
Master’s Thesis

Development of data analysis tools to study clusters
of particles in turbulent flows and their time evolution

Tomás Gil, Álvaro
Villafañe Roca, Laura

Escuela Técnica Superior de Ingenieŕıa del Diseño
Master’s Degree in Aeronautical Engineering - 2019/20

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Contents

List of Illustrations xii

1 Introduction 1

2 Methods of Analysis 6

2.1 Methodology for 3D Spatial Characterization 6

2.2 Clustering Analysis of a 2D Snapshot . 11

2.2.1 Introduction to Clustering Algorithms 11

2.2.2 DBSCAN and OPTICS . 13

2.2.3 Towards Adapted Hyperparameters: Minimum Number of Points within
the Cluster . 22

2.2.4 Towards Adapted Hyperparameters: ε 30

2.2.5 Results . 32

2.3 Determination of Cluster Boundaries within the 2D Snapshot 36

2.3.1 What Sort of Cluster Boundary is Desirable? 36

i

CONTENTS

2.3.2 Description of Employed Method . 38

2.3.3 Adequate Selection of Parameters . 39

2.3.4 Results . 44

2.3.5 Attempted Alternatives . 44

2.4 Definition of a Brute Skeleton Describing 2D Cluster Topology 48

2.4.1 What is a Brute Skeleton and why is it worth defining? 48

2.4.2 Description of Employed Method . 50

2.4.3 Adequate Selection of Parameters . 52

2.4.4 Results . 55

2.4.5 Attempted Alternatives . 56

2.5 Re-determination of Cluster Labels based on 3D Skeleton Point Connectivity . 59

2.5.1 Extrapolation to the 3D Case . 59

2.5.2 Description of Employed Method . 60

2.5.3 Results . 64

2.5.4 Attempted Alternatives . 66

2.6 Temporal Tracking of Cluster Topology . 71

2.6.1 Introduction . 71

2.6.2 Description of Employed Method . 71

ii

CONTENTS

2.6.3 Adequate Selection of Parameters . 74

2.6.4 Results . 78

3 Evaluation based on Voronoi Tessellations Analysis 86

3.1 Application of Voronoi Tessellations to cluster Analysis 86

3.2 Evaluation of the Clustering Analysis of a 2D Snapshot 88

3.3 Evaluation of the Clustering Analysis of a 3D Database 93

3.3.1 Topological Coincidence of Clusters . 95

3.3.2 Volumetric Coincidence of Clusters . 99

3.4 Comparison of Computational Performance . 104

4 Conclusions 107

References 110

5 Appendices 111

A Organization of Presented Code . 111

B OpenSliceVTK.py . 113

C clusteringAnalysis.py . 116

D clustering3D.py . 123

E OPTICS.py . 127

iii

CONTENTS

F DBSCAN.py . 139

G clusterPlot.py . 142

H boundaryFinder.py . 145

I skeletonPlot.py . 152

J eulerianApproach.py . 155

K clusterConnect.py . 165

L relabeller.py . 170

M temporalTracking.py . 177

N temporalPlot.py . 184

O voronoiCluster.py . 188

P voronoiPlot.py . 202

iv

List of Figures

2.1 Concentration of Particles along Y in the unprocessed, original dataset 8

2.2 Extraction of Domain Separated S from all Duct Walls - In black: duct bound-
aries. In purple, extracted domain. 8

2.3 Projection of Particle Positions of Particles included within each Sheet of Thick-
ness t whose Bisecting Plane is Separated ∆Z from Adjacent Bisecting Planes
- In purple, previously extracted domain. In red: generated bisecting planes.
In black dots, particle positions not captured by this simplification. In yellow
dots, particle positions captured by this simplification. In blue dots, projected
particle positions. 9

2.4 Directly Density-Reachable Points . 15

2.5 Density-Reachable Points . 15

2.6 Core Distance of a Core Object with respect to ε and MinPts = 4 18

2.7 Reachability Distance of a Core Object with respect to ε and MinPts = 4 . . . 19

2.8 Three Artificially-Generated Simple Clusters 20

2.9 Reachability Plot of the Artificially-Generated Simple Clusters 20

2.10 Particle Positions of Reduced Dataset . 23

v

LIST OF FIGURES

2.11 Reachability Plots for Different MinPts of the Reduced Dataset - Note that
several OPTICS analyses have been carried out for the same reduced dataset,
all with a base ε of infinity. 24

2.12 Normalized Reachability Plots for Different MinPts of the Reduced Dataset . 26

2.13 Determination of MinPts∗ for the Reduced Dataset by Computing Nconcave for
different MinPts - 1317 particles in domain . 27

2.14 Determination of MinPts∗ for the Reduced Dataset by Computing Nconcave for
different MinPts - 2608 particles in domain with Sheet Thickness of 0.00164 m 28

2.15 Determination of MinPts∗ for the Reduced Dataset by Computing Nconcave for
different MinPts - 812 particles in domain with Sheet Thickness of 0.00052 m 28

2.16 Determination of MinPts∗ for the Original Dataset - 30421 particles in domain 29

2.17 Random Distribution of Particle Positions for the Employed Reduced Dataset . 31

2.18 Reachability Plots of the Reduced Dataset and of its Equivalent Random Dis-
tribution - 1317 particles in domain . 32

2.19 Reachability Plots of the Employed Dataset and of its Equivalent Random Dis-
tribution - 30421 particles in domain . 33

2.20 Classification of Particles into Cluster and Void Particles for Z = 0.0184 m. In
blue: cluster particles, in gray: void particles. 34

2.21 Classification of Particles into Cluster and Void Particles for Z = 0.0192 m. In
blue: cluster particles, in gray: void particles. 34

2.22 Classification of Cluster Particles into Different Clusters for Z = 0.0184 m . . . 35

2.23 Classification of Cluster Particles into Different Clusters for Z = 0.0192 m . . . 36

2.24 A cluster particle p, its r-neighboring particles ni, and their associated angle
functions θ(p, ni) . 40

vi

LIST OF FIGURES

2.25 Resulting Cluster Boundaries for k = 0.35 and δ = π/3 rad - In blue: cluster
particles, in red: boundary particles. 41

2.26 Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - In blue: cluster
particles, in red: boundary particles. 42

2.27 Resulting Cluster Boundaries for k = 0.7 and δ = π/3 rad - In blue: cluster
particles, in red: boundary particles. 42

2.28 Sensitivity of Boundary Criterion with k - The evolution of the proportion of
cluster particles fulfilling the boundary criterion with k is here presented. . . . 43

2.29 Resulting Cluster Boundaries for k = 0.5 and δ = π/2 rad - In blue: cluster
particles, in red: boundary particles. 43

2.30 Resulting Cluster Boundaries for k = 0.5 and δ = π/4 rad - In blue: cluster
particles, in red: boundary particles. 44

2.31 Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.136 m - In
blue: cluster particles, in red: boundary particles. 45

2.32 Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.144 m - In
blue: cluster particles, in red: boundary particles. 45

2.33 Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.152 m - In
blue: cluster particles, in red: boundary particles. 46

2.34 Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.160 m - In
blue: cluster particles, in red: boundary particles. 46

2.35 Resulting Cluster Boundaries with Grid Decomposition and k = 0.132 47

2.36 Resulting Cluster Boundaries with Grid Decomposition and k = 0.264 48

2.37 Contours of Assigned Scores to Cluster Locations 50

2.38 Classified Cell Centers of a Discretized Snapshot in Z - kcell = 0.2 53

vii

LIST OF FIGURES

2.39 Generated Brute Skeleton for a Single Snapshot in Z - ks = 0.4 54

2.40 Generated Brute Skeleton for a Single Snapshot in Z - ks = 0.8 54

2.41 Generated Brute Skeleton for a Single Snapshot in Z - ks = 1.6 55

2.42 Generated Brute Skeleton for a Single Snapshot in Z = 0.0144 56

2.43 Generated Brute Skeleton for a Single Snapshot in Z = 0.0152 57

2.44 Generated Brute Skeleton for a Single Snapshot in Z = 0.0160 57

2.45 Projection-Connectivity is not Symmetric - In pink: cluster boundaries, in blue:
original points, in green: projected points, in orange: straight trajectories. . . . 62

2.46 Connectivity and Labeling of Skeleton Points - Z = 0.0248 m 65

2.47 Connectivity and Labeling of Skeleton Points - Z = 0.0256 m 65

2.48 Connectivity and Labeling of Skeleton Points - Z = 0.0264 m 66

2.49 Contours of the Reward Function defined only by R1 68

2.50 Trajectory between Skeleton Points as Traced by an Agent Trained via Deep
Q-Learning - In blue: cluster boundary particles, in orange: skeleton points, in
red: traced trajectory . 69

2.51 Trajectory between Skeleton Points as Traced by an Agent Trained via Deep
Q-Learning - In blue: cluster boundary particles, in orange: skeleton points, in
red: traced trajectory . 70

2.52 Region of Interest for the Pairing of a Skeleton Point - In red, position of the
skeleton point under analysis. In yellow, expected position assuming uniform
velocity in the direction of the duct flow. In pink, skeleton points within the
region of interest, defined by a radius dfocus around rexpected. In gray, skeleton
point outside of such region of interest. 73

viii

LIST OF FIGURES

2.53 Distance Sensing for a Skeleton Point for dirs = 8 - In red, the skeleton point
whose rsens-neighboring boundary particles are examined. In yellow, the neigh-
boring boundary particles. In blue, the distances measured to the closest bound-
ary particles within each ”slice”. 73

2.54 Evolution of Skeleton Point Pairing with kfocus - In blue points, old cluster
boundary particles. In red points, new cluster boundary particles. In blue
crosses, old skeleton points. In red crosses, new skeleton points. In blue lines,
connections between paired skeleton points. For all three cases, ∆t = 0.15 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10. From left to right, kfocus decreases from
1.5 to 1.0 to 0.5. 76

2.55 Temporal Tracking of Cluster Topology for Z = 0.0128 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In
blue crosses, old skeleton points. In red crosses, new skeleton points. In blue
lines, connections between paired skeleton points. kfocus = 1, ∆t = 0.15 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 78

2.56 Temporal Tracking of Cluster Topology for Z = 0.0136 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In
blue crosses, old skeleton points. In red crosses, new skeleton points. In blue
lines, connections between paired skeleton points. kfocus = 1, ∆t = 0.15 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 79

2.57 Temporal Tracking of Cluster Topology for Z = 0.0144 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In
blue crosses, old skeleton points. In red crosses, new skeleton points. In blue
lines, connections between paired skeleton points. kfocus = 1, ∆t = 0.15 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 80

2.58 Pairing of Skeleton Points across Time Instants - kfocus = 1, ∆t = 0.15 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 81

2.59 Temporal Tracking of Cluster Topology for Z = 0.0128 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In
blue crosses, old skeleton points. In red crosses, new skeleton points. In blue
lines, connections between paired skeleton points. kfocus = 1, ∆t = 0.75 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 82

ix

LIST OF FIGURES

2.60 Temporal Tracking of Cluster Topology for Z = 0.0136 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In
blue crosses, old skeleton points. In red crosses, new skeleton points. In blue
lines, connections between paired skeleton points. kfocus = 1, ∆t = 0.75 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 82

2.61 Temporal Tracking of Cluster Topology for Z = 0.0144 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In
blue crosses, old skeleton points. In red crosses, new skeleton points. In blue
lines, connections between paired skeleton points. kfocus = 1, ∆t = 0.75 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 83

2.62 Pairing of Skeleton Points across Time Instants - kfocus = 1, ∆t = 0.75 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10 . 84

2.63 Evolution of Volume and Number of Skeleton Points of Cluster 1 - kfocus = 0.5,
∆t = 0.75 ms, v = 7.7 m/s, ksens = 3, and dirs = 10 85

3.1 Intersection of Normalized Area Probability Density Functions - In blue, den-
sity function corresponding to the preferentially concentrated case. In orange,
density function following a random Poisson process. 89

3.2 Identification of Cluster Particles Based on Voronöı Tesselation of a Single Two-
dimensional Snapshot in Z = 0.02 m - In gray, particles labeled as cluster
particles. In red, all other particles. 90

3.3 Evaluation of Cluster identification Based on Voronöı Tesselation of a Single
Two-dimensional Snapshot in Z = 0.02 m and t = 0.0004 m - In blue, particles
labeled as cluster particles by both methods. In red, particles labeled as void
particles by both methods. In orange, particles labeled as cluster particles by
the Voronöı-based approach but not by the DBSCAN-based approach. In green,
particles labeled as cluster particles by the DBSCAN-based approach but not
by the Voronöı-based approach. In purple, boundary particles. 91

3.4 Evaluation of Cluster identification Based on Voronöı Tesselation of a Single
Two-dimensional Snapshot in Z = 0.02 m and t = 0.0002 m - In blue, particles
labeled as cluster particles by both methods. In red, particles labeled as void
particles by both methods. In orange, particles labeled as cluster particles by
the Voronöı-based approach but not by the DBSCAN-based approach. In green,
particles labeled as cluster particles by the DBSCAN-based approach but not
by the Voronöı-based approach. In purple, boundary particles. 92

x

LIST OF FIGURES

3.5 Evaluation of Cluster identification Based on Voronöı Tesselation of a Single
Two-dimensional Snapshot in Z = 0.02 m and ∆Z = 0.0008 m - In blue,
particles labeled as cluster particles by both methods. In red, particles labeled as
void particles by both methods. In orange, particles labeled as cluster particles
by the Voronöı-based approach but not by the DBSCAN-based approach. In
green, particles labeled as cluster particles by the DBSCAN-based approach but
not by the Voronöı-based approach. In purple, boundary particles. 93

3.6 Approximated Intersection of Normalized Volume Probability Density Functions
- In blue, density function corresponding to the preferentially concentrated case.
In orange, density function following a random Poisson process. 95

3.7 Topological Validation of Skeleton Points for Z = 0.0240 m - In green and blue
points, Voronöı cluster cell centers, colored according to their three-dimensional
cluster labels. In orange, red, and yellow triangles facing upwards, skeleton
points whose closest Voronöı cell center is part of a particle cluster. In or-
ange, red, and yellow triangles facing downwards, skeleton points whose closest
Voronöı cell center is not part of a particle cluster. 97

3.8 Topological Validation of Skeleton Points for Z = 0.0248 m - In green and blue
points, Voronöı cluster cell centers, colored according to their three-dimensional
cluster labels. In orange, red, and yellow triangles facing upwards, skeleton
points whose closest Voronöı cell center is part of a particle cluster. In or-
ange, red, and yellow triangles facing downwards, skeleton points whose closest
Voronöı cell center is not part of a particle cluster. 98

3.9 Topological Validation of Skeleton Points for Z = 0.0256 m - In green and blue
points, Voronöı cluster cell centers, colored according to their three-dimensional
cluster labels. In orange, red, and yellow triangles facing upwards, skeleton
points whose closest Voronöı cell center is part of a particle cluster. In or-
ange, red, and yellow triangles facing downwards, skeleton points whose closest
Voronöı cell center is not part of a particle cluster. 99

3.10 Estimated Volume of the 10 Largest Particle Clusters According to the Devel-
oped Methods of Clustering Analysis . 101

3.11 Estimated Volume of the 10 Largest Particle Clusters According to a Voronöı-
based Method of Clustering Analysis . 101

xi

LIST OF FIGURES

3.12 Probability Density Function of Volumes per Cluster - In blue, volumes per
cluster of the DBSCAN-based clustering method. In orange, volumes per cluster
of the Voronöı-based alternative. In green, volumes per cluster of the Voronöı-
based alternative with a 25% shift of the volume threshold. In red, volumes per
cluster of the Voronöı-based alternative with a 50% shift of the volume threshold.103

3.13 Time Consumption of the DBSCAN-based Clustering Method - All times are in
seconds . 105

xii

Chapter 1

Introduction

Turbulent flows carrying particles with larger inertia than that of the fluid element occur
frequently within environments of both nature and engineering. Phenomena ranging from the
formation of rain within clouds, the atmospheric transport of solid pollutants, or the deposition
of sediments on river banks, to the flow in a combustion chamber or the volumetric absorption
of solar radiation in a solar receiver all involve the interaction between inertial particles and
turbulent flows. As a result, there has been great interest in the last decades to not only
acquire an understanding of the underlying physical mechanisms playing a role in particle-
laden turbulent flows, but also to develop quantitative tools to analyze the characteristics of
these flows.

The main phenomena characterizing particle-laden turbulent flows are associated to the
dynamic interaction between inertial particles and turbulent flow, where the response of a
particle to the flow turbulence is directly dependent on its own inertia and on the scales of
the flow. More precisely, the degree to which an inertial particle is capable of following the
flow is described by the Stokes number, defined as the ratio of the particle response time to
some representative time scale in the flow, the latter being usually the Kolmogorov time scale
[1]. For instance, particles with very low Stokes numbers will simply follow the flow as a flow
tracer, whereas particles associated with high values of such a number are not affected by
any turbulent structure in their motion. Nevertheless, when the Stokes number describing a
turbulent particle-laden flow is of the order of one, particles do respond to some degree to the
turbulence of the flow, but are however not able to completely follow the curved streamlines
of this turbulence. What results in these specific cases is that particles accumulate producing
a notoriously in-homogeneous concentration field, dynamically forming particle structures in
which the number density is significantly higher than the mean, as well as leaving regions of the
domain completely absent of particles [2] [1] [3]. Based on this, the Stokes number can also be
conceived as describing the degree to which turbulent eddies can modify the concentration field
of the diluted particles [1]. This in-homogeneous concentration field is traditionally explained

1

by the interaction of a particle that is heavier than the surrounding fluid with a turbulent
structure, resulting in the outward acceleration of the particle due to centrifugal forces.

This phenomenon, by which the inertial particles diluted in the flow accumulate prefer-
entially in regions of high strain rate within the flow is known as preferential concentration.
Nevertheless, one can distinguish three aspects of this phenomenon: while as preferential
concentration refers simply to the preferential movement of particles into particular regions,
clustering is conceived to be the fact that particles tend to accumulate and segregate, and
clusters are groups of particles remaining in proximity on time scales relatively larger than a
particular turbulent time scale [4]. In opposition to the definition of a particle cluster as a
region of the flow of high number density of particles, it is possible as well to define a particle
void as a region of low number density of particles. In any case, preferential concentration
refers to the mechanisms causing both clustering as well as the temporal evolution of particle
clusters and voids. A review of turbulent dispersed multiphase flow is presented in Balachandar
et al. (2010) [5].

Several different methods have been developed in the last decades to quantify the degree of
preferential concentration within turbulent particle-laden flows, as well as to identify regions of
particle clusters and voids within the flow, an overview of the most commonly employed of these
being presented in the work by Monchaux et al. (2012) [4]. On the one hand, a large number of
so-called box-counting methods exist, based on the separation of the domain into boxes of equal
size and the later counting of the number of particles within each box. In the work by Fessler
et al. (1994) [1], the level of preferential concentration of the flow is quantified by comparing
the distribution of the number of particles per box in the preferentially concentrated case
with that of the case of purely uniformly distributed particles, the latter being associated to a
Poisson distribution. Given that in the preferentially concentrated case, by definition, regions
of relatively high or low particle number density will occur more frequently, a clustering index
can be extracted from the difference between both distributions, this quantifying the degree of
preferential concentration [1]. Similarly, Aliseda et al. (2002) [2] analyzes the effect of the box
size on the resulting preferential concentration, extracting that clustering is maximum at length
scales of the order of ten times the Kolmogorov length scale. Moreover, in the alternative index
based on box-counting proposed by Villafañe et al. (2016) [6], a qualification of preferential
concentration is presented which unlike the index presented by Fessler et al. (1994) [1], is
minimally influenced by the number of particles in the domain if a sufficient number of samples
of the spatial particle distributions are available [6]. Furthermore, in order to identify particle
clusters employing box-counting methods, one can define a concentration threshold such that
boxes above such threshold are connected and considered as forming particle clusters [2].
Nevertheless, it is necessary to take into account that these methods require the extrinsic
introduction of an arbitrary length scale (i.e a box size), as well as a user defined threshold
[4]. In dilute conditions, the box size is dictated by the mean particle concentration and not
necessarily by a flow length scale.

On the other hand, an alternative method for quantifying preferential concentration based
on Voronöı tessellations has been introduced by Monchaux et al. (2010) [7]. These methods

2

are based on the decomposition of the domain into independent cells associated to each par-
ticle, where each cell is the region of the domain closer to its associated particle than to any
other particle [4]. Given that the volume of each Voronöı cell is inversely related with the
concentration of particles at that region, a local concentration field can be obtained from the
generated field of Voronöı volumes, and furthermore a quantification of preferential concen-
tration can be obtained from the standard deviation of the probability density function of the
resulting Voronöı volumes, without requiring the introduction of an arbitrary length scale [7].
Monchaux et al. (2010) [7] also delves into the identification of particle clusters by intersecting
the probability density function of Voronöı volumes of the preferentially concentrated case with
that of uniformly distributed particles. In this way, a maximum Voronöı volume which a cell
can have to be classified as a cluster is determined, and multiple Voronöı cells fulfilling this
criterion can be connected in order to form a single particle cluster. The main advantage of
this method with respect to box-counting alternatives stems from its independence from any
length scale or number density threshold in order to identify particle clusters, albeit a generally
higher computational cost [4].

None of these methods of quantification of preferential concentration and identification
of particle clusters in particle-laden turbulent flows actually employs clustering algorithms.
Therefore, it is worth exploring whether a more efficient method for particle cluster identifi-
cation can be developed from the application of these techniques. Clustering algorithms can
be defined as techniques of organizing data samples within a dataset into sensible groupings,
without employing labels which tag each object with prior identifiers [8]. Due to the fact
that the objective of these algorithms is to sort unlabeled datasets into classes, and not to
determine discriminative rules with which to classify new data samples into existing categories
of the dataset, clustering algorithms form an important part of unsupervised learning within
the area of machine learning [8]. In this sense, it is possible to redefine a cluster within this
context as a group of data samples which are alike, and are at the same time different from
any data sample belonging to another cluster [9]. For the purposes of the current study, the
term particle cluster refers a the group of densely-placed particles caused by the preferential
concentration of particles embedded in turbulent flow, whereas the term cluster represents a
group of data samples resulting from the application of a clustering algorithm. For an intro-
duction to the basic concepts underlying most clustering algorithms, the reader is referred to
the work of Jain et al. (1988) [8].

With regards to these techniques of organizing a dataset into groups, a myriad of approaches
have been developed in past years, a review of them being exposed in detail in the work by Xu et
al. (2015) [9]. These algorithms can be sorted based on their operating principle. For instance,
clustering algorithms based on partition are commonly used, of which K-means as introduced
by MacQueen et al. (1967) [10] and PAM and CLARA as per Kaufman et al. (1990) [11] are
notorious. Moreover, algorithms based on hierarchy, such as BIRCH as presented by Zhang.
et al. (1996) [12], or based on distribution, of which Gaussian Mixture Models as introduced
by Rasmussen et al. (1999) [13] is most famous, are also frequently employed. Futhermore,
clustering algorithms based on density, of which DBSCAN, as developed by Ester et al. (1996)
[14], and OPTICS, introduced by Ankerst et al. [15] are of particular relevance to the current
study. For this latter category, a cluster is conceived as the group of data samples belonging

3

to the same region of high density of data samples [9], a definition which is clearly reminiscing
of that of the particle cluster. In Ester et al. (1996) [14], DBSCAN is presented as an efficient
clustering algorithm capable of defining clusters of arbitrary shape with minimal knowledge of
the domain. On the other hand, OPTICS, as introduced by Ankerst et al. (1999) [15], is a
density-based clustering algorithm sharing many core principles of operation with DBSCAN,
which however does not produce a clustering of the dataset explicitly, but instead allows for
a representation of its clustering structure. In later work by Schubert et al. (2017) [16], the
utility of DBSCAN is defended and heuristics for choosing adequate parameters are presented.

Based on the wide variety of clustering algorithms developed in the past decades, and the
fact that these have not been applied in order to identify particle clusters within particle-laden
turbulent flows, it seems appropriate to explore whether these techniques can be of any use in
analyzing particle clusters. More specifically, it is worth questioning if considering a dataset of
particle positions, one can group data samples representing particle positions into clusters, each
of these in turn representing a particle cluster. Moreover, it is also necessary to investigate the
limitations and requirements of such an application when compared to the existing methods of
quantification of preferential concentration, in order to determine whether clustering algorithms
are actually worth employing when identifying particle clusters. Additionally, it is worth
exploring if based on a novel application of clustering algorithms to identification of particle
clusters, one can develop a method for the tracking of a single particle cluster in time, in order
to extract how particular characteristics of the particle structure evolve during its lifetime.

Therefore, a main objective of the current study is to apply density-based clustering al-
gorithms to a dataset made up of positions of particles embedded in turbulent flow, in order
to identify particles belonging to a particle cluster, and thus to group them defining three-
dimensional particle structures. In order to evaluate the developed method, it is another
objective of this study to compare the obtained results with that of an existing robust method
for particle cluster identification, such as the application of Voronöı tessellations presented in
Monchaux et al. (2010) [7]. This evaluation focuses on comparing the resulting particle cluster
volumes and topologies, as well as the computational performance of both alternative methods.

With this objective, the current study simultaneously applies two density-based cluster-
ing algorithms to carry out the identification of particle clusters within a dataset of positions
of particles embedded in turbulent flow: OPTICS and DBSCAN. Moreover, given the three-
dimensional nature of the employed dataset, special additional steps have to be taken in order
to more efficiently perform this analysis. On the one hand, the three-dimensional domain is
simplified into several adjacent two-dimensional domains, and on the other hand, the infor-
mation expressing the topology of a particle cluster is condensed into a reduced set of points
representing each particle cluster. These additional steps reason the method’s potential ad-
vantages with respect to an alternative method based on Voronöı tessellations. While on the
one hand, the simplification of the three-dimensional into several two-dimensional domains
allows for a milder computational cost, the condensation of each particle cluster topology into
a reduced set of representative points permits further analyses concerning each cluster’s mor-
phology and evolution to be carried out with ease. Nevertheless, possible disadvantages of

4

the current method with respect to a purely three-dimensional approach stem from the fact
that the simplification of the three-dimensional domain into several adjacent two-dimensional
domains implies a certain degree of loss of information.

In addition, the current study has the significant objective of developing a method for
tracking particle structures over time. This novel technique is based on the previous simpli-
fication of a particle cluster topology into a set of representative points, and permits one to
determine how certain characteristics of a particle cluster develop temporally.

This report is structured as follows. In Chapter 2, the implemented methods in each step of
this analysis are presented in detail. After describing the carried out simplification of a three-
dimensional domain and introducing the main principles of the employed clustering algorithms,
each step of the identification of a three-dimensional particle cluster is displayed. The last part
of this chapter exposes the implemented methods of temporal tracking of a particle cluster.
Furthermore, in Chapter 3, the implemented technique of particle cluster identification is
evaluated with an alternative method based on Voronöı tessellations, both by comparing the
resulting cluster volumes as well as the characteristic topology of each cluster. The last part of
this chapter carries out a comparison of the computational cost of both alternative methods.
Lastly, the conclusions to the current study are presented.

5

Chapter 2

Methods of Analysis

2.1 Methodology for 3D Spatial Characterization

The dataset employed in this study consists on a list of particle positions in three-dimensional
space for a given time instant. The particle positions were taken from the simulation of
turbulent duct flow laden with small heavy inertial particles, performed in the framework of
the PSAAPII program at Standford University. For details on the numerical framework and
methodology see Esmaily et al. (2020) [17]. Whereas the fluid domain in this simulation
has been computed based on an Eulerian approach, where all scales of the turbulent flow are
resolved via direct numerical simulation (DNS), the dynamics of each individual particle have
been determined with a Lagrangian approach, assuming that the only forces affecting particle
motion are those of Stokes drag, gravity, and collisions as per the hard-sphere model. More
precisely, the point-particle model has been utilized, where individual particles within the flow
are represented by means of a force at a punctual location. This model is valid as long as the
flow structures are much larger than the size of a particle, such that particle finite-size effects
are neglected. Moreover, the interaction between the continuous fluid field and the discrete
set of particles has been modeled with two-way coupling, where each particle exerts a force
on the flow which is distributed among cells adjacent to the particle. The dimensions of the
square duct utilized in this simulation as well as the characteristics of the flow and particles
are presented in Table 2.1.

Given the three-dimensional nature of the turbulent structures in this flow, which introduce
the same degree of complexity to the structures of particles within the flow, it is necessary
to analyze these structures from a three-dimensional standpoint, at the same time taking
into account the computational requirements that any calculation regarding three-dimensional
turbulent flow entails. In this way, the current study has sought to decompose the complete
three-dimensional analysis of the computational domain into several two-dimensional problems.

6

2.1. METHODOLOGY FOR 3D SPATIAL CHARACTERIZATION

Duct Length [m] 0.27

Duct Width [m] 0.04

Friction Reynolds Number Reτ 570

Kolmogorov Length Scale η 7e-5

Stokes Number Stη 12

Ratio of Particle Diameter to Kolmogorov Length Scale dp/η 0.17

Table 2.1: Characteristic of Data-Generating Simulation - The friction Reynolds number Reτ
is calculated based on the friction velocity and the duct half-height, whereas η and Stη denote
the Kolmogorov length scale based on the mean dissipation, and the Stokes number based on
the Kolmogorov time scale respectively.

More precisely, the computational volume has been split into a series of planes parallel to the
stream-wise direction X of the duct and with a constant value of Z, such that if these planes are
distant enough from the duct walls, the parameters employed for the analysis of an individual
two-dimensional snapshot are applicable to all of the snapshots defining the domain. Then, each
of these two-dimensional computational domains will be generated by normally projecting all
particle positions of particles within a certain distance of each plane, as if each plane simulated
the readings of a laser sheet of a thickness of twice such distance. This procedure requires the
adequate specification of three parameters: the minimum separation of each two-dimensional
domain with respect to duct walls S, the separation between adjacent planes of constant Z,
∆Z, and the thickness of each simulated projection sheet t.

The first step of this processing of the original dataset involves a reduction of the domain
under analysis. Since the introduction of phenomena relevant to the presence of the duct wall
hinders the analysis of the isolated nature of the particle structures that occur in turbulent
particle-laden flow, it is necessary to exclusively take into account a limited region of the domain
which is far enough from any duct wall and allows for feasible computational requirements. In
order to avoid the effects produced by wall proximity to be displayed in the extracted dataset,
a minimum separation S from the wall is to be ensured in the Y and Z directions. Based
on the distribution presented in Figure 2.1, and taking into account that the duct’s section is
square, it is reasonable to infer that a separation of 0.008 m from every wall is enough to avoid
effects caused by wall proximity to be included in the extracted dataset, thereby focusing the
study in the region of the domain of constant particle number density. As will be discussed
later on, this is essential for the hyperparameters determined in Sections 2.2.3 and 2.2.4 to be
applicable to the whole dataset, since these are particularly adapted to the concentration of
particles at a single level of Z. This first step of processing is visualized in Figure 2.2, where a
reduced three-dimensional region of the original duct domain is extracted.

The next step of this processing involves, within the previously extracted domain, the
definition of a number of parallel planes of constant Z with a specific separation ∆Z between
them. This separation must guarantee the continuity of topological properties of particle
structures within adjacent planes while at the same time keeping an advantage with respect
to the fully three-dimensional approach in terms of computational requirements. Each of

7

2.1. METHODOLOGY FOR 3D SPATIAL CHARACTERIZATION

Figure 2.1: Concentration of Particles along Y in the unprocessed, original dataset

Figure 2.2: Extraction of Domain Separated S from all Duct Walls - In black: duct boundaries.
In purple, extracted domain.

these parallel planes bisects an associated sheet of thickness t, such that all particles within
such sheet are normally projected to the bisecting plane. Therefore, each two-dimensional
domain resulting from this procedure is made up of the particle positions which are normally

8

2.1. METHODOLOGY FOR 3D SPATIAL CHARACTERIZATION

projected to each of these planes. As a result, from a large list of three-dimensional positions
scattered about the computational volume, what is obtained from this process is an ordering
of the positions into a discrete set of possible elevations normal to the stream-wise plane. This
procedure is visualized in Figure 2.3.

Figure 2.3: Projection of Particle Positions of Particles included within each Sheet of Thick-
ness t whose Bisecting Plane is Separated ∆Z from Adjacent Bisecting Planes - In purple,
previously extracted domain. In red: generated bisecting planes. In black dots, particle po-
sitions not captured by this simplification. In yellow dots, particle positions captured by this
simplification. In blue dots, projected particle positions.

When specifying the apt separation ∆Z between adjacent planes of constant Z, it is neces-
sary to bear in mind that such specification is closely tied with that of the thickness t associated
to each projection sheet. In the extreme in which sheet thickness is close to null, what occurs
is that the number of particles associated to each computational plane is extremely reduced,
at the same time allowing that the processed Z value of the particle does not deviate much
from its original Z value. On the contrary, the larger the sheet thickness t, the greater the
amount of particles associated to a plane, and the greater the difference will be between their
original Z coordinate and the Z value of the projection representing the particle. On the other
hand, the effect of the separation between adjacent planes ∆Z has to do with the continuity
of particle structure topologies in adjacent computational surfaces. If this separation is large,
it makes sense to assume that the difference in particle structure appearance will be greater
than if this separation is less significant.

Moreover, if the spacing between adjacent computational planes is large while the thickness
of each sheet is small, a great amount of particles within sheets will not be associated to a
plane, and their position would thus be lost. The opposite is to happen if the spacing between
adjacent computational planes is minute when compared to the associated sheet thickness,
where the information encapsulated in each Z level will actually describe much of what is

9

2.1. METHODOLOGY FOR 3D SPATIAL CHARACTERIZATION

happening at very different values of Z, and much of the particle positions within the original
three-dimensional data set will be included in the processed results.

Thus, it is mainly sought to employ a sheet thickness capable of describing particle struc-
tures relevant to a single level of Z, and a separation between adjacent planes that allows for a
certain continuity of structure topologies. In an ideal case, with an infinite number of particles,
one would employ a sheet thickness equivalent to the Kolmogorov scale, as this would allow
for a precise encapsulation of the particle structures caused by the turbulence in the flow.
Nevertheless, the number area density resulting from this sheet thickness is too low. In the
current study, a separation between adjacent planes equal to 11.42 · η is utilized, η being the
associated Kolmogorov length scale, and the sheet thickness t is imposed to be half of this
separation. This combination of parameters is thought to adequately represent encapsulate
the phenomena under analysis without incurring a computational cost close to the cost of a
direct three-dimensional approach.

