T N_pa-302 66.19 0.59 67.21 T N_pa-303 61.59 N_pa-385 N_pa-377 63 130 0.19 0.07 0.18 E T N_pa-326 63.26 0.09 79.49 P N_pa-386 N_pa-386 83 130 0.12 0.07 0.18 E T N_pa-326 63.26 0.09 79.49 P N_pa-386 83 130 0.12 0.04 0.06 T N_pa-326 63.26 0.09 79.49 P N_pa-338 65.73 N_pa-3215 63 130 0.1 0.04 0.06 T N_pa-326 63.26 0.09 79.49 P N_pa-340	_		_	_	-					_	<u> </u>	_	_			-
T_pa-304	_		_	_		_					<u> </u>	_	_			-
T_3-9309	_		_	_						_		_				-
T_sa-998			_	_		130	1.55	0.58	8.38	e	T		65.72	0.58		-
T_sa-999 65.73 N_sa-168	T_sa-328			N_sa-377	63	130	0.19	0.07	0.18	e	Т		63.26	0.09	79.49	Р
T_5a-403 35.94 N_5a-247 N_5a-256 63 130 0.01 0 0 0 E T N_5a-410 152.38 0.13 65.69 S T_5a-420 48.85 N_5a-477 N_5a-111 63 130 1.24 0.47 5.58 N T N_5a-418 48.99 0.54 65.69 S T_5a-432 52.82 N_5a-218 N_5a-268 63 130 0.3 0.11 0.39 E T N_5a-430 46.13 0.2 68.22 T T_5a-431 51.40 N_5a-266 N_5a-315 63 130 0.64 0.24 1.63 S T N_5a-430 46.13 0.2 68.22 T T_5a-435 14.07 N_5a-266 N_5a-315 63 130 0.69 0.26 1.86 N T N_5a-433 45.04 0.7 69.78 T N_5a-437 11.92 N_5a-338 63 130 0.73 0.28 2.11 N T N_5a-433 44.94 0.28 68.63 T N_5a-437 11.92 N_5a-315 N_5a-316 63 130 0.69 0.26 1.86 N T N_5a-434 44.94 0.28 68.63 T N_5a-437 11.92 N_5a-315 N_5a-318 63 130 0.75 0.28 2.11 N T N_5a-437 44.72 0.63 68.84 T N_5a-437 11.92 N_5a-315 N_5a-38 63 130 0.79 0.37 3.65 E T N_5a-435 44.72 0.63 68.84 T N_5a-445 11.13 N_5a-347 N_5a-38 63 130 0.79 0.37 3.65 E T N_5a-435 44.72 0.63 68.84 T N_5a-458 58.81 N_5a-259 N_5a-382 63 130 2.62 0.98 22.22 E T N_5a-456 39.66 0.22 74.75 S T_5a-461 387.8 N_5a-484 N_5a-490 63 130 0.60 0.60 0.13 N T N_5a-453 40.15 0.17 74.21 S T_5a-462 63.17 N_5a-455 N_5a-010 63 130 0.60 0.60 0.13 N T N_5a-457 39.56 0.11 74.84 T S T_5a-462 2.55 N_5a-099 N_5a-102 63 130 0.60 0.60 0.13 N T N_5a-458 39.55 0.27 74.93 T T_5a-464 28.55 N_5a-486 63 130 0.60 0.32 0.33 10.02 0.39 0.37 N T N_5a-459 39.55 0.27 74.93 T T_5a-464 28.55 N_5a-486 63 130 0.60 0.32 2.34 110.56 E T N_5a-469 39.32 0.03 75.04 S T_5a-469 50.50 N_5a-486 63 130 0.60 0.32 2.34 110.56 E T N_5a-469 39.32 0.03 75.04 S T_5a-467 50.80 N_5a-486 63 130 0.85 0.32 2.34 110.56 E T N_5a-469 39.32 0.03 75.04 S T_5a-474 46.56 N_5a-485 N_5a-486 63 130 0.85 0.32 2.34 110.56 E T N_5a-469 39.34 0.03 75.04 S T_5a-474 46.56 N_5a-481 N_5a-493 63 130 0.05 0.05 0.21 N T N_5a-469 35.44 1.17 71.24 S T_5a-474 46.56 N_5a-485 N_5a-486 63 130 0.05 0.05 0.21 N T N_5a-469 35.44 1.17 71.24 S T_5a-474 46.56 N_5a-481 N_5a-493 63 130 0.05 0.05 0.21 N T N_5a-489 35.44 1.17 71.24 S T_5a-474 46.56 N_5a-383 N_5a-393 63 130 0.05 0.05 0.21 N T N_5a-489 35.44 1.17 71.24 S T_5a-474 46.56 N_5a-383 N_5a-486 130 0.05 0.05 0.05	T_sa-398	65.24	N_sa-249	N_sa-368	63	130	1.27	0.48	5.81	s	Т	N_sa-396	53	0.15	65.21	T
T_3-420	T_sa-399	65.73	N_sa-168	N_sa-215	63	130	0.1	0.04	0.06	S	T	N_sa-397	52.89	0.05	65.32	T
T_3a-431	T_sa-403	35.94	N_sa-247	N_sa-256	-	_	0.01		0	e	-	_	52.38	0.13	65.69	-
T_5a-432	_		_	_	_			_		_	-	_				-
T_sa-485	_		_	_							·	_				-
T_sa-436	_		_	_		_					-	_	-			-
T_sa-437 11.92 N_sa-315 N_sa-338 63 130 0.73 0.28 2.11 n T N_sa-435 44.72 0.63 68.84 T T T_sa-447 114.13 N_sa-437 N_sa-831 63 130 0.99 0.37 3.65 e T N_sa-433 44.31 0.35 70.38 T T T_sa-461 387.8 N_sa-844 N_sa-890 63 130 0.26 0.98 (2.22 e T N_sa-456 39.66 0.22 74.75 S T T_sa-462 65.17 N_sa-015 N_sa-900 63 130 0.57 0.21 131 n T N_sa-456 39.66 0.22 74.75 S S T_sa-462 65.17 N_sa-015 N_sa-388 63 130 0.57 0.21 131 n T N_sa-458 39.55 0.27 74.93 T T T_sa-464 28.55 N_sa-467 N_sa-480 63 130 0.56 0.32 0.86 0.32 0.83 e T N_sa-459 39.55 0.27 74.93 T T T_sa-465 22.7 N_sa-485 N_sa-486 63 130 0.86 0.32 0.32 2.78 n T N_sa-469 39.32 0.03 75.04 S T T_sa-473 31.81 N_sa-485 N_sa-486 63 130 0.85 0.32 0.78 n T N_sa-462 39.11 1.49 70.95 T T T_sa-475 31.84 N_sa-481 N_sa-481 0.85 0.32 0.32 0.38 n T N_sa-473 0.33 0.35 0.35 0.32 0.37 n N_sa-473 0.33 0.35 0.35 0.35 0.35 0.35 0.35 0.3			_	_	-							_				-
T_sa-447 114.13 N_sa-437 N_sa-431 63 130 0.99 0.37 3.65 e T N_sa-443 44.31 0.35 70.38 T T_sa-461 387.8 N_sa-484 N_sa-490 63 130 2.16 0.81 15.62 n T N_sa-453 40.15 0.17 74.21 S T_sa-462 65.17 N_sa-010 63 130 0.16 0.06 0.13 n T N_sa-455 9.366 0.22 74.75 S T_sa-463 191.12 N_sa-402 N_sa-438 63 130 0.16 0.07 0.87 n T N_sa-458 9.355 0.27 74.96 T N_sa-463 191.12 N_sa-480 63 130 0.36 0.32 2.28 E T N_sa-458 39.53 0.27 74.96 T N_sa-467 33.81 N_sa-467 33.81 N_sa-467 33.81 N_sa-472 N_sa-481 N_sa-481	_		_	_							\rightarrow	_				-
T_sa-458	_		_	_							\rightarrow					-
T_sa-462 65.17 N_sa-015 N_sa-010 63 130 0.16 0.06 0.13 n T N_sa-453 39.12 N_sa-402 N_sa-438 63 130 0.57 0.21 1.31 n T N_sa-458 39.55 0.27 74.93 T T T_sa-464 28.55 N_sa-099 N_sa-102 63 130 0.46 0.17 0.87 n T N_sa-458 39.55 0.27 74.93 T T T_sa-465 23.7 N_sa-485 N_sa-486 63 130 0.46 0.17 0.87 n T N_sa-459 39.53 0.2 74.96 T T T_sa-466 2.45 N_sa-485 N_sa-486 63 130 0.86 0.32 2.83 e T N_sa-460 39.32 0.03 75.04 S T T_sa-466 3.181 N_sa-486 N_sa-486 63 130 0.85 0.32 2.78 n T N_sa-461 39.25 0.24 75.25 T T T_sa-474 46.56 N_sa-452 N_sa-481 N_sa-481 0.33 0.0 0.83 0.22 0.20 1.1 27.21 e T N_sa-462 39.11 1.49 70.95 T T T_sa-476 17.4 N_sa-481 N_sa-481 N_sa-493 63 130 0.22 1.1 27.21 e T N_sa-469 35.44 1.17 71.24 S N_sa-470 34.94 1.31 67.63 S T_sa-484 14.5 2.7 N_sa-348 N_sa-387 63 130 0.0.4 0.15 0.68 n N_sa-470 34.94 1.31 67.63 S N_sa-478 14.94 N_sa-481 N_sa-387 63 130 0.21 0.08 0.21 n N_sa-470 34.94 1.31 66.63 S N_sa-483 42.91 N_sa-479 0.55 69.67 S N_sa-488 42.91 N_sa-488 N_	_		_	_		-		$\overline{}$				_				-
T_sa-463	T_sa-461	387.8	N_sa-484	N_sa-490	63	130	2.16	0.81	15.62	n	Т	N_sa-456	39.66	0.22	74.75	S
T_sa-464	T_sa-462	65.17	N_sa-015	N_sa-010	63	130	0.16	0.06	0.13	n	T	N_sa-457	39.56	0.11	74.84	S
T_sa-465 23.7 N_sa-485 N_sa-480 63 130 0.86 0.32 2.83 e T N_sa-460 39.32 0.03 75.04 S T_sa-466 2.45 N_sa-485 N_sa-486 63 130 6.23 2.34 110.65 e T N_sa-461 39.25 0.24 75.25 T T T_sa-474 46.56 N_sa-452 N_sa-481 63 130 0.85 0.32 2.78 n T N_sa-462 39.11 1.49 70.95 T T T_sa-475 43.84 N_sa-481 N_sa-481 63 130 2.22 0.83 16.09 e T N_sa-469 35.44 1.17 71.24 S T T_sa-476 17.4 N_sa-481 N_sa-481 0.83 493 1.03 0.63 130 0.29 1.1 27.21 e T N_sa-469 35.44 1.17 71.24 S T T_sa-476 17.4 N_sa-481 N_sa-481 N_sa-493 63 130 0.63 0.24 1.6 n T N_sa-471 34.68 0.31 68.54 S S T_sa-478 144.92 N_sa-148 N_sa-67 63 130 0.4 0.15 0.68 n T N_sa-471 34.68 0.31 68.54 S S T_sa-483 42.91 N_sa-350 N_sa-337 63 130 0.21 0.08 0.21 n n N_sa-482 2.97.9 0.55 69.67 S T T_sa-487 51.84 N_sa-282 N_sa-130 63 130 0.63 0.23 1.57 n T N_sa-482 2.817 1.32 65.02 T N_sa-481 2.82 N N_sa-481 2.82 N <td>T_sa-463</td> <td>191.12</td> <td>N_sa-402</td> <td>N_sa-438</td> <td>63</td> <td>130</td> <td>0.57</td> <td>0.21</td> <td>1.31</td> <td>n</td> <td>T</td> <td>N_sa-458</td> <td>39.55</td> <td>0.27</td> <td>74.93</td> <td>T</td>	T_sa-463	191.12	N_sa-402	N_sa-438	63	130	0.57	0.21	1.31	n	T	N_sa-458	39.55	0.27	74.93	T
T_sa-466	_		_	N_sa-102	63					n	-	_				-
T_sa-467 31.81 N_sa-486 N_sa-487 63 130 0.85 0.32 2.78 n T N_sa-462 39.11 1.49 70.95 T T_sa-474 46.56 N_sa-452 N_sa-481 63 130 2.2 0.83 16.09 e T N_sa-469 35.44 1.17 71.24 S T_sa-475 43.84 N_sa-481 N_sa-483 63 130 2.92 1.1 27.21 e T N_sa-469 35.44 1.17 71.24 S T_sa-476 17.4 N_sa-481 N_sa-482 63 130 0.92 1.1 27.21 e T N_sa-470 34.94 1.31 67.63 S T_sa-476 17.4 N_sa-481 N_sa-472 63 130 0.63 0.24 1.6 n T N_sa-471 34.68 0.31 68.54 S T_sa-478 144.92 N_sa-148 N_sa-677 63 130 0.4 0.15 0.68 n T N_sa-473 33.08 0.96 76.72 T T_sa-483 42.91 N_sa-350 N_sa-337 63 130 0.21 0.08 0.21 n T N_sa-473 33.08 0.96 76.72 T T_sa-487 51.84 N_sa-282 N_sa-217 63 130 0.63 0.23 1.57 n T N_sa-478 29.79 0.55 69.67 S T_sa-487 51.84 N_sa-282 N_sa-217 63 130 0.63 0.23 1.57 n T N_sa-482 28.17 1.32 65.02 T T_sa-483 42.91 N_sa-282 N_sa-130 63 130 1.03 0.39 3.96 n T N_sa-486 28.17 1.32 65.02 T T_sa-491 55.22 N_sa-188 N_sa-139 N_sa-148 63 130 1.03 0.39 3.96 n T N_sa-486 25.75 0.19 65.1 T T_sa-493 165.74 N_sa-435 N_sa-142 63 130 0.12 0.06 0.11 n T N_sa-488 23.84 0.87 69.4 T T_sa-494 46.67 N_sa-435 N_sa-142 63 130 0.35 0.47 5.7 n T N_sa-488 23.84 0.87 69.4 T T_sa-494 10.51 N_sa-498 10.33 N_sa-142 N_sa-074 63 130 0.87 0.33 2.92 n T N_sa-489 22.76 0.91 70.11 S T_sa-498 10.33 N_sa-142 N_sa-074 63 130 0.35 0.13 0.53 n T N_sa-489 22.76 0.91 70.11 S T_sa-499 45.24 N_sa-097 N_sa-135 63 130 1.33 0.35 0.13 0.53 n T N_sa-494 19.72 1.59 73.01 S T_sa-500 52.08 N_sa-135 N_sa-116 90 130 1.23 0.23 0.98 e T N_sa-494 19.72 1.59 73.01 S T_sa-500 20.48 N_sa-136 N_sa-071 63 130 0.22 0.08 0.23 n T N_sa-496 14.22 0.14 78.58 S T_sa-500 78.68 N_sa-147 N_sa-485 90 130 52.6 0.97 14.36 n T N_sa-499 68.09 0.09 66.91 T T_sa-500 78.68 N_sa-497 N_sa-485 90 130 52.6 0.97 14.36 n T N_sa-500 46.14 0 0 47.48 S			_	_				_		_		_				-
T_sa-474	_		_	_		_					-	_	_			-
T_sa-475	_		_	_	-	_					\longrightarrow	_				-
T_sa-476	_		_	_	-	_				_			-			-
T_sa-478	_		_	_	-	_					\longrightarrow		_			-
T_sa-483 42.91 N_sa-350 N_sa-337 63 130 0.21 0.08 0.21 n T N_sa-478 29.79 0.55 69.67 S T_sa-484 5.27 N_sa-346 N_sa-339 63 130 1.94 0.73 12.78 e T N_sa-479 29.54 0.13 69.47 S T_sa-487 51.84 N_sa-282 N_sa-130 63 130 0.63 0.23 1.57 n T N_sa-482 28.17 1.32 65.02 T T_sa-488 48.72 N_sa-282 N_sa-130 63 130 0.45 0.17 0.84 n T N_sa-482 28.17 1.32 65.02 T T_sa-491 55.22 N_sa-418 63 130 0.45 0.47 5.7 n T N_sa-486 25.75 0.19 65.1 T T_sa-493 165.74 N_sa-412 63 130 0.15 0.06	_		_	_								_				
T_sa-484 5.27 N_sa-346 N_sa-339 63 130 1.94 0.73 12.78 e T N_sa-479 29.54 0.13 69.47 S T_sa-487 51.84 N_sa-282 N_sa-217 63 130 0.63 0.23 1.57 n T N_sa-482 28.17 1.32 65.02 T T_sa-488 48.72 N_sa-282 N_sa-130 63 130 0.45 0.17 0.84 n T N_sa-483 28.08 0.56 69.23 S T_sa-491 55.22 N_sa-418 N_sa-355 63 130 1.03 0.39 3.96 n T N_sa-486 25.75 0.19 65.1 T T_sa-492 27.39 N_sa-148 63 130 0.15 0.06 0.11 n N_sa-487 23.87 0.05 69.36 T T_sa-494 46.67 N_sa-495 N_sa-412 N_sa-491 130 0.39 0.52											\longrightarrow		_			-
T_sa-488 48.72 N_sa-282 N_sa-130 63 130 0.45 0.17 0.84 n T N_sa-483 28.08 0.56 69.23 S T_sa-491 55.22 N_sa-418 N_sa-355 63 130 1.03 0.39 3.96 n T N_sa-486 25.75 0.19 65.1 T T_sa-492 27.39 N_sa-139 N_sa-148 63 130 1.25 0.47 5.7 n T N_sa-486 25.75 0.19 65.1 T T_sa-493 165.74 N_sa-435 N_sa-412 63 130 0.15 0.06 0.11 n T N_sa-488 23.87 0.05 69.36 T T_sa-494 46.67 N_sa-412 N_sa-38 63 130 0.87 0.33 2.92 n T N_sa-489 22.76 0.91 70.11 S T_sa-497 105.68 N_sa-142 N_sa-074 63 130 0.35 0.13 0.53 n		5.27	N_sa-346	_	63	130	1.94	0.73			T		29.54	0.13	69.47	S
T_sa-491 55.22 N_sa-418 N_sa-355 63 130 1.03 0.39 3.96 n T N_sa-486 25.75 0.19 65.1 T T_sa-492 27.39 N_sa-139 N_sa-148 63 130 1.25 0.47 5.7 n T N_sa-487 23.87 0.05 69.36 T T_sa-493 165.74 N_sa-435 N_sa-412 63 130 0.15 0.06 0.11 n T N_sa-488 23.84 0.87 69.4 T T_sa-494 46.67 N_sa-1010 N_sa-038 63 130 0.87 0.33 2.92 n T N_sa-489 22.76 0.91 70.11 S T_sa-497 105.68 N_sa-142 N_sa-074 63 130 0.35 0.13 0.53 n T N_sa-492 20.8 0.32 71.12 T T_sa-498 103.31 N_sa-116 90 130 1.33 0.5 6.34 n T	T_sa-487	51.84	N_sa-282	N_sa-217	63	130	0.63	0.23	1.57	n	Т	N_sa-482	28.17	1.32	65.02	T
T_sa-492 27.39 N_sa-139 N_sa-148 63 130 1.25 0.47 5.7 n T N_sa-487 23.87 0.05 69.36 T T_sa-493 165.74 N_sa-435 N_sa-412 63 130 0.15 0.06 0.11 n T N_sa-488 23.87 0.05 69.36 T T_sa-494 46.67 N_sa-010 N_sa-038 63 130 0.87 0.33 2.92 n T N_sa-489 22.76 0.91 70.11 S T_sa-497 105.68 N_sa-142 N_sa-097 63 130 0.35 0.13 0.53 n T N_sa-492 20.8 0.32 71.12 T T_sa-498 103.31 N_sa-142 N_sa-097 63 130 0.35 0.13 0.53 n T N_sa-493 20.12 0.18 67.9 T T_sa-499 45.24 N_sa-097 N_sa-116 90 130 1.23 0.23 0.98 e T N_sa-493 20.12 0.18 67.9 <t< td=""><td>T_sa-488</td><td></td><td></td><td>_</td><td>63</td><td>130</td><td>0.45</td><td>0.17</td><td></td><td></td><td>T</td><td>N_sa-483</td><td></td><td>0.56</td><td>69.23</td><td>S</td></t<>	T_sa-488			_	63	130	0.45	0.17			T	N_sa-483		0.56	69.23	S
T_sa-493	_			_		_					$\overline{}$	_				-
T_sa-494	_		_	_							\rightarrow	_				-
T_sa-497	_		_	_	-	_					\longrightarrow	_				-
T_sa-498 103.31 N_sa-142 N_sa-097 63 130 0.35 0.13 0.53 n T N_sa-493 20.12 0.18 67.9 T T_sa-499 45.24 N_sa-097 N_sa-135 63 130 1.33 0.5 6.34 n T N_sa-494 19.72 1.59 73.01 S T_sa-500 52.08 N_sa-135 N_sa-116 90 130 1.23 0.23 0.98 e T N_sa-495 19.39 0.35 69.11 T T_sa-501 32.58 N_sa-116 N_sa-101 63 130 0.72 0.27 2.02 n T N_sa-496 14.22 0.14 78.58 S T_sa-502 204.88 N_sa-136 N_sa-071 63 130 0.22 0.08 0.23 n T N_sa-496 14.22 0.14 78.58 S T_sa-504 25.73 N_sa-204 N_sa-225 63 130 0.34 0.13 0.51 n T N_sa-499 68.09 0 69.05	_		_	_							-	_	_			-
T_sa-499 45.24 N_sa-097 N_sa-135 63 130 1.33 0.5 6.34 n T N_sa-494 19.72 1.59 73.01 S T_sa-500 52.08 N_sa-135 N_sa-116 90 130 1.23 0.23 0.98 e T N_sa-495 19.39 0.35 69.11 T T_sa-501 32.58 N_sa-116 N_sa-101 63 130 0.72 0.27 2.02 n T N_sa-496 14.22 0.14 78.58 S T_sa-502 204.88 N_sa-136 N_sa-071 63 130 0.22 0.08 0.23 n T N_sa-496 14.22 0.14 78.58 S T_sa-504 25.73 N_sa-204 N_sa-225 63 130 0.34 0.13 0.51 n T N_sa-497 13.84 0.27 75.66 T T_sa-505 68.04 N_sa-254 N_sa-434 63 130 0.38 0.14 0.61 n 7 N_sa-499 68.09 0 69.05 P T_sa-506 73.68 N_sa-497 N_sa-485 90 130 5.26 0.97 14.36 n 7 N_sa-501 102.33 0 0 26.05 T T_sa-507 78.65 N_sa-435 N_sa-410 63 130 0.38 0.14 0.63 n 0.				_			_	_		_	\rightarrow					-
T_sa-500 52.08 N_sa-135 N_sa-116 90 130 1.23 0.23 0.98 e T N_sa-495 19.39 0.35 69.11 T T_sa-501 32.58 N_sa-116 N_sa-101 63 130 0.72 0.27 2.02 n T N_sa-496 14.22 0.14 78.58 S T_sa-502 204.88 N_sa-136 N_sa-071 63 130 0.22 0.08 0.23 n T N_sa-497 13.84 0.27 75.66 T T_sa-504 25.73 N_sa-204 N_sa-225 63 130 0.34 0.13 0.51 n T N_sa-499 68.09 0 69.05 P T_sa-505 68.04 N_sa-254 N_sa-434 63 130 0.38 0.14 0.61 n T N_sa-500 67.92 0 66.91 T T_sa-506 73.68 N_sa-497 N_sa-485 90 130 5.26 0.97 14.36 n T N_sa-501 102.33 0 26.05 T </td <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td></td> <td>$\overline{}$</td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td>			_	_		_		$\overline{}$			_		-			-
T_sa-501 32.58 N_sa-116 N_sa-101 63 130 0.72 0.27 2.02 n T N_sa-496 14.22 0.14 78.58 S T_sa-502 204.88 N_sa-136 N_sa-071 63 130 0.22 0.08 0.23 n T N_sa-497 13.84 0.27 75.66 T T_sa-504 25.73 N_sa-204 N_sa-225 63 130 0.34 0.13 0.51 n T N_sa-499 68.09 0 69.05 P T_sa-505 68.04 N_sa-254 N_sa-434 63 130 0.38 0.14 0.61 n T N_sa-500 67.92 0 66.91 T T_sa-506 73.68 N_sa-497 N_sa-485 90 130 5.26 0.97 14.36 n T N_sa-501 102.33 0 26.05 T T_sa-507 78.65 N_sa-435 N_sa-410 63 130 0.38 0.14 0.63 n T N_sa-502 46.14 0 47.48 S			_	_			_	_								-
T_sa-502 204.88 N_sa-136 N_sa-071 63 130 0.22 0.08 0.23 n T N_sa-497 13.84 0.27 75.66 T T_sa-504 25.73 N_sa-204 N_sa-225 63 130 0.34 0.13 0.51 n T N_sa-499 68.09 0 69.05 P T_sa-505 68.04 N_sa-254 N_sa-434 63 130 0.38 0.14 0.61 n T N_sa-500 67.92 0 66.91 T T_sa-506 73.68 N_sa-497 N_sa-485 90 130 5.26 0.97 14.36 n T N_sa-501 102.33 0 26.05 T T_sa-507 78.65 N_sa-435 N_sa-410 63 130 0.38 0.14 0.63 n T N_sa-502 46.14 0 47.48 S	_			_	-		-	$\overline{}$		_	\rightarrow					-
T_sa-504 25.73 N_sa-204 N_sa-225 63 130 0.34 0.13 0.51 T N_sa-499 68.09 0 69.05 P T_sa-505 68.04 N_sa-254 N_sa-434 63 130 0.38 0.14 0.61 n T N_sa-500 67.92 0 66.91 T T_sa-506 73.68 N_sa-497 N_sa-485 90 130 5.26 0.97 14.36 n T N_sa-501 102.33 0 26.05 T T_sa-507 78.65 N_sa-435 N_sa-410 63 130 0.38 0.14 0.63 n T N_sa-502 46.14 0 47.48 S			_				_			_	_	_				-
T_sa-506			_	_	$\overline{}$			_		_	\rightarrow		-			-
T_sa-507 78.65 N_sa-435 N_sa-410 63 130 0.38 0.14 0.63 n T N_sa-502 46.14 0 47.48 S	T_sa-505	68.04	N_sa-254	N_sa-434	63	130	0.38	0.14	0.61	n	T	N_sa-500	67.92	0	66.91	T
	T_sa-506	73.68	N_sa-497	N_sa-485	90	130	5.26	0.97	14.36	n	T	N_sa-501	102.33	0	26.05	T
T_sa-508 78.54 N_sa-495 N_sa-497 90 130 4.99 0.92 13.01 s T N_sa-503 42.33 0 51 T	T_sa-507	78.65	N_sa-435	N_sa-410	63	130	0.38	0.14	0.63	n	\rightarrow	N_sa-502	46.14		47.48	-
	T_sa-508	78.54	N_sa-495	N_sa-497	90	130	4.99	0.92	13.01	S	T	N_sa-503	42.33	0	51	T

		DISEÑO RED	GUACHARAC	A (REP	ORTE	DE TUBE	RÍAS)			\neg	DISE	NO RE Nia	matras	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Qdem	Presión	Red
T_sa-509	30 34	N_sa-062	N_sa-071	160	130	0.64	0.04	Unit. 0.02	e	T		+			-
T_sa-510		N_sa-062	N_sa-136	63	130	0.25	0.04	0.02	_	T		+			-
T_sa-511		N_sa-380	N_sa-373	63	130	1.46	0.55	7.52		Т					-
T_sa-512	63.16	N_sa-373	N_sa-356	63	130	0.63	0.24	1.6	n	T					-
T_sa-513		N_sa-356	N_sa-233	63	130	0.56	0.21		_	T					-
T_sa-514		N_sa-233	N_sa-252	63	130	0.47	0.18	0.93	_	T					-
T_sa-515 T_sa-516		N_sa-252 N_sa-373	N_sa-409 N_sa-406	63 63	130	0.02	0.01	1.52	n e	T T		+			-
T sa-517		N_sa-406	N_sa-400	63	130	0.02	0.23		_	T		+			-
T_sa-518		N_sa-409	N_sa-406	63	130	0.13	0.05		_	T					-
T_sa-519	115.48	N_sa-087	N_sa-049	63	130	0.86	0.32	2.85	n	T					-
T_sa-520	106.68	N_sa-163	N_sa-095	63	130	0.85	0.32	2.79	n	T					-
T_sa-521		N_sa-430	N_sa-257	63	130	0.1	0.04		_	T					-
T_sa-522		N_sa-434	N_sa-435	63	130	0.09	0.04	0.05	_	T					-
T_sa-523 T_sa-524		N_sa-100 N_sa-415	N_sa-169 N_sa-391	63 63	130	1.47 0.47	0.55	7.69 0.91	e c	T T		+			-
T sa-525		N_sa-415 N_sa-415	N_sa-391 N_sa-392	63	130	0.47	0.17	0.89	e	T T		+			-
T_sa-526		N_sa-161	N_sa-321	63	130	0.29	0.11	0.39	e	T		1			-
T_sa-527		N_sa-187	N_sa-318	63	130	0.87	0.33	2.89	e	T					-
T_sa-528		N_sa-338	N_sa-456	63	130	0.1	0.04			T					-
T_sa-529		N_sa-163	N_sa-287	63	130	0.32	0.12		_	T					-
T_sa-530		N_sa-330	N_sa-388	63	130	0.1	0.04			T					-
T_sa-531 T_sa-532		N_sa-390 N_sa-096	N_sa-330 N_sa-381	63 63	130 130	0.1	0.04	0.05		T T	-	-			-
T_sa-532		N_sa-090	N_sa-403	63	130	0.42	0.18	0.74	5	<u>'</u>		_			-
T_sa-534		N_sa-191	N_sa-483	63	130	0.34	0.13	0.52	s	T T					-
T_sa-535		N_sa-075	N_sa-091	63	130	1.28	0.48	5.94	e	Т					-
T_sa-536	47.73	N_sa-430	N_sa-453	63	130	0.25	0.09	0.29	e	T					-
T_sa-537	6.32	N_sa-093	N_sa-100	63	130	1.68	0.63	9.75		T					-
T_sa-538		N_sa-104	N_sa-343	63	130	0.33	0.12	0.48	_	T					-
T_sa-539		N_sa-169	N_sa-168	63	130	1.36	0.51	6.58	_	T		+			-
T_sa-540 T_sa-541		N_sa-168 N_sa-149	N_sa-149 N_sa-153	63 63	130	1.28	0.48	5.91	e e	T T		+			-
T sa-542		N_sa-143 N_sa-153	N_sa-133	63	130	0.88	0.44	2.94	_	T		+			-
T_sa-543		N_sa-458	N_sa-459	63	130	0.71	0.27		_	T		+			-
T_sa-544		N_sa-286	N_sa-243	63	130	0.58	0.22	1.36	e	T					-
T_sa-545	8.94	N_sa-180	N_sa-177	63	130	2.26	0.85	16.97	n	T					-
T_sa-546		N_sa-328	N_sa-470	63	130	0.06	0.02	0.02	e	T					-
T_sa-547		N_sa-133	N_sa-131	110	130	8.4	1.04	12.78	_	T					-
T_sa-548 T_sa-549		N_sa-023 N_sa-086	N_sa-086 N_sa-006	63 63	130 130	0.55 1.36	0.21	1.25 6.62	_	T T	-	+			-
T_sa-550		N_sa-000	N_sa-000 N_sa-198	63	130	0.05	0.02	0.02	e	<u>'</u>					-
T_sa-551		N_sa-091	N_sa-093	63	130	1.41	0.53	7.05	e	T					-
T_sa-552	130.1	N_sa-234	N_sa-089	63	130	1.13	0.42	4.65	e	Т					-
T_sa-553		N_sa-141	N_sa-307	63	130	3.55	1.33	38.99		T					-
T_sa-554		N_sa-082	N_sa-154	63	130	1.44	0.54	7.39	_	T					-
T_sa-555		N_sa-436 N_sa-316	N_sa-441	63 110	130 130	1.67	0.63	9.72 0.17		T T		-			-
T_sa-556 T_sa-557		N_sa-316 N_sa-379	N_sa-221 N_sa-419	63	130	0.82	0.1	2.55	_	T T		+			-
T_sa-558		N_sa-173	N_sa-383	63	130	0.01	0.04	0.05		T T		1			-
T_sa-559		N_sa-419	N_sa-459	63	130	0.53	0.2	1.14	_	T					-
T_sa-560	109.16	N_sa-423	N_sa-431	63	130	0.96	0.36	3.45	S	T					-
T_sa-561		N_sa-396	N_sa-332	63	130	0.18	0.07	0.15	_	T					-
T_sa-562		N_sa-224	N_sa-269	63	130	0.23	0.09	0.25	_	T					-
T_sa-563		N_sa-322	N_sa-209	63	130	1.96	0.74	13.06	_	T		+			-
T_sa-564 T_sa-565		N_sa-342 N_sa-487	N_sa-450 N_sa-489	63 63	130	1.99 0.72	0.75	13.42 2.01		T	—	+			-
T_sa-566		N_sa-487 N_sa-205	N_sa-489 N_sa-166	63	130	0.72	0.27	0.63	_	T		1			-
T_sa-567		N_sa-203 N_sa-482	N_sa-100	110	130	2.56	0.14	1.42	_	T		+			-
T_sa-568		N_sa-447	N_sa-444	63	130	1.64	0.62	9.39	_	T					-
T_sa-569	135.08	N_sa-441	N_sa-448	63	130	1.51	0.57	7.98	S	T					-
T_sa-570		N_sa-450	N_sa-438	63	130	1.55	0.58	8.38	_	T					-
T_sa-571		N_sa-092	N_sa-009	63	130	1.93	0.73	12.63	_	T					-
T_sa-572		N_sa-276	N_sa-253	63 63	130	1.1	0.41	4.48	_	T T		+			-
T_sa-573	132.23	N_sa-202	N_sa-162	03	130	1.81	0.68	11.27	c	1					

		DISEÑO RED	GUACHARAC	A (REP	ORTE	DE TUBEI	RÍAS)			\neg	DISEÑ	O RE Dia		NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Odem	Presión	Red
								Unit.			Luber	Cota	Quem	ricalon	
T_sa-574 T_sa-575		N_sa-457 N_sa-353	N_sa-355 N_sa-491	63 63	130	0.07 1.67	0.03	9.68	S e	T		1			-
T_sa-576		N_sa-083	N_sa-005	90	130	2.92	0.54	4.85	_	T		1			-
T_sa-577		N_sa-353	N_sa-382	63	130	2.08	0.78	14.46	_	T		1			-
T_sa-578	146.48	N_sa-234	N_sa-088	63	130	1.65	0.62	9.45	e	T					-
T_sa-579	158.56	N_sa-024	N_sa-004	63	130	2.21	0.83	16.22	S	T					-
T_sa-580		N_sa-205	N_sa-245	63	130	0.1	0.04	0.05		T		<u> </u>			-
T_sa-581 T_sa-582		N_sa-213 N_sa-029	N_sa-151 N_sa-037	63 63	130	0.96 1.19	0.36	3.45 5.14	_	T T		1	-		-
T sa-583		N_sa-029	N_sa-037 N_sa-230	63	130	0.18	0.43	0.16	_	T		1			-
T_sa-584		N_sa-021	N_sa-046	63	130	2.03	0.76	13.85		T		1	†		-
T_sa-585	44.37	N_sa-051	N_sa-044	63	130	0.58	0.22	1.39	n	T					-
T_sa-586	181.15	N_sa-119	N_sa-302	63	130	0.98	0.37	3.61		T					-
T_sa-587		N_sa-060	N_sa-059	90	130	5.54	1.02	15.8	_	T					-
T_sa-588		N_sa-059	N_sa-120	63	130	2.68	1.01	23.29	_	T					-
T_sa-589 T_sa-590		N_sa-059 N_sa-034	N_sa-017 N_sa-028	63 110	130	8.62	0.75 1.06	13.48		T T		+			-
T_sa-590		N_sa-028	N_sa-020	90	130	3.96	0.73	8.49		T					-
T_sa-592		N_sa-028	N_sa-026	90	130	4.21	0.78	9.52	_	T					-
T_sa-593	41.84	N_sa-026	N_sa-036	90	130	3.05	0.56	5.25	n	Т					-
T_sa-594		N_sa-036	N_sa-042	63	130	2.5	0.94	20.41		T					-
T_sa-595		N_sa-046	N_sa-027	63	130	1.56	0.59	8.57		T		1			-
T_sa-596 T_sa-597		N_sa-042 N_sa-053	N_sa-050 N_sa-046	90 63	130	4.51 0.82	0.83	10.82	_	T	-	+			-
T_sa-598		N_sa-033	N_sa-040 N_sa-291	63	130	2.22	0.83	16.36		T T		1			-
T_sa-599		N_sa-057	N_sa-007	63	130	0.95	0.36	3.38	_	T					-
T_sa-600	43.21	N_sa-226	N_sa-272	63	130	2.06	0.77	14.24	s	Т					-
T_sa-601	49.79	N_sa-129	N_sa-078	63	130	2.35	0.88	18.25	n	T					-
T_sa-602	80.94	N_sa-425	N_sa-462	90	130	3.82	0.71	7.95		T					-
T_sa-603		N_sa-462	N_sa-473	63	130	0.96	0.36	3.44	_	T					-
T_sa-604		N_sa-462	N_sa-357	63	130	1.37	0.52	6.74 0.08	_	T		_	_		-
T_sa-605 T_sa-606		N_sa-381 N_sa-347	N_sa-347 N_sa-294	63 63	130	0.13	0.05	1.05	_	T T		+			-
T sa-607		N sa-347	N sa-460	63	130	0.88	0.33	2.94	_	T		1			-
T_sa-608		N_sa-263	N_sa-261	160	130	0	0	0	n	S					-
T_sa-609	2.07	N_sa-429	N_sa-430	63	130	0.16	0.06	0.12	S	T					-
T_sa-610		N_sa-443	N_sa-461	63	130	0.62	0.23	1.56	_	T					-
T_sa-611		N_sa-042	N_sa-039	63	130	2.45	0.92	19.68		T		1			-
T_sa-612 T_sa-613		N_sa-232 N_sa-277	N_sa-242 N_sa-430	63 63	130	0.42	0.16	0.75		T T		+	-		-
T_sa-614		N_sa-300	N_sa-212	250	130	2.33	0.04	0.00	_	T		1	_		-
T_sa-615		N_sa-249	N_sa-292	63	130	1.74	0.66	10.48	_	T		1			-
T_sa-616	55.02	N_sa-292	N_sa-212	63	130	2.19	0.82	16.02	n	Т					-
T_sa-617		N_sa-143	N_sa-068	63	130	2.1	0.79	14.77		T					-
T_sa-618		N_sa-410	N_sa-403	160	130	1.74	0.1	0.11		T		1			-
T_sa-619 T_sa-620		N_sa-403 N_sa-311	N_sa-400 N_sa-327	160 160	130	1.42	0.08	0.08		T T		-			-
T_sa-621		N_sa-311 N_sa-324	N_sa-327 N_sa-313	63	130	0.12	0.06	0.05	_	T		+			-
T_sa-622		N_sa-305	N_sa-313	63	130	0.29	0.11	0.38	_	T					-
T_sa-623		N_sa-232	N_sa-238	63	130	0.57	0.21	1.32	n	Т					-
T_sa-624		N_sa-253	N_sa-240	63	130	1.06	0.4	4.14		T					-
T_sa-625		N_sa-040	N_sa-053	63	130	1.17	0.44	4.99		T		1			-
T_sa-626 T_sa-627		N_sa-305 N_sa-198	N_sa-276 N_sa-205	63 63	130	1.01 0.07	0.38	3.84 0.03		T		1			-
T_sa-628		N_sa-198 N_sa-242	N_sa-205 N_sa-264	63	130	0.07	0.03	0.03	_	T		+			-
T_sa-629		N_sa-264	N_sa-312	63	130	0.33	0.12	0.47	_	T		t			-
T_sa-630		N_sa-312	N_sa-329	63	130	0.25	0.09	0.28		T					-
T_sa-631	1.68	N_sa-178	N_sa-177	200	130	0	0	0	e	S					-
T_sa-632		N_sa-114	N_sa-115	63	130	1.03	0.39	3.93		T					-
T_sa-633		N_sa-115	N_sa-083	90	130	5.8	1.07	17.22	_	T		1			-
T_sa-634		N_sa-131	N_sa-115	110	130	9.74	1.2	16.8		T		+	_		-
T_sa-635 T_sa-636		N_sa-115 N_sa-126	N_sa-086 N_sa-200	63 110	130	2.58 10.5	0.97 1.3	21.68	_	T T		+			-
T_sa-637		N_sa-120	N_sa-200	63	130	1.65	0.62	9.48		T		1			-
T_sa-638		N_sa-040	N_sa-051	63	130	0.65	0.24	1.68	_	T					-
		_	_									•			

		DISEÑO R	ED AIRE LIBRE	(REPO	RTE D	E TUBERÍ	AS)				DISEÑO	NE Dia	motros	NUDOS)	
									Perdid				ПДТТТ		
Label	long.	Longitud	Nodo Inicial	Nodo Final	DN	Caudal	Vel.	Perd. Unit.	a unitar ia	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km	Ia			msnm	lt/s	mca	\vdash
T_sb-001		N_sb-694	N_sb-700	200	130	26.5	0.99	5.851	n	Р	N_sb-001	87	0	0	Р
T_sb-002	339.04	N_sb-335	N_sb-371	200	130	34.82	1.3	9.696	e	Р	N_sb-002	80.39	0.07	7.4	T
T_sb-003	391.76	N_sb-622	N_sb-681	250	130	47.21	1.13	5.74	n	Р	N_sb-003	78.87	0.22	7.5	T
T_sb-305	78.66	N_sb-618	N_sb-598	110	130	0.64	0.08	0.108	e	T	N_sb-305	21.85	0.17	61.8	T
T_sb-310		N_sb-489	N_sb-525	100	130	0.16	0.02	0.009	-	T	N_sb-310	21.53	0.2	62.2	T
T_sb-312		N_sb-041	N_sb-218	63	130	0.51	0.19	1.076	_	T	N_sb-312	21.48	0.24	62.1	T
T_sb-320		N_sb-065	N_sb-106	110	130	4.2	0.52	3.539	_	T	N_sb-320	20.9	0.44	62	T
T_sb-331 T sb-339		N_sb-108 N_sb-532	N_sb-122 N_sb-557	63 200	130	0.57 1.37	0.21	1.322 0.024	e	T	N_sb-331 N sb-339	20.44 19.93	0.11	63 62.9	T
T sb-344		N_sb-256	N_S0-357 N_Sb-255	63	130	1.75	0.66	10.565	e	T	N_sb-339	19.67	3.71	60.3	T
T_sb-715		N_sb-175	N_sb-207	63	130	0.6	0.22	1.436	e	Ť	N_sb-715	5.81	0.54	60.4	Ť
T sb-721		N_sb-171	N sb-189	63	130	0.03	0.01	0.006	e	T	N sb-721	4.4	1.13	61	S
T_sb-753		N_sb-023	N_sb-031	63	130	0.63	0.24	1.598	e	Т	N_sb-753	3.64	0.65	63.5	Т
T_sb-762	62.84	N_sb-995	N_sb-1004	63	130	0.12	0.04	0.07	n	Т	N_sb-762	3.49	0.22	63	S
T_sb-766	51.95	N_sb-954	N_sb-923	63	130	0.02	0.01	0.002	n	T	N_sb-766	3.44	0.51	61.7	S
T_sb-767	8.24	N_sb-923	N_sb-928	63	130	0.09	0.03	0.039	e	T	N_sb-767	3.39	0.01	62	P
T_sb-770		N_sb-843	N_sb-848	63	130	1.22	0.46	5.383		T	N_sb-770	3.35	0.33	63.2	T
T_sb-772		N_sb-732	N_sb-726	110	130	9.34	1.15	15.528		S	N_sb-772	3.32	0.22	61.7	S
T_sb-773		N_sb-932	N_sb-830	63	130	0.24	0.09	0.26		T	N_sb-773	3.29	0.32	61.8	S
T_sb-774		N_sb-741	N_sb-758	90	130	6.03	1.12	18.525		S	N_sb-774	3.28	1 10	62.2	P
T_sb-775		N_sb-1027	N_sb-975	63 63	130	0.98	0.37	3.584 0.521	-	T	N_sb-775	3.26 3.26	1.19	66.7 62.3	T P
T_sb-776 T_sb-777		N_sb-881 N_sb-470	N_sb-972 N_sb-471	63	130	0.34	0.13	0.521		T	N_sb-776 N_sb-777	3.26	0.05	62.5	T
T_sb-777		N_sb-470	N_sb-471 N_sb-431	63	130	0.47	0.10	3.611	_	T	N_sb-779	3.24	0.03	61.6	T
T_sb-780		N_sb-478	N_sb-651	63	130	0.39	0.15	0.649		T	N_sb-780	3.22	0.07	60.7	T
T_sb-794		N_sb-842	N_sb-932	63	130	0.69	0.26	1.867	n	T	N_sb-794	3.09	0.09	60.8	T
T sb-797		N sb-964	N sb-1006	63	130	0.61	0.23	1.506		T	N sb-797	3.08	0.63	61.5	T
T_sb-814	50.9	N_sb-440	N_sb-419	63	130	0.58	0.22	1.375	s	Т	N_sb-814	2.95	0.73	61.8	Т
T_sb-818	78.75	N_sb-474	N_sb-444	63	130	0.05	0.02	0.015	s	Т	N_sb-818	2.92	0.08	62	Т
T_sb-822	76.83	N_sb-349	N_sb-290	63	130	0.14	0.05	0.102	e	Т	N_sb-822	2.9	0.06	62	T
T_sb-826	78.29	N_sb-385	N_sb-353	63	130	0.43	0.16	0.792	e	T	N_sb-826	2.88	0.16	62.1	T
T_sb-827	4.44	N_sb-353	N_sb-348	63	130	0.34	0.13	0.508	e	T	N_sb-827	2.87	0.07	61.9	T
T_sb-828	61.24	N_sb-697	N_sb-816	90	130	5.85	1.08	17.503	-	T	N_sb-828	2.86	1.78	61.2	-
T_sb-829		N_sb-440	N_sb-333	63	130	0.43	0.16	0.784	_	T	N_sb-829	2.84	0.13	60.8	T
T_sb-831		N_sb-1004	N_sb-979	63	130	0.53	0.2	1.155	_	T	N_sb-831	2.84	0.17	62.3	T
T_sb-833		N_sb-999 N_sb-1033	N_sb-1012 N_sb-1032	110 63	130	0.32	0.26	0.982	e n	S T	N_sb-833	2.83	0.07	63 62.1	T
T_sb-835 T_sb-836		N_sb-1033 N_sb-1032	N_sb-1032 N_sb-1031	63	130	0.78	0.12	2.365		T	N_sb-835 N_sb-836	2.82	0.08	62.1	T
T sb-837		N_sb-1032	N_sb-1031	63	130	1.18	0.44	5.067	n	T	N sb-837	2.8	0.00	62.3	S
T_sb-838		N_sb-938	N_sb-917	63	130	0.86	0.32	2.814		T	N_sb-838	2.79	0.63	64.3	T
T_sb-840		N_sb-219	N_sb-142	110	130	4.32	0.53	3.72	e	Т	N_sb-840	2.78	0.17	62.4	S
T_sb-841		N_sb-917	N_sb-866	63	130	0.59	0.22	1.429	e	T	N_sb-841	2.77	0.07	62.4	Т
T_sb-842	67.93	N_sb-419	N_sb-311	63	130	0.64	0.24	1.618	n	T	N_sb-842	2.77	0.04	53.1	T
T_sb-843		N_sb-870	N_sb-841	63		0.5	0.19	1.024		T	N_sb-843	2.76	0.24	44.7	T
T_sb-844		N_sb-772	N_sb-837	110	130	0.35	0.04	0.036		S	N_sb-844	2.76	0.45	50.2	T
T_sb-845		N_sb-837	N_sb-906	110	130	0.23	0.03	0.017	_	S	N_sb-845	2.76	0.63	50.7	T
T_sb-846		N_sb-890	N_sb-837	63	130	0.48	0.18	0.963		T	N_sb-846	2.76	0.12	45.6	T
T_sb-847 T_sb-848		N_sb-238 N_sh-239	N_sb-239 N_sb-228	63 63	130	0.87 1.41	0.33	2.897 7.093		T	N_sb-847 N_sb-848	2.75 2.75	0.09	62.3 44.8	T
T sb-849		N_sb-239 N_sb-468	N_sb-226 N_sb-375	63	130	0.56	0.55	1.261	_	T	N_sb-849	2.75	0.26	60.4	T
T_sb-850		N_sb-375	N_sb-287	63	130	0.29	0.21	0.373		T	N_sb-850	2.74	0.13	50.7	T
T_sb-851		N_sb-375	N_sb-321	63	130	0.57	0.21	1.321		T	N_sb-851	2.74	0.18	44.7	T
T_sb-852		N_sb-867	N_sb-847	63		0.18	0.07	0.16		T	N_sb-852	2.72	0.35	52.9	-
T_sb-853		N_sb-866	N_sb-849	63	130	1.15	0.43	4.85	_	Т	N_sb-853	2.72	0.79	52.8	S
T_sb-854	65.25	N_sb-212	N_sb-074	63	130	0.31	0.12	0.431	n	T	N_sb-854	2.72	0.15	62.4	T
T_sb-855	90.86	N_sb-957	N_sb-1002	63	130	0.58	0.22	1.372	e	T	N_sb-855	2.72	0.35	53	T
T_sb-856	21.91	N_sb-103	N_sb-095	110	130	4.53	0.56	4.073	S	T	N_sb-856	2.71	0.08	58.2	T
T_sb-857		N_sb-094	N_sb-154	63	130	0.44	0.17	0.829	-	T	N_sb-857	2.71	0.14	63.2	T
T_sb-858		N_sb-154	N_sb-166	63	130	1.64	0.62	9.345	_	T	N_sb-858	2.7	0.37	52.8	-
T_sb-859		N_sb-154	N_sb-058	63	130	0.84	0.32	2.709	_	T	N_sb-859	2.7	0.65	62	T
T_sb-860		N_sb-166	N_sb-165	63	130	0.86	0.32	2.828	_	T	N_sb-860	2.7	0.27	62.6	-
T_sb-861	5.93	N_sb-138	N_sb-135	110	130	8.68	1.07	13.574	>	S	N_sb-861	2.7	0.3	49.6	T

		DISEÑO R	ED AIRE LIBRE	(REPO	RTE D	E TUBERÍ	AS)				DISEÑO	D RE Dia	metros	NUDOS)	
									Perdid						
Label	long.	Longitud	Nodo Inicial	Nodo Final	DN	Caudal	Vel.	Perd. Unit.	a unitar ia	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_sb-862		N_sb-135	N_sb-155	90	130	6.11	1.13	18.975	S	S	N_sb-862	2.7	0.16	61.3	T
T_sb-863 T sb-864		N_sb-182 N_sb-060	N_sb-143 N_sb-138	63 110	130	0.68 10.51	0.26 1.3	1.832	n e	T S	N_sb-863 N_sb-864	2.7	0.67	62 44.9	T
T sb-865		N_sb-060 N_sb-200	N_sb-138 N_sb-182	63	130	0.99	0.37	3.648	e c	T	N_sb-865	2.68	0.39	52.8	S
T sb-866		N_sb-014	N_sb-060	110	130	8.66	1.07	13.501	e	T	N_sb-866	2.68	0.13	60	T
T_sb-867		N_sb-074	N_sb-051	63	130	0.79	0.3	2.427	n	T	N_sb-867	2.67	0.13	62.4	S
T_sb-868	81.53	N_sb-200	N_sb-074	63	130	0.08	0.03	0.038	n	T	N_sb-868	2.67	0.08	46.8	T
T_sb-869	3.57	N_sb-181	N_sb-174	63	130	0.45	0.17	0.858	e	T	N_sb-869	2.66	0.37	53.1	T
T_sb-870		N_sb-174	N_sb-160	63	130	0.19	0.07	0.168	e	T	N_sb-870	2.64	0.09	62.6	T
T_sb-871		N_sb-091	N_sb-092	63	130	2.87	1.08	26.346	e	T	N_sb-871	2.64	0.48	51	T
T_sb-872 T sb-873		N_sb-141 N_sb-144	N_sb-117 N sb-140	63 63	130	0.66	0.25	1.735	e e	T	N_sb-872 N_sb-873	2.64	0.96	52.4 50.9	T
T_sb-874		N_sb-144 N_sb-140	N_sb-140 N_sb-141	63	130	0.37	0.21	0.394	e	T	N_sb-874	2.63	0.72	45	T
T sb-875		N sb-178	N sb-140	63	130	0.32	0.12	0.461	e	T	N sb-875	2.63	0.14	62.3	т.
T_sb-876		N_sb-236	N_sb-200	63	130	0.33	0.12	0.479	S	T	N_sb-876	2.62	0.09	55.5	S
T_sb-877	38.9	N_sb-035	N_sb-047	63	130	0.63	0.24	1.614	n	T	N_sb-877	2.62	1.2	51.7	T
T_sb-878		N_sb-1005	N_sb-988	63	130	0.67	0.25	1.803	n	T	N_sb-878	2.62	1.97	62.5	S
T_sb-879		N_sb-102	N_sb-138	110	130	3.01	0.37	1.911	e	S	N_sb-879	2.6	0.17	55.1	T
T_sb-880 T sb-881	6.48 98.48	N_sb-056 N_sb-089	N_sb-059 N_sb-059	200	130	14.84 0.35	0.55	1.999 0.533	e n	T	N_sb-880 N_sb-881	2.6	0.99	50.9 52.4	T
T sb-882		N_sb-063	N_SD-059 N_Sb-062	90	130	4.54	0.15	10.949	n s	T	N_sb-882	2.6	0.85	52.4	T
T sb-883	27.2		N sb-055	90	130	5.5	1.02	15.582	s	T T	N sb-883	2.59	0.67	53	s
T_sb-884	52.02		N_sb-098	110	130	6.14	0.76	7.142	n	T	N_sb-884	2.58	0.62	51.1	Т
T_sb-885	33.97	N_sb-098	N_sb-089	90	130	6.17	1.14	19.3	n	T	N_sb-885	2.56	0.63	64	Т
T_sb-886	99.84	N_sb-062	N_sb-098	63	130	0.74	0.28	2.145	n	T	N_sb-886	2.56	0.73	52.9	S
T_sb-887	4.04	_	N_sb-103	90	130	5.31	0.98	14.632	S	T	N_sb-887	2.56	0.07	53.5	T
T_sb-888		N_sb-035	N_sb-033	200	130	16.91	0.63	2.547	e	T	N_sb-888	2.55	0.09	54	T
T_sb-889	4.4		N_sb-129	63	130	0.87	0.33	2.861	e	T	N_sb-889	2.55	0.4	51.2	T
T_sb-890 T_sb-891	156.11 74.96	N_sb-033 N_sb-089	N_sb-024 N_sb-024	200	130	17.75 1.57	0.66	2.784 8.657	e n	T	N_sb-890 N_sb-891	2.55	0.12 1.12	62.5 53	S
T sb-892	41.56		N sb-039	200	130	19.71	0.74	3.38	e	T	N sb-892	2.54	0.67	51.5	T
T_sb-893	51.02	N_sb-039	N_sb-014	200	130	20.35	0.76	3.588	e	T	N_sb-893	2.53	0.15	62.5	Т
T_sb-894	69.2	N_sb-039	N_sb-007	63	130	0.33	0.12	0.469	n	T	N_sb-894	2.51	0.35	63	T
T_sb-895	23.94	N_sb-320	N_sb-339	63	130	1.21	0.45	5.328	e	T	N_sb-895	2.5	0.41	51.3	T
T_sb-896		N_sb-339	N_sb-331	63	130	2.65	1	22.791	e	T	N_sb-896	2.5	0.33	63.2	T
T_sb-897		N_sb-044	N_sb-060	110	130	7.66 4.99	0.94	10.764	e	S	N_sb-897	2.49	0.52	52.1	T
T_sb-898 T sb-899	84.41 69.99	N_sb-060 N_sb-059	N_sb-089 N_sb-035	100 200	130	15.79	0.64	5.255 2.242	e e	T T	N_sb-898 N_sb-899	2.49	3.38	52.2 49.7	T
T_sb-900		N_sb-762	N sb-770	63	130	1.77	0.67	10.813	e	s	N_sb-900	2.49	0.11	62.4	T
T_sb-901	82.21		N_sb-396	90	130	3	0.55	5.069	s	Т	N_sb-901	2.48	0.6	62.5	Т
T_sb-902		N_sb-396	N_sb-400	63	130	1.62	0.61	9.188	S	T	N_sb-902	2.48	0.22	52.8	T
T_sb-903		N_sb-548	N_sb-715	63	130	1.74	0.65	10.398		T	N_sb-903	2.48	0.05	47.4	T
T_sb-904		N_sb-715	N_sb-762	63	130	1.18	0.44	5.064		T	N_sb-904	2.47	0.56	62.1	S
T_sb-905 T_sb-906		N_sb-715 N_sb-901	N_sb-901 N_sb-828	63 63	130	2.37 1.78	0.89	18.526 10.84		T	N_sb-905 N_sb-906	2.46	0.14	62.9 62.6	-
T_sb-906		N_sb-901 N_sb-753	N_sb-721	63	130	1.79	0.67	10.996	_	T	N_sb-906 N_sb-907	2.45	0.11	55.4	-
T_sb-908		N_sb-382	N_sb-753	110	130	4.43	0.55	3.906	_	S	N_sb-908	2.44	0.23	52	T
T_sb-909		N_sb-753	N_sb-838	63	130	0.63	0.24	1.59	_	T	N_sb-909	2.43	4.12	51.5	-
T_sb-910	4.37	N_sb-133	N_sb-141	63	130	0.86	0.32	2.805	e	T	N_sb-910	2.42	0.98	50.9	Т
T_sb-911		N_sb-770	N_sb-885	63	130	0.63	0.23	1.567	S	T	N_sb-911	2.42	0	63.6	-
T_sb-912		N_sb-417	N_sb-391	63	130	0.64	0.24	1.649	_	T	N_sb-912	2.42	0	63.7	P
T_sb-913 T_sb-914		N_sb-770	N_sb-753	63 63	130	1.36 2.5	0.51	6.65 20.46		S T	N_sb-913	2.42	0.06	63.7 50.3	T
T_sb-914 T_sb-915		N_sb-879 N_sb-964	N_sb-964 N_sb-945	63	130	0.61	0.94	1.484	_	T	N_sb-914 N_sb-915	2.41	0.21	51.7	T
T_sb-916		N_sb-993	N_sb-969	63	130	0.01	0.25		_	T	N_sb-916	2.41	0.81	51.7	T
T_sb-917		N_sb-969	N_sb-1008	63	130	0.47	0.18	0.917	n	T	N_sb-917	2.4	0.14	60.4	T
T_sb-918		N_sb-989	N_sb-993	63	130	0.48	0.18	0.968	n	T	N_sb-918	2.39	0.49	50.6	Т
T_sb-919	61.71	N_sb-1008	N_sb-989	63	130	0.03	0.01	0.007	_	T	N_sb-919	2.39	0.52	51.7	T
T_sb-920		N_sb-989	N_sb-957	63	130	0.25	0.1	0.296	-	T	N_sb-920	2.38	0.06	47	T
T_sb-921		N_sb-957	N_sb-967	63	130	0.62	0.23	1.537	n -	T	N_sb-921	2.38	0.5	51.8	
T_sb-922 T sb-923		N_sb-378 N_sb-223	N_sb-770 N_sb-220	63 110	130	1.37 7.92	0.51	6.672 11.438	_	T S	N_sb-922 N_sb-923	2.37	0.1	63.3 45.8	T
1_30-323	11./1	14_30-223	N_30-220	110	130	1.52	0.50	11.438	11	J	W_20,272	2.37	0.1	43.8	

		DISEÑO RI	ED AIRE LIBRE	(REPO	RTE D	E TUBERÍ	AS)				DISEÑO	RE Dia	metros	NUDOS)	
									Perdid						
Label	long.	Longitud	Nodo Inicial	Nodo Final	DN	Caudal	Vel.	Perd. Unit.	a unitar ia	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_sb-924	2.67	N_sb-353	N_sb-352	90	130	2.52	0.47	3.682	e	T	N_sb-924	2.36	0.1	63	T
T_sb-925	61.91	N_sb-129	N_sb-090	63	130	1	0.38	3.731	e	T	N_sb-925	2.36	0.78	50.7	T
T_sb-926	90.95	N_sb-092	N_sb-076	63	130	0.49	0.18	0.98	e	T	N_sb-926	2.36	0.32	50.3	T
T_sb-927		N_sb-076	N_sb-064	63	130	1.36	0.51	6.629	e	T	N_sb-927	2.36	0.12	63.3	T
T_sb-928		N_sb-075	N_sb-076	63	130	0.79	0.3	2.439	n	T	N_sb-928	2.36	0.11	45.8	-
T_sb-929	134.37 53.91	N_sb-017 N_sb-209	N_sb-164 N_sb-164	90 63	130 130	5.88 1.2	1.09 0.45	17.676 5.237	5	T	N_sb-929 N_sb-930	2.35	0.07	63 46.4	T
T_sb-930 T sb-931		N_sb-209	N_Sb-164 N_Sb-147	63	130	1.64	0.43	9.352	n c	T	N_sb-930 N_sb-931	2.35	0.00	54.1	T
T sb-932		N_sb-147	N sb-152	63	130	2.02	0.76	13.727	s	T	N sb-932	2.35	0.45	53.5	Ť
T sb-933	35.27	N sb-396	N sb-467	63	130	0.73	0.27	2.073	s	T	N sb-933	2.35	0.04	46.5	T
T_sb-934	16.91	N_sb-151	N_sb-147	90	130	3.87	0.71	8.121	n	Т	N_sb-934	2.35	0.14	54	Т
T_sb-935	5.04	N_sb-394	N_sb-396	63	130	0.41	0.15	0.712	S	Т	N_sb-935	2.34	0.14	46.4	T
T_sb-936	4.62	N_sb-220	N_sb-221	110	130	7.31	0.9	9.875	n	S	N_sb-936	2.34	0.17	52.5	T
T_sb-937	370.53	N_sb-339	N_sb-344	90	130	3.71	0.69	7.547	n	T	N_sb-937	2.34	0.14	46	T
T_sb-938		N_sb-235	N_sb-240	200	130	8.03	0.3	0.641	e	S	N_sb-938	2.34	0.29	60.3	T
T_sb-939		N_sb-240	N_sb-206	200	130	3.76	0.14	0.157	e	T	N_sb-939	2.33	0.06	46.2	T
T_sb-940		N_sb-240	N_sb-252	315	130	4.14	0.06	0.021	e	S	N_sb-940	2.32	0.14	63.2	T
T_sb-941 T sb-942		N_sb-245 N_sb-167	N_sb-223 N_sb-245	160 315	130 130	13.95 2.82	0.82	5.298 0.01	n e	S T	N_sb-941 N_sb-942	2.32	0.24	60.9 46	S
T_sb-942		N_sb-223	N_sb-326	90	130	5.2	0.04	14.063	n	T	N_sb-943	2.31	0.11	46.6	T
T sb-944		N sb-421	N sb-417	63	130	0.68	0.26	1.838	 e	T	N sb-944	2.31	0.09	45.9	т Т
T sb-945		N_sb-141	N sb-176	63	130	0.97	0.37	3.567	e	T	N sb-945	2.31	0.08	54.2	T
T_sb-946		N_sb-164	N_sb-151	90	130	4.34	0.8	10.049	n	Т	N_sb-946	2.3	0.13	60	Т
T_sb-947	29.57	N_sb-754	N_sb-781	63	130	0.44	0.16	0.802	n	Т	N_sb-947	2.3	0.1	53.7	T
T_sb-948	84.13	N_sb-518	N_sb-543	200	130	18.91	0.71	3.13	e	S	N_sb-948	2.3	0.29	50	T
T_sb-949	99.33	N_sb-553	N_sb-602	63	130	0.24	0.09	0.268	e	T	N_sb-949	2.3	0.88	51.1	T
T_sb-950	14.42	N_sb-607	N_sb-603	63	130	1.2	0.45	5.27	n	T	N_sb-950	2.3	0.84	51.6	T
T_sb-951		N_sb-498	N_sb-495	63	130	0.82	0.31	2.592	S	T	N_sb-951	2.3	0.09	46.3	T
T_sb-952		N_sb-495	N_sb-461	63	130	0.18	0.07	0.161	S	T	N_sb-952	2.3	0.14	45.9	T
T_sb-953		N_sb-562	N_sb-563	63	130 130	0.61	0.23	1.52 2.679	n	T T	N_sb-953	2.29	0.14	63.4 45.9	T
T_sb-954 T sb-955	99.1	N_sb-592 N_sb-589	N_sb-589 N_sb-636	63 63	130	0.04	0.03	0.027	5	T	N_sb-954 N_sb-955	2.29	0.21	63.2	T
T_sb-956	80.4	_	N_sb-589	200	130	3.85	0.14	0.165	e	s	N sb-956	2.29	0.11	46	T
T sb-957		N sb-555	N sb-601	63	130	0.37	0.14	0.596	5	T	N sb-957	2.29	0.12	53.9	T
T_sb-958		N_sb-747	N_sb-754	63	130	1.24	0.47	5.562	n	Т	N_sb-958	2.29	0.26	54.6	Т
T_sb-959	5.6	N_sb-552	N_sb-555	63	130	2.31	0.87	17.663	S	Т	N_sb-959	2.28	0.79	52.3	T
T_sb-960	40.15	N_sb-768	N_sb-754	63	130	0.54	0.2	1.192	n	T	N_sb-960	2.28	0.08	63.2	T
T_sb-961	79.04	N_sb-790	N_sb-778	63	130	0.63	0.24	1.606	n	T	N_sb-961	2.27	0.99	50.4	T
T_sb-962		N_sb-778	N_sb-768	63	130	0.08	0.03	0.035	n	T	N_sb-962	2.26	0.09	54.3	T
T_sb-963	27.31	N_sb-778	N_sb-806	63	130	0.28	0.1	0.349	n	T	N_sb-963	2.25	0.28	61.5	T
T_sb-964		N_sb-792	N_sb-793	63	130	1.39	0.52	6.904	n	T	N_sb-964	2.25	0.12	54.3	T
T_sb-965 T_sb-966		N_sb-793 N_sb-817	N_sb-789 N_sb-793	63 63	130 130	0.28	0.11	0.365 2.587	_	T	N_sb-965 N_sb-966	2.24	0.16	53.8 51.9	
T_sb-967		N_sb-858	N_sb-898	63	-	1.9		12.341		T	N_sb-967	2.23	0.13	53.8	-
T_sb-968		N_sb-855	N_sb-865	63	130	0.83	0.72	2.661	_	T	N_sb-968	2.22	0.52	53.3	-
T_sb-969		N_sb-589	N_sb-591	200	_	2.64	0.1	0.081	_	S	N_sb-969	2.21	0.34	53.9	
T_sb-970		N_sb-416	N_sb-418	63	130	0.43	0.16	0.776	n	Т	N_sb-970	2.21	0.81	53.3	Т
T_sb-971	77.49	N_sb-384	N_sb-352	63	130	0.46	0.17	0.894	e	T	N_sb-971	2.2	0.15	60.4	T
T_sb-972	9.02	N_sb-538	N_sb-543	63	130	2.79	1.05	24.986	n	T	N_sb-972	2.19	0.34	52.8	-
T_sb-973		N_sb-543	N_sb-560	63	130	1.29	0.49	6.024	_	T	N_sb-973	2.19	0.79	51.8	-
T_sb-974		N_sb-530	N_sb-531	200	130	6.45	0.24	0.427	_	S	N_sb-974	2.19	0.57	51.3	-
T_sb-975		N_sb-623	N_sb-622	110	130	10.37	1.28	18.877		T	N_sb-975	2.16	0.98	52.6	-
T_sb-976		N_sb-523	N_sb-531	110	130	6.61	0.82	8.2	_	S	N_sb-976	2.14	0.31	50.2	-
T_sb-977		N_sb-390	N_sb-429	63	130	0.59	0.22	1.408	_	T	N_sb-977	2.14	0.76	45.9	-
T_sb-978 T_sb-979		N_sb-429 N_sb-424	N_sb-430 N_sb-429	63 63	130 130	1.06 0.75	0.4	4.174 2.223	_	T	N_sb-978 N_sb-979	2.14	0.22	53.8 53.7	
T_sb-979		N_sb-546	N_sb-553	63	130	1.01	0.28	3.82	_	T	N_sb-979	2.13	0.35	54.5	
T_sb-980		N_sb-340	N_sb-333	63	130	1.13	0.43	4.716	_	T	N_sb-981	2.11	0.14	60.4	-
T_sb-982		N_sb-892	N_sb-871	110	130	3.95	0.49	3.155	_	T	N_sb-982	2.11	0.11	53.9	-
T_sb-983		N_sb-418	N_sb-457	63	130	0.14	0.05	0.099	_	T	N_sb-983	2.11	0.38	60.4	-
T_sb-984		N_sb-457	N_sb-459	63	130	0.7	0.26	1.942		T	N_sb-984	2.09	2.41	50	-
T_sb-985	79.25	N_sb-459	N_sb-489	63	130	0.75	0.28	2.22	n	T	N_sb-985	2.09	0.72	51.9	T

		DISEÑO RED	15 DE MARZO	(REPO	RTE E	E TUBERÍ	AS)				DISEÑO	ORE	notros	ENUDOS)	\neg
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Odem	Presión	Red
Label	iong.	Nodo Iniciai	Nodo Final	DIN	·	Caudai	vei.	Unit.	Notas	nea	Label	Cota	Quem	Presion	nea
	m			mm		lt/s	m/s	m/km		Ш		msnm	lt/s	mca	${oxdot}$
T_15m-001		n_15m-478	n_15m-480	250	130	6.34	0.15	0.14		P P	n_15m-001	52.98	0.49	15.6	T
T_15m-002 T 15m-003		n_15m-281 n_15m-539	n_15m-478 n_15m-540	250 250	130	14.14 82.15	0.34 1.96	0.62 16.02	n c	P	n_15m-002 n_15m-003	56.02 50.45	2.42 0.55	8.5 18	+
T 15m-004	20.38	_	n_15m-051	250	130	126.17	3.02	35.45	n	P	n 15m-004	49.27	0.54	19.2	Ť
T 15m-005	2,191.62	_	n 15m-094	315	130	30.75	0.46	0.84	s	P	n 15m-005	49.03	0.47	19.5	T
T_15m-006	253.56	n_15m-306	n_15m-245	315	130	159.12	2.4	17.68	s	Р	n_15m-006	46.49	2.94	13.4	Т
T_15m-007	351.87	n_15m-139	n_15m-306	315	130	170.42	2.57	20.07	s	Р	n_15m-007	46.18	0.75	20.7	Т
T_15m-008	142.55	n_15m-130	n_15m-139	400	130	344.33	3.22	23.09	S	P	n_15m-008	44.48	1.07	22.2	Т
T_15m-009		_	n_15m-160	315	130	173.9	2.62	20.84	n	P	n_15m-009	37.26	0.43	31.3	Т
T_15m-010		n_15m-160	n_15m-216	315	130	173.9	2.62	20.84	n	P P	n_15m-010	38.12	1.39	25.1	T
T_15m-011 T_15m-012		n_15m-178 n_15m-192	n_15m-192 n_15m-281	250 250	130	51.55 51.54	1.23	6.76	n n	P	n_15m-011 n_15m-012	37.08 37.7	0.32	31.5 31	T
T 15m-013		n_15m-192 n_15m-112	n 15m-059	315	130	163.48	2.46	18.59	II C	P	n_15m-012	37.96	0.36	30.7	T
T_15m-014		_	n 15m-539	250	130	82.18	1.96	16.03	s	P	n 15m-014	38.62	0.10	46.6	T
T_15m-015		n_15m-237	n_15m-250	315	130	33.31	0.5	0.98	S	Р	n_15m-015	35.16	0.49	33.3	Т
T_15m-016	184.35	n_15m-102	n_15m-110	315	130	175.26	2.64	21.14	S	Р	n_15m-016	33.27	0.24	33.9	T
T_15m-017	4.44	n_15m-110	n_15m-112	315	130	175.25	2.64	21.14	S	P	n_15m-017	33.25	0.34	34	T
T_15m-018	353.45	n_15m-130	15_MARZO	400	130	378.36	3.53	27.49	n	Р	n_15m-018	33.31	0.03	52.8	Т
T_15m-019		n_15m-480	n_15m-493	160	130	1.08	0.06	0.05	e	P	n_15m-019	33.68	0.71	34.8	T
T_15m-020		_	n_15m-077	250	130	87.79	2.1	18.11	n	P P	n_15m-020	32.46	0.21	34.7	T
T_15m-021 T 15m-022		n_15m-170 n_15m-059	n_15m-216 n_15m-051	315 315	130	173.9 146.66	2.62	20.84 15.2	5	P	n_15m-021 n_15m-022	33.01 31.43	0.56	35.5 37.3	T S
T 15m-023		n 15m-250	n 15m-245	315	130	71.76	1.08	4.05	5	P	n 15m-022	30.93	0.07	37.8	S
T 15m-024		n 15m-178	n 15m-170	315	130	260.8	3.93	44.14	s	P	n 15m-024	31.18	0.44	37.4	T
T_15m-025	283.43	n_15m-245	n_15m-170	315	130	87.15	1.31	5.8	n	Р	n_15m-025	31.54	0.71	30.1	Т
T_15m-026	293.97	n_15m-102	N_no-071	315	130	192.16	2.89	25.07	n	P	n_15m-026	30.95	0.99	37.4	Т
T_15m-027	90.32	n_15m-402	n_15m-396	160	130	17.09	1	7.72	n	S	n_15m-027	29.48	1.21	37.7	Т
T_15m-028		n_15m-534	n_15m-545	63	130	2.45	0.92	19.69	e	S	n_15m-028	30.4	1.73	36.5	T
T_15m-029		_	n_15m-402	160	130	16.79	0.98		n	S	n_15m-029	31.94	0.12	54.1	T
T_15m-030		n_15m-283 n_15m-569	n_15m-386 n_15m-579	160 110	130	19.59 1.68	1.14 0.21	9.94 0.65	n e	S T	n_15m-030 n_15m-031	30.2 30.55	0.15	38.3 31.1	S
T_15m-031 T 15m-032		n_15m-280	n_15m-379 n_15m-251	110	130	1.00	0.21		e	S	n_15m-031 n_15m-032	29.52	0.32	37.8	
T 15m-033		n 15m-401	n 15m-390	160	130	17.52	1.02	8.08	n	S	n 15m-033	29.63	0.29	37.7	Ť
T_15m-034	55.64	n_15m-433	n_15m-473	160	130	0.88	0.05	0.03	e	S	n_15m-034	28.99	0.23	38.2	Т
T_15m-035	46.17	n_15m-369	n_15m-383	160	130	11.37	0.66	3.63	e	S	n_15m-035	27.95	0	36.6	S
T_15m-036	159.15	n_15m-287	n_15m-371	110	130	1.92	0.24	0.83	S	S	n_15m-036	28.49	2.63	33.2	T
T_15m-037	4.59	n_15m-147	n_15m-138	250	130	15.56	0.37	0.74	e	S	n_15m-037	30.27	0.52	31.4	T
T_15m-038	3.51	n_15m-116	n_15m-122	160	130	7.98	0.47	1.88	5	S	n_15m-038	27.81	0.18	40.7	S
T_15m-039	42.58 12.1	_	n_15m-097	160	130	7.17	0.42	1.54	5	S	n_15m-039 n_15m-040	26.77 27	0.14	40.3 34.8	T
T_15m-040 T 15m-041		n_15m-207 n_15m-193	n_15m-193 n_15m-213	110 110	130	7.54 7.27	0.93	10.46 9.77	5	S	n_15m-040 n_15m-041	26.96	0.12	41.7	+
T 15m-042		n 15m-213	n 15m-202	110	130	8.1	1	11.94	5	S	n 15m-042	26.56	0.62	57.8	Ť
T_15m-043		_	n_15m-232	110	130	7.26	0.9	9.75	5	S	n_15m-043	26.48	0.83	41	Т
T_15m-044	124.57	n_15m-371	n_15m-446	110	130	1.87	0.23	0.79	n	S	n_15m-044	26.4	0.01	41.1	Т
T_15m-045	65.74	n_15m-115	n_15m-189	160	130	4.01	0.23	0.53	n	S	n_15m-045	26.22	0.23	35.7	T
T_15m-046		n_15m-265	n_15m-287	110	_	4.07	0.5	3.34		S	n_15m-046	26.26	0.05	41.2	
T_15m-047		n_15m-383	n_15m-433	160	130	2.1	0.12	0.16		S	n_15m-047	17.31	1.16	23.2	T
T_15m-048		n_15m-293	n_15m-264	110	130	1.84	0.23	0.77		S	n_15m-048	26.72	0.13	41.9	-
T_15m-049 T_15m-050		n_15m-515 n_15m-132	n_15m-559 n_15m-067	160 250	130	5.71 4.87	0.33	1.01 0.09		S	n_15m-049 n_15m-050	25.13 24.91	0.18	43.4 42.8	-
T_15m-051		n_15m-114	n_15m-099	250	130	2.52	0.06	0.03		S	n_15m-051	17.29	18.08	24.1	-
T_15m-052		n_15m-189	n_15m-275	160	130	3.48	0.2	0.41		S	n_15m-052	25.35	0.89	42.2	-
T_15m-053		n_15m-275	n_15m-336	160	130	2.97	0.17	0.3	n	S	n_15m-053	25.03	0.24	42.6	T
T_15m-054	48.74	n_15m-336	n_15m-367	160	130	2.47	0.14	0.21	n	S	n_15m-054	25.09	0.29	42.6	T
T_15m-055		n_15m-367	n_15m-380	160	130	2.01	0.12	0.15		S	n_15m-055	25.02	0.09	42.6	_
T_15m-056		n_15m-380	n_15m-400	160	130	1.49	0.09	0.08		S	n_15m-056	24.98	0.18	42.6	
T_15m-057		n_15m-481	n_15m-491	110	130	6.16	0.76	7.19		S	n_15m-057	25.04	0.32	43.4	_
T_15m-058 T_15m-059		n_15m-111 n_15m-489	n_15m-063 n_15m-510	110 110	130	1.44 5.09	0.18	0.49 5.05	5	S	n_15m-058 n_15m-059	24.3 19.61	0.11 16.82	44.3 27.5	S P
T_15m-060		n_15m-489 n_15m-510	n_15m-510 n_15m-521	110	130	3.79	0.63	2.92	5	S	n_15m-059	24.63	0.5	37.2	T
T_15m-061		n_15m-550	n_15m-521	160	130	0.11	0.01	0		S	n_15m-061	24.49	0.23	37.6	-
T_15m-062		n_15m-200	n_15m-222	90	130	2.08	0.38	2.57		S	n_15m-062	24.48	0.16	44.1	T
T_15m-063	2.81	n_15m-077	n_15m-078	160	130	38.37	2.24	34.51	n	S	n_15m-063	24.26	0.64	40.2	S
T_15m-064	44.33	n_15m-578	n_15m-588	110	130	4.41	0.54	3.87	e	T	n_15m-064	23.77	3.19	16.7	T

		DISEÑO RED	15 DE MARZO	(REPO	RTE	E TUBERI	AS)				DISEÑ	Diar	motros	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Qdem	Presión	Red
Lubei		rroug miciai	Nodo I III di					Unit.	Hotas	nea	Euber				cu
T 15m-065	m ⊿33	n 15m-094	n 15m-090	mm 110	130	It/s 6.78	m/s 0.84	m/km 8.59	c	s	n 15m-065	msnm 20.59	lt/s 2.41	mca 20.8	s
T_15m-066		n_15m-090	n_15m-088	110	130	6.14	0.76	7.14	5	S	n_15m-066	23.96	0.17	44.7	S
T_15m-067	3.76	n_15m-082	n_15m-083	110	130	5.2	0.64	5.25	5	S	n_15m-067	19.25	0.94	34.7	S
T_15m-068		n_15m-563	n_15m-573	160	130	4.16	0.24	0.56	n	S	n_15m-068	24	0.14	44.6	T
T_15m-069		n_15m-121	n_15m-111	110	130	7.63	0.94	10.68		S	n_15m-069	18.36	1.04	35.6	T
T_15m-070		n_15m-432 n_15m-142	n_15m-494 n_15m-127	160 110	130	8.02 4.91	0.47	1.9 4.73		s s	n_15m-070	29.23	0.32	40 42.2	T
T_15m-071 T_15m-072		n_15m-230	n_15m-263	90	130	2.35	0.43	3.22	e	S	n_15m-071 n_15m-072	23.35	0.98	40.5	T
T_15m-073		n_15m-142	n_15m-128	160	130	8.74	0.51	2.23	e	S	n_15m-073	22.23	0.23	47	т
T_15m-074	41.88	n_15m-145	n_15m-144	110	130	3.33	0.41	2.3	S	S	n_15m-074	16.87	0.13	23.8	S
T_15m-075		n_15m-307	n_15m-303	110	130	3.11	0.38	2.03	e	S	n_15m-075	22.43	0.26	46.4	T
T_15m-076		n_15m-162	n_15m-161	160	130	19.63	1.15	9.98	5	S	n_15m-076	22.5	0.19	46	S
T_15m-077		n_15m-161	n_15m-143	160 200	130	18.93 27.52	1.11	9.32 6.27	5	S S	n_15m-077	16.86	0.82	23.8	P
T_15m-078 T_15m-079		n_15m-120 n_15m-150	n_15m-136 n_15m-158	110	130	27.52	0.26	1.01	5	S	n_15m-078 n_15m-079	16.87 16.77	0.82	23.7	P
T_15m-080		n_15m-066	n_15m-126	315	130	15.17	0.23	0.23	e	S	n_15m-080	22.06	0.27	42.3	T
T_15m-081		n_15m-083	n_15m-071	110	130	4.38	0.54	3.82	s	S	n_15m-081	21.92	0	42.7	Т
T_15m-082	49.79	n_15m-535	n_15m-547	63	130	0.03	0.01	0.01	n	S	n_15m-082	21.78	0.01	42.9	S
T_15m-083		n_15m-573	n_15m-553	63	130	0.23	0.09	0.25		S	n_15m-083	21.67	0.13	43	S
T_15m-084		n_15m-559	n_15m-563	160	130	4.96	0.29	0.78		S	n_15m-084	21.61	0.27	64.9	S
T_15m-085 T 15m-086		n_15m-134 n_15m-477	n_15m-140 n_15m-485	250 160	130	18.08 6.17	0.43	0.97 1.17	e n	S S	n_15m-085 n_15m-086	21.86 21.16	0.13	64.6 65.3	S
T 15m-087		n_15m-477	n 15m-515	160	130	6.47	0.38	1.28		S	n 15m-087	21.12	0.15	47.5	Ť
T_15m-088		n_15m-469	n_15m-476	160	130	7.2	0.42	1.56		S	n_15m-088	21.02	0.19	47.9	Т
T_15m-089	46.93	n_15m-494	n_15m-486	160	130	7.94	0.46	1.86	n	S	n_15m-089	20.33	0.24	47.2	S
T_15m-090		n_15m-486	n_15m-469	160	130	7.93	0.46	1.86		S	n_15m-090	20.54	0.11	48.9	S
T_15m-091		n_15m-541	n_15m-590	200	130	25.15	0.94	5.31		S	n_15m-091	20.59	0.17	48.1	S
T_15m-092 T 15m-093		n_15m-540 n_15m-410	n_15m-541 n_15m-489	250 110	130	58.78 6.16	1.41 0.76	8.62 7.2	5	s s	n_15m-092 n_15m-093	20.35	0.65	47.2 47.8	S
T 15m-094		n 15m-547	n 15m-553	160	130	1.74	0.70	0.11	n	S	n 15m-094	20.72	0.02	47.8	S
T_15m-095		n_15m-403	n_15m-410	110	130	7.28	0.9	9.8		S	n_15m-095	20.69	0.8	42.4	Т
T_15m-096	49.08	n_15m-530	n_15m-535	63	130	0.24	0.09	0.27	n	S	n_15m-096	20.16	0.49	64.4	T
T_15m-097		_	n_15m-530	63	130	0.44	0.16	0.81	n	S	n_15m-097	20.15	0.37	64.4	S
T_15m-098		n_15m-448	n_15m-507	63	130	0.76	0.29	2.27	n	S	n_15m-098	20.12	0.38	47.4	T
T_15m-099		n_15m-430	n_15m-448	63	130	1.14 2.81	0.43 1.05	4.81 25.27		s s	n_15m-099	20.24	0.3	45.3 47.2	S
T_15m-100 T_15m-101		n_15m-399 n_15m-416	n_15m-416 n_15m-430	63 63	130	1.81	0.68	11.22	n n	S	n_15m-100 n_15m-101	20.24	0.71	47.2	T
T_15m-102	86.47	n_15m-399	n_15m-418	160	130	15.68	0.92	6.58	n	S	n_15m-102	19.96	16.9	38.1	P
T_15m-103	88.83	n_15m-418	n_15m-426	160	130	13.18	0.77	4.77	n	S	n_15m-103	20.07	0.13	47.4	S
T_15m-104	88.97	n_15m-426	n_15m-432	160	130	11.28	0.66	3.58	n	S	n_15m-104	19.92	0.35	45.4	S
T_15m-105	84.43	_	n_15m-115	250	130	7.63	0.18	0.2	e	S	n_15m-105	22.38	0.12	46.3	T
T_15m-106	275.5 142.01	_	n_15m-523	200	130	31.79 4.32	1.19 0.53	8.19	5	s s	n_15m-106	19.98	0.05	48.5 49.2	S
T_15m-107 T_15m-108	54.07	n_15m-492 n_15m-614	n_15m-491 n_15m-617	110 160	130	14.88	0.55	3.73 5.97	5	S	n_15m-107 n_15m-108	19.36 19.74	0.28	49.2	T
T_15m-109		n_15m-198	n_15m-220	160	130	4.52	0.26	0.66	e	S	n_15m-109	19.82	0.03	47.7	T
T_15m-110			n_15m-240	160		3.51	0.21	0.41		S	n_15m-110	19.69	0.01	34.4	
T_15m-111		n_15m-131	n_15m-119	250	130	7.8	0.19	0.2	e	S	n_15m-111	19.55	0.18	44.9	S
T_15m-112		n_15m-201	n_15m-198	160		5.5	0.32	0.94		S	n_15m-112	19.54	0.01	34.5	P
T_15m-113		n_15m-301	n_15m-312	160		16.18	0.95	6.98		S	n_15m-113	19.82	0.29	43.1	T
T_15m-114 T_15m-115		n_15m-385 n_15m-567	n_15m-394 n_15m-551	160 110		1.74 8.5	1.05	0.11		S S	n_15m-114 n_15m-115	19.57 19.37	0.14	45.7 34.7	S
T_15m-116		n_15m-240	n_15m-269	160		2.72	0.16	0.26		S	n 15m-116	19.32	0.33	65.3	S
T_15m-117		n_15m-441	n_15m-458	90	130	0.41	0.08	0.13		S	n_15m-117	19.66	1.5	48.4	Т
T_15m-118		n_15m-366	n_15m-379	90	130	0.76	0.14	0.4		S	n_15m-118	19	0.25	35	S
T_15m-119		n_15m-268	n_15m-334	90	_	1.46	0.27	1.33		S	n_15m-119	18.94	0.49	46.4	S
T_15m-120		n_15m-395	n_15m-397	63	_	0.05	0.02	0.02		S	n_15m-120	19.2	0.16	67.4	S
T_15m-121		n_15m-058	n_15m-087	110	_	2.14	0.26	0.79		S S	n_15m-121	19.31 19.15	0.03	45.2 65.5	S
T_15m-122 T_15m-123		n_15m-058 n_15m-616	n_15m-030 n_15m-614	110 160	130	1.87 18.18	0.23 1.06	0.79 8.65		S	n_15m-122 n_15m-123	19.15	0.31	65.5	S
T_15m-124		n_15m-455	n_15m-438	110		2.46	0.3	1.32		S	n_15m-124	19.15	0.02	65.1	T
T_15m-125		n_15m-120	n_15m-084	160		6.35	0.37	1.23		S	n_15m-125	19.2	0.6	65	T
T_15m-126	106.88	n_15m-091	n_15m-088	110	130	3.64	0.45	2.72	5	S	n_15m-126	18.88	0.15	49.8	S
T_15m-127		n_15m-585	n_15m-599	110	130	6.48	0.8	7.9		S	n_15m-127	18.92	0.08	48.9	S
T_15m-128	54.48	n_15m-058	n_15m-087	110	130	2.11	0.26	0.99	S	S	n_15m-128	19.23	0.34	48.6	S

		DISEÑO RED	15 DE MARZO	(REPO	RTE	DE TUBERÍ	AS)				DISEÑ	O RE		NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Odem	Presión	Red
Label	iong.	NOUO IIIICIAI	NOUO FIIIdi	DIV	٠	Caudai	VCI.	Unit.	ivotas	Neu	Label		Queiii	FIESIOII	neu
7 45 400	m	45 445	45 400	mm	400	lt/s	m/s	m/km			45 400	msnm	lt/s	mca	
T_15m-129 T 15m-130		n_15m-415 n_15m-141	n_15m-429 n_15m-153	63 250	130	1.35 16.59	0.51	6.51 0.83	e	s s	n_15m-129 n_15m-130	18.85 18.87	0.24	35.2 67.8	S
T 15m-131		n_15m-141 n_15m-313	n_15m-155 n_15m-308	90	130	3.52	0.65	6.84	e	S	n_15m-130 n_15m-131	18.84	0.01	46.5	S
T 15m-132		n 15m-269	n 15m-385	160	130	2.57	0.15	0.23	e	S	n 15m-132	19	0.28	35	
T_15m-133		n_15m-244	n_15m-258	160	130	23.31	1.36	13.71	5	S	n_15m-133	19.03	0.18	48.7	S
T_15m-134		n_15m-523	n_15m-571	110	130	9.21	1.14	15.16	e	Т	n_15m-134	18.67	0.29	66.2	S
T_15m-135	84.22	n_15m-604	n_15m-596	110	130	0.97	0.12	0.23	S	S	n_15m-135	18.54	0.27	67.6	S
T_15m-136	85.89	n_15m-089	n_15m-052	160	130	2.29	0.13	0.19	e	S	n_15m-136	18.76	0.13	67.8	S
T_15m-137		n_15m-431	n_15m-461	160	130	0.39	0.02	0.01	S	S	n_15m-137	18.69	0.05	67.7	S
T_15m-138		n_15m-512	n_15m-616	160	130	20.57	1.2	10.88	S	S	n_15m-138	17.98	0.34	66.8	T
T_15m-139		n_15m-400 n_15m-458	n_15m-417 n_15m-455	160 90	130	1.29 0.17	0.08	0.06	5	s s	n_15m-139	18.91 18.6	0.01	64.5 66.3	P
T_15m-140 T 15m-141		n_15m-456 n_15m-394	n_15m-455 n_15m-391	63	130	0.17	0.03	1.92	e e	S	n_15m-140 n_15m-141	18.52	0.31	66.3	S
T 15m-142		n 15m-114	n 15m-186	90	130	2.38	0.44	3.3	e	s	n 15m-142	19.03	0.01	48.9	S
T_15m-143		n_15m-599	n_15m-593	110	130	7.47	0.92	10.29	e	S	n_15m-143	18.83	0.31	66.1	S
T_15m-144	88.1	n_15m-132	n_15m-118	250	130	6.17	0.15	0.13	e	S	n_15m-144	19.08	0.11	48.6	S
T_15m-145	90.94	n_15m-391	n_15m-395	63	130	0.31	0.12	0.43	e	S	n_15m-145	18.64	0.08	49	S
T_15m-146	61.82	n_15m-549	n_15m-533	90	130	0.31	0.06	0.08	S	S	n_15m-146	18.21	0.36	66.5	S
T_15m-147		n_15m-118	n_15m-129	250	130	6.9	0.16	0.16	e	S	n_15m-147	18	0.33	66.8	S
T_15m-148		n_15m-424	n_15m-417	160	130	0.75	0.04	0.02	e	S	n_15m-148	18.54	0.13	48.9	S
T_15m-149		n_15m-382	n_15m-398	110	130	8.95 24.17	1.1	14.35 14.67	5	s s	n_15m-149	18.31	0.22	67.8 49	_
T_15m-150 T 15m-151		n_15m-487 n_15m-431	n_15m-512 n_15m-424	160 160	130	0.32	0.02	14.67	s e	S	n_15m-150 n_15m-151	18.62 18.15	0.14	66.6	S
T 15m-151		n 15m-099	n_15m-424	250	130	3.77	0.02	0.05	e	S	n 15m-151	18.36	0.23	67.5	S
T 15m-153		n 15m-398	n_15m-403	110	130	8.32	1.03	12.55	5	S	n 15m-153	18.48	0.32	66.3	S
T_15m-154	181.17	n_15m-503	n_15m-545	63	130	1.72	0.65	10.24	e	S	n_15m-154	18.37	0.19	49.7	S
T_15m-155	60.47	n_15m-312	n_15m-348	160	130	14.5	0.85	5.69	e	S	n_15m-155	18.38	0.32	49.8	S
T_15m-156	109.58	n_15m-585	n_15m-567	110	130	6.5	0.8	7.95	S	S	n_15m-156	18.34	0.16	67.5	S
T_15m-157		n_15m-119	n_15m-104	250	130	6.4	0.15	0.14	e	S	n_15m-157	18.75	0.33	66.1	S
T_15m-158		n_15m-204	n_15m-347	160	130	2.15	0.13	0.17	n	S	n_15m-158	18.47	0.34	49	S
T_15m-159		n_15m-593	n_15m-604	110 110	130	6.8 13.76	0.84	8.64 31.84	e	S S	n_15m-159	18.28 18.28	0.03	49.2	S
T_15m-160 T 15m-161		n_15m-244 n_15m-182	n_15m-248 n_15m-200	90	130	2.29	0.42	3.09	s e	S	n_15m-160 n_15m-161	18.17	0.27	61.2 67.2	S
T 15m-162		n 15m-148	n 15m-159	160	130	3.19	0.42	0.34	e	S	n 15m-162	18.19	0.21	67.2	S
T_15m-163		n_15m-144	n_15m-133	110	130	3.76	0.46	2.88	s	S	n_15m-163	17.83	0.53	66.5	Т
T_15m-164		n_15m-303	n_15m-293	110	130	2.32	0.29	1.18	e	S	n_15m-164	17.96	0.33	68	S
T_15m-165	41.13	n_15m-135	n_15m-164	90	130	3.08	0.57	5.33	e	S	n_15m-165	17.87	0.24	68	Т
T_15m-166	9.15	n_15m-227	n_15m-223	63	130	0.05	0.02	0.01	e	S	n_15m-166	17.72	0.03	66.6	_
T_15m-167		n_15m-499	n_15m-495	160	130	0.59	0.03	0.02	n	S	n_15m-167	17.99	0.59	65.4	T
T_15m-168		n_15m-232	n_15m-265	110	130	5.81	0.72	6.45	S	S	n_15m-168	17.79	0.36	66.6	
T_15m-169 T 15m-170		n_15m-030 n_15m-067	n_15m-038 n_15m-204	110 160	130	1.4 2.88	0.17	0.46	s n	s s	n_15m-169 n_15m-170	17.53 17.55	0.49	65.7 52.6	T P
T 15m-170		n_15m-600	n_15m-204 n_15m-590	160	130	16.35	0.17	7.11	s	S	n_15m-170 n_15m-171	18.41	0.23	45.9	T
T 15m-172		n 15m-347	n 15m-413	160	130	1.74	0.1	0.11	n	S	n 15m-172	17.63	0.04	66.7	T
T_15m-173		n_15m-413	n_15m-482	160	130	1.31	0.08	0.07	n	S	n_15m-173	17.74	0	66.6	
T_15m-174	48.04	n_15m-482	n_15m-499	160	130	0.95	0.06	0.04	n	S	n_15m-174	17.62	0.16	68.6	S
T_15m-175		n_15m-476	n_15m-477	160		7.06	0.41	1.5	_	S	n_15m-175	17.81	0.15	66.5	_
T_15m-176		n_15m-605	n_15m-603	110		6.46	0.8	7.86		T	n_15m-176	17.86	0.23	66.4	
T_15m-177		n_15m-164	n_15m-182	90		2.61	0.48	3.94	_	S	n_15m-177	17.54	0.22	68.6	
T_15m-178		n_15m-137	n_15m-152	250	130	22.04	1.29	12.36	_	S	n_15m-178	17.94	0.04	47.4	
T_15m-179 T_15m-180		n_15m-157 n_15m-386	n_15m-134 n_15m-401	250 160	130	17.63 18.64	1.09	0.93 9.07	_	S S	n_15m-179 n_15m-180	17.89 17.56	0.47	47.5 47.5	-
T_15m-181		n_15m-157	n_15m-401 n_15m-141	250		17.12	0.41	0.88	_	S	n_15m-180	17.76	0.18	67.9	_
T_15m-182		n_15m-503	n_15m-479	63		2.38	0.9	18.7	_	S	n_15m-182	17.83	0.37	67.9	-
T_15m-183		n_15m-038	n_15m-021	110		0.97	0.12	0.24	_	S	n_15m-183	17.56	0.57	47.5	-
T_15m-184		n_15m-207	n_15m-248	110		7.98	0.98	11.62	_	S	n_15m-184	17.38	0.37	67	-
T_15m-185	49.94	n_15m-505	n_15m-529	63	130	1.07	0.4	4.22	e	S	n_15m-185	17.21	0.36	67.2	T
T_15m-186		n_15m-050	n_15m-128	160		7.73	0.45	1.78	_	S	n_15m-186	17.26	0.22	47.8	
T_15m-187		n_15m-429	n_15m-444	63		1.27	0.48	5.85	_	S	n_15m-187	17.18	0.01	67.2	
T_15m-188		n_15m-063	n_15m-071	110		0.59	0.07	0.09		S	n_15m-188	17.49	0.34	46.1	_
T_15m-189		n_15m-283	n_15m-301	160 110	130	17.72 1.43	0.18	8.25		S S	n_15m-189	17.22	0.2	36.8 55.1	_
T_15m-190 T_15m-191		n_15m-187 n_15m-082	n_15m-173 n_15m-121	160		7.66	0.18	0.48 1.74	_	S	n_15m-190 n_15m-191	16.15 17.08	0.03	67.3	
T_15m-191		n_15m-529	n_15m-121 n_15m-534	63		1.84	0.43	11.55	_	S	n_15m-191 n_15m-192	17.32	0.03	47.6	
15/// 152	45.05		25.11 554	03	100	1.04	5.05	22.33	_		11_13/11 132	11.32	0.02	47.0	<u> </u>

	D	ISEÑO RED BU	EN PASTOR NU	JEVO (REPO	RTE DE TI	JBERÍAS	5)			DISEÑO	RED (RE	PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		\square		msnm	lt/s	mca	
T_bpa-001	31.2	PRV-2	N_bpa-065	250	130	23.95	0.57		_	Р	N_bpa-001	133.15	0.44	2.4	T
T_bpa-002	432.37	N_bpa-031	N_bpa-059	315	130	41.76	0.63	1.484	n	P	N_bpa-002	131.78	0.77	3.5	T
T_bpa-003	,	Buen Pastor A		315	130	44.41	0.67		n	P P	N_bpa-003	129.62	0.2	5.9	T
T_bpa-004 T bpa-005	5.14 3.36		N_bpa-396 N bpa-401	200 160	130	14.34 6.38	0.54	1.875 1.246	n n	P	N_bpa-004 N bpa-005	128 123.42	0.21	7.7 12.5	S
T bpa-005		N_bpa-338	N_bpa-244	160	130	9.96	0.58		n	P	N bpa-005	121.21	1.05	14.1	T
T bpa-007		N_bpa-059	PRV-2	250	130	23.95	0.57	1.635	n	P	N_bpa-007	120.8	0.29	14.7	T
T_bpa-008		N_bpa-065	N_bpa-398	250	130	20.72	0.5	1.249	n	Р	N_bpa-008	120.12	0.42	15.2	Т
T_bpa-009	251.43	N_bpa-396	N_bpa-239	160	130	10.34	0.6	3.042	n	Р	N_bpa-009	117.49	0.4	19.4	S
T_bpa-010	2,195.79	N_bpa-059	N_bpa-081	200	130	17.78	0.73	3.525	n	Р	N_bpa-010	116.6	0.27	18.8	Т
T_bpa-011	52.76	N_bpa-027	N_bpa-021	90	130	1.65	0.3	1.67	n	S	N_bpa-011	116.54	0.04	19	S
T_bpa-012	75.88	N_bpa-402	N_bpa-400	110	130	0.03	0	0	n	S	N_bpa-012	114.01	0.08	21.4	S
T_bpa-013		N_bpa-276	N_bpa-160	63	130	0.54	0.2	1.178	n	S	N_bpa-013	109.6	0.05	26.1	S
T_bpa-014		N_bpa-297	N_bpa-276	63	130	0.7	0.26	2.5.5	n	S	N_bpa-014	109.17	0.11	26.7	T
T_bpa-015		N_bpa-026	N_bpa-034	90	130	0.93	0.17	0.586	n	S	N_bpa-015	107.21	0.13	28.1	T
T_bpa-016		N_bpa-374 N bpa-187	N_bpa-390	110 63	130	3.01 1.06	0.37	1.905 4.188	e	S	N_bpa-016	105.47 102.52	0.04	30 32.9	S
T_bpa-017 T bpa-018		N_bpa-187 N bpa-387	N_bpa-249 N bpa-391	110	130	2.94	0.4	1.827	e e	S	N_bpa-017 N bpa-018	102.52	0.04	33.4	T
T bpa-019		N_bpa-367	N_bpa-391 N_bpa-027	90	130	1.27	0.36	1.027	n	S	N_bpa-018	102.23	0.14	33.7	S
T_bpa-020		N_bpa-390	N_bpa-387	110	130	2.69	0.33	1.549	e	S	N_bpa-020	100.75	0.38	34.6	T
T_bpa-021	56.76	N_bpa-184	N_bpa-125	63	130	0.5	0.19	1.049	e	S	N_bpa-021	97.33	0.04	38.3	S
T_bpa-022	108.21	N_bpa-250	N_bpa-184	63	130	0.07	0.02	0.025	n	S	N_bpa-022	96.56	0.23	14.2	S
T_bpa-023	50.14	N_bpa-370	N_bpa-321	110	130	0.22	0.03	0.014	n	S	N_bpa-023	96.01	2.96	43.6	S
T_bpa-024	44.42	N_bpa-274	N_bpa-281	110	130	2.47	0.3	1.322	e	S	N_bpa-024	95.92	0.03	39.4	T
T_bpa-025		N_bpa-262	N_bpa-251	110	130	3.45	0.43		e	S	N_bpa-025	94.05	0.05	16.7	S
T_bpa-026		N_bpa-021	N_no-071	90	130	1.79	0.33		n	S	N_bpa-026	92.76	0.06	42.6	S
T_bpa-027		N_bpa-125	N_bpa-133	63	130	0.63	0.23		e	S	N_bpa-027	91.84	0.04	43.6	S
T_bpa-028		N_bpa-009 N_bpa-005	N_bpa-005	90	130 130	3.87 1.9	0.72		n n	5	N_bpa-028	91.2 90.92	0.38	19.5 19.9	T
T_bpa-029 T bpa-030		N_bpa-003	N_bpa-004 N_bpa-005	90	130	1.9	0.33		n n	S	N_bpa-029 N_bpa-030	90.92	0.11	61.3	S
T bpa-031		N_bpa-013 N_bpa-133	N_bpa-003	63	130	0.68	0.33	1.856	e	S	N bpa-031	90.54	0.02	61.6	P
T bpa-032		N_bpa-132	N_bpa-362	63	130	0.71	0.27	1.982	e	S	N_bpa-032	88.91	0.02	21.8	s
T_bpa-033		N_bpa-315	N_bpa-297	63	130	0.87	0.33	2.868	n	S	N_bpa-033	88.24	0.06	22.5	S
T_bpa-034	69.25	N_bpa-011	N_bpa-004	90	130	1.12	0.21	0.822	n	S	N_bpa-034	87.5	0.07	47.9	S
T_bpa-035	78.19	N_bpa-265	N_bpa-227	90	130	2.43	0.45	3.443	n	S	N_bpa-035	87.47	0.03	23.3	T
T_bpa-036	91.89	N_bpa-231	N_bpa-214	63	130	0.81	0.3	2.508	n	S	N_bpa-036	86.25	0.03	24.5	T
T_bpa-037	120.12	N_bpa-214	N_bpa-136	110	130	2.29	0.28		n	S	N_bpa-037	85.31	0.34	50	T
T_bpa-038	45.37		N_bpa-274	110	130	1.58	0.19		e	S	N_bpa-038	84.25	0.05	26.5	T
T_bpa-039	36.61		N_bpa-187	63	130	0.99	0.37	3.685	e	S	N_bpa-039	84.18	0.03	26.5	T
T_bpa-040	27.69 36.6	N_bpa-284	N_bpa-288 N_bpa-066	110 110	130	0.5 2.74	0.06	0.000	e -	S S	N_bpa-040 N_bpa-041	83.95 81.81	0.04	26.8 28.9	T
T_bpa-041 T bpa-042		N_bpa-067 N_bpa-068	N_bpa-067	110	130	2.74	0.34		n n	S	N_bpa-041 N_bpa-042	81.23	0.07	29.5	T
T bpa-042		N_bpa-244	N_bpa-273	110	130	6.52	0.51		n n	S	N_bpa-042	81.02	0.18	29.5	T
T bpa-044		N_bpa-273	N_bpa-273 N_bpa-318	110	130	5.65	0.7	6.137		S	N bpa-044	80.7	0.11	30	_
T_bpa-045		N_bpa-201	N_bpa-202	90	130	0.33	0.06	0.084		S	N_bpa-045	79.18	0.26	56.2	_
T_bpa-046		N_bpa-204	N_bpa-182	90	130	0.67	0.12	0.32		S	N_bpa-046	77.95	0.11	32.8	
T_bpa-047	108.87	N_bpa-323	N_bpa-286	90	130	0.73	0.13	0.368	e	S	N_bpa-047	76.31	0.1	34.4	Т
T_bpa-048		N_bpa-129	N_bpa-247	63	130	0.47	0.18	0.914		S	N_bpa-048	69.3	0.19	41.3	_
T_bpa-049		N_bpa-249	N_bpa-250	63	130	0.91	0.34	3.136		S	N_bpa-049	66.04	0.06	44.6	
T_bpa-050		N_bpa-247	N_bpa-241	63	130	0.17	0.06	0.145		S	N_bpa-050	61.98	0.1	48.7	_
T_bpa-051		N_bpa-012	N_bpa-026	90	130	0.3	0.05	0.069		S	N_bpa-051	60	3.13	81.3	_
T_bpa-052		N_bpa-241	N_bpa-243	63	130	0.53	0.2	1.136	_	S	N_bpa-052	59.58	0.07	51.1	_
T_bpa-053 T bpa-054		N_bpa-097 N_bpa-091	N_bpa-102 N_bpa-077	63 110	130	0.39 1.89	0.15	0.659		S S	N_bpa-053 N_bpa-054	59.06 57.27	0.03	51.6 53.4	
T_bpa-054		N_bpa-091 N_bpa-077	N_bpa-077 N_bpa-072	110	130	2.1	0.25	0.802	_	S	N_bpa-055	54.75	0.13	55.9	
T_bpa-056		N_bpa-209	N_bpa-204	90	130	0.59	0.11	0.370		S	N_bpa-056	53.15	0.14	14.1	Ť
T_bpa-057		N_bpa-182	N_bpa-142	90	130	0.21	0.04	0.038		S	N_bpa-057	52.71	0.03	57.9	
T_bpa-058		N_bpa-400	N_bpa-370	110	130	0.12	0.01	0.005		S	N_bpa-058	52.31	0.01	58.3	S
T_bpa-059		N_bpa-362	N_bpa-348	63	130	1.48	0.56	7.718	e	S	N_bpa-059	52.31	0.02	99.1	Р
T_bpa-060	14.76	N_bpa-138	N_bpa-137	63	130	0.37	0.14	0.593	e	S	N_bpa-060	49.35	0.06	61.3	T
T_bpa-061		N_bpa-227	N_bpa-231	63	130	1.29	0.48	5.996		S	N_bpa-061	47.64	0.17	19.5	T
T_bpa-062		N_bpa-160	N_bpa-097	63	130	0.39	0.15	0.656		S	N_bpa-062	47.24	0.03	63.4	T
T_bpa-063	33.08		N_bpa-251	63	130	1.56	0.59	8.569		S	N_bpa-063	46.55	0.06	64.1	T
T_bpa-064	4.69	N_bpa-399	N_bpa-401	110	130	6.38	0.79	7.676	e	S	N_bpa-064	46.21	0.02	64.4	S

	D	ISEÑO RED BU	EN PASTOR NU	JEVO (REPO	RTE DE TI	JBERÍAS	5)			DISEÑO	RED (RE	PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		\Box		msnm	lt/s	mca	
T_bpa-065	37.58	N_bpa-281	N_bpa-262	110	130	3.36	0.41	2.335	e	S	N_bpa-065	46.21	0.01	21	Р
T_bpa-066	46.79	N_bpa-072	N_bpa-068	110	130	2.21	0.27	1.081	n	S	N_bpa-066	45.38	0.01	21.9	T
T_bpa-067	168.81	N_bpa-382	N_bpa-323	110	130	1.47 3.22	0.18	0.505 2.166	5	S	N_bpa-067	42.62 42.4	0.03	24.6	S
T_bpa-068 T_bpa-069	5.88	N_bpa-065 N_bpa-312	N_bpa-066 N bpa-301	110 110	130	0.7	0.4	0.129	n n	S	N_bpa-068 N bpa-069	41.91	0.03	68.7	T
T_bpa-070		N_bpa-202	N_bpa-301	90	130	0.38	0.03			S	N_bpa-009	41.46	0.02	25.7	Ť
T bpa-071			N bpa-293	110	130	0.88	0.11	0.196	_	S	N bpa-071	41.42	0.01	25.8	T
T_bpa-072	38.26		N_bpa-201	110	130	2.16	0.27	1.035	e	S	N_bpa-072	40.19	0.05	26.9	S
T_bpa-073	218.1	N_bpa-318	N_bpa-342	110	130	5.35	0.66	5.542	n	S	N_bpa-073	38.11	0.12	28.9	Т
T_bpa-074	3.79	N_bpa-246	N_bpa-239	110	130	0.34	0.04	0.034	e	S	N_bpa-074	37.5	0.03	29.6	Т
T_bpa-075	108.57	N_bpa-342	N_bpa-315	63	130	1.36	0.51	6.617	n	S	N_bpa-075	37.09	0.06	30.1	Т
T_bpa-076	25.74	N_bpa-114	N_bpa-095	90	130	2.97	0.55	4.973	e	S	N_bpa-076	35.76	0.12	28.5	T
T_bpa-077	49.51	N_bpa-253	N_bpa-171	110	130	1.19	0.15	0.344	n	S	N_bpa-077	35.62	0.04	31.4	S
T_bpa-078		N_bpa-186	N_bpa-209	90	130	0.54	0.1	0.213	e	S	N_bpa-078	35.07	0.03	32	T
T_bpa-079		N_bpa-222	N_bpa-163	90	130	0.51	0.09	0.192	e -	S	N_bpa-079	34.2	0.03	32.9	T
T_bpa-080	3.33 49.86	N_bpa-030	N_bpa-031	110	130 130	2.64 1.41	0.33	1.494 0.469	n n	S	N_bpa-080	33.3 32.3	0.04 5.55	33.8 111.3	T P
T_bpa-081 T_bpa-082	51.76	N_bpa-171 N bpa-293	N_bpa-118 N bpa-253	110	130	1.41	0.17	0.469	n n	S	N_bpa-081 N_bpa-082	31.73	0.2	29.7	T
T bpa-083	37.47	N_bpa-293	N_bpa-233 N_bpa-183	90	130	0.43	0.12	0.142	e	S	N bpa-083	31.71	0.04	32.5	T
T_bpa-084	107.07	N_bpa-286	N_bpa-222	90	130	0.54	0.1	0.212	e	S	N_bpa-084	31.12	0.06	35.9	T
T_bpa-085	48.77	N_bpa-118	N_bpa-091	110	130	1.69	0.21	0.657	n	S	N_bpa-085	30.82	0.09	30.6	Т
T_bpa-086	4.08	N_bpa-142	N_bpa-129	63	130	1.02	0.38	3.901	n	S	N_bpa-086	30.73	0.04	36.3	Т
T_bpa-087	578.11	N_bpa-081	N_bpa-051	160	130	12.23	0.71	4.153	n	Р	N_bpa-087	29.69	0.03	34.5	T
T_bpa-088	743.06	N_bpa-051	N_bpa-023	160	130	9.1	0.53	2.402	n	S	N_bpa-088	29.16	0.08	32.3	T
T_bpa-089	384.99	N_bpa-023	N_bpa-009	110	130	6.14	0.76	7.156		S	N_bpa-089	29.01	0.05	38	T
T_bpa-090	5.02	N_bpa-401	N_bpa-402	110	130	0	0	0		S	N_bpa-090	29	0.14	34.7	T
T_bpa-091	156.21 21.01	N_bpa-284	N_bpa-271	63 90	130 130	0.47 3.89	0.18	0.931 8.223	n n	S	N_bpa-091	28.99 28.91	0.04	38 38	S
T_bpa-092 T bpa-093		N_bpa-271 N_bpa-244	N_bpa-265 N bpa-271	90	130	3.43	0.72	6.506	n n	S	N_bpa-092 N bpa-093	28.91	0.08	32.8	T
T_bpa-093		N_bpa-244 N_bpa-214	N_bpa-271	110	130	3.43	0.03	1.905	n	S	N bpa-094	28.82	0.66	35.3	+
T bpa-095		N bpa-251	N_bpa-399	110	130	5.02	0.62	4.925	e	S	N bpa-095	28.66	0.04	33.3	S
T_bpa-096	65.22	N_bpa-382	N_bpa-374	110	130	2.98	0.37	1.869	e	S	N_bpa-096	28.56	0.05	32.8	Т
T_bpa-097	165.36	N_bpa-167	N_bpa-114	90	130	1.24	0.23	0.983	e	S	N_bpa-097	28.55	0.05	32.8	S
T_bpa-098	50.72	N_bpa-017	N_bpa-016	90	130	1.2	0.22	0.934	n	S	N_bpa-098	28.55	0.09	32.7	T
T_bpa-099	37.06	N_bpa-144	N_bpa-205	110	130	2.11	0.26	0.988	e	S	N_bpa-099	28.54	0.65	32.7	T
T_bpa-100	50.86	N_bpa-321	N_bpa-322	110	130	0.34	0.04	0.033	n	S	N_bpa-100	28.44	0.08	38.5	T
T_bpa-101	183.1	N_bpa-162	N_bpa-093	90	130	0.26	0.05	0.056	e	S	N_bpa-101	28.31	0.82	33.9	T
T_bpa-102	49.4	N_bpa-019	N_bpa-017	90	130	1.06	0.2	0.745	n	S	N_bpa-102	28.18	0.13	33.1	T
T_bpa-103 T_bpa-105		N_bpa-391 N_bpa-137	N_bpa-246 N_bpa-144	110 110	130	3.85 2.05	0.48	3.017 0.94	e e	S S	N_bpa-103 N_bpa-104	28.15 28.02	0.05	38.8 33.2	T
T bpa-105	50.63	N_bpa-137	N_bpa-144 N bpa-310	110	130	0.56	0.23	0.083	n	S	N_bpa-104 N_bpa-105	28.02	0.11	35.9	Ť
T_bpa-107	47.79		N bpa-324	110	130	0.42	0.05	0.048		S	N_bpa-106	28	0.09	35.8	T
T bpa-108	104.31	N bpa-162	N bpa-167	90	130	0.89	0.16	0.53	e	S	N bpa-107	28	0.03	36	Т
T_bpa-109	48.75	N_bpa-016	N_bpa-011	90	130	1.2	0.22	0.937	n	S	N_bpa-108	27.85	0.07	33.6	Т
T_bpa-110	50.19	N_bpa-310	N_bpa-312	110	130	0.65	0.08	0.112	n	S	N_bpa-109	27.75	0.36	36.4	Т
T_bpa-111	146.82	N_bpa-049	N_bpa-033	110	130	0.78	0.1	0.155	n	S	N_bpa-110	27.72	0.29	33.6	-
T_bpa-112		N_bpa-022	N_bpa-029	110		1.9	0.23	0.813		S	N_bpa-111	27.47	0.04	34.1	T
T_bpa-113			N_bpa-022	110		1.47	0.18	0.504		S	N_bpa-112	27.44	0.06	34.1	T
T_bpa-114			N_bpa-025	110	130	1.31	0.16	0.41		S	N_bpa-113	27.41	0.04	33.9	-
T_bpa-115		N_bpa-033	N_bpa-032	110	130	1.21	0.15	0.353	_	S	N_bpa-114	27.36	0.93	34.5	_
T_bpa-116 T_bpa-117		N_bpa-064 N_bpa-053	N_bpa-058 N_bpa-049	110 110	130 130	0.06	0.01	0.001	_	S	N_bpa-115 N_bpa-116	27.16 27.13	0.07	34.3 34.5	T
T bpa-117		N_bpa-058	N_bpa-049 N_bpa-053	110	130	0.44	0.03	0.033		S	N_bpa-117	27.13	0.06	34.2	T
T bpa-119		N_bpa-038	N_bpa-033	90	130	0.71	0.03	0.352		S	N_bpa-117	27.11	0.05	39.8	
T_bpa-120		N_bpa-136	N_bpa-138	110	130	1.96	0.24	0.864		S	N_bpa-119	27.05	0.08	39.8	_
T_bpa-121		N_bpa-183	N_bpa-186	90	130	0.49	0.09	0.174		S	N_bpa-120	27	0.04	36.1	T
T_bpa-122		N_bpa-356	N_bpa-336	63	130	0.12	0.04	0.071	S	T	N_bpa-121	27	0.08	36.2	Т
T_bpa-123	40.61	N_bpa-209	N_bpa-124	63	130	0.04	0.01	0.008	e	T	N_bpa-122	27	0.07	36.2	Т
T_bpa-124	44.56	N_bpa-380	N_bpa-375	90	130	0.27	0.05	0.057		T	N_bpa-123	27	0.1	36	T
T_bpa-125		N_bpa-295	N_bpa-308	63	130	0.32	0.12	0.454		T	N_bpa-124	27	0.04	36.2	T
T_bpa-126		N_bpa-286	N_bpa-303	63	130	0.17	0.06	0.142		T	N_bpa-125	27	0.04	36.8	-
T_bpa-127		N_bpa-282	N_bpa-295	63	130	0.26	0.1	0.314		ſ T	N_bpa-126	27	0.06	35.6	
T_bpa-128		N_bpa-252	N_bpa-185	63	130	0.8	0.3	2.484 0.132		T T	N_bpa-127	27	0.04	36.2 36.3	T
T_bpa-129	41.00	N_bpa-365	N_bpa-356	63	130	0.10	0.06	0.132	٥	1	N_bpa-128	27	0.01	30.3	