Table 2.2 presents the domain dimensions of the dataset based on which a decomposition
into a set of two-dimensional planes is carried out, each including the normal projections of
nearby particles, as well as the parameters employed in this decomposition.

Magnitude [m] length / H

Domain Size in X [0, 0.27] [0, 6.75]

Domain Size in Y [0, 0.04] [0, 1.00]

Domain Size in Z [0, 0.04] [0, 1.00]

Reduced Domain in X [0.108, 0.162] [2.7, 4.05]

Reduced Domain in Y [0.008, 0.032] [0.2, 0.8]

Reduced Domain in Z [0.013, 0.028] [0.325, 0.7]

Adjacent Plane Separation ∆Z 0.0008 (11.42 · η) 0.02

Planar Projection Sheet Thickness t 0.0004 (5.71 ·η) 0.01

Average Number of Particles per computational Plane 29272 [-] -

Average Planar Density 22,586,419 [1/m2] -

Table 2.2: Dimensions of the unprocessed dataset and dimensions resulting of the described
decomposition into planes parallel to the stream-wise direction. H is the duct width, corre-
sponding to 0.04 m, and η is the Kolmogorov Length Scale.

What results from the described processing of the original dataset is a simplification of
the original three-dimensional domain into a set of two-dimensional domains which, for an
adequate selection of defining parameters dependent on the original dataset’s particle number
density, can be further analyzed to group particle positions into particle clusters. Given the
imposed separation with respect to all duct walls, a clustering algorithm with a single parameter
configuration can be applied to all two-dimensional domains.

10

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

2.2 Clustering Analysis of a 2D Snapshot

2.2.1 Introduction to Clustering Algorithms

For every two-dimensional snapshot in Z representing projected particle positions within a
specific computational plane, it is necessary to group particle positions into particle clusters,
in order to define the clusters whose topology and temporal evolution are to be studied in
later phases of this study. Treating the dataset containing particle positions as an arbitrary
multidimensional dataset, in which every data sample describes a particle position within
the computational plane, the grouping of particle positions can be performed making use of
clustering algorithms. Thus, a description of the working principles, varieties, and applicability
of these techniques is necessary within the context of this study.

Clustering methods are aimed at generating hypotheses, detecting anomalies, and iden-
tifying particular features within an unlabelled dataset [18]. This quintessential branch of
unsupervised learning can be seen either as providing tools for a preliminary exploration or as
allowing for the compression of the original dataset into a representative set of clusters [18].
Classically, a clustering algorithm can be described as a method for sorting data samples into
groups such that [9]:

• Instances within the same cluster must be as similar as possible.

• Instances in different clusters must be as different as possible.

Based on these two principles, it is reasonable to infer that a great deal of importance
is placed on the measures of similarity and dissimilarity employed in the clustering method,
and on how this measure is processed in order to classify the dataset into an appropriate set
of clusters. When dealing with quantitative data, it is common to employ distance functions
when determining the similarity between a data sample and data samples in the same cluster
or pertaining to a different cluster.

The most commonly employed distance function when evaluating the similarity of two data
points xi and xj is the Minkowski distance, which for a d-dimensional data space, depending
on an additional parameter n, follows Eq. (2.1) [9]. In the case in which n = 1, the Minkowski
distance represents the city block or Manhattan distance, basically adding the difference in
each of the dimensional directions between both data samples. However, in the case in which
n = 2, what one obtains out of this function is a classic Euclidean distance. Lastly, it is worth
noting that in the case in which n→∞, the Chebysev distance results [9].

11

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

d(xi, xj , n) =
(d∑
l=1

|xi,l − xj,l|n
)(1/n)

(2.1)

Another popular distance function mentioned in [9] is the standardized Euclidean distance,
which weights the classic Euclidean distance based on the standard deviation sl of the dataset
in a dimensional direction l. This function is presented in Eq. (2.2).

d(xi, xj) =
(d∑
l=1

|
xi,l − xj,l

sl
|2
)(1/2)

(2.2)

Moreover, in order to characterize the difference in orientation between two data samples as
a parameter defining their distance, the Cosine distance can be employed, taking into account
the scalar product of both data samples xi and xj as is visible in Eq. (2.3). This distance can
also be seen as directly dependent on the angle θ between both data samples.

d(xi, xj) = 1− cos θ =
xi · xj
|xi||xj |

(2.3)

Based on these commonly employed distance measures, a myriad of different techniques
exist to group multi-dimensional data samples into representative clusters, depending on the
strategy by which task is tackled. In any case, a set of relevant factors determine whether the
application of a particular algorithm is convenient.

Firstly, one has to take into account whether the number of clusters in the grouped result
is a preset parameter of the method or whether it is automatically determined based on the
dataset’s structure. In the case that the number of clusters is preset and is extremely different
from the possible number of clusters which can appear due to the nature of the dataset, it
may occur that visible groups within the dataset are split into multiple clusters, that a cluster
is not associated to a large enough number of data samples to be considered representative,
or that a single cluster is attached to multiple perceivable groups within the dataset. Thus,
if a method in which the number of clusters is a preset parameter is employed, it is necessary
to ensure that this number of clusters is coherent with the dataset’s structure. Two common
clustering algorithms in which the number of clusters is a preset parameter defining by the
user are Gaussian Mixture Modeling and k-Means Clustering [9].

Secondly, it is necessary to contemplate whether the employed clustering technique is ca-
pable of defining clusters with an arbitrary shape or whether it is designed to detect data
sample groups of a particular topology. For example, in the case of k-Means clustering, data

12

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

samples are grouped based on their proximity to a punctual cluster center, such that data
samples within the same actual group within the dataset may be assigned to different clusters
if they have closer cluster centers nearby. Thus, it can be expected for the clusters resulting
from applying k-Means to a dataset to have something similar to a circular shape, depending
of course on the dataset structure and the number of specified cluster centers.

Lastly, a minor peculiarity of certain clustering algorithms which, as will be seen later on, is
very useful for the current application, is whether the clustering method is capable of detecting
and filtering out noise within the dataset or not. It may be the case, as in k-Means algorithm,
that all particles must be assigned to their closest cluster center. Thus, what results is that
isolated data samples may be associated to very dissimilar cluster centers, and the quality of
the clustering is reduced [9]. Certain clustering algorithms, such as OPTICS and DBSCAN,
are capable of classifying data samples as noise, and as a consequence do not attach a cluster
label innecessarily.

2.2.2 DBSCAN and OPTICS

In the current study, in order to determine whether each particle within the two-dimensional
snapshot in Z can be classified as belonging to a particle cluster or as belonging to a particle
void, it is necessary to employ a density-based clustering algorithm capable of separating the
relatively denser regions assigned to particle clusters from the relatively less dense regions
assigned to particle voids. Being OPTICS and DBSCAN the main representatives of this
family of clustering techniques, their employment within the context of this study is more
than reasonable. As will be seen later on, both methods are particularly useful for the current
application due to their ability of detecting clusters of arbitrary shapes without an a priori
specification of the number of clusters to be defined, and due to the fact that not all data
samples are grouped within a cluster, but may instead be labeled as noise samples. Moreover,
the current study employs the description of the clustering structure of the dataset which
OPTICS allows for in order to determine an adequate set of parameters, adapted to the average
number density of the processed dataset, with which to perform the DBSCAN clustering
analysis of each previously generated two-dimensional domain.

DBSCAN and OPTICS both belong to a same family of clustering algorithms based on
density, where the main principle behind the clustering procedure is to observe the areas of
high density within the dataset, and thus to group data samples belonging to a same area of
high density within the same cluster [9]. In other words, these clustering techniques rely on
the fact that there are regions of the dataset in which the density of data samples is relatively
higher than in other regions. Based on this, it makes sense to connect all data samples within
the same region of high density by associating them to the same cluster.

As is expected, a question arises which is similar as that appearing when defining a particle

13

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

cluster or a particle void: how is a region of the dataset to be defined as dense? In brief, a
density threshold must be set, and thus these algorithms require the definition of a maximum
volume and a minimum number of data samples to indirectly fix this threshold. This requires
the specification of a minimum number of samples MinPts, which when combined with a set
neighborhood radius ε defines this number density threshold. Based on these parameters, for
each data sample surpassing this density threshold, the number of neighbors within a known
radius ε must be at least a specified value MinPts [15].

In order to properly understand the basis on which OPTICS and DBSCAN are founded,
it is necessary to introduce a series of concepts innately relevant to density-based clustering.
The first of these terms to introduce is direct density-reachability [14].

Definition 2.2.1. Directly Density-Reachable Points: A data sample p is directly density-
reachable from a sample q with respect to ε and MinPts in a set of objects D if:

1. p ∈ Nε(q), where Nε(q) is the subset of D contained in the ε-neighborhood of q.

2. Card(Nε(q)) ≥MinPts, where Card(Nε(q)) is the number of elements in the set Nε(q).

It is worth taking into account that for two data samples, this condition is not necessarily
reciprocal, since it may be the case that both data samples are within the ε-neighborhood of
each other but only one of the two fulfills the second condition. This second condition is called
the core object condition, defining the data sample which satisfies it as a core object. In short,
it is possible for a data sample to be directly density-reachable only from a core object, as is
made visible in Figure 2.4, where p is directly density-reachable from q but q is not directly
density-reachable from p.

On the other hand, this sort of connectivity within data samples can exist less directly,
involving intermediate data samples connecting both considered points. In this way, the con-
dition of density-reachability is defined [14].

Definition 2.2.2. Density-Reachable Points: A data sample p is directly density-reachable
from a sample q with respect to ε and MinPts in a set of objects D if there is a chain of
objects p1, ..., pn such that p1 = q, pn = p, pi ∈ D, and pi+1 is directly density-reachable from
pi with respect to ε and MinPts.

It is worth noting that for the definition of density-reachable points, all except the last
of the data sample in the chain p1, ..., pn must necessarily be core objects, this causing this
condition to be non-reciprocal. This condition is made visible in Figure 2.5.

Moreover, a core principle necessary to define a cluster within the context of these two
density-based clustering method is density-connectivity [14].

14

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.4: Directly Density-Reachable Points

Figure 2.5: Density-Reachable Points

Definition 2.2.3. Density-Connected Points: A data sample p is density-connected to another
sample q with respect to ε and MinPts in a set of objects D if there is an object o ∈ D such
that both p and q are density-reachable from o with respect to ε and MinPts in D.

Differently to the previous two, this condition is symmetric, since the definition only re-
quires object o to be a core object, as well as all of the other samples connecting p and q with

15

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

o. As a result, it is now possible to define the conditions for a cluster to be assigned as well as
for a data sample to be labeled as noise [14].

Definition 2.2.4. Cluster and Noise: Given a set of data samples D, a cluster C with respect
to ε and MinPts in D is a non-empty subset of D which satisfies:

1. ∀p, q ∈ D, if p ∈ C and q is density-reachable from p with respect to ε and MinPts, then
also q ∈ C

2. ∀p, q ∈ C, p is density-connected to q with respect to ε and MinPts in D.

All data samples not included within a cluster are labeled as noise.

Based on this definition of a cluster, it is clear that since the fact that two points are
density-reachable does not necessarily imply that both are core objects, not all data samples
included within a cluster are necessarily core objects. Nevertheless, it is necessary for a cluster
to contain at least one core object for density-reachable and density-connected points to occur,
since a cluster can be seen as the set of all data samples in D which are density-reachable from
an arbitrary core object in the cluster. On the other hand, it is directly reasonable that all
noise data samples are non-core objects.

As the simpler algorithm of the two exposed here, DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) employs the definitions presented up to now. This algorithm
begins by examining the ε-neighborhood of every data sample in the dataset. Then, if the ε-
neighborhoodNε(p) of a sample p contains more thanMinPts points, a new cluster C is created
including p and all of its ε-neighbors. DBSCAN proceeds by analyzing the ε-neighborhood of
all of the unprocessed points q in C. For each of these points q, if Nε(q) contains more than
MinPts points, the ε-neighbors of q which are not in C are added to the cluster and their
ε-neighborhood is analyzed in the following step. Once no new points can be added to the
current cluster, the algorithm continues examining the ε-neighborhood of unprocessed data
samples in the dataset [14].It is worth noting that the results of a DBSCAN procedure are
deterministic, although they are expected to vary as soon as the dataset is permuted [16].

The simplicity of this algorithm relies on its direct dependency on the two user-defined
parameters ε and MinPts which explicitly state what the minimum density of data samples
necessary to define a cluster is. Since both of these parameters are fixed, it is reasonable to
expect that this algorithm will classify more data samples as noise the higher this threshold
density is set to (by employing low values of ε or large values of MinPts), and will label more
data samples within the same cluster as this threshold density is lowered.

On the other hand, OPTICS (Ordering Points To Identify the Clustering Structure) can
be considered as an extension of DBSCAN, which does not take into account a single density

16

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

threshold but rather examines the clustering structure of the dataset for a base ε and a fixed
MinPts [15]. This clustering structure is expressed by means of a particular sorting order of
all data samples as well as the reachability and core distances of each of these data samples.
In the current study, this expression of the clustering structure of the dataset is employed
to determine a valid pair of ε and MinPts with which to carry out the DBSCAN clustering
analysis of each two-dimensional domain. Nevertheless, it is worth noting that is also possible
to directly group the dataset into clusters by making use of this presentation of the dataset
clustering structure.

In order to fully understand the basis on which OPTICS functions, it is important to
introduce the concept of the core distance of a data sample. This distance, based on a particular
number of points MinPts, defines the minimum neighborhood radius ε at which such data
sample becomes a core object. More formally, the definition is as follows [15]:

Definition 2.2.5. Core Distance of a Data Sample p: Given an object p belonging to a dataset
D, a distance ε, the ε-neighborhood of p Nε(p), a number of points MinPts, and the distance
to its n-th neighbor dnth(p, n, ε), the core distance of p follows:

dcore(p,MinPts, ε) =

{
undefined Card(Nε(p)) < MinPts
dnth(p,MinPts, ε) otherwise

Given that the definition of this distance takes into account whether the number of data
samples in the ε-neighborhood of p is superior to MinPts, it is possible to add that the core
distance of an object p with respect to ε and MinPts will only be defined once p is a core
object with respect to ε and MinPts. If this is fulfilled, then the core distance is actually the
smallest neighborhood radius ε′ which would allow for p to be a core object with respect to
ε′ and the specified MinPts. As a result, the core distance will always be smaller than the
specified ε with which the number of data samples in Nε(p) is examined, since otherwise it
would imply that the object under analysis would require a larger neighborhood radius than ε
to have MinPts neighbors and as a result would not be a core object with respect to ε. These
characteristics of the core distance are made visible in Figure 2.6, where MinPts is set to 4.

Furthermore, it is necessary to describe the concept of the reachability distance in order to
understand how OPTICS assigns data samples to clusters.

Definition 2.2.6. Reachability Distance of a Data Sample p with respect to o: Given objects
p and o belonging to a dataset D, a distance ε, the ε-neighborhood of o Nε(o), a number of
points MinPts, and the distance between o and p d(o, p), the reachability distance of p with
respect to o is defined as follows:

dreachability(p, o,MinPts, ε) =

{
undefined Card(Nε(o)) < MinPts
max(dcore(o,MinPts, ε), d(o, p)) otherwise

In few words, the reachability distance of a data sample p with respect to o is the smallest
neighborhood radius ε′ with which p is directly density-reachable from o with respect to ε′ and

17

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.6: Core Distance of a Core Object with respect to ε and MinPts = 4

MinPts at the same time allowing o to be a core object with respect to ε′ and MinPts [15].
Similarly to the definition of the core distance, this expression for the reachability distance
requires o to be a core object with respect to ε and MinPts. However, once this condition is
fulfilled, the reachability distance is the maximum between the core distance of o with respect
to ε and MinPts and the distance between samples o and p. The different cases for this
definition, depending if p is outside or inside of the radius defined by the core distance of o are
represented in Figure 2.7. As p1 is closer to o than the MinPts-th neighbor of o, it is necessary
for the neighborhood radius which the reachability distance defines to still include MinPts
samples, so that o is a core object with respect to such neighborhood radius and MinPts,
which in this case is 4. Moreover, as p2 is father from o than its MinPts-th neighbor, it is
necessary to enlarge this neighborhood radius to allow for p2 to be directly density-reachable
from o. In any case, it is important to take into account that the reachability distance of a
sample p depends directly on the core object o with respect to which it is defined.

Based on these definitions, the OPTICS algorithm fundamentally determines the clustering
structure of the dataset by analyzing each data sample within the dataset and storing both its
core distance as well as its reachability distance with respect to the closest core sample from
which it is directly density reachable [15]. In order to do so, it requires the introduction of a
fixed MinPts and a base ε, although it does not directly employ them for cluster assignment
as DBSCAN does.

To be more precise, for every unprocessed data point in the dataset, OPTICS retrieves its
ε-neighborhood and determines its core distance with respect to ε and MinPts. If this object
has an undefined core distance because it is not a core sample, the method goes on to the next
unprocessed point in the dataset. If this is not the case as the data sample is a core object, the
algorithm collects all directly density-reachable points from this point with respect to ε and
MinPts and stores these so-called seed points in a seed list, sorted by their reachability distance
to the closest core object to which they have already been determined as directly density-

18

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.7: Reachability Distance of a Core Object with respect to ε and MinPts = 4

reachable. In other words, only if the new reachability of an already processed seed point is
lower than the previously calculated one, this seed point ascends in the seed list accordingly.
Then, OPTICS proceeds to process all of these stored seed points in the order in which they
have been stored, by calculating their core distance and analyzing their ε-neighborhood. For
each of these processed seed points, their reachability and core distances are stored and their
neighboring samples are stored into the same seed list for further processing. Once no more
seed samples are generated, the algorithm goes on to analyze another unprocessed sample in the
dataset. As a result, the core and reachability distances of each of the samples in the dataset
are determined. Moreover, the samples will be stored in the order in which they have been
processed, such that the reachability distance that is stored for a sample will be determined
with respect to a close predecessor in the ordered results.

As has been mentioned, a main utility of OPTICS is to analyze the clustering structure of
the dataset as a whole by taking into account the ordering of this dataset which this algorithm
generates as well as the set of reachability distances associated to each data sample. This is
visually possible by means of a reachability plot displaying the reachability distances of the
ordered data samples within the dataset. Take for instance the three simple clusters in Figure
2.8, generated by three distinct Normal distributions. Based on this image, it is easy to expect
any adequate clustering procedure to assign three different clusters, one for each of the Normal
distributions employed.

Once a reachability plot representing an overview of the clustering structure is computed,
as presented in Figure 2.9, it is possible to assign each cluster to a dent within the reachability
plot. Note that the coloring of this reachability plot is not assigned based on cluster labels
assigned by OPTICS, but rather based on to which Normal distribution the data sample
associated to such reachability distance belongs.

19

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.8: Three Artificially-Generated Simple Clusters

Figure 2.9: Reachability Plot of the Artificially-Generated Simple Clusters

It is necessary to understand that most clusters will have a typical shape associated to
them in the reachability plot. For instance, the first reachability value of a cluster will be
relatively large, since this first data sample is far away from any other sample which has
previously been processed by the algorithm. If this initial reachability of the cluster were
smaller, it might be the case that this would not be the beginning of a new cluster but rather the

20

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

continuation of a previously defined one. Furthermore, as the algorithm proceeds to analyze all
neighboring seed points at the same time sorting them based on their reachability distance with
respect to the data sample from which they have been most recently directy density-reachable,
the reachability distances of the points belonging to this cluster are smaller than the first
reachability of this cluster, but also tend to increase due to the way in which these seed points
are sorted. Thus, the last reachability distance associated to the cluster is relatively large,
since this data sample has been placed last precisely due to its more significant reachability
distance. To the skeptical eye, the smaller dents which appear within the greater cluster dent
may contradict the general trend associated to the way the seed list is sorted. Nevertheless,
one has to take into account that it may occur that an unprocessed cluster sample which is
however stored in the seed list with a reachability distance with respect to an already processed
sample in the cluster may have a lower reachability distance when computed with respect to
the data point that is currently being processed. Then, this unprocessed sample will be placed
at a higher position within the seed list, in some cases to the first position due to an abruptly
lower reachability, thus reasoning these smaller dents within the reachability plot. Lastly, it
is also necessary to remark that the reachability of the first data sample of the dataset to
be processed is generally set to be undefined or infinite, since no other samples have been
processed before.

Up to now, two density-based clustering methods have been presented. Being the simpler
one of the two, DBSCAN requires the specification of a density threshold by means of a
minimum number of samples MinPts and a neighborhood radius ε, in order to group data
samples into clusters. In this case, the number of parameters to be specified is the same as
those of any box-counting methods of particle cluster identification, in order to set a fixed
density threshold. On the other hand, OPTICS allows for a representation of the clustering
structure of the dataset in terms of a reachability plot, for which a base ε (usually set to
infinity) and a number of samples MinPts have to be specified. It is worth noting that both
of these methods require the introduction of user-defined parameters, where as the previously
introduced methods of particle cluster identification based on Voronöı tessellations require
none. Given that OPTICS is observed to require around 60% more time than DBSCAN
to perform the same clustering task [15], it thus makes sense to employ OPTICS to obtain
an overview of the clustering structure of the problem and thus select the adequate set of
parameters to perform a DBSCAN clustering analysis aptly.

In the current application, these two algorithms are especially useful due to their capacity of
working with clusters of arbitrary shapes, due to the fact that they only focus on data samples
with a relatively higher data density. This, however, is associated to possible ”single link”
effects, in which two clusters which could visually be considered as distinct are connected by a
single line of data samples allowing them to be assigned to the same cluster by the algorithms
presented here. These effects can be avoided by employing higher values of MinPts, this
reducing the extent to which thin links of particles can communicate clusters [15].

Moreover, another useful peculiarity of these two clustering techniques is the fact that
certain data samples within the dataset are labeled as noise if their data density is lower than

21

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

the specified threshold. Thus, it is possible to, given a very populated data space, isolate data
samples of relatively denser regions, and discard those data samples which are labeled as noise.
In other words, it is not necessary to associate every particle within the dataset to a cluster,
or equivalently, to generate non-representative clusters in regions of the dataset which are not
as densely populated.

Lastly, it is especially convenient that both clustering methods are capable of autonomously
deciding how many clusters should be assigned to the dataset, without any direct input from
the user. It is reasonable to infer that the resulting number of clusters assigned to the dataset
depends exclusively on how high the threshold density set by the user is, as the phenomena
connecting different clusters will be largely affected by these parameters. In any case, it is
possible to operate without requiring a direct estimation of the number of clusters within a
dataset.

Taking into account the nature of these two algorithms, the current study employs OPTICS
in order to determine a valid pair of MinPts and ε to employ in a DBSCAN clustering
analysis of the two-dimensional array of particle positions. More specifically, certain trends
and peculiarities of the reachability plot of the position dataset are extracted in order to
determine values for MinPts and ε which are adapted with respect to the average density of
particles in the two-dimensional computational plane which has been extracted. For instance,
if the thickness of the sheet based on which the particles to be projected to a particular
computational plane is varied, it is expected for the resulting two-dimensional set of particle
positions to include similar shapes defined with a different average density. If this thickness
is increased, more particles will be normally projected onto the computational plane, and
although the shape of the presented structures will vary slightly, the density with which these
structures are defined will be significantly greater. The opposite follows if the thickness of this
sheet is reduced. With this in mind, it is necessary to employ the overview of the clustering
structure which OPTICS allows for in order to determine a set of values for MinPts and ε
which suits the average density of the two-dimensional domain containing projected positions.
This determination is presented in Sections 2.2.3 and 2.2.4. Then, based on these parameters,
it follows to simply apply DBSCAN to properly group the computational plane into clusters
and noise in a fast manner.

2.2.3 Towards Adapted Hyperparameters: Minimum Number of Points
within the Cluster

Now that the two density-based clustering algorithms employed in this study have been thor-
oughly presented, it is necessary to more precisely describe how each of them is used. Given a
single two-dimensional snapshot of particle positions for a single Z, these clustering techniques
have to be applied in order to determine which particles belong to a relatively denser region to
be denominated as a particle cluster, and which particles do not appear in a sufficiently dense
region of the two-dimensional domain, and are thus to be labeled as noise by the clustering

22

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

algorithm or within the context of this study, as belonging to a void.

As has been explained, a single combination of ε and MinPts establishes a number density
threshold with which DBSCAN groups data samples into clusters. Therefore, in order to obtain
similar results with datasets of different average number density, a process by which these two
parameters automatically adapt to the average number density of the dataset is necessary. This
section deals with the determination of a value of MinPts which is adapted to the number
density of each two-dimensional domain to which DBSCAN is applied.

With the general overview of the clustering structure of the dataset which OPTICS allows
for, a connection between the optimum parameter choice to be employed in the clustering
routine and the average number density of the dataset can be obtained. As this overview of
the clustering structure is mainly expressed in the reachability plot of the dataset, it is possible
to extract a set of MinPts and ε adapted to the peculiarities of the dataset based on it. For the
purposes of the following explanation, a reduced dataset is used, where the spatial domain and
thus the number of particles are decreased for greater ease of analysis. The particle positions
exposed in Figure 2.10 correspond to a single snapshot in Z, whose domain is summarized in
Table 2.3.

Figure 2.10: Particle Positions of Reduced Dataset

Based on this simple dataset, it is possible to analize how the reachability plot varies once
the the minimum number of points within a cluster MinPts is varied. In the first place,

23

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Z [m] 0.02

Thickness of Sheet [m] 0.00084

Planar Range in X [m] [0.1485, 0.162]

Planar Range in Y [m] [0.08, 0.14]

Table 2.3: Spatial Domain of Reduced Dataset

a couple of relevant definitions must be recalled. On the one hand, the core distance of a
data sample is the neighborhood radius that such sample requires in order to include MinPts
neighbors within this neighborhood. On the other hand, the reachability distance of a data
sample p with respect to an object o includes the maximum between the distance between
both samples and the core distance of o. Now, by observing Figure 2.11, it is clear that the
shape of the reachability curve does vary significantly with MinPts. In general terms, it can
be said the curve is smoothed out and increased in value. If the previous definitions are taken
into account, it makes sense that the curve rises in value as MinPts grows, since this means
that the core distance of the data sample with respect to which the reachability is computed
also increases.

Figure 2.11: Reachability Plots for Different MinPts of the Reduced Dataset - Note that
several OPTICS analyses have been carried out for the same reduced dataset, all with a base
ε of infinity.

24

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

This same phenomenon explains the fact that the reachability curve of the reduced dataset
is smoothed out with an increasing value of MinPts. As has been explained previously, the
sudden drop in reachability at the beginning of a cluster dent is caused because the first particle
within the cluster is very far away from the previously processed data samples, but the second
particle within the cluster is much closer to this first particle, thus causing this immediate fall
in the reachability plot. In fact, it is clear due to the flat shape corresponding to the first
particles after this drop in reachability that these reachability values correspond to the core
distance of the first particles in the cluster. As the particles in the aforementioned sorted
seed list are read, the reachability values commence to represent instead the distance between
the current particle and the closest core object particle, in this way explaining the continuous
growth in the curve. This occurs until a sudden drop occurs again. In most cases, it can be
said that this drop in the reachability with respect to the closest core object occurs because
such measure passes from being the distance to a core object of the previous cluster to being
the core distance of another core object in the current cluster.

Taking this dynamic into account, as well as the fact that the core distance of every particle
is to increase once MinPts grows, it is also reasonable to expect for these aforementioned drops
in reachability to be less significant, since the the distance to a core object in the previous
cluster will not be as large when compared to the core distance of a core object in the current
cluster, the latter having increased in value with MinPts. In fact, given a sufficiently large
MinPts, these sudden drops disappear altogether, since the core distance of the core object
of the current cluster is not anymore larger than the distance to a core object in the previous
cluster.

This trend is exaggerated once one analyzes the plot of reachability distances normalized
with the minimum reachability distance resulting of the OPTICS analysis of a particular
MinPts value. In Figure 2.12, it possible to observe how the spikes in reachability are smoothed
out once MinPts is increased, such that the variation with respect to the minimum reachability
of the OPTICS analysis is smaller.

One can also infer that as MinPts increases, there is a sort of convergence in the number of
dents, or concave regions Nconcave, within the reachability plot. A single dent or concave region
can be formally defined as a region of the reachability plot in which the curve decreases from
a previous local maximum and then ascends after such a descent. In Figure 2.12, it is possible
to observe how smaller dents in the plot start to disappear once MinPts is increased, such
that the number of concave regions in the curves tends to a particular value. This converged
number of concave regions Nconcave can be seen to describe an innate clustering structure in
the dataset which does not vary with an increase of MinPts. In other words, if one were to
employ the steepness of the reachability curve in order to determine the clusters in the dataset,
as is exposed in [15], one would obtain the same number of clusters for increasing values of
MinPts once this reachability curve is considered to converge. Although the shape and size
of these clusters would vary modestly, it is reasonable to expect the location of these clusters
to correspond to the same regions of the data space as MinPts varies.

25

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.12: Normalized Reachability Plots for Different MinPts of the Reduced Dataset

Consequentially, if one seeks to determine a value of MinPts which considers the innate
clustering structure of the dataset, a structure which is not expected to vary significantly with
variations in the average number density resulting from modifications in the thickness of the
computational sheet, it makes sense to employ the value for MinPts at which the number of
concave regions in the reachability curve Nconcave is seen to converge.

This last condition is formalized in the implemented code by analyzing the derivative of
the number of concave regions Nconcave with MinPts, as is expressed in Equation (2.4), where
MinPts∗ corresponds to this optimum number of minimum points within a cluster and χ
expresses the severity of this criterion.

∂Nconcave

∂MinPts

∣∣∣∣
MinPts∗

≤ χ (2.4)

Bearing this criterion in mind, for the reduced dataset employed in this section, this con-
vergence is displayed in Figure 2.13, where χ is set to 0.1. This choice of χ is reasoned by the
fact that Nconcave close to the converged state of the reachability plot adopts small, discrete

26

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

values, such that variations of Nconcave below 10% are rare. Nevertheless, a series of considera-
tions have to be taken into account with regards to the computational implementation of this
criterion. On the one hand, this derivative is computed numerically by means of the command
gradient which the Python library numpy provides. On the other hand, this criterion has to
be fulfilled for a given number of consecutive values of MinPts, in order for MinPts∗ to be
extracted. In short, in order to obtain MinPts∗, it is necessary to obtain the reachability plot
of a single two-dimensional domain containing projected particle positions for several values
of MinPts, and after counting the number of concave-up regions in each reachability plot,
observe for which MinPts∗ is Equation (2.4) fulfilled.

Figure 2.13: Determination of MinPts∗ for the Reduced Dataset by Computing Nconcave for
different MinPts - 1317 particles in domain

With the objective of analyzing how this optimum MinPts∗ varies with the thickness of
the computational sheet based on which the dataset is generated, the similar procedure has
been carried out with different thicknesses but the same planar range in X and Y. Therefore,
in Figure 2.14, the sheet thickness is increased from 0.00084 m to 0.00164 m, thus bringing
about an increase in the average number density of the computational plane, from 1, 625, 925
1/m2 to 3, 219, 753 1/m2. As a result, the optimum minimum number of points defining a
cluster is increased, from 121 to 203. On the other hand, Figure 2.15 displays the optimization
of MinPts with a sheet thickness of 0.00052 m, where the average number density is decreased
to 1, 002, 469 1/m2 and with it the value of MinPts∗.

Outside of the reduced dataset, one can perform this same procedure for a two-dimensional

27

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.14: Determination of MinPts∗ for the Reduced Dataset by Computing Nconcave for
different MinPts - 2608 particles in domain with Sheet Thickness of 0.00164 m

Figure 2.15: Determination of MinPts∗ for the Reduced Dataset by Computing Nconcave for
different MinPts - 812 particles in domain with Sheet Thickness of 0.00052 m

28

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.16: Determination of MinPts∗ for the Original Dataset - 30421 particles in domain

snapshot in Z of the original dataset, and obtain a parameter based on which a clustering
routine can be performed without an influence of the average number density of the dataset.
The results of performing this optimization of MinPts in a single snapshot in Z of thickness
0.0004 of the original dataset are displayed in Figure 2.16.

What results from this optimization is a value for MinPts which is adapted to the number
density of the employed dataset, which within the context of this study is directly related to
the sheet thickness with which the three-dimensional particle positions are projected into a
set of parallel planes. With this MinPts∗ one obtains a particular reachability plot which
is thought to represent the clustering structure of the dataset in a way which will not vary
significantly once MinPts is increased. Thus, a straight-forward DBSCAN clustering analysis
can be applied to the dataset as soon as the remaining parameter defining the minimum data
density of a cluster is obtained in a way which is also adapted to the particularities of the given
dataset. In this way, it is necessary to develop a method of determining an adapted value for
ε.

29

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

2.2.4 Towards Adapted Hyperparameters: ε

Once that an optimum value of MinPts has been determined in a way which is properly
adapted to the average density of the dataset under analysis, it is necessary to obtain a value
for ε, the other parameter required in order to define a minimum cluster density, which is also
capable of interpreting the dataset’s idiosyncrasies. It is worth noting that once MinPts is
fixed, the reachability plot representing the clustering structure of the dataset is also fixed,
and thus studies of its variation are not anymore possible.

In order to determine an optimum value of ε for the clustering analysis which ensues, it
is necessary to obtain a length scale which takes into account the average number density
associated with the dataset. If the average number density of the dataset was very high, it
would be necessary for the density threshold based on which a cluster is defined to be elevated as
well, such that the regions of the dataset belonging to a cluster are not unnecessarily enlarged
with respect to the case in which the average number density of the dataset is lower. The
way to adapt this density threshold to an increased average number density is, for a known
MinPts, to employ a lower neighborhood radius ε. On the other hand, if the dataset consisted
of more sparsely populated data samples, it would make sense to relax the minimum density
requirements for a cluster, in order to ensure that clusters still appear where they appear with
greater average number densities of the dataset. In this case, for a given MinPts, it follows
to increase ε, thus reducing the density threshold of a cluster.

In order to connect the average number density of particles within a single snapshot in Z
with a particular length scale for ε, the current study has generated a random distribution of
particles on the planar domain. This random distribution is easily created once one imposes
a uniform probability along the whole domain. Moreover, in order to ensure that this random
distribution of particle positions is representative of the dataset under analysis, these particle
positions are distributed maintaining the same planar number density as such dataset. In order
to preserve the simplicity of analysis which this reduction allowed for, the same reduced dataset
as the one presented in Section 2.2.3 is employed in order to study a method determining an
optimum value for ε. Consequently, Figure 2.17 presents the random distribution of particle
positions resulting from randomly scattering the same number of particles as in the reduced
dataset throughout the same planar domain.

Once this random distribution of particles has been generated, one has properly expressed
the average nature of the dataset’s number density in a new dataset of particle positions. From
here, it makes sense to extract a reference length scale which takes into account the ability
of adjacent or neighboring data samples of being directly density-reachable with respect to
each other, for the previously specified MinPts. Therefore, the mean reachability of the
randomly distributed set of particle positions is extracted, accurately representing the average
neighborhood radius ε with which adjacent particles are directly density-reachable from each
other. In Figure 2.18, it is possible to observe that the reachability plot of the equivalent
random distribution of particle positions is close to constant, and has an average value that is

30

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.17: Random Distribution of Particle Positions for the Employed Reduced Dataset

within the range of possible rechability distances of the reduced dataset.

In the current study, after close examination, it was determined that an ε∗ value of 95%
of the mean reachability of the randomly distributed equivalent dataset results in an adequate
DBSCAN clustering analysis. This choice is reasoned by the fact that if ε∗ is slightly lower than
this mean reachability, in the case of perfectly uniformly distributed particle positions (where
the local number density is constant and equal to the planar number density), no particle is
associated to a cluster by DBSCAN.

In Figure 2.19, one can see the reachability plot resulting from the OPTICS analysis of a
single snapshot in Z or the original dataset compared with the reachability plot of an equivalent
random distribution of particle positions. As is visible in this comparision of reachability curves,
regions of the domain of lower number density than the analogous randomly distributed case
present higher reachability distances.

In this way, an optimum ε∗ can be determined which takes into account not only the
previously obtained MinPts∗ but also the inherent connection between the average number
density of the dataset and the capability of adjacent particles of being directly-density reachable
with respect to each other, expressed by means of a randomly distributed set of particle
positions. Now that the two parameters defining the minimum cluster density can be obtained
in a manner that is adapted to the average number density of the dataset under analysis,
one can perform a simple DBSCAN clustering analysis for each of the snapshots in Z in the
datasets, given that the average number density of all of these two-dimensional domains is

31

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.18: Reachability Plots of the Reduced Dataset and of its Equivalent Random Distri-
bution - 1317 particles in domain

the same. In other words, if the thickness of the sheets defining which particle positions are
projected normally to which plane of constant Z is the same for all the sheets, the parameters
obtained by means of these optimizations are applicable to all of the two-dimensional subsets
of positions within the dataset.

2.2.5 Results

Once that these two optimizations for MinPts∗ and ε∗ have been carried out, what remains
is to perform the DBSCAN clustering analysis of each of the two-dimensional snapshots in
Z of the dataset. It is worth noting that given the capacity of DBSCAN and OPTICS to
classify data samples as noise, it is possible to sort particles within the dataset as belonging
to a particle void, given that their number density is not as significant as in those regions
of the dataset which the algorithm labels as a cluster. Moreover, DBSCAN is also capable
of separating cluster data samples into different cluster groups depending on the connectivity
of their member samples. In short, given a set of particle positions within a single Z level,

32

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.19: Reachability Plots of the Employed Dataset and of its Equivalent Random Dis-
tribution - 30421 particles in domain

this application of DBSCAN separates cluster particles from void particles, and also separates
cluster particles from particles in different clusters.

It is moreover worth noting that after introducing the optimized set of parameters, it was
found that the clustering technique increased in accuracy once non-core objects within clusters
defined by DBSCAN are later labeled as noise, such that the resulting clusters are exclusively
made up of core objects. For more information with regards to the determination of the
implementation’s accuracy, see Section 3.2.

With regards to the separation of particles into cluster and void particles, the implemented
routine resulted in what is presented in Figures 2.20 and 2.21. While as Figure 2.20 presents
the particle positions and classifications for Z = 0.0184 m, Figure 2.21 displays the same
information for Z = 0.0192 m. Note that given the employed separation between adjacent
projection sheets, both figures present adjacent snapshots in Z, such that the continuity in the
topology of the particle structures present is ensured. As is possible from a qualitative analysis,
relatively denser regions of the domain are labeled as clusters, and less densely populated
regions are classified as voids. For a detailed validation of this classification, see Section 3.2.

33

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 2.20: Classification of Particles into Cluster and Void Particles for Z = 0.0184 m. In
blue: cluster particles, in gray: void particles.

Figure 2.21: Classification of Particles into Cluster and Void Particles for Z = 0.0192 m. In
blue: cluster particles, in gray: void particles.

Furthermore, the result of applying DBSCAN to separate cluster particles into different
clusters is exposed in Figures 2.22 and 2.23, the former referencing Z = 0.0184 m and the

34

2.2. CLUSTERING ANALYSIS OF A 2D SNAPSHOT

latter Z = 0.0192 m. It is important to bear in mind that the labels which DBSCAN applies
within the two-dimensional snapshot in Z do not correspond to the actual particle cluster
labels which this study intends to obtain. In order to separate different particle clusters, it is
necessary to take into account their three-dimensional nature by examining the connectivity
of cluster particles between different two-dimensional planes. On the other hand, the cluster
labels which DBSCAN provides correspond exclusively to the connectivity of cluster particles
within the same snapshot in Z. In any case, this information is particularily useful in later
stages of analysis.

Based on the results presented in Figures 2.22 and 2.23, it is worth discussing why, for
the cluster particles associated with a dark green cluster label, visibly separated groups of
cluster particles appear. This is because what is presented in these figures is not the clustering
arrangement resulting from DBSCAN, but rather the result of excluding all non-core data
samples from such a clustering arrangement. Therefore, when these non-core data samples
are set aside, previously existing connections between groups of particle positions disappear,
leaving visibly separated groups with the same cluster label.

Figure 2.22: Classification of Cluster Particles into Different Clusters for Z = 0.0184 m

It is important to note that the current study has employed the implemented OPTICS
and DBSCAN commands in the Python library scikit-learn, these allowing for a very straight-
forward use of these clustering procedures.

35

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.23: Classification of Cluster Particles into Different Clusters for Z = 0.0192 m

2.3 Determination of Cluster Boundaries within the 2D Snap-
shot

2.3.1 What Sort of Cluster Boundary is Desirable?

Further steps of analysis in the current study require the condensation of a three-dimensional
cluster topology into a point surface representing its boundary and a set of interior representa-
tive points. This condensation parts from the two-dimensional clusters which the implemented
application of DBSCAN at each two-dimensional domain results in, by first determining a set
of connected points describing each cluster contour. While as for a single snapshot in Z these
cluster boundaries will be represented by a set of closed curves, once the connectivity of cluster
particles within different Z levels is examined, what will result is that the cluster boundary is
described by a cloud of points in three dimensions representing cluster boundary surfaces.

The main utility behind the aforementioned simplification of a three-dimensional topology
into a boundary and a set of interior points is the fact that in order to ascertain which two-
dimensional clusters defined by DBSCAN describe the same three-dimensional cluster, it is
necessary to determine connectivities between such interior points at different two-dimensional
domains. These connectivities are traced precisely by examining whether a straight line be-
tween interior points collides with a cluster boundary. Therefore, it is reasonable to expect
that the characteristics of the generated cluster boundaries will greatly affect the outcome of

36

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

the later stages of this analysis.

Another argument in favor of this condensation of a three-dimensional cluster is a reduction
in computational cost, when compared with the case in which all of the particles indicated by
DBSCAN as belonging to a cluster in every two-dimensional domain are processed in order
to determine their three-dimensional cluster memberships. However, with this latter method
one would obtain not only detailed information with regards to the shape of the cluster,
but also particular insight with regards to the concentration field existing within the cluster.
Nevertheless, once several DBSCAN clusters within different snapshots in Z are connected to
form a three-dimensional cluster according to the connectivity of their cluster particles, the
number of points which represent a single three-dimensional cluster turns out to be significantly
high.

In any case, it is clear that this procedure must be carried out by capturing as much
information as is possible with regards to the original cluster, at the same time incurring
the least possible computational cost. These requirements directly affect the design of the
implemented method. To begin, a method for determining the cluster’s boundary points
within a single two-dimensional snapshot in Z is necessary. Moreover, this method should
preserve as much of the information regarding the cluster’s shape as possible, since the whole
objective of this decomposition of the cluster is to maintain the maximum possible amount of
detail in describing its topology whilst ensuring computational efficiency.

In this way, if one were to maximize the detail of description of the cluster boundaries,
the maximum resolution which one can achieve is defined by the average separation between
particles within the cluster. In other words, by defining a boundary curve made up of cluster
particles, where adjacent particles in the curve are also adjacent neighbors in the cluster, one
obtains the most possibly dense description of the boundary.

On the other hand, different methods exist by which the separation between particles in
the cluster boundary is larger than the separation between adjacent particles in the cluster.
For instance, if the two-dimensional domain were to be divided into rectangular cells, such
that the cluster boundary is to be defined by those cell centers of cells which contain cluster
particles and are adjacent to cells which contain no cluster particle, depending on the selected
cell size, one could obtain a cluster boundary defined with less resolution than the one allowed
for by the whole set of cluster particles itself.

In this way, the ambitious mind would seek to increase the resolution of the boundary as
much as possible, later realizing that there is a inconvenience to such ambition. Although
within the context of DBSCAN, a cluster is defined by a region of number density higher than
a specified threshold, several different number densities may appear within a single cluster.
Therefore, if one is to define a cluster boundary based directly on the particles defining the
cluster, one will encounter that the spacing between adjacent particles defining the boundary
curve varies, such that the cluster boundary in areas of the cluster of high number density is

37

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

defined by particles closer to one another than in areas of the cluster associated to a lower
number density. This can result in problems when examining the connectivity of clusters,
since it may occur that some less densely sampled parts of the contour may result in the
existing boundary to remain undetected. However, the homogenization of the spacing between
adjacent boundary particles would require the introduction of new boundary particles in areas
of the cluster of low number density or the elimination of boundary particles in areas of higher
number density, the former signifying an introduction of interpolated information to define
the cluster boundary and the latter implying a loss of detail in the description of the cluster
topology.

On the other hand, if one were to resort methods in which the obtained cluster boundary
presents a resolution which is lower than the one presented by the set of cluster particles itself,
the main resulting problem is that the boundary will not be as descriptive as the cluster itself,
and information describing the cluster’s topology would be lost. Moreover, this method would
require the non-trivial decision of which resolution is appropriate for the current application.
For instance, if the previously presented cell-based analysis were to be followed, it would be
necessary to select a cell size which adequately extracts a closed curve of boundary particles
and does not nullify the idiosyncrasies of the cluster’s boundary in excess.

Therefore, the current study can be said to follow the concept of wu wei in the definition of
cluster boundaries, since it seeks to conserve the complete extent of detail which a boundary
made up of adjacent cluster particles allows for, at the same time refusing to homogenize the
separation between boundary particles in face of the appearance of different number densities
within the cluster. As a result, the topology of the cluster is not simplified at all during this
compression of cluster information into a boundary and a set of interior cluster particles, and its
resolution is only limited by the average number density associated to the dataset. Moreover,
the current implementation is capable of detecting holes within the cluster, including these
details within the obtained contours.

Once the motivation and particularities associated to the determination of a set of points
defining a boundary contour for a single DBSCAN cluster within an individual snapshot in Z
have been presented, it follows to describe the method employed in the current study.

2.3.2 Description of Employed Method

Given that the purpose of the implemented method is to obtain a cluster boundary which
maintains as much information as possible regarding the cluster’s topology, it follows for the
contour which this method defines to be made up of a selection of particle positions included
within the same cluster. More generally, a cluster particle must fulfill a particular criterion for
it to be classified as a boundary particle, and therefore the implemented method must proceed
to examine whether each of the cluster particles within the level of Z under analysis satisfy

38

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

such criterion.

At its core, a cluster particle which can be defined as a boundary to such cluster is a particle
which is not surrounded by neighboring cluster particles in all directions. More simply, this
particle must be adjacent to a ”gap” in which no cluster particles appear. Therefore, it follows
to examine the neighborhood of the cluster particle, and within this neighborhood, determine
if there exists a region in which cluster particles are absent. In the implemented method, these
empty regions within the neighborhood of the cluster particle are detected by measuring the
angle between adjacent particle-neighbor particle vectors. More visually, if the cluster particle
is imagined to trace vectors towards all of its neighboring particles, as soon as the angle between
two of these adjacent vectors is larger than a specified threshold, a region absent of cluster
particles is said to exist within the vicinity of this particle, and thus the particle is part of
the cluster’s boundary. This criterion is formalized in Definition 2.3.1 and visualized in Figure
2.24.

Definition 2.3.1. Boundary Cluster Particle: Given a cluster particle position p, a neighbor-
hood radius r, the set of cluster particle positions ni ∈ Nr(p) within the r-neighborhood of p,
sorted based on the orientation of vector ni−p with the X direction, an angle function θ(p, ni)
defining the angle between ni − p and the X direction, and a threshold angle δ, p corresponds
to a boundary particle if, for any ni ∈ Nr(p):

θ(p, ni+1)− θ(p, ni) ≥ δ

Bearing into account this criterion, this method, for each isolated snapshot in Z, examines
whether this condition is satisfied for each of the particles classified as cluster particles by the
previous application of DBSCAN, and labels as boundary particles all those cluster particles
which fulfill the criterion. In this way, a method capable of defining cluster contours which
express an unprocessed version of the cluster’s topology is developed, based on examining the
fulfillment of a particular criterion for every cluster particle. Nevertheless, the nontrivial choice
of the parameters defining the boundary particle criterion, in particular the threshold angle δ
and the neighborhood radius r must be carried out in an adequate way.

2.3.3 Adequate Selection of Parameters

In order to appropriately select a suitable pair of parameters δ and r, it is necessary to un-
derstand what these parameters represent. In simple terms, the combination of these two
represents the ease with which the boundary particle criterion is satisfied. Just as previously,
density-based clustering algorithms were conceived as assigning a cluster to a region of the
domain with data sample density larger than a specified threshold, this method can be inter-
preted as assigning a particular label to cluster particles with a local number density below

39

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.24: A cluster particle p, its r-neighboring particles ni, and their associated angle
functions θ(p, ni)

a specified threshold. Hence, the optimization of these two parameters has to be carried out
at the same time, since an optimum threshold angle δ will apply exclusively to an optimum
radius r, and viceversa.

In the current implementation, a neighborhood radius r is defined making sure that its
value is adapted to the average number density of the dataset. Then, if the sheet thickness
employed to project particle positions into a single level of Z is varied, this neighborhood radius
is able to take such variation into account. With this purpose, r is set to be proportional to
the value of ε utilized in the previous DBSCAN analysis, which itself is proportional to the
average reachability distance which would result in the case that the same number of particle
positions were distributed according to a random Poisson process. Given that ε is capable of
adapting to variations in the average number density of the dataset, so will r respond to such
variations. Therefore, when speaking of modifying r in this section, one is in reality changing
the constant k with which ε is multiplied in order to define r.

Then, the specification of k must take into account an intrinsic characteristic of particle
clusters, thus being applicable to a dataset of any number density. Since the number of particles
defining a cluster is finite, there are necessarily voids between adjacent particles. In areas of
a cluster of lower number density, these voids caused by the separation between adjacent
particles are more significant than in areas within the cluster of high number density. Thus,
the neighborhood radius r must allow for a boundary criterion which is sensitive enough to
be fulfilled at cluster boundaries of all types, but is not triggered by these voids internal to a
cluster that appear due to the separation between adjacent particles. It is worth noting that

40

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

while as these voids are mainly caused by the limited number of particles defining a cluster,
it may occur that actual holes exist within a cluster, which would also be perceivable if the
number of particles describing the cluster were infinite. Therefore, the implemented method
will only be able to distinguish voids of the latter category from those of the former by means
of their associated length scale.

More precisely, for a fixed δ, an increase in r will result in a significant decrease in the
number of particles defined as boundary particles until a particular r from which all smaller
internal voids cease triggering cluster particles to be classified as boundary particles, and the
decrease in the number of boundary particles with the growth of r is milder and due to a
decrease in detail in defining cluster contours.

Figure 2.25: Resulting Cluster Boundaries for k = 0.35 and δ = π/3 rad - In blue: cluster
particles, in red: boundary particles.

This trend is visible in Figures 2.25, 2.26, and 2.27, for a fixed δ = π/3. Once k (and thus
r = k · ε) is increased from 0.35 to 0.5 the internal voids triggering the labeling of interior
cluster particles as cluster contours cease having this effect, such that the number of cluster
particles defined as boundary particles is significantly reduced. Nevertheless, when k is further
increased from 0.5 to 0.7, the variation in the definition of cluster boundaries is very slight,
only due to some particles close to the boundary which cease being classified as boundary
particles. The evolution of the proportion of cluster particles fulfilling the boundary criterion
with k is more precisely presented in Figure 2.28. Here, it is possible to discern that although
the presented curve is somewhat noisy, its slope does decrease significantly after 0.5. As a
result, the current implementation has employed k = 0.5.

41

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.26: Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - In blue: cluster
particles, in red: boundary particles.

Figure 2.27: Resulting Cluster Boundaries for k = 0.7 and δ = π/3 rad - In blue: cluster
particles, in red: boundary particles.

On the other hand, for a fixed value of k it is expected for increases of δ to cause the
boundary particle criterion to become more restrictive, since a greater separation between
adjacent particle-neighboring particle vectors will be required for such particle to be labeled as
a boundary particle. In any case, as long as this threshold angle is large enough to allow for a

42

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.28: Sensitivity of Boundary Criterion with k - The evolution of the proportion of
cluster particles fulfilling the boundary criterion with k is here presented.

minimum restriction within the cluster boundary criterion, this variation is negligible, as the
proportion of cluster particles fulfilling the boundary criterion remains constant. In Figures
2.30, 2.26, and 2.29, one can see how the decrease in δ causes a very slight relaxation in the
boundary particle criterion. In this way, δ has been set to π/6.

Figure 2.29: Resulting Cluster Boundaries for k = 0.5 and δ = π/2 rad - In blue: cluster
particles, in red: boundary particles.

43

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.30: Resulting Cluster Boundaries for k = 0.5 and δ = π/4 rad - In blue: cluster
particles, in red: boundary particles.

2.3.4 Results

What results from the current implementation is an appropriate determination of cluster
boundaries, defined by a set of cluster particles where adjacent boundary particles are also
adjacent within the cluster itself. As the homogeneity of this contour is not imposed, areas of
high number density within the cluster are bounded by more closely spaced particles than areas
within the cluster where particles are not as densely packed. Thus, the current method does
not circumvent the presented problem of inhomogeneous number densities within the cluster.
However, this does not obstaculize later steps of analysis.

The selected combination of parameters yields a cluster boundary which is generally densely
populated, in order to ensure that in the later stages of analysis within this study, cluster
connectivity is determined ensuring that all cluster boundaries are respected. Figures 2.31,
2.32, 2.33 and 2.34 display the obtained cluster boundaries for Z levels of 0.136 m, 0.144 m,
0.152 m, and 0.160 m, respectively.

2.3.5 Attempted Alternatives

Given that the developed methods for later steps of the analysis carried out within the study
require the separation of the two-dimensional domain within a single snapshot in Z into cells

44

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.31: Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.136 m - In
blue: cluster particles, in red: boundary particles.

Figure 2.32: Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.144 m - In
blue: cluster particles, in red: boundary particles.

of uniform size, this decomposition can also be taken advantage of in order to define cluster
boundaries in a simple and computationally efficient way.

More precisely, for a known cell size, one can define a uniform grid occupying the whole

45

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

Figure 2.33: Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.152 m - In
blue: cluster particles, in red: boundary particles.

Figure 2.34: Resulting Cluster Boundaries for k = 0.5 and δ = π/3 rad - Z = 0.160 m - In
blue: cluster particles, in red: boundary particles.

domain, where each cell is associated to a cell center of known coordinates. For each of these
cells, one is capable of examining if there exist cluster particles within it, or if otherwise the
cell is empty. Once the population of each cell is determined, it is possible, for each of the cells
containing cluster particles, to observe whether any of the neighboring cells are empty. If this

46

2.3. DETERMINATION OF CLUSTER BOUNDARIES WITHIN THE 2D SNAPSHOT

is so, one can label this cell as a cluster boundary cell, and later construct a cluster boundary
based on the cell centers of all cluster boundary cells.

What results from this method is a cluster contour which simplifies the cluster’s topology
insofar as the cell size employed is much larger than the characteristic length scale of the
smallest details defining such topology. Moreover, if one is to employ too small cells, what
results is that empty cells exist even within the cluster, and the cluster boundary ceases to
be realistic. Therefore, a nontrivial decision of cell size has to be carried out, in order to
select a cell size which does not excessively simplify the cluster’s shape but also allows for
a reasonable boundary. Although in the current study, this alternative allowed for relatively
fast computations of the cluster boundary, it was preferred to maintain the more detailed
description of the cluster topology which the previously described method allows for, albeit a
higher computational cost.

It is necessary to note that the cell size for this method is specified as proportional to the
neighborhood radius ε employed in the previously carried out DBSCAN clustering analysis in
order to allow for independence of the average number density within the dataset, such that
the cell size c follows c = k · ε. Therefore, in Figure 2.35, one can see that for k = 0.132, the
cell size is not large enough to result in reasonable cluster contours, whereas in Figure 2.36,
the cell size is duplicated and the cluster’s shape is greatly simplified.

Figure 2.35: Resulting Cluster Boundaries with Grid Decomposition and k = 0.132

47

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

Figure 2.36: Resulting Cluster Boundaries with Grid Decomposition and k = 0.264

2.4 Definition of a Brute Skeleton Describing 2D Cluster Topol-
ogy

2.4.1 What is a Brute Skeleton and why is it worth defining?

Up to now, the current study has dealt with how to project a set of three-dimensional particle
positions into a discrete number of parallel planes, in order to analyze the two-dimensional
domain which each snapshot in Z results in. Moreover, it has been discussed how to separate,
for each of these planes containing normal projections of particle positions, densely populated
regions by classifying them as clusters by means of DBSCAN. The next step of analysis to be
presented has been the determination of cluster boundaries based on these two-dimensional
clusters, in order to express as much of the cluster’s topology in the most efficient way possible.
What follows now is the determination of an appropriate set of interior points within each two-
dimensional cluster, these points defining what is called within the context of this study as the
cluster’s brute skeleton.

As has been stated previously, the topological and temporal analysis of a particle clus-
ter requires the simplification of the information defining the cluster, in order to carry out
such exploration in a more efficient way. It has already been described how for every two-
dimensional snapshot in Z of a cluster, one can obtain a cluster boundary curve, and how once
the connectivity of cluster particles along different levels of Z is examined, one can unite the

48

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

boundary curves of the same cluster to form a boundary surface made up of a cloud of points
from different levels of Z. Nevertheless, to further condense the description of a cluster’s topol-
ogy, a compression necessary both to examine the connectivity of different two-dimensional
clusters along different Z as well as to track the evolution of a particular cluster with time, it
is convenient to define a constellation of points interior to the two-dimensional cluster which
adequately carry out this condensation.

More precisely, as will be seen in later sections of this study, it is specifically this interior
constellation of a single two-dimensional cluster which will be connected to other constellations
of clusters at different levels of Z. Moreover, it is this constellation which will be tracked in
different steps of time in order to analyze how a cluster progresses with time. However, from
a more general point of view, just as Rigel, Betelgeuse and Bellatrix, among others, define
Orion, it is possible to consider this brute skeleton as an ultimate simplification of the cluster’s
topology. As a result, each of the points within a constellation is associated to a large group
of cluster particles, such that the properties of a constellation point are directly attributable
to the cluster particles it represents.

To the experienced reader, it may seem that this step of analysis intends to re-invent
the wheel, overlooking the existence of a topological skeletonization in order to condense the
description of complex geometries such as the one of a cluster. This topological skeletonization
can produce a geometrical representation of the three-dimensional shape of the cluster by means
of a connection of arcs [19]. Such a representation of the three-dimensional cluster would be
interesting to obtain, since the combination of brute skeleton points of different levels of Z
results in something similar. In any case, the attempts for such a development within this
study have resulted in overly complex and expensive methods which were not as advantageous
as the straight-forward determination of a so-called brute skeleton exposed in this section.

Nevertheless, a set of guidelines can be established in order to generate a constellation of
points which defines the topology of the two-dimensional cluster in a way which is convenient
for the purposes of this study. With the objective of examining cluster connectivities along
different levels of Z, it is required for the brute skeleton to populate as much of the cluster
as possible. On the other hand, given the key role of cluster boundaries in the description of
cluster shapes, it is necessary for the developed constellation to be based on points which are
as far as possible from any cluster boundary. In fact, given the notion of a skeleton curve as a
curve equidistant to the boundaries of the figure it represents [19], the more a brute skeleton
point is farthest possible from all boundaries, the more it will resemble the actual topological
skeleton of the cluster. Thus, there needs to be a balance between explicitly filling up the space
within a cluster with a representative interior points and simplifying this representation by
obtaining points as equidistant as possible from all cluster boundaries. Given these guidelines,
a description of the procedure followed in order to generate such a constellation is exposed.

49

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

2.4.2 Description of Employed Method

Once the concept and usage of the brute skeleton of a two-dimensional DBSCAN cluster
have been introduced, and the set of requirements which such a constellation must fulfill in
order to be useful in later stages of analysis has been presented, it follows to present the
methods with which such a set of points is defined. The algorithm with this objective can
be seen a maximization constrained by a set of restrictions. More precisely, the objective of
this procedure is to determine the set of highest ranking positions within the cluster, where
these points are ranked according to the proximity of cluster boundaries. Constraining this
determination is a minimum separation between brute skeleton points and between brute
skeleton and cluster boundaries.

Given the key role of cluster boundaries in the definition of this internal constellation of
points defining the cluster’s topology, and the fact that these internal points are determined
based on a scoring system which ranks them, it is natural that this employed scoring system
is intrinsically related with the proximity of cluster boundaries. As a result, the developed
method ranks all points interior to the cluster based on their distance to the closest cluster
boundary. The scores assigned to interior cluster points within a two-dimensional snapshot in
Z are visible in Figure 2.37.

Figure 2.37: Contours of Assigned Scores to Cluster Locations

However, if one were to base the position of the cluster’s brute skeleton only on those regions
within the cluster in which this score is relatively elevated, one would obtain a series of very
close points in very isolated locations of the cluster. Instead, it is necessary for this interior

50

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

constellation to be distributed along the cluster. To implement this, a minimum separation
between brute skeleton points is enforced, such that for every iteration of this algorithm,
the highest ranking position internal to the cluster which satisfies the specified minimum
separation to all previously defined brute skeleton positions is determined. While as for the
first iteration, the highest ranking cluster position is directly selected, the next iterations have
to consider only the highest ranking positions outside of a specified neighborhood radius of all
previously defined brute skeleton positions. Also, in order to facilitate the determination of
cluster connectivities along different levels in Z, a minimum distance between brute skeleton
particles and cluster boundaries is also enforced. As a result of these two enforced minimum
separations, between positions within the constellation and between brute skeleton positions
and boundary particles, the internal set of points defining the cluster’s shape spreads out
throughout the two-dimensional cluster.

In any case, the application of this procedure requires the possible positions within the
cluster to take into consideration at every iteration of the algorithm to be finite. In other
words, if for every iteration, the highest scoring position which is also sufficiently separated
from all previously selected positions is to be selected, it is convenient for the number of
candidate positions to consider to be limited, to avoid performing an maximization over a
continuous space within the two-dimensional cluster. Therefore, one could take into account
the positions of all cluster particles within the same cluster, since these positions are known and
finite. However, this would result in a considerable computational cost of the method, since for
the employed dataset, the average number of particles within a two-dimensional particle cluster
is 1575.86. Alternatively, one can divide the space within the cluster by means of a uniform
grid of known size, such that every cell within the grid has an associated cell center. Based
on each cell center position, one can assign a score to each cell, and thus carry out the same
procedure based on a set of points which is finite, known, and uniformly distributed. More
importantly, for an adequate selection of the implemented cell size (presented in the following
section), the computational cost of the procedure can be reduced. Therefore, the current
implementation employs a two-dimensional discretization of the area within every cluster, and
considers as candidate positions for the brute skeleton the highest ranking cell centers which
are also sufficiently separated from all previously selected cell centers.

Based on the exposed criteria, the procedure of determining the brute skeleton positions
is summarized as follows. For a single DBSCAN cluster within a two-dimensional snapshot in
Z, the area within the cluster is discretized by means of a uniform grid, and each of the cell
centers in the grid is assigned a score equal to their distance to their closest cluster boundary.
Then, for each iteration, the algorithm proceeds by disabling all cell centers which are too
close to previously defined brute skeleton cell centers or to cluster boundaries, and by selecting
the highest scoring cell center which is not disabled and labeling it as part of the cluster’s
representative inner constellation of points. This procedure continues until no more cell centers
can be selected for a given two-dimensional cluster.

51

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

2.4.3 Adequate Selection of Parameters

Once the procedure based on which this determination of an interior constellation of points
defining the two-dimensional cluster’s topology is carried out, it is necessary to present the
criteria behind the selection of its defining parameters. Based on the previous description of
the employed procedure, one can expect the parameters playing a role in this method to be
the cell size cs for the discretization of the area within a cluster, the minimum separation
between brute skeleton particles s, and the minimum separation between brute skeleton and
cluster boundaries c. Note that since all of these magnitudes are distances, it is convenient to
make these parameters proportional to a known reference length scale that is relevant. In this
case, s and c are defined as proportional to the Kolmogorov length scale η of the flow, since
they are thought to be related to the characteristic size of the turbulent structures in the flow,
whereas the cell size cs employs the radius ε employed in previous steps of this analysis, in
order to associate with the average number density of the dataset. In this particular method,
it is necessary to bear in mind that a selection of parameters is adequate as long as it allows
for later steps of analysis within this study to be carried out without issues and fulfills the
aforementioned guidelines, such that a complete optimization is not necessary.

With respect to the cell size with which to carry out the two-dimensional discretization of
the area within every DBSCAN label, it is necessary to take into account that this parameter
will greatly affect the computational cost of the implemented method. The smaller the cell size,
the more candidate cell center positions have to be taken into account for every iteration of the
method, and as a result, the greater the time associated to each iteration. Moreover, above a
certain number of cell centers within a cluster, it is expected for the result of this algorithm to
vary mildly, since the highest ranking points will not vary significantly in position. However,
the way in which the two-dimensional cluster is discretized puts a limit on how large this cell
size can be. In order to discretize the area within the cluster, a uniform grid is defined along
the whole two-dimensional domain of the current snapshot in Z, and the grid cells containing
cluster particles from that cluster are extracted. If these grid cells are too large, it may occur
that the cell center of a cell associated to such cluster is actually outside what the previously
defined cluster boundary curves define as the cluster. This is visible for values of kcell around
0.4 (where the cell size is defined by kcell · ε).

Bearing in mind this undesirable phenomenon and the evolution of execution times with
kcell as presented in Table 2.4, the current implementation employs kcell = 0.2. Furthermore,
the resulting discretization of a single snapshot in Z is presented in Figure 2.38, where the cell
center of each cell is classified according to the particle cluster which the cell contains, where a
cluster label of −1 corresponds to cells void of cluster particles. This discretization results in
an average of 1.18 cluster particles occupying each cell, and for those cells containing cluster
particles, the average number of particles is 4.64.

On the other hand, the minimum separation between skeleton points determines both the
number of brute skeleton points which will be generated in order to describe a cluster’s topology

52

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

kcell [-], where Cell Size cs = kcell · ε Execution Time [s]

0.1 14.359

0.2 2.879

0.3 1.142

Table 2.4: Execution Times for a Single Snapshot in Z for different kcell - ks = 0.4

Figure 2.38: Classified Cell Centers of a Discretized Snapshot in Z - kcell = 0.2

as well as to which extent the area within the cluster is populated by these points. The greater
this minimum separation, the smaller amount of skeleton points that are to be employed to
describe the cluster’s topology. As a consequence, the condensation of the cluster’s shape is
carried out with less points, but the examination of the cluster’s connectivity along different
levels of Z is more difficult. On the other hand, the less significant this ks, (where Separation
s = ks ·η), the more the inner area within the cluster is filled up by brute skeleton points, facil-
itating connectivity determinations but causing this constellation of points to diverge from the
topological skeleton. This trend is visible in Figures 2.39, 2.40 and 2.41, where ks grows from
8.5, to 17.0, to 34, thereby reducing the number of brute skeleton points within the cluster,
describing the cluster’s topology with less detail. Given that it results in a moderate distri-
bution of internal points, allowing for an appropriate determination of cluster connections as
well as for certain simplicity in the description of the cluster’s shape, this minimum separation
between brute skeleton positions is enforced with ks = 17.0. Note that as long as the number
of skeleton points within the skeleton is sufficient to trace connections within its extremes, this
separation will work with later steps of this analysis.

Lastly, the minimum separation c between internal constellation position and cluster bound-

53

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

Figure 2.39: Generated Brute Skeleton for a Single Snapshot in Z - ks = 0.4

Figure 2.40: Generated Brute Skeleton for a Single Snapshot in Z - ks = 0.8

aries has to be fixed based on the criteria applied in the posterior determination of cluster con-
nectivities. As will be seen, these connectivities are examined by tracing straight trajectories
between skeleton points, and observing if the trajectory is at any point closer to a boundary

54

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

Figure 2.41: Generated Brute Skeleton for a Single Snapshot in Z - ks = 1.6

particle than a specified collision distance. Therefore, it is necessary for this minimum separa-
tion c to be larger than such collision distance. As will be argued in further steps of analysis
within this study, if this separation is equivalent to kc · η, kc = 3.2.

2.4.4 Results

Based on these selected values for the cell size of the discretization of the area within each
cluster, the minimum separation between brute skeleton points, and the minimum separation
between brute skeleton points and cluster boundaries, what results is a simplified description
of the two-dimensional cluster in a single snapshot in Z, based on its boundary curve and
on an internal constellation of points, the latter being useful to track each cluster’s temporal
evolution as well as to determine whether different two-dimensional clusters within different
snapshots in Z describe the same three-dimensional particle cluster.

As was mentioned in Section 2.2.5, after performing a DBSCAN analysis to classify cluster
particles, all non-core data samples with a cluster label are excluded from their cluster. This
results in small groups of particle positions appearing visibly separated from another body of
particle positions, both groups sharing the same DBSCAN cluster label. Since the developed
method tackles each DBSCAN label individually, it may occur that if this separated group
of points is small, the score assigned to positions within it is not enough to guarantee the
appearance of a brute skeleton point, or all of these positions are excessively close to already

55

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

generated brute skeleton positions. As a result, some groups of projected particle positions do
not have a representative skeleton point associated to them.