	D	ISEÑO RED BU	EN PASTOR NU	JEVO (REPO	RTE DE T	JBERÍAS	6)			DISEÑO	RED (RE	PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	Unit. m/km		\vdash		msnm	lt/s	mca	-
T_bpa-130		N_bpa-242	N_bpa-255	63	130	1.37	0.51	6.68	e	Т	N_bpa-129	27	0.02	36.2	S
T_bpa-131	40.1	N_bpa-345	N_bpa-365	63	130	0.22	0.08	0.226	s	Т	N_bpa-130	27	0.07	36	Т
T_bpa-132	34.38	N_bpa-303	N_bpa-332	63	130	0.12	0.04	0.069	s	T	N_bpa-131	27	0.13	35.7	Т
T_bpa-133	40.29	N_bpa-359	N_bpa-369	63	130	0.04	0.02	0.011	e	T	N_bpa-132	27	0.05	37	S
T_bpa-134		N_bpa-170	N_bpa-163	63	130	0.19	0.07	0.178	e	T	N_bpa-133	27	0.05	36.9	S
T_bpa-135	39.21	N_bpa-215 N_bpa-332	N_bpa-210	63 63	130	0.57	0.22	1.339 0.004	e	T	N_bpa-134	27 27	0.07	37.5 36.2	T
T_bpa-136 T bpa-137		N_bpa-332 N_bpa-278	N_bpa-317 N bpa-222	63	130	0.02	0.01	0.004	s	<u>'</u>	N_bpa-135 N_bpa-136	27	0.07	36.2	T S
T bpa-138		N_bpa-278	N_bpa-222	63	130	0.01	0.1	0.323	-	<u>'</u>	N_bpa-137	27	0.12	36	_
T_bpa-139		N_bpa-323	N_bpa-345	63	130	0.44	0.16	0.813	5	T	N_bpa-138	27	0.01	36	_
T_bpa-140		N_bpa-365	N_bpa-361	63	130	0.02	0.01	0.003	s	Т	N_bpa-139	27	0.01	36.3	Т
T_bpa-141	115.81	N_bpa-177	N_bpa-187	63	130	0.02	0.01	0.004	e	Т	N_bpa-140	27	0.01	36.3	Т
T_bpa-142	49.81	N_bpa-142	N_bpa-122	63	130	0.07	0.03	0.028	e	T	N_bpa-141	27	0.02	35.6	_
T_bpa-143		N_bpa-191	N_bpa-202	63	130	0.04	0.02	0.011		T	N_bpa-142	27	0.01	36.2	S
T_bpa-144	55.66		N_bpa-123	63	130	0.1	0.04	0.049	_	T	N_bpa-143	27	0.04	36.2	T
T_bpa-145		N_bpa-204	N_bpa-135	63 63	130	0.07	0.03	0.028	e e	T	N_bpa-144	27 27	0.02	36.1 36.3	S
T_bpa-146 T bpa-147		N_bpa-183 N_bpa-141	N_bpa-127 N_bpa-126	63	130	0.04	0.01	0.009	e e	<u>'</u>	N_bpa-145 N_bpa-146	27	0.02	36.3	T
T bpa-147	62.51	N_bpa-141 N_bpa-203	N_bpa-120 N_bpa-180	63	130	0.00	0.02	0.02	e	T	N_bpa-140	27	0.02	36.2	T
T_bpa-149	68.85		N_bpa-380	63	130	0.05	0.02	0.016	_	T	N_bpa-148	27	0.02	36.3	T
T_bpa-150	69.34	N_bpa-377	N_bpa-366	90	130	1.02	0.19	0.692	e	Т	N_bpa-149	27	0.02	36.3	T
T_bpa-151	69.41	N_bpa-216	N_bpa-131	63	130	0.13	0.05	0.08	e	T	N_bpa-150	27	0.04	36.1	Т
T_bpa-152	62.63	N_bpa-213	N_bpa-175	63	130	0.07	0.03	0.025	_	T	N_bpa-151	27	0.04	36.2	T
T_bpa-153		N_bpa-182	N_bpa-121	63	130	0.08	0.03	0.036		T	N_bpa-152	27	0.02	36.3	T
T_bpa-154	70.69		N_bpa-363	63	130	0.06	0.02	0.019	e	T	N_bpa-153	27	0.01	36.3	T
T_bpa-155 T bpa-156		N_bpa-178 N bpa-384	N_bpa-189	63 63	130	0.04	0.01	0.008	e e	T T	N_bpa-154	27 26.83	0.01	36.3 40.1	T
T bpa-157	161.97	N_bpa-395	N_bpa-347 N bpa-389	63	130	0.54	0.01	1.2	e	<u>'</u>	N_bpa-155 N bpa-156	26.77	0.03	34.9	T
T bpa-158	58.13	N bpa-250	N bpa-256	63	130	1.04	0.39	3.991	e	T T	N bpa-157	26.67	0.28	34.7	T
T_bpa-159	80.32	N_bpa-386	N_bpa-346	63	130	0.06	0.02	0.022	e	T	N_bpa-158	26.57	0.13	35.1	Т
T_bpa-160	108.49	N_bpa-199	N_bpa-255	63	130	0.49	0.19	1.007	e	Т	N_bpa-159	26.55	0.05	34.9	Т
T_bpa-161	83.44	N_bpa-125	N_bpa-106	63	130	0.08	0.03	0.038	e	T	N_bpa-160	26.53	0.05	34.9	S
T_bpa-162	95.67	N_bpa-366	N_bpa-319	90	130	0.66	0.12	0.309	e	T	N_bpa-161	26.53	0.06	34.8	T
T_bpa-163		N_bpa-278	N_bpa-170	63	130	0.24	0.09	0.26	_	T	N_bpa-162	26.51	0.08	35.1	S
T_bpa-164		N_bpa-083	N_bpa-224	63 90	130	0.16	0.06	0.126		T	N_bpa-163	26.5	0.03	37.7	T
T_bpa-165 T_bpa-166	101.84 106.67	N_bpa-283 N_bpa-303	N_bpa-226 N_bpa-278	63	130	0.55	0.1	0.216		T	N_bpa-164 N_bpa-165	26.49 26.46	0.02	37.7 35.2	T
T bpa-167		N_bpa-303	N_bpa-278	63	130	0.15	0.06	0.100		Ť	N_bpa-166	26.46	0.13	40.4	T
T bpa-168	70.1	N bpa-212	N bpa-176	63	130	0.44	0.17	0.815		T	N bpa-167	26.43	0.04	35.3	S
T_bpa-169	69.47	N_bpa-146	N_bpa-210	63	130	0.37	0.14	0.591	e	T	N_bpa-168	26.39	0.2	35.2	T
T_bpa-170	49.9	N_bpa-256	N_bpa-252	63	130	0.24	0.09	0.269	e	T	N_bpa-169	26.25	0.31	35.4	T
T_bpa-171	59.56	N_bpa-163	N_bpa-094	63	130	0.66	0.25	1.728		T	N_bpa-170	26.23	0.04	38	T
T_bpa-172	50.81	N_bpa-353	N_bpa-375	90	130	0.08	0.01	0.006		T	N_bpa-171	26.16	0.05	40.7	S
T_bpa-173		N_bpa-162	N_bpa-169	90	130	0.54	0.1	0.212	e	T	N_bpa-172	26.11	0.17	35.5	T
T_bpa-174 T_bpa-175		N_bpa-360 N_bpa-170	N_bpa-375 N_bpa-109	63 63	130	0.03	0.01	0.005		T	N_bpa-173 N_bpa-174	26.09 26	0.38	35.5 37.2	
T_bpa-176		N_bpa-338	N_bpa-353	63	130	0.03	0.13	0.004		T	N_bpa-174	26	0.02	36.8	_
T_bpa-177			N_bpa-272	63	130	0.25	0.09	0.282		T	N_bpa-176	26	0.44	36.5	
T_bpa-178		N_bpa-308	N_bpa-319	90	130	0.22	0.04	0.041		T	N_bpa-177	26	0.02	37.5	Т
T_bpa-179	82.64	N_bpa-395	N_bpa-379	63	130	0.16	0.06	0.132	e	T	N_bpa-178	26	0.02	37.3	T
T_bpa-180		N_bpa-230	N_bpa-152	63	130	0.18	0.07	0.156	_	T	N_bpa-179	26	0.08	37.8	-
T_bpa-181		N_bpa-205	N_bpa-150	63	130	0.04	0.01	0.009		T	N_bpa-180	26	0.12	36.9	-
T_bpa-182		N_bpa-208	N_bpa-192	63	130	0.24	0.09	0.273		T	N_bpa-181	26	0.01	37.2	_
T_bpa-183 T_bpa-184		N_bpa-224 N_bpa-146	N_bpa-232 N_bpa-210	63 63	130	0.13	0.05	0.088		T T	N_bpa-182 N_bpa-183	26 26	0.01	37.2 37.2	_
T_bpa-185		N_bpa-140	N_bpa-233	63	130	0.57	0.14	0.068		'	N_bpa-184	26	0.01	37.8	_
T_bpa-186		N_bpa-206	N_bpa-147	63	130	0.24	0.09	0.257		T	N_bpa-185	26	0.06	38.1	_
T_bpa-187		N_bpa-148	N_bpa-195	63	130	0.11	0.04	0.063		Т	N_bpa-186	26	0.01	37.2	_
T_bpa-188		N_bpa-197	N_bpa-211	63	130	0.21	0.08	0.21	e	Т	N_bpa-187	26	0.05	37.5	S
T_bpa-189		N_bpa-215	N_bpa-149	63	130	0.22	0.08	0.228		Т	N_bpa-188	26	0.44	37.8	_
T_bpa-190		N_bpa-377	N_bpa-376	90	130	0.02	0	0.001		T	N_bpa-189	26	0.04	37.3	_
T_bpa-191		N_bpa-137	N_bpa-130	63	130	0.07	0.03	0.026		T	N_bpa-190	26	0.02	37.3	_
T_bpa-192		N_bpa-186	N_bpa-151	63 63	130	0.04	0.02	0.011		T T	N_bpa-191	26	0.04	37.2	
T_bpa-193	44.08	N_bpa-181	N_bpa-143	03	130	0.04	0.01	0.008	<u></u>	T	N_bpa-192	26	0.02	37.3	

Label long. Nodo Inicial Nodo Final DN C Caudal Vel. Pref. Unit. Units Red Unit. Units			DISEÑO RE	ED WINCHELE	(REPO	RTE D	E TUBERÍ	AS)			$\overline{}$	DISEÑO) RE Dia	matros	NUDOS)	
T_w+001	Lahel	long	Nodo Inicial	Nodo Final	DN	c	Caudal	Vel	Perd.	Notes	Red	Lahal			Preción	Red
Twi-000	Label	long.	Nouo IIIIciai	Nouo Filiai		•				ivotas	neu	Label		-		neu
Tw-0002	T wi-001		N. uri-022	N wi-150		120		_		n	D	N. wi-001	_			т
T_w+003	_		_	_		_					•	_	_			
T_w+005	_		_	_						_	-	_				_
T_w-006	T_wi-004	635.03	N_wi-069	N_wi-004	200	130	31.58	1.18	8.093	n	Р	N_wi-004	97.53	0.16	48.6	Р
T_w-007 12448 FCV-1	T_wi-005	208.08	N_wi-073	N_wi-069	200	130	23.09	0.86	4.532	n	-	N_wi-005	95.25		18	-
Two-008 Table 9	_		_	_							<u> </u>	_				_
T_w-009	_										•	_	_			
T_w -010 649.3 N_w -009	_		_	_						n c	F	_	_			
T_w+012			_	-						n	P	_				_
T_w-013	T_wi-011	248.77	N_wi-002	N_wi-004	200	130	31.74	1.19	8.169	n	Р	N_wi-011	83.52	11.71	8.5	Т
T_w+014	T_wi-012	29.84	FCV-1	TOLITAS	315	130	70	1.05	3.863	n	Р	N_wi-012	83.03	0.51	18.3	T
T_w+015	_		_	_						n	Р	_				_
T_w+016	_		_	_							P	_				
T_w+017 234.77 N_w+009 N_w+023 400 130 264.03 2.47 14.119 n P N_w+0117 79.78 0.88 20.7 T_w+018 667.51 N_w+192 N_w+046 315 130 72.44 1.09 4.117 s P N_w+018 79.69 0.23 22.9 T_w+020 323.3 R-3 N_w+020 400 130 8.71 0.51 2.214 n P N_w+019 79.05 0.08 21.9 T_w+020 323.3 R-3 N_w+002 400 130 29.49 2.8 17.83 n P N_w+020 77.96 0.08 22.9 T_w+020 323.3 R-3 N_w+020 400 130 29.49 2.8 17.83 n P N_w+020 77.96 0.08 23.3 T_w+020 135.60 N_w+118 N_w+047 200 130 35.22 13.2 9.006 n P N_w+020 77.96 0.08 23.3 T_w+020 15.60 N_w+118 N_w+188 250 130 107.98 2.58 26.573 5 N_w+022 76.99 0.22 23.9 T_w+023 70.62 N_w+189 N_w+188 250 130 107.98 2.58 26.573 5 N_w+022 76.95 0.08 25.4 13.7 N_w+024 76.56 0.08 25.4 13.7 N_w+025 76.53 0.08 36.7 S_w+025 76.55 0.08 36.7 S_w+025 0.08 0.08 36.7 S_w+025 0.08 0.08 36.7 S_w+025 0.08 0.08	_		_	_		_					<u> </u>		_			-
T_wi-018	_			_							<u>. </u>	_	-			_
T_wi-020 333.3 R-3			_	_							P	_				_
T_wi-021 335.16 N_wi-113 PRV-5 160 130 8.71 0.51 2.215 N P N_wi-021 77.96 0.08 23.3 T_wi-022 1,616.09 N_wi-013 N_wi-047 200 130 35.22 1.32 9.906 N N_wi-022 76.99 0.22 23.9 T T_wi-023 70.62 N_wi-139 N_wi-138 160 130 21.23 1.24 11.53 S N_wi-024 76.56 0.08 25.4 T T_wi-025 31.28 N_wi-235 N_wi-239 90 130 2.23 0.43 3.196 S N_wi-024 76.56 0.08 25.4 T T_wi-025 31.28 N_wi-235 N_wi-239 90 130 2.34 0.43 3.196 S N_wi-025 76.53 0.08 36.7 S T_wi-026 37.82 N_wi-322 N_wi-239 90 130 2.228 0.83 3.4242 S N_wi-025 76.53 0.08 36.7 S T_wi-026 37.82 N_wi-032 N_wi-080 200 130 22.28 0.83 4.242 S N_wi-027 75.32 0.08 27.2 T T_wi-029 33.82 N_wi-049 N_wi-054 63 130 3.63 1.37 40.808 T N_wi-029 74.49 0.67 29.4 T T_wi-031 37.09 N_wi-258 N_wi-263 90 130 4.43 0.82 10.463 S N_wi-030 74.43 0.15 27.5 T T_wi-031 37.09 N_wi-258 N_wi-263 90 130 4.43 0.82 10.463 S N_wi-030 74.43 0.15 27.5 T T_wi-034 73.17 N_wi-228 N_wi-229 90 130 6.07 1.12 18.756 S N_wi-033 72.41 0.08 31.6 T T_wi-035 43.59 N_wi-257 N_wi-258 90 130 6.07 1.12 18.756 S N_wi-034 72.4 0.04 35.4 T T_wi-035 43.59 N_wi-158 N_wi-128 160 130 12.83 0.75 4.538 S N_wi-033 72.41 0.08 31.6 T T_wi-035 43.59 N_wi-125 N_wi-128 90 130 6.07 1.12 18.756 S N_wi-034 72.4 0.04 35.4 T T_wi-035 43.59 N_wi-125 N_wi-128 90 130 6.07 1.12 18.756 S N_wi-035 72.25 0.33 36.55 T T_wi-036 43.59 N_wi-125 N_wi-128 160 130 18.39 1.07 8.835 S N_wi-036 71.7 0.16 31.5 T T_wi-037 73.36 N_wi-138 N_wi-138 N_wi-138 160 130 18.39 1.07 8.835 S N_wi-036 71.7 0.16 31.5 T T_wi-040 37.67 N_wi-028 N_wi-038 N_wi-038 N_wi-0	T_wi-019	5.42	PRV-5	N_wi-073	160	130	8.71	0.51	2.214	n	Р	N_wi-019	79.05	0.08	21.9	T
T_wi-022	T_wi-020	323.3	R-3	N_wi-002	400	130	299.49	2.8	17.83	n	Р	N_wi-020	78	0.21	26	T
T_wi-023	_			PRV-5						n	<u> </u>	_				-
T_wi-024	_		_	_							-	_	_			-
T_wi-025 32.28 N_wi-235 N_wi-239 90 130 2.34 0.43 3.196 e S N_wi-026 75.85 0.52 37.4 S T_wi-026 37.82 N_wi-302 N_no-071 110 130 4.52 0.56 4.06 e S N_wi-026 75.85 0.52 37.4 S T_wi-027 39.96 N_wi-088 N_wi-080 200 130 22.28 0.83 4.242 S S N_wi-026 75.32 0.08 27.2 T T_wi-028 45.65 N_wi-310 N_wi-274 160 130 21.81 1.27 12.126 S N_wi-028 75.14 0.21 30.7 T T_wi-030 36.03 N_wi-321 N_wi-317 110 130 1.49 0.18 0.517 e S N_wi-028 75.14 0.21 30.7 T T_wi-030 36.03 N_wi-321 N_wi-317 110 130 1.49 0.18 0.517 e S N_wi-030 74.43 0.15 27.5 T T_wi-031 37.09 N_wi-258 N_wi-263 90 130 4.43 0.82 10.463 e S N_wi-031 73.9 0.08 29.3 T T_wi-033 65.92 N_wi-239 90 130 7.5 1.39 27.687 e S N_wi-032 72.63 0.68 46.7 T T_wi-034 73.17 N_wi-228 N_wi-229 90 130 6.07 1.12 18.756 e S N_wi-033 72.41 0.08 31.6 T T_wi-035 43.36 N_wi-195 N_wi-258 90 130 5.18 0.96 13.973 e S N_wi-036 71.7 0.16 31.5 T T_wi-036 43.36 N_wi-195 N_wi-194 110 130 18.99 2.34 57.863 e S N_wi-036 71.7 0.16 31.5 T T_wi-038 37.42 N_wi-280 N_wi-189 90 130 3.21 0.59 5.755 e S N_wi-036 71.7 0.16 31.5 T T_wi-040 37.67 N_wi-098 N_wi-189 90 130 3.21 0.59 5.755 e S N_wi-037 71.33 0.1 33.3 T T_wi-040 37.67 N_wi-098 N_wi-128 160 130 19.26 1.13 9.625 S N_wi-036 71.7 0.16 31.5 T T_wi-041 566.96 N_wi-026 N_wi-121 110 130 13.24 0.79 0.98 11.417 N_wi-040 60.07 0.17 35.5 T T_wi-044 35.77 N_wi-297 N_wi-132 110 130 2.24 0.28 1.109 S N_wi-044 67.04 0.05 41.6 T T_wi-046 33.58 N_wi-1026 N_wi-132 110 130 3.75 0.46 2.867 S N_wi-044 67.04 0.05 41.6 T T_wi-046 33.55 N_wi-026 N_w	_		_	_							_	_				_
T_wi-026				-						_	5	_	_			
T_wi-027 39.96 N_wi-088 N_wi-080 200 130 22.28 0.83 4.242 5 5 N_wi-027 75.32 0.08 27.2 T T_wi-028 45.65 N_wi-310 N_wi-274 160 130 21.81 1.27 12.126 n 5 N_wi-028 75.14 0.21 30.7 T T_wi-029 33.82 N_wi-049 N_wi-054 63 130 3.63 1.37 40.808 e T N_wi-028 74.96 0.67 29.4 T T_wi-030 36.03 N_wi-321 N_wi-321 N_wi-317 110 130 1.49 0.18 0.517 e 5 N_wi-030 74.43 0.15 27.5 T T_wi-031 37.09 N_wi-258 N_wi-263 90 130 4.43 0.82 10.463 e 5 N_wi-031 73.9 0.08 29.3 T T_wi-032 53.09 N_wi-334 N_wi-335 160 130 12.83 0.75 4.538 s 5 N_wi-032 72.63 0.68 46.7 T T_wi-033 65.92 N_wi-229 N_wi-239 90 130 7.5 1.39 27.687 e 5 N_wi-032 72.63 0.68 46.7 T T_wi-035 43.59 N_wi-228 N_wi-229 90 130 6.07 112 18.756 e 5 N_wi-033 72.41 0.08 31.6 T T_wi-035 43.59 N_wi-257 N_wi-258 90 130 5.18 0.96 13.973 e 5 N_wi-035 72.25 0.33 36.5 T T_wi-036 43.36 N_wi-195 N_wi-194 110 130 18.99 2.34 57.863 e 5 N_wi-035 72.25 0.33 36.5 T T_wi-037 73.36 N_wi-138 N_wi-1	_		_	_							S		_			
T_wi-029 33.82 N_wi-049			_	_						_	S	_				_
T_wi-030	T_wi-028	45.65	N_wi-310	N_wi-274	160	130	21.81	1.27	12.126	n	S	N_wi-028	75.14	0.21	30.7	Т
T_wi-031 37.09 N_wi-258 N_wi-263 90 130 4.43 0.82 10.463 e S N_wi-031 73.9 0.08 29.3 T T_wi-032 53.09 N_wi-334 N_wi-335 160 130 12.83 0.75 4.538 s S N_wi-032 72.63 0.68 46.7 T T_wi-033 65.92 N_wi-229 N_wi-239 90 130 7.5 1.39 27.687 e S N_wi-033 72.41 0.08 31.6 T T_wi-034 73.17 N_wi-228 N_wi-229 90 130 6.07 1.12 18.756 e S N_wi-033 72.41 0.08 31.6 T T_wi-035 43.59 N_wi-257 N_wi-258 90 130 5.18 0.96 13.973 e S T_wi-036 43.36 N_wi-195 N_wi-194 110 130 18.99 2.34 57.863 e S N_wi-035 72.25 0.33 36.5 T T_wi-036 73.36 N_wi-138 N_wi-334 160 130 18.39 1.07 8.835 s N_wi-037 71.33 0.1 33.3 T T_wi-038 37.42 N_wi-140 N_wi-128 160 130 9.47 0.55 2.586 s N_wi-038 70.65 0.2 9 T T_wi-039 95.38 N_wi-230 N_wi-189 90 130 3.21 0.59 5.755 e S N_wi-039 70.38 0.09 35 T T_wi-040 37.67 N_wi-098 N_wi-088 160 130 19.26 1.13 9.625 s N_wi-040 69.07 0.17 35.5 T T_wi-043 47.38 N_wi-246 N_wi-241 110 130 3.75 0.46 2.867 e S N_wi-040 69.07 0.17 35.5 T T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.75 0.46 2.867 e S N_wi-044 67.04 0.05 41.3 T T_wi-045 33.46 N_wi-110 N_wi-111 90 130 13.14 2.43 78.324 e S N_wi-045 67.03 0.05 41.6 T T_wi-046 36.55 N_wi-105 N_wi-026 110 130 5.71 0.76 6.242 n S N_wi-047 66.42 0.31 48.7 T T_wi-048 35.29 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-050 64.87 0.98 11 T T_wi-050 8.71 N_wi-025 N_wi-061 90 130 17.82 3.29 137.747 S S N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 S S N_wi-050 64.87 0.98 11 T T_wi-050 4.86 N_wi-220 PRV-2 160 130 13.57 0.7	T_wi-029	33.82	N_wi-049	N_wi-054	63	130	3.63	1.37	40.808	e	Т	N_wi-029	74.96	0.67	29.4	T
T_wi-032	T_wi-030	36.03	N_wi-321	N_wi-317						e	S	N_wi-030	_			_
T_wi-033 65.92 N_wi-229 N_wi-239 90 130 7.5 1.39 27.687 e S N_wi-033 72.41 0.08 31.6 T T_wi-034 73.17 N_wi-228 N_wi-229 90 130 6.07 1.12 18.756 e S N_wi-034 72.4 0.04 35.4 T T_wi-035 43.59 N_wi-257 N_wi-258 90 130 5.18 0.96 13.973 e S N_wi-034 72.4 0.04 35.4 T T_wi-036 43.36 N_wi-195 N_wi-194 110 130 18.99 2.34 57.863 e S N_wi-035 72.25 0.33 36.5 T T_wi-037 73.36 N_wi-318 N_wi-334 160 130 18.39 1.07 8.835 s S N_wi-036 71.7 0.16 31.5 T N_wi-038 37.42 N_wi-140 N_wi-124 160 130 18.39 1.07 8.835 s S N_wi-036 71.7 0.16 31.5 T N_wi-038 77.13 0.1 33.3 T N_wi-038 70.55 0.2 S N_wi-038 70.3 S <td>_</td> <td></td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td>	_		_	_							S	_	_			
T_wi-034	_		_	_							_	_	_			
T_wi-035	_		_	_			-			_	S	_				$\overline{}$
T_wi-036 43.36 N_wi-195 N_wi-194 110 130 18.99 2.34 57.863 e S N_wi-036 71.7 0.16 31.5 T_wi-037 73.36 N_wi-318 N_wi-334 160 130 18.39 1.07 8.835 s S N_wi-037 71.33 0.1 33.3 T T_wi-038 37.42 N_wi-140 N_wi-128 160 130 9.47 0.55 2.586 s S N_wi-038 70.65 0.2 9 T T_wi-039 95.38 N_wi-230 N_wi-189 90 130 3.21 0.59 5.755 e S N_wi-039 70.38 0.09 35 T T_wi-040 37.67 N_wi-098 N_wi-088 160 130 19.26 1.13 9.625 s S N_wi-040 69.07 0.17 35.5 T T_wi-041 566.96 N_wi-026 N_wi-121 110 130 7.91 0.98 11.417 n S N_wi-041 68.9 0.08 36.7 T	_			_		_		_		_	S	_	-			_
T_wi-038 37.42 N_wi-140 N_wi-128 160 130 9.47 0.55 2.586 s S N_wi-038 70.65 0.2 9 T T_wi-039 95.38 N_wi-230 N_wi-189 90 130 3.21 0.59 5.755 e S N_wi-039 70.38 do.09 35 T T T_wi-040 37.67 N_wi-098 N_wi-088 160 130 19.26 1.13 9.625 s S N_wi-040 69.07 0.17 35.5 T T_wi-041 566.96 N_wi-026 N_wi-121 110 130 7.91 0.98 11.417 n S N_wi-040 69.07 0.17 35.5 T T_wi-042 35.98 N_wi-246 N_wi-241 110 130 3.75 0.46 2.867 e S N_wi-041 68.9 0.08 36.7 T T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.86 0.48 3.019 s S N_wi-043 68.09 0.32 42.3 T T_wi-044			_	_						e	S	_	-			-
T_wi-039 95.38 N_wi-230 N_wi-189 90 130 3.21 0.59 5.755 e S N_wi-039 70.38 0.09 35 T T_wi-040 37.67 N_wi-098 N_wi-088 160 130 19.26 1.13 9.625 s S N_wi-040 69.07 0.17 35.5 T T_wi-041 566.96 N_wi-026 N_wi-121 110 130 7.91 0.98 11.417 n S N_wi-041 68.9 0.08 36.7 T T_wi-042 35.98 N_wi-246 N_wi-241 110 130 3.75 0.46 2.867 e S N_wi-042 68.6 0.08 37.4 T T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.86 0.48 3.019 s S N_wi-042 68.6 0.08 37.4 T T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-044 67.04 0.05 41.3 T	T_wi-037	73.36	N_wi-318	N_wi-334	160	130	18.39	1.07	8.835	S	S	N_wi-037	71.33	0.1	33.3	Т
T_wi-040 37.67 N_wi-098 N_wi-088 160 130 19.26 1.13 9.625 s S N_wi-040 69.07 0.17 35.5 T T_wi-041 566.96 N_wi-026 N_wi-121 110 130 7.91 0.98 11.417 n S N_wi-041 68.9 0.08 36.7 T T_wi-042 35.98 N_wi-246 N_wi-241 110 130 3.75 0.46 2.867 e S N_wi-042 68.6 0.08 37.4 T T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.86 0.48 3.019 s S N_wi-043 68.09 0.32 42.3 T T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-043 68.09 0.32 42.3 T T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-043 68.09 0.32 42.3 T T_wi-045 33.46 N_wi-101 N_wi-311 90 130 13.14	T_wi-038	37.42	N_wi-140	N_wi-128	160	130	9.47	0.55	2.586	5	S	N_wi-038	70.65	0.2	9	T
T_wi-041 566.96 N_wi-026 N_wi-121 110 130 7.91 0.98 11.417 n S N_wi-041 68.9 0.08 36.7 T T_wi-042 35.98 N_wi-246 N_wi-241 110 130 3.75 0.46 2.867 e S N_wi-042 68.6 0.08 37.4 T T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.86 0.48 3.019 s N_wi-043 68.09 0.32 42.3 T T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-044 67.04 0.05 41.3 T T_wi-045 33.46 N_wi-101 N_wi-111 90 130 13.14 2.43 78.324 e S N_wi-045 67.03 0.05 41.6 T T_wi-046 36.55 N_wi-105 N_wi-098 160 130 16.			_	_						e	S	_	_			-
T_wi-042 35.98 N_wi-246 N_wi-241 110 130 3.75 0.46 2.867 e S N_wi-042 68.6 0.08 37.4 T T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.86 0.48 3.019 s S N_wi-043 68.09 0.32 42.3 T T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-044 67.04 0.05 41.3 T T_wi-045 33.46 N_wi-101 N_wi-111 90 130 13.14 2.43 78.324 e S N_wi-045 67.03 0.05 41.6 T T_wi-046 36.55 N_wi-105 N_wi-098 160 130 16.24 0.95 7.022 s S N_wi-045 67.03 0.05 41.6 T T_wi-047 64.07 N_wi-112 N_wi-122 63 130 0.78 0.29 2.381 n S N_wi-046 53 0.26 3.2 P T_wi-048 352.9 N_wi-093 N_wi-025 110 130 5.71 0.7 6.242 n S N_wi-047 66.42 0.31 48.7 T T_wi-049 22.87 N_wi-226 N_wi-188 250 130 114.68 2.74 29.706 s S N_wi-049 66.03 0.15 39.7 T T_wi-050 8.71 N_wi-025 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-052 63.57 1.37 39.7 T				_						-	S	_				
T_wi-043 47.38 N_wi-155 N_wi-147 110 130 3.86 0.48 3.019 s S N_wi-043 68.09 0.32 42.3 T 42.3 T T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-044 67.04 0.05 41.3 T T T_wi-045 33.46 N_wi-101 N_wi-111 90 130 13.14 2.43 78.324 e S N_wi-045 67.03 0.05 41.6 T T T_wi-046 36.55 N_wi-105 N_wi-098 160 130 16.24 0.95 7.022 s S N_wi-046 53 0.26 3.2 P N_wi-047 64.07 N_wi-112 N_wi-122 63 130 0.78 0.29 2.381 n S N_wi-047 66.42 0.31 48.7 T T_wi-048 352.9 N_wi-093 N_wi-093 N_wi-025 110 130 5.71 0.7 6.242 n S N_wi-048 66.36 0.15 39.7 T N_wi-049 66.03 0.15 41.2 T T_wi-049 22.87 N_wi-226 N_wi-188 250 130 114.68 2.74 29.706 s S N_wi-049 66.03 0.15 41.2 T N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T			_	_							S C					_
T_wi-044 35.77 N_wi-297 N_wi-312 110 130 2.24 0.28 1.109 e S N_wi-044 67.04 0.05 41.3 T T_wi-045 33.46 N_wi-101 N_wi-111 90 130 13.14 2.43 78.324 e S N_wi-045 67.03 0.05 41.6 T T_wi-046 36.55 N_wi-105 N_wi-098 160 130 16.24 0.95 7.022 s S N_wi-046 53 0.26 3.2 P T_wi-047 64.07 N_wi-112 N_wi-122 63 130 0.78 0.29 2.381 n S N_wi-046 53 0.26 3.2 P T_wi-048 352.9 N_wi-093 N_wi-025 110 130 5.71 0.7 6.242 n S N_wi-047 66.42 0.31 48.7 T T_wi-049 22.87 N_wi-226 N_wi-188 250 130 114.68 2.74 29.706 s S N_wi-048 66.36 0.15 39.7 T T_wi-050 8.71 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-049 66.03 0.15 41.2 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-050 64.87 0.98 11 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T			_	_						_	S	_				
T_wi-045 33.46 N_wi-101 N_wi-111 90 130 13.14 2.43 78.324 e S N_wi-045 67.03 0.05 41.6 T T_wi-046 36.55 N_wi-105 N_wi-098 160 130 16.24 0.95 7.022 s S N_wi-046 53 0.26 3.2 P P T_wi-047 64.07 N_wi-112 N_wi-122 63 130 0.78 0.29 2.381 n S N_wi-047 66.42 0.31 48.7 T T T_wi-048 352.9 N_wi-093 N_wi-025 110 130 5.71 0.7 6.242 n S N_wi-048 66.36 0.15 39.7 T N_wi-049 66.03 0.15 41.2 T N_wi-049 66.03 0.15 41.2 T N_wi-050 8.71 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-049 66.03 0.15 41.2 T N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 48.6 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T			_	_							_	_				
T_wi-047 64.07 N_wi-112 N_wi-122 63 130 0.78 0.29 2.381 n S N_wi-047 66.42 0.31 48.7 T T_wi-048 T_wi-048 352.9 N_wi-093 N_wi-025 110 130 5.71 0.7 6.242 n S N_wi-048 66.36 0.15 39.7 T T_wi-049 22.87 N_wi-226 N_wi-188 250 130 114.68 2.74 29.706 s S N_wi-049 66.03 0.15 41.2 T T T_wi-050 8.71 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T	T_wi-045		_		90	130	13.14	2.43	78.324	e	S		_	0.05	41.6	T
T_wi-048 352.9 N_wi-038 N_wi-025 110 130 5.71 0.7 6.242 n S N_wi-048 66.36 0.15 39.7 T T_wi-049 22.87 N_wi-226 N_wi-188 250 130 114.68 2.74 29.706 s S N_wi-049 66.03 0.15 41.2 T T_wi-050 8.71 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T	T_wi-046	36.55	N_wi-105	N_wi-098	160	130						N_wi-046	53			
T_wi-049 22.87 N_wi-226 N_wi-188 250 130 114.68 2.74 29.706 s S N_wi-049 66.03 0.15 41.2 T T_wi-050 8.71 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T			_	_								_				_
T_wi-050 8.71 N_wi-025 N_wi-026 110 130 6.04 0.74 6.922 n S N_wi-050 64.87 0.98 11 T T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T												_	_			
T_wi-051 39.32 N_wi-070 N_wi-061 90 130 17.82 3.29 137.747 s S N_wi-051 63.74 0.14 43.5 T T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T	_		_	_							_					_
T_wi-052 4.86 N_wi-220 PRV-2 160 130 13.57 0.79 5.034 n P N_wi-052 63.57 1.37 39.7 T											$\overline{}$	_				
	$\overline{}$			_							_	_	_			_
T_wi-053 263.75 PRV-2 N_wi-249 160 130 13.57 0.79 5.036 n S N_wi-053 63.55 0.19 45.9 T	T_wi-053		_		160	130	13.57	0.79			S		-	0.19	45.9	Т
T_wi-054 2.92 N_wi-306 PRV-3 110 130 3.17 0.39 2.099 n P N_wi-054 63.33 0.16 45.2 T	T_wi-054	2.92	N_wi-306	PRV-3	110	130	3.17	0.39	2.099	n	P	N_wi-054	63.33	0.16	45.2	T
T_wi-055 84.69 N_wi-154 N_wi-175 90 130 9.89 1.83 46.29 e S N_wi-055 54 2.94 2.5 P				_							S	_				-
T_wi-056 37.1 N_wi-312 N_wi-328 110 130 1.32 0.16 0.413 e S N_wi-056 62.13 0.72 17.5 T	_		_	_							—	_	_			-
T_wi-057 3.53 N_wi-230 N_wi-228 90 130 3.05 0.56 5.225 e S N_wi-057 61.31 0.88 59 T	_		_	_							_	_				-
T_wi-058 8.01 N_wi-235 N_wi-238 160 130 22.06 1.29 12.376 s S N_wi-058 61.03 0.14 47.5 T T wi-059 47.69 N_wi-328 N_wi-327 110 130 1.24 0.15 0.372 e S N_wi-059 60.99 0.13 18.7 T	_		_	_		_					-		_			-
T_wi-060 35.32 N_wi-144 N_wi-140 160 130 7.57 0.44 1.708 s S N_wi-060 60.99 0.05 48.2 T			_	_							_		_			-
T_wi-061 89.43 N_wi-208 N_wi-193 110 130 15.77 1.94 40.984 e S N_wi-061 60.79 0.14 49.4 T				_							$\overline{}$					_
T_wi-062 93.64 N_wi-190 N_wi-228 200 130 20.95 0.78 3.784 s S N_wi-062 60.08 4.65 39.8 T	-		_	_							\rightarrow		_			_
T_wi-063 57.79 N_wi-249 N_wi-248 90 130 5.46 1.01 15.387 e S N_wi-063 59.39 0.06 44.5 T	T_wi-063	57.79	N_wi-249	N_wi-248	90	130	5.46	1.01	15.387	e	S	N_wi-063	59.39	0.06	44.5	T
T_wi-064 183.82 N_wi-192 N_wi-183 200 130 27.31 1.02 6.183 s S N_wi-064 59.24 0.22 44.8 T	T_wi-064	183.82	N_wi-192	N_wi-183	200	130	27.31	1.02	6.183	5	S	N_wi-064	59.24	0.22	44.8	T

		DISEÑO RI	ED WINCHELE	REPO	RTE D	E TUBERÍ	AS)				DISEÑO	RE Di-	matrns	NUDOS)	
Label	long	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label		Odem	Presión	Red
Label	long.	Nodo Iniciai	NOGO FINAI	DIN	·	Caudai	vei.	Unit.	ivotas	neu	Label	Cota	Quem	Presion	nea
	m			mm		lt/s	m/s	m/km		\sqcup		msnm	lt/s	mca	
T_wi-065	95.42	N_wi-080	N_wi-046	200	130	39.86	1.49	12.455	5	S	N_wi-065	58.55	0.11	50.9	T
T_wi-066 T wi-067	65.88	N_wi-012 N wi-302	N_wi-021 N wi-313	160 110	130	0.44	0.03	0.009	s e	S	N_wi-066 N_wi-067	58.51 58.1	0.11	51.6 47.3	T
T wi-068	42.69	_	N_wi-313	160	130	18.8	1.1	9.204	ς	S	N_wi-067	58.1	0.03	40.8	T
T_wi-069	126.52	_	N_wi-173	110	130	1.49	0.18	0.518	s	S	N_wi-069	57.9	0.78	83	P
T wi-070		N wi-179	N wi-157	160	130	12.59	0.74	4.378	5	S	N wi-070	57.73	0.06	47	S
T_wi-071	7.6	PRV-4	N_wi-159	250	130	115.68	2.77	30.191	n	Р	N_wi-071	56.98	0.05	50.8	Т
T_wi-072	106.74	N_wi-173	N_wi-155	110	130	1.62	0.2	0.609	s	S	N_wi-072	56.78	0.05	47.9	Т
T_wi-073	110.14	N_wi-246	N_wi-262	110	130	2.67	0.33	1.527	e	S	N_wi-073	55.93	0.53	84	Р
T_wi-074	107.1	N_wi-305	N_wi-275	110	130	1.71	0.21	0.667	e	S	N_wi-074	55.92	0.1	39.2	T
T_wi-075	72.11	N_wi-262	N_wi-275	110	130	2.35	0.29	1.202	e	S	N_wi-075	55.77	0.72	47.9	T
T_wi-076		N_wi-198	N_wi-197	110	130	5.83	0.72	6.487	e	S	N_wi-076	55.47	0.15	48.5	T
T_wi-077	168.97	_	N_wi-198	110 90	130	3.68	0.45 1.29	2.776	e	S	N_wi-077	55.22	0.02	49.9	T
T_wi-078 T_wi-079		N_wi-249 N_wi-321	N_wi-257 N wi-327	110	130	6.98 1.34	0.17	24.286 0.427	e e	S S	N_wi-078 N_wi-079	54.99 54.87	0.13	49.7 43.9	T
T_wi-080		N_wi-175	N_wi-327	90	130	3.99	0.74	8.594	_	S	N_wi-079	53.71	2.61	1.3	S
T wi-081	38.91	N_wi-241	N_wi-236	110	130	4.35	0.54	3.775	е	S	N_wi-081	53.44	0.05	47	T
T wi-082		N_wi-224	N_wi-218	110	130	3.37	0.42	2.347	e	S	N wi-082	53.25	0.08	51.8	T
T_wi-083	152.5	N_wi-201	N_wi-199	250	130	60.05	1.44	8.964	5	S	N_wi-083	52.23	0.99	69	Т
T_wi-084	55.34	N_wi-191	N_wi-175	90	130	4.59	0.85	11.154	e	S	N_wi-084	52.22	0.23	46.5	Т
T_wi-085	181.83	N_wi-238	N_wi-267	160	130	20.3	1.19	10.615	s	S	N_wi-085	51.82	0.1	48.6	Т
T_wi-086	57.85	N_wi-128	N_wi-105	160	130	12.35	0.72	4.228	S	S	N_wi-086	51.44	1.96	2.5	T
T_wi-087	35.19	N_wi-274	N_wi-267	160	130	22.2	1.3	12.521	S	S	N_wi-087	50.68	0.04	57.6	Т
T_wi-088		N_wi-142	N_wi-154	90	130	10.83	2	54.763	e	S	N_wi-088	50.5	1.69	4.4	S
T_wi-089	188.99	PRV-3	N_wi-260	110	130	3.17	0.39	2.097	n	S	N_wi-089	50.41	0.2	55.5	T
T_wi-090 T_wi-091	101.97	N_wi-199 N_wi-145	N_wi-235 N_wi-144	160 160	130	20.77 7.15	0.42	11.072	S	S S	N_wi-090 N_wi-091	49.19 49.13	0.14	48.2 29.6	S
T wi-091	37.98	N_wi-145	N_wi-144	110	130	5.72	0.42	6.264	s s	S	N_wi-091	48.19	0.05	61	S
T_wi-093		N_wi-193	N_wi-194	110	130	22.5	2.78	79.184	e	S	N_wi-093	47.7	0.03	63.2	S
T wi-094		N_wi-124	N_wi-131	90	130	12.6	2.33	72,404		S	N wi-094	47.55	0.39	46.7	T
T_wi-095	29.27	_	N_wi-090	90	130	13.42	2.48	81.421	e	S	N_wi-095	47.52	0.05	61.1	S
T_wi-096	23.02	N_wi-090	N_wi-081	90	130	17.49	3.23	132.934	s	S	N_wi-096	47	0.9	11.8	Т
T_wi-097	77.53	N_wi-226	PRV-4	250	130	115.68	2.77	30.191	n	S	N_wi-097	46.87	0.12	48.1	Т
T_wi-098	176	N_wi-190	N_wi-199	250	130	77.42	1.85	14.351	S	S	N_wi-098	46.84	1.82	7.7	S
T_wi-099	7.76	N_wi-189	N_wi-190	250	130	99.2	2.37	22.712	n	S	N_wi-099	46.22	0.03	64.2	S
T_wi-100	33.43	N_wi-111	N_wi-124	90	130	12.81	2.37	74.667	e	S	N_wi-100	45.9	0.49	60.9	T
T_wi-101	7.47	N_wi-202	N_wi-200	110	130	8.48	1.05	12.985	e	S	N_wi-101	45.65	0.16	49.4	S
T_wi-102	29.67	N_wi-236	N_wi-218	110	130	4.06	0.5	3.319	e	S S	N_wi-102	44.6	0.44	77.6	P
T_wi-103 T wi-104	28.31 33.07	N_wi-272 N_wi-202	N_wi-253 N_wi-212	110 110	130	8.12 4.75	0.59	4.445	e e	S	N_wi-103 N_wi-104	44.53 44.06	0.04	51.7	T
T_wi-104		N_wi-202	N_wi-081	90	130	17.64	3.26	135.082	5	S	N_wi-104	43.14	2.83	11.1	S
T wi-106	33.76		N_wi-061	63	130	3.93	1.48	47.289	e	T	N wi-106	43.03	0.67	51.8	T
T_wi-107		N_wi-307	N_wi-286	110	130	3.79	0.47	2.919	e	S	N_wi-107	42.96	0.03	65.6	S
T_wi-108		N_wi-037	N_wi-041	63	130	3.92	1.47	46.919		Т	N_wi-108	42.82	0.11	65.6	Т
T_wi-109	33.63	N_wi-302	N_wi-279	110	130	5.8	0.72	6.434	e	S	N_wi-109	42.04	0.15	50.3	Т
T_wi-110	52.12	N_wi-099	N_wi-092	63	130	2.7	1.01	23.543	n	S	N_wi-110	41.99	0.04	66.9	S
T_wi-111		N_wi-093	N_wi-099	63	130	3.11	1.17	30.663		S	N_wi-111	41.96	0.19	50.4	
T_wi-112		N_wi-317	N_wi-305	110		1.49	0.18	0.516	_	S	N_wi-112	41.13	0.06	67.7	S
T_wi-113		N_wi-110	N_wi-112	63	130	0.57	0.21	1.306		S	N_wi-113	41.1	0.65	78.9	P
T_wi-114		N_wi-131	N_wi-142	90	130	11.27	2.08	58.973		S	N_wi-114	41.09	0.26	68.1	T
T_wi-115 T_wi-116		N_wi-219 N_wi-033	N_wi-227 N_wi-037	110 63	130 130	4.03 3.65	0.5 1.37	3.274 41.189	_	S T	N_wi-115 N_wi-116	41.07 40.99	1.97 0.59	59.4 51.9	T
T_wi-117		N_wi-220	N_wi-182	200	130	37.19	1.39	10.957	_	P	N_wi-110	40.99	0.39	60.1	Т
T_wi-117		N_wi-255	N_wi-240	110	130	4.68	0.58	4.314		S	N_wi-117	38.88	0.39	62.1	Ť
T_wi-119		N_wi-253	N_wi-277	90	130	3.12	0.58	5.465		S	N_wi-119	38.83	0.13	51.1	Ť
T_wi-120		N_wi-211	N_wi-233	110	130	12.47	1.54	26.549	_	S	N_wi-120	38.63	0.77	62.1	T
T_wi-121	188.33	N_wi-201	N_wi-331	200	130	48.53	1.81	17.933		S	N_wi-121	38.43	0.15	81.2	Р
T_wi-122	34.05	N_wi-212	N_wi-219	110	130	0.76	0.09	0.15		S	N_wi-122	38.36	0.03	70.6	T
T_wi-123	28.05	N_wi-279	N_wi-255	110	130	5.19	0.64	5.227	e	S	N_wi-123	37.84	7.75	16.2	T
T_wi-124		N_wi-197	N_wi-195	110	130	16.14	1.99	42.805		S	N_wi-124	37.33	0.09	52.6	
T_wi-125		N_wi-227	N_wi-240	110	130	5.37	0.66	5.569	_	S	N_wi-125	37.23	0.71	86.1	Р
T_wi-126		N_wi-277	N_wi-300	90	130	1.17	0.22	0.893	_	S	N_wi-126	37.05	2.27	16.8	
T_wi-127		N_wi-182	N_wi-159	250	130	38.81	0.93	3.994	_	P	N_wi-127	36.81	1.75	16.9	T
T_wi-128	51.42	N_wi-211	N_wi-208	110	130	15.03	1.85	37.494	e	S	N_wi-128	36.79	1.93	17.2	S

		DISEÑO RI	ED WINCHELE	(REPO	RTE D	E TUBERÍ	AS)			$\overline{}$	DISEÑO	RE Di-	matrne	NUDOS)	
Label	long	Node Inicial	Nede Final	DN		Caudal	Vel.	Perd.	Notes	Pod	Label	-		Drosión	Pod
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudai	vei.	Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		Ш		msnm	lt/s	mca	\vdash
T_wi-129		N_wi-331	N_wi-168	200	130	29.93	1.12	7.329		S	N_wi-129	36.77	0.18	40	T
T_wi-130 T wi-131	32.51	N_wi-253	N_wi-233 N_wi-095	110 63	130 130	9.82 1.75	1.21 0.66	17.044 10.558	e	S S	N_wi-130 N_wi-131	36.75 36.57	1.02 0.08	16.5 53	T S
T wi-132		N_wi-092 N_wi-313	N_wi-093	110	130	6.52	0.8		e e	S	N_wi-131	36.54	0.08	16.8	T
T wi-133		N_wi-286	N wi-297	110	130	3.37	0.42			S	N_wi-133	36.5	0.93	16.9	Ť
T wi-134		N wi-095	N wi-107	63	130	0.32	0.12		n	S	N wi-134	36.42	1.79	17.2	T
T_wi-135		N_wi-197	N_wi-200	110	130	9.77	1.2	16.885	e	S	N_wi-135	36.25	1.07	17.2	Т
T_wi-136	33.1	N_wi-042	N_wi-049	63	130	3.35	1.26	35.04	e	Т	N_wi-136	34.62	3.9	15.5	Т
T_wi-137	51.08	N_wi-107	N_wi-110	63	130	1.31	0.49	6.207	n	S	N_wi-137	34.49	0.35	42.3	Т
T_wi-138	38.03	N_wi-157	N_wi-143	110	130	8.99	1.11	14.472	S	S	N_wi-138	34.48	0.49	54.8	Т
T_wi-139		N_wi-095	N_wi-087	63	130	1.33	0.5		n	S	N_wi-139	34.23	0.22	53.5	T
T_wi-140		N_wi-234	N_wi-244	63	130	1.14	0.43	4.797	e	T	N_wi-140	33.37	0.96	20.5	S
T_wi-141		N_wi-138	N_wi-131	63	130	1.24	0.47	5.614	5	T	N_wi-141	32.51	2.13	20.7	T
T_wi-142 T wi-143	52.12 66.83	N_wi-152	N_wi-154	63 63	130 130	0.48 3.93	0.18	0.964 47.185	e	<u>'</u>	N_wi-142 N wi-143	32.32 30.61	0.23	55.4 20.2	S
T_wi-143		N_wi-094 N_wi-037	N_wi-090 N_wi-040	63	130	0.17	0.06	0.134	e	'	N_wi-143	30.56	0.42	23.2	S
T wi-145	27.02	N_wi-081	N_wi-085	63	130	0.17	0.04		5	T	N_wi-145	30.52	0.46	23.3	S
T wi-146		N wi-210	N_wi-203	63	130	1	0.38	3.768	-	T	N_wi-146	30.32	0.40	95.1	P
T_wi-147		N_wi-010	N_wi-017	63	130	1.65	0.62		5	T	N_wi-147	29.15	1.07	24.4	s
T_wi-148		N_wi-070	N_wi-078	63	130	0.13	0.05	0.086	s	T	N_wi-148	29.08	1.71	63.6	Т
T_wi-149	68.56	N_wi-084	N_wi-079	63	130	0.04	0.01	0.009	S	T	N_wi-149	29.06	2.4	18.9	Т
T_wi-150	64.12	N_wi-294	N_wi-317	63	130	0.44	0.17	0.828	e	T	N_wi-150	28.89	2.94	96.7	Р
T_wi-151	26.23	N_wi-042	N_wi-048	63	130	0.15	0.06	0.113	S	T	N_wi-151	28.37	0.4	97.3	Р
T_wi-152	36.87	N_wi-127	N_wi-126	110	130	4.31	0.53	3.712	e	T	N_wi-152	27.75	0.67	56.6	T
T_wi-153		N_wi-064	N_wi-053	63	130	7.2	2.7	144.649	e	T	N_wi-153	27.67	0.1	49.9	T
T_wi-154		N_wi-177	N_wi-179	63	130	1.91	0.72	12.374	e	T	N_wi-154	27.42	0.46	57	S
T_wi-155 T wi-156	33.46	N_wi-180 N_wi-111	N_wi-181 N wi-109	63 63	130 130	1.1 0.15	0.41	4.449 0.11	e s	T	N_wi-155 N wi-156	27.35 26.85	1.51	26.1 23.5	S
T_wi-157		N_wi-101	N_wi-097	63	130	0.13	0.05		_	<u>'</u>	N_wi-157	26.29	2.71	25.5	S
T wi-158		N wi-049	N wi-051	63	130	0.14	0.05		5	Ť	N_wi-158	26.27	0.56	32.4	T
T_wi-159		N_wi-053	N wi-065	63	130	0.11	0.04		_	T	N_wi-159	26.26	0.45	98.9	P
T_wi-160	49.97	N_wi-064	N_wi-076	63	130	0.15	0.06	0.112	s	Т	N_wi-160	25.88	0.77	65.6	Т
T_wi-161	28.11	N_wi-204	N_wi-209	63	130	0.15	0.06	0.107	e	T	N_wi-161	25.55	0.22	55.6	Т
T_wi-162	4.1	N_wi-281	N_wi-282	63	130	2.19	0.82	16.034	e	T	N_wi-162	25.55	0.06	52	T
T_wi-163	27.05	N_wi-311	N_wi-321	63	130	0.3	0.11	0.414	e	T	N_wi-163	25.41	0.88	25.6	T
T_wi-164	26.9	_	N_wi-058	63	130	0.14	0.05	0.097	S	T	N_wi-164	25.39	0.04	52.3	T
T_wi-165		N_wi-031	N_wi-036	63	130	0.16	0.06	0.13	5	T	N_wi-165	25.27	0.64	25	T
T_wi-166	26.53	N_wi-061	N_wi-066	63	130	0.11	0.04	0.063	5	T	N_wi-166	24.9	0.37	66.7	T
T_wi-167	35.26	N_wi-217	N_wi-213	63	130 130	1.26 2.5	0.47	5.733	e	T	N_wi-167	24.55	0.03	53.2	T
T_wi-168 T wi-169	15.81	N_wi-017 N_wi-024	N_wi-019 N wi-027	63 63	130	3.55	1.33	20.364 39.091	e e	<u>'</u>	N_wi-168 N_wi-169	24.44	26.88 0.98	68.2	Ť
T wi-170	15.97	N_wi-024 N_wi-203	N_wi-206	63	130	0.04	0.02		e	<u>'</u>	N_wi-109	22.8	2.9	30.3	T
T_wi-171		N_wi-270	N_wi-288	63	130	0.63	0.02		e	Ť	N_wi-171	22.65	0.24	105.3	P
T_wi-172		N_wi-134	N_wi-127	110	130	3.75	0.46	2.871	_	T	N_wi-172	22.15	1.41	28.5	T
T_wi-173	75.94	N_wi-223	N_wi-247	63	-	1.09	0.41	4.366		Т	N_wi-173	22.06	2.43	31.3	S
T_wi-174	15.38	N_wi-019	N_wi-021	63	130	2.8	1.05	25.128	e	Т	N_wi-174	21.65	0.18	37.6	Т
T_wi-175	78.63	N_wi-222	N_wi-194	63	130	3.04	1.14	29.328	e	T	N_wi-175	21.2	1.32	59.3	S
T_wi-176		N_wi-031	N_wi-033	63	130	3.69	1.39	41.977		T	N_wi-176	20.96	0.35	57.3	T
T_wi-177		N_wi-021	N_wi-024	63	130	3.32	1.25	34.472		T	N_wi-177	20.72	0.92	30.4	T
T_wi-178		N_wi-322	N_wi-315	63	130	0.15	0.06	0.111		T	N_wi-178	20.65	0.51	108.2	P
T_wi-179		N_wi-213	N_wi-221	63	130	1.58	0.59	8.726		T	N_wi-179	20.17	4.3	31.7	S
T_wi-180 T wi-181		N_wi-264	N_wi-250	63	130	0.55	0.2	1.216 0.753		T T	N_wi-180	10.07	0.77	31	T
T_wi-181		N_wi-271 N_wi-152	N_wi-245 N_wi-191	63 90	130 130	0.42 10.66	0.16 1.97	53.138		'	N_wi-181 N_wi-182	19.97 19.95	0.77 1.62	31.2 104.7	P
T wi-183		N_wi-216	N_wi-237	63	130	0.63	0.24	1.594		'	N_wi-183	19.82	6.22	32.5	S
T_wi-184		N_wi-210	N_wi-308	63	130	0.03	0.24	0.339		Ť	N_wi-184	19.74	1.52	59.1	T
T_wi-185		N_wi-204	N_wi-200	63	130	0.98	0.37	3.574		T	N_wi-185	19.69	0.53	33.6	_
T_wi-186		N_wi-020	N_wi-033	63	130	0.11	0.04	0.066		T	N_wi-186	19.64	0.1	33.6	_
T_wi-187	65.82	N_wi-018	N_wi-027	63	130	0.19	0.07	0.166	5	T	N_wi-187	19.47	2.21	33.7	Т
T_wi-188	25.19	N_wi-024	N_wi-030	63	130	0.15	0.06	0.119	S	T	N_wi-188	19.46	0.45	57.9	S
T_wi-189	24.85	N_wi-019	N_wi-022	63	130	0.22	0.08	0.23	S	Т	N_wi-189	19.4	0.41	56.1	S
T_wi-190		N_wi-206	N_wi-204	63	130	0.67	0.25	1.768		T	N_wi-190	19.3	0.83	56.1	S
T_wi-191		N_wi-181	N_wi-177	63	130	0.43	0.16	0.769		T	N_wi-191	19.03	15.24	60.8	S
T_wi-192	63.71	N_wi-288	N_wi-305	63	130	0.4	0.15	0.686	e	T	N_wi-192	19	1.21	34.4	Р

	DIS	SEÑO RED SAN	RAFAEL EXIST	ENTE	(REP	ORTE DE T	UBERÍA	S)			DISEÑO	RE Diag	matrns	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd.	Notas	Red	Label	Cota	Qdem	Presión	Red
Luber		rroug miciai	Nodo I IIIdi		_			Unit.		cu	Luisei				cu
T_sr-001	m 110.83	N sr-106	N sr-131	mm 315	130	lt/s 85.55	m/s 1.29	m/km 5.602		D	N sr-001	msnm 59.48	It/s 0.79	mca 11.5	T
T sr-002		N_sr-076	N sr-085	250	130	72.87	1.74		5	P	N_sr-002	49.07	0.75	19.5	T
T_sr-003		N_sr-050	N_sr-067	355	130	185.77	2.2	13.179		P	N_sr-003	48.9	1.8	9.9	T
T_sr-004	122.48	N_sr-106	N_sr-085	315	130	89.76	1.35	6.123	s	P	N_sr-004	46.06	1.82	21.4	Т
T_sr-005	9.44	N_sr-107	N_sr-111	400	130	210.94	1.97	9.316	S	P	N_sr-005	45.46	0.36	23.1	T
T_sr-006		N_sr-021	N_sr-031	400	130	239.09	2.23		S	P	N_sr-006	39.69	1.68	32.7	T
T_sr-007		SAN RAFAEL	N_sr-021	400	130	262.1	2.45	13.928		P	N_sr-007	37.26	0.85	21.9	T
T_sr-008		N_sr-131	N_sr-152	315 400	130	85.53	2.22	5.6	5	P D	N_sr-008	36.95	1.75 0.51	38.6	T
T_sr-009 T_sr-010		N_sr-111 N sr-031	N_sr-118 N_sr-118	400	130	238.04	2.22	11.653 11.663	5	P	N_sr-009 N sr-010	36.16 34.03	0.51	32 37.2	T
T sr-011		_	N sr-085	355	130	162.74	1.93		5	P	N sr-011	32.26	0.4	40.4	T
T_sr-012		N_sr-067	N_sr-107	400	130	185.82	1.74		5	P	N_sr-012	32.05	0.95	30.2	T
T_sr-013	36.39	N_sr-334	N_sr-349	160	130	43.7	2.55	43.904	5	S	N_sr-013	31.25	1.13	39.6	Т
T_sr-014	81.29	N_sr-195	N_sr-186	200	130	44.44	1.66	15.233	S	S	N_sr-014	31.15	0.99	16.2	T
T_sr-015	67.11	N_sr-269	N_sr-273	110	130	6.61	0.82		e	S	N_sr-015	31	1.37	16	T
T_sr-016		N_sr-110	N_sr-068	160	130	12.76	0.75		e	S	N_sr-016	30.03	0.45	40.7	T
T_sr-017	73.42	N_sr-332	N_sr-319	160	130	20.03	1.17		5	S	N_sr-017	28.93	0.94	30.5	T
T_sr-018		N_sr-159	N_sr-176 N_sr-033	160	130	0.78	0.37		e s	S S	N_sr-018	28	2.3 0.55	39.1	T
T_sr-019 T_sr-020		N_sr-073 N_sr-352	N_sr-055 N_sr-309	160 160	130	18.26	1.07		5	S	N_sr-019 N_sr-020	27.44 27.31	0.55	19.8 21.7	S
T_sr-020		N_sr-065	N_sr-060	90	130	4.01	0.74		5	S	N_sr-021	25.87	0.22	50.7	P
T_sr-022		N_sr-349	N_sr-341	160	130	42.5	2.48		s	S	N_sr-022	25.74	0.38	21.6	T
T_sr-023	33.71	 N_sr-341	N_sr-329	160	130	36.86	2.15	32.042	s	S	N_sr-023	25.25	0.33	51.2	S
T_sr-024	41.56	N_sr-329	N_sr-323	160	130	35.04	2.05	29.167	S	S	N_sr-024	25.06	0.2	51.4	S
T_sr-025	14.93	N_sr-322	N_sr-332	160	130	22.26	1.3	12.593	e	S	N_sr-025	25.04	1.38	35.1	S
T_sr-026	69.32	N_sr-043	N_no-071	160	130	20.88	1.22	11.185	S	S	N_sr-026	24.81	0.64	26.8	T
T_sr-027	37.44	N_sr-321	N_sr-315	160	130	9.62	0.56		5	S	N_sr-027	24.48	0.81	51.1	T
T_sr-028 T_sr-029	83.9 75.57	N_sr-271 N_sr-271	N_sr-020 N_sr-287	63 90	130	2.11 1.87	0.79		n s	S c	N_sr-028 N_sr-029	23.83	0.36	30.3 24	T
T_sr-030		N_sr-201	N_sr-203	160	130	30.54	1.78		5	S	N_sr-030	23.73	0.49	36.5	S
T sr-031		N sr-230	N sr-232	110	130	7.72	0.95		e	S	N sr-031	23.05	0.53	52	P
T_sr-032	50.61	N_sr-084	N_sr-097	200	130	35.66	1.33	10.135	n	S	N_sr-032	22.98	0.36	37.1	S
T_sr-033	58	N_sr-218	N_sr-222	160	130	24.89	1.45	15.479	s	S	N_sr-033	22.9	0.78	37.1	S
T_sr-034	63.6	N_sr-214	N_sr-220	90	130	5.4	1	15.085	e	S	N_sr-034	22.82	0.66	40.7	T
T_sr-035		N_sr-175	N_sr-198	200	130	16.82	0.63	2.52	e	S	N_sr-035	22.81	0.3	24.7	T
T_sr-036	40.32	N_sr-319	N_sr-337	160	130	21.69	1.27		5	S	N_sr-036	22.7	0.52	31.5	T
T_sr-037	58.82 62.54	N_sr-196	N_sr-197	90 160	130	4.15 38.68	0.77 2.26		e e	S S	N_sr-037	22.7	0.86 1.31	37.2 37.6	S
T_sr-038 T_sr-039		N_sr-274 N_sr-324	N_sr-256 N_sr-321	160	130	10.44	0.61		s	S	N_sr-038 N_sr-039	22.32	2.73	36	S
T sr-040	60.62	N_sr-176	N sr-196	90	130	3.01	0.56		e	S	N sr-040	22.29	0.14	27.2	T
T_sr-041	38.44	N_sr-325	N_sr-324	160	130	13.08	0.76		s	S	N_sr-041	22.19	0.99	36.1	T
T_sr-042	58.17	N_sr-201	N_sr-190	160	130	29.08	1.7	20.648	S	S	N_sr-042	22.11	0.95	52.9	S
T_sr-043	34.13	N_sr-309	N_sr-308	160	130	17.48	1.02	8.043	S	S	N_sr-043	22.09	1.36	40.8	S
T_sr-044		N_sr-056	N_sr-043	160	130	19.53	1.14		S	S	N_sr-044	22	1.2	25.7	T
T_sr-045		N_sr-337	N_sr-352		130	18.99	1.11	9.377		S	N_sr-045	21.94	1.2	41.8	_
T_sr-046		N_sr-323	N_sr-322	160	130	22.37	1.31	12.705 13.034		S S	N_sr-046 N_sr-047	21.89 21.75	2.99 0.51	38.9	T
T_sr-047 T_sr-048		N_sr-156 N_sr-152	N_sr-218 N_sr-169		130	30.24	1.77	22.206		S	N_sr-047	21.75	1.67	30 26.7	S
T_sr-049		N_sr-158	N_sr-153	200		53.35	1.99	21.373		S	N_sr-049	21.62	1.26	34.3	T
T_sr-050		N_sr-222	N_sr-190	160	130	20.78	1.21	11.087		S	N_sr-050	21.53	0.95	44.2	P
T_sr-051	49.73	N_sr-246	N_sr-254	110	130	3.74	0.46	2.848	e	S	N_sr-051	21.5	0.32	26.4	Т
T_sr-052	47.38	N_sr-236	N_sr-246	110	130	5.52	0.68	5.876	e	S	N_sr-052	21.45	0.43	42.5	T
T_sr-053		N_sr-115	N_sr-086	200	130	19.99	0.75	3.47		S	N_sr-054	21.38	0.29	30.4	T
T_sr-054		N_sr-113	N_sr-115	200	130	28.53	1.07	6.707		S	N_sr-055	21.37	0.4	34.1	T
T_sr-055		N_sr-112	N_sr-113	200	130	30.76	1.15	7.706		S	N_sr-056	21.3	0.03	39.7	S
T_sr-056 T_sr-057		N_sr-122 N_sr-156	N_sr-111 N_sr-162	200 160	130	27.09 18.6	1.01	6.091 9.03		S S	N_sr-057 N_sr-058	21.25 21.24	0.57 0.5	26.2 39.8	T
T_sr-058		N_sr-156 N_sr-127	N_sr-162 N_sr-038	90	130	7.16	1.09	25.439		S	N_sr-059	21.24	0.56	27.7	T
T_sr-059		N_sr-290	N_sr-270	90	130	0.09	0.02	0.008		S	N_sr-060	21.21	1.24	27.7	s
T_sr-060		N_sr-137	N_sr-039	160	130	33.18	1.94	26.359		S	N_sr-061	21.19	0.27	30.6	_
T_sr-061		N_sr-039	N_sr-076	160		35.44	2.07	29.787		S	N_sr-062	21.11	3.46	25.9	Т
T_sr-062	206.68	N_sr-086	N_sr-025	160	130	12.92	0.76	4.598	5	S	N_sr-063	21.11	0.88	54.7	S
T_sr-063		N_sr-032	N_sr-058	160	130	16	0.94	6.832		S	N_sr-064	21.03	0.37	43.5	-
T_sr-064	166.98	N_sr-045	N_sr-050	160	130	22.08	1.29	12.405	S	S	N_sr-065	21.02	1.7	28.2	S