As is visible in Figures 2.42, 2.43, and 2.44, every cluster can be adequately represented by
a constellation of interior points capable of defining its topology from a simplified standpoint,
and which can be further employed in the steps of analysis of this study.

Figure 2.42: Generated Brute Skeleton for a Single Snapshot in Z = 0.0144

2.4.5 Attempted Alternatives

Before the implemented method was developed, two other alternative procedures to determine
a set of points internal to the cluster describing its topology were attempted. While as one of
them works with the resulting cloud of points representing the cluster boundaries for different
values of Z, the other employs the boundary curve describing the cluster’s topology for a single
snapshot in Z. While as the first of these could not output adequate results, the latter incurred
a higher computational cost than the finally selected method.

The first of these alternatives intended to, given the three-dimensional boundary surface
of a cluster, define a trajectory from a starting to an ending point which was as equidistant as
possible from all cluster boundaries. The result of this technique would have been something
similar to the topolgical skeleton curve of a three-dimensional figure, as described in Sharf et al.

56

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

Figure 2.43: Generated Brute Skeleton for a Single Snapshot in Z = 0.0152

Figure 2.44: Generated Brute Skeleton for a Single Snapshot in Z = 0.0160

(2007) [19]. Moreover, this method required the training of a runner agent in charge of tracing
an appropriate trajectory between a given pair of points. Every time the agent was executed,
for every time step of the simulation, the runner had the task of measuring the proximity

57

2.4. DEFINITION OF A BRUTE SKELETON DESCRIBING 2D CLUSTER TOPOLOGY

to the closest cluster boundary in every direction. Based on these measures, the agent was
programmed to determine the optimum direction with which to trace the trajectory in that
time step. In this study, a convolutional neural network (CNN) was employed to implement the
agent’s decision-making procedure, where the inputs were the proximity measures to cluster
boundaries as well as the direction of a straight line to the target point, and the CNN’s output
consisted of the direction to be followed by the runner agent in that particular time step.

Nevertheless, the true core of this method is the training procedure by which an appro-
priate runner agent is generated. In this attempt, a genetic algorithm was employed, which
accomplishes the optimization of a population of agents based on the following steps [20]:

1. The population is initialized. In the current application, the CNN of every runner agent
in the population was initialized.

2. Each agent within the population is executed, and evaluated accordingly. In the current
application, this consisted in simulating the tracing of a trajectory for each agent in the
population, and assigning a score to such agent based on the adequacy of the trajectory.

3. The population is reproduced, in order to form a new generation based on the highest
scoring agents. In this attempt, the best runner agents were extracted, their correspond-
ing CNN slightly altered and combined, in order to define a new generation of agents.
Based on this new generation, the previous and the current steps are repeated, until a
minimum performance is achieved by the runner agents.

Although this procedure would have resulted in a three-dimensional curve which could
also connect two-dimensional DBSCAN clusters in different snapshots in Z, and which further
simplifies the description of the cluster’s topology, this implementation yielded no adequate
results. Moreover, since training implied the simulation of a large number of runner agents,
the associated computational costs were significant, thus hindering the applicability of this
method to an efficient routine of particle cluster analysis.

The other attempted alternative method is similar to the selected method in the sense that
it employs the cluster’s boundary curve within a single snapshot in Z, and based on this two-
dimensional curve determines a set of points internal to the cluster within the same Z level. In
simple terms, this method also tackles every two-dimensional DBSCAN cluster individually,
and based on its boundary curve generates a set of interior positions defining the cluster’s
brute skeleton. However, this procedure works by, given an initial point within the cluster,
iteratively displacing it such that the distance to the closest cluster boundary is the same for
all directions. As a result, an iterative procedure has to be carried out for every point in
the brute skeleton, by which its position converges to be equidistant to all cluster boundaries.
Nevertheless, this procedure proved to be much more computationally costly than the selected
method, and the degree to which these internal points filled the area within the cluster was
not as controllable.

58

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

2.5 Re-determination of Cluster Labels based on 3D Skeleton
Point Connectivity

2.5.1 Extrapolation to the 3D Case

In the previous steps of analysis, individual snapshots of two-dimensional particle positions at
different levels of Z have been treated separately, as if they pertained to different scenarios.
Nevertheless, it is worth recalling that this whole study has dealt with a particular three-
dimensional volume of space, within which a set of parallel sheets, of a known thickness, have
been generated. For each of these sheets, each at a different value of Z, the particles contained
therein have been normally projected to the mid-plane of the sheet, thus transforming a large
three-dimensional domain into a number of adjacent two-dimensional domains. Therefore,
although each of these sheets can be examined individually, it is necessary to connect the
results occurring at different values of Z, to obtain an analysis which contemplates the whole
three-dimensional domain.

As has been explained in Section 2.1, the way in which these parallel sheets for different
levels of Z are generated greatly affects the adequacy with which the results of examination
of a single two-dimensional domain can be extrapolated to the complete three-dimensional
domain. On the one hand, one needs to employ a sheet thickness which is neither excessive
as to allow for phenomena from disparate levels of Z to be depicted within a same Z value
nor insufficient, thus resulting in a description of the particle structures under analysis which
lacks detail. On the other hand, the separation between adjacent sheets has to be significant
enough as to take advantage of the resulting computational efficiency with respect to a direct
examination of the three-dimensional domain and at the same time low enough to permit a
certain continuity between what adjacent two-dimensional domains represent.

Therefore, assuming that the selected parameters defining the generated parallel sheets are
adequate, it is possible to make use of the existing continuity between adjacent two-dimensional
domains in order to make connections which give the results of this analysis an additional
dimension. More precisely, once particle clusters in different two-dimensional domains have
been identified, it is possible to connect these according to their location and their similarity,
thus recognizing that the two-dimensional clusters that appear at different values of Z are
merely the intersection areas of the same three-dimensional particle structure with several
planes of constant Z.

This introduction of an additional dimension to the cluster analysis within this study brings
about the determination of multiple other parameters characterizing the cluster. Firstly, a
new set of cluster labels can be defined based on this three-dimensional connectivity. Just as
DBSCAN resulted in the grouping of particle positions into different particle clusters, each
of these being associated to a particular label, it is now possible to assign a label to three-

59

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

dimensional particle clusters based on whether connections between different planes of constant
Z exist. Secondly, the boundary curves of different two-dimensional domains can be merged
as long as they belong to the same three-dimensional particle cluster, thus creating a surface
which describes the three-dimensional topology of the cluster. Lastly, given the area occupied
by each particle cluster in a single two-dimensional domain, it is possible to approximately
calculate the volume associated to each three-dimensional cluster.

Nevertheless, this step can be further separated into two separate procedures. The first one
of these employs the previously developed condensation of cluster information into a cluster
boundary and a constellation of inner points. Based on this simplification, the connectivities
of brute skeleton points at different values of Z are examined, simply checking the intersection
of a trajectory with cluster boundaries. Once the connections of each skeleton point have
been determined, it is necessary to translate these results to the whole of the cluster particles.
Therefore, the second procedure in this step deals with assigning the labels of three-dimensional
clusters to the corresponding cluster particles in a coherent and efficient way, in order to express
the information obtained in the previous procedure in the level of detail that employing the
whole of cluster particles allows for.

2.5.2 Description of Employed Method

Connection of Neighboring Skeleton Points

Based on the condensation of a two-dimensional particle cluster into a set of interior points and
a closed boundary curve, it is necessary to try to connect skeleton points in order to determine if
they belong to the same three-dimensional particle structure. On the one hand, it is necessary
to carry out the straight-forward grouping of brute skeleton points interior to the same two-
dimensional cluster as belonging to the same three-dimensional cluster label. Although this
procedure is performed with ease by the human eye, its computational implementation is not
as simple, and relies greatly on how densely sampled the constellation of interior points is.
On the other hand, it is necessary to determine if skeleton points in adjacent two-dimensional
domains pertain to the same three-dimensional particle structure, this too depending greatly
on the abundance of skeleton points within a cluster.

With the aim of introducing the core concepts based on which this procedure is carried
out, a definition for directly connected points is presented.

Definition 2.5.1. Directly Connected Points: Given a pair of points r1 and r2 in R2, a set
of two-dimensional points defining a boundary B in R2, a collision distance dc, a step size ds,
and the points t ∈ T (r1, r2, ds) defining the straight-line trajectory between r1 and r2 with
step size ds, r1 and r2 are directly connected with respect to dc and ds if none of the points
t ∈ T (r1, r2, ds) are within dc of any boundary point b ∈ B.

60

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

Based on the fact that this definition deals exclusively with two-dimensional points, it is
expected for this condition to be examined within a single two-dimensional domain. More
importantly, two brute skeleton points interior to the same two-dimensional cluster are said
to belong to the same three-dimensional cluster as long as they are directly connected with
respect to a collision distance dc and a sampling distance ds. In simple terms, one has to
imagine a straight trajectory between two skeleton points, made up of uniformly separated
trajectory points. Based on this trajectory, the proximity of each trajectory point with nearby
boundary points is examined, such that if the trajectory is at any point too close to a cluster
boundary, it is considered to collide with the boundary, thus resulting in the two points not
being directly connected. This simple condition is the one determining whether two skeleton
points within the same plane of constant Z belong to the same three-dimensional cluster.

Moreover, in order to determine whether brute skeleton points in adjacent two-dimensional
domains belong to the same cluster, it is necessary to define the concept of projection-
connectivity.

Definition 2.5.2. Projection-Connectivity : Given a pair of levels of Z, z1 and z2, each associ-
ated to a point r1 and r2 and a set of cluster boundaries B1 and B2, a collision distance dc, and
a step size ds, r1 is said to be projection-connected to r2 with respect to dc and ds if its normal
projection on the plane defined by Z = z2, r

′
1, is directly connected with r2 with respect to dc

and ds.

The definition of projection-connected points deals with the fact that the two points are
not included within the same two-dimensional domain, and as a result one of the two points
is normally projected onto the plane of constant Z of the other point, in order to examine
whether a straight trajectory from the projected point to the other point collides with any
cluster boundary. Thus, one has to essentially imagine the same straight trajectory between
two points as before, but this time one of the two points to be connected corresponds instead
to the projection of a point originally existing in an adjacent level of Z.

It is important to bear in mind that the condition of projection-connectivity between two
points is not symmetric, since the cluster boundaries at both two-dimensional domains are not
the same. In other words, r1 may not be projection-connected to r2 while r2 is projection-
connected to r1. This is due to the fact that since the cluster boundaries at different levels of Z
are different, the projection of r2 can be directly connected with r1 while the trajectory between
the projection of r1 and r2 collides with a cluster boundary. This is presented in Figure 2.45,
where due to the different cluster boundaries for different values of Z, the projection of r2 is
directly connected with r1, and thus r2 is projection-connected to r1 but r1 is not projection-
connected to r2.

Bearing this in mind, the implemented method establishes that if for two brute skeleton
points at adjacent planes of constant Z, one is projection-connected with respect to the other,
both can be considered to form part of the same three-dimensional cluster, and can thus be
associated to the same cluster label. Thus, for each of these skeleton points, its connections

61

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

Figure 2.45: Projection-Connectivity is not Symmetric - In pink: cluster boundaries, in blue:
original points, in green: projected points, in orange: straight trajectories.

are simply determined by observing whether a straight trajectory connecting either the point
or its projections onto adjacent Z levels with other brute skeleton points collides with cluster
boundaries or not.

As a result, the current study determines connectivities between skeleton points as follows.
For each previously generated skeleton point, its three-dimensional position as well as those
of its projections into the adjacent levels of Z are stored. For each of these (at most) three
stored positions, all brute skeleton points within a certain radius of relevance and in the same
level of Z are extracted. Then, straight trajectories of a known step size between each stored
position and the relevant skeleton points are generated, and it is observed whether any of these
trajectories gets closer than a specified collision distance to any cluster boundary within the
same two-dimensional domain. Of these trajectories, those that connect the original brute
skeleton point or its projection with another nearby skeleton point without colliding with a
cluster boundary are detected, and the connections from the original brute skeleton point
to other skeleton points which they allow for are stored. After this, the algorithm goes on
to process the next skeleton point. Once all brute skeleton points have been analyzed, it is
ensured that the connections between different skeleton points are made mutual, since it may
occur that while point sj is included in the connections of si, since projection-connectivity is
not a symmetric condition, point si is not included in the connections of sj . Therefore, an
additional sweep of the list of connections is required to avoid this.

Once this initial procedure has been carried out, it follows to assign a cluster label to
each of the processed skeleton points, in order to ensure that brute skeleton points deemed as
connected are associated to the same cluster label, as they belong to the same three-dimensional
particle structure. To do so, a sweep over the list of skeleton point connections is performed,

62

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

propagating a cluster label to connected points. Nevertheless, since it is sought for cluster
labels defined in previous iterations of this labeling procedure to be conserved, a priority is
given to cluster labels according to their antiquity. Therefore, if when propagating a label
among connected skeleton points, one of the connected points has already been assigned a
label with priority over the current label, all of the skeleton points over which the current label
has been propagated are now associated to the label with priority. In this way, it is ensured
that the performed cluster labeling is coherent.

Based on the described procedure, the number of necessary parameters defining the perfor-
mance of the method is easily derivable. On the one hand, as is visible just by the definition of
directly connected points, it is necessary to define both a collision distance dc and a step size
ds. Moreover, since only a neighborhood of relevant skeleton points is taken into account for
each skeleton point, it is also necessary to introduce a radius db delimiting this neighborhood.

With regards to the neighborhood radius with which to select the nearby relevant skeleton
points, it is worth noting that since the objective of this determination of connections between
skeleton points is the assignment of cluster memberships, it is not necessary to connect every
brute skeleton point with as many other skeleton points as possible. As long as these points
within the cluster are abundant enough, it will be possible to unite significantly separated
skeleton points under the same cluster label by means of other brute skeleton points in between.
Thus, the selection of this distance will not have a great effect on the resulting cluster labels
assigned to each skeleton point, although it will affect the number of brute skeleton points
with which each skeleton point is connected, as well as the processing time associated to
the algorithm. In the current implementation, it has been sought to define this parameter
as proportional to the Kolmogorov length scale η, in order to relate such distance with a
characteristic length scale of the flow turbulence. Thus, if this neighborhood distance is defined
as db = kb · η, the current implementation has found kb = 105 to be a valid selection.

Moreover, the collision distance dc and the step size defining the trajectory between points
ds can be seen as closely related distance parameters, both defining the severity with which
the collision criterion of a trajectory is imposed. On the one hand, larger values of ds allow
for a milder computational cost of the method, while as smaller step sizes ensure a more exact
examination of trajectory collisions. On the other hand, the greater the value of dc the stricter
the collision criterion is, since a trajectory will have to cross farther by a cluster boundary in
order to consider that it has collided. Moreover, the ratio between both is also relevant, since
it may occur that if the step size ds is more than twice the collision distance dc, the trajectory
actually jumps over a cluster boundary particle without triggering a collision. In any case,
the current study has implemented this method with ds = 0.4 · η and dc = 2 · η with relative
success.

As a final note, it is worth noting that a main limitation of this method in determining
connectivities between skeleton points is the fact that the generated trajectories are straight.
As a result, the method depends greatly on the abundance of brute skeleton points within

63

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

the cluster to properly connect these points, since while as very disparate points may not be
directly connected due to the abrupt topology of the cluster, a set of intermediate skeleton
points can allow the method to relate them. In fact, the greater the number of skeleton points
within a cluster, the more severe the imposed collision condition can be, since the task of
connecting brute skeleton points in separated areas of the cluster is eased.

Assignment of Three-Dimensional Cluster Labels to Cluster Particles

Once the connectivities between skeleton points have been determined, and a set of three-
dimensional cluster labels have been assigned, what follows is to apply this labeling scheme
to the cluster particles based on which each brute skeleton was generated. This is performed
with great ease once it is known that skeleton points within the same two-dimensional cluster
have the same cluster label and that cluster particles within the same DBSCAN cluster have
the same label.

As a result of these two parting assumptions, the core principle of this procedure is to
substitute the DBSCAN label of all cluster particles within the same two-dimensional cluster
by the three-dimensional cluster label of a skeleton point within such cluster. More precisely,
for each skeleton point, its closest cluster particle is extracted. Then, all of the cluster particles
within the same level of Z with the DBSCAN label of such closest cluster particle have the
label of the skeleton points assigned to them. This procedure is repeated for all skeleton points.

Moreover, if it is not satisfied that skeleton points within the same DBSCAN cluster are
associated to the same three-dimensional cluster label due to a deficient examination of con-
nectivities, this method is prepared to define separate cluster labels within the same two-
dimensional cluster. In simple terms, each cluster particle will be associated to the cluster
label of the brute skeleton point which is closest to it. Nevertheless, it is assumed that the
abundance of skeleton points within every cluster and the collision criteria employed within
this implementation stop this from happening in the first place.

2.5.3 Results

Connection of Neighboring Skeleton Points

What results from this procedure, part of it visible in Figures 2.46, 2.47 and 2.48, is that
most of the two-dimensional clusters in the whole domain are connected with the same three-
dimensional cluster label, such that according to the implemented method the connection of
most cluster particles into a single three-dimensional cluster is adequate. On the other hand,

64

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

several small clusters are identified, intersecting a small number of two-dimensional domains
in Z.

Figure 2.46: Connectivity and Labeling of Skeleton Points - Z = 0.0248 m

Figure 2.47: Connectivity and Labeling of Skeleton Points - Z = 0.0256 m

65

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

Figure 2.48: Connectivity and Labeling of Skeleton Points - Z = 0.0264 m

2.5.4 Attempted Alternatives

Given that once the implemented method relied on straight trajectories between skeleton points
in order to connect them, a strong dependency of the method’s performance with the abun-
dance of skeleton points existed, an alternative method was attempted in order to avoid this
dependency, by developing instead trajectories between skeleton points which instead of being
systematically straight, curve themselves in order to avoid cluster boundaries. This way, the
cluster’s topology can more adequately be taken into account when connecting brute skeleton
points within a cluster, since the generated trajectory is adapted to the obstaculizing cluster
boundaries.

Similarly to attempted alternatives in previous steps of analysis within this study, it was
sought to train an agent capable of tracing a trajectory between points within the cluster,
but in this case, the agent was to function in a two-dimensional circuit between two skeleton
points and enclosed by the corresponding cluster boundary curves. Moreover, there was still a
simulation of the agent’s operation within the circuit to be carried out, at every time step of
which the agent deciding upon an action based on its current state. This state, as in the similar
method presented in Section 2.4.5, was the input of a neural network in charge of the selection
of the action to select in the current time step, and it was precisely this neural network which
was trained during its execution.

The main difference in this method with respect to the attempted alternative for describing

66

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

a skeleton curve of the three-dimensional cluster lies in the way in which the agent’s decision
making was trained. Instead of a costly genetic algorithm, reinforcement learning was applied
by assuming the agent’s simulation to constitute a Markov decision process. In this process,
the set of possible actions to take by the agent is defined as a set of known angular deviations
from its current course, and the state of the agent is defined by the distances to the closest
cluster boundaries in each direction, its current course, the course of the straight trajectory
towards its target, and the distance to its target. Moreover, a reward function is defined, which
assigns a score to each possible state within the circuit. Then, the agent’s training has the
objective of defining a policy that determines the action which, based on the agent’s current
state, maximizes its expected future reward.

More precisely, Deep Q-Learning was applied, such that the decision-making core of the
agent was made up of a neural network which defines Q(s, a), a function describing, for a
current state s and an action at such state a, the associated expected future reward. In this
way, with an already trained neural network, it is expected that introducing the current state
into such function will allow the agent to determine which action is to maximize its expected
future reward.

Furthermore, special care had to be taken with the definition of a viable reward function
which ensured that a maximization of the expected future reward meant taking the agent to
the circuit’s target. This reward function was made up of three components: one in charge of
driving the agent towards the target at all points of the domain, one in charge of attracting the
agent towards the target when particularly close to it, and a last term repelling the agent from
areas of the circuit close to cluster boundaries. The first of these components follows Equation
(2.5), where ~r represents the agent’s current position, ~t is the location of the circuit’s target,
and ~o the location of the circuit’s origin. The reward contour along the domain which results
from this component of the reward function is presented in Figure 2.49, basically driving the
agent away from the origin of the circuit and towards the target.

R1(~r,~t, ~o) = min(
(~r − ~o) · (~t− ~o)
|~t− ~o|2

, 1) + min(
(~t− ~r) · (~t− ~o)
|~t− ~o|2

, 0) (2.5)

Moreover, a second reward function centered at the circuit’s target was defined, as exposed
in Equation (2.6), where ~r corresponds to the agent’s current location and ~t is the location of
the circuit’s target.

R2(~r,~t) =
1

(|~r − ~t|)2
(2.6)

Furthermore, the third component in this reward function can be contemplated more pre-

67

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

Figure 2.49: Contours of the Reward Function defined only by R1

cisely as a penalization, to be activated when the agent is closer than dcrash to any cluster
boundary particle. This penalization term is presented in Equation (2.7), where d is the dis-
tance to the closest cluster boundary particle and b is the maximum penalization which can be
applied. As a result, one has to conceive the employed reward function as a weighted sum of
R1(~r,~t, ~o) and R2(~r,~t), where the weights have been previously tuned accordingly and where
a penalization of P (d) is applied when the agent is exceedingly close to any boundary particle.

P (d) =
−b

(2dcrash)2
· d2 + b (2.7)

Bearing in mind the main objective of the implemented training procedure as well as the
structure of the reward function involved within this training, the training procedure is as
follows. Based on an initialized neural network for Q(s, a) and a set of circuits described
by pairs of skeleton points and their enclosing cluster boundaries, the agent’s operation is
simulated for each of these circuits. For each time step of each of these simulations, the agent
is allowed to act based on the action which maximizes Q(s, a) for its current state s. Based on
its state s, this action a, and the resulting state s′, the associated reward R(s, a, s′) is computed,
and a loss term is computed as shown in Equation (2.8). In this expression, γ corresponds to
the discount factor, determining the importance in Q(s, a) of the possible rewards of the next
step, and A is the set of possible actions. Then, with the objective of minimizing L(s, a, s′), the

68

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

neural network defining Q(s, a) is updated. This update is thus carried out for every time step
of every simulation, until the resulting loss terms are sufficiently low to assume that training
has finished.

L(s, a, s′) =
(
Q(s, a)−

(
R(s, a, s′) + γmax

a′∈A
Q(s′, a′)

))2
(2.8)

What resulted from training this neural network based on a selection of circuits and on the
implemented reward function was an agent capable of tracing a trajectory between skeleton
points which properly avoided cluster boundaries, thus taking into account the cluster’s topog-
raphy when defining the connectivity between clusters. This avoidance of cluster boundaries is
particularly visible in Figures 2.50 and 2.51, where a straight trajectory would not be capable
of uniting both skeleton point.

Figure 2.50: Trajectory between Skeleton Points as Traced by an Agent Trained via Deep
Q-Learning - In blue: cluster boundary particles, in orange: skeleton points, in red: traced
trajectory

Nevertheless, the main flaw of this implementation is that once the agent was trained with
a given set of pairs of skeleton points, it was unable to trace a valid trajectory between skeleton
points outside of this training set. This required that the application of this method to the
current study would imply the training of one agent for every group of pairs of skeleton points
within the dataset. Since the number of possible pairs of skeleton points in the domain of
interest is significant and training of an agent was relatively costly, it was found that the
improvement in the determination of skeleton point connectivities which this method allowed

69

2.5. RE-DETERMINATION OF CLUSTER LABELS BASED ON 3D SKELETON POINT
CONNECTIVITY

Figure 2.51: Trajectory between Skeleton Points as Traced by an Agent Trained via Deep
Q-Learning - In blue: cluster boundary particles, in orange: skeleton points, in red: traced
trajectory

for does not compensate its elevated complexity and computational cost.

70

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

2.6 Temporal Tracking of Cluster Topology

2.6.1 Introduction

Up to now, the current study has dealt with, parting from a dataset of particle positions sorted
into a discrete number of levels of Z, classifying these particles into three-dimensional clusters
whose topology is simplified in a boundary and a set of interior points. Nevertheless, it is also
an objective of the current study to develop a method of temporal tracking of each cluster,
such that by applying the previously described steps to two different datasets concerning the
same spatial domain at different instants of time, one can connect the results of both clustering
analyses in order to explore the evolution of each cluster’s topology and volume over time.

One has to take into account however that this tracking is not as simple as following a set
of clusters in time, assuming that the region of interest will always focus on the same set of
clusters and that the number of clusters will always remain the same. On the one hand, if the
spatial domain of analysis is fixed, it is reasonable to expect particle clusters to leave and enter
the domain following the duct flow velocity, thus causing the appearance of previously unseen
clusters as well as the loss of structures being tracked. On the other hand, one has to take
into account that a cluster is merely defined as a set of particles in a region of relatively higher
number density. Therefore, it is very important to bear in mind that new clusters may appear
due to a sudden increase in the number density of a region within the domain of interest, or
that existing clusters can cease to exist due to a dissociation of its member particles. In any
case, it is still possible, albeit the possible birth and death of clusters, to pair clusters from one
time instant with clusters of another, thus allowing for the desired tracking of particle clusters.

In the current study, a robust method of temporal tracking of cluster topologies has been
developed, based on the pairing of clusters from different time instants. In the following, the
implemented method is described, an adequate selection of its defining parameters is presented,
and its associated results are discussed.

2.6.2 Description of Employed Method

As has been mentioned, the temporal tracking of particle clusters is at its core based on the
pairing of clusters from adjacent time instants, in order to examine the temporal evolution
of the cluster’s characteristics. However, to pair particle clusters belonging to two adjacent
time instants, it is convenient to employ a simplified version of these clusters, rather than the
complete set of its member particles. Therefore, the current implementation makes use of the
skeleton points expressing the cluster’s topology to carry out this connection over time. More
precisely, this method of temporal tracking is directly based on pairing skeleton points of the

71

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

previous time instant with skeleton points of the next time instant. In order to do this, it is
assumed that after the time step under consideration a cluster is not significantly deformed,
and that the relative position of its associated skeleton points has not varied too much. As
a result, the pairing of a skeleton point of the first time instant is simply reduced to finding
the skeleton point of the second time instant which, appearing in a region in which a particle
moving from the first skeleton point with the duct flow velocity would be expected to appear
at the second time instant, is neighbor to the cluster boundary that is most similar to the
cluster boundary neighboring the skeleton point of the first time instant.

When defining a region in which it is expected to find a skeleton point with which to
connect the skeleton point under analysis, it is necessary to begin with the assumption of
negligibly deformed clusters, in which the distribution of its internal skeleton points remains
more or less unchanged. This region is constructed around the concept of a particle which,
parting from the position of the skeleton point under analysis, moves in the direction of the
duct flow with its associated bulk velocity. In fact, this region is defined employing a known
radius around such expected position. Note that since the dataset utilized within this study
focuses exclusively on the regions of the duct which are sufficiently separated from its walls,
the assumption of a constant flow velocity along the domain under analysis is sensible (See
[17] for more information on the axial velocity profile of the flow).

As a result, all skeleton points of the second time instant which are considered for the
connection with the skeleton point under analysis are within a radius dfocus of rexpected, the
latter being presented in Equation (2.9) taking into account the position of the skeleton point
to be paired r0, the time step ∆t, and the bulk velocity vbulk. This region of interest is further
clarified in Figure 2.52. It is worth noting that in the current implementation, this region has
been intentionally limited to the level of Z of the original skeleton point, such that it will only
be paired to skeleton points of its same level of Z.

rexpected = r0 + ∆t · vbulk (2.9)

Once a region of interest associated to a skeleton point of the first time instant has been
defined, based on which one can define a group of candidate skeleton points of the second time
instant, it is possible to rank these skeleton points based on the similitude of the topology of
their neighboring cluster boundaries with that of the original skeleton point. In simple terms,
one has to look at the boundary particles within a radius rsens of each skeleton point, and
determine, for a number dirs of directions parting from the skeleton point, at what distance
will the closest cluster boundary be found. In order to do this, the neighborhood of each
skeleton point is divided into a set of ”slices”, and for each of these, the distance to the
closest boundary particle contained within such ”slice” is extracted. Note that since only the
neighboring boundary particles of the same level of Z as the skeleton point are analyzed, this
neighborhood is a two-dimensional region of radius rsens, as is visible in Figure 2.53.

72

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.52: Region of Interest for the Pairing of a Skeleton Point - In red, position of the
skeleton point under analysis. In yellow, expected position assuming uniform velocity in the
direction of the duct flow. In pink, skeleton points within the region of interest, defined by a
radius dfocus around rexpected. In gray, skeleton point outside of such region of interest.

Figure 2.53: Distance Sensing for a Skeleton Point for dirs = 8 - In red, the skeleton point
whose rsens-neighboring boundary particles are examined. In yellow, the neighboring boundary
particles. In blue, the distances measured to the closest boundary particles within each ”slice”.

Based on the dirs distances measured by means of this distance sensing for each skeleton
point, one can define a vector ~d of dirs elements for each skeleton point defining its measured
distances, such that its i-th component represents the distance measured in its i-th direction.
If this vector is seen as descriptive of the topology of the cluster boundaries close to a skeleton
point, in order to select an adequate skeleton point of the second time instant within the

73

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

specified region of interest, it is only necessary to determine which candidate skeleton point is
associated to a vector ~d of the least Euclidean distance with respect to the distance vector of
the skeleton point of the first time instant.

In summary, to pair a skeleton point of the first time instant, one has first to extract all
skeleton points of the second time instant within the aforementioned region of interest. Then,
taking into account the vector of distances to neighboring boundary particles of the original
skeleton point, ~d0, one has only to determine the extracted skeleton point whose distance vector
is most similar to ~d0. This skeleton point will be the one with which the original skeleton point
will be paired. It is nevertheless necessary to take into account that it may occur that no
skeleton points may appear within the defined region of interest, such that the skeleton point
of the first time instant will remain unpaired.

Based on this fundamental pairing of skeleton points of different time instants, one can
carry out the pairing of whole clusters by connecting their member skeleton points. In the
implemented method, the distances to neighboring cluster boundary particles are first measured
for each skeleton point, for both time instants taken into account. Then, for each skeleton point
of the first time instant, the skeleton points of the next time instant within its associated region
of interest are extracted, and their distance vector ~d is compared, to select the skeleton point
with which to pair the skeleton point under analysis. This is carried out for all skeleton points
of the first time instant. Hence, one can pair particle clusters by analyzing, for each particle
cluster of the first time frame, to which new cluster label are most of its skeleton points
assigned.

What results is a method with which one can connect the results regarding a particular
cluster at a specific instant of time with the same results associated to another cluster at a
later time, and even determine what parts of an existing cluster have continued within the
same cluster, broken away to create or join another cluster, or even have ceased to be part of
a particle cluster. In order to take into account a larger number of time instants, one only has
to apply the presented method for each pair of adjacent time frames.

2.6.3 Adequate Selection of Parameters

Based on the previously described method of temporal tracking of cluster topology, it is possible
to discern four parameters affecting the operation of the algorithm. Firstly, in order to define
the region of the domain containing candidate skeleton points with which to pair each skeleton
point under analysis, a radius dfocus has to be specified. Secondly, the employed method
of expressing the topology of cluster boundaries neighboring each skeleton point needs the
definition of a number of directions dirs to examine around each skeleton point, as well as a
neighborhood radius rsens enclosing the boundary particles under analysis. Lastly, it is also
necessary to specify the velocity of the flow within the duct, since this parameter will directly

74

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

affect the location of the region of interest for each skeleton point under analysis.

When specifying the radius determining the size of the region of interest associated to
each skeleton point to be paired, one has to bear in mind to what extent the assumption
of clusters moving in the direction of the duct flow without deforming is true. In simple
terms, the size of this region determines the extent to which a cluster moving differently from
the duct flow velocity will be captured by the implemented method. If this radius dfocus is
greatly reduced, the region in which to look for candidate skeleton points of the second time
frame is made smaller around rexpected. Therefore, this parameter will significantly affect the
percentage of skeleton points for which no pair skeleton point in the next instant of time is
found. Nevertheless, this distance could be increased in excess such that the skeleton point
of most similar neighboring cluster boundary topology within the defined region is not what
the human eye would associate with the skeleton point under analysis, thus resulting to an
inaccurate pairing of skeleton points across time instants.

On the other hand, taking into account that the flow velocity within the channel is subjected
to turbulent fluctuations with respect to the mean velocity, it is possible to define dfocus based
on two sources of deviation from the expected position rexpected. On the one hand, dfocus should
take into account the fluctuating particle velocities due to this turbulence, by including the
distance which a particle moving at such fluctuating velocity would travel during the specified
timestep. Based on Esmaily et al. (2020) [17], where the flow conditions are the same as in
the simulation from which the employed dataset is obtained, it is possible to approximate this
fluctuating particle velocity in all directions to 0.1 of the bulk speed vbulk. On the other hand,
the region of interest employed to pair each skeleton point should also take into account the
fact that skeleton points do not exactly maintain their relative position within the same cluster,
therefore requiring an additional margin of uncertainty added to the original region of interest
defined only by the fluctuating particle velocity. Since it is nonetheless expected for the skeleton
point to remain within the boundaries of the cluster itself, this second source of uncertainty
can be expressed, for each skeleton point, as a function of the average of all distances to the
closest boundary particles to such point in each direction. Therefore, every skeleton point will
have a different radius defining such region of interest, which will be dependent on the average
of all the distances measured by means of the previously described distance sensing scheme.

As a result of these two sources, dfocus,i in the current implementation follows the decom-
position presented in Equation (2.10), where up,rms is the fluctuating particle velocity, vbulk is

the simulation bulk velocity, ~di is the mean of all distances to the closest neighboring boundary
particles in each direction, and kfocus is a constant defining the margin of uncertainty given to
the region of interest due to the movement of skeleton points within the cluster.

dfocus,i =
up,rms
vbulk

· vbulk ·∆t+ kfocus · ~di (2.10)

75

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

What results from modifying this parameter is visible in Figure 2.54, where the cluster
boundaries of a cluster at a single level of Z for two relatively close instants of time are
presented along with their connected skeleton points. On the one hand, As kfocus decreases,
it is possible to see that the pairing of skeleton points more closely follows the hypothesis
of clusters moving with negligible deformation, such that the trajectory connecting paired
skeleton points is more and more aligned with the direction of the flow velocity. In fact, if for
the complete dataset, one measures the angle of each of these connecting trajectories with the
duct axial direction, one can see that as kfocus decreases from 1.5 to 1.0 to 0.5, the average
of this angle also decreases from 3.45 to 2.93 to 0.47 degrees, for two time instants separated
0.15 ms. On the other hand, for the same pair of time instants, as kfocus is decreased, the
percentage of unpaired skeleton points increases, from 5.47% with kfocus = 1.5 to 39.53% with
kfocus = 0.5. This is particularly notorious in Figure 2.54, where the number of unpaired
skeleton points increases significantly as kfocus is reduced.

From a more conceptual point of view, an increase of kfocus beyond 1 implies an extension
of the region of interest beyond the cluster boundaries. For instance, parting from an ideal
spherical cluster whose boundary curve within a two-dimensional plane is a circumference, if
this cluster were small enough to contain only one skeleton point at its center and move in the
direction of the flow without deforming, it would be expected for the relative position of a new
skeleton point within the same cluster in the next time step to at least remain within the cluster
boundary curve. Therefore, even with a translation of the cluster taking into account up,rms in
any direction, the new skeleton point must nonetheless be contained within the cluster. Based
on this reasoning and on the apt results obtained with this value of kfocus, this parameter is
set to 1.

Figure 2.54: Evolution of Skeleton Point Pairing with kfocus - In blue points, old cluster
boundary particles. In red points, new cluster boundary particles. In blue crosses, old skeleton
points. In red crosses, new skeleton points. In blue lines, connections between paired skeleton
points. For all three cases, ∆t = 0.15 ms, v = 7.7 m/s, ksens = 3, and dirs = 10. From left to
right, kfocus decreases from 1.5 to 1.0 to 0.5.

Moreover, another distance parameter has to be specified for the implemented method of
temporal tracking of particle clusters. As when one measures, for each skeleton point, the

76

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

distance along every direction to neighboring cluster boundary particles, it is convenient to
extract only the closest cluster boundaries in order to cheapen this procedure, it is necessary
to impose a certain neighborhood radius rsens defining the region from which to extract these
relevant boundary particles. Furthermore, in order to ensure that the vector of distances
regarding each skeleton point properly expresses the topology of the cluster boundaries around
it, this radius must be aligned with a characteristic cluster size. For values of rsens significantly
smaller than this characteristic size, many of the boundary particles neighboring a skeleton
point may not be enclosed within this neighborhood, such that this characteristic topology of
a specific area of the cluster will not be captured. On the other hand, if rsens is increased well
beyond this characteristic size, since only the closest boundary particles in each direction are
extracted, the algorithm will incur a greater computational cost than necessary by sampling
an excessively large region of the domain. Thus, there will be a value for this radius at which
a further increase does not affect the results significantly, but will only enlarge the associated
computational cost.

In order to correlate rsens with a characteristic size of the obtained clusters, this parameter
was defined as proportional to the Kolmogorov length scale of the flow η. Then, if rsens =
ksens · η, after examining the effect of ksens on the computational cost of the method as well
as on the obtained results, ksens = 63 was conceived as an apt configuration.

On the other hand, the choice of the number of directions dirs about a skeleton point
to take into account when carrying out the distance sensing of each skeleton point is related
with the desired resolution when expressing the neighboring cluster topology in a vector of
distances. The greater this number, the greater the amount of detail of the cluster boundary
to be encapsulated in this vector. However, for excessively high numbers of divisions, it may
occur that the random irregularities existing in a cluster boundary are also encapsulated in
this vector of distances. In any case, for the current implementation, it was considered that
dirs = 10 accurately expressed all cluster boundary shapes, without being excessively affected
by noise existing in these descriptions of cluster boundaries by means of a set of points.

Lastly, the duct flow velocity defining the separation of the center of the region of interest
associated to a skeleton point with respect to such skeleton point can be specified by several
ways. If regions relatively close to the duct walls were to be analyzed, it would be necessary to
model the existing average velocity profile, due to large variations of this convective velocity
from the duct walls to the duct’s center. However, since the implemented method deals with
a spatial domain at which the average velocity profile does not vary significantly, and since
the region of interest is already generated by means of a generous radius around rexpected, this
duct flow velocity can be assumed constant and equal to the flow bulk velocity, which for the
current dataset is 7.7 m/s.

77

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

2.6.4 Results

Once an appropriate set of parameters defining the method’s performance have been selected,
it follows to present its operation on adjacent instants of time of varying time step. When
analyzing the results of this implementation on two datasets separated by a time interval of
0.15 ms, one obtains an apt tracking of cluster topology for a relatively straight-forward case.
In Figures 2.55, 2.56, and 2.57, one can see how skeleton points from adjacent time instants
are connected, for Z = 0.0128 m, Z = 0.0136 m, and Z = 0.0144 m, respectively. It is also
possible to see the trajectories connecting paired skeleton points are as a whole fairly aligned
with the direction of duct flow velocity, the average angle of such trajectories with the X axis
being 2.92 degrees.

Figure 2.55: Temporal Tracking of Cluster Topology for Z = 0.0128 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In blue crosses, old
skeleton points. In red crosses, new skeleton points. In blue lines, connections between paired
skeleton points. kfocus = 1, ∆t = 0.15 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

Moreover, one can also track, for each cluster label assigned to skeleton points in the first
time instant, what amount of skeleton points is paired with skeleton points of each cluster
label of the second time instant. An overview of this tracking is visible in Figure 2.58, where
it is visible that the largest cluster of the first time instant is mostly conserved, a part of its
skeleton point being however unpaired.

On the other hand, if the time step is raised to 0.75 ms, the complexity of the pairing

78

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.56: Temporal Tracking of Cluster Topology for Z = 0.0136 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In blue crosses, old
skeleton points. In red crosses, new skeleton points. In blue lines, connections between paired
skeleton points. kfocus = 1, ∆t = 0.15 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

procedure is greatly increased. As is visible in Figures Figures 2.55, 2.56, and 2.57, presenting
the connection of skeleton points of adjacent time instants for Z = 0.0128 m, Z = 0.0136 m,
and Z = 0.0144 m, respectively, clusters of both instants of time are much more separated and
deformed, such that the assumption of clusters moving without deforming is not as applicable.
In any case, the implemented method of temporal tracking associated pairs of skeleton points
in a reasonable way, such that the mean orientation of connecting trajectories between pairs
of skeleton points is of 0.62 degrees with the direction of duct flow.

Moreover, it is possible to observe that many of the skeleton points of the first time instant
which remain unpaired are close to the most downstream area of the domain, such that the
region of interest in which to look for candidate skeleton points of the next time instant is
outside of the domain of interest. Furthermore, it is also worth noting that some skeleton
points of the first time instant belonging to very small clusters are often paired with skeleton
points of doubtful similarity. This can be explained by the reduced notoriety of these smaller
clusters, their particles possibly dissociating and destroying the particle structure before the
next time instant.

For the same time step of 0.75 ms between two snapshots, one can visualize the pairing
of skeleton points classified by their cluster labels in Figure 2.62. Curiously enough, when
comparing these results with the analogously presented in Figure 2.58 for a fifth of the time
step, one can see that the percentage of unpaired skeleton points from the first time instant

79

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.57: Temporal Tracking of Cluster Topology for Z = 0.0144 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In blue crosses, old
skeleton points. In red crosses, new skeleton points. In blue lines, connections between paired
skeleton points. kfocus = 1, ∆t = 0.15 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

is greater once the time step is increased, rising from 12.56% for ∆t = 0.15 ms to 25.30%
for ∆t = 0.75 ms. This is probably due to the fact that the hypothesis of particle structures
moving exclusively in the direction of flow velocity without deformation is less applicable as
the time step between both instants of time increases, such that the region of interest defined
for each skeleton point of the first time instant is not as effective.

Furthermore, given an appropriate tracking of clusters for two adjacent time instants, it
is also possible to extend this analysis to take into account several time frames. As has been
mentioned, by connecting particle clusters, one can determine how the properties of a particular
cluster evolve with time. In Figure 2.63, the tracked volume and number of member skeleton
points of the largest cluster in the domain are presented, resulting, for a relatively small interval
of time, a small variation in these parameters. Note that given that most cluster particles are
associated to a single predominant cluster, the evolution of the largest cluster will generally
provide a greater amount of insight into a cluster’s evolution.

80

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.58: Pairing of Skeleton Points across Time Instants - kfocus = 1, ∆t = 0.15 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10

81

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.59: Temporal Tracking of Cluster Topology for Z = 0.0128 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In blue crosses, old
skeleton points. In red crosses, new skeleton points. In blue lines, connections between paired
skeleton points. kfocus = 1, ∆t = 0.75 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

Figure 2.60: Temporal Tracking of Cluster Topology for Z = 0.0136 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In blue crosses, old
skeleton points. In red crosses, new skeleton points. In blue lines, connections between paired
skeleton points. kfocus = 1, ∆t = 0.75 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

82

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.61: Temporal Tracking of Cluster Topology for Z = 0.0144 m - In blue points, old
cluster boundary particles. In red points, new cluster boundary particles. In blue crosses, old
skeleton points. In red crosses, new skeleton points. In blue lines, connections between paired
skeleton points. kfocus = 1, ∆t = 0.75 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

83

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.62: Pairing of Skeleton Points across Time Instants - kfocus = 1, ∆t = 0.75 ms,
v = 7.7 m/s, ksens = 3, and dirs = 10

84

2.6. TEMPORAL TRACKING OF CLUSTER TOPOLOGY

Figure 2.63: Evolution of Volume and Number of Skeleton Points of Cluster 1 - kfocus = 0.5,
∆t = 0.75 ms, v = 7.7 m/s, ksens = 3, and dirs = 10

85

Chapter 3

Evaluation based on Voronoi
Tessellations Analysis

3.1 Application of Voronoi Tessellations to cluster Analysis

In order to evaluate the results of the presented methods of particle cluster analysis, it is
necessary to employ an affordable method which is as unbiased as possible from the physical
parameters of the problem. In other words, a method analyzing the preferential concentration
of particles in a way which does not require the setting of an arbitrary length scale nor a
density threshold.

For instance, a common method of cluster identification and characterization is box-
counting. This method divides the domain under analysis into boxes of a specified size and
proceeds to count the number of particles contained within each box. This method has been
employed on the one hand to quantify the degree of preferential concentration in the particle-
laden flow for a particular length scale, by comparing the probability density function regarding
the number of particles per box in the preferentially concentrated case to the case in which
particle positions are uniformly distributed, the latter case being associated to a Poisson prob-
ability density function [2]. On the other hand, box-counting can be employed to define a
concentration field of the domain, based on which connected boxes containing a number of
particles superior to a specified threshold describe particle clusters and connected empty boxes
at some scale define particle voids [4]. Nevertheless, box-counting methods present a depen-
dency on an arbitrary, a priori length scale defining the box size, which requires the tuning of
an additional parameter to the peculiarities of the current problem [7].

On the other hand, identifying and characterizing particle clusters with the Voronöı analysis

86

3.1. APPLICATION OF VORONOI TESSELLATIONS TO CLUSTER ANALYSIS

of the set of particle positions directly avoids the introduction of an arbitrary length scale,
since the density threshold based on which a cluster label is assigned to a particle depends
exclusively on the comparision with the equivalent case of uniformly distributed particles [7].
This Voronöı analysis determines, for each of the particle positions in the dataset, the region
of the domain that is closer to such particle than to any other. In this way, one obtains a set of
tessellations corresponding to each of these regions, the volume of each of them being inversely
proportional to the local concentration of particles at the center of such volume [7].

Based on the Voronöı tesselation of the dataset, assigning a Voronöı volume to each of
the particles in the domain, it follows to determine the probability density function describing
how such volumes are distributed when normalized with the mean Voronöı volume in the
problem. One can similarly perform the same Voronöı analysis on a dataset of the same
size but populated with uniformly distributed particles, as per a random Poisson process, and
obtain another probability density function representing the distribution of Voronöı volumes in
this case [7]. By definition, preferential concentration of particles within the particle-laden flow
will cause particles to cluster significantly more than in the randomly distributed case, such
that very small and very large Voronöı volumes will be expected to occur more frequently than
in the case following a random Poisson process. Therefore, the comparison of the probability
density functions regarding the normalized Voronöı volumes of the preferentially concentrated
case with that of the randomly distributed case will result in two intersection points, since for
very high and very small volumes the preferentially concentrated case will present a higher
probability, and for intermediate volumes the scenario with uniformly distributed particles will
present a higher density function [7].

In this way, the identification and characterization of clusters following this Voronöı analysis
is directly founded on the intersections between both of the aforementioned probability density
functions. Particles whose associated normalized Voronöı volume is smaller than the volume
corresponding to the first intersection are labeled as cluster particles, while as particles for
which the resulting normalized Voronöı volume is larger than the second intersection between
density functions are classified as void particles [7]. It is worth noting that the particles
whose assigned normalized volume is between both intersections are classified as neither of the
two. Moreover, the characterization of clusters is simply performed once connectivity between
cluster tessellations is examined, in order to define a region of the domain as a single particle
cluster based on the volumes of the adjacent particles labeled as clusters within that region.

Therefore, it is convenient to employ this method of analysis in order to properly evaluate
the techniques developed within this study, since there is no requirement of setting an arbitrary
length scale for the identification and characterization of cluster structures, and also since the
implementation of such technique of analysis is relatively straight-forward taking into account
that multiple libraries offer the possibility of performing the Voronöı tessellation of a set of
points.

In order to adequately take into account the multiple levels of cluster analysis which the

87

3.2. EVALUATION OF THE CLUSTERING ANALYSIS OF A 2D SNAPSHOT

techniques developed within this study allow for in this evaluation, this chapter presents the
evaluation of the clustering analysis of a single two-dimensional snapshot in Z as well as in the
resulting clustering analysis of the whole three-dimensional domain. Moreover, this chapter
also deals with the comparison of computational performances of both methods.

It is important to note that the current study carried out all Voronöı tessellations by making
use of the existing Python library SciPy.

3.2 Evaluation of the Clustering Analysis of a 2D Snapshot

The evaluation of the developed method in its clustering analysis of an individual two-dimensional
snapshot in Z is carried out by comparing, for each of the particles within the domain, whether
the assigned label coincides which the label which a two-dimensional cluster identification
based on Voronöı tessellations assigns. More precisely, once the previously exposed DBSCAN
clustering analysis has classified each of the particles in the domain as belonging to a particle
cluster or as belonging to a particle void, one can also carry out the Voronöı tesselation of
the same two-dimensional domain containing projected particle positions. In this case, each
Voronöı cell will have an associated area. Hence, by comparing the resulting normalized area
probability density function with that of randomly distributed particles, one can determine if
particles classified as cluster particles by the previous DBSCAN analysis have an associated
Voronöı area which is smaller than the occurring threshold.

When comparing the probability density function of normalized Voronöı areas of the pref-
erentially concentrated case with that resulting from randomly distributing particle positions
as per a random Poisson process, it is convenient to take into account that there exists an
analytical expression of such density function in the case of uniformly distributed particles in
a two-dimensional domain [21]. This expression, presented in (3.1), simplifies the computa-
tion time of this two-dimensional analysis, since it does not require the simulation of multiple
random configurations of particles. In this equation, a = 1.0787, b = 3.0328, c = 3.3095, Γ(·)
corresponds to the gamma function, and A/〈A〉 represents a normalized Voronöı area.

P (A/〈A〉) =
a · b

c
a

Γ(c/a)
· (A/〈A〉)c−1e−b(A/〈A〉)a (3.1)

In this way, the determination of the intersection points between the probability density
function of the preferentially concentrated set of particles and that of the random Poisson
process is simplified, such that the Voronöı analysis of the original set of particles suffices.
In 3.1, the resulting probability density function of the preferentially concentrated case is
visualized, and its first intersection with the density function of the uniformly distributed set

88

3.2. EVALUATION OF THE CLUSTERING ANALYSIS OF A 2D SNAPSHOT

of particles is displayed. As a result, particles with an associated normalized Voronöı area
smaller than the value of this intersection will be classified as cluster particles by this method
of cluster identification based on Voronöı tesselations.

Figure 3.1: Intersection of Normalized Area Probability Density Functions - In blue, density
function corresponding to the preferentially concentrated case. In orange, density function
following a random Poisson process.

If this Voronöı analysis is applied to a single two-dimensional snapshot in Z of the dataset
employed within this study, one obtains, for Z = 0.02 m, what is presented in Figure 3.2.
Here, particles with an associated normalized Voronöı area smaller than that of the intersection
displayed in Figure 3.2 are labeled as cluster particles, with a gray marker. All other particles
are presented with a red marker. Given that the clustering analysis based on DBSCAN which
this study implements exclusively differentiates between cluster and void particles, for the
purpose of this evaluation it is assumed that all particles not classified as cluster particles by
this Voronöı analysis are classified as void particles.

As can be expected, in Figure 3.2, particles in relatively denser regions of the domain are
classified as belonging to a cluster. What is remarkable from this particular method of cluster
analysis is that the setting of a threshold density for the definition of a cluster is carried out
independently of any arbitrary length scale. Furthermore, it is necessary to note that particles

89

3.2. EVALUATION OF THE CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 3.2: Identification of Cluster Particles Based on Voronöı Tesselation of a Single Two-
dimensional Snapshot in Z = 0.02 m - In gray, particles labeled as cluster particles. In red, all
other particles.

in the boundaries of the domain have been classified as cluster particles due to the fact that
their volume, for the purposes of this calculation, has been set to null. Nevertheless, these
particles are not considered for the later validation of the clustering techniques implemented
within this study.

If one were to compare the results displayed in Figure 3.2 with the cluster labeling which
the application of DBSCAN produces for the same snapshot in Z, each of the non-boundary
particles in the domain would fall into one of the following four categories. In the first place,
the particle can be classified as a cluster particle both by the application of DBSCAN of this
study and by the Voronöı-based approach of this evaluation. Moreover, it could also be that
both cluster identification techniques coincide in classifying the given particle as a void particle.
Nevertheless, in the case that both techniques were to disagree in their labeling of the particle,
it could occur that the Voronöı-based approach classifies the particle as a cluster particle while
the DBSCAN-based approach of the current study labels the particle as a void particle, or
that the opposite occurs. Based on these four groups of particles, it is possible to calculate the
accuracy of the cluster identification method of the current study by computing the percentage
of non-boundary particles in the domain for which both labeling techniques coincide.

If the method of clustering analysis developed within the context of this study is evalu-
ated, for the same snapshot in Z as the one analyzed in Figure 3.2, with the same thickness

90

3.2. EVALUATION OF THE CLUSTERING ANALYSIS OF A 2D SNAPSHOT

of the projection sheet, one obtains an accuracy of 72.57%. The results of this evaluation are
presented in Figure 3.3. Based on this image, it is possible to assert that the clusters obtained
by means of the application of DBSCAN in this study results in clusters of a more significant
thickness, within the context of a two-dimensional snapshot in Z. By looking closely at Figure
3.3, one can see that the main source of discrepancy between different clustering analysis tech-
niques is the fact either the DBSCAN-based approach identifies thicker clusters than what the
Voronöı-based technique results in, or that the latter identifies as clusters very thin structures
that the former is incapable of detecting.

Figure 3.3: Evaluation of Cluster identification Based on Voronöı Tesselation of a Single Two-
dimensional Snapshot in Z = 0.02 m and t = 0.0004 m - In blue, particles labeled as cluster
particles by both methods. In red, particles labeled as void particles by both methods. In
orange, particles labeled as cluster particles by the Voronöı-based approach but not by the
DBSCAN-based approach. In green, particles labeled as cluster particles by the DBSCAN-
based approach but not by the Voronöı-based approach. In purple, boundary particles.

If the thickness of the projection sheet for the snapshot in Z is to be halved to t = 0.0002
m, the same trend is seen to occur. As is natural, both of the parameters based on which the
DBSCAN analysis of the two-dimensional domain is performed vary as the average number
density of the plane is reduced from 23, 472, 994 1/m2 to 11, 733, 796 1/m2. More specifically,
MinPts∗ is reduced to 130. The results, presented in Figure 3.4, again show that thin or small
structures are not properly captured by the DBSCAN-based approach as clusters, and that
the structures which the latter does classify as clusters are generally thicker. The resulting
accuracy is similarly 70.83%.

91

3.2. EVALUATION OF THE CLUSTERING ANALYSIS OF A 2D SNAPSHOT

Figure 3.4: Evaluation of Cluster identification Based on Voronöı Tesselation of a Single Two-
dimensional Snapshot in Z = 0.02 m and t = 0.0002 m - In blue, particles labeled as cluster
particles by both methods. In red, particles labeled as void particles by both methods. In
orange, particles labeled as cluster particles by the Voronöı-based approach but not by the
DBSCAN-based approach. In green, particles labeled as cluster particles by the DBSCAN-
based approach but not by the Voronöı-based approach. In purple, boundary particles.

Alternatively, if the thickness of the projection sheet is increased, such that 61322 particles
are now included within the same two-dimensional domain and the value of MinPts∗ rises to
380, the accuracy of the DBSCAN-based approach does not vary significantly, it being 72.10%.
Nevertheless, the number of small clusters which are not classified as such by the evaluated
method decreases, as is visible from Figure 3.5.

What can be concluded from this evaluation is that the current application of DBSCAN
coincides with an analogous application of Voronöı tessellations in order to determine particle
clusters in a two-dimensional domain. However, it is visible that the requirement of MinPts
within a cluster limits the thickness of the clusters classified with the method developed in the
current study. In any case, the capacity of the parameters configuring DBSCAN to adapt to
the average number density of the domain is proven.

92

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

Figure 3.5: Evaluation of Cluster identification Based on Voronöı Tesselation of a Single Two-
dimensional Snapshot in Z = 0.02 m and ∆Z = 0.0008 m - In blue, particles labeled as cluster
particles by both methods. In red, particles labeled as void particles by both methods. In
orange, particles labeled as cluster particles by the Voronöı-based approach but not by the
DBSCAN-based approach. In green, particles labeled as cluster particles by the DBSCAN-
based approach but not by the Voronöı-based approach. In purple, boundary particles.

3.3 Evaluation of the Clustering Analysis of a 3D Database

In order to carry out an evaluation of how the implemented methods examine the particle
positions in the dataset and classify such positions into three-dimensional regions of particle
clusters or voids, it is necessary to once again validate the obtained results based on a method
which is not associated to the choice of an arbitrary length scale, but rather solely requires
a comparison with the case of uniformly distributed particles, as per a random Poisson pro-
cess. Therefore, the evaluation of the clustering analysis of the complete three-dimensional
dataset is also performed employing Voronöı tessellations, with a number of differences in its
implementation with respect to the previous two-dimensional case.

On the one hand, this Voronöı analysis is not to be applied to the same dataset as is
utilized within the context of this study, which projects particle positions into a finite number
of planes of constant Z. On the contrary, this simplification of the three-dimensional domain
into a set of two-dimensional domains is avoided, and thus the cell center of each Voronöı cell
is to correspond to an actual unaltered particle position capable of appearing at any level
of Z within the domain under study. This is necessary since the previously assigned three-

93

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

dimensional cluster labels have to be verified, and thus cluster connectivities along different
levels of Z have to occur spontaneously due to the nature of the dataset.

On the other hand, given the three-dimensional character of the dataset to which a Voronöı tes-
sellation is to be applied, it follows that the property of each Voronöı cell to be examined in
order to determine whether to classify it as a cluster or a void particle should cease to be
its planar area, and should instead be its internal volume. More precisely, instead of com-
paring the probability density function of Voronöı cell areas in the preferentially concentrated
case with that of the uniformly distributed set of particles, it follows instead to intersect the
probability density functions of Voronöı cell volumes for both cases. Since the preferentially
concentrated case is expected to present a higher frequency of both relatively small and rela-
tively large Voronöı cells, both probability density functions will intersect at two volumes, the
smaller of both representing the volume below which a Voronöı cell is classified as a cluster cell.
Analogously to the validation of the clustering analysis of a single two-dimensional domain,
it is convenient here to employ an analytical expression for the Voronöı cell volume proba-
bility density function, following a generalized gamma function fit, of the form expressed in
Equation (3.2). This expression, in which according to Ferenc et al. (2007) [22], a = 3.24174,
b = 3.24269, c = 1.26861, Γ(·) corresponds to the gamma function, and V/〈V 〉 represents the
Voronöı cell volume normalized with respect to the mean Voronöı cell volume, when compared
with the probability density function of the preferentially concentrated, unaltered set of three-
dimensional particle positions, results in the intersections presented in Figure 3.6. It is worth
noting that in order to efficiently calculate the volume associated to each Voronöı cell, its
convex hull is generated, as is possible based on the existing Python library SciPy. Moreover,
due to their spurious effect on the volume probability density function, Voronöı cells whose
vertices appear outside of the domain of interest are discarded, these appearing close to the
domain’s boundaries.

P (V/〈V 〉) =
c · b

a
c

Γ(a/c)
· (V/〈V 〉)a−1e−b(V/〈V 〉)c (3.2)

Lastly, in this step of validation it is not sufficient to study whether each particle by itself
is classifiable as belonging to a cluster or not, but rather one should also verify whether the
three-dimensional particle structures which have been delimited within this study are sensible,
in terms of their size and their shape. Therefore, it is also necessary to connect adjacent
Voronöı cells whose volume is sufficiently low to be considered as part of a cluster, in order
to define complex, three-dimensional regions of particle clusters, whose topology and volume
can be compared with the particle structures which the three-dimensional extension of this
study results in. Given that this procedure can prove to be computationally costly, and with
the objective of carrying out a just evaluation of computational performance of the developed
methods with their Voronöı-based alternative, it is necessary to examine the connectivity of
adjacent cluster Voronöı cells in an efficient way. Instead of proceeding for each Voronöı vertex
and taking into account the Voronöı cells adjacent to the vertex, the current implementation
proceeds by analyzing each Voronöı ridge, and extracting the pair of Voronöı cell centers

94

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

Figure 3.6: Approximated Intersection of Normalized Volume Probability Density Functions
- In blue, density function corresponding to the preferentially concentrated case. In orange,
density function following a random Poisson process.

between which it lies. This choice followed after perceiving that the latter method consumed
significantly less time than the former, and thus was considered an apt alternative. As a
result, adjacent Voronöı cell centers labeled as cluster particles are connected to form three-
dimensional clusters with which the obtained results can be compared.

Based on these modifications in the application of Voronöı tessellations to the evaluation
of the results obtained within this study, it is possible to examine to what extent the obtained
three-dimensional particle structures are sensible in terms of their resulting topology and size.

3.3.1 Topological Coincidence of Clusters

When determining to what extent the classified three-dimensional clusters coincide in their
shape with the analogous result obtained from the aforementioned application of Voronöı tes-
sellations, it makes sense to take advantage of the condensation of the cluster’s topology in
a constellation of interior skeleton points. Given that an objective of the current study is to
simplify the shape of a three-dimensional cluster into its boundary surface and a set of skeleton
points, it is reasonable to expect that adequate quantitative and qualitative validations can be

95

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

carried out parting from these interior points.

More precisely, given that these skeleton points represent positions interior to particle
clusters, and that each of these points is assigned a cluster label based on three-dimensional
connectivities, one can validate the resulting particle clusters by determining both to what
extent skeleton points are included in regions which the presented Voronöı-based method clas-
sifies as pertaining to a particle cluster as well as whether skeleton points belonging to the
same cluster label still share their cluster label according to this Voronöı validation. In simple
terms, it is sought to examine whether the regions of the domain classified as occupied by
particle clusters coincide according to both methods, and also to see if what one method labels
as a single cluster is separated into several clusters by the other.

In order to do so, a simple pairing procedure has been followed. For each skeleton point,
the closest Voronöı cell center is examined, and the Voronöı cluster label associated to such
cell center is stored. Then, it follows to count, for each of the cluster labels assigned to
skeleton points, what number of its assigned skeleton points is closest to a Voronöı cell center
classified as a cluster cell, and what number of these points is related to each of the existing
Voronöı cluster labels. The result is efficiently stored in an array with the same number
of rows as labels assigned to skeleton points, and the same number of columns as existing
Voronöı cluster labels. Then, the j-th element of the i-th row is to represent how many skeleton
points with a cluster label i are closest to a Voronöı cell center of cluster label j.

After carrying out this counting procedure for the dataset of interest, what results is that
out of the 1868 skeleton points taken into account, only 679 are closest to a Voronöı cell center
classified as a cluster cell. In other words, 63.651% of the skeleton points in the dataset appear
in regions which by this Voronöı-based alternative method do not belong to a particle cluster.
It is nevertheless necessary to bear in mind that the skeleton points of the highest and lowest
levels of Z in the domain are not contemplated in this value, since the Voronöı cells in the
boundaries of the domain are not taken into account due to their spurious volume. If these
skeleton points of extreme levels of Z were taken into account, the percentage of skeleton points
appearing in void Voronöı cells would increase.

Moreover, if one dives deeper into the results of this validation, it is possible to discern
an interesting distribution of the skeleton points associated to the largest cluster: out of
the 1853 skeleton points included in this cluster, 1176 (63.465%) do not appear within any
Voronöı cluster cell, and 586 (31.624%) occupy Voronöı cells associated with the largest cluster
obtained with this alternative method, the remaining 4.911% of skeleton points with this label
being scattered among other Voronöı clusters. On the other hand, the other 15 skeleton points
of other cluster labels are not included within any Voronöı cluster cell.

Parting from this poor coincidence, one can visualize where do these skeleton points appear
with respect to the Voronöı cluster cells with which they have been compared. In order to
ease this visualization, it is necessary once again to simplify a three-dimensional domain into

96

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

several two-dimensional domains. Thus, taking into account the finite number of Z levels at
which skeleton points occur, the cell centers of Voronöı cells classified as cluster cells have been
normally projected to the closest plane of constant Z, in order to examine to what extent do
the cluster topologies defined by both methods differ.

The results of this visualization are presented in Figures 3.7, 3.8, and 3.9, where skeleton
points are presented along projected positions of cluster cell centers, and these skeleton points
are labeled according to the nature of their closest Voronöı cell centers. Moreover, the projected
positions of Voronöı cell centers have been colored according to the different three-dimensional
cluster labels which their connectivities allow for. From these results, it is possible to see that
although most skeleton points are not closest to a Voronöı cluster cell, skeleton points within
a single two-dimensional domain do portray a cluster topology which is similar to the one
depicted by the cell centers.

Figure 3.7: Topological Validation of Skeleton Points for Z = 0.0240 m - In green and blue
points, Voronöı cluster cell centers, colored according to their three-dimensional cluster labels.
In orange, red, and yellow triangles facing upwards, skeleton points whose closest Voronöı cell
center is part of a particle cluster. In orange, red, and yellow triangles facing downwards,
skeleton points whose closest Voronöı cell center is not part of a particle cluster.

Nevertheless, the fact that not all skeleton points exist in Voronöı cluster cells is explained
by the way in which a cluster is defined in each method. While as when classifying a particle
cluster made up of Voronöı cells smaller than a certain volume one can have any number of
particles defining a cluster, the procedure implemented in this study in which DBSCAN is
applied to a dataset of two-dimensional particle positions requires, by definition, a minimum
number of particles to define a cluster. Although non-core data samples, or in this case particles

97

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

Figure 3.8: Topological Validation of Skeleton Points for Z = 0.0248 m - In green and blue
points, Voronöı cluster cell centers, colored according to their three-dimensional cluster labels.
In orange, red, and yellow triangles facing upwards, skeleton points whose closest Voronöı cell
center is part of a particle cluster. In orange, red, and yellow triangles facing downwards,
skeleton points whose closest Voronöı cell center is not part of a particle cluster.

without a sufficient number of neighboring particles, are purposely excluded from all clusters,
the clusters which result from clustering with DBSCAN end up being much wider than the
ones which Voronöı tessellations can result in. This results in skeleton points which appear
outside of the concentrations of cell centers defining a particle cluster. In any case, it is possible
to assert that the general cluster shape in every snapshot in Z is portrayed similarly by both
methods, at most showing a significant disagreement for Voronöı-defined clusters made up of
a very small number of cluster cells, which skeleton points are not capable of capturing.

On the other hand, due to this same requirement of a minimum number of points within
a DBSCAN cluster, the alternative Voronöı-based method results in a significantly higher
number of cluster labels. Many of these clusters appear within regions of the domain which
the method developed in the current study associates to a single cluster. Nevertheless, both
methods result in a single cluster label being applied to most of the particles in the dataset.

98

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

Figure 3.9: Topological Validation of Skeleton Points for Z = 0.0256 m - In green and blue
points, Voronöı cluster cell centers, colored according to their three-dimensional cluster labels.
In orange, red, and yellow triangles facing upwards, skeleton points whose closest Voronöı cell
center is part of a particle cluster. In orange, red, and yellow triangles facing downwards,
skeleton points whose closest Voronöı cell center is not part of a particle cluster.

3.3.2 Volumetric Coincidence of Clusters

It now follows to examine how the measures of the volumes of the resulting particle clusters
vary from the DBSCAN-based method developed in this study to the Voronöı-based alternative
with which its results are evaluated. On the one hand, this comparison allows one to observe
what percentage of the domain is deemed to be occupied by particle clusters according to each
method. On the other hand, with this evaluation it is possible to discern whether what one
method classifies as a single cluster of relatively large volume is established to be multiple
clusters of smaller volume by the other technique of analysis.

Before presenting the results of this comparison, it is necessary to describe how the volume
of each cluster is estimated in the current implementation, since the inaccuracy of this method
directly determines the certainty with which this evaluation can be carried out. In short, this
estimation of a cluster’s volume intends to work around the simplification of a three-dimensional
domain into multiple two-dimensional domains by interpolating between the areas associated
to the cluster in adjacent planes of constant Z. Since in order to obtain the constellation of
points interior to a cluster expressing its topology, a uniform grid is generated within the
cluster’s area, where the number of cells containing particles of such cluster is known, it
is possible to approximately discern the area associated to each DBSCAN cluster within a

99

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

two-dimensional domain. Then, once these skeleton points are generated, connected, and
labeled according to their three-dimensional connectivity, it is possible to state that what
previously were independent two-dimensional DBSCAN clusters are now an approximation of
the intersection areas of a three-dimensional cluster with planes of constant Z. Based on these
intersection areas, one can estimate the cluster’s volume by means of a lineal interpolation,
knowing the separation between adjacent planes of constant Z. In Equation (3.3), one can see
how this estimation of the volume V (c) of a cluster c is carried out, where A(c, zi) represents
the area which cluster c occupies in the two-dimensional domain of Z = zi, there being N
two-dimensional domains of constant Z.