	DIS	SEÑO RED SAN	RAFAEL EXIST	ENTE	(REP	ORTE DE T	UBERÍA	S)			DISEÑO	nia (matros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		$\overline{}$		msnm	lt/s	mca	М
T_sr-065	155.58	N_sr-256	N_sr-156	160	130	38.01	2.22	33.909	e	S	N_sr-066	21.01	0.38	27.2	T
T_sr-066	25.56	N_sr-084	N_sr-081	200	130	36.52	1.36	10.594	S	S	N_sr-067	21.01	0.05	47.8	-
T_sr-067		N_sr-042	N_sr-031	110	130	0.41	0.05		n	S	N_sr-068	21.01	1.42	28.4	—
T_sr-068		N_sr-187	N_sr-127	63	130	3.07	1.15	29.844		S	N_sr-069	20.95	3.08	26.2	T
T_sr-069 T_sr-070		N_sr-270 N_sr-153	N_sr-269 N_sr-152	110 200	130	55.2	2.06	22.766	e	S S	N_sr-070 N_sr-071	20.92	0.63	42.4 27.5	T
T_sr-070		N_sr-133 N_sr-137	N_sr-040	90	130	4.93	0.91	12.739	5	S	N_sr-072	20.89	0.56	26.7	T
T_sr-072		N_sr-203	N_sr-195	200	130	43.2	1.61	14.456	-	S	N_sr-073	20.82	0.03	39.1	s
T sr-073		N sr-308	N sr-325	160	130	15.19	0.89		5	S	N_sr-074	20.73	1.02	51.9	-
T_sr-074		N_sr-162	N_sr-182	160	130	21.91	1.28	12.222	s	S	N_sr-075	20.64	0.36	42.6	Т
T_sr-075	51.13	N_sr-112	N_sr-097	200	130	32.15	1.2	8.364	s	S	N_sr-076	20.59	0.82	43.4	Р
T_sr-076	34.07	N_sr-186	N_sr-161	200	130	47.43	1.77	17.192	S	S	N_sr-077	20.59	0.4	43.7	T
T_sr-077	80.93	N_sr-068	N_sr-065	160	130	8.52	0.5	2.127	S	S	N_sr-078	20.58	0.92	32.1	T
T_sr-078		N_sr-024	N_sr-063	110	130	7.6	0.94	10.613	_	S	N_sr-079	20.55	0.42	33.2	T
T_sr-079		N_sr-021	N_sr-024	160	130	22.79	1.33	13.15	-	S	N_sr-080	20.55	0.42	35.5	T
T_sr-080		N_sr-063	N_sr-102	63	130	3.94	1.48	47.43	_	S	N_sr-081	20.53	0.08	43.4	T
T_sr-081 T_sr-082		N_sr-102	N_sr-126	110 110	130	1.95 7.56	0.24	0.85 10.497		S S	N_sr-082	20.52	0.99	42.8 33.2	T
T sr-083		N_sr-189 N_sr-155	N_sr-220 N_sr-189	110	130	10.82	1.33	20.397	n	S	N_sr-083 N_sr-084	20.48	0.29	43.2	-
T sr-084		N_sr-133	N_sr-155	110	130	14.18	1.75	33.685		S	N_sr-085	20.46	0.11	43.7	P
T sr-085		N sr-161	N sr-160	200	130	49.27	1.84	18.446	_	S	N sr-086	20.45	0.78	40.6	-
T_sr-086		N_sr-160	N_sr-158	200	130	51.63	1.93	20.111	s	S	N_sr-087	20.45	0.54	50.5	Т
T_sr-087	19.39	N_sr-137	N_sr-110	160	130	26.64	1.56	17.562	e	S	N_sr-088	20.4	0.59	44.8	T
T_sr-088	6.13	N_sr-120	N_sr-107	160	130	24.98	1.46	15.583	n	S	N_sr-089	20.38	0.39	42.8	T
T_sr-089	3.26	N_sr-056	N_sr-058	160	130	19.49	1.14	9.845	S	S	N_sr-090	20.34	0.66	27.3	T
T_sr-090		N_sr-230	N_sr-224	110	130	10.03	1.24	17.728	_	S	N_sr-091	20.33	0.4	43.6	-
T_sr-091		N_sr-224	N_sr-217	110	130	11.1	1.37	21.39	_	S	N_sr-092	20.27	0.39	38.7	T
T_sr-092		N_sr-025	N_sr-030	160	130	10.68	0.62	3.228	_	S	N_sr-093	20.27	0.37	27.3	-
T_sr-093 T sr-094		N_sr-273 N_sr-169	N_sr-274 N_sr-191	110	130	8.7 24.92	1.07 3.07	13.613 95.672	e	S	N_sr-094 N_sr-095	20.14	0.25	33.8 33.7	T
T sr-095		N_sr-254	N_sr-262	110	130	1.57	0.19	0.569	e	S	N_sr-096	20.02	0.66	52.5	Ť
T sr-096		N sr-287	N sr-283	160	130	0.94	0.05	0.036	_	S	N sr-097	19.96	0.41	43.2	T
T_sr-097		N_sr-042	N_sr-023	110	130	7.82	0.96		n	S	N_sr-098	19.96	0.51	43.2	Т
T_sr-098	3.96	N_sr-023	N_sr-024	160	130	13.27	0.78	4.831	n	S	N_sr-099	19.92	0.22	49.5	T
T_sr-099	33.74	N_sr-191	N_sr-182	160	130	23.92	1.4	14.382	S	S	N_sr-100	19.89	0.65	44.7	T
T_sr-100	37.04	N_sr-315	N_sr-317	160	130	7.19	0.42	1.551	S	S	N_sr-101	19.89	0.46	44.2	T
T_sr-101		N_sr-204	N_sr-198	110	130	16.6	2.05	45.102	e	S	N_sr-102	19.83	1.04	53.2	S
T_sr-102		N_sr-206	N_sr-204	110	130	15.31	1.89	38.825		S	N_sr-103	19.82	0.54	31.9	-
T_sr-103		N_sr-108	N_sr-138	90	130	1.42	0.26	1.27	-	S	N_sr-104	19.8	0.85	28.5	T
T_sr-104		N_sr-138 N_sr-032	N_sr-159	90 160	130	0.47 11.9	0.09	0.161 3.946	-	S S	N_sr-105 N_sr-106	19.78 19.78	0.99	43.3 43.6	-
T_sr-105 T_sr-106		N_sr-032 N_sr-020	N_sr-038 N_sr-040	63	130	2.25	0.7	16.789		S	N_Sr-106 N_sr-107	19.76	0.03	51.7	P
T_sr-107		N_sr-197	N_sr-214	90	130	4.85	0.03	12.345		S	N_sr-107	19.75	0.14	43.6	
T sr-108		N sr-030	N_sr-073	160	130	3.18	0.19	0.343		S	N_sr-109	19.75	1.7	33.1	-
T_sr-109		N_sr-270	N_sr-262	110		0.11	0.01	0.004	_	S	N_sr-110	19.75	0.22	29.9	-
T_sr-110	2.75	N_sr-106	N_sr-108	90	130	4.16	0.77	9.292	n	S	N_sr-111	19.74	0.02	51.9	Р
T_sr-111	95.39	N_sr-175	N_sr-122	200	130	23.39	0.87	4.642	e	S	N_sr-112	19.68	0.44	43	S
T_sr-112		N_sr-217	N_sr-206	110	130	12.98	1.6	28.579	_	S	N_sr-113	19.68	0.28	42.7	-
T_sr-113		N_sr-060	N_sr-048	63	130	0.65	0.24	1.693		S	N_sr-114	19.67	0.51	53	-
T_sr-114		N_sr-334	N_sr-274	160	130	46.24	2.7	48.761		S	N_sr-115	19.65	0.31	42.3	-
T_sr-115		N_sr-283	N_sr-033	160	130	2.45	0.02		n	S	N_sr-116	19.65	0.77	52.9	-
T_sr-116		N_sr-181	N_sr-187	63	130	2.45	0.92	19.645 29.816		S	N_sr-117	19.63	0.48	43.6	-
T_sr-117 T_sr-118		N_sr-048 N_sr-126	N_sr-181 N_sr-141	63 63	130	3.07 0.4	1.15 0.15	0.673	-	S T	N_sr-118 N_sr-119	19.62 19.58	0.11	52.9 47.2	-
T_sr-110		N_sr-126 N_sr-091	N_sr-141 N_sr-101	63	130	0.66	0.15	1.748	-	T	N_sr-119 N_sr-120	19.57	0.15	51.8	-
T_sr-120		N_sr-077	N_sr-100	63	130	0.94	0.35	3.337		T T	N_sr-121	19.57	1.57	54.6	-
T_sr-121		N_sr-092	N_sr-103	63	130	4.83	1.81	69.078	-	T	N_sr-122	19.56	0.27	52	-
T_sr-122		N_sr-218	N_sr-252	63	130	3.27	1.23	33.499		T	N_sr-123	19.52	1.19	53.5	-
T_sr-123	128.44	N_sr-036	N_sr-083	63	130	1.01	0.38	3.782		T	N_sr-124	19.51	0.22	47.5	T
T_sr-124	4.94	N_sr-061	N_sr-054	63	130	0.93	0.35	3.252	e	T	N_sr-125	19.51	0.56	43.6	T
T_sr-125		N_sr-247	N_sr-239	63	130	1.01	0.38	3.821	_	T	N_sr-126	19.49	0.78	53.5	-
T_sr-126		N_sr-059	N_sr-104	63	130	1.31	0.49	6.194	_	T	N_sr-127	19.45	2.25	37	-
T_sr-127		N_sr-090	N_sr-071	63	130	2.33	0.88	17.97		T	N_sr-128	19.45	0.3	34	-
T_sr-128	106.87	N_sr-080	N_sr-038	63	130	3.43	1.29	36.59	e	T	N_sr-129	19.44	0.62	43.6	T

	DI	SEÑO RED SAN	RAFAEL EXIST	ENTE	(REP	ORTE DE T	UBERÍA	S)			DISEÑO	NE Dia	metros	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	c	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		$\vdash \vdash$		msnm	It/s	mca	\vdash
T_sr-129	107.21	N_sr-055	N_sr-032	63	130	3.74	1.41	43.129	e	T	N_sr-130	19.42	0.4	34.1	Т
T_sr-130		N_sr-200	N_sr-203	63	130	1.6	0.6		e	T	N_sr-131	19.42	0.02	43.3	P
T_sr-131		N_sr-158	N_sr-142	63	130	1.29	0.48	5.978		T	N_sr-132	19.36	0.2	41.7	T
T_sr-132 T_sr-133		N_sr-069 N_sr-066	N_sr-062 N_sr-065	63 63	130	0.4 2.81	0.15 1.05	0.696 25.298	s e	T T	N_sr-133 N_sr-134	19.31 19.26	0.83	52.1 29.9	T
T_sr-134		N_sr-094	N_sr-055	63	130	2.36	0.89			Ť	N_sr-135	19.24	0.43	43.8	Ť
T_sr-135		N_sr-241	N_sr-249	63	130	0.52	0.2			Т	N_sr-136	19.19	1.69	39.5	Т
T_sr-136	194.17	N_sr-210	N_sr-171	63	130	0.63	0.24	1.609	e	T	N_sr-137	19.03	1.6	31	S
T_sr-137		N_sr-252	N_sr-273	63	130	3.19	1.2			T	N_sr-138	19	0.95	44.1	S
T_sr-138 T_sr-139		N_sr-116 N_sr-195	N_sr-096 N_sr-199	90 63	130	0.66	0.12	0.306	n e	T	N_sr-139 N_sr-140	18.95 18.92	0.86	29.8 44.3	T
T sr-140		N_sr-191	N_sr-180	63	130	0.89	0.02	3.028	e	T	N_sr-140	18.92	0.31	53.9	T
T_sr-141		N_sr-047	N_sr-139	63	130	3.21	1.21	32.369	e	T	N_sr-142	18.91	0.32	41.7	T
T_sr-142	114.24	N_sr-062	N_sr-090	63	130	1.16	0.44	4.921	S	T	N_sr-143	18.83	1.16	44	T
T_sr-143	87.17	N_sr-134	N_sr-192	63	130	0.83	0.31	2.641	S	T	N_sr-144	18.83	0.54	47.8	T
T_sr-144		N_sr-062	N_sr-093	63	130	1.89	0.71		e	T	N_sr-145	18.82	0.27	37.5	T
T_sr-145 T_sr-146		N_sr-071 N_sr-103	N_sr-068 N_sr-188	63 63	130	2.82 1.08	1.06	25.502 4.278		T T	N_sr-146 N_sr-147	18.81 18.78	0.68	44.2 44.4	T
T sr-147		N_sr-079	N sr-036	63	130	1.17	0.44	5.018		Ť	N sr-148	18.77	0.33	44.5	T
T_sr-148	111.77	N_sr-240	N_sr-261	63	130	0.15	0.06	0.116	e	T	N_sr-149	18.69	0.37	35.2	T
T_sr-149	51.22	N_sr-058	N_sr-046	90	130	2.99	0.55	5.042	e	T	N_sr-150	18.67	0.37	44.6	T
T_sr-150		N_sr-093	N_sr-066	63	130	2.2	0.83		e	T	N_sr-151	18.65	0.73	44.5	T
T_sr-151		N_sr-221 N_sr-317	N_sr-239	63 63	130	0.96	0.36	3.485 1.647	e e	T T	N_sr-152 N_sr-153	18.62 18.6	0.09	43.5 43.4	S
T_sr-152 T_sr-153		N_sr-030	N_sr-316 N_sr-092	110	130	6.91	0.24	8.889	ς .	T	N_sr-154	18.6	0.23	45.4	T
T_sr-154	30.58	_	N_sr-180	63	130	1.65	0.62	9.445	e	T	N_sr-155	18.59	0.3	50	s
T_sr-155	111.94	N_sr-215	N_sr-078	63	130	1.85	0.7	11.68	e	T	N_sr-156	18.58	3.28	34.3	S
T_sr-156	113.16	N_sr-237	N_sr-259	63	130	2.5	0.94	20.357	e	T	N_sr-157	18.57	0.72	45.7	T
T_sr-157		N_sr-150	N_sr-176	63	130	0.07	0.03	0.027	e	T	N_sr-158	18.56	0.44	42.7	S
T_sr-158 T_sr-159		N_sr-029 N_sr-180	N_sr-014 N_sr-167	63 63	130	0.99 2.31	0.37	3.68 17.692	e e	T	N_sr-159 N_sr-160	18.55 18.54	0.58	44.6 42	S
T_sr-160		N_sr-154	N_sr-196	63	130	0.13	0.05		s	T	N_sr-161	18.54	0.23	41.7	S
T_sr-161		N_sr-242	N_sr-268	63	130	0.56	0.21	1.299	e	Т	N_sr-162	18.52	5.56	35.2	S
T_sr-162	117.42	N_sr-183	N_sr-214	63	130	1.25	0.47	5.639	e	T	N_sr-163	18.52	0.63	44.6	T
T_sr-163	8.83	_	N_sr-094	63	130	2.24	0.84	16.716		T	N_sr-164	18.5	0.89	44.5	T
T_sr-164		N_sr-019	N_sr-015	63 63	130	1.37	0.51	6.703		T T	N_sr-165	18.5	0.71	37 34.5	T
T_sr-165 T_sr-166	25.8	N_sr-225 N_sr-092	N_sr-234 N_sr-136	63	130	2.11 1.69	0.79	14.96 9.91	e e	T	N_sr-166 N_sr-167	18.49 18.43	0.5	34.5	T
T_sr-167		N_sr-157	N_sr-197	63	130	0.46	0.17		e	T	N_sr-168	18.43	0.45	44.6	T
T_sr-168		N_sr-160	N_sr-260	63	130	2.11	0.79	14.855	e	T	N_sr-169	18.43	0.26	41	S
T_sr-169	114.26	N_sr-196	N_sr-207	63	130	0.1	0.04	0.053	e	T	N_sr-170	18.42	2	40.6	T
T_sr-170	83.42	N_sr-061	N_sr-185	63	130	1.7	0.64	10.032	e	T	N_sr-171	18.4	0.58	41.4	T
T_sr-171 T_sr-172		N_sr-176 N_sr-347	N_sr-211 N_sr-357	63 110	130	0.15 4.27	0.06	0.107 3.651	e	T	N_sr-172 N_sr-173	18.38 18.36	0.29	44.8 39.4	T
T_sr-173		N_sr-258	N_sr-249	63	130	0.09	0.03	0.042	_	T	N_sr-174	18.31	0.31	47.2	T
T_sr-174		N_sr-209	N_sr-225	63	130	0.48	0.18	0.946	_	T	N_sr-175	18.3	0.43	52.8	-
T_sr-175		N_sr-197	N_sr-235	63	130	0.23	0.09	0.251		T	N_sr-176	18.3	0.8	45	-
T_sr-176		N_sr-213	N_sr-215	63	130	0.1	0.04	0.054		T	N_sr-177	18.28	1	34.6	-
T_sr-177 T_sr-178		N_sr-317 N_sr-173	N_sr-331 N_sr-272	63 90	130	0.94 8.38	0.35 1.55	3.31 34.053	_	T T	N_sr-178 N sr-179	18.28 18.27	0.27	47.2 36	T
T_sr-179		N_sr-214	N_sr-227	63	130	0.45	0.17	0.852	_	T	N_sr-180	18.23	0.23	38	-
T_sr-180		N_sr-073	N_sr-170	63	130	2	0.75	13.495	_	T	N_sr-181	18.22	0.81	34.4	-
T_sr-181	38.77	N_sr-051	N_sr-060	63	130	2.12	0.8	15.102	e	T	N_sr-182	18.2	0.95	38	T
T_sr-182		N_sr-232	N_sr-236	110	130	5.88	0.72	6.586		T	N_sr-183	18.2	0.5	47.4	-
T_sr-183		N_sr-165	N_sr-201	63	130	0.8	0.3	2.462		T	N_sr-184	18.18	0.35	44.9	-
T_sr-184 T_sr-185		N_sr-126 N_sr-057	N_sr-114 N sr-051	63 63	130	0.77 1.78	0.29	2.307 10.931		T T	N_sr-185 N_sr-186	18.16 18.13	0.33	34.4 41.5	S
T sr-186		N_sr-226	N_sr-237	63	130	0.47	0.67	0.916		T	N_sr-187	18.12	1.02	35.7	S
T_sr-187		N_sr-225	N_sr-215	90	130	7.97	1.47	30.989		T	N_sr-188	18.04	0.34	33.3	-
T_sr-188	53.44	N_sr-256	N_sr-252	63	130	2.38	0.89	18.574	e	T	N_sr-189	18.04	0.41	49	S
T_sr-189		N_sr-134	N_sr-103	63	130	3.72	1.4	42.624	_	T	N_sr-190	18.02	0.35	36.6	
T_sr-190		N_sr-234	N_sr-259	90	130	7.24	1.34	25.974		T	N_sr-191	18.02	0.11	38.6	-
T_sr-191 T_sr-192		N_sr-079 N_sr-154	N_sr-083 N_sr-157	63 63	130	0.25 1.83	0.1	0.296 11.416		T T	N_sr-192 N_sr-193	18 17.99	0.28	31.4 47	
3, 132	37.04	3, 234	3. 231	03	100	1.03	0.03	11.710	-	<u>. </u>	14_3, 133	17.55	0.02	7/	

	DIS	EÑO RED BUEN	I PASTOR EXIS	TENTE	(REP	ORTE DE	TUBERÍ	AS)			DISEÑO) RE Dia	matros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		\vdash		msnm	lt/s	mca	
T_bp-001	127.1	N_bp-024	N_bp-006	160	130	8.778	0.51	2.2	n	Р	N_bp-001	48.689	0.276	24.6	Р
T_bp-002	66.1	BUEN PASTOR	N_bp-001	250	130	35.205	0.84	3.3	n	Р	N_bp-002	48.293	0.028	25	S
T_bp-003	229.9	N_bp-006	N_bp-049	200	130	22.788	0.85	4.4	n	Р	N_bp-003	35.644	0.042	37.6	S
T_bp-004	496.6	N_bp-001	N_bp-006	250	130	32.11	0.77	2.8	n	P	N_bp-004	32.965	0.754	40	T
T_bp-005		N_bp-024	N_bp-062	160	130	8.778	0.51	2.2	n	P D	N_bp-005	32.337	0.033	40.6	T
T_bp-006 T bp-007	236.4	N_bp-047 N_bp-052	N_bp-052 N bp-069	160 160	130	18.293 17.898	1.07	8.8 8.4	n n	P	N_bp-006 N_bp-007	23.978 28.971	0.544	47.9 44	P T
T_bp-007	70.8	N_bp-032 N_bp-049	N bp-047	160	130	19.854	1.16	10.2	n	P	N bp-007	28.924	0.033	44	S
T bp-009	443.1	N bp-038	N bp-051	110	130	0.452	0.06	0.1	e	s	N bp-009	25.467	1.006	45	T
T_bp-010	51	N bp-013	N_bp-008	90	130	1.719	0.32	1.8	e	s	N_bp-010	26.03	0.068	46.9	T
T_bp-011	2.6	N_bp-062	N_bp-065	63	130	2.217	0.83	16.3	n	S	N_bp-011	25.817	0.025	44.7	Т
T_bp-012	2.6	N_bp-001	N_bp-002	110	130	2.819	0.35	1.7	n	S	N_bp-012	25.79	0.102	47.3	S
T_bp-013	91.7	N_bp-035	N_bp-038	110	130	0.552	0.07	0.1	e	S	N_bp-013	25.61	0.048	47.2	S
T_bp-014		N_bp-032	N_bp-029	63	130	1.555	0.58	8.5	n	S	N_bp-014	25.385	0.124	44.6	T
T_bp-015	99.9	N_bp-046	N_bp-039	110	130	5.073	0.63	5	e	S	N_bp-015	25.328	0.064	47.5	T
T_bp-016	84.8	N_bp-012	N_bp-003	110	130	2.749	0.34	1.6		S	N_bp-016	25.262	0.009	45.2	T
T_bp-017	1,114.30	N_bp-068	N_bp-073	110	130	3.101	0.38	2	5	S	N_bp-017	24.873	0.066	47.9	S
T_bp-018	52.9 46.5	N_bp-017 N_bp-036	N_bp-013	90 110	130	1.533 2.735	0.28	1.5 1.6		S	N_bp-018 N bp-019	24.932	0.545	45 48	T
T_bp-019 T_bp-020	33.6	N_bp-036 N_bp-002	N_bp-031 N bp-003	110	130	2.791	0.34	1.7	e e	S	N_bp-020	24.877	0.074	48.1	S
T bp-020	28.1	N bp-058	N_bp-003	110	130	0.945	0.12	0.2	e	S	N bp-021	24.656	0.032	45.5	T
T_bp-022	187.4	N_bp-073	N_bp-054	110	130	7.959	0.98	11.6	5	S	N bp-022	24.493	0.022	45.7	Ť
T_bp-023	5.1	N_bp-031	N_bp-029	110	130	2.601	0.32	1.5	e	S	N_bp-023	24.263	0.088	48.5	S
T_bp-024	74.3	N_bp-035	N_bp-023	90	130	0.635	0.12	0.3	e	S	N_bp-024	24.384	0	47.2	Р
T_bp-025	3.1	N_bp-057	N_bp-049	110	130	2.93	0.36	1.8	n	S	N_bp-025	24.408	0.078	46.8	Т
T_bp-026	491.3	N_bp-065	N_no-071	110	130	1.68	0.21	0.6	e	S	N_bp-026	24.298	0.047	46	T
T_bp-027	4.6	N_bp-052	N_bp-051	63	130	0	0	0	n	S	N_bp-027	24.286	0.04	48.4	T
T_bp-028	4.8	N_bp-054	N_bp-069	110	130	8.084	1	11.9	n	S	N_bp-028	24.1	0.127	46.4	T
T_bp-029	9.4	N_bp-054	N_bp-051	110	130	0	0	0	e	S	N_bp-029	24.047	0.006	46.5	T
T_bp-030 T bp-031	4.1 50.8	N_bp-046 N_bp-023	N_bp-062 N bp-020	110 90	130	6.554 0.854	0.81	8.1 0.5	n e	5	N_bp-030 N_bp-031	24.062	0.014	46.2 46.5	T S
T bp-032	90.9	N_bp-023	N bp-020	110	130	2.647	0.10	1.5	5	S	N bp-032	24.043	0.007	46.4	S
T_bp-033	49.9	N bp-020	N bp-017	90	130	1.098	0.2	0.8	e	S	N bp-033	23.938	0.04	46.6	T
T_bp-034	34.5	N_bp-070	N_bp-079	110	130	6.741	0.83	8.5	n	S	N_bp-034	23.94	0.025	46.6	T
T_bp-035	41.5	N_bp-078	N_bp-077	110	130	4.645	0.57	4.3	n	S	N_bp-035	23.958	0.043	48.7	S
T_bp-036	57.3	N_bp-079	N_bp-078	110	130	4.959	0.61	4.8	n	S	N_bp-036	23.903	0.008	46.7	S
T_bp-037	297.3	N_bp-069	N_bp-070	110	130	9.638	1.19	16.5	n	S	N_bp-037	23.872	0.018	46.7	T
T_bp-038	597.1	N_bp-070	N_bp-071	110	130	2.847	0.35	1.7	n	S	N_bp-038	24.238	0.367	48.4	S
T_bp-039	46.3	N_bp-039	N_bp-036	110	130	3.421	0.42	2.4	e	S	N_bp-039	23.648	0.015	47.1	S
T_bp-040	48.5	N_bp-044	N_bp-084	63	130	0.192	0.07		n	T	N_bp-040	23.697	0.029	46.5	T
T_bp-041	88.6	N_bp-095	N_bp-050	63	130	0.681	0.26			T	N_bp-041	23.672	0.03	46.4	T
T_bp-042 T bp-043	47.6 48.5	N_bp-099 N_bp-040	N_bp-095 N bp-044	63 63	130	0.589	0.22	1.4	n e	T	N_bp-042 N bp-043	23.581	0.012	47.1 47.2	T
T bp-043		N_bp-040	N_bp-050	63	130	0.555	0.22	2.2	e	<u>'</u>	N bp-043	23.237	0.04	46.9	Ť
T_bp-044 T_bp-045		N_bp-093	N_bp-094	63		0.568	0.21	1.3		T	N_bp-044	23.271	0.033	47.4	_
T_bp-046		N_bp-094	N_bp-045	63	130	0.746	0.28	2.2		T	N_bp-046	22.952	0.025	48.2	S
T_bp-047		N_bp-043	N_bp-093	63	130	0.609	0.23	1.5		Т	N_bp-047	23.207	0.407	46.9	
T_bp-048		N_bp-095	N_bp-091	63	130	0.688	0.26	1.9	n	T	N_bp-048	22.599	0.025	48.6	Т
T_bp-049		N_bp-084	N_bp-093	63	130	1.119	0.42	4.6		T	N_bp-049	23.201	0.004	47.7	
T_bp-050		N_bp-055	N_bp-056	63	130	1.397	0.53	6.9		T	N_bp-050	22.99	0.069	47	
T_bp-051		N_bp-067	N_bp-065	110	130	0.105	0.01	0		T	N_bp-051	22.97	0.452	49.7	S
T_bp-052		N_bp-077	N_bp-082	110	130	3.986	0.49	3.2		T	N_bp-052	22.961	0.395	45.1	P
T_bp-053		N_bp-075	N_bp-078	63	130	0.21	0.08	0.2		T	N_bp-053	22.7	0.105	47.9	T
T_bp-054		N_bp-079 N_bp-074	N_bp-081	63	130	0.865	0.33	2.9		<u> </u>	N_bp-054 N_bp-055	22.393	0.125	45.6 47.7	S
T_bp-055 T_bp-056		N_bp-074 N_bp-075	N_bp-079 N_bp-074	63 63	130	0.864	0.32	2.9		<u>'</u>	N_bp-056	21.969	0.031	47.7	T
T_bp-057		N_bp-075	N_bp-075	63	130	0.816	0.28	2.6		Ť	N_bp-056	21.893	0.007	47.3	
T_bp-057		N_bp-077	N_bp-076	63	130	0.33	0.12	0.5		Ť	N_bp-058	22.679	0.125	48.2	S
T_bp-059		N_bp-071	N_bp-080	63	130	2.017	0.76	13.7		T	N_bp-059	22.865	0.031	47.1	T
T_bp-060		N_bp-056	N_bp-092	63	130	3.04	1.14	29.3		T	N_bp-060	21.997	0.028	47.6	
T_bp-061		N_bp-083	N_bp-055	63	130	0.406	0.15	0.7	n	T	N_bp-061	21.519	0.063	49.7	Т
T_bp-062	20.8	N_bp-034	N_bp-096	63	130	1.285	0.48	6	n	T	N_bp-062	22.949	0.007	48.3	S
T_bp-063		N_bp-053	N_bp-055	63	130	1.834	0.69	11.5		T	N_bp-063	43.74	0.498	25.9	_
T_bp-064	39.6	N_bp-083	N_bp-059	63	130	0.725	0.27	2.1	n	T	N_bp-064	20.857	0.026	48.8	T

	DIS	EÑO RED BUEI	N PASTOR EXIS	TENTE	(REP	ORTE DE	TUBERÍ	AS)		\neg	DISEÑO	O RE Dia	matros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		П		msnm	lt/s	mca	
T_bp-065	55.4	N_bp-059	N_bp-053	63	130	1.914	0.72	12.5	s	Т	N_bp-065	22.778	0.432	48.4	S
T_bp-066	54.3	N_bp-064	N_bp-059	63	130	1.158	0.44	4.9	S	T	N_bp-066	18.303	1.154	51.5	Т
T_bp-067	54.7	N_bp-060	N_bp-083	63	130	1.104	0.42	4.5	n	T	N_bp-067	17.9	0.105	53.3	Т
T_bp-068	32.6	N_bp-060	N_bp-056	63	130	1.71	0.64	10.1	S	T	N_bp-068	28.522	3.101	35	S
T_bp-069	38	N_bp-064	N_bp-060	63	130	0.634	0.24	1.6	S	T	N_bp-069	22.387	0.176	45.6	S
T_bp-070	145	N_bp-091	N_bp-084	63	130	0.832	0.31	2.7	n	T	N_bp-070	15.477	0.05	47.6	S
T_bp-071	166.5	N_bp-058	N_bp-098	63	130	0.61	0.23	1.5	n	Т	N_bp-071	18	0.657	44.1	Т
T_bp-072	241.6	N_bp-096	N_bp-097	63	130	1.102	0.41	4.5	n	Т	N_bp-072	18.289	0.173	43.8	Т
T_bp-073	49.5	N_bp-071	N_bp-072	110	130	0.173	0.02	0	n	T	N_bp-073	5.452	4.858	60.3	S
T_bp-074	25.3	N_bp-016	N_bp-011	63	130	0.025	0.01	0	e	T	N_bp-074	14.554	0.124	48.1	Т
T_bp-075	51.1	N_bp-037	N_bp-032	63	130	0.783	0.29	2.4	e	T	N_bp-075	14.975	0.134	47.6	T
T_bp-076	49.8	N_bp-037	N_bp-043	63	130	0.649	0.24	1.7	e	T	N_bp-076	15.001	0.486	47.4	Т
T_bp-077	47.4	N_bp-010	N_bp-008	63	130	0.068	0.03	0	e	T	N_bp-077	15	0.989	47.4	Т
T_bp-078	46.9	N_bp-042	N_bp-037	63	130	0.812	0.31	2.5	e	T	N_bp-078	14.975	0.104	47.6	S
T_bp-079	47	N_bp-032	N_bp-026	63	130	0.976	0.37	3.6	e	T	N_bp-079	14.12	0.053	48.7	S
T_bp-080	45.5	N_bp-026	N_bp-021	63	130	0.915	0.34	3.2	e	T	N_bp-080	15.569	2.017	43	T
T_bp-081	34.8	N_bp-032	N_bp-040	63	130	1.353	0.51	6.6	e	T	N_bp-081	14	0.865	48.7	T
T_bp-082	35.4	N_bp-008	N_bp-005	90	130	0.822	0.15	0.5	e	T	N_bp-082	22.486	3.986	38.4	T
T_bp-083	48.9	N_bp-085	N_bp-086	63	130	0.307	0.12	0.4	n	T	N_bp-083	22.419	0.027	47.4	Т
T_bp-084	25	N_bp-042	N_bp-045	63	130	0.793	0.3	2.4	e	T	N_bp-084	22.062	0.095	48.1	T
T_bp-085	11	N_bp-016	N_bp-009	110	130	1.006	0.12	0.3	e	T	N_bp-085	24.511	0.103	48.2	T
T_bp-086	22.4	N_bp-026	N_bp-030	63	130	0.014	0.01	0	e	T	N_bp-086	24.457	0.044	48.3	T
T_bp-087	22	N_bp-014	N_bp-018	63	130	0.737	0.28	2.1	e	T	N_bp-087	24.541	0.081	48.2	T
T_bp-088	19.9	N_bp-036	N_bp-033	63	130	0.04	0.02	0	e	T	N_bp-088	24.225	0.059	48.5	Т
T_bp-089	18.3	N_bp-048	N_bp-061	110	130	1.353	0.17	0.4	e	T	N_bp-089	24.017	0.068	48.7	Т
T_bp-090	16.6	N_bp-021	N_bp-022	63	130	0.022	0.01		e	T	N_bp-090	24.451	0.052	48.3	Т
T_bp-091		N_bp-031	N_bp-028	63	130	0.127	0.05			T	N_bp-091	23.366	1.52	46.4	Т
T_bp-092	11.4	N_bp-005	N_bp-007	63	130	0.035	0.01		e	T	N_bp-092	22.918	3.04	44	
T_bp-093		N_bp-046	N_bp-048	110	130	1.378	0.17	0.4		T	N_bp-093	21.439	0.058	48.9	T
T_bp-094		N_bp-064	N_bp-063	63	130	0.498	0.19	1		T	N_bp-094	20.971	0.178	49.5	Т
T_bp-095		N_bp-039	N_bp-034	63	130	1.31	0.49			T	N_bp-095	23.598	0.582	46.3	T
T_bp-096		N_bp-039	N_bp-042	63	130	0.326	0.12	0.5		T	N_bp-096	24.07	0.183	46.3	T
T_bp-097	82.9		N_bp-099	63	130	0.701	0.26	1.9	_	T	N_bp-097	26.78	1.102	42.5	T
T_bp-098	121.1	N_bp-023	N_bp-089	63	130	0.068	0.03		n	T	N_bp-098	22.531	0.61	48.1	T
T_bp-099	121.5	N_bp-020	N_bp-088	63	130	0.059	0.02		n	T	N_bp-099	24.21	0.304	45.7	T
T_bp-100	118.5	N_bp-017	N_bp-087	63	130	0.081	0.03		n	T					-
T_bp-101		N_bp-085	N_bp-023	63	130	0.063	0.02		n	T					-
T_bp-102		N_bp-086	N_bp-020	63	130	0.116	0.04	0.1	_	T					-
T_bp-103	88.2		N_bp-017	63	130	0.288	0.11	0.4	_	T					-
T_bp-104		N_bp-086	N_bp-090	63	130	0.236	0.09	0.3	_	T		-			-
T_bp-105		N_bp-038	N_bp-085	63	130	0.267	0.1	0.3	_	T		-			-
T_bp-106	53.1	N_bp-005	N_bp-004	90	130	0.754	0.14	0.4	_	T					-
T_bp-107		N_bp-036	N_bp-037	63	130	0.638	0.24	1.6		T					-
T_bp-108		N_bp-021	N_bp-014	63	130	0.861	0.32	2.8	_	<u> </u>		-			-
T_bp-109		N_bp-047	N_bp-066	-	130	1.154	0.21	0.9		T		-			-
T_bp-110		N_bp-025	N_bp-046		130	0.078	0.01		e	T	<u> </u>	-			-
T_bp-111		N_bp-035	N_bp-027	110	_	0.04	0 40		e	T		_			-
T_bp-112		N_bp-061	N_bp-042		130	1.29	0.48		e	T		+			-
T_bp-113		N_bp-013	N_bp-015	63	130	0.064	0.02		e	T		-			-
T_bp-114		N_bp-019	N_bp-013		130	0.074	0.03		e -	T		+			-
T_bp-115		N_bp-057	N_bp-053	110	130	3.853	0.48		5	T		+	\vdash		-
T_bp-116		N_bp-040	N_bp-041	63	130	0.731	0.27	2.1	_	T		+			-
T_bp-117		N_bp-099	N_bp-018	63	130	0.192	0.07	0.2	_	T		+			-
T_bp-118	133.9	N_bp-029	N_bp-016	110	130	1.04	0.13	0.3	e	T		_	\vdash		-
		L								Ш					-

		DISEÑO R	ED TONSUPA (REPO	RTE D	E TUBERÍA	AS)				DISEÑO		matros PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_ton-0001		N_ton-0340	N_ton-0371	315	130	58.82	0.89	2.8	S	P	N_ton-0001	73.29	0.01	0.5	Т
T_ton-0002		N_ton-0122	N_ton-0090	315	130	21.83	0.33	0.45	n	Р	N_ton-0002	72.88	0.01	1	T
T_ton-0003		N_ton-0583	N_ton-0639	160	130	24.1	1.41	14.58	e	P	N_ton-0003	72.74	0.02	1.2	T
T_ton-0004	360.59	N_ton-0486	N_ton-0381	400 250	130	218.17 33.92	1.74 0.81	6.71 3.11		P	N_ton-0004 N_ton-0005	72.61 71.38	0.02	2.3	T
T_ton-0005 T ton-0006		N_ton-0231 N_ton-0207	N_ton-0173 N_ton-0200	160	130	21.2	1.24	11.51	e	P	N ton-0006	70.07	0.47	3.7	T
T_ton-0007		N_ton-0439	N ton-0406	250	130	58.75	1.4	8.61		P	N_ton-0007	67.82	0.68	6.5	S
T_ton-0008		N_ton-0486	N_ton-0455	400	130	217.92	1.73			P .	N_ton-0008	66.31	0.04	7.4	T
T_ton-0009	118.47		N ton-0117	400	130	218.83	1.74	6.75	5	P	N_ton-0009	64.4	0.04	9.7	T
T_ton-0010	620.36	_	R-1	450	130	286.12	1.8	6.25	s	P	N_ton-0010	63.57	0.01	10.6	S
T_ton-0011	6.73	N_ton-0117	N_ton-0128	200	130	66.5	2.48	32.14	n	Р	N_ton-0011	63.35	0.16	10.6	S
T_ton-0012	454.68	N_ton-0115	N_ton-0090	200	130	11.79	0.44	1.31	e	P	N_ton-0012	62.67	0.05	11.4	S
T_ton-0013	882.55	N_ton-0864	N_ton-0689	315	130	43.66	0.66	1.61	n	P	N_ton-0013	61.87	0.01	12.2	T
T_ton-0014	26.97	N_ton-0423	N_ton-0439	355	130	137.06	1.63	7.5	S	P	N_ton-0014	61.74	0.01	12.1	T
T_ton-0015	29.06	_	N_ton-0367	315	130	119.09	1.79	10.34		P	N_ton-0015	60.88	0.01	13.1	T
T_ton-0016	318.28	_	N_ton-0690	315	130	60.14	0.91	2.92	n	P	N_ton-0016	60.83	0.27	13.1	T
T_ton-0017	35.81	N_ton-0690	N_ton-0686	315	130	60	0.9	2.9		P	N_ton-0017	57.39	1.93	15.9	T
T_ton-0018		N_ton-0686	N_ton-0857	315	130	59.92	0.9	2.9		P P	N_ton-0018	56.59	0.26	17.1	S
T_ton-0019		PRV-1	N_ton-0439	355	130	195.87	2.32 0.26		_	D	N_ton-0019	55.83	0.02	18.2	T
T_ton-0020 T_ton-0021		N_ton-0549 N_ton-0857	N_ton-0583 N_ton-0864	160 315	130	4.52 59.76	0.26	0.66 2.88	e n	P	N_ton-0020 N_ton-0021	55.51 54.99	0.02 1.07	18.3 18.2	T
T ton-0022		N_ton-0358	N ton-0394	200	130	53.49	0.5	21.48	II C	P	N ton-0022	54.67	0.15	20.4	S
T ton-0023		N ton-0358	N ton-0200	200	130	46.1	1.72	16.31	5	P	N ton-0023	54.54	0.04	19	S
T ton-0024		N_ton-0207	N ton-0213	160	130	18.44	1.08	8.88	e	P	N ton-0024	54.42	0.14	20.5	S
T_ton-0025	176.85		N_ton-0128	200	130	65.68	2.45	31.41	e	P	N_ton-0025	53.94	0.04	19.8	S
T_ton-0026	412.33	N_ton-0241	N_no-071	160	130	8.5	0.5	2.12	e	P	N_ton-0026	53.9	0.02	20.1	Т
T_ton-0027	405.44	N_ton-0180	N_ton-0115	200	130	11.41	0.43	1.23	e	P	N_ton-0027	53.77	0.15	21.8	S
T_ton-0028	2.43	N_ton-0406	N_ton-0412	160	130	21.06	1.23	11.37	e	P	N_ton-0028	53.65	0.01	20	T
T_ton-0029	447.55	N_ton-0340	N_ton-0231	250	130	30.73	0.73	2.59	S	P	N_ton-0029	53.36	0.41	20	T
T_ton-0030		N_ton-0173	N_ton-0241	250	130	20.6	0.49	1.24	S	P	N_ton-0030	53.05	0.03	22.6	S
T_ton-0031		N_ton-0218	N_ton-0180	160	130	11.3	0.66	3.58	S	Р	N_ton-0031	51.65	0.03	22.4	S
T_ton-0032	278.37	_	N_ton-0099	160	130	13.78	0.81	5.18		P	N_ton-0032	51.23	0.01	22.1	T
T_ton-0033	114.85	_	N_ton-0123	200	130	23.69	0.89	4.75	_	P P	N_ton-0033	51.05	0.02	23	S
T_ton-0034 T ton-0035		N_ton-0497 N_ton-0455	N_ton-0574 PRV-1	160 355	130	5.32 195.87	0.31 2.32	0.89 14.54	-	P	N_ton-0034 N_ton-0035	50.58 50.55	0.01	22.8 25.5	T
T ton-0036		N_ton-0574	N ton-0549	160	130	7.18	0.42	1.55		P	N ton-0036	50.55	0.03	23.5	S
T ton-0037		N_ton-0412	N ton-0133	160	130	20.99	1.23	11.29	e	P	N_ton-0037	50.16	0.14	18.9	T
T_ton-0038		N_ton-0367	N_ton-0423	315	130	119.1	1.79	10.34	_	P	N_ton-0038	50.04	0.01	23.4	T
T_ton-0039		N ton-0122	N ton-0455	315	130	21.84	0.33			P	N ton-0039	49.88	0.01	23.7	S
T_ton-0040	663.16	N_ton-0728	N_ton-0583	315	130	19.59	0.29	0.37	n	P	N_ton-0040	49.02	0.41	24.8	Т
T_ton-0041	141.92	N_ton-0689	N_ton-0728	315	130	32.56	0.49	0.94	n	P	N_ton-0041	49.02	0.01	24.8	Т
T_ton-0042	348.1	N_ton-0218	N_ton-0290	160	130	10.98	0.64	3.4	S	P	N_ton-0042	48.02	0.05	26.8	S
T_ton-0043	53.31	N_ton-0058	N_ton-0064	90	130	1.3	0.24	1.08		S	N_ton-0043	46.23	0.11	27.1	T
T_ton-0044		N_ton-0282	N_ton-0320	110	130	0.49	0.06	0.07		S	N_ton-0044	43.81	0.05	32	S
T_ton-0045		N_ton-0033	N_ton-0031	90	130	1.63	0.3	1.64		S	N_ton-0045	42.91	0.01	30.5	T
T_ton-0046		N_ton-0320	N_ton-0334	110	130	1.47	0.18	0.5		S	N_ton-0046	42.62	0.04	33.5	S
T_ton-0047		N_ton-0055	N_ton-0080	90	130	1.19	0.22	0.91		S	N_ton-0047	41.03	0.01	32.6	-
T_ton-0048		N_ton-0054	N_ton-0033	90	130	1.69	0.31	1.76		S	N_ton-0048	40.76	0.01	32.8	-
T_ton-0049		N_ton-0012	N_ton-0003	110	130	0.59	0.22	1.41		S	N_ton-0049 N_ton-0050	40.31	0.05	33.5	-
T_ton-0050 T_ton-0051		N_ton-0085 N_ton-0031	N_ton-0070 N_ton-0025	110 90	130	2.15 1.58	0.26	1.02		S	N_ton-0050	39.58 38.55	0.01	33.8 40.3	-
T_ton-0052		N_ton-0031	N_ton-0025	63	130		0.29	0.01		S	N_ton-0052	38.53	0.48	34.9	-
T ton-0053		N ton-0064	N_ton-0048	90	130		0.08	0.13		S	N_ton-0053	38.43	0.01	35	-
T_ton-0054		N_ton-0048	N_ton-0039	90	130		0.04	0.05		S	N_ton-0054	38.12	0.02	36.4	-
T_ton-0055		N_ton-0039	N_ton-0023	90	130	0.66	0.12	0.31	_	S	N_ton-0055	36.71	0.03	37.8	-
T_ton-0056		N_ton-0010	N_ton-0012	63	130	0.68	0.25	1.81		S	N_ton-0056	36.47	0.02	39.5	-
T_ton-0057	74.74	N_ton-0042	N_ton-0024	110	130	1.77	0.22	0.71	n	S	N_ton-0057	36.39	0.06	38.1	Т
T_ton-0058	122.08	N_ton-0046	N_ton-0035	110	130	1.47	0.18	0.51	n	S	N_ton-0058	36.24	0.03	37.4	S
T_ton-0059	93.69	N_ton-0070	N_ton-0046	110	130	1.28	0.16	0.39	n	S	N_ton-0059	36.07	0.06	39	-
T_ton-0060		N_ton-0073	N_ton-0084	63	130	0.2	0.08	0.19		S	N_ton-0060	35.38	0.05	40.3	-
T_ton-0061	117.81	N_ton-0025	N_ton-0058	90	130	1.45	0.27	1.32	n	S	N_ton-0061	34.99	2.25	25.3	T

		DISEÑO R	ED TONSUPA (REPOR	RTE DI	E TUBERÍA	AS)				DISEÑO		PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_ton-0062		N_ton-0516	N_ton-0547	110	130	1.73	0.21	0.69		S	N_ton-0062	34.84	0.19	40.8	Т
T_ton-0063		N_ton-0030	N_ton-0007	110	130	3.04	0.37	1.94		S	N_ton-0063	34.61	0.03	38.9	T
T_ton-0064		N_ton-0247	N_ton-0314	90	130	4.09	0.76	9.03		S	N_ton-0064	34.55	0.02	39	S
T_ton-0065		N_ton-0100	N_ton-0247	90	130	5.59	1.03	16.06		S	N_ton-0065	34.28	0.03	40.3	T
T_ton-0066 T ton-0067		N_ton-0164 N_ton-0375	N_ton-0103 N_ton-0398	63 110	130 130	1.72 2.43	0.65	10.19		S	N_ton-0066 N_ton-0067	34.1 32.95	0.04	40.5 36.3	T
T ton-0068		N_ton-0375	N ton-0375	110	130	3.16	0.39	2.09		S	N_ton-0068	32.64	0.03	36.4	T
T_ton-0069		N ton-0563	N_ton-0503	90	130	1.18	0.22	0.91		S	N_ton-0069	31.34	0.01	42.1	T
T ton-0070		N_ton-0547	N ton-0580	110	130	1.38	0.17	0.45	_	S	N_ton-0070	31.13	0.03	45	s
T ton-0071		N ton-0503	N ton-0475	90	130	1.17	0.22	0.89		S	N ton-0071	30.75	0.03	43.9	Т
T_ton-0072	58.34	N_ton-0681	N_ton-0702	110	130	0.08	0.01	0	e	S	N_ton-0072	30.44	0.02	44.3	Т
T_ton-0073	59.86	N_ton-0633	N_ton-0681	110	130	0.42	0.05	0.05	e	S	N_ton-0073	30.17	0.01	39	S
T_ton-0074	59.66	N_ton-0602	N_ton-0633	110	130	0.78	0.1	0.16	e	S	N_ton-0074	29.9	0.81	38.5	Т
T_ton-0075	256.29	N_ton-0431	N_ton-0300	90	130	1.38	0.26	1.21	e	S	N_ton-0075	29.03	0.25	22.4	T
T_ton-0076	112.32	N_ton-0297	N_ton-0360	90	130	1.12	0.21	0.82		S	N_ton-0076	28.65	0.08	46.1	S
T_ton-0077		N_ton-0777	N_ton-0884	110	130	8.84	1.09	14.02		S	N_ton-0077	28.53	0.18	40.2	T
T_ton-0078		N_ton-0772	N_ton-0555	110	130	2.1	0.26	0.98		S	N_ton-0078	28.33	0.14	23.2	T
T_ton-0079		N_ton-0580	N_ton-0602	110	130	1.08	0.13	0.29		S	N_ton-0079	28.04	0.03	41.3	S
T_ton-0080		N_ton-0566	N_ton-0534	110	130	5.6	0.69	6.02		S	N_ton-0080	27.92	0.03	46.7	T
T_ton-0081		N_ton-0076	N_ton-0042	90	130 130	1.11	0.22	0.8	_	S	N_ton-0081	27.74	0.01	45.7 45.8	T
T_ton-0082 T_ton-0083		N_ton-0076 N_ton-0027	N_ton-0080 N_ton-0030	110	130	3.51	0.43	2.54		S	N_ton-0082 N_ton-0083	27.68 26.59	0.02	43.8	T
T ton-0084		N_ton-0022	N ton-0027	110	130	2.68	0.43	1.54		S	N ton-0084	26.23	0.12	42.9	
T ton-0085		N_ton-0024	N ton-0022	110	130	2.47	0.3	1.33	-	S	N ton-0085	25.91	0.03	50.2	s
T_ton-0086		N_ton-0023	N_ton-0018	90	130	1.66	0.31	1.7		S	N_ton-0086	25.85	0.1	49.9	Т
T_ton-0087		N_ton-0529	N_ton-0563	90	130	1.57	0.29	1.53	e	S	N_ton-0087	25.73	0.05	44.2	Т
T_ton-0088	123.08	N_ton-0044	N_ton-0030	160	130	6.57	0.38	1.32	n	S	N_ton-0088	25.56	0.02	47.9	Т
T_ton-0089	19.85	N_ton-0054	N_ton-0055	90	130	1.32	0.24	1.1	n	S	N_ton-0089	25.4	0.03	48.1	T
T_ton-0090	60.18	N_ton-0079	N_ton-0073	63	130	0.88	0.33	2.95	n	S	N_ton-0090	25.01	0.01	51.1	S
T_ton-0091	66.58	N_ton-0103	N_ton-0079	63	130	1.52	0.57	8.17	n	S	N_ton-0091	25.01	0.02	51.1	S
T_ton-0092		N_ton-0677	N_ton-0582	63	130	1.2	0.45	5.22		S	N_ton-0092	24.93	0.02	48.5	T
T_ton-0093		N_ton-0127	N_ton-0500	63	130	1.58	0.59	8.76		S	N_ton-0093	24.9	0.13	48.6	T
T_ton-0094		N_ton-0383	N_ton-0479	90	130	0.08	0.01	0.01		S	N_ton-0094	24.53	0.02	51.4	T
T_ton-0095		N_ton-0314	N_ton-0383	90	130	1.31	0.24	1.09		S	N_ton-0095	24.44	0.05	50.2	T
T_ton-0096 T ton-0097		N_ton-0475 N_ton-0211	N_ton-0458 N_ton-0220	90 110	130 130	0.76 1.24	0.14	0.4		S	N_ton-0096 N_ton-0097	24.41	0.14	27.1 50.4	T
T_ton-0098		N_ton-0952	N_ton-1002	90	130	3.05	0.15	5.22	_	S	N_ton-0098	23.93	0.04	50.4	T
T_ton-0099		N_ton-1036	N ton-0943	63	130	1.97	0.74	13.14		S	N_ton-0099	23.31	0.03	18.5	s
T_ton-0100		N_ton-0922	N_ton-0944	90	130	0.27	0.05	0.06		S	N ton-0100	23.21	0.65	18.6	S
T_ton-0101		N_ton-0916	N_ton-0976	63	130	0.51	0.19	1.08		S	N_ton-0101	23.13	0.02	28.4	Т
T_ton-0102		N_ton-0887	N_ton-0916	63	130	0.71	0.27	1.96		S	N_ton-0102	22.54	1.7	37.4	Т
T_ton-0103	68.24	N_ton-0827	N_ton-0887	63	130	0.93	0.35	3.3	n	S	N_ton-0103	22.52	0.03	47.4	S
T_ton-0104	77.93	N_ton-0783	N_ton-0827	63	130	1.3	0.49	6.06		S	N_ton-0104	21.67	0.07	17.2	T
T_ton-0105	122.75	N_ton-0756	N_ton-0783	63	130	1.26	0.47	5.76	n	S	N_ton-0105	20.87	0.01	30.6	T
T_ton-0106		N_ton-0893	N_ton-0854	63	130	0.16	0.06	0.13		S	N_ton-0106	20.73	1.76	49.9	-
T_ton-0107		_	N_ton-0932	-	130	3.07	0.57	5.31		S	N_ton-0107	20.69	0.45	55.1	-
T_ton-0108		N_ton-0914	N_ton-0894	90	130	1.63	0.3	1.64		S	N_ton-0108	20.66	0.12	54.1	-
T_ton-0109		N_ton-0927	N_ton-0952	90		3.52	0.65	6.84		S	N_ton-0109	20.6	0.04	54.1	-
T_ton-0110		N_ton-1009	N_ton-1034	90	-	2.13	0.39	2.69		S	N_ton-0110	19.71	0.27	56.4	-
T_ton-0111		N_ton-1002	N_ton-1009	110	130	2.66 4.05	0.49	4.07 3.3		S	N_ton-0111	19.56	0.02	31.9 55.3	-
T_ton-0112 T_ton-0113		N_ton-0995 N_ton-1018	N_ton-1023 N_ton-1067	110 90	130	1.65	0.31	1.69		S	N_ton-0112 N_ton-0113	19.45 18.95	1.89	36.1	T
T_ton-0114		N_ton-0983	N_ton-1007	-	130	0.74	0.31	0.38		S	N_ton-0114	18.47	0.15	37.2	-
T_ton-0115		N ton-0961	N ton-0729	90	130	3.87	0.72	8.14		S	N ton-0115	18.37	0.38	57.2	-
T_ton-0116		N_ton-0566	N_ton-0621	110	-	7	0.86	9.11	_	S	N_ton-0116	18.22	0.23	42	-
T_ton-0117		N_ton-0932	N_ton-0942	90	-	3.14	0.58	5.54		S	N_ton-0117	18.19	0.79	60.8	-
T_ton-0118		N_ton-0848	N_ton-0849	90	-	0.94	0.17	0.59		S	N_ton-0118	18.18	0.08	37.5	S
T_ton-0119	74.79	N_ton-0724	N_ton-0691	200	130	12.04	0.45	1.36	S	S	N_ton-0119	18.16	0.64	36.9	Т
T_ton-0120	37.65	N_ton-0764	N_ton-0746	63	130	0.8	0.3	2.45	e	S	N_ton-0120	18.03	0.71	57.5	Т
T_ton-0121	62.16	N_ton-0775	N_ton-0764	63	130	0.73	0.27	2.08		S	N_ton-0121	18.03	0.4	37.1	T
T_ton-0122	39.29	N_ton-0855	N_ton-0823	90	130	1.79	0.33	1.96	e	S	N_ton-0122	18.02	0	58.2	P

		DISEÑO R	ED TONSUPA (REPO	RTE D	E TUBERÍA	AS)				DISEÑO		metros PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_ton-0123		N_ton-0873	N_ton-0855	90	130	1.49	0.28	1.39		S	N_ton-0123	18.02	0.04	25.3	P
T_ton-0124		N_ton-0769	N_ton-0750	160	130	8.57	0.5	2.15		S	N_ton-0124	17.99	0.38	30.3	-
T_ton-0125 T ton-0126		N_ton-0804 N_ton-0976	N_ton-0769 N_ton-0944	160 63	130	7.06 0.27	0.41	0.33		S	N_ton-0125 N_ton-0126	17.95 17.88	0.39	37.8 43.9	S
T ton-0127		N ton-0809	N ton-0794	63	130	0.07	0.03	0.03		S	N ton-0127	17.77	1.68	25.4	S
T ton-0128		N_ton-1026	N ton-0884	90	130	4.26	0.79	9.73	e	S	N_ton-0128	17.68	0.35	61.1	T
T_ton-0129	59.87	N_ton-0842	N_ton-0848	90	130	0.8	0.15	0.44	e	S	N_ton-0129	17.4	0.95	37.8	Т
T_ton-0130	65.95	N_ton-0901	N_ton-0861	63	130	1.21	0.46	5.35	e	S	N_ton-0130	17.33	0.32	38	T
T_ton-0131	65.15	N_ton-0882	N_ton-0861	63	130	0.93	0.35	3.25	n	S	N_ton-0131	17.24	1.23	38.9	T
T_ton-0132	107.18	N_ton-0836	N_ton-0822	110	130	1.49	0.18	0.52	e	S	N_ton-0132	17.19	0.13	38.6	-
T_ton-0133		N_ton-0800	N_ton-0791	110	130	1.32	0.16	0.41		S	N_ton-0133	17.05	0.82	26.8	P
T_ton-0134		N_ton-0822	N_ton-0800	110	130	1.77	0.22	0.71		S	N_ton-0134	16.92	0.07	26.9	S
T_ton-0135		N_ton-0909	N_ton-0854	63	130	0.86	0.32	2.82		S	N_ton-0135	16.85	0.04	22	T
T_ton-0136 T ton-0137		N_ton-0894 N_ton-0794	N_ton-0893 N_ton-0775	90 63	130	2.5 0.55	0.46	3.63 1.24		S	N_ton-0136 N_ton-0137	16.84 16.82	0.29	39.4 39	S
T ton-0138		N_ton-0794	N_ton-0773	90	130	0.55	0.21	0.22		S	N_ton-0137	16.82	0.19	38.7	T
T_ton-0139		N_ton-0943	N_ton-0961	90	130	3.2	0.59	5.73		S	N_ton-0139	16.58	0.04	22.3	T
T_ton-0140		N_ton-0262	N_ton-0282	110	130	1.83	0.23	0.76		S	N_ton-0140	16.53	0.35	38.7	S
T_ton-0141	43.49	N_ton-0232	N_ton-0262	110	130	0.97	0.12	0.24	e	S	N_ton-0141	16.24	0.4	39	Т
T_ton-0142	17.23	N_ton-0158	N_ton-0152	110	130	6.61	0.81	8.18	e	S	N_ton-0142	16.17	0.65	35.5	T
T_ton-0143	39.82	N_ton-0169	N_ton-0158	110	130	6.74	0.83	8.49	e	S	N_ton-0143	16.05	0.21	39.8	S
T_ton-0144	61.63	N_ton-0296	N_ton-0318	110	130	5.16	0.64	5.19	e	S	N_ton-0144	16.05	2.42	40.7	S
T_ton-0145		N_ton-0126	N_ton-0296	110	130	3.62	0.45	2.69	e	S	N_ton-0145	16	0.36	39.4	T
T_ton-0146	17.51	N_ton-0143	N_ton-0150	110	130	1.75	0.22	0.7	e	S	N_ton-0146	15.87	0.24	39.4	S
T_ton-0147	63.95	_	N_ton-0548	90	130	2.96	0.55	4.97	e	S	N_ton-0147	15.84	0.26	39.4	T
T_ton-0148 T ton-0149		N_ton-0150	N_ton-0162	110	130	3.05 9.05	0.38	1.95 14.66	_	S	N_ton-0148 N_ton-0149	15.73 15.72	0.03	59 40.7	T
T_ton-0149	5.75	N_ton-0621 N_ton-0312	N_ton-0378 N_ton-0304	110	130	2.87	0.35	14.66	_	S	N_ton-0149 N_ton-0150	15.72	0.4	40.7	S
T ton-0151	8.82	N_ton-0312	N_ton-0312	110	130	3.62	0.33	2.68		S	N_ton-0150	15.63	0.43	56.1	T
T ton-0152	15.07	N ton-0132	N_ton-0137	110	130	1.42	0.43	0.48		S	N_ton-0152	15.54	0.43	41.6	S
T ton-0153	35.91	N ton-0118	N ton-0132	110	130	2.28	0.28	1.14		S	N ton-0153	15.5	0.11	54.4	T
T_ton-0154	13.31	N_ton-0162	N_ton-0166	110	130	2.01	0.25	0.9	e	S	N_ton-0154	15.49	0.37	40	Т
T_ton-0155	121.39	N_ton-0204	N_ton-0190	90	130	3.49	0.65	6.72	n	S	N_ton-0155	15.41	0.17	39.8	T
T_ton-0156	43.72	N_ton-0166	N_ton-0190	110	130	3.36	0.41	2.34	e	S	N_ton-0156	15.41	0.18	41.4	S
T_ton-0157	83.62	N_ton-0514	N_ton-0548	63	130	2.07	0.78	14.37	n	S	N_ton-0157	15.39	0.24	36.5	T
T_ton-0158	47.14	_	N_ton-0929	110	130	1.44	0.18	0.49	e	S	N_ton-0158	15.38	0.21	41.9	S
T_ton-0159	100.83	N_ton-0997	N_ton-1026	90	130	3.32	0.61	6.14	e	S	N_ton-0159	15.34	1.39	29.2	T
T_ton-0160	84.68	N_ton-0987 N_ton-1012	N_ton-1036 N_ton-1059	63 90	130	1.42	0.53	7.16		S	N_ton-0160 N_ton-0161	15.29	0.22	41.6	S
T_ton-0161 T ton-0162	72.66 54.88	_	N_ton-1059 N_ton-1012	90	130	2.54	0.47	3.74 4.84	e	5 c	N_ton-0161 N_ton-0162	15.02 15.01	0.22	41.6 40.9	S
T ton-0163		N_ton-0997 N_ton-1025	N_ton-1012 N_ton-1010	90	130	2.92	0.34	2.4	e e	S	N_ton-0162 N_ton-0163	15.01	1.01	36.6	T
T_ton-0164		N_ton-0981			130	0.56	0.37	0.23		S	N_ton-0164	15	0.31	56.3	-
T_ton-0165			N_ton-0981	90		0.02	0		e	S	N_ton-0165	14.95	0.22	41.7	-
T_ton-0166		N_ton-0137	N_ton-0143	110	130	2.66	0.33	1.52		S	N_ton-0166	14.88	0.2	41.1	-
T_ton-0167	50.61	N_ton-0929	N_ton-0980	110	130	1.3	0.16	0.4		S	N_ton-0167	14.79	0.38	40.5	S
T_ton-0168	16.14	N_ton-0220	N_ton-0232	110	130	2.36	0.29	1.21	e	S	N_ton-0168	14.78	0.83	36.7	T
T_ton-0169		N_ton-0963	N_ton-0969	90	130	0.36	0.07	0.1		S	N_ton-0169	14.76	0.21	42.8	S
T_ton-0170		N_ton-0930	N_ton-0963	90		0.81	0.15	0.45		S	N_ton-0170	14.74	0.46	37.1	-
T_ton-0171		N_ton-0930	N_ton-0911	90		0.9	0.17	0.55		S	N_ton-0171	14.7	0.7	36.7	-
T_ton-0172		N_ton-0911	N_ton-0505	90		1.22	0.23	0.97		S	N_ton-0172	14.55	0.22	43.3	-
T_ton-0173 T ton-0174		N_ton-0384	N_ton-0373	110	130	1.97	0.24	0.87		S	N_ton-0173 N_ton-0174	14.51	0.03	30.3	-
T_ton-0174		N_ton-0379 N_ton-0313	N_ton-0384 N_ton-0182	110		1.29 0.36	0.16	0.4		S	N_ton-0174 N_ton-0175	14.48	1.61 0.17	27.3 30.3	-
T ton-0176		N_ton-0275	N_ton-0313	110	130	0.46	0.04	0.04		S	N_ton-0175	14.44	0.17	24.4	-
T_ton-0177		N_ton-1010	N_ton-0876	90		3.81	0.7	7.89		S	N_ton-0177	14.37	0.1	40.9	-
T_ton-0178		N_ton-0561	N_ton-0581	160		14.12	0.82	5.41	_	S	N_ton-0178	14.25	0.11	38	_
T_ton-0179		N_ton-0652	N_ton-0675	_	130	5.58	0.33	0.97	_	S	N_ton-0179	14.24	0.11	54.9	T
T_ton-0180	51.04	N_ton-0309	N_ton-0359	110	130	4.14	0.51	3.45	e	S	N_ton-0180	14.24	0.11	60.8	P
T_ton-0181	49	N_ton-1020	N_ton-0973	110	130	1.62	0.2	0.6	e	S	N_ton-0181	14.19	0.22	41.1	T
T_ton-0182		N_ton-0249	N_ton-0227	110		2.48	0.31	1.33		S	N_ton-0182	14.18	0.17	41.1	-
T_ton-0183	70.68	N_ton-0610	N_ton-0626	90	130	3.02	0.56	5.15	e	S	N_ton-0183	14.16	0.28	24.7	T

		DISEÑO RE	D ATACAMES	(REPO	RTE D	E TUBERÍ	AS)				DISEÑO) RE Dia	matrne	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km			N_at-001	62.476	3.13	1.6	
T_at-001	63.35	N_at-153	N_at-058	250	130	46.03	1.1	5.477	S	P	N_at-002	69.768	2.5	1.8	Р
T_at-002		N_at-107	N_at-110	400	130	211.17	1.97	9.334	n	P	N_at-003	63.868	0	3.2	T
T_at-003		N_at-146	N_at-347	315	130	113.46	1.71	9.45	n	P	N_at-004	51.984	0.58	15	S
T_at-004		N_at-061	N_at-094	355	130	146.34	1.74	8.473	5	P P	N_at-005	51.356	3.44	7.5	T
T_at-005 T at-006	28.47 203.9	R-1 N at-189	N_at-002 N at-191	200 315	130	42.39 86.16	1.58	13.961 5.676	e	P	N_at-006 N_at-007	45.814 40.951	0.94 3.54	13 27.2	T S
T_at-007		N_at-559	N_at-228	160	130	25.55	1.49	16.256	e	P	N at-008	36.123	1.14	30.2	T
T_at-008		N_at-427	N at-559	160	130	26.25	1.53	17.09	e	P	N at-009	35.578	0.33	30.6	T
T_at-009		N_at-061	N_at-107	400	130	192.41	1.8	7.857	n	P	N_at-010	31.526	2.27	35.6	S
T_at-010	33.74	N_at-110	N_at-065	400	130	230.32	2.15	10.963	s	P	N_at-011	31.375	1.07	35.2	T
T_at-011	62.56	N_at-122	N_at-129	200	130	35.22	1.32	9.903	S	P	N_at-012	22.286	0.63	34.3	T
T_at-012	284.48	N_at-129	N_at-130	250	130	58.18	1.39	8.454	S	P	N_at-013	22.267	1.23	34.1	T
T_at-013	54.59	N_at-037	N_at-115	160	130	23.06	1.35	13.437	e	P	N_at-014	21.019	0.32	36.6	T
T_at-014	344.31	N_at-191	N_at-149	315	130	79.38	1.2	4.877	5	P P	N_at-015	20.36	0.17	36.2	T
T_at-015		_	N_at-146	315	130	113.49 6.32	1.71	9.454	5	P	N_at-016	19.97	0.13	40 49.1	T
T_at-016 T at-017	224.5 288.63	N_at-067 N at-153	N_at-075 N at-418	160 160	130	18.47	0.37 1.08	1.223 8.907	e e	P	N_at-017 N at-018	19.341 19.329	0.15	49.1	S
T at-017	318.95	N_at-081	N_at-122	200	130	34.02	1.27	9.288	e	P	N at-019	19.297	0.19	39.8	T
T_at-019	173.54	N_at-081	N_at-067	160	130	14.74	0.86	5.867	e	P	N_at-020	19.202	0.84	48.2	s
T_at-020	194.54	N_at-065	R-1	400	130	231.73	2.16	11.087	S	P	N_at-021	18.827	0.14	39.1	Т
T_at-021	190.3	N_at-347	N_at-189	315	130	113.42	1.71	9.443	5	P	N_at-022	17.47	1.3	50.3	S
T_at-022	255.26	N_at-115	N_at-427	160	130	23.05	1.35	13.429	e	P	N_at-023	17.232	0.19	40.1	T
T_at-023	94.14	_	N_at-130	250	130	58.35	1.39	8.5	S	P	N_at-024	16.605	0.04	47.6	S
T_at-024	106.77	N_at-108	N_at-092	355	130	145.34	1.72	8.366	S	P	N_at-025	16.028	0.18	41.6	T
T_at-025	159.58	_	N_at-108	355	130	145.65	1.73	8.399	S	P	N_at-026	16	0.43	48.3	S
T_at-026 T at-027	303.24 18.53	N_at-002 N at-058	N_no-071 N at-061	200	130	34.68 46.05	1.3	9.624 5.483	e	P P	N_at-027 N at-028	15.05 14.77	0.73	52.5 42.4	S T
T at-027		N_at-038 N_at-228	N_at-061 N at-240	160	130	0.63	0.04	0.017	<u>ه</u>	P	N_at-028	14.77	0.36	49.8	S
T at-029		N at-092	N_at-098	315	130	113.65	1.71	9.48	5	P	N at-030	13.987	0.17	44.1	T
T_at-030		N_at-135	N_at-224	110	130	3.64	0.45	2.717	5	S	N_at-031	13.88	2.3	53.9	S
T_at-031	33.62	N_at-478	N_at-470	90	130	2.77	0.51	4.375	S	S	N_at-032	13.769	0.28	44.2	Т
T_at-032	62.04	N_at-368	N_at-371	110	130	5.06	0.62	4.992	S	S	N_at-033	13.715	0.14	54.8	T
T_at-033		N_at-499	N_at-123	160	130	16.5	0.96	7.229	S	S	N_at-034	13.532	1.37	43.9	T
T_at-034		N_at-051	N_at-052	110	130	4.11	0.51	3.393	n	S	N_at-035	11.276	0.07	57.2	T
T_at-035		N_at-045	N_at-053	110	130	1.05	0.13	0.27	e	S	N_at-036	9.868	0.03	58.6	S
T_at-036		N_at-168	N_at-198	110	130	3.71 5.38	0.46	2.81	e	S S	N_at-037	9.841	0.01	58.7	P
T_at-037 T at-038	87.82 79.01	N_at-276 N at-489	N_at-303 N_at-546	110 90	130	3.39	0.66	5.599 6.361	5	S	N_at-038 N_at-039	9.791 9.525	0.01	58.8 59	S
T at-039	31.31	N_at-053	N_at-049	110	130	0.87	0.03	0.301	e	S	N at-040	9.037	0.01	59.5	T
T at-040	72.26		N at-179	90	130	2.05	0.38	2.503	5	S	N at-041	8.907	0.15	57.8	T
T_at-041	122.6	_	N_at-225	160	130	6.75	0.39	1.382	e	S	N_at-042	8.88	0.25	57.8	Т
T_at-042	72.02	N_at-182	N_at-169	90	130	1.89	0.35	2.163	e	S	N_at-043	8.713	0.19	50.2	S
T_at-043	49.95	N_at-074	N_at-135	110	130	4.9	0.6	4.702	S	S	N_at-044	8.605	0.85	50	T
T_at-044		N_at-174	N_at-199	90	130	3.36	0.62	6.251	e	S	N_at-045	8.565	0.03	60	S
T_at-045		N_at-038	N_at-045		130	1.31	0.16	0.406		S	N_at-046	8.504	1.13	50.4	S
T_at-046		N_at-111	N_at-084	-	130	6.33	0.78	7.566		S	N_at-047	7.64	0.03	60.8	S
T_at-047 T_at-048		N_at-350 N_at-213	N_at-291 N_at-178		130 130	3.08 11.44	0.38	1.997 3.672		S S	N_at-048 N_at-049	7.603 7.47	0.05	60.7	S
T_at-048		N_at-213 N_at-237	N_at-239		130	14.72	0.86	5.854		S	N_at-049	7.47	0.01	61.1	T
T_at-050		N_at-224	N_at-269		130	2.23	0.28			S	N_at-051	7.301	0.95	60	-
T_at-051		N_at-481	N_at-430	$\overline{}$	130	0.36	0.04		-	S	N_at-052	7.227	0.19	59.8	S
T_at-052		N_at-144	N_at-073	110	130	4.53	0.56	4.074	n	S	N_at-053	6.949	0.01	61.5	S
T_at-053	42.49	N_at-314	N_at-300	110	130	1.58	0.19	0.576	e	S	N_at-054	6.864	0.03	61.6	T
T_at-054		N_at-121	N_at-464	$\overline{}$	130	2.03	0.25	0.922		S	N_at-055	6.766	0.07	61.5	T
T_at-055		N_at-122	N_at-121	$\overline{}$	130	1.01	0.13	0.255		S	N_at-056	6.661	0.02	61.8	T
T_at-056		N_at-379	N_at-409	$\overline{}$	130	4.4	0.54	3.849		S	N_at-057	6.591	0.19	60.8	S
T_at-057		N_at-262	N_at-250	-	130	6.35	0.78	7.61	_	s s	N_at-058	6.475	0.02	61.8	P
T_at-058 T_at-059		N_at-167 N_at-248	N_at-181 N_at-332		130 130	7.63 1.01	1.41 0.19	28.646 0.676		S	N_at-059 N_at-060	6.234	0.75	61.5 62	S
T_at-060		N_at-413	N_at-262		130	5.98	0.19	6.809		S	N_at-061	6.149	0.07	62.2	P
T_at-061		N_at-547	N_at-413		130	7.31	0.74	9.868		S	N_at-062	6.067	0.02	62.8	T
T_at-062		N_at-431	N_at-317	110	_	4.92	0.61	4.743	S	S	N_at-063	6.024	0.19	62.8	Т
T_at-063	57.71	N_at-457	N_at-430	110	130	2.8	0.34	1.664	S	S	N_at-064	5.992	1.39	62.5	Т
T_at-064	6.07	N_at-020	N_at-018	110	130	6.5	0.8	7.939	s	S	N_at-065	5.981	1.41	63.7	Р

		DISEÑO RE	D ATACAMES	(REPO	RTE D	E TUBERÍ	AS)				DISEÑO) RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km			N_at-001	62.476	3.13	1.6	Н
T_at-065	27.1	N_at-273	N_at-280	110	130	4	0.49	3.227	s	S	N_at-066	5.94	0.44	60.3	Т
T_at-066	145.63	N_at-355	N_at-365	160	130	12.41	0.73	4.267	e	S	N_at-067	5.906	0.1	43.4	P
T_at-067		N_at-114	N_at-110	200	130	18.79	0.7	3.093	e	S	N_at-068	5.867	0.16	42.7	T
T_at-068	59.97	N_at-303	N_at-234	110	130	9.01	1.11	14.538	5	S	N_at-069	5.844	0.35	40.5	T
T_at-069 T_at-070	59.98 92.38	N_at-134 N_at-178	N_at-294 N at-085	90 160	130	1.58	0.29	1.546 6.004	e	S S	N_at-070 N at-071	5.825 5.814	0.21	62.3 42.7	S
T at-070		N_at-176	N_at-431	110	130	4	0.49	3.239	5	S	N_at-071	5.804	0.13	42.8	Ť
T_at-072	153.25	N_at-199	N_at-168	110	130	3.96	0.49	3.169	e	S	N_at-073	5.793	0.47	43.4	S
T_at-073	102.57	N_at-448	N_at-440	110	130	1.64	0.2	0.622	e	S	N_at-074	5.784	0.27	43.2	S
T_at-074	49.22	N_at-304	N_at-265	63	130	2.1	0.79	14.772	e	S	N_at-075	5.777	0.04	43.2	S
T_at-075	68.94	N_at-018	N_at-010	110	130	4.38	0.54	3.82	S	S	N_at-076	5.75	0	43.2	T
T_at-076		N_at-419	N_at-379	110	130	3.61	0.44	2.669	e	S	N_at-077	5.708	0.32	40.4	T
T_at-077	50.84	N_at-182	N_at-193	90	130	1.85	0.34	2.066	e	S	N_at-078	5.687	0.18	42.9	T
T_at-078 T at-079	5.05 594.7	N_at-149 N at-059	N_at-143 N at-230	160 63	130	17.78 0.14	1.04 0.05	8.307 0.101	s n	S S	N_at-079 N at-080	5.679 5.657	0.22 2.43	43.1 52	T
T at-080	5.22	N_at-035	N_at-230	160	130	19.2	1.12	9.577	5	S	N_at-080	5.557	0.08	44.7	P
T_at-081	7.39	N_at-370	N_at-346	110	130	5.32	0.66	5.476	s	S	N_at-082	5.504	0.21	43.7	т
T_at-082		N_at-545	N_at-448	110	130	0.07	0.01	0.002	e	S	N_at-083	5.454	0.34	63.7	T
T_at-083	105.71	N_at-457	N_at-368	110	130	3.67	0.45	2.751	s	S	N_at-084	5.447	0.11	63.6	S
T_at-084	89.6	N_at-547	N_at-499	110	130	6.27	0.77	7.424	S	S	N_at-085	5.416	0.36	44.8	S
T_at-085	266.73	N_at-230	N_at-437	63	130	0.44	0.17	0.825	n	S	N_at-086	5.289	0.32	43.3	T
T_at-086	4.12	N_at-075	N_at-074	110	130	6.28	0.77	7.455	S	S	N_at-087	5.257	0.21	62.9	T
T_at-087 T at-088	63.99 78.64	N_at-409 N at-429	N_at-429 N at-574	110 110	130	5.45 6.21	0.67	5.739 7.302	e e	S	N_at-088 N at-089	5.238 5.231	0.13	43.3 62.9	T
T at-089	48.89	_	N_at-574 N at-544	110	130	3.71	0.77	2.807	e	S	N at-090	5.222	0.02	59.8	S
T_at-089		N_at-411	N_at-523	110	130	9.3	1.15	15.412	e	S	N_at-090	5.214	0.00	43.3	T
T_at-091		_	N_at-370	110	130	4.21	0.52	3.557	5	S	N_at-092	5.206	0.09	59.9	Р
T_at-092	109.19	N_at-575	N_at-569	110	130	4.26	0.53	3.626	e	S	N_at-093	5.195	0.23	43.4	Т
T_at-093	152.58	N_at-225	N_at-160	160	130	10.16	0.59	2.946	e	S	N_at-094	5.19	0.69	62.1	P
T_at-094	6.55	N_at-160	N_at-153	160	130	27.52	1.61	18.649	e	S	N_at-095	5.14	0.15	57.9	Т
T_at-095	62.87	N_at-057	N_at-160	160	130	15.3	0.89	6.283	n	S	N_at-096	5.137	0.03	64.1	S
T_at-096	131.85	N_at-211	N_at-408	110 90	130	1.52	0.19	0.541	n	S S	N_at-097	5.115	0.23	43.7	T P
T_at-097 T_at-098		N_at-160 N at-113	N_at-408 N at-141	110	130	1.83	0.34	2.037 5.634	n n	S	N_at-098 N at-099	5.115	0.16	59.5 63.1	T
T_at-099		N_at-292	N_at-421	110	130	3.1	0.38	2.016	n	S	N_at-100	5.063	0.39	64.2	s
T_at-100		N_at-193	N_at-156	90	130	1.74	0.32	1.856	e	S	N_at-101	5.053	0.06	59.3	S
T_at-101	151.43	N_at-524	N_at-227	110	130	7.77	0.96	11.053	n	S	N_at-102	5.03	0.3	44	Т
T_at-102	107.64	N_at-246	N_at-239	110	130	10.04	1.24	17.783	e	S	N_at-103	5.022	0.72	63.6	Т
T_at-103	50.57	N_at-227	N_at-237	160	130	16.78	0.98	7.461	e	S	N_at-104	5.001	1.51	57.2	S
T_at-104	3.12	N_at-228	N_at-227	160	130	24.9	1.45	15.489	e	S	N_at-105	5	0.84	64.2	S
T_at-105 T at-106	79.51 259.37	N_at-385 N_at-070	N_at-458 N_at-059	90 63	130	0.82	0.15	0.456 1.48	5	S S	N_at-106 N at-107	4.979 4.957	0.2	63.3 64.2	T P
T at-107			N_at-059 N_at-408	110	130	0.61	0.23	1.40	n n	S	N_at-107 N at-108	4.956	0.09	61	P
T_at-107		N_at-305	N_at-319	110	130	0.06	0.01	0.001	e	S	N_at-108	4.935	0.31	44.3	—
T_at-109		N_at-189	N_at-185	_	130	26.57	1.55			S	N_at-110	4.935	0.37	64.4	_
T_at-110	66.89	N_at-501	N_at-534	110	130	1.85	0.23	0.777	e	S	N_at-111	4.855	0	64.4	S
T_at-111		N_at-176	N_at-167	90	_	5.53	1.02	15.779	_	S	N_at-113	4.748	0.01	63.2	_
T_at-112		N_at-145	N_at-152	90	_	1.91	0.35	2.192		S	N_at-114	4.746	0.02	64.6	-
T_at-113		N_at-152	N_at-144	160	130	2.46	0.45	3.519		S	N_at-115	4.723	0.01	63.1	-
T_at-114 T_at-115		N_at-207 N_at-335	N_at-305 N_at-114	160 200	130	4.69 9.69	0.27	0.703	_	S	N_at-116 N_at-117	4.661 4.614	0.3	44.1 46.1	T
T_at-115		N_at-355 N at-464	N_at-536	110	130	1.25	0.36	0.373	_	S	N_at-117 N_at-118	4.601	0.24	43.9	—
T_at-117		N_at-188	N_at-332	110	130	3.5	0.43	2.529		S	N_at-119	4.593	0.47	43.5	_
T_at-118		N_at-073	N_at-067	110	130	8.32	1.03	12.539		S	N_at-120	4.556	0.12	58.5	-
T_at-119	77.64	N_at-020	N_at-027	160	130	10.35	0.6	3.047	s	S	N_at-121	4.53	0.11	48.7	S
T_at-120		N_at-027	N_at-031	160	130	14.52	0.85	5.708		S	N_at-122	4.521	0.18	48.7	-
T_at-121		N_at-590	N_at-589	110	_	2.39	0.3	1.248		S	N_at-123	4.512	0.12	58.8	-
T_at-122		N_at-535	N_at-575	110		0.75	0.09	0.146		S	N_at-124	4.508	0.27	59.8	-
T_at-123		N_at-589	N_at-535	110	_	3.36	0.41	2.339		S	N_at-125	4.496	0.5	49.8	-
T_at-124 T_at-125		N_at-557 N_at-198	N_at-501 N_at-402	110	130	0.74 3.87	0.09	0.141 3.041		S S	N_at-126 N_at-127	4.458 4.393	0.24	50.4 64.8	-
T_at-125		N_at-198 N_at-037	N_at-402 N_at-038	_	130	2.45	0.48	1.308		S	N_at-127 N_at-128	4.393	0.12	44.2	-
T_at-127		N_at-276	N_at-544	110	_	4.96	0.61	4.817	_	S	N_at-129	4.279	0.32	49.6	-
T_at-128		N_at-263	N_at-070	63		0.39	0.15	0.65		S	N_at-130	4.257	0.17	52	_
		-													

		DISEÑO RE	D ATACAMES	(REPO	RTE D	E TUBERÍ	AS)				DISEÑO	O RE Dia	metros	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km			N_at-001	62.476	3.13	1.6	
T_at-129		N_at-369	N_at-561	110	130	5.66	0.7	6.157	S	S	N_at-131	4.225	0.46	49.5	S
T_at-130		N_at-246	N_at-581	110	130	11.23	1.38	21.859	5	S	N_at-132	4.201	1.64	43.7	T
T_at-131		N_at-261	N_at-265	63	130	0.68	0.26	1.853	e -	S	N_at-133	4.023	0.24	44.5	T
T_at-132 T at-133		N_at-561 N at-113	N_at-524 N at-036	110 110	130	6.98 7.47	0.86	9.067	n n	S S	N_at-134 N at-135	3.966 3.951	0.36	44.6 44.8	S
T_at-134		N_at-036	N_at-030 N at-037	110	130	9.16	1.13	15.005	n	S	N_at-135 N at-136	3.946	0.44	44.6	T
T at-135		N at-526	N at-557	110	130	0.13	0.02	0.006	e	S	N at-137	3.924	0.17	52.9	s
T_at-136	50.04	N_at-552	N_at-526	110	130	0.02	0	0	e	S	N_at-138	3.92	0.34	44.7	Т
T_at-137	48.98	N_at-536	N_at-552	110	130	0.6	0.07	0.097	e	S	N_at-139	3.88	0.51	62.5	Т
T_at-138	90.52	N_at-248	N_at-247	90	130	1.53	0.28	1.468	S	S	N_at-140	3.822	0.1	57.7	T
T_at-139		N_at-265	N_at-141	63	130	1.96	0.74	13.018	e	S	N_at-141	3.795	0.01	63.9	T
T_at-140		N_at-219	N_at-220	110	130	0.89	0.11	0.2	e	S	N_at-142	3.754	0.08	61.6	S
T_at-141		N_at-502 N at-412	N_at-510 N at-419	110 110	130	6.17 2.84	0.76	7.221 1.709	e e	S S	N_at-143 N at-144	3.745 3.743	0.21	53.3 45.1	S
T_at-142 T_at-143		N_at-301	N_at-292	110	130	3.53	0.33	2.566	n	S	N_at-145	3.74	0.55	44.8	S
T at-144		N_at-345	N_at-366	110	130	0.8	0.11	0.164	e	S	N at-146	3.728	0.03	59.6	P
T_at-145		N_at-382	N_at-301	110	130	0.97	0.12	0.232	n	S	N_at-147	3.72	0.03	52.8	T
T_at-146		N_at-316	N_at-314	110	130	2.21	0.27	1.074	e	S	N_at-148	3.709	0.23	44.8	Т
T_at-147	45.24	N_at-302	N_at-316	110	130	0.58	0.07	0.09	e	S	N_at-149	3.697	3.24	53.3	Р
T_at-148		N_at-482	N_at-540	90	130	1.1	0.2	0.795	n	S	N_at-150	3.693	0.3	44.9	T
T_at-149		N_at-320	N_at-324	110	130	1.72	0.21	0.678	e	S	N_at-151	3.691	0.83	60	T
T_at-150		N_at-269	N_at-320	110	130	1.63	0.2	0.611	e	S	N_at-152	3.684	0.56	45	S
T_at-151 T_at-152		N_at-546 N_at-315	N_at-470 N_at-326	90 110	130	3.1 1.16	0.57	5.396 0.328	n e	S	N_at-153 N_at-154	3.684 3.675	0.04	64.2 57.9	P T
T_at-153		N_at-313 N_at-211	N_at-198	110	130	0	0.14	0.328	e	S	N_at-155	3.667	0.12	53.7	T
T at-154		N_at-142	N_at-150 N at-352	90	130	4.94	0.91	12.811	e	S	N_at-156	3.666	0.14	59.9	S
T at-155		N at-491	N_at-382	63	130	0.42	0.16	0.766		S	N at-157	3.666	0	52.5	Т
T_at-156	45.52	N_at-326	N_at-219	110	130	0.55	0.07	0.081	e	S	N_at-158	3.659	0	54.6	Т
T_at-157	178.32	N_at-600	N_at-411	110	130	7.81	0.96	11.154	e	S	N_at-159	3.655	0	53.4	Т
T_at-158	4.63	N_at-217	N_at-232	110	130	0.7	0.09	0.128	e	S	N_at-160	3.644	0.23	64.2	S
T_at-159		N_at-220	N_at-217	110	130	0.28	0.03	0.023	e	S	N_at-161	3.637	0	54.3	T
T_at-160		N_at-238	N_at-232	110	130	0.09	0.01	0.003	e	S S	N_at-162	3.613	0.32	62.7	T
T_at-161 T at-162		N_at-242 N at-312	N_at-238 N at-242	110 110	130	0.78	0.1	0.157	e e	S	N_at-163 N at-164	3.608 3.603	0.04	53.1 51.9	T
T_at-163		N_at-302	N_at-242 N at-312	110	130	1.17	0.01	0.002	e	S	N_at-165	3.593	1.1	45.6	Ť
T at-164		N at-574	N at-600	110	130	6.26	0.77	7.413	e	S	N at-166	3.589	0.26	62.8	Т
T_at-165	327.28	N_at-319	N_at-211	110	130	0.9	0.11	0.203	e	S	N_at-167	3.577	0.63	46.9	S
T_at-166	1.82	N_at-421	N_at-427	110	130	3.21	0.4	2.143	n	S	N_at-168	3.57	0.12	61.1	S
T_at-167	32.51	N_at-455	N_at-458	90	130	0.37	0.07	0.104	n	S	N_at-169	3.558	0.25	59.7	T
T_at-168		N_at-369	N_at-439	110	130	2.88	0.35	1.755	_	S	N_at-170	3.554	0.68	42.6	T
T_at-169		N_at-324	N_at-315	110	130	1.02	0.13	0.255	e	S	N_at-171	3.509	0.22	45	T
T_at-170		N_at-280	N_at-291	110 110	130	3.87 8.11	0.48	3.041 11.955	n	S	N_at-172	3.503 3.503	0.25	45 65	T
T_at-171 T at-172		N_at-114 N at-100	N_at-111 N at-335	200	130	2.73	0.1	0.087	n e	S	N_at-173 N at-174	3.483	0.01	60.3	-
T_at-173		N_at-096	N_at-100	200	130	0.92	0.03	0.013		S	N_at-175	3.45	0.13	50.1	T
T_at-174		N_at-190	N_at-188	110	130	4.3	0.53	3.692	S	S	N_at-176	3.447	0.46	45.7	S
T_at-175	42.26	N_at-452	N_at-447	90	130	0.88	0.16	0.524	n	S	N_at-177	3.441	0.13	45.1	T
T_at-176		N_at-022	N_at-007	90	130	1.68	0.31	1.727		S	N_at-178	3.437	0.43	46.2	S
T_at-177		N_at-425	N_at-444	90	130	2.37	0.44	3.295		S	N_at-179	3.437	0.35	45.3	S
T_at-178		N_at-156	N_at-174	90	130	2.02	0.37	2.449		S	N_at-180	3.424	0.43	50.1	T
T_at-179		N_at-049	N_at-047 N at-478	63 90	130	0.77 0.91	0.29	2.281 0.56	_	S	N_at-181	3.412 3.408	0.69	49.7 60	S
T_at-180 T_at-181		N_at-480 N_at-418	N_at-478 N_at-402	160	130	18.45	1.08	8.891	_	S	N_at-182 N at-183	3.408	0.11	45.5	5 T
T_at-181		N_at-418	N_at-490	90	130	2.14	0.4	2.718	_	S	N_at-184	3.398	0.61	45.4	T
T_at-183		N_at-452	N_at-490	90	130	1.56	0.29	1.513		S	N_at-185	3.357	0.42	54.9	-
T_at-184		N_at-540	N_at-523	160	130	10.06	0.59	2.894	_	S	N_at-186	3.349	1.77	51.4	Т
T_at-185	90.78	N_at-398	N_at-503	90	130	3.54	0.65	6.894	S	S	N_at-187	3.334	0.01	65.1	T
T_at-186		N_at-104	N_at-029	110	130	6.87	0.85	8.808		S	N_at-188	3.334	0.13	55.4	S
T_at-187		N_at-382	N_at-304	63	130	2.15	0.81	15.463		S	N_at-189	3.323	0.69	56.6	-
T_at-188		N_at-513	N_at-540	160	130	9.16	0.54	2.431		S	N_at-190	3.323	0.14	55.4	S
T_at-189 T_at-190		N_at-482 N_at-332	N_at-169	90 110	130	0.47 1.9	0.09	0.164		S S	N_at-191 N_at-192	3.322 3.301	0.26	55.4 56.4	P
T_at-190		N_at-332 N_at-527	N_at-481 N_at-513	160	130	9.86	0.23	2.784		S	N_at-192 N_at-193	3.299	0.26	60.2	S
T_at-191		N_at-335	N_at-313	110	130	5.95	0.73	6.746		S	N_at-194	3.293	0.89	42.6	-
	55.51					2.23	2.,,	2., .0		_			5.05	.2.0	

		DISEÑO	RED SAME (RE	PORT	E DE 1	TUBERÍAS)				DISEÑO	NE Dia	matros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	П
T_sam-001	13.4	N_sam-03	N_sam-05	200	130	37.08	1.39	10.9	n	P	N_sam-01	55.43	0.91	11.78	P
T_sam-002	2.7	N_sam-04	N_sam-03	200	130	37.09	1.39	10.9	n	P	N_sam-02	40.6	0	24.55	P
T_sam-003	186.1	N_sam-01	N_sam-02	200	130	37.09	1.39	10.9	S	P	N_sam-03	40.58	0	24.49	P
T_sam-004		_	R-1	200	130	37.99	1.42	11.4		P	N_sam-04	40.49	0	24.62	Р
T_sam-005		_	N_sam-04	200	130	37.09	1.39	10.9		P	N_sam-05	40.39	0.04	24.54	S
T_sam-006	40.2	N_sam-97 N_sam-89	N_sam-82	110 110	130	8.54 6.41	1.05	13.17 7.74	n	S S	N_sam-06	40.29	0.39	24.6	S
T_sam-007 T_sam-008		N_sam-94	N_sam-87 N_sam-89	110	130	6.01	0.79	6.87	5	S	N_sam-07 N_sam-08	26.12	0.77	12.41 8.61	T
T_sam-009	83.2	N sam-60	N sam-68	160	130	17.17	1	7.79	5	S	N sam-09	25.59	0.16	9.14	Ť
T_sam-010		N_sam-49	N_sam-57	110	130	2.72	0.34	1.59		S	N_sam-10	23.48	0.29	11.43	Ť
T_sam-011		N_sam-88	N_sam-65	110	130	6.49	0.8	7.92	s	S	 N_sam-11	21.43	0.11	13.34	Т
T_sam-012	112	N_sam-67	N_sam-69	160	130	16.75	0.98	7.44	S	S	N_sam-12	21.25	0.05	13.52	Т
T_sam-013	74.5	N_sam-67	N_sam-68	160	130	16.99	0.99	7.64	n	S	N_sam-13	19.04	0.01	44.01	Т
T_sam-014	201.6	N_sam-97	N_sam-98	110	130	8.21	1.01	12.23	S	S	N_sam-14	18.1	0.05	16.75	T
T_sam-015	296	N_sam-60	N_sam-59	160	130	22.94	1.34	13.31	S	S	N_sam-15	17.27	0.13	17.63	Т
T_sam-016		N_sam-82	N_sam-78	110	130	4.86	0.6	4.64	5	S	N_sam-16	16.4	0.03	18.5	T
T_sam-017		N_sam-50	N_sam-63	90	130	3.85	0.71	8.06	S	S	N_sam-17	16.23	0.91	46.75	T
T_sam-018		N_sam-48	N_sam-66	110	130	8.07	0.00	11.86		S	N_sam-18	15.55	1.16	18.86	T
T_sam-019 T_sam-020		N_sam-48 N_sam-36	N_sam-51 N_sam-52	110 110	130	7.2 6.7	0.89	9.61 8.4	e s	S S	N_sam-19 N_sam-20	14.67 14.25	0.06	20.42	T
T_sam-020		N_sam-32	N sam-36	110	130	6.2	0.76	7.28		S	N_sam-21	14.23	0.03	21.29	i i
T_sam-022		N_sam-49	N_sam-50	110	130	2.73	0.34	1.59		S	N_sam-22	13.16	0.75	21.49	s
T_sam-023		_	N_sam-28	110	130	5.6	0.69	6.03	s	S	N_sam-23	13.11	0.37	23.44	S
T_sam-024	77.1	N_sam-23	N_sam-26	110	130	5.4	0.67	5.64	S	S	N_sam-24	13	0.59	31.41	Т
T_sam-025	336.6	N_sam-22	N_sam-23	90	130	3.17	0.59	5.62	S	S	N_sam-25	12.97	0.1	22.32	T
T_sam-026	124.5	N_sam-88	N_no-071	110	130	6.6	0.81	8.16	S	S	N_sam-26	12.66	0.08	24.32	S
T_sam-027		N_sam-05	N_sam-06	200	130	24.9	0.93	5.21		S	N_sam-27	12.35	0.05	23.25	Т
T_sam-028	355.2	N_sam-06	N_sam-13	200	130	24.51	0.92	5.06		S	N_sam-28	12.04	0.05	25.17	T
T_sam-029		_	N_sam-69	160	130	14.85	0.87	5.95	_	S	N_sam-29	11.9	0.06	23.7	T
T_sam-030 T_sam-031		N_sam-53 N_sam-75	N_sam-13 N_sam-87	200 110	130	23.58 6.76	0.88	4.71 8.55	n	S S	N_sam-30 N_sam-31	11.63 11.62	0.11	24.27 25.35	T
T sam-032	124.9	N_sam-78	N sam-93	90	130	3.67	0.68	7.37		S	N sam-32	11.55	0.12	25.81	S
T_sam-033		N_sam-05	N_sam-58	160	130	12.15	0.71	4.1	n	S	N_sam-33	11.43	0.08	24.47	T
T_sam-034	25	N_sam-75	N_sam-79	110	130	6.9	0.85	8.87	n	S	N_sam-34	10	0.24	34.2	Т
T_sam-035	74.7	N_sam-59	N_sam-53	160	130	23.17	1.35	13.56	s	S	N_sam-35	10	0.37	34.22	Т
T_sam-036	747.9	N_sam-58	N_sam-66	110	130	9.28	1.14	15.36	n	S	N_sam-36	8.37	0.13	29.98	S
T_sam-037	107	N_sam-92	N_sam-73	90	130	0.33	0.06	0.09	n	S	N_sam-37	8.31	0.17	28.88	T
T_sam-038	45.3	N_sam-94	N_sam-93	110	130	4.79	0.59	4.51	S	S	N_sam-38	8.01	0.17	29.33	T
T_sam-039	25.1	N_sam-63	N_sam-73	90	130	1.85	0.34	2.07		S	N_sam-39	8	2.53	51.5	T
T_sam-040		N_sam-93	N_sam-92	110	130	1.02	0.13	0.26	-	S	N_sam-40	7.68	0.37	30.63	T
T_sam-041	68.1	N_sam-25	N_sam-21	63	130	0.16	0.06	0.13		T	N_sam-41	7.33	0.95	25.94	T
T_sam-042 T_sam-043	32.9 17.7	N_sam-20 N_sam-41	N_sam-25 N_sam-43	63 200	130	1.3 0.95	0.49	6.07 0.01	e	T T	N_sam-42 N_sam-43	7.05 6.86	0.21	32.58 26.41	T
T_sam-043		N_sam-63	N_sam-62	110	130	5.87	0.72	6.58		T	N_sam-44	6.64	0.09	32.99	<u> </u>
T_sam-045		N_sam-90	N_sam-86	63	130	0.42	0.16	0.75		T	N_sam-45	6.55	0.05	33.11	-
T_sam-046		N_sam-14	N_sam-16	63	130	0.72	0.27	2.06		T	N_sam-46	6.44	0.05	33.2	T
T_sam-047		N_sam-08	N_sam-09	63	130	0.16	0.06	0.13		Т	N_sam-47	6.38	0.08	33.26	Т
T_sam-048	67.5	N_sam-11	N_sam-12	63	130	0.05	0.02	0.01	n	Т	N_sam-48	6.32	0.87	34.01	S
T_sam-049	38.1	N_sam-16	N_sam-20	63	130	1.18	0.45	5.12	S	T	N_sam-49	6.25	0.01	38.47	S
T_sam-050		N_sam-11	N_sam-08	63	130	0.52	0.19	1.1	_	T	N_sam-50	6.19	1.09	38.54	-
T_sam-051		N_sam-16	N_sam-10	63	130	0.29	0.11	0.39		T	N_sam-51	6.09	0.01	33.65	S
T_sam-052		N_sam-16	N_sam-15	63	130	0.13	0.05	0.09		T	N_sam-52	6.08	0.01	33.63	S
T_sam-053		N_sam-20	N_sam-19	63	130	0.06	0.02	0.02		T	N_sam-53	6.06	0.21	53.11	S
T_sam-054 T_sam-055		N_sam-14 N_sam-99	N_sam-11 N_sam-97	63 63	130	0.67	0.25	1.78 0.04	_	T	N_sam-54 N_sam-55	6.01	0.03	38.71 38.47	T
T_sam-056		N_sam-92	N_sam-90	63	130	0.08	0.03	3.56		T	N_sam-56	5.67	0.04	38.86	-
T_sam-057		N_sam-22	N_sam-43	63	130	1.25	0.47	5.68		T	N_sam-57	5.66	0.16	38.93	S
T_sam-058		N_sam-18	N_sam-22	63	130	1.16	0.44	4.93		T	N_sam-58	5.54	0.34	54.19	-
T_sam-059		N_sam-64	N_sam-65	110	130	8.19	1.01	12.2		T	N_sam-59	5.54	0.23	52.62	S
T_sam-060		N_sam-62	N_sam-61	110	130	6.55	0.81	8.06	S	Т	N_sam-60	5.48	0.58	48.75	S
T_sam-061	35.8	N_sam-25	N_sam-29	63	130	1.56	0.59	8.55	S	T	N_sam-61	5.45	0.11	44.06	T
T_sam-062	22.8	N_sam-46	N_sam-47	63	130	0.08	0.03	0.03	n	T	N_sam-62	5.42	0.14	43.39	-
T_sam-063		N_sam-69	N_sam-80	63	130	1.77	0.66	10.74		T	N_sam-63	5.41	0.17	43.15	S
T_sam-064	52.7	N_sam-54	N_sam-50	63	130	0.03	0.01	0.01	S	T	N_sam-64	5.29	0.21	44.97	T

		DISEÑO	RED SAME (R	EPORT	E DE 1	TUBERÍAS)				DISEÑO) RE	matrne	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_sam-065	80.6	N_sam-28	N_sam-37	63	130	0.17	0.07	0.15	e	T	N_sam-65	5.23	0.17	46.69	S
T_sam-066	76.8	N_sam-61	N_sam-64	110	130	7.26	0.9	9.74	S	T	N_sam-66	5.21	1.21	43.05	S
T_sam-067	75.5	N_sam-92	N_sam-76	63	130	0.27	0.1	0.33	S	T	N_sam-67	5.15	0.24	47.86	S
T_sam-068	254.7	N_sam-24	N_sam-07	110	130	0.77	0.1	0.15	S	T	N_sam-68	5.13	0.18	48.46	S
T_sam-069	76.3	N_sam-73	N_sam-83	63	130	0.91	0.34	3.13	S	T	N_sam-69	5.06	0.13	47.12	T
T_sam-070	87.4	N_sam-44	N_sam-46	63	130	0.1	0.04	0.06	n	T	N_sam-70	4.96	0.21	54.2	T
T_sam-071	27.1	N_sam-81	N_sam-88	63	130	0.41	0.16	0.73	S	T	N_sam-71	4.11	0.26	48.63	T
T_sam-072	51.5	N_sam-87	N_sam-61	63	130	0.59	0.22	1.41	e	T	N_sam-72	4.02	0.38	43.5	T
T_sam-073	84.8		N_sam-94	63	130	0.54	0.2	1.18	S	T	N_sam-73	3.83	0.61	44.68	T
T_sam-074	115.4	N_sam-94	N_sam-91	63	130	1.54	0.58	8.28	S	T	N_sam-74	3.53	0.43	49.22	T
T_sam-075	55.9	N_sam-87	N_sam-96	63	130	0.83	0.31	2.66	n	T	N_sam-75	3.52	0.13	46.36	S
T_sam-076	50.2	N_sam-89	N_sam-95	63	130	0.26	0.1	0.31	n	T	N_sam-76	3.52	0.27	44.95	T
T_sam-077	7.5	N_sam-80	N_sam-81	63	130	1.6	0.6	8.89	n	T	N_sam-77	3.51	0.11	44.03	T
T_sam-078	28.5	N_sam-91	N_sam-78	63	130	1.29	0.48	5.98	n	T	N_sam-78	3.41	0.09	44.17	S
T_sam-079	58.1	N_sam-74	N_sam-71	63	130	0.26	0.1	0.32	S	T	N_sam-79	3.29	0.43	46.81	T
T_sam-080		N_sam-79	N_sam-64	63	130	0.73	0.28	2.11	S	T	N_sam-80	3.28	0.17	47.92	Т
T_sam-081	62.5	N_sam-58	N_sam-39	90	130	2.53	0.47	3.7	e	T	N_sam-81	3.28	0.15	47.85	T
T_sam-082	61.1	N_sam-53	N_sam-70	63	130	0.21	0.08	0.21	n	T	N_sam-82	3.28	0.05	44.11	S
T_sam-083	21.6	N_sam-13	N_sam-17	63	130	0.91	0.34	3.14	n	T	N_sam-83	3.26	1.25	45.01	T
T_sam-084	43.3	N_sam-56	N_sam-57	110	130	2.56	0.32	1.42	e	T	N_sam-84	3.19	0.28	44.18	T
T_sam-085	47.2	_	N_sam-55	110	130	2.52	0.31	1.38	e	T	N_sam-85	3.1	1.03	47.71	Т
T_sam-086	77.9	_	N_sam-24	110	130	1.97	0.24	0.87	e	T	N_sam-86	3.09	0.42	45.19	T
T_sam-087	123.9		N_sam-35	63	130	0.6	0.23	1.47	n	T	N_sam-87	3.08	0.11	46.36	T
T_sam-088	97.7	N_sam-83	N_sam-90	63	130	0.34	0.13	0.52	S	T	N_sam-88	3.08	0.31	48.04	S
T_sam-089	52.6	N_sam-42	N_sam-44	63	130	0.01	0	0	n	T	N_sam-89	3.04	0.14	46.08	S
T_sam-090	31.6	_	N_sam-30	63	130	1.67	0.63	9.67	S	T	N_sam-90	3.02	0.21	45.29	T
T_sam-091	54.4	N_sam-30	N_sam-23	63	130	1.86	0.7	11.82	S	T	N_sam-91	3.02	0.25	44.72	T
T_sam-092	52.7	N_sam-30	N_sam-33	63	130	0.08	0.03	0.04	n	T	N_sam-92	3	0.11	45.49	S
T_sam-093	46.2	_	N_sam-31	63	130	0.12	0.05	0.08	n	T	N_sam-93	3	0.1	45.5	S
T_sam-094	23.4	N_sam-28	N_sam-32	110	130	5.83	0.72	6.49	S	S	N_sam-94	3	0.22	45.7	S
T_sam-095	119	N_sam-32	N_sam-38	63	130	0.17	0.06	0.14	n	T	N_sam-95	2.82	0.26	46.28	Т
T_sam-096		N_sam-52	N_sam-51	110	130	7.19	0.89	9.58	S	S	N_sam-96	2.77	0.83	46.52	T
T_sam-097		N_sam-81	N_sam-85	63	130	1.03	0.39	3.97	n	T	N_sam-97	1	0.25	43.08	S
T_sam-098		N_sam-45	N_sam-42	63	130	0.2	0.07	0.18	n	T	N_sam-98	1	8.21	40.62	S
T_sam-099		N_sam-29	N_sam-27	63	130	0.05	0.02	0.01	n	T	N_sam-99	1	0.08	43.08	T
T_sam-100		N_sam-46	N_sam-45	63	130	0.23	0.09	0.24		T					-
T_sam-101	75	N_sam-35	N_sam-34	63	130	0.24	0.09	0.26	_	T					-
T_sam-102	58.9	N_sam-36	N_sam-40	63	130	0.37	0.14	0.58	n	T					-
T_sam-103	43.5	N_sam-84	N_sam-82	63	130	0.28	0.1	0.35	S	T					-
T_sam-104	105.5	N_sam-60	N_sam-74	90	130	5.19	0.96	14.01	S	T					-
T_sam-105	486.5	N_sam-74	N_sam-77	90	130	4.49	0.83	10.73	S	T					-
T_sam-106	17.7	N_sam-77	N_sam-82	90	130	4.01	0.74	8.67	5	T					-
T_sam-107	32.3	N_sam-77	N_sam-72	63	130	0.38	0.14	0.61	S	T					-
T_sam-108	62.6	N_sam-52	N_sam-45	63	130	0.48	0.18	0.98	n	T					-
										Ш					-

		DISEÑO	RED SAME (RI	PORT	E DE 1	TUBERÍAS)				DISEÑO) RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_sam-001	13.4	N_sam-03	N_sam-05	200	130	37.08	1.39		_	P	N_sam-01	55.43	0.91	11.78	P
T_sam-002		N_sam-04	N_sam-03	200	130	37.09	1.39	10.9		P	N_sam-02	40.6	0	24.55	P
T_sam-003		N_sam-01	N_sam-02	200	130	37.09	1.39			P	N_sam-03	40.58	0	24.49	-
T_sam-004		N_sam-01	R-1	200	130	37.99	1.42	11.4		P P	N_sam-04	40.49	0	24.62	P
T_sam-005 T_sam-006		N_sam-02 N_sam-97	N_sam-04 N_sam-82	200 110	130	37.09 8.54	1.39	10.9 13.17		S	N_sam-05 N_sam-06	40.39 40.29	0.04	24.54	S
T_sam-007	40.2	N_sam-89	N sam-87	110	130	6.41	0.79	7.74	5	S	N_sam-07	32	0.33	12.41	T
T_sam-008		N_sam-94	N_sam-89	110	130	6.01	0.74	6.87	5	S	N_sam-08	26.12	0.77	8.61	T
T_sam-009		N_sam-60	N_sam-68	160	130	17.17	1	7.79	5	s	N_sam-09	25.59	0.16	9.14	Т
T_sam-010		N_sam-49	N_sam-57	110	130	2.72	0.34	1.59	_	S	N_sam-10	23.48	0.29	11.43	Т
T_sam-011	100.7	N_sam-88	N_sam-65	110	130	6.49	0.8	7.92	s	S	N_sam-11	21.43	0.11	13.34	Т
T_sam-012	112	N_sam-67	N_sam-69	160	130	16.75	0.98	7.44	s	S	N_sam-12	21.25	0.05	13.52	Т
T_sam-013	74.5	N_sam-67	N_sam-68	160	130	16.99	0.99	7.64	n	S	N_sam-13	19.04	0.01	44.01	Т
T_sam-014		N_sam-97	N_sam-98	110	130	8.21	1.01	12.23	S	S	N_sam-14	18.1	0.05	16.75	T
T_sam-015		N_sam-60	N_sam-59	160	130	22.94	1.34	13.31	S	S	N_sam-15	17.27	0.13	17.63	Т
T_sam-016		N_sam-82	N_sam-78	110	130	4.86	0.6	4.64	5	S	N_sam-16	16.4	0.03	18.5	T
T_sam-017		N_sam-50	N_sam-63	90	130	3.85	0.71		_	S	N_sam-17	16.23	0.91	46.75	T
T_sam-018		N_sam-48	N_sam-66 N_sam-51	110	130	8.07	0.80			S	N_sam-18	15.55	1.16	18.86	T
T_sam-019 T_sam-020		N_sam-48 N_sam-36	N_sam-51 N_sam-52	110 110	130	7.2 6.7	0.89	9.61 8.4	_	S S	N_sam-19 N_sam-20	14.67 14.25	0.06	20.42	T
T_sam-020		N_sam-32	N_sam-36	110	130	6.2	0.85	7.28		S	N_sam-21	14.25	0.03	21.29	Ť
T_sam-022		N_sam-49	N_sam-50	110	130	2.73	0.34	1.59	n	S	N_sam-22	13.16	0.75	21.49	S
 T_sam-023		N_sam-26	N_sam-28	110	130	5.6	0.69	6.03	s	S	N_sam-23	13.11	0.37	23.44	S
T_sam-024	77.1	N_sam-23	N_sam-26	110	130	5.4	0.67	5.64	s	S	N_sam-24	13	0.59	31.41	Т
T_sam-025	336.6	N_sam-22	N_sam-23	90	130	3.17	0.59	5.62	S	S	N_sam-25	12.97	0.1	22.32	Т
T_sam-026	124.5	N_sam-88	N_no-071	110	130	6.6	0.81	8.16	5	S	N_sam-26	12.66	0.08	24.32	S
T_sam-027		N_sam-05	N_sam-06	200	130	24.9	0.93	5.21	n	S	N_sam-27	12.35	0.05	23.25	T
T_sam-028		N_sam-06	N_sam-13	200	130	24.51	0.92	5.06	n	S	N_sam-28	12.04	0.05	25.17	T
T_sam-029		N_sam-65	N_sam-69	160	130	14.85	0.87	5.95	5	S	N_sam-29	11.9	0.06	23.7	T
T_sam-030 T_sam-031		N_sam-53 N_sam-75	N_sam-13 N_sam-87	200 110	130	23.58 6.76	0.88	4.71 8.55		S S	N_sam-30 N_sam-31	11.63 11.62	0.11	24.27 25.35	T
T_sam-031		N_sam-78	N sam-93	90	130	3.67	0.68	7.37	_	S	N_sam-31	11.55	0.12	25.81	S
T sam-033		N sam-05	N sam-58	160	130	12.15	0.71			S	N sam-33	11.43	0.08	24.47	Т
T_sam-034	,	N_sam-75	N_sam-79	110	130	6.9	0.85	8.87	_	S	N_sam-34	10	0.24	34.2	Т
T_sam-035		N_sam-59	N_sam-53	160	130	23.17	1.35	13.56	s	S	N_sam-35	10	0.37	34.22	Т
T_sam-036	747.9	N_sam-58	N_sam-66	110	130	9.28	1.14	15.36	n	S	N_sam-36	8.37	0.13	29.98	S
T_sam-037	107	N_sam-92	N_sam-73	90	130	0.33	0.06	0.09	n	S	N_sam-37	8.31	0.17	28.88	T
T_sam-038	45.3	N_sam-94	N_sam-93	110	130	4.79	0.59	4.51	S	S	N_sam-38	8.01	0.17	29.33	T
T_sam-039		N_sam-63	N_sam-73	90	130	1.85	0.34	2.07	S	S	N_sam-39	8	2.53	51.5	T
T_sam-040	2.5	_	N_sam-92	110	130	1.02	0.13	0.26		S	N_sam-40	7.68	0.37	30.63	T
T_sam-041		N_sam-25	N_sam-21	63	130	0.16	0.06	0.13		T	N_sam-41	7.33	0.95	25.94	T
T_sam-042		N_sam-20 N_sam-41	N_sam-25 N_sam-43	63 200	130	0.95	0.49	6.07 0.01	5	<u>'</u>	N_sam-42 N_sam-43	7.05 6.86	0.21	32.58 26.41	T
T_sam-043 T_sam-044		N_sam-63	N_sam-45 N_sam-62	110	130	5.87	0.04	6.58	_	T	N_sam-45	6.64	0.09	32.99	_
T_sam-045		N_sam-90	N_sam-86	63	130	0.42	0.16	0.75		T T	N_sam-45	6.55	0.06	33.11	T
T_sam-046		N_sam-14	N_sam-16	63	130	0.72	0.27	2.06		T	N_sam-46	6.44		33.2	T
 T_sam-047		N_sam-08	N_sam-09	63	130	0.16	0.06	0.13		Т	N_sam-47	6.38	0.08	33.26	Т
T_sam-048	67.5	N_sam-11	N_sam-12	63	130	0.05	0.02	0.01	n	T	N_sam-48	6.32	0.87	34.01	S
T_sam-049		N_sam-16	N_sam-20	63	130	1.18	0.45	5.12	S	T	N_sam-49	6.25	0.01	38.47	_
T_sam-050		N_sam-11	N_sam-08	63	130	0.52	0.19	1.1	_	T	N_sam-50	6.19	1.09	38.54	_
T_sam-051		N_sam-16	N_sam-10	63	130	0.29	0.11	0.39		T	N_sam-51	6.09	0.01	33.65	_
T_sam-052		N_sam-16	N_sam-15	63	130	0.13	0.05	0.09	_	T	N_sam-52	6.08	0.01	33.63	-
T_sam-053		N_sam-20	N_sam-19	63	130	0.06	0.02	0.02		T	N_sam-53	6.06	0.21	53.11	S
T_sam-054 T_sam-055		N_sam-14 N_sam-99	N_sam-11	63	130	0.67	0.25	1.78 0.04		T T	N_sam-54 N_sam-55	6.01	0.03	38.71 38.47	T
T_sam-056		N_sam-99 N_sam-92	N_sam-97 N_sam-90	63 63	130	0.08	0.03	3.56		<u>'</u>	N_sam-56	5.67	0.55	38.86	_
T_sam-057		N_sam-22	N_sam-43	63	130	1.25	0.47	5.68		T	N_sam-57	5.66	0.04	38.93	_
T_sam-058		N_sam-18	N_sam-22	63	130	1.16	0.44	4.93		T	N_sam-58	5.54	0.34	54.19	_
T_sam-059		N_sam-64	N_sam-65	110	130	8.19	1.01	12.2		T	N_sam-59	5.54	0.23	52.62	
T_sam-060		N_sam-62	N_sam-61	110	130	6.55	0.81	8.06		Т	N_sam-60	5.48	0.58	48.75	_
T_sam-061		N_sam-25	N_sam-29	63	130	1.56	0.59	8.55	s	Т	N_sam-61	5.45	0.11	44.06	Т
T_sam-062	22.8	N_sam-46	N_sam-47	63	130	0.08	0.03	0.03	n	T	N_sam-62	5.42	0.14	43.39	T
T_sam-063		N_sam-69	N_sam-80	63	130	1.77	0.66	10.74		T	N_sam-63	5.41	0.17	43.15	_
T_sam-064	52.7	N_sam-54	N_sam-50	63	130	0.03	0.01	0.01	S	T	N_sam-64	5.29	0.21	44.97	T