V (c) =

N∑
i=2

A(c, zi) +A(c, zi−1)

2
· (zi − zi−1) (3.3)

As is expected, the error associated with this estimation of a cluster’s volume is closely
related with the separation between adjacent two-dimensional domains, since the closer these
are, the less will the cluster’s volume differ from a linear interpolation between adjacent areas.
Moreover, in the case in which a cluster ceases to appear in one of the adjacent planes, the
sum presented in Equation (3.3) is likewise carried out, only with a null area associated to
this plane. The result of this estimation technique is the volume distribution presented in
Figure 3.10. As is expected from what is obtained after determining the three-dimensional
connectivities of the previously generated skeleton points, there is one cluster label which is
applied to the great majority of cluster particles, whereas many other significantly smaller
clusters also exist.

On the other hand, the estimation of the volume associated to each cluster resulting from
a Voronöı-based clustering analysis is both simpler and more precise. Since the property
determining whether a Voronöı cell corresponds to a cluster particle is its volume, this method
of clustering classification innately requires a computation of the volume of each cell in the
domain. This computation is carried out easily by determining the convex hull enveloping the
Voronöı vertices defining the cell. Then, once adjacent cluster cells have been connected in order
to define three-dimensional regions occupied by particle clusters, one can directly compute the
volume associated to a cluster label by adding the volume of each of the Voronöı cells under
such label. The error related to this measure of volume can be seen as caused by imprecisions
in the calculation of the volume of a single cell, which assuming these Voronöı cells have a
convex shape, can be considered negligible. In Figure 3.11, one can observe that there exists
one particle cluster which connects a large number of cluster particles, whereas several other
much smaller particle structures also appear.

When comparing both volume distributions exposed in Figures 3.10 and 3.11, one can
extract a number of important conclusions. On the one hand, it stands out at a first glance
that both distribution of volume along different particle clusters are very similar. Particularly,
according to both methods of clustering analysis, there appears a cluster label associated to

100

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

Figure 3.10: Estimated Volume of the 10 Largest Particle Clusters According to the Developed
Methods of Clustering Analysis

Figure 3.11: Estimated Volume of the 10 Largest Particle Clusters According to a Voronöı-
based Method of Clustering Analysis

the great majority of cluster particles, such that the difference in volume between the largest
cluster and the following clusters is significant. Nevertheless, purely from a qualitative point of

101

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

view, the difference between the largest particle cluster and the remaining particle structures
is more notorious according to the DBSCAN-based method of clustering analysis developed in
the current study.

However, as soon as one delves into a quantitative examination of the results, it is possible
to observe how the largest particle cluster following a Voronöı tessellation of unaltered particle
positions is around four times smaller than its analogous cluster in the alternative method of
cluster classification. This is most probably due to the fact that, as discussed in the previous
validation, the clusters resulting from the DBSCAN alternative method are generally wider,
since they have to include a minimum number of particles by definition. Thus, it is reasonable
that the total volume of all cluster regions in the domain is larger according the current
implementation than following a Voronöı-based alternative. However, it is also possible to
argue that this difference in the maximum cluster volume is due to the fact that according to a
cluster classification following Voronöı tessellations, not only do more clusters appear (for this
particular dataset, 2816 different cluster labels are assigned), but also the difference between
the largest and the second largest particle clusters is not as pronounced, thus resulting in a
greater degree of distribution of volume among clusters. Lastly, a simpler reasoning of such
divergence could be carried out by associating it to inaccuracies in the computation of cluster
volumes according to Equation (3.3). In any case, it can be established that both methods
coincide in defining a single cluster label to which the great majority of cluster particles is
associated, accompanied by many other much smaller particle structures.

A further step in this validation can be carried out by comparing the probability density
function of volume per cluster associated to the clustering technique developed within this
study with that of different Voronöı-based alternatives in which the volume threshold defining
which Voronöı cells are labeled as cluster cells is increased. In simple terms, volumes per cluster
obtained with DBSCAN are contrasted with volumes per cluster based on Voronöı tessellations,
where the maximum volume defining a cluster particle in these latter clustering techniques is
modified. In particular, a base Voronöı analysis is carried out as well as two others in which
the threshold volume is increased 25% and 50%.

At a first glance at Figure3.12, it can be seen that all probability density functions fol-
low a similar trend. Nevertheless, it is worth noting that in order to obtain this result, all
Voronöı clusters of volume lower than the minimum volume of all DBSCAN cluster have been
excluded. Thus, the expected peak at much lower volumes for all Voronöı-based clustering
alternatives does not appear and all functions converge. Furthermore, it can be seen that
while the probability density functions of both alternatives do adopt a similar slope, the values
of the Voronöı-based alternative are lower for higher cluster volumes. DBSCAN is once again
not capable of defining particle clusters as small as those classified by means of Voronöı tes-
sellations, due to the core requirement of a minimum number of particles defining the cluster.
For high cluster volumes, it is not visible that as the threshold with which cluster particles are
classified in all Voronöı-based alternatives is increased, the probability density functions do
approximate that of the DBSCAN counterpart, since the probability density function at these
volumes is noisy.

102

3.3. EVALUATION OF THE CLUSTERING ANALYSIS OF A 3D DATABASE

Figure 3.12: Probability Density Function of Volumes per Cluster - In blue, volumes per cluster
of the DBSCAN-based clustering method. In orange, volumes per cluster of the Voronöı-based
alternative. In green, volumes per cluster of the Voronöı-based alternative with a 25% shift of
the volume threshold. In red, volumes per cluster of the Voronöı-based alternative with a 50%
shift of the volume threshold.

103

3.4. COMPARISON OF COMPUTATIONAL PERFORMANCE

3.4 Comparison of Computational Performance

When comparing the time required to carry out the clustering analysis of a dataset of particle
positions in the DBSCAN-based method developed within this study with that of a Voronöı-
based alternative method, it is necessary to take into account on the one hand that the starting
conditions with which both methods are to operate must be the same, in order to ensure a
just comparison. In this way, a dataset concerning the same spatial domain of the duct flow
is employed as input for both methods, involving the same number of particles within the
flow. Nevertheless, it is worth noting that the dataset based on which the DBSCAN-based
method operates already has its particle positions projected into a discrete number of planes
of constant Z, whereas the analogous Voronöı-based alternative works with the unprocessed
set of particle positions, capable of appearing at any level of Z. Moreover, as should be clear
after reading the previous sections in this chapter, employing Voronöı tessellations to perform
a clustering analysis of this same dataset does not condense each cluster’s topology into a
boundary surface and a set of interior skeleton points, a step which is indeed carried out
by the techniques developed in the current study. Therefore, although this comparison of
execution times does ensure an equality in the complexity of the inputs to both methods, the
DBSCAN-based alternative produces the same results as its Voronöı counterpart, and goes
even further. It is worth noting that all of the presented execution times correspond to a 2015
MacBook Pro with a Dual-Core Intel Core i5 processor running at 2.7 GHz using 8 GB of
RAM, running macOS Catalina.

To properly examine the time consumption of the method of clustering analysis based
on DBSCAN developed in the current study, it is necessary to take into account that this
method as a whole, for the analysis of a particular dataset at an individual instant of time, is
divided into six substeps, each associated with a particular performance. In brief, these can
be summarized as follows:

1. clustering: This step deals with the DBSCAN clustering analysis of each two-dimensional
domain in the dataset, generating a set of unconnected, two-dimensional clusters based
on the whole of projected particle positions in the dataset.

2. boundary: This step obtains a set of closed cluster boundary curves for each of the
two-dimensional clusters defined in the previous step.

3. discretize: Here, each two-dimensional domain is discretized by means of a uniform
grid, and the cells containing cluster particles are detected. This discretization is utilized
to calculate cluster areas as well as in the next step.

4. skeletonize: Based on the previous discretization, a set of skeleton points interior to
each two-dimensional cluster is defined.

5. connectivities: In this step, skeleton points from different two-dimensional domains
are connected, in order to assign a three-dimensional cluster label to each of these points
based on their connectivities.

104

3.4. COMPARISON OF COMPUTATIONAL PERFORMANCE

6. relabel: Lastly, the cluster label of each skeleton point is assigned to its associated cluster
particles, in order to classify each cluster particle according to its three-dimensional
cluster membership. Also, three-dimensional cluster volumes are estimated.

If the execution of each of these steps on a single dataset is timed, one obtains the dis-
tribution of time consumption presented in 3.13. At a first glance, one can extract that the
whole clustering analysis of the employed dataset requires close to 4300 seconds, and that
the most expensive step within this procedure is that of determining two-dimensional cluster
boundaries. Second to this subroutine is the three-dimensional connection of skeleton points,
amounting however to much less required time.

Figure 3.13: Time Consumption of the DBSCAN-based Clustering Method - All times are in
seconds

However, in order to determine values of MinPts and ε which are adequate for the average
number density within a single two-dimensional domain, it is necessary to initially carry out
an additional set of calculations, the results of which can be applied to any dataset of the same
nature. Therefore, after obtaining an adapted value for these parameters, one can proceed
to analyze the clustering structure of any dataset in which the average number density is the
same, without having to recalculate them. For the current dataset, obtaining an unbiased
value of MinPts resulted in 1569.54 seconds of execution, while as obtaining an appropriate ε
required 106.73 seconds.

105

3.4. COMPARISON OF COMPUTATIONAL PERFORMANCE

Step Execution Time [s] Percentage [%]

Voronöı Tessellation and Classification 478 1.1

Three-Dimensional Cluster Particle Connection 42525 98.9

Total 43003 100

Table 3.1: Time Consumption of the Voronöı-based Clustering Alternative

On the other hand, the Voronöı-based alternative with which the method developed within
this study is evaluated can be divided into two simple steps. The first of these steps deals with
the Voronöı tessellation of the three-dimensional domain and the classification into cluster and
void particles based on the Voronöı volume of each particle position in the dataset. The next
step carries out the connection of all Voronöı cells whose center has been classified as a cluster
particle, in order to assign three-dimensional cluster labels to each particle in the dataset.
Based on what is presented in Table 3.1, one can observe that this alternative method requires
about 43000 seconds for its complete execution, almost the totality of this time being occupied
with connecting cluster particles in order to generate and apply a set of three-dimensional
cluster labels.

When comparing both alternative methods, for a single execution on the same dataset,
one can see that the total execution time of the Voronöı-based approach is around ten times
larger than that of the method implemented in this study. Moreover, while as in the procedure
employing DBSCAN the most expensive step deals with obtaining a set of cluster boundary
points, when analyzing particle clusters with Voronöı tessellations, one incurs the greatest
cost at the time of determining a valid set of three-dimensional cluster labels. Furthermore,
it is necessary to insist on the fact that the DBSCAN-based alternative outputs more use-
ful information regarding cluster topologies than its Voronöı counterpart, for a much lower
computational cost. As a result, when analyzing the topology of particle clusters in turbulent
flow, the method implemented in this study significantly outperforms an alternative procedure
based on Voronöı tessellations, even providing more information regarding this analysis.

106

Chapter 4

Conclusions

In the current study, two powerful density-based clustering algorithms have been applied in
order to identify particle clusters within a dataset of positions concerning particles diluted
in turbulent flow. With regards to the employed dataset, special care has been taken in
order to simplify a three-dimensional domain into a set of two-dimensional domains whose
clustering structure is analyzed independently. Then, each two-dimensional domain has been
treated separately by applying DBSCAN in the task of separating cluster particles from void
particles, and even dividing cluster particles into different clusters based on their proximity
within the same two-dimensional domain. As an objective of this study is the simplification
of a three-dimensional particle cluster by means of its boundary particles and a set of interior
constellation of points, the following steps of this study deal with the determination of cluster
boundaries for each DBSCAN cluster in each two-dimensional domain, and based on these, the
generation of a brute skeleton condensing the topology of its associated cluster. Furthermore,
two-dimensional domains cease to be treated independently once connectivities between brute
skeleton points at different values of Z are examined, thus creating three-dimensional particle
cluster labels to be applied to these skeleton points, and later on to the cluster particles from
which they have been derived.

Another objective of the current study has been to develop a method with which particle
clusters can be tracked over time. Based on the aforementioned simplification of a three-
dimensional particle cluster, from the results of this method of particle cluster identification
for two adjacent time instants, the evolution of characteristics of these particle structures with
time can be examined. This is done by pairing brute skeleton points from different time steps
based on an expected deviation from pure translation with the duct flow and on an examination
of similarities between neighboring cluster boundary particles.

Lastly, when evaluating the implemented method with an alternative technique of particle
cluster identification based on Voronöı tessellations as is presented in Monchaux et al. (2010)

107

[7], a couple more conclusions can be extracted. On the one hand, when validating the DB-
SCAN clustering analysis of a single two-dimensional domain, one can see that due to the
nature of this clustering technique, the clusters which this method identifies are significantly
thicker than those obtained by its Voronöı-based counterpart. On the other hand, the devel-
oped methods of identifying three-dimensional particle clusters are evaluated by comparing
the topology of particle clusters resulting from both methods as well as by examining how the
distribution of cluster volumes changes from one method to the other. When comparing the re-
sulting cluster topologies, it is reasonable to conclude that while as most brute skeleton points
do not appear in regions which the alternative method assigns to a particle cluster, the shapes
that these points trace are qualitatively very similar to those which the method presented in
Monchaux et al. (2010) [7] results in. Furthermore, the distribution of particle cluster volumes
is very similar, although it is still noticeable that the the clusters defined by the methods of
the current study are generally somewhat thicker, thus resulting in generally greater cluster
volumes. Lastly, a comparison of execution times reveals that the Voronöı-based alternative is
outperformed by the methods developed within this study, its execution on the same dataset
requiring close to ten times as much time.

In conclusion, the innovative application of relatively new algorithms belonging to the
growing area of unsupervised learning has resulted in a method of identifying and characterizing
three-dimensional particle clusters which requires much less time than the existing alternative
developed by Monchaux et al. (2010) [7]. Based on this improvement, it is worth examining
whether other much more recent developments in the area of machine learning, such as for
instance the exciting invention of Generative Adversarial Networks by [23], could be of any
future use not only in the analysis of turbulent dispersed multiphase flow, but also in other
quantitative analyses within the area of fluid mechanics.

108

Bibliography

[1] Jonathan D. Kulick John R. Fessler and John K. Eaton. “Preferential concentration of
heavy particles in a turbulent channel flow”. In: Physics of Fluids 6 (1994).

[2] A. Aliseda et al. “Effect of preferential concentration on the settling velocity of heavy par-
ticles in homogeneous isotropic turbulence”. In: Journal of Fluid Mechanics 468 (2002),
p. 77.

[3] A. Banko et al. “PREDICTION OF PREFERENTIAL CONCENTRATION STATIS-
TICS FROM EULERIAN TWO-POINT CORRELATIONS”. In: 10th International Sym-
posium on Turbulence and Shear Flow Phenomena (TSFP10) (2017).

[4] R. Monchaux, M. Bourgoin, and A. Cartellier. “Analyzing preferential concentration and
clustering of inertial particles in turbulence”. In: International Journal of Multiphase
Flow 40 (2012), pp. 1–18.

[5] S. Balachandar and J. Eaton. “Turbulent Dispersed Multiphase Flow”. In: Annu. Rev.
Fluid Mech. 42 (2010), pp. 111–133.

[6] L. Villafañe-Roca et al. “A robust method for quantification of preferential concentration
from finite number of particles”. In: Center for Turbulence Research Annual Research
Briefs 2016 (2016), pp. 123–135.

[7] R. Monchaux, M. Bourgoin, and A. Cartellier. “Preferential concentration of heavy par-
ticles: A Voronöı analysis”. In: Phys. Fluids 22 (2010).

[8] A. Jain and R. Dubes. Algorithms for Clustering Data. Upper Saddle River: Prentice-
Hall, Inc., 1988.

[9] D. Xu and Y. Tian. “A Comprehensive Survey of Clustering Algorithms”. In: Ann. Data.
Sci. (2015) 2 (2015), pp. 165–193.

[10] J. MacQueen. “Some Methods for Classification and Analysis of Multivariate Observa-
tions”. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and
Probability 1 (1967), pp. 281–297.

[11] L. Kaufman and P. Rousseeuw. Finding Groups in Data: an Introduction to Cluster
Analysis. Hoboken: Wiley, 1990.

[12] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: An Efficient Data Clustering
Method for Very Large Databases”. In: 1996 ACM SIGMOD International Conference
on Management of Data 4-6 June 1996 (1996), pp. 103–114.

109

BIBLIOGRAPHY

[13] C. Rasmussen. “The Infinite Gaussian Mixture Model”. In: Advances in Neural Infor-
mation Processing Systems 12 (1999), pp. 554–560.

[14] M. Ester et al. “A Density- Based Algorithm for Discovering Clusters in Large Spa-
tial Databases with Noise”. In: Proc. 2nd Int. Conf. on Knowledge Discovery and Data
Mining, Portland, OR, AAAI Press (1996), pp. 226–231.

[15] M. Ankerst et al. “OPTICS: Ordering Points To Identify the Clustering Structure”. In:
Proc. ACM SIGMOD’99 Int. Conf. on Management of Data (1999).

[16] E. Schubert et al. “DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN”. In: ACM Trans. Database Syst. 42 3 (2017).

[17] M. Esmaily et al. “A benchmark for particle-laden turbulent duct flow: a joint compu-
tational and experimental study”. In: International Journal of Multiphase Flow (2020).

[18] M. Sanchez. “FRACTAL DIMENSION FOR CLUSTERING AND UNSUPERVISED
AND SUPERVISED FEATURE SELECTION”. In: Manufacturing Engineering Centre
- School of Engineering - Cardiff University (2011).

[19] A. Sharf et al. “On-the-fly Curve-skeleton Computation for 3D Shapes”. In: EURO-
GRAPHICS 2007 26 (2007).

[20] D. Montana and L. Davis. “Training Feedforward Neural Networks Using Genetic Algo-
rithms”. In: BBN Systems and Technologies Corp. (1989).

[21] A.L. Hinde and R.E. Miles. “Monte Carlo estimates of the distributions of the random
polygons of the Voronöı tessellation with respect to a Poisson process”. In: Journal of
Statistical Computation and Simulation 10 (1980), pp. 205–223.

[22] J.-S. Ferenc and Z. Néda. “On the size distribution of Poisson Voronoi cells”. In: Physica
A 385 (2007), pp. 515–526.

[23] I. Goodfellow et al. Generative Adversarial Nets. Montréal, QC H3C 3J7: Departement
d’informatique et de recherche opérationnelle, Université de Montréal, 2014.

110

Chapter 5

Appendices

A Organization of Presented Code

The following appendices contain the code implemented in the current study. The functions
and connections of each script can be summarized as follows:

• OpenSliceVTK.py: This script simply loads a .VTK file containing three-dimensional
particle positions, projects them into a specified number of planes of constant Z, and
outputs the resulting projected positions into a .CSV file.

• clusteringAnalysis.py: For a single .CSV file containing projected particle positions
obtained with OpenSliceVTK.py, this script invokes the necessary classes of other
scripts in order to perform all of the steps involved in the identification of three-dimensional
clusters parting from the simplified dataset. This script invokes clustering3D.py,
boundaryFinder.py , eulerianApproach.py , clusterConnect.py , and relabeller.py.

• clustering3D.py: For a set of parallel two-dimensional domains containing projected
particle positions, this script carries out the two-dimensional DBSCAN clustering analysis
of each two-dimensional plane. In order to do so, it is also in charge of obtaining a set of
parameters for DBSCAN which are adapted to the average number density of the domain.
It can also command the visualization of the results. This script invokes OPTICS.py,
DBSCAN.py, and clusterPlot.py.

• OPTICS.py: This script employs the clustering algorithm OPTICS in order to analyze
the structure of a two-dimensional domain of projected positions, as well as to determine
a set of parameters for DBSCAN which are adapted to the average number density of
the domain. To visualize the results, this script invokes clusterPlot.py.

111

A. ORGANIZATION OF PRESENTED CODE

• DBSCAN.py: This script employs the clustering algorithm DBSCAN in order to ana-
lyze the structure of a two-dimensional domain of projected positions. To visualize the
results, this script invokes clusterPlot.py.

• clusterPlot.py: Given a set of projected particle positions to which different cluster
labels have been assigned, this script generates a .GIF file representing the clustering
configuration of each two-dimensional domain.

• boundaryFinder.py: This script is in charge of determining closed curves defining
the boundaries of two-dimensional clusters of projected particle positions, as the ones
obtained with clustering3D.py. To visualize the results, this script invokes skeleton-
Plot.py.

• skeletonPlot.py: Given a set of closed curves defining two-dimensional cluster bound-
aries and skeleton points interior to each cluster, this script generates a .GIF file repre-
senting these elements within each two-dimensional domain.

• eulerianApproach.py: This script discretizes each two-dimensional domain by means
of a regular grid, in order to calculate the area of each DBSCAN cluster generated
by clustering3D.py, and also, for each two-dimensional cluster, determines a set of
interior points defining its brute skeleton. To visualize the results, this script invokes
clusterPlot.py and skeletonPlot.py.

• clusterConnect.py: Based on the cluster boundaries defined by boundaryFinder.py
and the skeleton points generated in eulerianApproach.py for each two-dimensional
cluster, this script examines the three-dimensional connectivity of skeleton points in order
to come up with three-dimensional particle cluster labels. To visualize the results, this
script invokes skeletonPlot.py.

• relabeller.py: This script is in charge of assigning the three-dimensional cluster labels
obtained in clusterConnect.py to the corresponding projected particle positions, as
well as of estimating the volume associated with each three-dimensional cluster. To
visualize the results, this script invokes clusterPlot.py.

• temporalTracking.py: Here, for a pair of datasets corresponding to two adjacent in-
stants of time, each of them analyzed via clusteringAnalysis.py, skeleton points are
connected according to topological similarities, in order to connect three-dimensional
clusters over time. Based on this, the temporal evolution of a cluster for several instants
of time can be analyzed. To visualize the results, this script invokes temporalPlot.py.

• temporalPlot.py: Given a pair of datasets corresponding to two adjacent instants of
time, each of them analyzed via clusteringAnalysis.py, this script generates a .GIF file
which represents old and new cluster boundaries in the same two-dimensional domain,
as well as the connections between skeleton points as per temporalTracking.py.

• voronoiCluster.py: This script is in charge of validating the results of clustering-
Analysis.py with an alternative clustering method based on the Voronöı tessellation of
the same set of particle positions without having been projected into a number of planes
of constant Z. To visualize the results, this script invokes voronoiPlot.py.

112

B. OPENSLICEVTK.PY

• voronoiPlot.py: Here, a .GIF file is generated that displays, for each two-dimensional
domain in the dataset, a projection of Voronöı cluster cell centers as per voronoiClus-
ter.py as well as skeleton points within the same plane of constant Z.

B OpenSliceVTK.py

import numpy as np

import vtk

from vtk.util import numpy_support as VN

import matplotlib.pyplot as plt

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is designed to open a specified VTK file

representing the positions of particles in a↪→

simulation of particle-laden flow and extract their position for a thin

plane bisecting the simulation's domain. Class↪→

multipleZs is in charge of invoking class VTKopen, in order to define a

series of computational frames out a dataset↪→

describing turbulent particle-laden flow within a square duct.

Álvaro Tomás Gil - UIUC 2020

class VTKopen:

"""Class in charge of reading the actual .vtk file, cropping and

projecting its positions based on the specified ranges,↪→

and saving the results to a .csv file.

For the inputs:

filename: String with file name

xrange & yrange: Lists of two elements defining ranges in X and Y,

defining the span of each computational plane,↪→

normalized w.r.t the duct dimensions in each direction

zs: Thickness of the sheet associated to every computational frame,

defining the amount of particles to project onto↪→

the plane. This thickness is normalized w.r.t. the duct dimension in Z

dZ: Spacing between adjacent computational planes, normalized w.r.t. the

duct dimension in Z↪→

normalize: Boolean. If True, normalized coordinates will appear"""

def __init__(self, filename, xrange, yrange, zs, dZ, normalize=False):

reader = vtk.vtkPolyDataReader()

reader.SetFileName(filename + '.vtk')

reader.Update()

113

B. OPENSLICEVTK.PY

self.polydata = reader.GetOutput()

if np.isscalar(zs):

zs = np.array([zs])

self.r = np.array([0, 0, 0])

self.fullr = [np.array([0, 0, 0])] * len(zs)

self.x = xrange

self.y = yrange

self.zs = zs

self.dZ = dZ

self.n = self.polydata.GetNumberOfPoints()

self.norm = normalize

#Initial sweep of the data file, to determine dimensions in each

direction for plotting and normalization.↪→

for i in range(0, self.n, 1000):

self.r = np.vstack((self.r, list(self.polydata.GetPoint(i))))

self.r = self.r[1:]

self.dims = np.zeros(3)

for i in range(3):

self.dims[i] = round(max(self.r[:, i]), 2)

self.r[:, i] = self.r[:, i] / max(self.r[:, i])

def read(self, filename='test'):

"""This method is in charge of reading every line of the .vtk file,

extracting positions within the specified↪→

range, normalizing if necessary, and saving the extracted data as a

.csv file"""↪→

total = 0

for i in range(0, self.n, 1):

vraw = list(self.polydata.GetPoint(i))

v = [vraw[j] / self.dims[j] for j in range(3)]

if v[0] > self.x[0] and v[0] < self.x[1] and v[1] > self.y[0] and

v[1] < self.y[1]:↪→

which = np.vstack((v[2] < self.zs + self.dZ, v[2] > self.zs -

self.dZ))↪→

which = np.ndarray.flatten(np.argwhere(np.all(which,

axis=0)))↪→

"which" describes within which sheet (or Z level) such a

point should be classified↪→

if len(which) > 0:

total += 1

114

B. OPENSLICEVTK.PY

if self.norm:

v[2] = self.zs[which[0]]

temp = np.vstack((self.fullr[which[0]], v))

else:

vraw[2] = self.zs[which[0]] * self.dims[2]

temp = np.vstack((self.fullr[which[0]], vraw))

self.fullr[which[0]] = temp

print(float(100 * i / self.n), '% percent read')

for i in range(len(self.zs)):

self.fullr[i] = self.fullr[i][1:, :]

print(str(total) + ' particles in data set')

self.data = np.array([0, 0, 0])

for i in self.fullr:

self.data = np.vstack((self.data, i))

self.data = self.data[1:, :]

np.savetxt(filename + '.csv', self.data, delimiter=",")

def plots(self, onlyHist=True):

"""This method is in charge of developing a histogram of particle

concentration along Y, to study the influence of the↪→

duct walls, and of plotting the particle positions for a single Z

value"""↪→

plt.figure()

plt.hist(self.r[:, 1]*self.dims[1], bins=100)

plt.xlabel('y [m]')

plt.ylabel('Number of Particles [-]')

plt.title('Concentration of Particles along Y')

if not onlyHist:

plt.figure()

plt.scatter(self.fullr[:, 0], self.fullr[:, 1], s=0.5)

plt.title(str(len(self.fullr)) + ' particles in data set')

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.axis('equal')

plt.show()

class multipleZs:

"""Class in charge of invoking VTKopen, by introducing the desired values

of Z for each computational plane"""↪→

115

C. CLUSTERINGANALYSIS.PY

def __init__(self, filename='prt_TG_ductVe8_780000', xrange=[0.4, 0.6],

yrange=[0.2, 0.8], thick=0.01, spacing=0.02, wallMargin=0.2,

normalize=False):

↪→

↪→

self.dZ = thick

self.sp = spacing

self.margin = wallMargin

self.x = xrange

self.y = yrange

self.filename = filename

self.norm = normalize

self.zs = np.unique(

np.concatenate((np.arange(0.5, 1 - self.margin, self.sp),

np.arange(self.margin, 0.5, self.sp))))↪→

self.vtk = VTKopen(filename, xrange, yrange, self.zs, self.dZ,

normalize)↪→

def writeFile(self):

thick = str(round(self.dZ, 3)).replace('.', ',')

spacing = str(round(self.sp, 3)).replace('.', ',')

filename = self.filename + '_Large_dZ_' + thick + '_Spacing_' +

spacing↪→

self.vtk.read(filename)

root = ['./Data/t_','/prt_TG_ductVe8_77']

root = ['./Data/v78/t_','/prt_TG_ductVe8_78']

times = [11, 12, 13, 14, 15]

for t in times:

t0 = str(t * 100)

if len(t0) < 4:

ts = '0' * (4 - len(t0)) + t0

else:

ts = t0

filename0 = root[0] + t0 + root[1] + ts

vt = multipleZs(filename0)

vt.writeFile()

C clusteringAnalysis.py

import numpy as np

import matplotlib.pyplot as plt

116

C. CLUSTERINGANALYSIS.PY

from clustering3D import clustering3D

from clusterConnect import skeletonConnect

from relabeller import relabeller

from eulerianApproach import eulerianAnalysis, eulerianSkeleton,

optimumCellSize↪→

from boundaryFinder import boundaryFinder

import time

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script carries out all the steps of analysis for a

single data frame of the simulation of↪→

particle-laden turbulent flow. Parting from a .csv datafile of particle

positions sorted into a set of dicrete planes↪→

of constant Z, this script applies DBSCAN clustering to each of these

snapshots in Z to separate cluster from void↪→

particles, obtains a set of closed curves defining each clusters'

boundaries, generates a constellation of interior↪→

points defining each cluster's brute skeleton, connects these interior

points along different levels of Z, and based↪→

on these connections assigns a set of cluster labels which associate each

cluster particle to a three-dimensional cluster.↪→

Álvaro Tomás Gil - UIUC 2020

class clusteringAnalysis:

"""This class carries out all the steps of analysis for a single data

frame of the simulation of↪→

particle-laden turbulent flow. Parting from a .csv datafile of particle

positions sorted into a set of dicrete planes↪→

of constant Z, this script applies DBSCAN clustering to each of these

snapshots in Z to separate cluster from void↪→

particles, obtains a set of closed curves defining each clusters'

boundaries, generates a constellation of interior↪→

points defining each cluster's brute skeleton, connects these interior

points along different levels of Z, and based↪→

on these connections assigns a set of cluster labels which associate each

cluster particle to a three-dimensional cluster.↪→

For the inputs:

filename: This is the name of the .csv file from which to begin this

analysis. Note that with different time frames,↪→

projection sheet thicknesses, or spacings between these sheets, parts of

this filename will vary↪→

t: This number references the current time frame to analyze. Based on

this time frame, a different folder will be treated"""↪→

117

C. CLUSTERINGANALYSIS.PY

def __init__(self,

filename='prt_TG_ductVe8_770000_Large_dZ_0,01_Spacing_0,02', t=0,

root='./Data/t_'):

↪→

↪→

self.t = t

self.folder = root + str(t) + '/'

self.filename = self.folder + filename + '.csv'

self.times = [0, 0, 0, 0, 0, 0]

def run(self, skip=0, time=False):

"""This is the main method of the class.

skip: Int which sets at which point of the analysis to stop loading

previous data and start generating new data.↪→

time: Boolean setting whether to plot the time consumption of

different steps"""↪→

self.clustering(loadNskip=skip > 0)

self.boundaries(loadNskip=skip > 1)

self.eulerize(loadNskip=skip > 2)

self.skeletonize(loadNskip=skip > 3)

self.connect(loadNskip=skip > 4)

self.relabel()

if time:

self.timePiePlot()

def clustering(self, loadNskip=False, take=20, knownMinPts=212,

knownEps=0.0015):↪→

"""This method is in charge of applying DBSCAN clustering analysis to

separate the particles contained in every↪→

separate plane of constant Z into cluster and void particles. Special

care goes into the definition of the↪→

parameters with which to carry out DBSCAN, both requiring different

methods of class clustering3D to be invoked.↪→

For the inputs:

loadNskip: Boolean which commands the method to skip execution and

directly return previously saved results↪→

take: Number of planes of constant Z to analyze from the original

.csv dataset↪→

knownMinPts: Since the determination of an un-biased value of this

parameter is costly, one can directly input↪→

an adequate value instead.

knownEps: Since the determination of an un-biased value of this

parameter is costly, one can directly input↪→

an adequate value instead.

For the outputs:

MinPts: MinPts parameter with which DBSCAN is carried out

eps: epsilon parameter with which DBSCAN is carried out

118

C. CLUSTERINGANALYSIS.PY

data: 2D array of 3D particle positions, sorted into parallel planes

of constant Z↪→

DBSCANlabels: list of equal lenght as data, assigning a cluster label

applicable within each 2D domain. A label↪→

of -1 corresponds to a void particle."""

start = time.time()

if loadNskip:

self.MinPts = np.load(self.folder + 'MinPts.npy')

self.eps = np.load(self.folder + 'eps.npy')

self.data = np.load(self.folder + 'allPoints.npy')

self.DBSCANlabels = np.load(self.folder + 'DBSCANlabels.npy')

else:

3D DBSCAN clustering of Particle Coordinates

self.c3d = clustering3D(self.filename, take=take,

folder=self.folder)↪→

Extraction of Unbiased Hyperparameters

self.c3d.MinPts(known=knownMinPts)

self.c3d.meanReach(known=knownEps)

self.c3d.sweep()

self.MinPts = self.c3d.MinPts

self.eps = self.c3d.eps

self.data = self.c3d.data

self.DBSCANlabels = self.c3d.labels

np.save(self.folder + 'MinPts.npy', self.c3d.MinPts)

np.save(self.folder + 'eps.npy', self.c3d.eps)

np.save(self.folder + 'allPoints.npy', self.c3d.data)

np.save(self.folder + 'DBSCANlabels.npy', self.c3d.labels)

self.times[0] = time.time() - start

def boundaries(self, loadNskip=False):

"""This second method has the task of extracting the cluster

particles in each cluster which serve as boundaries↪→

with respect to the rest of the domain.

For the input:

loadNskip: Boolean which commands the method to skip execution and

directly return previously saved results↪→

For the outputs:

bound3d: 2D array of 3D positions corresponding to the curves

defining each cluster's boundaries for each of the↪→

parallel planes of constant Z in the domain

"""

start = time.time()

if loadNskip:

self.bound3d = np.load(self.folder + 'bound3d.npy')

119

C. CLUSTERINGANALYSIS.PY

else:

self.bF = boundaryFinder(self.data, self.DBSCANlabels, self.eps,

folder=self.folder)↪→

self.bF.sweep()

self.bound3d = self.bF.bound3d

np.save(self.folder + 'bound3d.npy', self.bF.bound3d)

self.times[1] = time.time() - start

def eulerize(self, loadNskip=False):

"""This method discretizes each plane of constant Z by means of a

uniform grid. This discretization is used to↪→

compute the area associated to each two-dimensional DBSCAN cluster as

well as to generate the skeleton inner to↪→

the cluster.