		DISEÑO	RED SAME (R	EPORT	E DE 1	TUBERÍAS)				DISEÑO	O RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_sam-065	80.6	N_sam-28	N_sam-37	63	130	0.17	0.07	0.15	e	T	N_sam-65	5.23	0.17	46.69	S
T_sam-066	76.8	N_sam-61	N_sam-64	110	130	7.26	0.9	9.74	S	T	N_sam-66	5.21	1.21	43.05	S
T_sam-067	75.5	N_sam-92	N_sam-76	63	130	0.27	0.1	0.33	S	T	N_sam-67	5.15	0.24	47.86	S
T_sam-068	254.7	N_sam-24	N_sam-07	110	130	0.77	0.1	0.15	S	T	N_sam-68	5.13	0.18	48.46	S
T_sam-069	76.3	N_sam-73	N_sam-83	63	130	0.91	0.34	3.13	S	T	N_sam-69	5.06	0.13	47.12	Т
T_sam-070	87.4	N_sam-44	N_sam-46	63	130	0.1	0.04	0.06	n	T	N_sam-70	4.96	0.21	54.2	T
T_sam-071	27.1	N_sam-81	N_sam-88	63	130	0.41	0.16	0.73	S	T	N_sam-71	4.11	0.26	48.63	T
T_sam-072	51.5	N_sam-87	N_sam-61	63	130	0.59	0.22	1.41	e	T	N_sam-72	4.02	0.38	43.5	T
T_sam-073	84.8	N_sam-62	N_sam-94	63	130	0.54	0.2	1.18	S	T	N_sam-73	3.83	0.61	44.68	T
T_sam-074	115.4	N_sam-94	N_sam-91	63	130	1.54	0.58	8.28	5	T	N_sam-74	3.53	0.43	49.22	T
T_sam-075	55.9	N_sam-87	N_sam-96	63	130	0.83	0.31	2.66	n	T	N_sam-75	3.52	0.13	46.36	S
T_sam-076	50.2	N_sam-89	N_sam-95	63	130	0.26	0.1	0.31	n	T	N_sam-76	3.52	0.27	44.95	Т
T_sam-077	7.5	N_sam-80	N_sam-81	63	130	1.6	0.6	8.89	n	Т	N_sam-77	3.51	0.11	44.03	Т
T_sam-078	28.5	N_sam-91	N_sam-78	63	130	1.29	0.48	5.98	n	Т	N_sam-78	3.41	0.09	44.17	S
T_sam-079	58.1	N_sam-74	N_sam-71	63	130	0.26	0.1	0.32	s	T	N_sam-79	3.29	0.43	46.81	Т
T_sam-080	74	N_sam-79	N_sam-64	63	130	0.73	0.28	2.11	s	Т	N_sam-80	3.28	0.17	47.92	Т
T_sam-081	62.5	N_sam-58	N_sam-39	90	130	2.53	0.47	3.7	e	T	N_sam-81	3.28	0.15	47.85	Т
T_sam-082	61.1	N_sam-53	N_sam-70	63	130	0.21	0.08	0.21	n	Т	N_sam-82	3.28	0.05	44.11	S
T_sam-083	21.6	N_sam-13	N_sam-17	63	130	0.91	0.34	3.14	n	Т	N_sam-83	3.26	1.25	45.01	Т
T_sam-084	43.3	N_sam-56	N_sam-57	110	130	2.56	0.32	1.42	e	Т	N_sam-84	3.19	0.28	44.18	Т
T_sam-085	47.2	N_sam-56	N_sam-55	110	130	2.52	0.31	1.38	e	Т	N_sam-85	3.1	1.03	47.71	Т
T_sam-086	77.9	N_sam-55	N_sam-24	110	130	1.97	0.24	0.87	e	T	N_sam-86	3.09	0.42	45.19	Т
T_sam-087	123.9	N_sam-24	N_sam-35	63	130	0.6	0.23	1.47	n	Т	N_sam-87	3.08	0.11	46.36	Т
T_sam-088	97.7	N_sam-83	N_sam-90	63	130	0.34	0.13	0.52	s	Т	N_sam-88	3.08	0.31	48.04	S
T_sam-089	52.6	N_sam-42	N_sam-44	63	130	0.01	0	0	n	Т	N_sam-89	3.04	0.14	46.08	S
T_sam-090	31.6	N_sam-29	N_sam-30	63	130	1.67	0.63	9.67	s	Т	N_sam-90	3.02	0.21	45.29	Т
T_sam-091	54.4	N_sam-30	N_sam-23	63	130	1.86	0.7	11.82	s	Т	N_sam-91	3.02	0.25	44.72	Т
T_sam-092	52.7	N_sam-30	N_sam-33	63	130	0.08	0.03	0.04	n	Т	N_sam-92	3	0.11	45.49	S
T_sam-093	46.2	N_sam-26	N_sam-31	63	130	0.12	0.05	0.08	n	T	N_sam-93	3	0.1	45.5	S
T sam-094	23.4	N sam-28	N sam-32	110	130	5.83	0.72	6.49	s	S	N sam-94	3	0.22	45.7	S
T_sam-095	119	N_sam-32	N_sam-38	63	130	0.17	0.06	0.14	n	T	N_sam-95	2.82	0.26	46.28	Т
T_sam-096	2.9	N_sam-52	N_sam-51	110	130	7.19	0.89	9.58	s	S	N_sam-96	2.77	0.83	46.52	Т
 T_sam-097	81.6	N_sam-81	N_sam-85	63	130	1.03	0.39	3.97	n	Т	N_sam-97	1	0.25	43.08	S
T_sam-098	95.8	N_sam-45	N_sam-42	63	130	0.2	0.07	0.18	n	Т	N_sam-98	1	8.21	40.62	S
 T_sam-099	47.5	N_sam-29	N_sam-27	63	130	0.05	0.02	0.01	n	Т	N_sam-99	1	0.08	43.08	Т
_ T_sam-100	51.1	N_sam-46	N_sam-45	63	130	0.23	0.09	0.24	n	Т					-
_ T_sam-101		N_sam-35	N_sam-34	63	130	0.24	0.09	0.26	n	Т					-
T_sam-102		N_sam-36	N_sam-40	63	130	0.37	0.14	0.58	n	T					-
 T_sam-103		N_sam-84	N_sam-82	63	130	0.28	0.1	0.35	s	Т					-
T sam-104		N sam-60	N sam-74	90	130	5.19	0.96	14.01	s	Т					-
T sam-105		N sam-74	N sam-77	90	130	4.49	0.83	10.73		T					-
T sam-106	17.7	N sam-77	N sam-82	90	130	4.01	0.74	8.67		T					-
T sam-107		N_sam-77	N sam-72	63	130	0.38	0.14	0.61		T					-
T sam-108		N sam-52	N sam-45	63	130	0.48	0.18	0.98		T					-
			-							\Box					-

		DISEÑO RE	D TONCHIGUE	(REPO	RTE [DE TUBER	ÍAS)				DISEÑO		metros PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
T + 001	m 2.00	N As ab 001	N. Assis 004	mm	120	lt/s	m/s	m/km	_	n .	N each 001	msnm	lt/s	mca	_
T_toch-001		N_toch-091	N_toch-094	250	130	46.6	1.11	5.6	_	P	N_toch-001	55.43	0	12.79	P
T_toch-002		N_toch-001	R-1	315	130	124.33	1.87	11.2		P	N_toch-002	50.23	1.43	3.96	T
T_toch-003		N_toch-094	N_toch-179	200	130	29.73	1.11	7.24	_	P P	N_toch-003	42.94	0.64	8.32	S
T_toch-004		N_toch-179	N_toch-168	200	130	23.05	0.86 1.56	4.52 10.5	_	P	N_toch-004	40.6	0 1	25.51	P
T_toch-005		N_toch-071 N_toch-004	N_toch-091	250 315	130	65.39 124.33	1.87	11.19		P	N_toch-005	40.49	0.1	25.51 25.56	S P
T_toch-006 T_toch-007			N_toch-006 N_toch-049	315	130	97.57	1.47	7.15		P	N_toch-006 N_toch-007	40.46 40.33	0.19	25.59	T
T toch-007		N_toch-006 N_toch-049	N toch-063	315	130	97.46	1.47	7.13		P	N_toch-007	37.61	0.19	13.89	S
T_toch-009		N_toch-168	N_toch-088	160	130	17.2	1.01	7.13		P	N_toch-009	36.49	0.31	15.05	S
T toch-010		N_toch-001	N toch-004	315	130	124.33	1.87	11.2		P	N_toch-010	36.37	0.28	14.82	T
T toch-011		N_toch-063	N_toch-004	315	130	97.03	1.46	7.07	_	P	N_toch-010	36.34	4.4	27.01	T
T toch-012		N_toch-003	N toch-058	63	130	1.34	0.5	6.45	_	S	N toch-011	36.21	0.31	14.71	T
T toch-013		N toch-181	N_toch-038	110	130	3.52	0.43	2.55	_	S	N toch-013	35.91	0.51	29.22	S
T_toch-013		N_toch-171	N_toch-1/1	110	130	4.52	0.45	4.05	_	S	N_toch-013	34.6	1.73	14.71	T
T_toch-014		N_toch-069	N toch-133	110	130	0.44	0.05	0.05	_	S	N toch-015	32.18	0.86	19.44	T
T_toch-015		N_toch-003	N_toch-133	110	130	2.72	0.03	1.58	_	S	N toch-015	31.82	1.08	19.44	S
T toch-017		N toch-058	N toch-069	63	130	0.79	0.34	2.4		S	N_toch-017	31.66	0.31	18.34	T
T_toch-018		N_toch-008	N toch-003	110	130	4.72	0.58	4.4		S	N toch-018	31.64	1.1	19.75	T
T_toch-019		N_toch-016	N_toch-003	110	130	1.41	0.17	0.47		S	N_toch-019	30.9	0.28	20.84	S
T_toch-020		N_toch-078	N toch-148	63	130	2.11	0.79	14.94		S	N toch-020	30.55	0.43	24.72	T
T toch-021		N toch-071	N toch-078	200	130	31.63	1.18	8.12		S	N toch-021	30.34	0.36	25	S
T_toch-022		N toch-194	N_toch-191	90	130	1.99	0.37	2.38		S	N toch-022	30.01	1.02	22.17	Т
T toch-023		N toch-095	N toch-094	160	130	16.8	0.98	7.48	_	S	N_toch-023	29.06	0.29	22.78	S
T_toch-024		N toch-177	N toch-195	90	130	1.36	0.25	1.17	_	S	N toch-024	26.84	0.38	24.28	T
T toch-025		N_toch-186	N_toch-194	90	130	1.11	0.21	0.81	_	S	N toch-025	24.98	0.47	26.12	T
T toch-026		N toch-110	N no-071	110	130	5.59	0.69	6.01	_	S	N toch-026	23.63	0.86	31.56	Т
T toch-027		N_toch-112	N toch-079	110	130	6.84	0.84	8.73	_	S	N_toch-027	22.72	0.66	32.51	Т
T_toch-028		N_toch-079	N_toch-078	200	130	27.78	1.04	6.38	n	S	N_toch-028	22.61	0.45	28.78	Т
T_toch-029		N_toch-079	N_toch-077	200	130	19.96	0.75	3.46	n	S	N_toch-029	21.42	0.29	30.87	S
T_toch-030		N_toch-077	N_toch-074	160	130	14.56	0.85	5.73	n	S	N_toch-030	20.85	0.75	30.78	Т
T_toch-031	261.51	N_toch-074	N_toch-054	110	130	0.56	0.07	0.08	n	S	N_toch-031	19.99	5.77	40.71	Т
T_toch-032	72.36	N_toch-186	N_toch-177	90	130	0.68	0.13	0.32	n	S	N_toch-032	19.81	0.54	31.24	Т
T_toch-033	15.32	N_toch-066	N_toch-074	160	130	13.78	0.81	5.18	n	S	N_toch-033	19.65	0.87	33.19	Т
T_toch-034	60.08	N_toch-003	N_toch-010	110	130	2.2	0.27	1.07	n	S	N_toch-034	18.65	0.65	37.94	S
T_toch-035	101.24	N_toch-066	N_toch-045	110	130	10.38	1.28	18.9	n	S	N_toch-035	17.84	3.55	38.25	Т
T_toch-036	36.15	N_toch-029	N_toch-023	110	130	8.44	1.04	12.88	n	S	N_toch-036	17.63	0.24	34.94	S
T_toch-037	9.03	N_toch-023	N_toch-019	110	130	7.4	0.91	10.1	n	S	N_toch-037	17.4	0.47	34.79	T
T_toch-038	26.59	N_toch-019	N_toch-009	110	130	6.53	0.81	8.01	n	S	N_toch-038	17.15	0.19	35.44	Т
T_toch-039	6.96	N_toch-009	N_toch-008	110	130	5.79	0.71	6.41	n	S	N_toch-039	16.92	0.81	36.26	Т
T_toch-040	3.17	N_toch-166	N_toch-168	110	130	5.66	0.7	6.15	n	S	N_toch-040	16.22	0.39	39.1	Т
T_toch-041	73.72	N_toch-085	N_toch-073	110	130	6.29	0.78	7.48	n	S	N_toch-041	15.94	0.38	39.41	T
T_toch-042	37.87	N_toch-127	N_toch-155	110	130	9.23	1.14	15.22	S	S	N_toch-042	13.98	0.96	38.54	Т
T_toch-043		N_toch-175	N_toch-196	110	130	6.34	0.78	7.58		S	N_toch-043	13.93	0.92	43.8	T
T_toch-044		N_toch-196	N_toch-193	110	130	5.32	0.66	5.48	n	S	N_toch-044	13.83	0.45	41.41	T
T_toch-045		N_toch-193	N_toch-151	110	130	4.99	0.61	4.86	_	S	N_toch-045	13.11	1.1	40	S
T_toch-046	2.59	N_toch-005	N_toch-006	160	130	15.85	0.93	6.71	n	S	N_toch-046	12.53	0.5	42.41	Т
T_toch-047	4.43	N_toch-063	N_toch-064	110	130	0	0		n	S	N_toch-047	12.41	0.57	47.7	Т
T_toch-048		N_toch-155	N_toch-175	110			0.94	10.67	_	S	N_toch-048	12.29	0.27	47.91	S
T_toch-049		N_toch-013	N_toch-005	160		15.74	0.92	6.63		S	N_toch-049	12.11	0.11	47.18	P
T_toch-050		N_toch-048	N_toch-013	160		15.12	0.88	6.15		S	N_toch-050	12.09	0.7	42.72	Т
T_toch-051		N_toch-151	N_toch-145	-	130	0.03	0.01	0.01		S	N_toch-051	10.44	0.47	49.01	Т
T_toch-052		N_toch-048	N_toch-064	110		8.66	1.07	13.52		S	N_toch-052	10.3	1.01	46.64	-
T_toch-053		N_toch-084	N_toch-073	110		5.17	0.64	5.19	_	S	N_toch-053	9.54	0.34	45.65	Т
T_toch-054		N_toch-190	N_toch-159	110	130	4.48	0.55	3.99	_	S	N_toch-054	8.83	0.56	46.24	-
T_toch-055		N_toch-021	N_toch-034	63	_	2.53	0.95	20.95	_	S	N_toch-055	8.58	0.48	47.3	Т
T_toch-056		N_toch-159	N_toch-166	110	130	3.24	0.4	2.19	_	S	N_toch-056	8.42	0.79	45.69	Т
T_toch-057		N_toch-059	N_toch-052	110	130	6.5	0.8	7.93	_	S	N_toch-057	8.21	0.75	44.95	T
T_toch-058		N_toch-191	N_toch-181	90	130	2.07	0.38	2.55	_	S	N_toch-058	8.01	0.56	46.93	S
T_toch-059		N_toch-045	N_toch-036	110	130	8.4	1.04	12.78	_	S	N_toch-059	7.53	1.3	50.35	S
T_toch-060		N_toch-036	N_toch-029	110	130	9.2	1.13	15.11		S	N_toch-060	7.26	0.45	48.14	T
T_toch-061	65.29	N_toch-034	N_toch-052	90	130	3.18	0.59	5.67	n	S	N_toch-061	7.25	1.83	50.19	T

		DISEÑO RE	D TONCHIGUE	(REPO	RTE [DE TUBER	ÍAS)				DISEÑO		metros PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
T 050	m			mm	400	lt/s	m/s	m/km				msnm	lt/s	mca	
T_toch-062 T_toch-063		N_toch-064 N_toch-088	N_toch-059 N_toch-127	110	130	8.39 11.29	1.03	12.73 22.07		S	N_toch-062 N_toch-063	7.13 6.79	0.49	48.01 51.57	T P
T_toch-063		N toch-085	N_toch-127	110	130	8.73	1.08	13.72		S	N toch-064	6.66	0.43	51.75	S
T_toch-065		N toch-195	N toch-165	90	130	1.62	0.3	1.63		S	N toch-065	6.61	0.28	47.96	T
T toch-066		N toch-165	N toch-190	110	130	3.16	0.39	2.09		S	N_toch-066	6.42	0.48	48.59	S
T_toch-067	40.39	N_toch-173	N_toch-146	63	130	0.74	0.28	2.12	e	Т	N_toch-067	6.37	0.31	48.34	Т
T_toch-068	53.74	N_toch-158	N_toch-147	63	130	0.68	0.26	1.83	n	T	N_toch-068	6.35	0.08	50.75	T
T_toch-069	55.67	N_toch-158	N_toch-152	63	130	0.77	0.29	2.31	n	T	N_toch-069	6.35	0.38	48.5	S
T_toch-070		N_toch-152	N_toch-154	63	130	0.86	0.32	2.85		T	N_toch-070	6.27	0.21	50.55	T
T_toch-071		N_toch-139	N_toch-149	90	130	1.74	0.32	1.84		T	N_toch-071	6.21	0	51.96	Р
T_toch-072		N_toch-149	N_toch-153	63	130	0.82	0.31	2.61		T	N_toch-072	6.18	0.38	47.03	T
T_toch-073		N_toch-173	N_toch-139	63	130	0.84	0.31	2.69		T	N_toch-073	5.91	0.75	49.38 49.26	T
T_toch-074 T_toch-075		N_toch-154 N_toch-152	N_toch-173 N_toch-161	63 63	130	0.67	0.23	1.8		'	N_toch-074 N_toch-075	5.83 5.67	0.25	50.94	S T
T toch-076		N toch-129	N toch-144	110	130	5.86	0.72	6.56		Ť	N toch-076	5.65	0.62	49.11	Ť
T toch-077		N toch-149	N toch-134	90	130	0.76	0.14	0.4	_	T	N toch-077	5.64	0.71	50.07	S
 T_toch-078		N_toch-134	N_toch-150	63	130	0.95	0.36	3.43	e	Т	N_toch-078	5.43	1.74	51.52	S
T_toch-079	46.16	N_toch-154	N_toch-167	63	130	0.61	0.23	1.49	n	T	N_toch-079	5.36	0.98	50.74	S
T_toch-080	80.01	N_toch-123	N_toch-144	110	130	8.51	1.05	13.08	n	T	N_toch-080	5.31	0.5	50.82	T
T_toch-081	95.99	N_toch-162	N_toch-122	63	130	1.46	0.55	7.59	e	T	N_toch-081	5.18	0.34	50.61	T
T_toch-082		N_toch-162	N_toch-141	63	130	0.76	0.29	2.24		T	N_toch-082	5.06	0.26	50.65	T
T_toch-083		N_toch-182	N_toch-162	63	130	0.19	0.07	0.17		T	N_toch-083	5	0.43	48.21	T
T_toch-084		N_toch-182	N_toch-160	63	130	0.81	0.31	2.55		T	N_toch-084	5	0.71	50.01	S
T_toch-085		N_toch-185	N_toch-182	63	130	1.03	0.39	3.95		T	N_toch-085	4.93	0.88	50.91	S
T_toch-086 T_toch-087		N_toch-185 N_toch-172	N_toch-102 N_toch-185	63 110	130	0.03 4.8	0.01	4.54	n	T	N_toch-086 N_toch-087	4.77 4.54	0.78	50.21 50.3	T
T toch-088		N_toch-172	N toch-160	63	130	0.32	0.33	0.44	_	Ť	N toch-088	4.34	0.72	50.73	S
T toch-089		N_toch-176	N toch-172	110	130	3.98	0.49	3.21		T	N_toch-089	4.29	0.17	48.36	T
T_toch-090		N_toch-142	N_toch-141	63	130	0.98	0.37	3.59		T	N_toch-090	4.29	0.3	53.31	S
T_toch-091	76.27	N_toch-142	N_toch-128	63	130	0.12	0.05	0.08	n	T	N_toch-091	4.29	0.05	53.34	Р
T_toch-092	54.98	N_toch-126	N_toch-142	63	130	1.64	0.62	9.33	n	T	N_toch-092	4.27	0.84	50.92	T
T_toch-093	56.93	N_toch-128	N_toch-129	110	130	4.81	0.59	4.54	n	T	N_toch-093	4.22	0.3	48.61	T
T_toch-094		N_toch-123	N_toch-126	63	130	2.5	0.94	20.48	_	T	N_toch-094	4.17	0.07	53.44	Р
T_toch-095		N_toch-134	N_toch-138	63	130	0.9	0.34	3.06		T	N_toch-095	4.14	0.41	53.45	S
T_toch-096		N_toch-075	N_toch-123	63 90	130	1.65	0.62	9.42	_	<u> </u>	N_toch-096	4.14	0.36	49.07	T
T_toch-097 T toch-098		N_toch-080 N_toch-080	N_toch-075 N_toch-081	90	130 130	3.23	0.6	5.81 4.78		T	N_toch-097 N_toch-098	4	0.77	50.69 49.03	<u> </u>
T toch-099		N toch-144	N toch-080	63	130	0.17	0.07	0.15		T	N toch-099	3.89	0.28	50.21	Ť
T toch-100		N_toch-144	N toch-158	63	130	1.63	0.61	9.29		T	N toch-100	3.85	4.4	45.76	T
T_toch-101		N_toch-129	N_toch-152	63	130	1.3	0.49	6.06		T	N_toch-101	3.8	0.21	47.19	Т
T_toch-102	75.16	N_toch-128	N_toch-154	63	130	1.14	0.43	4.76	n	Т	N_toch-102	3.79	0.03	51.92	Т
T_toch-103	74.92	N_toch-139	N_toch-128	90	130	2.76	0.51	4.35	n	T	N_toch-103	3.77	0.56	50.63	T
T_toch-104	75.04	N_toch-141	N_toch-139	63	130	0.59	0.22	1.41	e	T	N_toch-104	3.76	0.45	50.81	T
T_toch-105	54.44	N_toch-160	N_toch-141	63	130	0.41	0.15	0.72	n	T	N_toch-105	3.72	0.75	50.46	T
T_toch-106		N_toch-160	N_toch-149	63	130	0.77	0.29	2.28		T	N_toch-106	3.7	0.14	49.46	T
T_toch-107		N_toch-176	N_toch-134	90	130	2.2	0.41	2.87		T	N_toch-107	3.63	0.17	49.55	T
T_toch-108		N_toch-136	N_toch-176	63	130	1.32	0.5	6.29		T	N_toch-108	3.49	0.22	49.54	T
T_toch-109		N_toch-126 N toch-120	N_toch-129 N_toch-089	63 63	130	0.92	0.35	3.23 0.14		T	N_toch-109 N_toch-110	3.43 3.42	0.28	49.41 51.6	S
T_toch-110 T toch-111		_	N_toch-096	63	130	0.17	0.19	1.09		T	N_toch-111	3.42	0.57	50.72	T
T_toch-112			N_toch-030	63	130	0.78	0.29	2.35		T	N_toch-112	3.36	0.03	51.89	-
T_toch-113		_	N_toch-107	63	130	1.12	0.42	4.63	_	T	N_toch-113	3.35	0.36	49.93	T
T_toch-114		N_toch-108	N_toch-106	63	130	0.98	0.37	3.59		T	N_toch-114	3.33	0.19	50.02	T
T_toch-115			N_toch-114	63	130	0.58	0.22	1.39		T	N_toch-115	3.31	0.36	51.45	T
T_toch-116		N_toch-125	N_toch-143	63	130	1.11	0.42	4.57	e	T	N_toch-116	3.25	0.4	50.1	T
T_toch-117	81.95	N_toch-127	N_toch-125	63	130	1.68	0.63	9.79	n	T	N_toch-117	3.22	0.76	51.54	T
T_toch-118		N_toch-155	N_toch-143	63	130	1.2	0.45	5.28		T	N_toch-118	3.17	0.23	49.32	T
T_toch-119		N_toch-174	N_toch-175	63	130	0.86	0.32	2.84		T	N_toch-119	3.16	0.29	50.24	T
T_toch-120		N_toch-143	N_toch-174	63	130	1.24	0.47	5.61		T	N_toch-120	3.15	0.29	49.51	T
T_toch-121		N_toch-108	N_toch-143	63	130	0.66	0.25	1.74		T	N_toch-121	3.12	0.54	52.63	T
T_toch-122	16.48	N_toch-108	N_toch-098	63	130	0.28	0.1	0.35	n	T	N_toch-122	3.11	0.52	53.12	T

		DISEÑO RE	D TONCHIGUE	(REPO	RTE C	DE TUBER	ÍAS)				DISEÑO		metros PORTE D	E NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	\vdash
T_toch-123		_	N_toch-138	63	130	0.26	0.1	0.3	-	T	N_toch-123	3.08	0.76	54.1	T
T_toch-124 T_toch-125		N_toch-109	N_toch-093 N_toch-088	63 63	130 130	0.3 2.47	0.11	0.41 19.96		T	N_toch-124	3.08	0.69	52.37 50.22	T
T toch-126		N_toch-119 N_toch-109	N_toch-000	63	130	1.09	0.93	4.38	-	T	N_toch-125 N_toch-126	3.07	0.37	52.95	T
T toch-127		N_toch-174	N toch-109	63	130	0.53	0.42	1.16	-	Ť	N_toch-127	3.05	0.37	51.05	S
T_toch-128		N_toch-198	N_toch-174	63	130	1.17	0.44	4.99	-	T	N_toch-128	3.03	0.79	52.49	Т
T_toch-129	39.9	N_toch-199	N_toch-198	63	130	0.96	0.36	3.44	e	Т	N_toch-129	3	0.68	52.78	Т
T_toch-130	56.85	N_toch-199	N_toch-193	63	130	0.03	0.01	0.01	e	T	N_toch-130	2.99	0.62	50.18	Т
T_toch-131	60.17	N_toch-163	N_toch-199	63	130	0.51	0.19	1.07	e	T	N_toch-131	2.96	0.71	49.28	T
T_toch-132		N_toch-198	N_toch-196	63	130	0.59	0.22	1.41	-	T	N_toch-132	2.94	0.4	50.79	T
T_toch-133		N_toch-120	N_toch-198	63	130	0.42	0.16	0.74	-	T	N_toch-133	2.9	0.65	51.95	S
T_toch-134		N_toch-163	N_toch-120	63	130	1.04	0.39	4.03		T	N_toch-134	2.87	1.12	52.19	T
T_toch-135 T_toch-136		N_toch-118 N_toch-145	N_toch-163 N_toch-131	63 63	130 130	0.23	0.09	0.25 2.01		T	N_toch-135 N_toch-136	2.85	0.89	51.87 51.97	T
T toch-137		N toch-145	N toch-163	63	130	0.99	0.27	3.71	-	T	N toch-137	2.84	0.61	51.9	-
T_toch-138		N_toch-109	N_toch-108	63	130	1.14	0.43	4.76		T	N_toch-138	2.81	0.74	51.98	T
T_toch-139		N_toch-130	N_toch-057	63	130	0.24	0.09		_	T	N_toch-139	2.8	0.78	52.4	Т
T_toch-140	61.36	N_toch-164	N_toch-124	63	130	0.31	0.12	0.43	n	T	N_toch-140	2.77	0.5	51.97	Т
T_toch-141	53.35	N_toch-081	N_toch-164	63	130	1.27	0.48	5.82	n	T	N_toch-141	2.77	0.73	52.53	T
T_toch-142	74.37	N_toch-082	N_toch-081	90	130	1.29	0.24	1.07	e	T	N_toch-142	2.76	0.78	52.75	Т
T_toch-143		N_toch-124	N_toch-082	63	130	1.03	0.39		_	T	N_toch-143	2.75	0.41	50.37	Т
T_toch-144		N_toch-147	N_toch-124	63	130	0.65	0.24	1.69	-	T	N_toch-144	2.73	0.84	53.41	T
T_toch-145		N_toch-161	N_toch-147	63	130	0.73	0.28	2.1		T	N_toch-145	2.72	0.31	49.63	T
T_toch-146		N_toch-167	N_toch-161	63	130	0.82	0.31	2.6	-	T	N_toch-146	2.7	0.73	52.2	T
T_toch-147 T toch-148		N_toch-146 N_toch-153	N_toch-167 N_toch-146	63 63	130 130	0.67	0.25	1.79		<u>'</u>	N_toch-147 N_toch-148	2.7	0.6	52.65 52.58	S
T toch-149		N_toch-150	N_toch-153	63	130	0.41	0.25	0.72		T	N toch-149	2.69	0.77	52.4	T
T_toch-150		N_toch-140	N toch-150	63	130	0.09	0.03	0.04		T	N_toch-150	2.68	1.27	52.06	-
 T_toch-151		N_toch-138	N_toch-140	63	130	0.41	0.15	0.71	n	Т	N_toch-151	2.64	0.34	49.71	S
T_toch-152	54.24	N_toch-096	N_toch-114	63	130	0.82	0.31	2.58	e	T	N_toch-152	2.63	0.56	52.69	T
T_toch-153	92.11	N_toch-115	N_toch-136	63	130	0.36	0.13	0.56	n	T	N_toch-153	2.61	1.09	52.2	T
T_toch-154		N_toch-114	N_toch-119	63	130	1.59	0.6	8.83		T	N_toch-154	2.6	0.72	52.57	Т
T_toch-155		N_toch-183	N_toch-130	63	130	0.86	0.32	2.84	-	T	N_toch-155	2.59	0.4	50.94	S
T_toch-156		N_toch-183	N_toch-113	63	130	0.34	0.13		-	T	N_toch-156	2.59	0.75	52.18	T
T_toch-157		N_toch-132	N_toch-183	63	130 130	1.5 3.1	0.56 1.16	7.91 30.34		T T	N_toch-157	2.58 2.57	0.43	51.62	T
T_toch-158 T_toch-159		N_toch-132 N_toch-116	N_toch-088 N_toch-132	63 63	130	1.2	0.45	5.25	-	T	N_toch-158 N_toch-159	2.57	0.54	52.87 52.51	S
T toch-160		N_toch-083	N toch-116	63	130	0.77	0.43	2.29	-	Ť	N toch-160	2.57	0.78	52.69	T
T toch-161		N toch-116	N toch-113	63	130	0.63	0.23		-	T	N toch-161	2.57	0.56	52.67	T
T_toch-162	40.54	N_toch-119	N_toch-116	63	130	0.6	0.22	1.43	e	Т	N_toch-162	2.57	0.52	52.93	Т
T_toch-163	38.72	N_toch-083	N_toch-072	63	130	0.28	0.11	0.36	n	T	N_toch-163	2.55	0.32	49.95	T
T_toch-164	39.94	N_toch-096	N_toch-083	63	130	0.05	0.02	0.02	n	T	N_toch-164	2.55	0.6	52.93	T
T_toch-165		N_toch-113	N_toch-072	63	130	0.6	0.23	1.47	-	T	N_toch-165	2.52	0.92	52.14	-
T_toch-166		N_toch-072	N_toch-057	63	130	0.51	0.19	1.07	-	T	N_toch-166	2.51	0.42	52.99	•
T_toch-167		N_toch-164	N_toch-158	63	130	0.36	0.14	0.56		T	N_toch-167	2.5	0.76	52.59	
T_toch-168		N_toch-122	N_toch-126	63	130	0.78	0.29	2.34		T	N_toch-168	2.5	0.18	53.03	$\overline{}$
T_toch-169		N_toch-010 N_toch-133	N_toch-032	63 63	130 130	0.54	0.2	3.02	-	T	N_toch-170	2.49	0.4	52.07 52.09	T
T_toch-170 T_toch-171		N_toch-018	N_toch-135 N_toch-008	63	130	0.56	0.33	1.28		T	N_toch-170 N_toch-171	2.47	0.71	52.28	$\overline{}$
T_toch-171		N_toch-016	N_toch-008	63	130	0.36	0.21	2.86	-	T	N_toch-171	2.47	0.74	52.82	T
T_toch-173		N_toch-012	N_toch-016	63	130	1.19	0.45	5.2		T	N_toch-173	2.47	0.78	52.52	т
T_toch-174		N_toch-017	N_toch-014	63	130	1.73	0.65	10.29		T	N_toch-174	2.47	0.41	50.44	-
T_toch-175	64.76	N_toch-012	N_toch-017	63	130	2.04	0.77	13.96	n	T	N_toch-175	2.46	0.42	50.64	S
T_toch-176	57.32	N_toch-010	N_toch-012	63	130	1.15	0.43	4.86		T	N_toch-176	2.45	0.46	52.82	-
T_toch-177	88.19	N_toch-010	N_toch-024	63	130	0.38	0.14	0.62	n	T	N_toch-177	2.45	0.6	52.04	S
T_toch-178		N_toch-003	N_toch-025	63	130	0.47	0.18	0.91		T	N_toch-178	2.41	0.3	51.94	-
T_toch-179		N_toch-009	N_toch-028	63	130	0.45	0.17	0.87		T	N_toch-179	2.41	0.42	53.33	-
T_toch-180		N_toch-023	N_toch-030	63	130	0.75	0.28	2.2		T	N_toch-180	2.4	0.78	52.18	-
T_toch-181		N_toch-039	N_toch-056	63	130	2.17	0.81	15.64		T	N_toch-181	2.4	0.44	52.21	S
T_toch-182 T_toch-183		N_toch-045 N_toch-056	N_toch-033 N_toch-042	63 63	130 130	0.87 1.76	0.33	2.92		T	N_toch-182 N_toch-183	2.38	0.4	53.1 50.92	T
1_10011-185	131.37	14_10011-030	14_100/1-042	03	130	1.70	0.00	10.02	-	<u> </u>	14_t0CH-103	2.58	0.29	30.92	

	[DISEÑO RED SA	N RAFAEL NU	EVO (R	EPOR	TE DE TU	BERÍAS))			DISEÑO	RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		П		msnm	lt/s	mca	П
T_sra-001	446.42	N_sra-512	N_sra-548	250	130	34.1	0.82	3.143	s	P	N_sra-001	104.39	0.02	17.6	T
T_sra-002		N_sra-459	N_sra-561	250	130	42.76	1.02	4.779	-	Р	N_sra-002	103.87	0.08	18.2	Т
T_sra-003		N_sra-212	N_sra-175	400	130	179.06	1.67	6.877		P	N_sra-003	100.62	0.02	21.4	T
T_sra-004		N_sra-489	N_sra-351	250	130	22.91	0.55	1.504	_	P P	N_sra-004	96.91	0.62	25	T
T_sra-005 T_sra-006		N_sra-381 N_sra-475	N_sra-489 N_sra-465	250 250	130	29.42 106.01	0.7 2.53	2.391 25.68		P D	N_sra-005 N_sra-006	92.12 90.35	0.29	29.9 27.3	T S
T_sra-000		N_sra-497	N_sra-405	250	130	123.34	2.95	33.997		P	N sra-007	89.15	0.01	28.3	T
T_sra-007		N sra-433	N_sra-502	200	130	34.26	1.28	9.413	-	P	N sra-007	86.16	0.01	31.3	Ť
T_sra-009		N_sra-351	N_sra-327	250	130	13.81	0.33	0.589		P	N_sra-009	85.67	0.29	32	S
 T_sra-010	56.69	N_sra-561	N_sra-548	250	130	42.75	1.02	4.776	n	P	N_sra-010	85.52	0.13	31.9	Т
T_sra-011	281.39	N_sra-512	N_sra-434	250	130	25.67	0.61	1.857	S	Р	N_sra-011	83.99	0.01	33.4	T
T_sra-012	2.93	N_sra-434	N_sra-433	250	130	38.96	0.93	4.024	_	P	N_sra-012	83.1	0.02	34.3	T
T_sra-013		N_sra-372	N_sra-459	250	130	105.85	2.53	25.612		P	N_sra-013	82.15	0.01	35.3	T
T_sra-014		N_sra-465	N_sra-372	250	130	105.98	2.53	25.667		P	N_sra-014	82.12	0.1	36.7	T
T_sra-015		N_sra-406	N_sra-381	250	130	43.87	1.05	5.012		P P	N_sra-015	80.65	0.15	37.1 37.2	T
T_sra-016 T_sra-017		N_sra-459 N_sra-219	N_sra-406 N_sra-497	250 315	130 130	63.09 125.63	1.51	9.822 11.412		P	N_sra-016 N_sra-017	80.19 79.96	0.08	37.5	T
T_sra-017		_	N_sra-175	400	130	180	1.68	6.944	_	P	N_sra-017	79.95	0.38	38.7	Ť
T_sra-019		PRV-1	N_sra-219	315	130	156.57	2.36	17.156	-	P	N_sra-019	79.17	0.11	38.8	Ť
T_sra-020		N_sra-212	PRV-1	315	130	156.57	2.36	17.157	_	P	N_sra-020	79.08	0.23	38.7	S
 T_sra-021	107.02	N_sra-327	N_sra-434	200	130	13.45	0.5	1.665	n	P	N_sra-021	78.32	0.86	39.8	T
T_sra-022	1,045.00	N_sra-355	N_sra-263	90	130	0.2	0.04	0.034	n	Р	N_sra-022	78	0.14	39.4	T
T_sra-023	1,117.35	N_sra-569	N_sra-397	160	130	19.57	1.14	9.915	e	P	N_sra-023	77.93	0.25	39.8	T
T_sra-024		N_sra-502	N_sra-569	160	130	22.4	1.31	12.74	_	Р	N_sra-024	77.7	0.03	39.7	Т
T_sra-025		N_sra-354	N_sra-355	90	130	0.44	0.08	0.148		P	N_sra-025	77.68	0.01	39.7	T
T_sra-026		N_sra-330	N_no-071	90	130	0.61	0.11	0.263		P P	N_sra-026	77.22	0.03	40.3	T
T_sra-027 T_sra-028		N_sra-397 N_sra-141	N_sra-330 N_sra-139	110 160	130	5.44 6.46	0.67	5.719 1.272		S	N_sra-027	76.95 76.89	0.19	41.9 40.9	T
T_sra-028		N_sra-141 N_sra-155	N_sra-139 N_sra-131	160	130	12.21	0.56	4.138		S	N_sra-028 N_sra-029	76.02	0.69	40.9	S
T_sra-030		N_sra-133	N_sra-131	160	130	10.15	0.71	2.941	_	S	N_sra-030	75.9	0.1	41.5	T
T_sra-031		N_sra-511	N_sra-417	160	130	5.54	0.32	0.959		S	N_sra-031	75.43	0	42	Ť
T_sra-032		N_sra-417	N_sra-398	160	130	4.85	0.28	0.751	n	S	N_sra-032	74.95	0.06	43.8	Т
T_sra-033	14.9	N_sra-395	N_sra-393	90	130	10.05	1.86	47.658	e	S	N_sra-033	74.94	0.12	43	S
T_sra-034	2.94	N_sra-222	N_sra-219	160	130	30.8	1.8	22.977	n	S	N_sra-034	74.71	0.01	42.7	Т
T_sra-035	93.77	N_sra-006	N_sra-048	90	130	1.45	0.27	1.328	n	S	N_sra-035	74.28	0.1	43.1	T
T_sra-036		N_sra-009	N_sra-006	90	130	1.47	0.27	1.352		S	N_sra-036	73.96	0.01	43.4	T
T_sra-037		N_sra-332	N_sra-330	110	130	2.13	0.26	1.004		S	N_sra-037	73.37	0.02	44	T
T_sra-038 T_sra-039		N_sra-033 N_sra-360	N_sra-044 N_sra-374	110 110	130	2.78 4.67	0.34	1.643 4.312		S	N_sra-038 N_sra-039	73.37 73.09	0.08	45.4 45.5	T
T_sra-039		N_sra-300	N_sra-374 N_sra-395	110	130	14.1	1.74	33.328	_	S	N sra-040	72.68	0.14	45.3	T
T_sra-040		N_sra-374	N_sra-398	110	130	5	0.62	4.88	_	S	N sra-040	72.05	0.31	46.5	Ť
T sra-042		N sra-439	N sra-424	110	130	3.06	0.38	1.966	_	S	N sra-042	71.49	0.03	45.9	T
 T_sra-043	4.66	N_sra-354	N_sra-356	90	130	0.16	0.03	0.024	n	S	N_sra-043	71.47	0.39	5.8	S
T_sra-044	3.9	N_sra-499	N_sra-503	110	130	1.69	0.21	0.654	n	S	N_sra-044	71.2	0.21	46.6	S
T_sra-045		N_sra-328	N_sra-330	110	_	2.7	0.33	1.56	_	S	N_sra-045	71.18	0.73		_
T_sra-046		N_sra-515	N_sra-492	63	130	1.38	0.52	6.785		S	N_sra-046	70.84	0.31	47.4	T
T_sra-047		N_sra-360	N_sra-267	110	130	4.41	0.54	3.868	_	S	N_sra-047	70.58	0.08	46.8	_
T_sra-048		N_sra-056	N_sra-029	110	130	3.11	0.38	2.023		S	N_sra-048	70.56	0.04	46.9	S
T_sra-049		N_sra-305	N_sra-306	90 110	130 130	3.86 1.92	0.71	8.119 0.827		5	N_sra-049	70.55 70.24	0.03	46.9 49.5	T
T_sra-050 T_sra-051		N_sra-318 N_sra-161	N_sra-567 N_sra-164	90	130	1.92	0.24	1.391		S	N_sra-050 N_sra-051	69.97	0.25	49.5	-
T_sra-052		N_sra-161 N_sra-164	N_sra-201	90	130	0.93	0.28	0.581	_	S	N_sra-051 N_sra-052	69.97	0.17	47.8	_
T_sra-052		N_sra-201	N_sra-241	90	130	0.97	0.18	0.628		S	N_sra-053	69.25	0.02	48.1	Ť
T_sra-054		N_sra-338	N_sra-332	90	130	0.43	0.08	0.141	_	S	N_sra-054	68.89	0.03	48.6	-
T_sra-055	6.92	N_sra-251	N_sra-246	90	130	2.31	0.43	3.136	S	S	N_sra-055	68.3	0.02	49.1	S
T_sra-056	102.09	N_sra-241	N_sra-318	90	130	0.56	0.1	0.225	e	S	N_sra-056	68.19	0.11	49.8	S
T_sra-057		N_sra-044	N_sra-020	110	130	3.32	0.41	2.282		S	N_sra-057	68.16	0.59	50.1	T
T_sra-058		N_sra-126	N_sra-141	160	130	9.14	0.53	2.42		S	N_sra-058	67.6	0.2	49.8	_
T_sra-059		N_sra-237	N_sra-260	90	130	2.32	0.43	3.159	_	S	N_sra-059	67.3	0.34	10.7	T
T_sra-060		N_sra-176	N_sra-167	110	130	3.61	0.44	2.666		S	N_sra-060	67.04	0.23	7.2	T
T_sra-061		N_sra-073	N_sra-132	160	130	0.75	0.14	0.386	_	S	N_sra-061	67 67	0.24	51.3	-
T_sra-062 T_sra-063		N_sra-176 N_sra-167	N_sra-181 N_sra-151	160 90	130	15.52 2.81	0.91	6.453 4.511		S	N_sra-062 N_sra-063	66.95	0.17	51 50.4	S
T_sra-063		N_sra-107	N_sra-151 N_sra-155	160	130	12.21	0.32	4.311	_	S	N_sra-064	66.95	0.03	50.4	T
3.0 004	30.33	5.0 170	5.0 155	200	200	1	5.71	1.172	_	_	.1_210 004	50.55	0.00	30.4	ــــــــــــــــــــــــــــــــــــــ

	[DISEÑO RED SA	N RAFAEL NU	EVO (F	EPOR	TE DE TU	BERÍAS)				DISEÑO) RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_sra-065		N_sra-246	N_sra-305	90	130	3.15	0.58	5.552	n	S	N_sra-065	66.31	0.27	53.5	T
T_sra-066		N_sra-366	N_sra-306	110	130	5.77	0.71		n	S	N_sra-066	66.31	0.03	51.1	T
T_sra-067		N_sra-366 N_sra-512	N_sra-368	110 160	130	3.41 8.41	0.42		e	S	N_sra-067	66.06 65.97	0.03	51.4 51.9	T
T_sra-068 T_sra-069		N_sra-312 N_sra-151	N_sra-511 N_sra-141	90	130	2.83	0.49		n e	S	N_sra-068 N_sra-069	65.53	0.25	55.4	T
T sra-070		N_sra-502	N sra-439	110	130	7.84	0.97		n	S	N_sra-009	65.18	0.31	54.6	Ť
T sra-071		N sra-195	N_sra-127	90	130	3.94	0.73	8.408	e	S	N sra-071	65.1	0.52	12.9	T
T_sra-072		N_sra-084	N_sra-082	90	130	2.09	0.39	2.608	5	S	N_sra-072	64.61	0.35	54.6	Т
T_sra-073	114.29	N_sra-103	N_sra-084	90	130	0.57	0.1	0.231	5	S	N_sra-073	63.97	0.03	53.4	S
T_sra-074	14.7	N_sra-102	N_sra-100	90	130	2.42	0.45	3.403	n	S	N_sra-074	63.88	0.02	53.5	T
T_sra-075		N_sra-100	N_sra-080	90	130	1.17	0.22	0.888	n	S	N_sra-075	63.78	0.48	55.1	T
T_sra-076		N_sra-080	N_sra-200	90	130	0.92	0.17		n	S	N_sra-076	63.5	0.31	10.8	T
T_sra-077		N_sra-559	N_sra-556	90	130	3.98	0.74		e	S	N_sra-077	63.4	0.03	54	S
T_sra-078		N_sra-378	N_sra-363	90	130	3.3 2.51	0.61		e	S S	N_sra-078	63.33	0.8	14.7	T
T_sra-079 T_sra-080		N_sra-574 N_sra-517	N_sra-559 N_sra-515	63	130	0.59	0.46		e e	S	N_sra-079 N_sra-080	63.04 63.01	0.03	56.8 15.3	S
T sra-081		N_sra-519	N_sra-501	110	130	4.81	0.59		e	S	N sra-081	62.68	0.23	55.5	S
T_sra-082		N_sra-184	N_sra-210	63	130	0.26	0.1		n	S	N_sra-082	62.62	0.22	55.8	S
T_sra-083		N_sra-548	N_sra-549	110	130	8.63	1.06		n	S	N_sra-083	62.55	0.12	55.7	S
 T_sra-084	54.98	N_sra-565	N_sra-566	63	130	1.55	0.58	8.412	n	S	N_sra-084	62.47	0.29	56	S
T_sra-085	55.14	N_sra-158	N_sra-089	90	130	1.76	0.33	1.897	5	S	N_sra-085	62.36	0.28	57.4	T
T_sra-086		N_sra-293	N_sra-286	63	130	1.09	0.41		e	S	N_sra-086	62.2	0.39	56	T
T_sra-087		N_sra-556	N_sra-477	90	130	5.87	1.09	17.63	e	S	N_sra-087	61.71	0.47	56.9	S
T_sra-088		N_sra-173	N_sra-127	90	130	2.46	0.46	3.529	5	S	N_sra-088	61.46	0.18	55.9	T
T_sra-089		N_sra-319	N_sra-291	110 110	130	7.38 5.98	0.91	10.048	e	S	N_sra-089	61.44 61.32	0.25	15.9 58.6	S T
T_sra-090 T_sra-091		N_sra-259 N_sra-572	N_sra-247 N_sra-574	63	130	1.07	0.74		e n	5	N_sra-090 N_sra-091	61.19	0.16	56.2	S
T sra-092		N_sra-082	N_sra-087	90	130	2.93	0.54	4.848	e	S	N_sra-091	60.83	0.03	17.2	T
T_sra-093		N_sra-291	N_sra-280	110	130	6.58	0.81		e	S	N_sra-093	60.56	0.73	17.5	T
 T_sra-094		N_sra-293	N_sra-302	63	130	0.96	0.36	3.445	e	S	N_sra-094	60.46	0.79	17.5	Т
T_sra-095	141.77	N_sra-549	N_sra-519	110	130	6.35	0.78	7.608	e	S	N_sra-095	60.24	0.03	57.1	Т
T_sra-096	46.61	N_sra-091	N_sra-122	90	130	0.21	0.04	0.038	n	S	N_sra-096	60.21	0.17	14.7	T
T_sra-097		N_sra-267	N_sra-240	110	130	4.64	0.57		e	S	N_sra-097	60.19	0.29	59.7	T
T_sra-098		N_sra-240	N_sra-200	110	130	3.98	0.49		e	S	N_sra-098	60.11	0.03	57.3	T
T_sra-099		N_sra-132	N_sra-150	90	130	0.55	0.1	0.22		S	N_sra-099	60.07	0.46	17.2	S
T_sra-100 T_sra-101		N_sra-200 N_sra-157	N_sra-210 N_sra-150	110 90	130	2.59 0.46	0.32		e n	S S	N_sra-100 N_sra-101	60.05 59.77	0.46	18.3 15	S
T_sra-101		N_sra-368	N_sra-439	110	130	2.87	0.35		e	S	N_sra-102	59.4	0.46	19	s
T sra-103		N sra-359	N sra-424	110	130	1.82	0.22		e	S	N sra-103	58.77	0.27	59.6	S
T_sra-104	50.72	N_sra-508	N_sra-499	110	130	1.82	0.22	0.75	e	S	N_sra-104	58.74	0.16	61.3	Т
T_sra-105	38.84	N_sra-134	N_sra-103	110	130	5.87	0.72	6.574	n	S	N_sra-105	58.7	0.01	61.3	T
T_sra-106	157.21	N_sra-184	N_sra-237	90	130	1.61	0.3	1.596	e	S	N_sra-106	58.59	0.43	15.7	T
T_sra-107		N_sra-272	N_sra-102	90	130	3.98	0.74	8.561	n	S	N_sra-107	58.59	1.11	18.7	S
T_sra-108		N_sra-122	N_sra-157	90	130	0.33	0.06		n	S	N_sra-108	58.47	0.2	19	T
T_sra-109		N_sra-517	N_sra-504	63		0.33	0.12	0.48		S	N_sra-109	58.33	0.15	16	_
T_sra-110 T_sra-111		N_sra-260 N_sra-268	N_sra-268 N_sra-297	90		1.68 2.76	0.31	1.734 4.356		S S	N_sra-110 N_sra-111	58.09 58.06	0.08	16.7 19.2	T
T_sra-111		N_sra-200 N_sra-077	N_sra-091		130	0.12	0.02	0.014		S	N_sra-111	57.53	0.73	59.8	T
T_sra-113		N_sra-501	N_sra-508	110	_	3.14	0.39	2.064		S	N_sra-113	57.31	0.15	62.7	т
T_sra-114		N_sra-055	N_sra-077	90	-	0.06	0.01	0.004		S	N_sra-114	57.19	0.02	60.2	Т
T_sra-115		N_sra-297	N_sra-343	110	130	5.25	0.65	5.356	e	S	N_sra-115	57	0.33	21	Т
T_sra-116		N_sra-343	N_sra-348	110	130	5.47	0.67	5.771	n	S	N_sra-116	56.92	0.15	63.1	T
T_sra-117		N_sra-378	N_sra-393	90		4.79	0.89	12.085		S	N_sra-117	56.9	0.86	20.5	T
T_sra-118		N_sra-359	N_sra-366	110		2.4	0.3	1.259		S	N_sra-118	56.83	1.27	65.8	S
T_sra-119		N_sra-566	N_sra-572		130	1.55	0.58	8.38		S	N_sra-119	56.43	0.02	60.9	T
T_sra-120		N_sra-048 N_sra-567	N_sra-073 N_sra-569	90 110	_	0.99 2.83	0.18	0.646 1.7		S S	N_sra-120 N_sra-121	56.4 56.24	1.03 0.05	66.6 45.6	T
T_sra-121 T_sra-122		N_sra-567 N_sra-372	N_sra-569 N_sra-367	160	130	2.83	0.55	0		S	N_sra-121 N_sra-122	56.09	0.03	61.3	S
T_sra-123		N_sra-274	N_sra-383	110	_	6.46	0.8	7.848		S	N_sra-123	56.02	0.33	21.9	T
T_sra-124		N_sra-345	N_sra-356	63	130	0.08	0.03	0.033		S	N_sra-124	55.99	0.07	18.8	T
T_sra-125		N_sra-140	N_sra-134	110	-	6.73	0.83	8.466		S	N_sra-125	55.93	0.16	18.9	Т
T_sra-126		N_sra-288	N_sra-302	110	130	1.82	0.22	0.754	e	S	N_sra-126	55.63	0.18	64.5	S
T_sra-127	34.85	N_sra-205	N_sra-181	160	_	17.02	0.99	7.661	5	S	N_sra-127	55.49	0.61	22	T
T_sra-128	90.11	N_sra-203	N_sra-165	110	130	1.56	0.19	0.568	S	S	N_sra-128	55.48	0.04	61.9	T