For the input:

loadNskip: Boolean which commands the method to skip execution and

directly return previously saved results↪→

For the outputs:

DBSCANareas: list of dicts, describing the area associated to each

DBSCAN cluster label in a single Z level. This↪→

list has as many elements as different parallel planes of constant Z

exists, and each of these elements is a dict↪→

whose keys are the DBSCAN labels of the Z level and whose values are

the areas of those clusters.↪→

cellCenters: 2D array of 3D positions corresponding to the cell

centers of all discretized planes of constant Z↪→

cellLabels: 1D array of equal length as cellCenters, where each

element corresponds to the DBSCAN label assigned to↪→

each grid cell, based on the DBSCAN label of the particles it

contains."""↪→

start = time.time()

if loadNskip:

self.DBSCANareas = np.load(self.folder + 'DBSCANareas.npy',

allow_pickle=True)↪→

self.cellCenters = np.load(self.folder + 'cellCenters.npy')

self.cellLabels = np.load(self.folder + 'cellLabels.npy')

else:

self.eu = eulerianAnalysis(self.data, self.DBSCANlabels,

self.eps, boundMethod=None, folder=self.folder)↪→

self.eu.run()

self.DBSCANareas = self.eu.areas

self.cellCenters = self.eu.rc

self.cellLabels = self.eu.lc

120

C. CLUSTERINGANALYSIS.PY

np.save(self.folder + 'DBSCANareas.npy', self.eu.areas)

np.save(self.folder + 'cellCenters.npy', self.eu.rc)

np.save(self.folder + 'cellLabels.npy', self.eu.lc)

self.times[2] = time.time() - start

def skeletonize(self, loadNskip=False):

"""Taking into account the previous discretization of each

two-dimensional domain, this method determines a set↪→

of points interior to the two-dimensional domain which condense its

topology.↪→

For the input:

loadNskip: Boolean which commands the method to skip execution and

directly return previously saved results↪→

For the outputs:

skel: 2D array of 3D positions of these skeleton points

"""

start = time.time()

if loadNskip:

self.skel = np.load(self.folder + 'skeletonize.npy')

else:

self.sk = eulerianSkeleton(self.cellCenters, self.cellLabels,

self.bound3d, self.eps, folder=self.folder)↪→

self.sk.run()

self.skel = self.sk.skel

np.save(self.folder + 'skeletonize.npy', self.sk.skel)

self.times[3] = time.time() - start

def connect(self, loadNskip=False):

"""Once these interior points have been generated, this method

examines the connectivity between them, both for↪→

the same level of Z as well as along different levels. Based on these

connectivities, the method groups the↪→

skeleton points into different cluster labels, which take into

account the 3D connectivities within different↪→

clusters at different planes of constant Z.

For the input:

loadNskip: Boolean which commands the method to skip execution and

directly return previously saved results↪→

For the outputs:

SKlabels: List of equal length as skel, assigning a cluster label to

each skeleton point.↪→

"""

start = time.time()

if loadNskip:

121

C. CLUSTERINGANALYSIS.PY

self.SKlabels = np.load(self.folder + 'SKlabels.npy')

else:

self.skC = skeletonConnect(self.skel, self.bound3d, self.eps,

folder=self.folder)↪→

self.skC.run()

self.SKlabels = self.skC.labels

np.save(self.folder + 'SKlabels.npy', self.skC.labels)

self.times[4] = time.time() - start

def relabel(self):

"""Lastly, this method applies the cluster labels obtained by

examining connectivities of different skeleton points↪→

to the cluster particles grouped by means of DBSCAN. This method

results in a new list of labels to apply to each↪→

cluster particles, taking into account cluster connections in 3D."""

start = time.time()

self.reL = relabeller(self.data, self.DBSCANlabels, self.skel,

self.SKlabels, self.DBSCANareas, self.folder)↪→

self.reL.run()

self.times[5] = time.time() - start

np.save(self.folder + 'DBSCANVolumes.npy', self.reL.volumes)

def timePiePlot(self, pctM=0.00):

"""This method simply generates a plot of the time consumption

associated to each step of the analysis."""↪→

names = ['clustering', 'boundary', 'discretize', 'skeletonize',

'connectivities', 'relabel']↪→

dict = {}

for i,j in zip(names, self.times):

dict[i] = j

total = sum(dict.values())

title = 'Time Consumption per Step of Analysis - Total [s]= ' +

str(round(total, 3))↪→

labels = []

values = []

for v in dict.keys():

if dict[v] / total > pctM:

labels.append(v + ' - ' + str(round(dict[v], 3)) + ' (' +

str(round(dict[v] * 100 / total, 2)) + ' %)')↪→

else:

labels.append(v)

values.append(dict[v] / total)

labdis = 1.07

122

D. CLUSTERING3D.PY

cmap = plt.get_cmap("plasma")

c = np.arange(len(dict.keys())) / len(dict.keys())

colors = cmap(c)

fig = plt.figure()

fig.set_size_inches(12, 7)

plt.title(title, fontsize=22)

plt.pie(dict.values(), labels=labels, shadow=True, startangle=0,

labeldistance=labdis, colors=colors, textprops={'fontsize': 14})↪→

plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as

a circle.↪→

root = ['prt_TG_ductVe8_78', '00_Large_dZ_0,01_Spacing_0,02']

root = ['prt_TG_ductVe8_77', '00_Large_dZ_0,01_Spacing_0,02']

folder = './Data/v78/t_'

times = [8]

for t in times:

t0 = str(t)

if len(t0) < 2:

ts = '0' * (2 - len(t0)) + t0

else:

ts = t0

filename = root[0] + ts + root[1]

c = clusteringAnalysis(filename=filename, t=t * 100, root=folder)

c.run()

D clustering3D.py

import numpy as np

import matplotlib.pyplot as plt

from OPTICS import exploreOPTICS, reachabilityConvergence, compareWithRandom

from DBSCAN import exploreDBSCAN

from clusterPlot import clusterPlot

import time

import csv

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is to determine the adequate pair or

parameters epsilon and MinPts based on which a DBSCAN↪→

clustering analysis of several two-dimensional snapshots in Z is carried

out. This script is also capable of evaluating↪→

123

D. CLUSTERING3D.PY

the time consumed during its execution.

Álvaro Tomás Gil - UIUC 2020

class clustering3D:

"""This is the main class of the script, which loads the dataset from its

corresponding file, extracts the specified↪→

number of snapshots in Z to analyze, determines the optimum pair of

MinPts, epsilon values based on a single snapshot,↪→

and sweeps throughout all of these planes in Z to carry out a DBSCAN

clustering analysis. It also has the capability↪→

of plotting the results and evaluating its time consumption. For the

inputs:↪→

filename: String which specifies file from which to specify the number of

snapshots in Z to analyze↪→

take: Integer which specifies the number of snapshots in Z to analyze,

starting from the midplane of the square duct.↪→

folder: folder in which to save resulting plots"""

def __init__(self, filename, take=1, folder=''):

self.folder = folder

with open(filename, 'r') as f:

reader = csv.reader(f, delimiter=',')

self.uncut = np.array(list(reader)).astype(float)

self.allZ = np.unique(self.uncut[:, 2])

self.middle = int(np.floor(len(self.allZ) / 2))

if take & 0x1 == 1:

add = [a for a in range(int((take - 1) / 2) + 1)]

subs = [-a for a in range(int((take - 1) / 2) + 1)]

else:

add = [a for a in range(int(take / 2) + 1)]

subs = [-a for a in range(int(take / 2))]

ind = np.unique(add + subs) + self.middle

self.zs = np.ndarray.flatten(np.array([self.allZ[x] for x in ind]))

self.data = np.array([0, 0, 0])

for z in self.zs:

self.data = np.vstack((self.data, self.uncut[self.uncut[:, 2] ==

z, :]))↪→

self.data = self.data[1:, :]

#Trial is the snapshot in Z which is chosen to obtain the optimum

pair of MinPts and eps for the DBSCAN analysis↪→

124

D. CLUSTERING3D.PY

self.trial = self.uncut[self.uncut[:, 2] == self.allZ[self.middle],

:2]↪→

def MinPts(self, start=10, end=500, itera=30, xi0=0.05, known=0):

"""This method is in charge of determining the optimum value of

MinPts to later be employed in the DBSCAN analysis↪→

of the dataset. In order to do so, it iterates throughout several

values of MinPts. For the input:↪→

start: Integer representing the first value of MinPts to examine

end: Integer representing the last value of MinPts to examine

itera: Integer representing the number of values of MinPts to

examine↪→

xi0: Float describing the value of xi to be employed in the OPTICS

analysis of every examination↪→

known: Integer describing the known optimum MinPts in order to

override the execution of this step."""↪→

startT = time.time()

print('Determination of MinPts*')

if known > 0:

self.MinPts = known

self.MinPtsT = 1569.539

else:

MinPts0 = np.linspace(start, end, itera)

rC = reachabilityConvergence(filename=None, MinPts=MinPts0,

xi=xi0, data=self.trial)↪→

rC.convergeConcaves(plot=False)

self.MinPts = rC.convMinPts

self.MinPtsT = time.time() - startT

print('Execution Time: ' + str(round(self.MinPtsT, 3)))

def meanReach(self, known=0):

"""This method is in charge of determining the optimum value of

epsilon to later be employed in the DBSCAN analysis↪→

of the dataset. In order to do so, it calculates the mean

reachability distance of a set of randomly distributed↪→

particles. For the input:

known: Float describing the known optimum epsilon in order to

override the execution of this step."""↪→

if known > 0:

self.eps = known

self.epsT = 106.725

else:

start = time.time()

print('Determination of Mean Reachability of Random

Distribution')↪→

125

D. CLUSTERING3D.PY

cR = compareWithRandom(filename=None, MinPts=self.MinPts,

xi=0.05, data=self.trial)↪→

cR.run()

self.eps = cR.meanReach * 0.95

self.epsT = time.time() - start

print('Execution Time: ' + str(round(self.epsT, 3)))

def sweep(self):

"""Once both optimum parameters are known, this method performs the

DBSCAN analysis of each of the snapshots in↪→

Z in question."""

start = time.time()

print('Sweep Along Z of Clustering Routine')

self.labels = np.array([0])

for z in self.zs:

print('Z = ' + str(round(z, 3)))

take = self.data[self.data[:, 2] == z, :]

db = exploreDBSCAN(self.eps, self.MinPts, data=take)

db.sweep()

db.onlyCoreElements()

self.labels = np.hstack((self.labels, db.labelsN[-1]))

self.labels = self.labels[1:]

self.sweepT = time.time() - start

print('Execution Time: ' + str(round(self.sweepT, 3)))

def visualize(self):

"""This method plots the clustering analysis' results."""

cP = clusterPlot(self.data, self.labels, self.folder)

cP.plotAll('3D DBSCAN Analysis - Z in ' + str(self.zs))

def timeEvaluation(self):

"""This method analyzes the execution time associated to each of the

steps in the analysis."""↪→

self.totalT = self.MinPtsT + self.epsT + self.sweepT

labels = 'MinPts', 'meanReach', 'Sweep along Z'

sizes = [self.MinPtsT, self.epsT, self.sweepT]

explode = (0, 0, 0.1)

fig1, ax1 = plt.subplots()

wedges, texts, autotexts = ax1.pie(sizes, explode=explode,

labels=labels, autopct='%1.1f%%', shadow=True,↪→

startangle=180, rotatelabels=True)

ax1.axis('equal')

126

E. OPTICS.PY

ax1.legend(wedges, labels, loc="best")

plt.title('Execution Time Evaluation - ' + str(len(self.zs)) + '

Slices Taken - Total Time [m] = ' + str(↪→

round(self.totalT / 60, 3)))

E OPTICS.py

import numpy as np

from sklearn.cluster import OPTICS

import matplotlib.pyplot as plt

from clusterPlot import clusterPlot

import csv

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is designed to analyze a given dataset of

particles with OPTICS in order to obtain the set↪→

of parameters eps and MinPts to be employed in a clustering scheme with

DBSCAN. The script includes a simple class exploreOptics↪→

which performs the OPTICS analysis of the dataset for several values of

MinPts and xi/eps, another class reachabilityConvergence↪→

which examines the evolution of the data's reachability plot with MinPts

and obtains a value for MinPts at which the shape of the↪→

plot stabilizes, and another class compareWithRandom, which compares the

reachability plot corresponding to such optimum MinPts↪→

with the mean reachability value resulting from applying an OPTICS analysis

to a randomly distributed set of particles of the same↪→

length as the original dataset.

Álvaro Tomás Gil - UIUC 2020

class exploreOPTICS:

"""This class is in charge of performing a preliminary OPTICS analysis of

a 2D computational domain displaying particle positions. It↪→

has the capability of applying the clustering algorithm to the database

for multiple different values of xi and MinPts, in order to↪→

analyze the effect of these parameters on the reachability plot of the

data. For the input:↪→

xi: Float or list of floats, defining the xi or eps values based on which

to perform xi or eps-clustering with OPTICS↪→

MinPts: Integer or list of integers, defining the list of MinPts based on

which to perform xi or eps-clustering with OPTICS↪→

plots: Number of plots defining, for different values of xi or eps, the

clustering results↪→

127

E. OPTICS.PY

filename: In case data is None, file name from which to load data

data: Data array on which to perform OPTICS analysis

method: String defining which method to apply for OPTICS clustering

distance: String defining which method to apply to compute distances

within the algorithm"""↪→

def __init__(self, xi, MinPts, plots, filename=None, data=None,

method='xi', distance='euclidean'):↪→

self.clust = []

self.reach = []

self.space = []

self.dR = []

self.normedR = []

self.labels = []

if np.isscalar(xi):

self.xi = np.array([xi])

else:

self.xi = xi

if np.isscalar(MinPts):

self.MinPts = np.array([MinPts])

else:

self.MinPts = MinPts

if data is not None:

self.data = data

else:

with open(filename, 'r') as f:

reader = csv.reader(f, delimiter=',')

self.data = np.array(list(reader)).astype(float)

self.N = len(self.data)

self.method = method

self.distance = distance

print('OPTICS: ' + str(self.N) + ' particles in data set.')

self.n = np.array([0, 0, 0, 0])

self.pl = [int(v) for v in np.linspace(0, len(self.xi) - 1, plots)]

plt.figure()

plt.scatter(self.data[:, 0], self.data[:, 1], s=0.8)

plt.xlabel('x [m]')

plt.ylabel('y [m]')

plt.axis('equal')

if filename == None:

128

E. OPTICS.PY

plt.title('Particle Distribution' + ' - ' + str(self.N) + '

particles')↪→

else:

plt.title(filename + ' - ' + str(self.N) + ' particles')

def sweep(self):

"""For every combination of the specified values of xi/eps and

MinPts, this method carries out the clustering analysis of the↪→

dataset based on those parameters. The results of such clustering are

stored in clust, and the reachability distances of each↪→

clustering analysis are also calculated via reachability."""

for j, u in enumerate(self.MinPts):

for i, v in enumerate(self.xi):

print(' ' + str(i + 1) + 'th xi: ' + str(round(v, 4))

+ '; ' + str(j + 1) + 'th MinPts: ' + str(↪→

np.floor(u)))

if self.method == 'xi':

c = OPTICS(min_samples=int(u), xi=v, algorithm='auto',

metric=self.distance)↪→

else:

c = OPTICS(min_samples=int(u), eps=v, algorithm='auto',

metric=self.distance)↪→

c.fit(self.data)

While as clust is a list of OPTICS objects, labels contains

the labels of such objects↪→

self.clust.append(c)

self.labels.append(c.labels_)

Every row of n contains: [xi, MinPts, Number of Clusters,

Percentage of Noise]↪→

nC = [v, u, len(np.unique(np.array(c.labels_))) - 1,

len(np.argwhere(c.labels_ == -1)) * 100 / self.N]↪→

self.n = np.vstack((self.n, nC))

if i in self.pl:

Plot the clustering disposition of the radii selected

in array pl↪→

title = 'OPTICS with MinPts = ' + str(np.floor(u)) + '

and xi = ' + str(round(v, 4)) + '. ' + str(↪→

nC[-2]) + ' clusters detected.'

cP = clusterPlot(self.data, c.labels_)

cP.plotAll(title)

cP.sizeHistogram(title)

self.reachability(u)

129

E. OPTICS.PY

self.n = self.n[1:, :]

def reachability(self, pts):

"""This function computes and stores the reachability distances for

clustering analyses associated with the↪→

MinPts specified via pts. Note that the reachability plot will not

depend on xi nor eps."""↪→

ofPts = np.ndarray.flatten(np.argwhere(self.n[1:, 1] == pts))

c = self.clust[ofPts[-1]]

reachability = c.reachability_[c.ordering_]

space = np.arange(len(self.data))

minR = np.nanmin(reachability[np.isfinite(reachability)])

self.reach.append(reachability)

self.space.append(space)

self.dR.append(np.diff(reachability) / np.diff(space))

self.normedR.append(reachability / minR)

def plot(self, forXi=True, forMinPts=True):

"""This method is in charge of plotting the evolution of the number

of detected clusters and the percentage of↪→

particles labelled as noise with a varying xi/eps and/or a varying

MinPts"""↪→

if forXi:

for i, v in enumerate(self.MinPts):

fig, ax1 = plt.subplots()

color = 'tab:red'

ax1.set_xlabel('xi [-]')

ax1.set_ylabel('Clusters Detected [-]', color=color)

ax1.plot(self.xi, self.n[self.n[:, 1] == v, 2], color=color)

ax1.tick_params(axis='y', labelcolor=color)

ax1.set_title('OPTICS with MinPts = ' + str(v) + ' and

Euclidean Distance')↪→

ax2 = ax1.twinx()

color = 'tab:blue'

ax2.set_ylabel('Percentage of Noise [%]', color=color)

ax2.plot(self.xi, self.n[self.n[:, 1] == v, 3], color=color)

ax2.tick_params(axis='y', labelcolor=color)

fig.tight_layout()

if forMinPts:

for i, v in enumerate(self.xi):

fig, ax1 = plt.subplots()

color = 'tab:red'

ax1.set_xlabel('MinPts [-]')

130

E. OPTICS.PY

ax1.set_ylabel('Clusters Detected [-]', color=color)

ax1.plot(self.MinPts, self.n[self.n[:, 0] == v, 2],

color=color)↪→

ax1.tick_params(axis='y', labelcolor=color)

ax1.set_title('OPTICS with xi = ' + str(v) + ' and Euclidean

Distance')↪→

ax2 = ax1.twinx()

color = 'tab:blue'

ax2.set_ylabel('Percentage of Noise [%]', color=color)

ax2.plot(self.MinPts, self.n[self.n[:, 0] == v, 3],

color=color)↪→

ax2.tick_params(axis='y', labelcolor=color)

fig.tight_layout()

ax = fig.add_subplot(111, projection='3d')

ax.scatter(self.n[:,0], self.n[:,1], self.n[:,2], marker = 'o', c =

self.n[:,2], cmap = 'inferno')↪→

ax.set_title('Clusters Detected - OPTICS with Euclidean Distance')

ax.set_xlabel('xi [-]')

ax.set_ylabel('MinPts [-]')

def PlotReachabilityWithLabels(self):

"""This method plots the reachability distances associated to all

possible values of MinPts, also including↪→

within the plot how the cluster label assignment varies with

xi/eps."""↪→

for pts in self.MinPts:

plt.figure(figsize=(10, 7))

plt.ylabel('Reachability')

plt.title('Reachability Plot - MinPts: ' + str(pts))

ofPts = np.ndarray.flatten(np.argwhere(self.n[:, 1] == pts))

space = self.space[ofPts[0]]

reachability = self.reach[ofPts[0]]

minR = np.nanmin(reachability[np.isfinite(reachability)])

maxR = np.nanmax(reachability[np.isfinite(reachability)])

lines = np.linspace(minR + 0.1 * (maxR - minR), maxR - 0.1 *

(maxR - minR), len(ofPts))↪→

plt.plot(space, reachability)

for i in range(len(lines)):

if len(lines) == 1:

dLine = 0.05 * (maxR - minR)

131

E. OPTICS.PY

else:

dLine = 0.1 * (lines[1] - lines[0])

c = self.clust[ofPts[i]]

y = lines[i] * np.ones((len(space), 1))

labels = c.labels_[c.ordering_]

unique_labels = np.unique(np.array(labels))

colors = [plt.cm.viridis(each) for each in np.linspace(0, 1,

len(unique_labels))]↪→

xi = self.n[ofPts[i], 0]

font = {'family': 'serif', 'color': 'black', 'weight':

'normal', 'size': 12}↪→

plt.text(space[0], lines[i] + dLine, 'xi = ' + str(round(xi,

5)), fontdict=font)↪→

for k, col in zip(unique_labels, colors):

size = 1.6

if k == -1:

Black used for noise.

col = [128 / 256, 128 / 256, 128 / 256]

size = 1

class_member_mask = (labels == k)

plt.plot(space[class_member_mask], y[class_member_mask],

'o', markerfacecolor=tuple(col),↪→

markersize=size, markeredgecolor=tuple(col))

class reachabilityConvergence:

"""This class is employed to examine possible ways of convergence of the

reachability plot resulting from several OPTICS↪→

based on different values of MinPts. All the calculations are performed

within class exploreOPTICS, this class↪→

is only in charge of processing and displaying the results. For the

input:↪→

filename: In case data is None, file name from which to load data

data: Data array on which to perform OPTICS analysis

xi: Float or list of floats, defining the xi or eps values based on which

to perform xi or eps-clustering with OPTICS↪→

MinPts: Integer or list of integers, defining the list of MinPts based on

which to perform xi or eps-clustering with OPTICS"""↪→

def __init__(self, filename=None, MinPts=100, xi=0.05, data=None):

self.MinPts = MinPts

self.Optics = exploreOPTICS(xi, self.MinPts, 0, filename, data)

self.errR = []

self.Optics.sweep()

132

E. OPTICS.PY

def converge(self):

"""This class is in charge of plotting the reachability plots for

different values of MinPts in order to examine↪→

their evolution in shape. Note however that the reachability

distances plotted for each value of MinPts correspond↪→

to the reachability distances normed by the minimum reachability

distance for that value of MinPts."""↪→

plt.figure(figsize=(10, 7))

plt.ylabel('Reachability')

plt.title('Normed Reachability Plot')

colors = [plt.cm.inferno(each) for each in np.linspace(0, 1,

len(self.MinPts))]↪→

for i, u in enumerate(self.MinPts):

legend = 'MinPts = ' + str(np.floor(u))

space = self.Optics.space[i]

plt.plot(space, self.Optics.normedR[i], label=legend,

color=tuple(colors[i]))↪→

if i > 0:

v1 = np.nan_to_num(self.Optics.normedR[i])

v0 = np.nan_to_num(self.Optics.normedR[i - 1])

self.errR.append(np.linalg.norm(v1 - v0))

plt.legend(loc='upper left')

#This secondary plot displays how the normed reachability varies from

MinPts to MinPts, taking into account the↪→

#dataset as a whole.

plt.figure()

plt.title('Variation in Normed Reachability w.r.t. Previous MinPts')

plt.ylabel('Variation in Normed Reachability')

plt.xlabel('MinPts')

plt.plot(self.MinPts[1:], self.errR)

def convergeDerivative(self):

"""This method is in charge of examining how the derivative of the

reachability varies with MinPts."""↪→

plt.figure(figsize=(10, 7))

plt.title('Derivative of Reachability')

for i, u in enumerate(self.Optics.dR):

legend = 'MinPts = ' + str(np.floor(self.Optics.MinPts[i]))

space = self.Optics.space[0]

plt.plot(space[1:], u, label=legend)

plt.legend(loc='upper left')

133

E. OPTICS.PY

def convergeConcaves(self, plot=True):

"""This methods analyzes how the number of dents within the

reachability plot varies with increasing value of↪→

MinPts. In order to determine what consitutes a dent, the function

employs the gradient of the reachability.↪→

Moreover, this method determines at which MinPts the number of dents

within the reachability plot more or less↪→

stabilizes."""

self.concaves = []

for i, v in enumerate(self.Optics.reach):

diffR = np.gradient(v)

conc = 0

hasDown = False

for j, u in enumerate(diffR):

if u < 0 and not hasDown:

hasDown = True

if u > 0 and hasDown:

conc += 1

hasDown = False

self.concaves.append(conc)

diffConv = np.gradient(self.concaves)

diffMinPts = np.gradient(self.MinPts)

converged = np.ndarray.flatten(np.argwhere(np.abs(diffConv /

diffMinPts) < 0.1))↪→

convMinPts = [self.MinPts[converged[0]], self.concaves[converged[0]]]

self.convMinPts = int(convMinPts[0])

if plot:

plt.figure(figsize=(10, 7))

plt.title('Number of Concave-Up Occurences in Reachability Plot -

N = ' + str(self.Optics.N))↪→

plt.plot(self.MinPts, self.concaves)

plt.xlabel('MinPts [-]')

plt.ylabel('Concave-Up Occurences [-]')

plt.plot(convMinPts[0], convMinPts[1], 'o', color='red')

font = {'family': 'serif', 'color': 'black', 'weight': 'normal',

'size': 12}↪→

plt.text(convMinPts[0], convMinPts[1] + 5, 'MinPts* = ' +

str(int(convMinPts[0])), fontdict=font)↪→

134

E. OPTICS.PY

class compareWithRandom:

"""This class is in charge of, given a single MinPts value, compare the

reachability plot resulting from employing↪→

it in an OPTICS analysis with the reachability plot that results from

applying OPTICS to a randomly distributed set↪→

of particles of the same lenght as the original dataset. For the input:

filename: In case data is None, file name from which to load data

data: Data array on which to perform OPTICS analysis

xi: Float or list of floats, defining the xi or eps values based on which

to perform xi or eps-clustering with OPTICS↪→

MinPts: Integer or list of integers, defining the list of MinPts based on

which to perform xi or eps-clustering with OPTICS↪→

plots: Boolean determing whether to plot the reachability plots of the

dataset and of the randomly distributed set of↪→

particles."""

def __init__(self, filename=None, MinPts=100, xi=0.05, data=None,

plots=False):↪→

At this point it is assumed that MinPts is a single value

self.MinPts = MinPts

if np.isscalar(xi):

self.xi = np.array([xi])

else:

self.xi = xi

self.Optics = exploreOPTICS(xi, MinPts, 0, filename, data)

self.Optics.sweep()

self.space = self.Optics.space[0]

self.reach = self.Optics.reach[0]

self.N = self.Optics.N

self.plots = plots

def randomlyDistributed(self):

"""This method generates a random distribution of particles within

the same domain as the original dataset and↪→

executes an OPTICS analysis on it."""

maxs = np.array([np.nanmax(self.Optics.data[:, 0]),

np.nanmax(self.Optics.data[:, 1])])↪→

mins = np.array([np.nanmin(self.Optics.data[:, 0]),

np.nanmin(self.Optics.data[:, 1])])↪→

self.points = np.multiply(maxs - mins, np.random.rand(self.N, 2)) +

mins↪→

self.OpticsR = exploreOPTICS(self.xi[0], self.MinPts, 0,

filename='Random Distribution', data=self.points)↪→

self.OpticsR.sweep()

self.meanReach =

np.mean(self.OpticsR.reach[0][np.isfinite(self.OpticsR.reach[0])])↪→

135

E. OPTICS.PY

def compareReachabilities(self):

"""This method plots and compares the reachability distances of the

original dataset and those of the randomly↪→

distributed set of particles."""

plt.figure(figsize=(10, 7))

plt.ylabel('Reachability')

plt.title('Comparison between Reachability Plots - N = ' +

str(self.N))↪→

plt.plot(self.Optics.space[0], self.Optics.reach[0],

label='Preferential Distribution')↪→

plt.plot(self.OpticsR.space[0], self.OpticsR.reach[0], label='Random

Distribution')↪→

plt.legend(loc='upper left')

def determineXifromRandom(self):

"""Based on the mean reachability obtained from randomly distributing

the same number of particles in the same↪→

domain area, this method determines which value of xi mostly

classifies particles with reachability higher than↪→

such mean value as noise"""

self.xiScore = np.zeros(len(self.xi))

for i, u in enumerate(self.xi):

c = self.Optics.clust[i]

labels = c.labels_[c.ordering_]

for j, v in enumerate(labels):

if v == -1 and self.isNoise[j] == -1:

self.xiScore[i] += 1

if v != -1 and self.isNoise[j] == 1:

self.xiScore[i] += 1

self.xiScore = self.xiScore / (self.N * 0.01)

self.optXi = self.xi[np.argmax(self.xiScore)]

self.Optics.PlotReachabilityWithLabels()

plt.plot(self.space, self.meanReach * np.ones(len(self.space)))

plt.figure()

plt.title('Affinity Score for each Xi')

plt.ylabel('Score [%]')

plt.xlabel('xi [-]')

plt.plot(self.xi, self.xiScore)

def plotOptimumXi(self):

136

E. OPTICS.PY

"""This method plots the reachability plot of the employed dataset

and also displays how the optimum xi value↪→

obtained in the previous method groups the dataset into different

clusters."""↪→

plt.figure(figsize=(10, 7))

plt.ylabel('Reachability')

plt.title('Reachability Plot - MinPts = ' + str(int(self.MinPts)) +

' & xi* = ' + str(self.optXi))↪→

plt.plot(self.space, self.reach)

ofXi = np.ndarray.flatten(np.argwhere(self.xi == self.optXi))[0]

c = self.Optics.clust[ofXi]

labels = c.labels_[c.ordering_]

unique_labels = np.unique(np.array(labels))

colors = [plt.cm.Dark2(each) for each in np.linspace(0, 1,

len(unique_labels))]↪→

font = {'family': 'serif', 'color': 'black', 'weight': 'normal',

'size': 12}↪→

plt.text(self.space[5], self.meanReach * 1.02, 'Mean Reachability of

Random Distribution', fontdict=font)↪→

for k, col in zip(unique_labels, colors):

size = 1.6

if k == -1:

Black used for noise.

col = [128 / 256, 128 / 256, 128 / 256]

size = 1

class_member_mask = (labels == k)

plt.plot(self.space[class_member_mask], self.meanReach *

np.ones(len(np.argwhere(class_member_mask))), 'o',↪→

markerfacecolor=tuple(col), markersize=size,

markeredgecolor=tuple(col))↪→

def easyLabel(self):

"""This method simply applies a label value of -1 (Noise) to

particles with reachability greater than the obtained↪→

mean reachability and a label value of 1 (Cluster) to the rest."""

self.isNoise = np.ones(len(self.space))

for i, u in enumerate(self.space):

if self.reach[i] > self.meanReach:

self.isNoise[i] = -1

ORDERING OF LABELS IS NOT THE SAME AS THE ONE IN DATA!!!

c = self.Optics.clust[0]

self.easyData = self.Optics.data[c.ordering_, :]

137

E. OPTICS.PY

def run(self):

"""Execution of the previous methods"""

self.randomlyDistributed()

if self.plots:

self.compareReachabilities()

self.easyLabel()

if len(self.xi) > 1:

self.determineXifromRandom()

self.plotOptimumXi()

files = [0.005, 0.008, 0.013, 0.017, 0.021, 0.024, 0.028, 0.032, 0.036,

0.041]↪→

#

filename = './Varying Sampling/' + 'prt_TG_ductVe8_770000' + '_dZ_' +

str(files[-6]).replace('.', ',') + '.csv'↪→

filename = 'prt_TG_ductVe8_770000_Large_dZ_0,02.csv'

xi0 = 0.005

MinPts0 = np.linspace(10,500,30)

Exploration of Convergence of Reachability Plots, to obtain MinPts*

rC = reachabilityConvergence(filename, MinPts0, xi0)

rC.convergeConcaves()

MinPts = rC.convMinPts

xi = np.linspace(0.005, 0.01, 15)

Comparison with a Random Distribution of Particles, to obtain xi*

cR = compareWithRandom(filename, MinPts, xi)

cR.run()

xi = cR.optXi

Traditional OPTICS Explotation

op = exploreOPTICS(xi, MinPts, 1, filename)

op.sweep()

op.PlotReachabilityWithLabels()

from matplotlib.backends.backend_pdf import PdfPages

def multipage(filename, figs=None, dpi=200):

pp = PdfPages(filename)

if figs is None:

figs = [plt.figure(n) for n in plt.get_fignums()]

for fig in figs:

138

F. DBSCAN.PY

fig.savefig(pp, format='pdf')

pp.close()

F DBSCAN.py

import numpy as np

from sklearn.cluster import DBSCAN

import matplotlib.pyplot as plt

import csv

from clusterPlot import clusterPlot

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is designed to execute a DBSCAN clustering

analysis of a 2D snapshot in Z displaying↪→

particle positions, taking into account multiple combinations of eps and

MinPts. This script is also capable of↪→

plotting the results of such clustering routine and excluding non-core

elements from the cluster label.↪→

Álvaro Tomás Gil - UIUC 2020

class exploreDBSCAN:

"""This class is in charge of performing a DBSCAN analysis of a 2D

computational domain displaying particle positions. It↪→

has the capability of applying the clustering algorithm to the database

for multiple different values of eps and MinPts,↪→

in order to analyze the effect of these parameters on the clustering of

the data. For the input:↪→

eps: Float or list of floats, defining the eps values based on which to

perform clustering with DBSCAN↪→

MinPts: Integer or list of integers, defining the list of MinPts based on

which to perform clustering with DBSCAN↪→

plots: Number of plots defining, for different values of xi or eps, the

clustering results↪→

filename: In case data is None, file name from which to load data

data: Data array on which to perform OPTICS analysis"""

def __init__(self, eps, MinPts, plots=0, filename=None, data=None):

if np.isscalar(eps):

self.eps = np.array([eps])

else:

139

F. DBSCAN.PY

self.eps = eps

if np.isscalar(MinPts):

self.MinPts = np.array([MinPts])

else:

self.MinPts = MinPts

if data is not None:

self.data = data

else:

with open(filename, 'r') as f:

reader = csv.reader(f, delimiter=',')

self.data = np.array(list(reader)).astype(float)

self.clust = []

self.labels = []

self.n = np.array([0, 0, 0])

self.N = len(self.data)

self.pl = [int(v) for v in np.linspace(0, len(self.eps) - 1, plots)]

print('DBSCAN: ' + str(self.N) + ' particles in data set.')

def sweep(self):

"""For every combination of the specified values of eps and MinPts,

this method carries out the clustering analysis of the↪→

dataset based on those parameters. The results of such clustering are

stored in clust, and labels."""↪→

for i, v in enumerate(self.eps):

for j, u in enumerate(self.MinPts):

print(' ' + str(i + 1) + 'th epsilon: ' + str(round(v,

4)) + '; ' + str(j + 1) + 'th MinPts: ' + str(↪→

np.floor(u)))

c = DBSCAN(eps=v, min_samples=np.floor(u),

metric='minkowski', p=2)↪→

c.fit(self.data)

self.clust.append(c)

self.labels.append(c.labels_)

#Every row of n includes [eps, MinPts, Number of Clusters]

nC = [v, u, len(np.unique(np.array(c.labels_)))]

self.n = np.vstack((self.n, nC))

if i in self.pl:

Plot the clustering disposition of the radii selected

in array pl↪→

title = 'DBSCAN with MinPts = ' + str(np.floor(u)) + '

and ϵ = ' + str(↪→

140

F. DBSCAN.PY

round(v, 4)) + '. ' + str(nC[-1]) + ' clusters

detected.'↪→

cP = clusterPlot(self.data, c.labels_)

cP.plotAll(title)

cP.sizeHistogram(title)

def onlyCoreElements(self):

"""This method defines a new list of labels in which non-core

elements previously included within clusters are↪→

now excluded from any cluster and labelled as noise."""

self.labelsN = self.labels

for i, c in enumerate(self.clust):

cores = c.core_sample_indices_

take = np.setdiff1d(np.arange(0, self.N), cores)

self.labelsN[i][take] = -1

def plot(self):

"""This function plots the evolution of the detected number of

particles with the neighborhood radius eps"""↪→

self.n = self.n[1:][:]

fig = plt.figure()

if len(self.MinPts) == 1:

plt.plot(self.eps, self.n[:, 2])

plt.title('DBSCAN with MinPts = ' + str(self.MinPts[0]) + ' and

Euclidean Distance')↪→

plt.xlabel('ϵ [-]')

plt.ylabel('Clusters Detected [-]')

else:

ax = fig.add_subplot(111, projection='3d')

ax.scatter(self.n[:, 0], self.n[:, 1], self.n[:, 2], marker='o',

c=self.n[:, 2], cmap='inferno')↪→

ax.set_title('Clusters Detected - DBSCAN with Euclidean

Distance')↪→

ax.set_xlabel('ϵ [-]')

ax.set_ylabel('MinPts [-]')

plt.show()

def isolateCluster(self, label):

isolated = np.array([0, 0])

for c in self.clust:

take = self.data[c.labels_ == label]

isolated = np.vstack((isolated, take))

#

isolated = isolated[1:]

return isolated

141

G. CLUSTERPLOT.PY

G clusterPlot.py

import numpy as np

import matplotlib.pyplot as plt

import imageio

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is in charge of presenting the position and

cluster label of a set of particles whose↪→

position has been discretized into a set of planes of constant Z. This is

done with a GIF animation, plotting the resulting↪→

cluster assignments of each two-dimensional domain separatedly.