T. T. T. T. T. T. T. T.		[DISEÑO RED SA	N RAFAEL NU	EVO (F	EPOF	RTE DE TU	BERÍAS)				DISEÑO	RE Dia	metros	NUDOS)	
	Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	_	Notas	Red	Label	Cota	Qdem	Presión	Red
T. T. T. T. T. T. T. T.		m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_grad_131 \$5.26 M_grad_267 \$63 100 0.58 0.04 0.21 110 0.58 0.04 0.05 0.5 0.5 0.05	T_sra-129	2.26	N_sra-402	N_sra-406	160	_					S	N_sra-129	55.47			_
T.gen-132	T_sra-130			_						-	\rightarrow	_				-
Targe 133			_			_					\rightarrow	_				
Tare-134	_		_	_						_	\rightarrow	_				-
Type-155	_		_	-							\rightarrow					-
Turn-191	_		_	_	-	_					\rightarrow	_				-
Tarn-137	_		_	_	-						_					
Tara-138	_		_	_							_	_				-
Tyra-1440 28 N. 1978-368 N. 1978-351 160 130 139 0.5 2.156 n.	T_sra-138		_	_	$\overline{}$				7.207	e	S	_	-			-
Turn-141 23 M Lys-477 M, ys-475 160 180 1732 101 7933 n N Lys-143 54.88 0.15 65.8 5 Turn-142 2.1 M Lys-1492 M, ys-1492 M, ys-1492 M, ys-1492 M, ys-1494	T_sra-139	4.7	N_sra-318	N_sra-317	110	130	0.65	0.08	0.11	s	S	N_sra-139	54.52	0.14	65.7	S
Type-144	T_sra-140	2.84	N_sra-348	N_sra-351	160	130	8.59	0.5	2.156	n	S	N_sra-140	54.43	0.29	64.6	S
Turn-144	T_sra-141	2.34	N_sra-477	N_sra-475	160	130	17.32	1.01	7.913	n	_	N_sra-141	54.38	0.15	65.8	S
Tars-144 59.13 Mars-555 Mars-562 65 130 0.39 0.15 0.645 0.	T_sra-142	2.1	N_sra-492	N_sra-489	110	_	6.08	0.75	7.025	n	S	_	54.17		20.6	
Times 128.06 Nigra 352 Nigra 358 99 130 137 022 0.888 c 5 Nigra 146 53.46 0.17 24 Times 147 147 148	_		_	_	-		0			_	S	_				-
Turn-146	_		_	_							\rightarrow	_				-
Tars-147 38.35 Mars-278 Mars-259 110 130 647 08 7.864 5 5 Mars-148 53.09 0.05 21.7 T				_	-	_				_	\rightarrow					\longrightarrow
Type-148	_		_	_	_						\vdash					-
Tars-149	_		_	_							\rightarrow	_				\rightarrow
Type-150 22.25 N_sra-302 N_sra-308 63 30 0.75 0.28 2.17 c 5 N_sra-151 3.8 N_sra-152 3.8 N_sra-164 110 130 1.14 0.14 0.16 5 5 N_sra-151 52.77 0.06 22.2 T_sra-152 3.8 N_sra-152 N_sra-153 30 0.07 0.26 1.909 c 5 N_sra-151 52.77 0.06 22.2 T_sra-153 36.63 N_sra-308 N_sra-331 63 130 0.07 0.26 1.909 c 5 N_sra-153 52.17 0.15 68.7 T_sra-154 0.04 N_sra-062 N_sra-056 N_sra-157 N_sra-242 110 130 0.87 0.11 0.129 5 N_sra-156 51.84 0.3 26.2 T_sra-156 102.15 N_sra-317 N_sra-242 110 130 0.87 0.11 0.129 5 N_sra-156 51.84 0.3 26.2 T_sra-156 102.15 N_sra-133 N_sra-144 110 130 9.33 1.15 15.009 n S N_sra-156 51.84 0.3 26.2 T_sra-156 3.40 N_sra-262 N_sra-279 63 130 0.07 0.26 1.009 c S N_sra-158 51.59 0.02 65.8 T_sra-159 0.01 N_sra-262 N_sra-279 63 130 0.07 0.26 1.009 c S N_sra-158 51.59 0.02 65.8 T_sra-159 0.01 N_sra-262 N_sra-279 63 130 0.41 0.08 C N_sra-158 0.08 N_sra-156 N_sra-157 N_sra-272 90 130 4.12 0.076 9.132 c S N_sra-158 51.59 0.02 65.8 T_sra-160 91.48 N_sra-376 N_sra-133 110 130 2.2 0.44 2.2 0.5 N_sra-162 51.09 0.26 51.1 T_sra-161 116.79 N_sra-200 N_sra-133 110 130 2.2 0.44 2.2 0.5 N_sra-162 51.09 0.26 51.1 T_sra-161 3.45 N_sra-162 N_sra-133 110 130 0.2 0.45 5.25 n S N_sra-162 51.09 0.26 51.1 T_sra-161 3.45 N_sra-000 N_sra-009 110 130 0.2 0.45 5.25 n S N_sra-162 51.09 0.26 51.1 T_sra-164 3.45 N_sra-000 N_sra-009 110 130 0.2 0.30 1.45 0.5 N_sra-165 49.84 0.04 2.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2			_	_	-						$\overline{}$					
	T_sra-150		_	_							\rightarrow	_				-
T_gra-153	T_sra-151		_	-	110		1.14	0.14	0.316	s	S		52.77	0.34	67.6	S
T_sra-154	T_sra-152	95.24	N_sra-274	N_sra-195	90	130	5.36	0.99	14.897	e	S	N_sra-152	52.73	0.06	22.2	Т
	T_sra-153	36.63	N_sra-308	N_sra-331	63	130	0.7	0.26	1.909	n	S	N_sra-153	52.17	0.15	68.7	Т
Tyra-156 102.15 N_gra-317 N_gra-242 110 130 0.87 0.11 0.192 s S N_gra-156 51.84 0.3 26.2 T T_gra-157 34.41 N_gra-133 N_gra-144 110 130 9.33 1.15 15.509 n S N_gra-157 51.59 0.02 65.8 S T_gra-159 60.19 N_gra-262 N_gra-279 63 130 0.7 0.26 1.908 e S N_gra-158 51.55 0.02 65.8 S T_gra-159 60.19 N_gra-262 N_gra-276 63 130 1.64 0.62 9.334 n S N_gra-158 51.55 0.06 65.8 T T_gra-150 91.45 N_gra-376 N_gra-277 90 130 4.12 0.76 9.132 e S N_gra-160 51.46 0.09 71.6 S T_gra-160 91.48 N_gra-376 N_gra-277 90 130 4.12 0.76 9.132 e S N_gra-160 51.46 0.09 71.6 S T_gra-161 3.45 N_gra-262 N_gra-174 90 130 1.03 1.27 18.627 n S N_gra-160 51.49 0.04 23.5 S T_gra-162 3.45 N_gra-263 N_gra-381 110 130 10.3 1.27 18.627 n S N_gra-163 30.36 0.19 70.1 T T_gra-163 34.81 N_gra-603 N_gra-083 110 130 5.2 0.64 5.252 n S N_gra-163 50.36 0.19 70.1 T T_gra-165 47.52 N_gra-104 N_gra-099 110 130 2.63 0.32 1.487 n S N_gra-163 50.36 0.19 70.1 T T_gra-165 11.55 N_gra-144 N_gra-075 90 130 1.26 0.23 1.016 s N_gra-165 49.84 0.04 22.5 S T_gra-166 116.58 N_gra-144 N_gra-075 90 130 1.26 0.23 1.016 s N_gra-166 49.83 0.04 22.49 T T_gra-168 18.06 N_gra-081 N_gra-083 110 130 2.9 0.36 1.78 n S N_gra-167 49.62 0.38 7.09 S T_gra-168 18.06 N_gra-010 N_gra-029 N_gra-033 110 130 2.9 0.36 1.78 n S N_gra-167 49.62 0.38 7.09 S T_gra-168 18.06 N_gra-010 N_gra-029 N_gra-033 110 130 2.9 0.36 1.78 n S N_gra-167 49.62 0.38 7.09 S T_gra-169 40.56 N_gra-010 N_gra-029 N_gra-033 110 130 2.9 0.36 1.78 n S N_gra-167 49.62 0.38 7.09 S T_gra-173 3.48 N_gra-381 N_gra-375 110 130 1.74 124 11542 n S N_gra-167 49.62 0.38 7.09 S T_gra-171 3.48 N_gra-381 N_gra-375 110 130 1.74 124 11542 n S N_gra-177 49.00 0.08 25.8 T T_gra-171 3.48 N_gra-261 N_gra-381 N_gra-375 110 130 1.74 124 11542 n S N_gra-177 49.00 0.08 25.8 T T_gra-171 414 148 N_gra-260 N_gra-385 N_gra-375 110 130 6.33 0.78 7.556 n S N_gra-173 48.8 0.5 28.5 S T_gra-175 67.54 N_gra-381 N_gra-352 90 130 1.19 0.22 0.915 S N_gra-177 48.30 0.08 25.8 T T_gra-176 4.38 N_gra-279 N_gra-382 90 130 1.19 0.20 0.915 S N_gra-189 4.49 0.10 0.00 2.23 S	T_sra-154	6.04	N_sra-062	N_sra-056	110	130	3.73	0.46	2.835	n	S	N_sra-154	51.91	0.11	69.8	T
	T_sra-155	61.46	N_sra-043	N_sra-099	90	130	0.59	0.11	0.248	n	S	N_sra-155	51.9	0.3	68.6	S
	T_sra-156	102.15	N_sra-317	N_sra-242	110	_		_			_	N_sra-156	-		26.2	-
Tyra-160 91.43 N. sra-262 N. sra-276 63 130 1.64 0.62 9.334 n S N. sra-159 51.54 0.06 65.8 T T Syra-160 91.43 N. sra-376 N. sra-272 90 130 4.12 0.76 9.132 e S N. sra-160 51.46 0.09 71.6 S T T Syra-161 116.79 N. sra-220 N. sra-174 90 130 2.14 0.4 2.722 e S N. sra-161 51.29 0.04 23.5 S T T Syra-163 34.81 N. sra-603 N. sra-833 110 130 10.3 1.27 18.627 n S N. sra-162 51.09 0.26 51.1 T T Syra-163 34.81 N. sra-603 N. sra-088 110 130 5.2 0.64 5.252 n S N. sra-162 51.09 0.26 51.1 T T Syra-164 2 N. sra-030 N. sra-081 110 130 5.2 0.64 5.252 n S N. sra-163 50.36 0.19 70.1 T T Syra-164 2 N. sra-030 N. sra-081 110 130 2.63 0.32 1.487 n S N. sra-165 49.84 0.04 25 S T T Syra-166 116.58 N. sra-140 N. sra-075 90 130 1.26 0.23 1.016 S N. sra-165 49.84 0.04 22 S T T Syra-166 116.58 N. sra-140 N. sra-075 90 130 1.26 0.23 1.016 S N. sra-166 49.83 0.04 24.9 T T Syra-167 38.64 N. sra-161 N. sra-029 N. sra-033 110 130 2.9 0.36 1.78 n S N. sra-167 49.62 0.38 70.9 S T T Syra-169 40.56 N. sra-081 N. sra-062 110 130 4.73 0.58 4.403 n S N. sra-168 49.28 0.29 28.7 T T Syra-169 40.56 N. sra-081 N. sra-052 110 130 4.73 0.58 4.403 n S N. sra-160 49.84 0.04 25 S N. sra-167 38.64 N. sra-160 N. sra-173 90 130 1.19 0.22 0.915 S N. sra-170 49.08 0.08 25.8 T T Syra-177 4.48 N. sra-170 N. sra-173 90 130 1.19 0.22 0.915 S N. sra-170 49.08 0.08 25.8 T T Syra-170 43.81 N. sra-270 N. sra-271 0.10 130 6.33 0.78 7.556 n S N. sra-170 49.08 0.08 25.8 T T Syra-173 3.66 N. sra-363 N. sra-352 90 130 1.19 0.22 0.915 S N. sra-173 48.8 0.5 28.5 T T Syra-175 67.54 N. sra-363 N. sra-376 110 130 6.33 0.78 7.556 n S N. sra-173 48.8 0.5 28.5 T T Syra-176 128.52 N. sra-402 N. sra-399 110 130 6.33 0.78 7.556 n S N. sra-173 48.8 0.5 28.5 T T Syra-175 67.54 N. sra-363 N. sra-352 90 130 1.19 0.22 0.915 S N. sra-175 48.46 0.94 75.9 P T Syra-176 128.52 N. sra-402 N. sra-399 110 130 6.33 0.14 0.03 1.19 0.22 0.915 S N. sra-175 48.46 0.94 75.9 P T Syra-176 128.52 N. sra-180 N. sra-189 10 130 6.30 1.19 0.04 0.03 1 N. sra-188 48.2 0.05 3.3 T T Syra-180 126.7 N. sra-189 0.90 N. sra	T_sra-157		_	_							S					-
Type				_							$\overline{}$	_				-
Tyra-161 116.79 N_sra-220 N_sra-174 90 130 2.14 0.4 2.722 e S N_sra-161 51.29 0.04 23.5 S T_sra-162 3.45 N_sra-126 N_sra-133 110 130 10.3 1.27 18.627 n S N_sra-162 51.09 0.26 51.1 T T Sra-163 34.81 N_sra-603 N_sra-083 110 130 5.2 0.64 5.252 n S N_sra-162 51.09 0.26 51.1 T T T_sra-164 2 N_sra-083 N_sra-081 110 130 4.69 0.58 4.336 n S N_sra-163 50.36 0.19 70.1 T T T_sra-164 2 N_sra-083 N_sra-081 110 130 4.69 0.58 4.336 n S N_sra-163 50.36 0.19 70.1 T T T_sra-165 47.52 N_sra-020 N_sra-099 110 130 2.63 0.32 1.487 n S N_sra-165 49.84 0.04 25 S T T_sra-166 116.58 N_sra-140 N_sra-075 90 130 1.26 0.23 1.016 S N_sra-165 49.83 0.04 24.9 T T T_sra-167 38.64 N_sra-144 N_sra-140 110 130 8.28 1.02 12.425 n S N_sra-166 49.83 0.04 24.9 T T T_sra-168 18.06 N_sra-081 N_sra-081 110 130 2.9 0.36 1.78 n S N_sra-166 49.83 0.04 22.9 2.87 T T_sra-169 40.56 N_sra-081 N_sra-082 110 130 2.9 0.36 1.78 n S N_sra-168 49.28 0.29 2.87 T T_sra-173 3.48 N_sra-160 N_sra-062 110 130 21.42 1.24 11.52 n S N_sra-168 49.10 0.88 25.6 T T_sra-171 34.81 N_sra-270 N_sra-257 160 130 11.73 1.04 8.262 n S N_sra-169 49.11 0.38 25.6 T T_sra-172 88.96 N_sra-107 N_sra-173 90 130 1.19 0.22 0.915 S N_sra-173 48.8 0.03 68.4 T T_sra-173 3.46 N_sra-363 N_sra-255 N_sra-255 110 130 6.33 0.78 7.556 n S N_sra-174 48.8 0.53 22.9 T T_sra-175 67.54 N_sra-363 N_sra-352 90 130 2.16 0.4 2.765 e S N_sra-174 48.8 0.53 22.9 T T_sra-175 12.54 N_sra-363 N_sra-352 90 130 2.16 0.4 2.765 e S N_sra-175 48.8 0.03 1.72.3 S N_sra-181 N_sra-196 160 130 12.3 14.982 e S N_sra-175 48.8 0.53 22.9 T T_sra-176 12.52 N_sra-181 N_sra-196 160 130 1.81 1.19 0.02 0.02 0.02 n S N_sra-175 48.8 0.03 1.72.3 S N_sra-177 48.3 0.66 0.31 72.3 S N_sra-178 48.3 0.5 5 28.5 S N_sra-179 38.29 N_sra-181 N_sra-196 160 130 1.50 0.55 1.153 S S N_sra-177 48.3 0.66 0.31 72.3 S N_sra-188 4.22 0.66 0.31 72.3 S N_sra-188 4.22 0.66 0.39 7.3 S N_sra-188 4.22 0.66 0.30 7.3 S N_sra-188 4.22 0.66 0.3 T T_sra-186 6.69 N_sra-265 110 130 6.16 0.76 7.2 n S N_sra-188 4.69 0.01 0.05 2.7 T T_sra-186 6.69 N_sra-276 N_sra-266 6.63 130	_		_	_	-											-
Type	_		_	_							$\overline{}$	_				
Tyra-163 34.81 N, sra-603 N, sra-083 110 130 5.2 0.64 5.252 n S N, sra-163 50.36 0.19 70.1 T T T, sra-164 2 N, sra-083 N, sra-081 110 130 4.69 0.58 4.336 n S N, sra-165 49.84 0.03 24.8 S N, sra-165 47.52 N, sra-020 N, sra-009 110 130 2.63 0.32 1.487 n S N, sra-165 49.84 0.04 25 S T, sra-166 116.58 N, sra-140 N, sra-075 90 130 1.26 0.23 1.06 s S N, sra-166 49.83 0.04 24.9 T T, sra-167 38.64 N, sra-140 N, sra-075 90 130 1.26 0.23 1.06 s S N, sra-166 49.83 0.04 24.9 T T, sra-168 18.06 N, sra-029 N, sra-033 110 130 2.9 0.36 1.78 n S N, sra-166 49.83 0.04 24.9 T T, sra-168 18.06 N, sra-029 N, sra-033 110 130 2.9 0.36 1.78 n S N, sra-166 49.83 0.04 24.9 T T, sra-167 40.56 N, sra-168 N, sra-169 N, sra-169 N, sra-169 N, sra-169 N, sra-160 N, sra-173 N, sra-174 N, sra-175 N, sra-175 N, sra-175 N, sra-176 N, sra-177 N, sra-177 N, sra-178 N, sra-178 N, sra-179 N, sra-189 N, sra-179 N, sra-189 N, sra-179 N, sra-189 N, sra-	_		_	_		_				_	\rightarrow	_				-
Tyra-164	_		_	_	_						\rightarrow					-
T_sra-166	T_sra-164		_	_								_				\longrightarrow
T_sra-167 38.64 N_sra-144 N_sra-140 110 130 8.28 1.02 12.425 n S N_sra-167 49.62 0.38 70.9 S T_sra-168 18.06 N_sra-029 N_sra-033 110 130 2.9 0.36 1.78 n S N_sra-168 49.28 0.29 28.7 T T_sra-169 40.56 N_sra-081 N_sra-062 110 130 4.73 0.58 4.403 n S N_sra-169 49.11 0.38 25.6 T T_sra-170 42.36 N_sra-160 N_sra-181 160 130 21.24 11.542 n S N_sra-169 49.11 0.38 25.6 T T_sra-170 42.36 N_sra-160 N_sra-181 160 130 21.24 11.542 n S N_sra-160 49.08 0.08 25.8 T T_sra-171 34.81 N_sra-270 N_sra-173 90 130 1.19 0.22 0.915 s S N_sra-171 48.99 0.03 68.4 T T_sra-173 34.6 N_sra-107 N_sra-173 90 130 1.19 0.22 0.915 s S N_sra-172 48.9 1.06 29.2 T T_sra-174 41.48 N_sra-256 N_sra-265 110 130 6.33 0.78 7.556 n S N_sra-173 48.8 0.5 28.5 S T_sra-174 41.48 N_sra-265 N_sra-265 110 130 6.33 0.78 7.556 n S N_sra-173 48.6 0.53 28.9 T T_sra-175 67.54 N_sra-363 N_sra-352 90 130 2.16 0.4 2.765 e S N_sra-175 48.46 0.94 75.9 P T_sra-176 128.52 N_sra-402 N_sra-391 110 130 9.16 1.13 14.982 e S N_sra-176 48.36 0.31 72.3 S T_sra-177 33.35 N_sra-279 N_sra-288 63 130 1.14 0.43 4.744 e S N_sra-176 48.30 0.26 53.4 T T_sra-178 43.73 N_sra-129 N_sra-160 160 130 22.36 1.31 12.697 n S N_sra-178 48.6 0.54 0.31 72.3 S T_sra-179 38.29 N_sra-158 N_sra-170 90 130 0.19 0.04 0.032 n S N_sra-179 47.94 0.12 30 T T_sra-181 93.95 N_sra-188 N_sra-196 160 130 18.93 1.11 9.323 n S N_sra-189 47.94 0.12 30 T T_sra-181 93.95 N_sra-196 N_sra-205 160 130 18.93 1.11 9.323 n S N_sra-182 47.85 0.05 30.2 T T_sra-183 45.33 N_sra-276 N_sra-266 110 130 6.16 0.76 7.2 n S N_sra-184 47.89 0.15 73.2 T T_sra-186 61.95 N_sra-276 N_sra-266 110 130 4.18 0.52 3.509 s S N_sra-184 47.89 0.05 70.4 T T_sra-186 61.95 N_sra-276 N_sra-266 110 130 4.18 0.52 3.509 s S N_sra-184 47.89 0.05 30.2 T T_sra-186 61.95 N_sra-276 N_sra-266 110 130 4.18 0.52 3.509 s S N_sra-188 46.93 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.0	T_sra-165	47.52	N_sra-020	N_sra-009	110	130	2.63	0.32	1.487	n	S	N_sra-165	49.84	0.04	25	S
T_sra-168	T_sra-166	116.58	N_sra-140	N_sra-075	90	130	1.26	0.23	1.016	S	S	N_sra-166	49.83	0.04	24.9	Т
Terra-169	T_sra-167	38.64	N_sra-144	N_sra-140	110	130	8.28	1.02	12.425	n	S	N_sra-167	49.62	0.38	70.9	S
T_sra-170	T_sra-168	18.06	N_sra-029	N_sra-033	110	130	2.9	0.36	1.78	n	S	N_sra-168	49.28	0.29	28.7	T
T_sra-171 34.81 N_sra-270 N_sra-257 160 130 17.73 1.04 8.262 n S N_sra-171 48.93 0.03 68.4 T T_sra-172 88.96 N_sra-107 N_sra-173 90 130 1.19 0.22 0.915 s S N_sra-172 48.9 1.06 29.2 T T_sra-173 3.46 N_sra-381 N_sra-376 110 130 7.1 0.88 9.358 e S N_sra-173 48.8 0.5 28.5 S T_sra-174 41.48 N_sra-256 N_sra-265 110 130 6.33 0.78 7.556 n S N_sra-174 48.6 0.53 28.9 T T_sra-175 67.54 N_sra-363 N_sra-352 90 130 2.16 0.4 2.765 e S N_sra-174 48.6 0.53 28.9 T T_sra-176 128.52 N_sra-402 N_sra-319 110 130 9.16 1.13 14.982 e S N_sra-175 48.46 0.94 77.9 P T_sra-177 33.55 N_sra-279 N_sra-288 63 130 1.14 0.43 4.744 e S N_sra-176 48.36 0.31 72.3 S T_sra-178 43.73 N_sra-212 N_sra-160 160 130 22.36 1.31 12.697 n S N_sra-177 48.3 0.26 53.4 T T_sra-179 38.29 N_sra-158 N_sra-174 90 130 1.35 0.25 1.153 s S N_sra-179 47.94 0.12 30 T T_sra-180 126.74 N_sra-043 N_sra-196 160 130 18.93 1.11 9.217 n S N_sra-180 47.91 0.1 69.4 T T_sra-181 93.95 N_sra-118 N_sra-196 160 130 18.93 1.11 9.217 n S N_sra-182 47.85 0.05 30.2 T T_sra-184 29.21 N_sra-099 N_sra-089 90 130 1.52 0.28 1.438 n S N_sra-184 47.83 0.73 30.7 S T_sra-185 4.38 N_sra-103 N_sra-603 110 130 6.16 0.76 7.2 n S N_sra-185 47.01 0.05 27.8 T T_sra-186 61.95 N_sra-276 N_sra-956 63 130 1.71 0.64 10.107 n T N_sra-189 46.93 0.02 31.1 T T_sra-189 50.11 N_sra-477 N_sra-473 63 130 0.14 0.05 0.102 n T N_sra-190 46.87 0.07 53.4 T T_sra-190 4.85 N_sra-476 N_sra-473 63 130 0.14 0.05 0.102 n T N_sra-191 46.86 0.22 27.9 T	T_sra-169		_	_							_	_	-			-
T_sra-172	_		_	_	-						_	_				-
T_sra-173	_		_	_							\rightarrow					\rightarrow
T_sra-174	_		_								\rightarrow					-
T_sra-175				_						_	\rightarrow					_
Testa-176 128.52 Nesta-402 Nesta-319 110 130 9.16 1.13 14.982 e S Nesta-176 48.36 0.31 72.3 S Testa-177 33.35 Nesta-279 Nesta-288 63 130 1.14 0.43 4.744 e S Nesta-177 48.3 0.26 53.4 T Testa-178 43.73 Nesta-212 Nesta-160 160 130 22.36 1.31 12.697 n S Nesta-178 48.22 0.68 29 T T Testa-180 126.74 Nesta-188 Nesta-177 90 130 0.19 0.04 0.032 n S Nesta-179 47.94 0.12 30 T T T T T Sta-181 93.95 Nesta-188 Nesta-107 90 130 18.93 1.11 9.323 n S Nesta-181 47.89 0.15 73.2 T T T Sta-182 40.66 Nesta-196 Nesta-205 160 130 18.81 1.1 9.217 n S Nesta-182 47.85 0.05 30.2 T T T Sta-184 29.21 Nesta-242 Nesta-251 90 130 1.89 0.35 2.156 S Nesta-184 29.21 Nesta-099 Nesta-099 Nesta-099 90 130 1.52 0.28 1.438 n S Nesta-184 47.38 0.73 30.7 S T T T Sta-185 43.8 Nesta-103 Nesta-603 110 130 6.16 0.76 7.2 n S Nesta-184 47.38 0.73 30.7 S T T Sta-186 61.95 Nesta-276 Nesta-603 110 130 4.18 0.52 3.509 S Nesta-187 46.93 0.08 70.4 T T T T Sta-188 129.73 Nesta-495 Nesta-495 63 130 1.71 0.64 10.107 n T Nesta-189 46.99 0.41 30.6 T T Sta-199 4.85 Nesta-476 Nesta-473 63 130 0.14 0.05 0.102 n T Nesta-190 46.87 0.07 53.4 T T Sta-190 4.85 Nesta-476 Nesta-473 63 130 0.14 0.05 0.102 n T Nesta-191 46.86 0.22 27.9 T Nesta-191 31.76 Nesta-563 Nesta-566 63 130 0.14 0.05 0.102 n T Nesta-191 46.86 0.22 27.9 T	_		_		-					_						_
T_sra-177 33.35 N_sra-279 N_sra-288 63 130 1.14 0.43 4.744 e S N_sra-177 48.3 0.26 53.4 T T_sra-178 43.73 N_sra-212 N_sra-160 160 130 22.36 1.31 12.697 n S N_sra-178 48.22 0.68 29 T T_sra-179 38.29 N_sra-158 N_sra-174 90 130 1.35 0.25 1.153 s S N_sra-179 47.94 0.12 30 T T_sra-180 126.74 N_sra-043 N_sra-107 90 130 0.19 0.04 0.032 n S N_sra-179 47.94 0.12 30 T T_sra-181 93.95 N_sra-118 N_sra-196 160 130 18.93 1.11 9.323 n S N_sra-180 47.91 0.1 69.4 T T_sra-182 40.66 N_sra-196 N_sra-205 160 130 18.81 1.1 9.217 n S N_sra-182 47.85 0.05 30.2 T T_sra-183 45.33 N_sra-242 N_sra-251 90 130 1.89 0.35 2.156 s S N_sra-184 47.89 0.53 29.6 T T_sra-184 29.21 N_sra-099 N_sra-089 90 130 1.52 0.28 1.438 n S N_sra-184 47.89 0.73 30.7 S T_sra-185 4.38 N_sra-103 N_sra-603 110 130 6.16 0.76 7.2 n S N_sra-184 47.89 0.35 27.8 T T_sra-186 61.95 N_sra-276 N_sra-256 110 130 4.18 0.52 3.509 s S N_sra-185 46.98 0.31 27.9 T T_sra-187 36.3 N_sra-495 N_sra-496 90 130 4.12 0.76 9.137 n T N_sra-188 46.93 0.08 70.4 T T_sra-188 129.73 N_sra-573 N_sra-495 63 130 1.71 0.64 10.107 n T N_sra-189 46.9 0.41 30.6 T T_sra-190 4.85 N_sra-476 N_sra-473 63 130 0.14 0.05 0.102 n T N_sra-191 46.86 0.22 27.9 T T_sra-191 31.76 N_sra-566 83 130 0.14 0.05 0.102 n T N_sra-191 46.86 0.22 27.9 T	T_sra-176									_	\rightarrow					-
T_sra-178	T_sra-177		_	_							\rightarrow					
T_sra-180 126.74 N_sra-043 N_sra-107 90 130 0.19 0.04 0.032 n S N_sra-180 47.91 0.1 69.4 T T_sra-181 93.95 N_sra-118 N_sra-196 160 130 18.93 1.11 9.323 n S N_sra-181 47.89 0.15 73.2 T T_sra-182 40.66 N_sra-196 N_sra-205 160 130 1.89 0.35 2.156 s S N_sra-182 47.85 0.05 30.2 T T_sra-183 45.33 N_sra-242 N_sra-251 90 130 1.89 0.35 2.156 s S N_sra-183 47.83 0.53 29.6 T T_sra-184 29.21 N_sra-099 N_sra-089 90 130 1.52 0.28 1.438 n S N_sra-184 47.83 0.73 30.7 S T_sra-185 4.38 N_sra-103 N_sra-263 110 130 6.16	T_sra-178				160	130	22.36	1.31	12.697	n	S		48.22	0.68	29	Т
_sra-181 93.95 N_sra-118 N_sra-196 160 130 18.93 1.11 9.323 n S N_sra-181 47.89 0.15 73.2 T T_sra-182 40.66 N_sra-196 N_sra-205 160 130 18.81 1.1 9.217 n S N_sra-182 47.85 0.05 30.2 T T_sra-183 45.33 N_sra-242 N_sra-251 90 130 1.89 0.35 2.156 5 N_sra-183 47.83 0.53 29.6 T T_sra-184 29.21 N_sra-089 90 130 1.52 0.28 1.438 n S N_sra-184 47.83 0.73 30.7 S T_sra-185 4.38 N_sra-103 N_sra-603 110 130 6.16 0.76 7.2 n S N_sra-185 47.01 0.05 27.8 T T_sra-186 61.95 N_sra-276 N_sra-266 110 30 4.18	T_sra-179	38.29	N_sra-158	N_sra-174	90	130	1.35	0.25	1.153	S	S	N_sra-179	47.94	0.12	30	T
T_sra-182	T_sra-180	126.74	N_sra-043	N_sra-107				0.04			$\overline{}$	_	47.91		69.4	T
T_sra-183	T_sra-181												_			-
T_sra-184	T_sra-182		_								$\overline{}$					-
T_sra-185 4.38 N_sra-103 N_sra-603 110 130 6.16 0.76 7.2 n S N_sra-185 47.01 0.05 27.8 T T_sra-186 61.95 N_sra-276 N_sra-256 110 130 4.18 0.52 3.509 s S N_sra-186 46.98 0.31 27.9 T T_sra-187 36.3 N_sra-495 N_sra-496 90 130 4.12 0.76 9.137 n T N_sra-187 46.93 0.08 70.4 T T_sra-188 129.73 N_sra-573 N_sra-495 63 130 1.71 0.64 10.107 n T N_sra-188 46.93 0.2 31.1 T T_sra-189 50.11 N_sra-477 N_sra-473 90 130 4.88 0.9 12.519 n T N_sra-189 46.9 0.41 30.6 T T_sra-190 4.85 N_sra-476 N_sra-473 63 130 2.56 0.96 21.305 n T N_sra-190 46.87 0.07 53.4 T T_sra-191 31.76 N_sra-					_						\rightarrow					-
T_sra-186	_			_							_					_
T_sra-187 36.3 N_sra-495 N_sra-496 90 130 4.12 0.76 9.137 N T N_sra-187 46.93 0.08 70.4 T T_sra-188 129.73 N_sra-573 N_sra-495 63 130 1.71 0.64 10.107 N T N_sra-188 46.93 0.2 31.1 T T_sra-189 50.11 N_sra-477 N_sra-473 90 130 4.88 0.9 12.519 N T N_sra-189 46.9 0.41 30.6 T T_sra-190 4.85 N_sra-476 N_sra-473 63 130 2.56 0.96 21.305 N T N_sra-190 46.87 0.07 53.4 T T_sra-191 31.76 N_sra-563 N_sra-566 63 130 0.14 0.05 0.102 N T N_sra-191 46.86 0.22 27.9 T	_		_		_	_				_	9	_				_
T_sra-188	_			_							T					_
T_sra-189	_			_						_	\rightarrow					
T_sra-190	T_sra-189									_	\rightarrow					-
T_sra-191 31.76 N_sra-563 N_sra-566 63 130 0.14 0.05 0.102 n T N_sra-191 46.86 0.22 27.9 T	T_sra-190			_	_	_					\vdash					-
											\rightarrow					-
	_			N_sra-469	63	130	2.27	0.85			T	N_sra-192		0.18	30.7	T

		DISEÑO REI	D SAN MATEO	(REPC	RTE	DE TUBER	ÍAS)				DISEÑO) RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		It/s	m/s	m/km		\Box		msnm	lt/s	mca	
T_sm-001	145.67	R-1	N_sm-046	160	130	17.293	1.01	7.887	S	P	N_sm-001	51.83	0.088	25.7	Т
T_sm-002	141.57	R-1	N_sm-032	160	130	15.392	0.9	6.357	n	P	N_sm-002	51.08	0.057	26.5	Т
T_sm-003		N_sm-046	N_sm-051	160	130	10.657	0.62	3.218	_	S	N_sm-003	50.59	0.035	27	Т
T_sm-004		N_sm-032	N_sm-035	110	130	3.737	0.46	2.85		S	N_sm-004	48.71	0.141	28.9	T
T_sm-005		N_sm-048	N_sm-073	160	130	7.013	0.41	1.483	_	S	N_sm-005	48.45	0.019	29.1	T
T_sm-006		N_sm-023	N_sm-016	110	130	1.687	0.21	0.653	_	S	N_sm-006	48.33	0.048	29.2	T
T_sm-007 T_sm-008		N_sm-025 N_sm-028	N_sm-023 N_sm-025	110 110	130	4.643 5.243	0.57	4.259 5.334	-	S	N_sm-007 N_sm-008	47.57 47.07	0.011	30 30.5	T
T sm-009		N_sm-029	N_sm-023	110	130	5.555	0.69	5.937	-	S	N_sm-009	47.07	0.048	30.5	Ť
T_sm-010		N_sm-036	N_sm-029	110	130	5.847	0.72	6.528	-	S	N sm-010	47	0.03	30.6	Ť
T_sm-011		N_sm-048	N_sm-043	160	130	6.972	0.41	1.466		S	N_sm-011	45.96	0.026	31.6	Т
T_sm-012	13.98	N_sm-044	N_sm-046	63	130	0.605	0.23	1.475	s	S	N_sm-012	45.87	0.022	31.7	Т
T_sm-013	60.79	N_sm-039	N_sm-044	110	130	1.724	0.21	0.68	s	S	N_sm-013	44.72	0.017	32.8	Т
T_sm-014	236.73	N_sm-051	N_sm-053	110	130	9.176	1.13	15.041	5	S	N_sm-014	44.31	0.016	33.2	T
T_sm-015	61.59	N_sm-035	N_sm-039	110	130	2.985	0.37	1.88	S	S	N_sm-015	37.49	0.158	40	Т
T_sm-016		N_sm-031	N_sm-032	160	130	8.815	0.52	2.264		S	N_sm-016	35.17	0.957	8.7	T
T_sm-017		N_sm-040	N_sm-036	110	130	6.183	0.76	7.24		S	N_sm-017	35	0.004	6.6	T
T_sm-018		N_sm-043	N_sm-040	110	130	6.413	0.79		n	S	N_sm-018	33	0.062	13.6	T
T_sm-019		N_sm-073	N_sm-031	160	130	7.237	0.42	1.571		S	N_sm-019	32.9	0.041	13.7	T
T_sm-020		N_sm-053	N_sm-070	63 110	130	0.255 7.484	0.1	0.298		S	N_sm-020	32.52 32.48	0.796	16 13.8	T
T_sm-021 T sm-022		N_sm-053 N_sm-070	N_sm-070 N_sm-071	110	130	3.491	0.92	2.512		S	N_sm-021 N_sm-022	32.48	0.029	14.6	T
T_sm-023		N_sm-062	N_sm-065	63	130	2.423	0.43	19.271	_	T	N_sm-022	31.26	0.725	13.1	S
T_sm-024		N_sm-026	N sm-022	63	130	0.098	0.04	0.051	_	T	N_sm-024	29.9	0.023	16.7	T
T sm-025		N sm-022	N sm-018	63	130	0.062	0.02	0.022		T	N sm-025	29.27	0.16	15.4	S
T_sm-026		N_sm-019	N_no-071	63	130	0.023	0.01	0.004	_	Т	N_sm-026	28.24	0.029	18.4	Т
T_sm-027	105.14	N_sm-024	N_sm-027	63	130	0.033	0.01	0.007	n	Т	N_sm-027	28	0.033	18.6	Т
T_sm-028	598.17	N_sm-087	N_sm-045	63	130	0.028	0.01	0.005	n	Т	N_sm-028	27.59	0.121	17.5	S
T_sm-029	12.57	N_sm-073	N_sm-074	63	130	0.166	0.06	0.135	n	T	N_sm-029	26.76	0.082	18.5	S
T_sm-030	310.94	N_sm-074	N_sm-089	63	130	0.073	0.03	0.029	n	Т	N_sm-030	26.72	0.44	17.9	T
T_sm-031		N_sm-023	N_sm-037	63	130	2.231	0.84	16.538		T	N_sm-031	26.6	0.782	22.2	S
T_sm-032		N_sm-074	N_sm-082	63	130	0.071	0.03	0.028	-	T	N_sm-032	26.44	0.604	22.4	S
T_sm-033	-	N_sm-070	N_sm-069	90	130	3.258	0.6	5.918	_	T	N_sm-033	26.25	0.21	19	T
T_sm-034 T_sm-035		N_sm-072 N_sm-072	N_sm-087 N_sm-017	63 63	130	0.209	0.08	0.206	n n	T T	N_sm-034 N_sm-035	26.2 25.5	0.229	22.5	T S
T sm-036		N_sm-087	N_sm-049	63	130	0.004	0.03	0.027	n	<u>'</u>	N_sm-036	25.44	0.103	20.1	S
T sm-037		N sm-057	N sm-052	63	130	2.304	0.87	17.557	5	T	N sm-037	25.4	2.231	16.2	T
T sm-038		N_sm-052	N sm-061	63	130	0.279	0.11	0.353		T	N_sm-038	23.51	0.191	21.5	T
T_sm-039		N_sm-062	N_sm-064	63	130	1.484	0.56	7.77	s	Т	N_sm-039	23	0.5	25.7	S
T_sm-040	132.54	N_sm-066	N_sm-047	63	130	0.716	0.27	2.014	S	Т	N_sm-040	22.96	0.201	23.2	S
T_sm-041	141.72	N_sm-067	N_sm-041	63	130	0.623	0.23	1.556	5	T	N_sm-041	22.3	0.139	26.3	Т
T_sm-042	212.58	N_sm-067	N_sm-035	63	130	0.643	0.24	1.65	S	T	N_sm-042	21.56	0.185	24	T
T_sm-043		N_sm-075	N_sm-081	63	130	1.011	0.38	3.821	S	T	N_sm-043	21.02	0.123	25.7	S
T_sm-044		N_sm-081	N_sm-085	63	130	0.558	0.21	1.269	_	T	N_sm-044	21	0.315	27.6	S
T_sm-045		N_sm-064	N_sm-081	63	_	2.172	0.82	15.743		T	N_sm-045	20.65	0.028	20.6	
T_sm-046		N_sm-028	N_sm-038	63	130	0.191	0.07	0.174	_	T	N_sm-046	20.64	0.209	28	_
T_sm-047		N_sm-062 N_sm-024	N_sm-057	63 63	130	2.682 0.064	0.02	23.256		T T	N_sm-047 N_sm-048	20.54	0.088	28.1 26.2	T c
T_sm-048 T_sm-049		N_sm-024 N_sm-066	N_sm-019 N_sm-067	63	130	0.064	0.02	0.023 1.427		T	N_sm-048 N_sm-049	20.49	0.041	26.2	S
T_sm-050		N_sm-052	N_sm-051	63	130	2.165	0.22	15.641		T	N_sm-050	19.63	0.034	27	Ť
T_sm-051		N_sm-051	N_sm-066	63	130	0.937	0.35	3.317	-	T	N sm-051	18.73	0.253	29.3	s
T_sm-052		N_sm-078	N_sm-083	63	130	0.374	0.14	0.605		T	N_sm-052	17.51	0.14	30.3	T
T_sm-053		N_sm-025	N_sm-030	63	130	0.44	0.17	0.818		T	N_sm-053	16.93	1.692	27.6	S
T_sm-054	75.56	N_sm-075	N_sm-076	63	130	1.427	0.54	7.229	n	T	N_sm-054	16.63	0.127	30.6	Т
T_sm-055	108.85	N_sm-029	N_sm-033	63	130	0.21	0.08	0.208	n	T	N_sm-055	16.61	0.354	30	T
T_sm-056	132.69	N_sm-036	N_sm-042	63	130	0.185	0.07	0.164	_	T	N_sm-056	16.59	0.121	30.7	T
T_sm-057		N_sm-026	N_sm-024	63	130	0.12	0.05	0.074		T	N_sm-057	16.51	0.201	30.6	_
T_sm-058		N_sm-075	N_sm-062	63	130	1.542	0.58	8.34	_	T	N_sm-058	16.4	0.656	29.6	_
T_sm-059		N_sm-013	N_sm-014	63	130	0.016	0.01	0.002		T	N_sm-059	16.27	0.705	30.1	T
T_sm-060		N_sm-063	N_sm-058	63	130	0.656	0.25	1.714		T	N_sm-060	16.26	0.301	31.6	
T_sm-061		N_sm-008	N_sm-004	63	130	0.317	0.12	0.445	-	T	N_sm-061	16.21	0.157	31.6	_
T_sm-062		N_sm-008	N_sm-005	63 63	130	0.096	0.04	0.049		T T	N_sm-062	16.11	0.201	29.9 30.1	T
T_sm-063 T_sm-064		N_sm-005 N_sm-003	N_sm-002 N_sm-005	63	130	0.081	0.03	0.036		T	N_sm-063 N_sm-064	16 15.87	0.204	31.1	T
1_3111*004	35.35	14_3111-003	11_3111-003	03	130	0.12	0.03	0.074	11	•	N_3111-004	13.07	0.104	31.1	

		DISEÑO RE	D SAN MATEO	(REPC	RTE	DE TUBER	ÍAS)			\neg	DISEÑO	O RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		П		msnm	lt/s	mca	
T_sm-065	47.96	N_sm-005	N_sm-009	63	130	0.116	0.04	0.07	n	T	N_sm-065	15.57	2.423	26.8	Т
T_sm-066	50.5	N_sm-009	N_sm-012	63	130	0.073	0.03	0.029	n	T	N_sm-066	15.48	0.373	32.8	T
T_sm-067	39.6	N_sm-012	N_sm-010	63	130	0.02	0.01	0.002	n	T	N_sm-067	15.39	0.671	33	T
T_sm-068	49.84	N_sm-010	N_sm-007	63	130	0.05	0.02	0.014	n	T	N_sm-068	14.96	0.948	31.3	Т
T_sm-069	78.21	N_sm-012	N_sm-013	63	130	0.07	0.03	0.027	n	T	N_sm-069	14.96	3.258	19.7	T
T_sm-070	77.83	N_sm-009	N_sm-011	63	130	0.026	0.01	0.004	n	T	N_sm-070	14.89	0.735	27	S
T_sm-071	87.94	N_sm-013	N_sm-015	63	130	0.158	0.06	0.123	n	T	N_sm-071	14.1	3.236	27.7	S
T_sm-072	39.8	N_sm-007	N_sm-009	63	130	0.056	0.02	0.017	n	T	N_sm-072	14	0.042	27.6	T
T_sm-073	62.28	N_sm-043	N_sm-050	63	130	0.436	0.16	0.804	n	T	N_sm-073	10.64	0.058	37.1	S
T_sm-074	233.96	N_sm-050	N_sm-026	63	130	0.247	0.09	0.281	n	T	N_sm-074	10.03	0.022	37.7	
T_sm-075	432.4	N_sm-050	N_sm-077	63	130	0.155	0.06	0.118	n	T	N_sm-075	9.68	0.175	35.7	T
T_sm-076	8.63	N_sm-032	N_sm-034	63	130	2.236	0.84	16.607	n	T	N_sm-076	9.45	1.427	35.4	T
T_sm-077	156.21	N_sm-034	N_sm-055	63	130	2.007	0.75	13.595	n	T	N_sm-077	9.02	0.155	37.6	T
T_sm-078	88.24	N_sm-055	N_sm-059	63	130	0.705	0.27	1.958	n	T	N_sm-078	8.73	0.092	37.2	T
T_sm-079	99.18	N_sm-055	N_sm-068	63	130	0.948	0.36	3.389	n	T	N_sm-079	8.46	0.103	37.4	Т
T_sm-080	118.88	N_sm-031	N_sm-020	63	130	0.796	0.3	2.452	n	T	N_sm-080	8.45	0.16	37.5	T
T_sm-081	277	N_sm-040	N_sm-021	63	130	0.029	0.01	0.005	n	T	N_sm-081	8.33	0.171	37.6	Т
T_sm-082	2.1	N_sm-016	PMP-1	110	130	0.73	0.09	0.137	n	T	N_sm-082	8.03	0.071	39.7	T
T_sm-083	52.6	N_sm-013	N_sm-011	63	130	0.121	0.05	0.075	n	T	N_sm-083	7.83	0.374	38.1	T
T_sm-084	4.95	N_sm-047	N_sm-044	63	130	0.804	0.3	2.496	n	T	N_sm-084	7.57	0.951	37.7	T
T_sm-085	47.86	N_sm-080	N_sm-078	63	130	0.302	0.11	0.407	n	T	N_sm-085	7.51	0.08	38.3	T
T_sm-086	100.41	N_sm-064	N_sm-063	63	130	1.628	0.61	9.227	e	T	N_sm-086	7.47	0.698	38.2	Т
T_sm-087	125.73	N_sm-057	N_sm-054	63	130	0.579	0.22	1.359	S	T	N_sm-087	7.37	0.111	33.8	Т
T_sm-088	51.53	N_sm-078	N_sm-063	63	130	0.768	0.29	2.295	n	T	N_sm-088	7.31	0.101	38.5	T
T_sm-089	438.48	PMP-1	N_sm-004	63	130	0.73	0.27	2.089	n	T	N_sm-089	7.01	0.073	40.7	Т
T_sm-090	31.3	N_sm-081	N_sm-079	63	130	0.432	0.16	0.791	S	T	N_sm-090	6.7	0.15	39.1	T
T_sm-091	68.07	N_sm-079	N_sm-080	63	130	0.142	0.05	0.101	5	T					
T_sm-092	63.89	N_sm-079	N_sm-090	63	130	0.471	0.18	0.929	n	T					-
T_sm-093	31.58	N_sm-090	N_sm-088	63	130	0.321	0.12	0.457	n	T					-
T_sm-094	9.48	N_sm-088	N_sm-085	63	130	0.478	0.18	0.953	n	T					-
T_sm-095	47.27	N_sm-011	N_sm-008	63	130	0.173	0.06	0.145	n	T					-
T_sm-096	6.43	N_sm-041	N_sm-039	63	130	0.762	0.29	2.26	n	T					-
T_sm-097	50.38	N_sm-075	N_sm-084	63	130	0.951	0.36	3.409	n	T					-
T_sm-098	81.37	N_sm-046	N_sm-060	110	130	7.032	0.87	9.189	S	T					-
T_sm-099	8.23	N_sm-061	N_sm-060	63	130	0.436	0.16	0.806	n	T					-
T_sm-100	75.27	N_sm-060	N_sm-056	110	130	6.295	0.78	7.484	S	T					-
T_sm-101	51.57	N_sm-056	N_sm-064	110	130	5.468	0.67	5.767	S	T					-
T_sm-102	6.81	N_sm-054	N_sm-056	63	130	0.706	0.27	1.962	n	T					-
T_sm-103	78.1	N_sm-004	N_sm-003	63	130	0.272	0.1	0.336	n	T					-
T_sm-104	103.24	N_sm-003	N_sm-001	63	130	0.117	0.04	0.07	n	T					-
T_sm-105	60.84	N_sm-001	N_sm-002	63	130	0.029	0.01	0.005	n	T					-
T_sm-106	51.91	N_sm-002	N_sm-006	63	130	0.053	0.02	0.016	n	T					-
T_sm-107	35.53	N_sm-006	N_sm-007	63	130	0.005	0	0	n	T					-
T_sm-108	68.42	N_sm-088	N_sm-086	63	130	0.698	0.26	1.923	n	T					-
															-

		DISEÑO R	ED TACHINA (REPOR	TE DE	TUBERÍA	(S)				DISEÑO	RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_ta-001		N_ta-097	N_ta-101	200	130	38.2	1.43	11.514	_	Р	N_ta-001	47.33	0.54	1	S
T_ta-002		N_ta-084	N_ta-097	200	130	40.09	1.5	12.589	_	P	N_ta-002	27	0.03	2.8	T
T_ta-003 T ta-004	146.8 865.96	N_ta-073	N_ta-084	200 315	130	40.1 82.13	1.5	12.599 5.194	-	P P	N_ta-003 N_ta-004	22.01	4.44 0.38	12.7	T
T_ta-004		N_ta-069	N_ta-069 N_ta-073	200	130	40.12	1.24	12.607	_	P	N_ta-004	18.92	0.56	11.4	<u> </u>
T ta-006		N_ta-068	N_ta-070	160	130	20.1	1.17	10.417		s	N_ta-006	18.46	0.03	11.3	T
T ta-007	_	N ta-087	N ta-089	160	130	6.72	0.39	1.369	s	S	N ta-007	17.22	2.95	13.4	Т
T_ta-008	38.33	N_ta-059	N_ta-058	63	130	1.44	0.54	7.361	e	S	N_ta-008	17.1	0.22	30.1	S
T_ta-009	73.01	N_ta-058	N_ta-048	160	130	16.11	0.94	6.921	5	S	N_ta-009	16.89	0.24	30.1	T
T_ta-010	96.67	N_ta-083	N_ta-094	160	130	2.85	0.17	0.28	e	S	N_ta-010	16.63	1.44	13.2	T
T_ta-011		N_ta-074	N_ta-063	90	130	6.12	1.13	19.019		S	N_ta-011	16.54	0.37	16.9	T
T_ta-012		N_ta-068	N_ta-069	200	130	42	1.57	13.722		S	N_ta-012	16.47	1.21	19.6	T
T_ta-013 T_ta-014		N_ta-045 N_ta-025	N_ta-143 N_ta-020	63 63	130 130	0.16	0.06	0.129 3.406		S	N_ta-013 N_ta-014	16.4 16.4	0.56	13.4 13.3	S
T ta-014		N_ta-025	N_ta-026	63	130	0.95	0.56	0.001		S	N_ta-014 N_ta-015	16.23	0.59	15.4	T
T_ta-016		N_ta-001	N_ta-008	63	130	0.22	0.08	0.217		s	N_ta-016	16	0.63	13.7	т
T_ta-017	-	N_ta-082	N_ta-070	160	130	11.84	0.69	3.908	_	S	N_ta-017	15.91	0.29	13.8	T
T_ta-018	_	N_ta-070	N_ta-074	110	130	8.13	1	12.027	n	S	N_ta-018	15.04	0.01	28.3	T
T_ta-019	4.28	N_ta-096	N_ta-094	90	130	4.77	0.88	12.002	n	S	N_ta-019	14.86	0.41	15.1	S
T_ta-020	1.42	N_ta-096	N_ta-095	63	130	0.65	0.24	1.662		S	N_ta-020	14.85	0.43	15	S
T_ta-021		N_ta-097	N_ta-093	160	130	1.87	0.11	0.127		S	N_ta-021	14.62	1.15	25.3	T
T_ta-022		N_ta-094	N_ta-093	110	130	7.43	0.92	10.179		S	N_ta-022	14.33	0.42	15.4	T
T_ta-023		N_ta-093	N_ta-087	160	130	5.86	0.34	1.064		S	N_ta-023	14.3	0.39	15.6	T
T_ta-024 T ta-025		N_ta-044 N_ta-053	N_ta-062 N_ta-041	110 160	130	7.47 17.12	0.92	10.269 7.745		2	N_ta-024 N_ta-025	13.99 13.65	3.04	24.7 16.4	T S
T ta-025		N_ta-033	N no-071	90	130	4.42	0.82	10.428		S	N_ta-025	13.63	0.5	16.4	T
T ta-027		N_ta-096	N_ta-107	90	130	3	0.55	5.07		s	N ta-027	13.57	1.84	25.9	T
T_ta-028		N_ta-080	N_ta-082	110	130	9.35	1.15	15.577	n	S	N_ta-028	13.25	0.81	18.3	Т
T_ta-029	61.79	N_ta-080	N_ta-123	160	130	9.23	0.54	2.466	e	S	N_ta-029	13.17	0.8	27.3	Т
T_ta-030	29.89	N_ta-060	N_ta-059	90	130	4.47	0.83	10.634	e	S	N_ta-030	13.15	0.63	17.2	S
T_ta-031	34.85	N_ta-109	N_ta-117	160	130	12.9	0.75	4.582	s	S	N_ta-031	13.15	0.43	16.8	T
T_ta-032	_	N_ta-034	N_ta-040	90	130	0.42	0.08	0.136		S	N_ta-032	13.1	0.89	26.2	S
T_ta-033		N_ta-063	N_ta-060	90	130	2.64	0.49	4.022		S	N_ta-033	13.08	0.36	18.2	T
T_ta-034 T_ta-035		N_ta-117	N_ta-119 N_ta-121	90 90	130	9.65 7.79	1.78	44.226 29.772		S	N_ta-034 N_ta-035	13.05 13.04	1.17 0.12	26 17.2	S
T ta-037		N_ta-119 N_ta-130	N_ta-121	90	130	4.67	0.86	11.549	_	S	N_ta-035	12.91	3.01	22.4	<u> </u>
T_ta-038		N_ta-062	N_ta-054	90	130	4.7	0.87	11.646		S	N_ta-037	12.88	0.1	17.4	T
T_ta-039		N_ta-128	N ta-133	63	130	2.11	0.79	14.972		S	N ta-038	12.79	0.41	17.5	Т
T_ta-040		N_ta-121	N_ta-130	90	130	5.66	1.05	16.44	e	S	N_ta-039	12.7	0.06	20.8	S
T_ta-041	64.58	R-3	N_ta-001	110	130	0.99	0.12	0.244	n	S	N_ta-040	12.69	0.57	26.4	T
T_ta-042	61.01	N_ta-020	N_ta-014	63	130	0.7	0.26	1.952	e	S	N_ta-041	12.67	1.28	20.9	S
T_ta-043		N_ta-107	N_ta-092	90	130	1.87	0.35	2.123		S	N_ta-042	12.63	0.32	17.6	S
T_ta-044	_	N_ta-019	N_ta-013	63	130	0.82	0.31	2.6	_	S	N_ta-043	12.63	0.11	18.1	T
T_ta-045 T_ta-046		N_ta-048 N_ta-032	N_ta-029	160	130 130	13.16 9.36	0.77 1.15	4.757 15.613		S	N_ta-044	12.59 12.51	0.39 1.68	20.8 18.8	S
T_ta-046		N_ta-032 N_ta-034	N_ta-029 N_ta-032	110	_	3.82	0.47	2.968	_	S	N_ta-045 N_ta-046	12.51	0.69	22.9	-
T_ta-048		N_ta-066	N_ta-040	110	_	2.83	0.35	1.708	_	S	N_ta-047	12.47	0.73	20.9	-
T_ta-049		N_ta-030	N_ta-019	63	_	1.14	0.43	4.737	_	S	N_ta-048	12.35	0.75	28.5	-
T_ta-050		N_ta-013	N_ta-014	63	130	0.23	0.09	0.241	e	S	N_ta-049	12.26	0.38	18.1	T
T_ta-051	115.3	N_ta-054	N_ta-030	63	130	2.17	0.81	15.663	_	S	N_ta-050	12.19	1.05	17.9	T
T_ta-052		N_ta-089	N_ta-066	110	130	4.53	0.56	4.074	_	S	N_ta-051	12.15	0.74	30.7	T
T_ta-053		N_ta-101	N_ta-053	160	130	19.91	1.16	10.243		S	N_ta-052	12.11	0.7	18.3	S
T_ta-054		N_ta-092	N_ta-124	90	130	0.16	0.03	0.023		S	N_ta-053	11 06	2.79	22.5	S
T_ta-055 T_ta-056	_	N_ta-134 N_ta-148	N_ta-133 N_ta-149	90 63	130 130	3.11 0.09	0.58	5.44 0.041		S	N_ta-054 N_ta-055	11.96 11.95	0.48	20.2	S
T ta-057		N_ta-144	N_ta-149	63	130	0.09	0.03	0.041	_	S	N_ta-056	11.95	0.96	19.3	<u> </u>
T_ta-057		N_ta-042	N_ta-026	63	130	1.11	0.42	4.545	_	S	N_ta-057	11.73	0.64	30.7	T
T_ta-059		N_ta-128	N_ta-136	63	130	0.25	0.09	0.281		S	N_ta-058	11.73	0.62	29.6	-
T_ta-060		N_ta-039	N_ta-041	160	130	11.42	0.67	3.658		S	N_ta-059	11.58	0.28	29.5	S
T_ta-061	7.56	N_ta-044	N_ta-039	110	130	7.86	0.97	11.279	n	S	N_ta-060	11.4	0.27	30	S
T_ta-062		N_ta-045	N_ta-098	110	130	2.59	0.32	1.442	_	S	N_ta-061	11.4	0.27	30.1	T
T_ta-063		N_ta-149	N_ta-156	63	130	0.1	0.04	0.052		S	N_ta-062	11.39	0.47	21.3	S
T_ta-064		N_ta-052	N_ta-042	63	130	1.16	0.43	4.903		S	N_ta-063	11.36	0.16	30.2	S
T_ta-065	110.03	N_ta-136	N_ta-144	63	130	0.11	0.04	0.063	e	S	N_ta-064	11.32	0.31	31.1	T

		DISEÑO R	ED TACHINA (REPOR	TE DE	TUBERÍA	(S)				DISEÑO) RE Dia	metros	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_ta-066		N_ta-098	N_ta-052	63	130	1.67	0.63	9.706		S	N_ta-065	11.3	0.36	20.1	T
T_ta-067		N_ta-153	N_ta-144	63	130	0.02	0.01		n	T	N_ta-066	11.3	0.89	27.9	S
T_ta-068		N_ta-152	N_ta-151	63 63	130	0.06	0.02	0.022 2.959	n	T	N_ta-067	11.27 11.25	0.78	28.6 32.5	T S
T_ta-069 T_ta-070		N_ta-119 N_ta-055	N_ta-116 N_ta-048	63	130	2.2	0.55	16.112	e e	T	N_ta-068 N_ta-069	11.25	0.19	32.5	P
T ta-070		N_ta-151	N_ta-048	63	130	0.04	0.02	0.01	n	<u>'</u>	N ta-070	11.23	0.01	32.5	S
T_ta-072		N ta-067	N_ta-083	110	130	0.54	0.07	0.079	e	T T	N_ta-071	11.17	0.08	20.4	T
T ta-073		N ta-064	N ta-060	63	130	2.1	0.79	14.744	e	T	N ta-072	11.16	0.23	31.2	T
T_ta-074		N_ta-076	N_ta-090	63	130	1.88	0.71	12.1	e	T	N_ta-073	11.15	0.01	31.7	Р
T_ta-075	69.17	N_ta-139	N_ta-076	63	130	0.21	0.08	0.213	5	T	N_ta-074	11.15	0.15	31.7	S
T_ta-076	68.97	N_ta-117	N_ta-108	63	130	0.62	0.23	1.553	e	T	N_ta-075	11.13	0.28	30.4	T
T_ta-077	68.46	N_ta-109	N_ta-110	63	130	0.8	0.3	2.452	e	T	N_ta-076	11.07	0.28	30.2	T
T_ta-078		N_ta-105	N_ta-076	63	130	1.95	0.73	12.87	e	T	N_ta-077	11.06	0.32	20.1	Т
T_ta-079		N_ta-057	N_ta-058	160	130	18.18	1.06	8.65	e	T	N_ta-078	11.04	3.1	24.9	T
T_ta-080		N_ta-136	N_ta-154	63	130	0.09	0.03	0.039	n	T	N_ta-079	11.03	0.1	20.5	T
T_ta-081		N_ta-012	N_ta-032	110	130	8.82 2.22	1.09	13.964	e	T	N_ta-080	11.03	0.12	32.6	S
T_ta-082 T ta-083		N_ta-034 N_ta-020	N_ta-012	63 63	130 130	0.42	0.84	16.45 0.741	e e	T T	N_ta-081	11.03 11.02	0.34 0.11	27.9 32.6	T S
T ta-083		N_ta-020 N ta-152	N_ta-022 N ta-148	63	130	0.42	0.16	0.741	e n	T	N_ta-082 N_ta-083	10.92	0.11	28.9	S
T ta-085		N_ta-154	N_ta-148	63	130	0.02	0.01		n	T	N ta-084	10.92	0.02	30.1	P
T_ta-086		N_ta-029	N_ta-021	63	130	1.15	0.43	4.863	e	T	N_ta-085	10.89	0.3	29.5	T
T_ta-087		N_ta-121	N_ta-122	63	130	0.2	0.07	0.182	e	T	N_ta-086	10.83	0.1	20.4	Т
T_ta-088	107.9	N_ta-055	N_ta-067	110	130	2.92	0.36	1.806	e	T	N_ta-087	10.7	0.53	29	S
T_ta-089	68.25	N_ta-121	N_ta-118	63	130	1.58	0.59	8.75	S	T	N_ta-088	10.69	0.62	28.3	T
T_ta-090	96.15	N_ta-032	N_ta-055	110	130	4.16	0.51	3.475	e	T	N_ta-089	10.68	0.4	29	S
T_ta-091	113.88	N_ta-153	N_ta-152	63	130	0.08	0.03	0.036	n	T	N_ta-090	10.47	0.21	30	T
T_ta-092		N_ta-137	N_ta-105	63	130	0.84	0.32	2.732	5	T	N_ta-091	10.46	0.17	29.1	T
T_ta-093		N_ta-029	N_ta-027	63	130	1.84	0.69	11.598	5	T	N_ta-092	10.4	0.33	30	S
T_ta-094		N_ta-040	N_ta-024	90	130 130	2.69 0.01	0.5		s n	T	N_ta-093	10.35	0.16 0.19	29.4 29.4	S
T_ta-095 T ta-096		N_ta-151 N ta-117	N_ta-155 N ta-116	63 63	130	2.3	0.86		_	T T	N_ta-094 N ta-095	10.35 10.35	0.19	29.4	T
T ta-097		N ta-038	N_ta-065	63	130	1.66	0.62	9.572	e	Ť	N ta-096	10.35	0.14	29.5	S
T ta-098		N ta-106	N ta-109	160	130	14.18	0.83		5	T	N ta-097	10.35	0.01	29.4	Р
T_ta-099	42.68	N_ta-122	N_ta-132	63	130	2.48	0.93	20.125	e	Т	N_ta-098	10.27	0.5	21	S
T_ta-100	43.52	N_ta-116	N_ta-122	63	130	2.66	1	22.893	e	T	N_ta-099	10.23	0.45	29.3	Т
T_ta-101	4.11	N_ta-079	N_ta-071	63	130	2.3	0.87	17.539	e	T	N_ta-100	9.97	0.22	32.4	T
T_ta-102	41.48	N_ta-127	N_ta-125	63	130	2.2	0.83	16.053	e	T	N_ta-101	9.91	0	28.8	S
T_ta-103		N_ta-071	N_ta-062	63	130	2.3	0.87	17.548	e	T	N_ta-102	9.91	0.01	30.2	T
T_ta-104		N_ta-033	N_ta-028	63	130	1.5	0.57		n	T	N_ta-103	9.87	0.24	29.9	T
T_ta-105		N_ta-119	N_ta-113	63	130	0.66	0.25	1.743	e	T	N_ta-104	9.83	0.18	30.3	T
T_ta-106		N_ta-114	N_ta-105	63	130	3.07	1.15	29.88	e	T	N_ta-105	9.72	0.28	32.5	T
T_ta-107 T ta-108		N_ta-030 N_ta-028	N_ta-038 N ta-039	63 63	130 130	0.4 2.39	0.15	0.7 18.756	e n	T T	N_ta-106 N_ta-107	9.52 9.32	0.62	28.8 30.8	T S
T ta-108		N_ta-028	N_ta-039	63	130	0.08	0.03		n n	T	N_ta-107	9.32	0.23	28.7	T
T_ta-110		N_ta-050	N_ta-031	63		0.43	0.16	0.775	-	T	N_ta-109	9.11	0.31	29	_
T_ta-111		N_ta-123	N_ta-114	160	_	8.16	0.48	1.962		T	N_ta-110	9.05	0.8	28.9	_
T_ta-112		N_ta-039	N_ta-047	-	130	1.11	0.42	4.555		T	N_ta-111	9	0.25	31.2	Т
T_ta-113	53.8	N_ta-057	N_ta-064	63	130	0.55	0.21	1.228	e	T	N_ta-112	9	0.14	31.2	Т
T_ta-114		N_ta-064	N_ta-074	63	130	1.86	0.7	11.854	e	T	N_ta-113	8.91	0.66	27.1	Т
T_ta-115	87.43	N_ta-050	N_ta-043	63	130	1.47	0.55	7.661	n	T	N_ta-114	8.89	0.11	34.5	_
T_ta-116		N_ta-130	N_ta-131	63	130	0.59	0.22	1.399		T	N_ta-115	8.89	0.26	34.5	_
T_ta-117		N_ta-106	N_ta-078	90	130	3.1	0.57	5.414		T	N_ta-116	8.77	0.52	27.1	T
T_ta-118		N_ta-085	N_ta-092	63	130	0.46	0.17	0.883		T	N_ta-117	8.72	0.33	29.2	S
T_ta-119		N_ta-014	N_ta-016	63	130	0.34	0.13	0.514		T T	N_ta-118	8.56	1.58	25.8	_
T_ta-120 T_ta-121		N_ta-123 N_ta-072	N_ta-135 N_ta-100	63 63	130 130	0.82	0.31	2.614 0.217		T	N_ta-119 N_ta-120	8.38 8.17	0.31	27.8 25.7	
T_ta-121		N_ta-072	N_ta-100	63	130	0.22	0.08	1.305		<u>'</u>	N_ta-121	8.15	0.43	26.8	_
T_ta-123		N_ta-086	N_ta-079	63	130	1.18	0.44	5.078		T	N_ta-122	8.06	0.37	26.8	_
T_ta-124		N_ta-033	N_ta-056	63	130	0.43	0.16	0.794		T	N_ta-123	8.01	0.25	35.5	T
T_ta-125		N_ta-012	N_ta-011	90	130	9.83	1.82	45.741		T	N_ta-124	8.01	0.16	32.3	S
T_ta-126		N_ta-043	N_ta-033	63	130	1.58	0.59	8.713	n	T	N_ta-125	8	0.72	25.1	Т
T_ta-127	52.46	N_ta-065	N_ta-054	63	130	2.05	0.77	14.157	e	T	N_ta-126	7.87	0.03	26.1	T
T_ta-128		N_ta-125	N_ta-128	63	130	0.81	0.31	2.554		T	N_ta-127	7.87	0.11	25.9	_
T_ta-129	49.06	N_ta-140	N_ta-090	63	130	1.02	0.38	3.881	5	T	N_ta-128	7.81	2.68	24.9	S

		DISEÑO R	ED TACHINA (REPOR	TE DE	TUBERÍA	(S)				DISEÑO) RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	c	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_ta-130		N_ta-065	N_ta-077	63	130	1.06	0.4	4.149		T	N_ta-129	7.8	1.74	25.1	T
T_ta-131 T ta-132		N_ta-075 N_ta-065	N_ta-061 N_ta-079	90 63	130	0.28 1.02	0.05	0.062 3.907	e e	T	N_ta-130 N_ta-131	7.8 7.77	0.39	26.2 26.2	S
T ta-133		N ta-098	N_ta-075	63	130	0.41	0.16	0.73	_	T	N_ta-131	7.75	0.19	26.3	Ť
T_ta-134		N_ta-013	N_ta-002	63	130	0.03	0.01	0.007	e	T	N_ta-133	7.7	1	25.6	S
T_ta-135	59.17	N_ta-042	N_ta-037	63	130	0.27	0.1	0.337	n	T	N_ta-134	7.69	0.48	25.8	S
T_ta-136	78.38	N_ta-077	N_ta-049	63	130	1.73	0.65	10.298	e	T	N_ta-135	7.48	0.81	35.8	_
T_ta-137		N_ta-049	N_ta-037	63	130	1.16	0.44	4.953		T	N_ta-136	6.09	0.05	26.4	S
T_ta-138		N_ta-052	N_ta-049	63 63	130	0.19	0.07	0.168 2.391		T T	N_ta-137 N ta-138	5.88 5.87	0.59	36.1 34.4	T
T_ta-139 T_ta-140		N_ta-095 N_ta-126	N_ta-102 N ta-120	63	130	0.79	0.17	0.842	-	T	N_ta-138	5.66	0.23	35.6	T
T_ta-141		N_ta-086	N_ta-077	63	130	0.99	0.37	3.66	_	T	N_ta-140	5.6	0.38	35	Т
T_ta-142	288.1	N_ta-024	N_ta-036	63	130	1.86	0.7	11.863	s	Т	N_ta-141	5.54	0.24	34.7	Т
T_ta-143	67.91	N_ta-082	N_ta-072	63	130	2.37	0.89	18.511	n	T	N_ta-142	5.5	0.51	37.8	Т
T_ta-144		N_ta-031	N_ta-017	63	130	0.6	0.23	1.447	_	T	N_ta-143	5.35	0.16	25.7	S
T_ta-145		N_ta-026	N_ta-031	63	130	0.61	0.23	1.477		T	N_ta-144	5.05	0.01	27.4	S
T_ta-146		N_ta-017	N_ta-006	63	130	0.03	0.01	0.005		T	N_ta-146	4.99	0.18	33.1	T
T_ta-147 T ta-148		N_ta-016 N ta-035	N_ta-017 N ta-025	63 63	130	0.29 1.24	0.11	0.368 5.582		T	N_ta-147 N ta-148	4.97 4.88	1.61 0.01	37.3 27.6	S
T ta-149		N_ta-033	N_ta-023	63	130	0.1	0.47	0.049	_	T	N_ta-146	4.68	0.01	27.8	S
T_ta-150		N_ta-056	N_ta-086	63	130	0.5	0.19	1.048		T	N_ta-150	4.59	0.38	33.6	•
T_ta-151	5.4	N_ta-126	N_ta-132	63	130	2.39	0.9	18.735	n	T	N_ta-151	4.33	0.01	28.1	Т
T_ta-152		N_ta-106	N_ta-150	63	130	0.38	0.14	0.627	n	T	N_ta-152	4.16	0	28.3	Т
T_ta-153		N_ta-109	N_ta-146	63	130	0.18	0.07	0.159	-	T	N_ta-153	4.15	0	28.3	Т
T_ta-154		N_ta-112	N_ta-138	63	130	0.82	0.31	2.6		T	N_ta-154	4.11	0.02	28.4	T
T_ta-155		N_ta-138 N ta-140	N_ta-141	90 90	130	1.37 2.45	0.25	1.192 3.481	_	T T	N_ta-155	3.34 2.95	0.01	29.1 29.5	S
T_ta-156 T_ta-157		N_ta-140	N_ta-138 N_ta-112	63	130	1.37	0.45	6.726		T	N_ta-156	2.95	0.1	29.5	-
T ta-158		N ta-037	N ta-035	63	130	0.8	0.3	2.451	_	T					-
T_ta-159		N_ta-090	N_ta-112	63	130	0.79	0.3	2.426		T					-
T_ta-160	68.61	N_ta-068	N_ta-051	160	130	21.71	1.27	12.023	e	T					-
T_ta-161	10.87	N_ta-131	N_ta-126	63	130	0.4	0.15	0.676	n	T					-
T_ta-162		N_ta-141	N_ta-104	63	130	0.5	0.19	1.043		T					-
T_ta-163		N_ta-104	N_ta-102	63	130	0.8	0.3	2.477		T					-
T_ta-164 T_ta-165		N_ta-111 N_ta-111	N_ta-104 N_ta-141	63 63	130	0.48	0.18	0.966	_	T T					-
T_ta-166		N_ta-103	N_ta-093	160	130	3.28	0.19	0.363	_	T					-
T_ta-167		N_ta-036	N_ta-046	63	130	1.14	0.43	4.796		T					-
T_ta-168	41.71	N_ta-112	N_ta-111	63	130	0.1	0.04	0.055	e	T					-
T_ta-169	76.52	N_ta-061	N_ta-085	63	130	2.06	0.78	14.328	n	T					-
T_ta-170		N_ta-067	N_ta-087	90	130	1.39	0.26	1.218		T					-
T_ta-171		N_ta-059	N_ta-067	90	130	5.63	1.04	16.296	_	T					-
T_ta-172		N_ta-089	N_ta-099	90 90	130	1.79 4.44	0.33	1.942		T					-
T_ta-173 T_ta-174		N_ta-003 N_ta-099	N_ta-005 N_ta-091		130	1.57	0.82	10.481		T T					-
T_ta-175		N_ta-091	N_ta-103		130	3.04			_	T					-
 T_ta-176		N_ta-051	N_ta-147	_	130	1.61	0.6			Т					-
T_ta-177		N_ta-085	N_ta-096		130	1.31	0.49			T					-
T_ta-178		N_ta-081	N_ta-088	$\overline{}$	130	0.87	0.33	2.877		T					-
T_ta-179		N_ta-072	N_ta-061	_	130	1.93	0.72	12.608		T		<u> </u>			-
T_ta-180 T_ta-181		N_ta-005 N_ta-001	N_ta-015 N_ta-009		130	6.43 0.24	0.09	20.874		T T		<u> </u>			-
T_ta-181	_	N_ta-001 N_ta-125	N_ta-129	63	130	1.74		10.448		T					-
T_ta-183		N_ta-134	N_ta-125	63	130	1.08	0.41	4.317		T					-
T_ta-184		N_ta-127	N_ta-126	63	130	2.31	0.87	17.603		T					-
T_ta-185	63.33	N_ta-010	N_ta-005	63	130	1.44	0.54	7.38	n	T					-
T_ta-186		N_ta-081	N_ta-091	63	130	1.3	0.49	6.088		Т					-
T_ta-187		N_ta-090	N_ta-092	63	_	1.9	0.72	12.333		T					-
T_ta-188		N_ta-088	N_ta-024	90	130	2.22	0.41	2.91	_	T		_			-
T_ta-189 T_ta-190		N_ta-115 N_ta-115	N_ta-142 N_ta-137	90	130	0.51 4.21	0.19	1.056 9.516		T T					-
T_ta-190		N_ta-115	N_ta-157		130	4.21	0.78	12.963		T					-
T_ta-191		N_ta-114	N_ta-018	63	130	0.01	0.52			T					-
T_ta-193		N_ta-047	N_ta-004	63	130	0.38				T					-
_		-													

		DISEÑO R	ED TACHINA (REPOF	RTE DI	E TUBERÍA	AS)			
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red
	m			mm		lt/s	m/s	m/km		
T_ta-194	49.21	N_ta-023	N_ta-020	63	130	0.6	0.23	1.463	e	T
T_ta-195	68.87	N_ta-137	N_ta-139	90	130	4.47	0.83	10.611	e	T
T_ta-196	113.03	N_ta-099	N_ta-088	90	130	2.9	0.54	4.783	e	Т
T_ta-197	82.46	N_ta-139	N_ta-140	90	130	3.85	0.71	8.068	e	T
T_ta-198	88.52	N_ta-038	N_ta-023	63	130	1.09	0.41	4.359	n	Т
T_ta-199	76.56	N_ta-063	N_ta-083	63	130	2.63	0.99	22.491	n	Т
T_ta-200	310.04	N_ta-081	N_ta-046	63	130	1.83	0.69	11.475	n	T
T_ta-201	114.39	N_ta-011	N_ta-015	110	130	9.46	1.17	15.911	n	T
T_ta-202	189.47	N_ta-015	N_ta-007	90	130	2.95	0.55	4.936	n	T
T_ta-203	69.62	N_ta-088	N_ta-066	63	130	0.81	0.3	2.51	e	T
T_ta-204	42.65	N_ta-051	N_ta-057	160	130	19.36	1.13	9.726	e	T
T_ta-205	5.11	N_ta-063	N_ta-061	63	130	0.68	0.26	1.846	n	Т
T_ta-206	45.6	N_ta-101	N_ta-106	160	130	18.28	1.07	8.746	5	S

DISEÑO	RE Dia	metros	NUDOS)	
Label	Cota	Qdem	Presión	Red
	msnm	lt/s	mca	
				-
				-
				•
				-
				-
				1
				,
				1
				1
				1
				-
				-
				-
				-

		DISEÑO R	ED PIEDRAS (I	REPOR	TE DE	TUBERÍA	S)				DISEÑ	O RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	c	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		П		msnm	lt/s	mca	Г
T_pi-001	149	N_pi-025	N_pi-006	63	130	0.324	0.12	0.46	n	P	N_pi-001	24.42	0.044	2.3	Т
T_pi-002	9	N_pi-025	N_pi-016	110	130	7.606	0.94	10.63	s	P	N_pi-002	15.73	0.041	11	T
T_pi-003	105	Reserva Piedra	N_pi-025	110	130	7.996	0.99	11.66	s	P	N_pi-003	15.04	0.008	11.4	Т
T_pi-004	73	N_pi-022	N_pi-014	90	130	1.131	0.21	0.83	s	S	N_pi-004	12.96	0.034	13.6	T
T_pi-005	32.00	N_pi-028	N_pi-030	110	130	2.847	0.35	1.72	s	S	N_pi-005	9.68	0.008	16.7	Т
T_pi-006	58	N_pi-030	N_pi-016	110	130	3.608	0.44	2.67	S	S	N_pi-006	8.85	0.019	18.1	T
T_pi-007	23	N_pi-014	N_pi-024	110	130	1.631	0.2	0.61	S	S	N_pi-007	8.69	0.001	18.1	T
T_pi-008	37	N_pi-024	N_pi-028	110	130	2.168	0.27	1.04	S	S	N_pi-008	8.51	0.004	17.9	T
T_pi-009	61	N_pi-021	N_pi-016	90	130	2.568	0.47	3.81	S	S	N_pi-009	8.29	0.003	18.1	T
T_pi-010	50	N_pi-021	N_pi-034	90	130	0.825	0.15	0.46	S	S	N_pi-010	7.93	0.006	18.5	T
T_pi-011	49	N_pi-037	N_pi-022	90	130	0.798	0.15	0.44	s	S	N_pi-011	7.62	0.055	19.2	Т
T_pi-012	79	N_pi-016	N_pi-011	90	130	1.339	0.25	1.14	s	S	N_pi-012	7.53	0.99	18.4	Т
T_pi-013	36	N_pi-035	N_pi-037	90	130	0.469	0.09	0.16	s	S	N_pi-013	7.51	0.004	18.9	T
T_pi-014	34	N_pi-034	N_pi-035	90	130	1.365	0.25	1.18	s	S	N_pi-014	7.5	0.5	19.1	S
T_pi-015	85	N_pi-011	N_pi-023	63	130	1.283	0.48	5.94	s	T	N_pi-015	7.24	0.006	19.2	Т
T_pi-016	88	N_pi-023	N_pi-012	63	130	0.99	0.37	3.67	n	T	N_pi-016	7.06	0.091	19.8	S
T_pi-017	78	N_pi-020	N_pi-041	63	130	0.007	0	0	n	T	N_pi-017	6.95	1.268	18.7	Т
T_pi-018	133	N_pi-020	N_pi-015	63	130	0.09	0.03	0.04	n	T	N_pi-018	6.8	0.007	19.6	Т
T_pi-019	161	N_pi-019	N_pi-031	63	130	1.269	0.48	5.82	n	T	N_pi-019	6.71	0.453	19.6	Т
T_pi-020	88	N_pi-019	N_pi-038	63	130	0.113	0.04	0.07	S	T	N_pi-020	6.66	0.005	19.8	T
T_pi-021	38	N_pi-021	N_pi-019	63	130	1.609	0.6	9.03	S	Т	N_pi-021	6.53	0.134	20.1	S
T_pi-022	105	N_pi-015	N_pi-044	63	130	0.007	0	0	n	Т	N_pi-022	6.4	0.185	20.1	S
T_pi-023	65	N_pi-028	N_pi-035	63	130	0.57	0.21	1.32	s	Т	N_pi-023	6.34	0.293	19.9	Т
T_pi-024	162	N_pi-010	N_pi-005	63	130	0.064	0.02	0.02	n	Т	N_pi-024	6.28	0.105	20.3	S
T_pi-025	68	N_pi-037	N_pi-024	63	130	0.432	0.16	0.79	s	Т	N_pi-025	6.27	0.066	20.7	Р
T_pi-026	40	N_pi-035	N_no-071	63	130	1.402	0.53	7	s	Т	N_pi-026	6.23	0.003	20.2	Т
T_pi-027	284	N_pi-018	N_pi-003	63	130	0.008	0	0	n	T	N_pi-027	5.64	1.153	20.5	T
T_pi-028	216	N_pi-029	N_pi-026	63	130	0.105	0.04	0.06	n	T	N_pi-028	5.54	0.109	21.1	S
T_pi-029	62	N_pi-011	N_pi-007	63	130	0.001	0	0	n	T	N_pi-029	5.53	0.04	20.9	T
T_pi-030	379	N_pi-002	N_pi-001	63	130	0.264	0.1	0.32	n	T	N_pi-030	5.52	0.128	21.2	S
T_pi-031	325	N_pi-006	N_pi-002	63	130	0.305	0.11	0.41	n	T	N_pi-031	5.33	1.269	20	T
T_pi-032	311	N_pi-001	N_pi-004	63	130	0.22	0.08	0.23	n	T	N_pi-032	5.15	0.007	21.3	T
T_pi-033	386	N_pi-004	N_pi-039	63	130	0.186	0.07	0.17	n	T	N_pi-033	5.14	0.005	21.3	T
T_pi-034	509	N_pi-039	N_pi-029	63	130	0.145	0.05	0.1	n	T	N_pi-034	5.14	0.093	21.5	S
T_pi-035	41	N_pi-027	N_pi-022	63	130	1.744	0.66	10.48	s	T	N_pi-035	5.08	0.063	21.5	S
T_pi-036	100	N_pi-038	N_pi-027	63	130	0.677	0.25	1.82	S	T	N_pi-036	5.07	0.004	21.3	T
T_pi-037		N_pi-015	N_pi-010	63	130	0.077	0.03	0.03	_	T	N_pi-037	5.06	0.103	21.5	S
T_pi-038	78	N_pi-018	N_pi-043	63	130	0.011	0	0		T	N_pi-038	5	0.613	21.3	T
T_pi-039	63	N_pi-034	N_pi-030	63	130	0.633	0.24	1.6	s	T	N_pi-039	4.82	0.041	21.7	T
T_pi-040	81	N_pi-013	N_pi-018	63	130	0.026	0.01		n	T	N_pi-040	3.8	0.003	22.6	T
T_pi-041	84	N_pi-013	N_pi-033	63	130	0.005	0	0	n	T	N_pi-041	3.69	0.007	22.7	T
T_pi-042	61	N_pi-009	N_pi-013	63	130	0.035	0.01	0.01	n	T	N_pi-042	3.05	0.007	23.4	T
T_pi-043	82	N_pi-009	N_pi-040	63	130	0.003	0	0	n	T	N_pi-043	2.96	0.011	23.5	T
T_pi-044	29	N_pi-008	N_pi-009	63	130	0.041	0.02	0.01	n	T	N_pi-044	2.42	0.007	24	T
T_pi-045		N_pi-008	N_pi-036	63	130	0.004	0	0	n	T					-
T_pi-046	120	N_pi-005	N_pi-008	63	130	0.049	0.02	0.01	n	T					-
T_pi-047		N_pi-005	N_pi-042	63	130	0.007	0	0	n	T					-
T_pi-048	88	N_pi-026	N_pi-020	63	130	0.102	0.04	0.05	n	T					-
T_pi-049	88	N_pi-010	N_pi-032	63	130	0.007	0	0	n	T					-
T_pi-050	73	N_pi-027	N_pi-017	63	130	1.268	0.48	5.81	n	T					-
															-

Label Iong. Nodo Inicia Nodo Final DN C Cauda Vel. Driet. Nodes Red Label Cota Odem Presión Red Red T. Cam-002 26 N. Cam-004 N. Cam-008 63 130 15.61 0.91 6.52 N. P N. Cam-005 106 N. Cam-003 N. Cam			DISEÑO REI	CAMARONES	(REP	ORTE	DE TUBER	íAS)				DISEÑO	RE Dia	metros	NUDOS)	
T. C. 2007 1.00 1	Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.		Notas	Red	Label			Presión	Red
T. Cam-003 222 N. Cam-004 N. Cam-005 65 100 0.01		m			mm		lt/s	m/s					msnm	lt/s	mca	
Team-005	_										Р		_			-
T.Cam-006 SON N.Cam-007 N.Cam-012 SOS SOS O.D. O.D. N. N.Cam-008 SOS O.D. 445.9 T. T.Cam-009 176 N.Cam-0138 N.Cam-015 SOS SOS O.D. O.D. N. N.Cam-002 SOS O.D. 415.9 T. T.Cam-000 176 N.Cam-0138 N.Cam-015 SOS SOS O.D. SOS N.Cam-010 SOS O.D. 45.25 T. T.Cam-010 176 N.Cam-0138 N.Cam-015 SOS SOS O.D. SOS N.Cam-010 SOS O.D. SOS N.Cam-010 SOS O.D. SOS T. T.Cam-011 SON N.Cam-014 N.Cam-023 SOS SOS O.D. O.D. N.Cam-012 SOS O.D. SOS T. T.Cam-012 SON N.Cam-016 N.Cam-013 SOS SOS O.D. O.D. N.Cam-013 SOS O.D. O.D. N.Cam-013 SOS O.D. O.D. O.D. N.Cam-013 SOS O.D. O.D. O.D. O.D. N.Cam-013 SOS O.D. O.D. O.D. O.D. O.D. N.Cam-014 SOS O.D. O	_			_		_		_			T					-
Tameno											<u> </u>		_			-
Tamen00	_				-	_				-	S					-
Tam-010	_		_	-	-						S	_				
T.Cam-011 SSIN_LCAm-014 N_CAM-0215 SO 130 O.8 0.15 O.44 S N_CAM-0212 D.616 O.17 49.32 T T.Cam-012 T.N. CAM-015 N_CAM-0213 SO 130 O.8 O.15 O.44 S S T.Cam-013 T.N. CAM-015 N_CAM-0213 SO 130 O.8 O.15 O.51 O.51 T.Cam-013 T.N. CAM-015 N_CAM-0213 SO 130 O.75 O.50 O.51 O.51 T.Cam-015 A.N. CAM-025 N_CAM-0214 SO 130 O.17 O.99 S.H. D. N. CAM-014 O.15 O.15 O.17 T.Cam-015 A.N. CAM-025 N_CAM-0214 SO 130 O.17 O.19 O.54 D. N. CAM-016 O.23 O.38 O.38 O.38 T.Cam-015 O.N. CAM-010 N_CAM-014 SO 130 O.10 O.06 D. O.8 D. N. CAM-016 O.23 O.38 O.38 O.38 T.Cam-017 A.N. CAM-018 N. CAM-018 SO 130 O.10 O.06 D. O.8 D. N. CAM-016 O.23 O.38 O.38 O.38 T.Cam-017 A.N. CAM-018 N. CAM-018 SO 130 O.31 O.04 O.04 D. S. N. CAM-018 O.297 O.22 O.54 S.T. T. CAM-019 T.N. CAM-012 N. CAM-018 O.30 O.30 O.30 O.04 O.04 D. N. CAM-018 O.297 O.22 O.25 S.52 S.T. T. CAM-019 T.N. CAM-018 N. CAM-018 O.30	_			_		_					S	_	-			-
Tam-013	$\overline{}$		_	_							$\overline{}$		-			_
Tam-014	T_cam-012	81	N_cam-026	N_cam-023	90	130	6.85	1.27	23.44	s	S	N_cam-013	25.8	0.22	49.85	S
T.Cam-015 24 N.Cam-026 N.Cam-024 00 130 10.77 1.99 54.19 N.	T_cam-013	17	N_cam-016	N_cam-013	90	130	2.82	0.52	4.53	S	S	N_cam-014	23.15	0.21	52.37	S
Trans-016 So N_cam-010 N_cam-014 So 150 1.01 0.99 0.68 S T_cam-017 Cam-018 1.68 N_cam-018 N_cam-018 0.97 0.190 1.30 0.10 0.04 0.04 S S T_cam-018 1.68 N_cam-018 N_cam-018 0.97 0.191 0.04 0.04 S S T_cam-018 1.68 N_cam-018 N_cam-018 0.97 0.191 0.04 0.04 S S T_cam-019 72 N_cam-028 N_cam-044 50 130 0.78 0.14 0.42 S S N_cam-019 0.28 0.38 55.21 5 T_cam-020 0.19 0.28 0.38 55.21 5 T_cam-020 0.19 0.28 0.28 0.25 5 S T_cam-020 0.19 0.28 0.28 0.25 5 S T_cam-020 0.19 0.28 0.2	T_cam-014	66	N_cam-042	N_cam-038	90	130	4.75	0.88	11.9	e	S	N_cam-015	23.14	0.51	47.71	
T.cam-017	_				-	_				n	_	_	-			_
Trans-1018	_		_								_	_				-
T.Cam-019 72 N.Cam-028 N.Cam-034 90 130 3.48 0.64 6.7 c 5 N.Cam-020 20.19 0.26 55.29 S T.Cam-020 61 N.Cam-034 N.Cam-031 90 130 5.26 0.97 14.39 c 5 N.Cam-021 20.06 0.18 62.36 P T.Cam-022 13 N.Cam-031 N.Cam-031 90 130 1.8 0.33 1.98 S N.Cam-032 19.88 0.06 61.28 5 N.Cam-022 13 N.Cam-032 N.Cam-032 90 130 14.8 0.74 97.67 N N.Cam-033 19.89 0.42 56.7 5 N.Cam-022 13 N.Cam-034 N.Cam-032 90 130 14.8 0.74 97.67 N N.Cam-033 19.89 0.42 56.7 5 N.Cam-024 15 N.Cam-032 N.Cam-032 90 130 14.75 0.78 96.98 S N.Cam-033 19.89 0.42 56.7 5 N.Cam-034 N.Cam-032 N.Cam-036 90 130 14.75 0.78 96.98 S N.Cam-035 19.89 0.42 56.79 S N.Cam-034 N.Cam-032 N.Cam-036 90 130 14.75 0.78 96.98 S N.Cam-035 19.89 0.42 56.79 S N.Cam-036 N.Cam-038 N.Cam-036 90 130 14.75 0.78 96.98 S N.Cam-032 N.Cam-036 N.Cam-036 N.Cam-036 N.Cam-036 130 0.80 10.3 0.42 0.78 9.47 S N.Cam-036 N.Cam-038 N.Cam-036 130 0.80 10.3 0.42 0.78 9.47 S N.Cam-037 17.46 0.01 53.47 T N.Cam-036 N.Cam-038 N.Cam-046 63 130 0.80 10.3 0.5 0.5 T N.Cam-038 N.Cam-048 N.Cam-046 63 130 0.80 10.3 0.5 0.5 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 63 130 0.80 0.00 0.00 N.Cam-039 11.00 N.Cam-039 N.Cam-046 N.Cam-046 63 130 0.80 0.00 0.00 N.Cam-031 10.80 N.Cam-035 N.Cam-046 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.71 12.2 T N.Cam-031 10.80 N.Cam-038 N.Cam-046 0.81 130 0.80 0.80 17 N.Cam-039 15.40 0.80 N.Cam-039 N.Cam-048 N.Ca				_	-						-		-			_
Trans-020	-		_		-	_					_					_
T_cam-021			_	_	-			-			_	_				-
T.cam-022	_		_	_	_	_					_	_	-			-
T_cam-025	_			_	$\overline{}$					-	S	_	-			_
T.cam-025	T_cam-023		_	_					1.46	e	S	_				
T_cam-026	T_cam-024	15	N_cam-024	N_cam-022	90	130	14.75	2.73	96.98	s	S	N_cam-025	19.19	0.49	56.29	S
T_cam-027	T_cam-025	3	N_cam-041	N_cam-042	90	130	4.65	0.86		e	S	N_cam-026	17.53	0.24	60.89	S
T_cam-028			_	-	90	_				S	S	_				_
T_cam-029	_											_	-			_
T_cam-030	_		_	_		_					T	_	_			-
T_cam-033	_			_	-						<u> </u>	_	-	0.02		_
T_cam-032	_		_	_		_					<u> </u>	_		0.03		_
T_cam-033	_		_	_		_				_	· -	_				_
T_cam-035	_		_	_	_						-		-			-
T_cam-036	 T_cam-034	68	N_cam-040	N_cam-029	63	130	2.94	1.1	27.51	s	Т	N_cam-035	15.55	0.11	59.35	Т
T_cam-037	T_cam-035	10	N_cam-063	N_cam-060	63	130	1.3	0.49	6.12	s	T	N_cam-036	15.48	0.47	58.43	T
T_cam-038	T_cam-036	77	N_cam-040	N_cam-093	63	130	2.4	0.9	18.88	n	T	N_cam-037	15.47	0.11	65.06	Т
T_cam-039				_	-						T	_		0.23		_
T_cam-040				_	-	_					T	_	_	_		_
T_cam-041 96 N_cam-096			_								T					_
T_cam-042				_		_					T		_			_
T_cam-043				_							<u>'</u>		_			-
T_cam-044	_			_		_					· -		-			-
T_cam-046	_			_	_						T					_
T_cam-047	_	6	_	N_cam-040	63		1.79	0.67	11.04	n	Т	N_cam-046	14.03	0.22		
T_cam-048	T_cam-046	58	N_cam-039	N_cam-052	63	130	0	0	0	e	T	N_cam-047	13.96	0	56.95	Т
T_cam-049	T_cam-047	44	N_cam-077	N_cam-085	63	130	0.64	0.24	1.63	S	T	N_cam-048	13.33	0.37	59.07	T
T_cam-050	_					_					T			0.08		
T_cam-051			_	_				0.19			T	_		0		_
T_cam-052	_					_	_	0.00			T		_	0.09		
T_cam-053	_			_							<u>'</u>	_		0		-
T_cam-054 78 N_cam-046 N_cam-053 63 130 0 0 0 s T N_cam-055 11.85 0.32 59.92 T T_cam-055 23 N_cam-084 N_cam-083 63 130 0.02 0.01 0 e T N_cam-056 11.47 0 60.43 T T_cam-056 64 N_cam-016 N_cam-020 63 130 0.02 0.01 0 s T N_cam-057 11.39 0.14 60.4 T T_cam-057 5 N_cam-083 N_cam-082 63 130 0.02 0.01 0 s T N_cam-057 11.39 0.14 60.4 T T_cam-058 89 N_cam-060 N_cam-056 63 130 0.01 0 0 0 0 0 11.33 0.01 59.66 T T_cam-059 135 N_cam-052 N_cam-082 63 130 0.01 0 0 0				_		_					T			-		-
T_cam-055 23 N_cam-084 N_cam-083 63 130 0.02 0.01 0 e T N_cam-056 11.47 0 60.43 T T_cam-056 64 N_cam-016 N_cam-020 63 130 1 0.38 3.75 s T N_cam-057 11.39 0.14 60.4 T T_cam-057 5 N_cam-083 N_cam-082 63 130 0.02 0.01 0 s T N_cam-058 11.3 0.01 59.66 T T_cam-058 89 N_cam-060 N_cam-056 63 130 0 0 0 n T N_cam-059 11.28 0.09 69.91 T T_cam-059 135 N_cam-060 N_cam-082 63 130 0.01 0 0 n T N_cam-059 11.28 0.09 69.91 T T_cam-060 35 N_cam-044 N_cam-082 63 130 0.01 0 0 n T N_cam-061 11.02 0.05 59.89 T T_cam-061 27 N_cam-078 N_cam-079 1130 </td <td>$\overline{}$</td> <td></td> <td>_</td> <td>_</td> <td>$\overline{}$</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td>	$\overline{}$		_	_	$\overline{}$	_					_		-			-
T_cam-056 64 N_cam-016 N_cam-020 63 130 1 0.38 3.75 5 T N_cam-057 11.39 0.14 60.4 T T_cam-057 5 N_cam-083 N_cam-082 63 130 0.02 0.01 0 s T N_cam-058 11.3 0.01 59.66 T T_cam-058 89 N_cam-060 N_cam-056 63 130 0.01 0 0 n T N_cam-059 11.28 0.09 69.91 T T_cam-059 135 N_cam-052 N_cam-082 63 130 0.01 0 0 n T N_cam-060 11.14 0.06 60.76 T T_cam-060 35 N_cam-044 N_cam-045 63 130 0.01 0 0 n T N_cam-061 11.02 0 59.89 T T_cam-061 27 N_cam-078 N_cam-079 1130 0.03 0 0 n T N_cam-062	_		_	_		_					_		_			-
T_cam-058 89 N_cam-060 N_cam-056 63 130 0 0 0 n T N_cam-059 11.28 0.09 69.91 T T_cam-059 135 N_cam-052 N_cam-082 63 130 0.01 0 0 e T N_cam-060 11.14 0.06 60.76 T T_cam-060 35 N_cam-044 N_cam-045 63 130 0.01 0 n T N_cam-061 11.02 0 59.89 T T_cam-061 27 N_cam-078 N_cam-079 110 130 0.03 0 n T N_cam-062 11 0.06 59.88 T T_cam-062 131 N_cam-078 N_cam-098 63 130 0.01 0.01 n T N_cam-062 11 0.06 59.88 T T_cam-063 61 N_cam-013 N_cam-018 63 130 0.8 0.3 2.48 s	_		_	_		_		_			T			0.14		-
T_cam-059	T_cam-057	5	N_cam-083	N_cam-082	63	130	0.02	0.01	0	S	T	N_cam-058	11.3	0.01	59.66	T
T_cam-060 35 N_cam-044 N_cam-045 63 130 0.01 0 0 0 N T N_cam-061 11.02 0 59.89 T T_cam-061 27 N_cam-078 N_cam-079 110 130 0.03 0 0 0 0 N_cam-062 11 0.06 59.88 T T_cam-062 131 N_cam-078 N_cam-098 63 130 0.01 0.01 0 0 N_cam-063 10.85 0.03 60.98 T T_cam-063 61 N_cam-013 N_cam-018 63 130 0.8 0.3 2.48 s T N_cam-064 10.64 0.08 60.33 T T_cam-064 60 N_cam-010 N_cam-019 63 130 0.49 0.18 0.99 s T N_cam-065 10.64 0.3 61.77 S T_cam-065 61 N_cam-035 N_cam-042 63 130 2.23 0.84 16.58 T N_cam-066 10.61	T_cam-058			N_cam-056	63	130	0	0			T	N_cam-059	11.28	0.09	69.91	T
T_cam-061 27 N_cam-078 N_cam-079 110 130 0.03 0 0 n T N_cam-062 11 0.06 59.88 T T_cam-062 131 N_cam-078 N_cam-098 63 130 0.01 0.01 0 n T N_cam-063 10.85 0.03 60.98 T T_cam-063 61 N_cam-013 N_cam-018 63 130 0.8 0.3 2.48 s T N_cam-064 10.64 0.08 60.33 T T_cam-064 60 N_cam-010 N_cam-019 63 130 0.49 0.18 0.99 s T N_cam-065 10.64 0.3 61.77 S T_cam-065 61 N_cam-035 N_cam-042 63 130 2.16 0.81 15.64 s T N_cam-066 10.61 0.12 70.19 T T_cam-066 71 N_cam-023 N_cam-028 63 130 2.23 0.84 16.58 n T				_								_				_
T_cam-062 131 N_cam-078 N_cam-098 63 130 0.01 0.01 0 n T N_cam-063 10.85 0.03 60.98 T T_cam-063 61 N_cam-013 N_cam-018 63 130 0.8 0.3 2.48 s T N_cam-064 10.64 0.08 60.33 T T_cam-064 60 N_cam-010 N_cam-019 63 130 0.49 0.18 0.99 s T N_cam-065 10.64 0.3 61.77 S T_cam-065 61 N_cam-035 N_cam-042 63 130 2.16 0.81 15.64 s T N_cam-066 10.61 0.12 70.19 T T_cam-066 71 N_cam-023 N_cam-028 63 130 2.23 0.84 16.58 n T N_cam-067 10.5 0.05 60.36 T			_			_					T					
T_cam-063 61 N_cam-013 N_cam-018 63 130 0.8 0.3 2.48 s T N_cam-064 10.64 0.08 60.33 T T_cam-064 60 N_cam-010 N_cam-019 63 130 0.49 0.18 0.99 s T N_cam-065 10.64 0.3 61.77 S T_cam-065 61 N_cam-035 N_cam-042 63 130 2.16 0.81 15.64 s T N_cam-066 10.61 0.12 70.19 T T_cam-066 71 N_cam-023 N_cam-028 63 130 2.23 0.84 16.58 n T N_cam-067 10.5 0.05 60.36 T	_			_							T T					-
T_cam-064 60 N_cam-010 N_cam-019 63 130 0.49 0.18 0.99 s T N_cam-065 10.64 0.3 61.77 S T_cam-065 61 N_cam-035 N_cam-042 63 130 2.16 0.81 15.64 s T N_cam-066 10.61 0.12 70.19 T T_cam-066 71 N_cam-023 N_cam-028 63 130 2.23 0.84 16.58 n T N_cam-067 10.5 0.05 60.36 T	_					_					 					
T_cam-065 61 N_cam-035 N_cam-042 63 130 2.16 0.81 15.64 s T N_cam-066 10.61 0.12 70.19 T T_cam-066 71 N_cam-023 N_cam-028 63 130 2.23 0.84 16.58 n T N_cam-067 10.5 0.05 60.36 T	_			_		_					<u>'</u>					-
T_cam-066 71 N_cam-023 N_cam-028 63 130 2.23 0.84 16.58 n T N_cam-067 10.5 0.05 60.36 T	_		_	_	$\overline{}$	_					Ť		-			
			_	_							T					_
	_		_			_					_					

		DISEÑO REI	CAMARONE	S (REP	ORTE	DE TUBEF	RÍAS)				DISEÑ	O RE Dia	metros	(NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km		Н		msnm	lt/s	mca	\vdash
T cam-068	25	N_cam-083	N cam-081	63	130	0	0		e	Т	N_cam-069	10.02	0.19	60.83	Т
T_cam-069		N_cam-035	N cam-026	63	130	3.68	1.38	41.83		Т	N_cam-070	10	0.17	62.01	Т
 T_cam-070		N_cam-044	N cam-027	63	130	0.01	0	0	n	Т	N_cam-071	10	0.53	61.37	Т
T_cam-071		N_cam-100	N_cam-095	63	130	0.04	0.02	0.01	n	Т	N_cam-072	9.99	0.24	61.65	Т
T_cam-072	49	N_cam-090	N_cam-095	63	130	0.01	0	0	n	Т	N_cam-073	9.97	0	60.93	Т
T_cam-073	72	N_cam-095	N_cam-091	63	130	0.06	0.02	0.02	n	Т	N_cam-074	9.97	0	61.84	Т
T_cam-074	55	N_cam-091	N_cam-086	63	130	0.15	0.06	0.11	n	Т	N_cam-075	9.96	0	61.78	Т
T_cam-075	35	N_cam-090	N_cam-091	63	130	0.08	0.03	0.04	n	Т	N_cam-076	8.88	0	62.02	Т
T_cam-076	72	N_cam-100	N_cam-094	63	130	0.24	0.09	0.27	n	T	N_cam-077	8.8	0.12	62.94	Т
T_cam-077	52	N_cam-094	N_cam-089	63	130	0.05	0.02	0.01	n	T	N_cam-078	8.8	0	62.1	Т
T_cam-078	71	N_cam-090	N_cam-094	63	130	0.25	0.09	0.28	n	Т	N_cam-079	8.26	0	62.64	Т
T_cam-081	41	N_cam-064	N_cam-087	63	130	0.39	0.15	0.66	n	Т	N_cam-080	8.05	0	62.85	Т
T_cam-082	352	N_cam-021	N_cam-005	160	130	15.55	0.91	6.48	n	Р	N_cam-081	8.02	0	62.88	Т
T_cam-083	40	N_cam-064	N_cam-058	63	130	0.34	0.13	0.5	e	T	N_cam-082	8	0	62.9	Т
T_cam-084	114	N_cam-029	N_cam-024	63	130	3.66	1.38	41.41	s	T	N_cam-083	7.97	0	62.94	Т
T_cam-085	3	N_cam-034	N_cam-035	63	130	1.92	0.72	12.55	n	T	N_cam-084	7.79	0	63.11	Т
T_cam-086	657	N_cam-021	N_cam-030	63	130	0.56	0.21	1.3	n	T	N_cam-085	7.38	0.64	64.28	Т
T_cam-087	580	N_cam-037	N_cam-006	63	130	0.15	0.06	0.11	n	T	N_cam-086	6.16	0	64.78	T
T_cam-088	308	N_cam-030	N_cam-059	63	130	0.54	0.2	1.21	n	T	N_cam-087	6.04	0	64.9	T
T_cam-089	442	N_cam-059	N_cam-066	63	130	0.45	0.17	0.87	n	T	N_cam-088	5.96	0.26	64.86	T
T_cam-090	384	N_cam-066	N_cam-049	63	130	0.34	0.13	0.5	n	T	N_cam-089	5.88	0.34	65.02	Т
T_cam-091	299	N_cam-049	N_cam-037	63	130	0.26	0.1	0.31	n	T	N_cam-090	5.06	0	65.86	T
T_cam-092	479	N_cam-006	N_cam-011	63	130	0.07	0.03	0.03	n	T	N_cam-091	4.88	0.01	66.05	Т
T_cam-093	359	N_cam-011	N_cam-032	63	130	0.03	0.01	0	n	T	N_cam-092	4.74	0.62	66.81	T
T_cam-094	328	N_cam-058	N_cam-009	63	130	0.13	0.05	0.08	e	T	N_cam-093	4.62	0.65	67.01	T
T_cam-096	76	N_cam-047	N_cam-080	63	130	0	0	0	n	T	N_cam-094	4.51	0.44	66.39	T
T_cam-097	8	N_cam-076	N_cam-078	63	130	0.04	0.02	0.01		T	N_cam-095	4.38	0	66.55	T
T_cam-098	37	N_cam-027	N_cam-031	63	130	0	0	0	n	T	N_cam-096	4.3	1	66.85	T
T_cam-099	23	N_cam-082	N_cam-080	63	130	0.03	0.01	0.01		T	N_cam-097	4.1	0.02	66.79	T
T_cam-100		N_cam-080	N_cam-079	63	130	0.03	0.01		e	T	N_cam-098	4.03	0.01	66.86	T
T_cam-101		N_cam-076	N_cam-044	63	130	0.02	0.01		n	T	N_cam-099	3.14	0.56	67.68	T
T_cam-102		N_cam-070	N_cam-072	63	130	2.19	0.82	16.01		T	N_cam-100	2.98	0.42	67.95	T
T_cam-103		N_cam-033	N_cam-044	63	130	0	0		n	T					-
T_cam-104		N_cam-009	N_cam-073	63	130	0.09	0.03	0.05		T					-
T_cam-105		N_cam-031	N_cam-043	63	130	0.01	0		n	T					-
T_cam-106		N_cam-045	N_cam-043	63	130	0	0		n	T		-			-
T_cam-107		N_cam-045	N_cam-050	63	130	0 15	0		n	T		-			-
T_cam-108		N_cam-087	N_cam-090	63	130	0.15	0.06	0.12		T					-
T_cam-109		N_cam-043	N_cam-047	63	130	0.01	0 00		n	T		-			<u> </u>
T_cam-110		N_cam-073	N_cam-076	63	130	0.07	0.02	0.02		T T		-			<u> </u>
T_cam-111		N_cam-047	N_cam-061	63	130	1 11	0.43		n	T	<u> </u>	+			-
T_cam-112		N_cam-062	N_cam-054	63	130	1.11	0.42	4.54	_	T	-	-			-
T_cam-113		N_cam-062	N_cam-015	63	130	0.51	0.19	1.09	_	T		+			-
T_cam-114		N_cam-051	N_cam-067	63	130	0.09	0.03	0.04		T		1			<u> </u>
T_cam-115 T_cam-116			N_cam-06/		130 130	0.39	0.15	0.66 1.17		T		1			-
		N_cam-067	N_cam-062				0.23			T T		+			-
T_cam-117		N_cam-071	N_cam-100		130	0.61		1.52	_	T					-
T_cam-118		N_cam-089	N_cam-087		130	0.29	0.11	0.38		_		1			-
T_cam-119		N_cam-086	N_cam-058		130	0.2	0.08	0.19		T T					-
T_cam-120		N_cam-087	N_cam-086	63	-	0.05	0.02			-		-			-
T_cam-121		N_cam-071	N_cam-064	63	-	0.81	0.3	2.51		T T		1			-
T_cam-122	54	N_cam-045	N_cam-031	63	130	0.01	0	0	n	1		+			-
		1			L					ldot		1	l		-

Label long. Nodo Inicial Nodo Final DN C Caudal Vel. Perd. Unit. Notas Red Label Cota Oder T_pe-001 226.07 N_pe-016 N_pe-012 160 130 5.422 0.32 0.92 n P N_pe-001 39.37 0.0 T_pe-002 100.04 N_pe-016 N_pe-001 160 130 5.513 0.32 0.95 s P N_pe-001 39.37 0.0 T_pe-003 3.73 N_pe-017 N_pe-016 110 130 0.091 0.01 0 e P N_pe-002 19.36 0.0 T_pe-004 10.85 R-1 N_pe-001 160 130 5.519 0.32 0.95 s P N_pe-003 16.85 0.0 T_pe-005 212.47 N_pe-039 N_pe-036 110 130 5.519 0.32 0.95 s P N_pe-004 16 0.0 T_pe-006 130.85 N_pe-012 N_pe-036 110 130 5.418 0.32 <	mca 6 1.61 7 4.91 7 11.34 6 24.84 5 13.82 4 28.69 4 14.17 13 22.23 1 14.78 3 24.06	P T T S S S S
T_pe-001 226.07 N_pe-016 N_pe-012 160 130 5.422 0.32 0.92 n P N_pe-001 39.37 0.0 T_pe-002 100.04 N_pe-016 N_pe-001 160 130 5.513 0.32 0.95 s P N_pe-002 19.36 0.0 T_pe-003 3.73 N_pe-017 N_pe-016 110 130 0.091 0.01 0 e P N_pe-003 16.85 0.0 T_pe-004 10.85 R-1 N_pe-001 160 130 5.519 0.32 0.95 s P N_pe-004 16 0.0 T_pe-005 212.47 N_pe-039 N_pe-036 110 130 3.551 0.44 2.59 s S N_pe-005 12 0.0 T_pe-006 130.85 N_pe-012 N_pe-006 160 130 5.418 0.32 0.92 n S N_pe-006 11.82 0.0 T_pe-007 60.54 N_pe-048 N_pe-042 110 130 5.292 0.65 5.43 s S N_pe-007 11.81 0.0	6 1.61 7 4.91 7 11.34 6 24.84 5 13.82 4 28.69 4 14.17 3 22.23 1 14.78 3 24.06	T T T S S
T_pe-002 100.04 N_pe-016 N_pe-001 160 130 5.513 0.32 0.95 s P N_pe-002 19.36 0.0 T_pe-003 3.73 N_pe-017 N_pe-016 110 130 0.091 0.01 0 e P N_pe-003 16.85 0.0 T_pe-004 10.85 R-1 N_pe-001 160 130 5.519 0.32 0.95 s P N_pe-004 16 0.0 T_pe-005 212.47 N_pe-039 N_pe-036 110 130 3.551 0.44 2.59 s S N_pe-005 12 0.0 T_pe-006 130.85 N_pe-012 N_pe-006 160 130 5.418 0.32 0.92 n S N_pe-006 11.82 0.0 T_pe-007 60.54 N_pe-048 N_pe-042 110 130 5.292 0.65 5.43 s S N_pe-007 11.81 0.0	7 4.91 7 11.34 6 24.84 5 13.82 4 28.69 4 14.17 3 22.23 1 14.78 3 24.06	T T T S S
T_pe-003 3.73 N_pe-017 N_pe-016 110 130 0.091 0.01 0 e P N_pe-003 16.85 0.0 T_pe-004 10.85 R-1 N_pe-001 160 130 5.519 0.32 0.95 s P N_pe-004 16 0.0 T_pe-005 212.47 N_pe-039 N_pe-036 110 130 3.551 0.44 2.59 s S N_pe-005 12 0.0 T_pe-006 130.85 N_pe-012 N_pe-006 160 130 5.418 0.32 0.92 n S N_pe-006 11.82 0.0 T_pe-007 60.54 N_pe-042 110 130 5.292 0.65 5.43 s S N_pe-007 11.81 0.0	7 11.34 6 24.84 5 13.82 4 28.69 4 14.17 13 22.23 1 14.78 13 24.06	T S S
T_pe-004 10.88 R-1 N_pe-001 160 130 5.519 0.32 0.95 s P N_pe-004 16 0.0 T_pe-005 212.47 N_pe-039 N_pe-036 110 130 3.551 0.44 2.59 s N_pe-005 12 0.0 T_pe-006 130.85 N_pe-012 N_pe-006 160 130 5.418 0.32 0.92 n s N_pe-006 11.82 0.0 T_pe-007 60.54 N_pe-048 N_pe-042 110 130 5.292 0.65 5.43 s N_pe-007 11.81 0.0	6 24.84 5 13.82 4 28.69 4 14.17 13 22.23 1 14.78 13 24.06	T S S
T_pe-005 212.47 N_pe-039 N_pe-036 110 130 3.551 0.44 2.59 s S N_pe-005 12 0.0 T_pe-006 130.85 N_pe-012 N_pe-006 160 130 5.418 0.32 0.92 n S N_pe-006 11.82 0.0 T_pe-007 60.54 N_pe-048 N_pe-042 110 130 5.292 0.65 5.43 s S N_pe-007 11.81 0.0	5 13.82 4 28.69 4 14.17 3 22.23 11 14.78 3 24.06	S S
T_pe-006 130.85 N_pe-012 N_pe-006 160 130 5.418 0.32 0.92 n S N_pe-006 11.82 0.0 T_pe-007 60.54 N_pe-048 N_pe-042 110 130 5.292 0.65 5.43 s S N_pe-007 11.81 0.0	28.69 4 14.17 3 22.23 1 14.78 3 24.06	S S
T_pe-007 60.54 N_pe-048 N_pe-042 110 130 5.292 0.65 5.43 s S N_pe-007 11.81 0.0	14.17 3 22.23 1 14.78 3 24.06	S
	3 22.23 1 14.78 3 24.06	_
	3 24.06	
T_pe-009 41.02 N_pe-050 N_pe-055 110 130 4.488 0.55 4 s S N_pe-009 10.92 0.0		S
T_pe-010 69.07 N_pe-055 N_pe-054 110 130 4.693 0.58 4.34 s S N_pe-010 10.25 0.0	24.00	S
T_pe-011 232.36 N_pe-054 N_pe-046 110 130 5.239 0.65 5.33 s S N_pe-011 10.25 0.0	3 24.00	S
T_pe-012		S
T_pe-013		Ţ
T_pe-014 302.59 N_pe-036 N_pe-022 110 130 2.968 0.37 1.86 n S N_pe-014 9.37 0.0 T_pe-015 291.36 N_pe-022 N_pe-020 110 130 0.993 0.12 0.24 n S N_pe-015 9 0.0		S
T_pe-015	0 31.84	P
T_pe-017 157.27 N_pe-046 N_pe-045 110 130 4.865 0.6 4.64 s S N_pe-017 8.99 0.0		P
T_pe-018 670.87 N_pe-052 N_pe-056 90 130 0.64 0.12 0.29 n S N_pe-018 8.98 0.0		s
T_pe-019 83.15 N_pe-018 N_pe-033 110 130 5.311 0.66 5.46 s S N_pe-019 8.54 0.0		s
T_pe-020 55.58 N_pe-047 N_pe-048 110 130 4.919 0.61 4.74 s S N_pe-020 8.43 0.3	4 19.1	S
T_pe-021 101.91 N_pe-008 N_pe-018 110 130 4.43 0.55 3.9 s S N_pe-021 8.43 0.0		T
T_pe-022 90.33 N_pe-010 N_pe-008 110 130 5.32 0.66 5.48 s S N_pe-022 8.33 0.5		S
T_pe-023 3.6 N_pe-011 N_pe-010 110 130 5.326 0.66 5.49 s S N_pe-023 8.19 0.0		S
T_pe-024		Ţ
T_pe-025		T
T_pe-027		÷
T_pe-028		Ť
T_pe-029		T
T_pe-030 256.24 N_pe-037 N_pe-043 110 130 5.392 0.67 5.62 s S N_pe-030 7.69 0.0	4 16.5	T
T_pe-031 106.22 N_pe-031 N_pe-037 110 130 5.404 0.67 5.64 s S N_pe-031 7.68 0.0	4 32.75	S
T_pe-032 53.08 N_pe-033 N_pe-049 110 130 4.942 0.61 4.78 s S N_pe-032 7.45 0.0	4 33.37	T
T_pe-033 367.98 N_pe-056 N_pe-034 90 130 0.593 0.11 0.25 n S N_pe-033 7.39 0.0		S
T_pe-034 77.51 N_pe-006 N_pe-031 160 130 5.414 0.32 0.92 s S N_pe-034 7.29 0.0		S
T_pe-035 853.7 N_pe-023 N_pe-013 63 130 0.388 0.15 0.65 n S N_pe-035 7.15 0.0 T pe-036 275.39 N pe-009 N pe-023 63 130 0.436 0.16 0.8 n S N pe-036 6.88 0.5		T
T_pe-036		S
T_pe-038		T
T_pe-039		s
T_pe-040 315.83 N_pe-015 N_pe-019 63 130 0.55 0.21 1.24 n S N_pe-040 6.6 0.0		S
T_pe-041 171.33 N_pe-034 N_pe-015 63 130 0.575 0.22 1.34 n S N_pe-041 6.59 0.0	4 30.42	S
T_pe-042	3 25.27	S
T_pe-043	+ +	S
T_pe-044 206.67 N_pe-116 N_pe-097 63 130 0.698 0.26 1.92 n T N_pe-044 6.54 0.0		S
T_pe-045 377.35 N_pe-062 N_pe-030 63 130 0.152 0.06 0.11 n T N_pe-045 6.53 0.2		S
T_pe-046		S
T_pe-047		S
T_pe-049 142.42 N_pe-075 N_pe-099 63 130 0.001 0 0 n T N_pe-049 6.5 0.0		S
T_pe-050 113.97 N_pe-062 N_pe-119 63 130 0.011 0 0 n T N_pe-050 6.47 0.0		S
T_pe-051 170.62 N_pe-103 N_pe-051 63 130 0.22 0.08 0.23 n T N_pe-051 6.47 0.0		S
T_pe-052 171.18 N_pe-099 N_pe-041 63 130 0.16 0.06 0.13 n T N_pe-052 6.44 0.0	2 20.96	S
T_pe-053 113.05 N_pe-064 N_pe-025 63 130 0.022 0.01 0 n T N_pe-053 6.43 0.0		S
T_pe-054 6.26 N_pe-025 N_pe-024 63 130 0.023 0.01 0 n T N_pe-054 6.41 0.		S
T_pe-055 311.42 N_pe-090 N_pe-043 63 130 0.003 0 0 n T N_pe-055 6.03 0.0		S
T_pe-056		S
T_pe-057 99.97 N_pe-097 N_pe-076 63 130 0.001 0 0 n T N_pe-057 5.74 0.0 T_pe-058 13.78 N_pe-063 N_pe-062 63 130 0.168 0.06 0.14 n T N_pe-058 5.72 0.0		T
T_pe-058 13.78 N_pe-063 N_pe-062 63 130 0.168 0.06 0.14 n T N_pe-058 5.72 0.0 T_pe-059 226.9 N_pe-057 N_pe-053 63 130 0.693 0.26 1.9 n T N_pe-059 5.54 0.0		+
T_pe-060 225.07 N_pe-063 N_pe-002 63 130 0.007 0 0 n T N_pe-060 5.52 0.0		÷
T_pe-061 339.97 N_pe-077 N_pe-040 63 130 0.003 0 0 n T N_pe-061 5.49 0.0		Ť
T_pe-062 39.25 N_pe-103 N_pe-116 63 130 0.7 0.26 1.93 n T N_pe-062 5.41 0.0		T
T_pe-063	+	T
T_pe-064 23.89 N_pe-068 N_pe-072 63 130 0.015 0.01 0 e T N_pe-064 4.96 0.0	35.86	T

		DISEÑO	RED PEGUE (R	EPORT	E DE	TUBERÍAS	6)				DISEÑO	RE Dia	metros	NUDOS)	
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red	Label	Cota	Qdem	Presión	Red
	m			mm		lt/s	m/s	m/km				msnm	lt/s	mca	
T_pe-065		N_pe-017	N_pe-026	90	130	0.064	0.01		e	T	N_pe-065	4.37	0.003	29.93	Т
T_pe-066		N_pe-032	N_pe-088	63	130	0.009	0	0		T	N_pe-066	4.2	0.004	35.62	T
T_pe-067 T_pe-068		N_pe-026 N_pe-088	N_pe-068 N_pe-084	63 63	130	0.011	0	0	e e	T	N_pe-067 N_pe-068	4.16 4.07	0.001	28.65 36.75	T
T pe-069		N_pe-032	N_pe-004 N_pe-029	90	130	0.003	0.01	0	_	T	N pe-069	4.06	0.001	27.28	Ť
T_pe-070		N_pe-068	N_pe-080	63	130	0.021	0.01	0	_	T	N_pe-070	4.04	0.001	32.69	T
T_pe-071		N_pe-080	N_pe-088	63	130	0.017	0.01		e	Т	N_pe-071	4.03	0.003	36.79	Т
T_pe-072	155	N_pe-026	N_pe-035	90	130	0.05	0.01	0	e	T	N_pe-072	4	0.001	36.82	Т
T_pe-073	309.1	N_pe-083	N_pe-031	63	130	0.006	0	0	n	T	N_pe-073	4	0.003	30.32	Т
T_pe-074	118.93	N_pe-080	N_pe-035	63	130	0.001	0	0		T	N_pe-074	3.96	0.001	27.56	_
T_pe-075		N_pe-028	N_pe-108	63	130	0.006	0		n	T	N_pe-075	3.93	0.001	33.05	T
T_pe-076 T_pe-077		N_pe-029 N_pe-014	N_pe-014 N_pe-086	63 63	130	0.042	0.02	0.01	n n	T	N_pe-076 N_pe-077	3.88 3.86	0.001	32.45 31.28	T
T_pe-077		N_pe-014 N_pe-088	N_pe-080 N_pe-081	63	130	0.012	0		n	T	N_pe-077	3.86	0.259	25.16	Ť
T pe-079		N pe-068	N pe-098	63	130	0.004	0		n	T	N_pe-079	3.85	0.001	28.43	т
T_pe-080		N_pe-017	N_pe-024	110	130	0.026	0		S	T	N_pe-080	3.77	0.003	37.04	Т
T_pe-081	174.99	N_pe-071	N_pe-064	63	130	0.003	0	0	n	T	N_pe-081	3.74	0.004	37.08	Т
T_pe-082	56.88	N_pe-082	N_pe-008	63	130	0.887	0.33	3	n	T	N_pe-082	3.7	0	29.93	Т
T_pe-083		N_pe-072	N_pe-064	63	130	0.016	0.01		n	T	N_pe-083	3.69	0.006	36.74	Т
T_pe-084		N_pe-073	N_pe-011	63	130	0.003	0		n	T	N_pe-084	3.66	0.003	37.16	T
T_pe-085		N_pe-066 N_pe-035	N_pe-037	63 90	130 130	0.004	0.01	0	n	T	N_pe-085	3.65 3.62	0.001	29.2 37.19	T
T_pe-086 T_pe-087		N_pe-059	N_pe-032 N_pe-057	63	130	0.047	0.01	0.39		<u>'</u>	N_pe-086 N_pe-087	3.61	0.012	27.72	T
T pe-088		N_pe-039	N_pe-037 N_pe-107	63	130	0.585	0.22	1.39		<u>'</u>	N pe-088	3.59	0.001	37.23	Ť
T_pe-089		N_pe-074	N_pe-107	63	130	0.001	0.22		n	T	N_pe-089	3.59	1.412	21.34	Т
T_pe-090		N_pe-105	N_pe-113	63	130	0.009	0	0	_	Т	N_pe-090	3.57	0.003	34.82	Т
T_pe-091	131.12	N_pe-087	N_pe-105	63	130	0.001	0	0	n	T	N_pe-091	3.56	0.034	21.36	Т
T_pe-092	347.11	N_pe-061	N_pe-060	63	130	0.225	0.08	0.24	n	T	N_pe-092	3.55	0.544	24.75	T
T_pe-093		N_pe-050	N_pe-107	63	130	0.213	0.08	0.21		T	N_pe-093	3.53	0.001	28.08	T
T_pe-094		N_pe-107	N_pe-102	63	130	0.796	0.3	2.45	-	T	N_pe-094	3.52	0.078	26.33	T
T_pe-095		N_pe-057	N_pe-061	63 63	130	0.26	0.1	0.31	_	T	N_pe-095	3.49 3.45	0.001	29.95 33.94	T
T_pe-096 T_pe-097		N_pe-102 N_pe-104	N_pe-055 N_pe-082	63	130	0.208	0.08		n n	T	N_pe-096 N_pe-097	3.45	0.002	33.03	T
T_pe-098		N_pe-110	N_pe-105	63	130	0.003	0	0	_	T	N_pe-098	3.29	0.004	37.53	T
T_pe-099		N_pe-093	N_pe-114	63	130	0.001	0	0	_	T	N_pe-099	3.28	0.003	33.7	Т
T_pe-100	180.4	N_pe-110	N_pe-054	63	130	0.576	0.22	1.35	n	Т	N_pe-100	3.23	0.004	37.59	Т
T_pe-101	428.52	N_pe-013	N_pe-059	63	130	0.322	0.12	0.46	n	T	N_pe-101	3.19	0.001	29.09	Т
T_pe-102		N_pe-094	N_pe-046	63	130	0.078	0.03	0.03	-	T	N_pe-102	3.14	0.001	28.29	Т
T_pe-103		N_pe-078	N_pe-045	63	130	0.259	0.1	0.31	_	T	N_pe-103	3.07	0.002	33.74	T
T_pe-104		N_pe-092 N_pe-036	N_pe-039 N_pe-003	63	130	0.544	0.2	1.21	_	T	N_pe-104	3.06	0.003	30.57	T
T_pe-105 T_pe-106		N_pe-036 N_pe-089	N_pe-003 N_pe-022	63 63	130	0.017 1.412	0.01	7.09	n n	T	N_pe-105 N_pe-106	3.03	0.004	28.3 34.37	T
T pe-107		N_pe-014	N_pe-004	63	130	0.016	0.01		n	T	N_pc 100 N_pc-107	3.03	0.001	28.52	T
T_pe-108		N_pe-020	N_pe-021	63	130	0.007	0.02		n	T	N_pe-108	3	0.006	21.18	_
T_pe-109		N_pe-102	N_pe-110	63	130	0.587	0.22			T	N_pe-109	3	0.103	21.19	Т
T_pe-110		N_pe-120	N_pe-033	63	130	0.366	0.14	0.58	_	T	N_pe-110	2.98	0.001	28.35	Т
T_pe-111		N_pe-065	N_pe-010	63	130	0.003	0		n	T	N_pe-111	2.98	0.013	21.38	_
T_pe-112		N_pe-060	N_pe-111	63	130	0.013	0 14		n	T	N_pe-112	2.91	0.018	21.53	_
T_pe-113		N_pe-101 N_pe-061	N_pe-047	63 63	130	0.378	0.14	0.62		T T	N_pe-114	2.9	0.008	28.43	
T_pe-114 T_pe-115		N_pe-061 N_pe-082	N_pe-112 N_pe-038	63	130	0.018	0.01	2.98	n n	T	N_pe-114 N_pe-115	2.81	0.001	28.8 21.54	_
T_pe-115		N_pe-082 N_pe-057	N_pe-038 N_pe-118	63	130	0.014	0.01		n	T	N_pe-116	2.74	0.001	34.04	_
T_pe-117		N_pe-038	N_pe-018	63	130	0.882	0.33	2.96		T	N_pe-117	2.65	0.001	30.16	_
T_pe-118		N_pe-095	N_pe-038	63	130	0.001	0		n	T	N_pe-118	2.65	0.014	21.98	_
T_pe-119		N_pe-059	N_pe-121	63	130	0.015	0.01		n	T	N_pe-119	2.63	0.011	21.6	Т
T_pe-120		N_pe-113	N_pe-069	63	130	0.001	0		n	T	N_pe-120	2.56	0.002	30.29	_
T_pe-121		N_pe-085	N_pe-120	63	130	0.001	0		n	T	N_pe-121	2.25	0.015	22.47	_
T_pe-122		N_pe-114	N_pe-042	63	130	0.587	0.22	1.4	_	T					-
T_pe-123		N_pe-067	N_pe-117	63	130	0.001	0.14		n	T					-
T_pe-124 T_pe-125		N_pe-117 N_pe-120	N_pe-049 N_pe-117	63 63	130 130	0.361	0.14	0.57 0.57		T T		\vdash			-
T_pe-126		N_pe-120 N_pe-079	N_pe-117 N_pe-101	63	130	0.001	0.14		n	T					-
T_pe-127		N_pe-101	N_pe-048	63	130	0.376	0.14	0.61		T					-
T_pe-128		N_pe-028	N_pe-027	63	130	0.033	0.01	0.01		T					-

		DISEÑO	RED PEGUE (R	EPORT	E DE	TUBERÍAS	6)			
Label	long.	Nodo Inicial	Nodo Final	DN	С	Caudal	Vel.	Perd. Unit.	Notas	Red
	m			mm		lt/s	m/s	m/km		
T_pe-129	66.37	N_pe-030	N_pe-028	63	130	0.045	0.02	0.01	n	T
T_pe-130	339.44	N_pe-058	N_pe-063	63	130	0.179	0.07	0.15	n	T
T_pe-131	396.46	N_pe-060	N_pe-058	63	130	0.2	0.08	0.19	n	T
T_pe-132	322.37	N_pe-058	N_pe-115	63	130	0.01	0	0	n	T
T_pe-133	514.17	N_pe-013	N_pe-091	63	130	0.034	0.01	0.01	n	T

DISEÑO RE Diametros			NUDOS)	
Label	Cota	Qdem	Presión	Red
	msnm	lt/s	mca	
				١
				-
				1
				•
				•
				-