Álvaro Tomás Gil - UIUC 2020

class clusterPlot:

"""This script is in charge of presenting the position and cluster label

of a set of particles whose↪→

position has been discretized into a set of planes of constant Z. This is

done with a GIF animation, plotting the resulting↪→

cluster assignments of each two-dimensional domain separatedly.

For the input:

data: 2D array of 3D particle positions, sorted into parallel planes of

constant Z↪→

labels: list of equal length as data, assigning a cluster label

applicable within each 2D domain. A label↪→

of -1 corresponds to a void particle.

folder: folder in which to save resulting plots

minClusters: minimum number of cluster labels with which to separate

exclusively into void and cluster particles, and↪→

not within different assigned clusters"""

def __init__(self, data, labels, folder='', minClusters=3000):

self.labels = labels

self.data = data

self.folder = folder

if len(np.unique(np.array(labels))) < minClusters:

self.polyChrome = True

else:

self.polyChrome = False

self.threedee = False

if np.size(self.data, 1) == 3:

self.zs = np.unique(self.data[:, 2])

self.threedee = True

142

G. CLUSTERPLOT.PY

if len(self.zs) == 1:

self.data = self.data[:, :2]

self.threedee = False

self.unique_labels = np.unique(np.array(labels))

strength = np.linspace(0, 0.8, len(self.unique_labels))

np.random.shuffle(strength)

self.colors = [plt.cm.nipy_spectral(each) for each in strength]

np.random.shuffle(strength)

self.colorsB = [plt.cm.nipy_spectral(each) for each in strength]

def plotAll(self, title):

if self.threedee:

dz = abs(self.zs[1] - self.zs[0]) / 4

def update(choose):

fig, ax = plt.subplots()

fig.set_size_inches(18.5, 9.5)

relevant = ((self.data[:, 2] <= choose + dz) & (self.data[:,

2] >= choose - dz))↪→

self.plotInstance(self.data[relevant, :2],

[self.labels[i] for i in

range(len(self.labels)) if

relevant[i]], ax)

↪→

↪→

ax.set_title('Z = ' + '{0:03f}'.format(choose), fontsize=24)

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

ax.tick_params(axis='both', which='major', labelsize=15)

ax.set_xlim(np.min(self.data[:, 0]), np.max(self.data[:, 0]))

ax.set_ylim(np.min(self.data[:, 1]), np.max(self.data[:, 1]))

plt.axis('equal')

fig.canvas.draw()

image = np.frombuffer(fig.canvas.tostring_rgb(),

dtype='uint8')↪→

image = image.reshape(fig.canvas.get_width_height()[::-1] +

(3,))↪→

plt.close()

return image

kwargs_write = {'fps': 1.0, 'quantizer': 'nq'}

imageio.mimsave(self.folder + title + '.gif', [update(i) for i in

self.zs], fps=2)↪→

else:

143

G. CLUSTERPLOT.PY

fig, ax = plt.subplots()

fig.set_size_inches(18.5, 9.5)

ax.set_title(title)

ax.set_xlabel('x [m]')

ax.set_ylabel('y [m]')

plt.axis('equal')

self.plotInstance(self.data, self.labels, ax)

def plotInstance(self, data, labels, ax):

if self.polyChrome:

for k, col, colB in zip(self.unique_labels, self.colors,

self.colorsB):↪→

size = 3

if k == -1:

Black used for noise.

col = [1, 0, 0]

size = 1

class_member_mask = (labels == k)

xy = data[class_member_mask]

if len(xy) > 0:

ax.scatter(xy[:, 0], xy[:, 1],

c=np.reshape(np.array(col), (1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1,

-1)), s=30, label='Cluster ' + str(k))↪→

ax.legend()

else:

s = 0.8 + (labels != -1) * 0.8

col = {1: 'blue', 0: 'grey'}

c = [col[d] for d in (labels != -1)]

ax.scatter(data[:, 0], data[:, 1], s=s, c=c)

def sizeHistogram(self, title):

"""This method plots a histogram of the number of particles contained

within each DBSCAN cluster"""↪→

unique, counts = np.unique(np.array(self.labels), return_counts=True)

plt.figure()

plt.hist(counts, bins=100, density=True)

plt.title(title)

plt.xlabel('Particles per Cluster [-]')

plt.ylabel('Fraction of Clusters [-]')

144

H. BOUNDARYFINDER.PY

H boundaryFinder.py

import numpy as np

import matplotlib.pyplot as plt

from sklearn.neighbors import NearestNeighbors

import time

from skeletonPlot import skeletonPlot

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is in charge of determining, for a set of

isolated particle clusters within different↪→

snapshots in Z, the cluster particles which form the boundary of the

cluster. In order to do so, the main class↪→

"boundaryFinder" invokes, for every snapshot in Z, the class

"boundaryTraveller", the latter obtaining a closed particle↪→

boundary for each of the clusters in the dataset.

Álvaro Tomás Gil - UIUC 2020

class boundaryFinder:

"""This is the main class of the script, in charge of calling the

secondary class for every Z value in the dataset,↪→

performing an additional polishing of the obtained cluster boundaries,

and plotting the resulting boundaries. For the↪→

input:

data: 2D Array containing the 3D positions of all particles, arranged

into a discrete set of Z levels, to which the↪→

particle positions have been normally projected

labels: List which labels each of the elements in data based on their

DBSCAN cluster label. In case this label is -1,↪→

the referenced element corresponds to a void particle

eps: Float defining the eps value based on which clustering analysis with

DBSCAN has been performed. This is used as a↪→

reference length in this method.

folder: folder in which to save resulting plots"""

def __init__(self, data, labels, eps, folder=''):

self.data = data

self.labels = labels

self.eps = eps

self.folder = folder

self.zs = np.unique(self.data[:, 2])

self.fakeSkel = np.array([0, 0, 0])

def bound2dUnsupervised(self, z):

145

H. BOUNDARYFINDER.PY

"""This method is in charge of invoking the secondary class in order

to perform the boundary analysis of the clusters↪→

for which Z is the same as the specified value."""

self.bT = boundaryTraveller(z, self.data, self.labels, self.eps)

boundary, plane, cluster = self.bT.run()

return boundary, plane, cluster

def sweep(self, runs=1, plot3d=True, plot=[]):

"""This method is central to the current class, as it sweeps for the

different Z values existing in the dataset,↪→

and calls the cluster boundary determination. Moreover, this method

calls the method in charge of polishing↪→

the resulting cluster boundaries and plots the final results."""

start = time.time()

print('Sweep along Z of Boundary Finder')

self.boundaries = []

self.bound3d = np.array([0, 0, 0])

self.clusters = np.array([0, 0, 0])

for i, z in enumerate(self.zs):

print('Z = ' + str(round(z, 3)))

complete = []

for j in range(runs):

boundary, plane, cluster = self.bound2dUnsupervised(z)

Fake skel is an array whose exclusive function is for

plotting the resulting cluster boundaries↪→

self.fakeSkel = np.vstack((self.fakeSkel, cluster[0, :]))

complete = complete + boundary

boundary = list(set(complete))

self.boundaries.append(boundary)

#bound3d is the 2d array of all cluster boundary particle

positions↪→

self.bound3d = np.vstack((self.bound3d, plane[boundary, :]))

self.clusters = np.vstack((self.clusters, cluster))

print('Execution Time: ' + str(round(time.time() - start, 3)))

self.bound3d = self.bound3d[1:, :]

self.clusters = self.clusters[1:, :]

self.polishBoundaries()

if plot3d:

self.plotAll()

146

H. BOUNDARYFINDER.PY

for i in plot:

z = self.zs[i]

self.boundaryPlot(z)

def polishBoundaries(self, p=0.2, kb=0.3):

"""This method polishes the obtained cluster boundaries by deleting

boundary particles with less than a fraction↪→

p of the average number of neighboring boundary particles within a

neighborhood of kb*epsilon"""↪→

self.nbrs = NearestNeighbors(radius=kb * self.eps, algorithm='auto')

self.nbrs.fit(self.bound3d)

dis, ind = self.nbrs.radius_neighbors()

neighs = []

for i, v in enumerate(ind):

neighs.append(len(v))

ave = np.mean(neighs)

keep = [i for i in range(len(neighs)) if neighs[i] > p * ave]

print('Ave Neighs: ' + str(ave) + '. Min Neighs: ' +

str(np.min(neighs)) + '. Killed: ' + str(↪→

len(self.bound3d) - len(keep)))

self.bound3d = self.bound3d[keep, :]

def boundaryPlot(self, z):

"""Given an array of boundary particle positions 'boundary', this

method plots these results. """↪→

take = self.bound3d[:, 2] == z

boundary = self.bound3d[take, :]

take = self.clusters[:, 2] == z

cluster = self.clusters[take, :]

fig, ax = plt.subplots()

fig.set_size_inches(18.5, 9.5)

ax.set_title('Boundary Particles of Cluster for Z = ' +

'{0:03f}'.format(boundary[0, 2]), fontsize=23)↪→

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

plt.axis('equal')

ax.scatter(boundary[:, 0], boundary[:, 1], s=0.8, c='red')

ax.scatter(cluster[:, 0], cluster[:, 1], s=0.8, c='blue')

def plotAll(self):

"""This method invokes the plotting of cluster boundaries for all of

the considered Z levels"""↪→

self.fakeSkel = self.fakeSkel[1:]

sP = skeletonPlot(self.bound3d, self.fakeSkel, folder=self.folder)

147

H. BOUNDARYFINDER.PY

sP.snapPlot(title='Lagrangian Boundary')

class boundaryTraveller:

"""For a particular Z level, this class is in charge of determining the

cluster particles which represent cluster↪→

boundaries. For the cluster particles contained in less dense regions,

the algorithm proceeds by measuring the angles↪→

between successive particle-neighboring particle vectors. If any of these

angles for a particular cluster particle↪→

is larger than a specified threshold value, the cluster particle is

considered to be a boundary, and the neighboring↪→

particles adjacent to such gap are stored for later analysis. For the

inputs:↪→

z: Float describing the z value of data to analyze

data: 2D Array containing the 3D positions of all particles, arranged

into a discrete set of Z levels, to which the↪→

particle positions have been normally projected

labels: List which labels each of the elements in data based on their

DBSCAN cluster label. In case this label is -1,↪→

the referenced element corresponds to a void particle

radius: Float defining the reference length to employ for the

neighborhood radius of each particle under analysis↪→

dirs: Dividing 2*Pi by this float, one obtains the minimum separation

angle between adjacent neighboring particles↪→

for the particle under analysis to be considered as a boundary

k: Multiplied by radius, this float defines the neighborhood radius based

on which the neighbors of each particle are↪→

analyzed

dense: Proportion of the maximum number density for a particle to be

considered by this algorithm↪→

"""

def __init__(self, z, data, labels, radius=0.001, dirs=6, k=0.5,

dense=0.75):↪→

self.z = z

self.dir = dirs

self.plane = data[data[:, 2] == z, :2]

self.labels2d = labels[data[:, 2] == z]

self.cluster = self.plane[self.labels2d != -1, :] #only cluster

particles↪→

self.clustInd = np.ndarray.flatten(np.argwhere(self.labels2d != -1))

references plane↪→

self.nbrs = NearestNeighbors(radius=radius * k,

algorithm='auto').fit(self.cluster)↪→

148

H. BOUNDARYFINDER.PY

self.distances, self.indices =

self.nbrs.radius_neighbors(self.cluster)↪→

self.N = []

for i in self.indices:

self.N.append(len(i))

self.notdense = [i for i in range(len(self.N)) if self.N[i] <

dense*np.max(self.N)] #extracts less dense particles↪→

self.taken = np.array(

[]) # Taken and Queue both index Cluster and ClustInd, whileas

ClustInd references self.plane↪→

self.queue = np.array([])

self.boundary = [] # References self.plane

self.theta = [(i - 1) * 2 * np.pi / self.dir for i in range(1,

self.dir + 1)]↪→

self.ri = np.array([[np.cos(th), np.sin(th)] for th in self.theta])

self.test = np.random.randint(0, len(self.cluster))

print(' boundaryTraveller: dirs = ' + str(dirs) + '; k = ' +

str(k) + ';')↪→

def nextInLine(self):

"""This method is in charge of determine, at each iteration of the

algorithm, which particle to analyze next. If↪→

the queue of particles is empty, a particle from the less denser

group of particles is randomly sampled."""↪→

if len(self.queue) > 0:

take = self.queue[0]

self.queue = np.delete(self.queue, 0)

else:

poss = np.setdiff1d(self.notdense, self.taken)

take = poss[np.random.randint(0, len(poss))]

self.taken = np.append(self.taken, take)

return int(take)

def substractAngles(self, this, dumping=False):

"""Given a particle indexed by 'this', this method examines all of

its neighboring particles and measures the↪→

angles between adjacent particle-neighboring particle vectors. All

neighboring particles for which the angle↪→

149

H. BOUNDARYFINDER.PY

of separation is greater than the specified threshold are stored in

'adj' to be added to the queue. If dumping↪→

is allowed, all the other neighboring particles are excluded from

further processing by the algorithm via 'dump'."""↪→

pos = self.cluster[this, :]

neighs = self.indices[this]

neighs = neighs[neighs != this]

vecs = np.array([0, 0])

angs = np.array([])

for i in neighs:

that = self.cluster[i, :]

mag = np.linalg.norm(that - pos)

if mag > 0:

vecs = np.vstack((vecs, (that - pos) / mag))

theta = np.arctan2(vecs[-1, 1], vecs[-1, 0])

if theta < 0:

theta += 2 * np.pi

angs = np.append(angs, theta)

if len(angs) > 0:

vecs = vecs[1:, :]

sortI = np.argsort(angs)

angs = np.sort(angs)

sortI = np.append(sortI, sortI[0])

angs = np.append(angs, angs[0] + 2 * np.pi)

delta = np.diff(angs)

gaps = np.flatnonzero(delta >= 2 * np.pi / self.dir)

adjacent = np.concatenate((gaps, gaps + 1))

adj = np.unique(neighs[sortI[adjacent]])

if dumping:

dump = [i for i in neighs if i not in adj]

else:

dump = []

print('Newline: ', angs*180/np.pi,

delta*180/np.pi, adjacent, adj)↪→

else:

adj = []

dump = []

return adj, dump

150

H. BOUNDARYFINDER.PY

def processPoint(self, this):

"""For a cluster particle indexed via 'this', this method extracts

whether this particle can be considered as a↪→

cluster boundary particle. It also stores relevant neighboring

particles of this particle in the particle↪→

queue for further analysis, and all dumped neighboring particles in

the list of taken particles to exclude them↪→

from further analysis."""

take, discard = self.substractAngles(this)

if len(take) > 0:

self.boundary.append(int(self.clustInd[this]))

add2queue = [v for v in take if v not in self.taken]

self.queue = np.append(self.queue, add2queue)

if len(discard) > 0:

add2taken = [v for v in discard if v not in self.taken]

self.taken = np.append(self.taken, add2taken)

def run(self):

"""This method executes the boundary determining algorithm, by

sampling a cluster particle as per↪→

nextInLine and processing such particle with processPoint. What

results is boundary, a list of indexes of↪→

boundary particles referencing plane, plane, an array of particle

positions for the current Z level, and cluster,↪→

an array of cluster particle positions for the current Z level."""

while len(self.taken) < len(self.notdense):

this = self.nextInLine()

print('Next Point in Line: ', this)

self.processPoint(this)

print(self.boundary.shape, self.plane.shape, self.cluster.shape)

self.plane = np.hstack((self.plane, self.z *

np.ones((len(self.plane), 1))))↪→

self.cluster = self.plane[np.setdiff1d(self.clustInd, self.boundary),

:]↪→

return self.boundary, self.plane, self.cluster

151

I. SKELETONPLOT.PY

I skeletonPlot.py

import numpy as np

from matplotlib import cm

import matplotlib.pyplot as plt

import imageio

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is in charge of plotting, either by means

of a frozen 3D figure or by means of a GIF file,↪→

the constellation of skeleton points interior to each two-dimensional

cluster along with the boundaries of each cluster.↪→

Álvaro Tomás Gil - UIUC 2020

class skeletonPlot:

"""This class is in charge of plotting, either by means of a frozen 3D

figure or by means of a GIF file,↪→

the constellation of skeleton points interior to each two-dimensional

cluster along with the boundaries of each cluster.↪→

For the inputs:

bound3d: 2D array of 3D positions corresponding to the curves defining

each cluster's boundaries for each of the↪→

parallel planes of constant Z in the domain

skel: 2D array of 3D positions of skeleton points. In case skel2 is not

None, this could also represent the positions↪→

of the points defining the trajectory between skeleton points with which

the connectivity between them is examined.↪→

skel2: 2D array of 3D positions of skeleton points, in the case in which

the connectivity between them is displayed↪→

labels: list of the same length as skel2, assigning a cluster label to

each skeleton point↪→

folder: folder in which to save resulting plots"""

def __init__(self, bound3d, skel, skel2=None, labels=None, folder=''):

self.bound3d = bound3d

self.skel = skel[np.argsort(skel[:, 2]), :][::-1]

self.zs = np.unique(bound3d[:, 2])

self.skel2 = skel2

self.labels = labels

self.folder = folder

Combinations of marker and marker boundary colors are made in order

to increase the possibilities of marker types↪→

self.unique_labels = np.unique(self.labels)

152

I. SKELETONPLOT.PY

strength = np.linspace(0, 0.8, len(self.unique_labels))

np.random.shuffle(strength)

self.colors = [plt.cm.nipy_spectral(each) for each in strength]

np.random.shuffle(strength)

self.colorsB = [plt.cm.nipy_spectral(each) for each in strength]

Trajectory and boundary points are colored in terms of the Z value

they appear in↪→

self.cm = cm.get_cmap('winter')

normalized = (self.skel[:, 2] - np.min(self.zs)) / (np.ptp(self.zs))

self.skelC = self.cm(normalized)

normalized = (self.bound3d[:, 2] - np.min(self.zs)) /

(np.ptp(self.zs))↪→

self.bounC = self.cm(normalized)

def messyPlot(self, title='Topological Skelletonization of Clusters',

labelB='BPs', labelS='Skeleton'):↪→

"""This method defines a single 3D figure in which both cluster

boundaries and skeleton points are displayed"""↪→

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

fig.set_size_inches(18.5, 9.5)

ax.set_title(title)

ax.set_xlabel('x [m]')

ax.set_ylabel('y [m]')

ax.set_zlabel('z [m]')

ax.scatter(self.bound3d[:, 0], self.bound3d[:, 1], self.bound3d[:,

2], alpha=0.5, s=0.5, label=labelB)↪→

ax.scatter(self.skel[:, 0], self.skel[:, 1], self.skel[:, 2],

c='red', s=0.5, alpha=1, label=labelS)↪→

ax.legend()

X = self.bound3d[:, 0]

Y = self.bound3d[:, 1]

Z = self.bound3d[:, 2]

From

https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to↪→

Create cubic bounding box to simulate equal aspect ratio

max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() -

Z.min()]).max()↪→

Xb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][0].flatten()

+ 0.5 * (X.max() + X.min())↪→

Yb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][1].flatten()

+ 0.5 * (Y.max() + Y.min())↪→

Zb = 0.5 * max_range * np.mgrid[-1:2:2, -1:2:2, -1:2:2][2].flatten()

+ 0.5 * (Z.max() + Z.min())↪→

153

I. SKELETONPLOT.PY

Comment or uncomment following both lines to test the fake bounding

box:↪→

for xb, yb, zb in zip(Xb, Yb, Zb):

ax.plot([xb], [yb], [zb], 'w')

def snapPlot(self, title, this=True, labelB='BPs', labelS='Skeleton'):

"""This method plots each two-dimensional domain separately, but

joins all of them in a GIF animation which allows↪→

a 3D evolution of them to be visualized."""

self.this = this

self.labelB = labelB

self.labelS = labelS

def update(choose):

fig, ax = plt.subplots()

fig.set_size_inches(18.5, 9.5)

self.plotInstance(choose, ax)

ax.set_title('Z = ' + '{0:03f}'.format(choose), fontsize=24)

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

ax.tick_params(axis='both', which='major', labelsize=15)

plt.axis('equal')

ax.set_xlim(np.min(self.bound3d[:, 0]), np.max(self.bound3d[:,

0]))↪→

ax.set_ylim(np.min(self.bound3d[:, 1]), np.max(self.bound3d[:,

1]))↪→

fig.canvas.draw()

image = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8')

image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))

plt.close()

return image

kwargs_write = {'fps': 1.0, 'quantizer': 'nq'}

imageio.mimsave(self.folder + title + '.gif', [update(i) for i in

self.zs], fps=2)↪→

def plotInstance(self, choose, ax):

if len(self.zs) >= 2:

dz = (self.zs[1] - self.zs[0]) / 4

else:

dz = 0.001 * self.zs[0]

take = self.bound3d[:, 2] == choose

if self.this:

154

J. EULERIANAPPROACH.PY

takeS = ((self.skel[:, 2] >= choose - dz) & (self.skel[:, 2] <=

choose + dz))↪→

else:

takeS = self.skel[:, 2] >= choose

ax.scatter(self.bound3d[take, 0], self.bound3d[take, 1],

c=self.bounC[take], s=1, label=self.labelB)↪→

ax.scatter(self.skel[takeS, 0], self.skel[takeS, 1],

c=self.skelC[takeS], s=5, label=self.labelS, marker='D')↪→

if self.labels is not None:

takeS2 = ((self.skel2[:, 2] >= choose - dz) & (self.skel2[:, 2]

<= choose + dz))↪→

data = self.skel2[takeS2, :]

labels = [self.labels[i] for i in range(len(self.labels)) if

takeS2[i]]↪→

self.plotLabels(ax, data, labels)

def plotLabels(self, ax, data, labels):

for k, col, colB in zip(self.unique_labels, self.colors,

self.colorsB):↪→

size = 15

if k == 0:

Black used for noise.

col = [1, 0, 0]

size = 1

class_member_mask = (labels == k)

xy = data[class_member_mask]

if len(xy) > 0:

ax.scatter(xy[:, 0], xy[:, 1], c=np.reshape(np.array(col),

(1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1, -1)),

s=50, marker='P',↪→

label='SP of Cluster ' + str(k))

ax.legend()

J eulerianApproach.py

import numpy as np

import matplotlib.pyplot as plt

from clusterPlot import clusterPlot

155

J. EULERIANAPPROACH.PY

from skeletonPlot import skeletonPlot

from sklearn.neighbors import NearestNeighbors

import time

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is designed to analyze a DBSCAN-labelled

array of particle positions in order to discretize its 2D↪→

domain in an Eulerian way, determine cluster boundaries based on which of

the Eulerian cells are populated by particles labelled↪→

by DBSCAN as cluster particles, compute the area associated to each DBSCAN

label, and determine an Eulerian skeleton with Eulerian↪→

cell centers in areas labelled as cluster areas by DBSCAN.

Álvaro Tomás Gil - UIUC 2020

class eulerianAnalysis:

"""This class discretizes the 2D domain and determines which Eulerian

cells are populated by cluster particles. It also determines↪→

cluster boundaries based on populated cells which are neighbors to

non-populated cells.↪→

cluster: 3-column array of cluster particles, sorted by 2D snapshots in Z

labels: Array of labels, labeling each element in cluster according to a

previous DBSCAN analysis.↪→

eps: Neighborhood radius of the previous DBSCAN analysis, used as a

reference length↪→

kx, ky: Constants determining Eulerian cell sizes in X and in Y when

multiplied by eps↪→

boundMethod: Specifies the method to be used to determine cluster

boundaries↪→

lagBounds: Array of cluster boundaries obtained by "boundaryTraveller",

to use as a reference for Eulerian cell sizes↪→

if kx and ky are None

folder: folder in which to save resulting plots"""

def __init__(self, cluster, labels, eps, kx=0.2, ky=0.2,

boundMethod='basic', lagBounds=None, folder=''):↪→

print('Eulerian Analysis of Boundaries and Areas')

cluster = cluster[labels != -1, :]

self.clusters = cluster

labels = labels[labels != -1]

self.folder = folder

self.cluster = cluster

self.labels = labels

self.eps = eps

self.method = boundMethod

156

J. EULERIANAPPROACH.PY

self.reduce = cluster

self.redL = labels

if kx is None or ky is None:

kx = self.determineDims(lagBounds=lagBounds)

ky = kx

self.dx = kx * eps

self.dy = ky * eps

self.zs = np.unique(cluster[:, 2])

self.xrange = [np.min(cluster[:, 0]), np.max(cluster[:, 0])]

self.yrange = [np.min(cluster[:, 1]), np.max(cluster[:, 1])]

self.xn = int(np.floor((self.xrange[1] - self.xrange[0]) / self.dx))

self.yn = int(np.floor((self.yrange[1] - self.yrange[0]) / self.dy))

self.x = np.linspace(self.xrange[0], self.xrange[1], self.xn)

self.y = np.linspace(self.yrange[0], self.yrange[1], self.yn)

self.dx = self.x[1] - self.x[0]

self.dy = self.y[1] - self.y[0]

self.a = self.dx*self.dy

self.xc = np.linspace(self.dx/2 + self.x[0], self.x[-1] - self.dx/2,

self.xn - 1)↪→

self.yc = np.linspace(self.dy / 2 + self.y[0], self.y[-1] - self.dy /

2, self.yn - 1)↪→

self.isfull = -1*np.ones((self.xn - 1, self.yn - 1, len(self.zs)))

#rc: 2D array containing the Eulerian cell centers for all snapshots

in Z↪→

#lc: Label array defining whether a cluster populates an Eulerian

cell, and in such case, of which DBSCAN label↪→

self.rc = np.zeros(((self.xn - 1) * (self.yn - 1) * len(self.zs), 3))

self.lc = -1*np.ones(((self.xn - 1) * (self.yn - 1) * len(self.zs)))

self.bound3d = np.array([0, 0, 0])

self.fakeSkel = np.array([0, 0, 0])

self.areas = [0 for _ in self.zs]

self.labelcount = [[] for _ in self.zs]

def determineDims(self, lagBounds):

"""This method is in charge of assigning Eulerian cell dimensions

based on the average separation between an already existing↪→

cluster boundary"""

if lagBounds is None:

lagrangian = np.load('lagrangianBound3d.npy')

else:

157

J. EULERIANAPPROACH.PY

lagrangian = lagBounds

nbrs = NearestNeighbors(n_neighbors=1).fit(lagrangian)

dist, _ = nbrs.kneighbors()

dist = np.ndarray.flatten(dist)

k = np.mean(dist) / self.eps

print(' Based on the mean distance between boundary particles in the

Lagrangian boundary, k = ' + str(round(k, 3)))↪→

return k

def testSnapshot(self):

"""This method is in charge of testing the whole routine for a single

Z snapshot"""↪→

i = 0

take = np.arange(len(self.cluster[:, 2]))[self.cluster[:, 2] ==

self.zs[i]]↪→

self.fakeSkel = np.vstack((self.fakeSkel, self.cluster[take[0]]))

self.fullI = np.array([0, 0])

self.filloccupancies(i)

return (len(self.fullI) - 1)/((self.xn - 1)*(self.yn - 1))

def run(self):

"""Generic run command. The output of this command is a 2D array

containing the coordinates of all cluster boundary points.

(bound3d)"""

↪→

↪→

start = time.time()

for k,z in enumerate(self.zs):

self.forZ(k)

print(' Cells per DBSCAN label for Z = ' + str(round(z, 3)) +

':')↪→

for key in sorted(self.labelcount[k]):

print(" %s: %s" % (key, self.labelcount[k][key]))

self.fakeSkel = self.fakeSkel[1:, :]

self.plotisfull()

if self.method is not None:

self.bound3d = self.bound3d[1:, :]

self.plotBoundary()

print('Execution Time: ' + str(round(time.time() - start, 3)))

def forZ(self, i):

"""Execution for every snapshot in Z"""

take = np.arange(len(self.cluster[:, 2]))[self.cluster[:, 2] ==

self.zs[i]]↪→

self.fakeSkel = np.vstack((self.fakeSkel, self.cluster[take[0]]))

self.fullI = np.array([0, 0])

158

J. EULERIANAPPROACH.PY

self.filloccupancies(i)

if self.method == 'skimage':

self.skimageBound(i)

elif self.method is not None:

self.seeneighbors(i)

def filloccupancies(self, k):

"""This method is in charge of sweeping along the 2D domain,

determining whether each Eulerian cell is populated by↪→

cluster particles or not. This result is stored in:

isfull: This is a 3D array of indices corresponding to the Eulerian

grid (column, row, Zsnapshot) contains the label↪→

assigned to every Eulerian cell, which is either the DBSCAN label of

the cluster particles within it, or -1↪→

rc and lc: These two 2D arrays both display what isfull does without

employing 3D array schematics"""↪→

z = self.zs[k]

areas = {}

labelcount = {}

tz = np.arange(len(self.reduce[:, 2]))[self.reduce[:, 2] == z]

rz, self.reduce = self.newanddelete(tz, self.reduce)

lz, self.redL = self.newanddelete(tz, self.redL)

for i,x in enumerate(self.xc):

x1 = self.x[i]

x2 = self.x[i + 1]

tx = np.arange(len(rz))[((rz[:, 0] > x1) & (rz[:, 0] < x2))]

rx, rz = self.newanddelete(tx, rz)

lx, lz = self.newanddelete(tx, lz)

for j,y in enumerate(self.yc):

y1 = self.y[j]

y2 = self.y[j + 1]

ty = np.arange(len(rx))[((rx[:, 1] > y1) & (rx[:, 1] < y2))]

ry, rx = self.newanddelete(ty, rx)

ly, lx = self.newanddelete(ty, lx)

self.rc[self.longindex(i, j, k), :] = np.array([x, y, z])

if len(ty) > 0:

winner = np.random.choice(ly, 1)[0]

self.isfull[i, j, k] = winner

self.lc[self.longindex(i, j, k)] = winner

self.fullI = np.vstack((self.fullI, np.array([i, j])))

if winner not in areas.keys():

areas[winner] = self.a

labelcount[winner] = 1

159

J. EULERIANAPPROACH.PY

else:

areas[winner] += self.a

labelcount[winner] += 1

else:

self.lc[self.longindex(i, j, k)] = -1

self.areas[k] = areas

self.labelcount[k] = labelcount

def seeneighbors(self, k):

"""This method is in charge of, for every populated Eulerian cell,

determining if one of the directly neighboring cells↪→

are populated by cluster particles."""

self.fullI = self.fullI[1:, :]

for indices in self.fullI:

i = indices[0]

j = indices[1]

if j + 1 > self.yn - 2:

right = True

else:

right = self.isfull[i, j + 1, k] == -1

if j - 1 < 0:

left = True

else:

left = self.isfull[i, j - 1, k] == -1

if i - 1 < 0:

up = True

else:

up = self.isfull[i - 1, j, k] == -1

if i + 1 > self.xn - 2:

down = True

else:

down = self.isfull[i + 1, j, k] == -1

if any([up, down, left, right]):

self.bound3d = np.vstack((self.bound3d,

self.rc[self.longindex(i, j, k), :]))↪→

def skimageBound(self, k):

"""Boundary determination employing skimage, where the input is a

black-and-white image corresponding to the Eulerian grid"""↪→

from skimage import measure

self.fullI = self.fullI[1:, :]

canvas = np.zeros(self.isfull.shape[:2])

160

J. EULERIANAPPROACH.PY

for indices in self.fullI:

i = indices[0]

j = indices[1]

canvas[i, j] = 1

contours = measure.find_contours(canvas, 0)

if type(contours) is not list:

contours = [contours]

for c in contours:

for r in c:

i = int(r[0])

j = int(r[1])

self.bound3d = np.vstack((self.bound3d,

self.rc[self.longindex(i, j, k), :]))↪→

def longindex(self, i, j, k):

"""Converts three indices used in the 3D array to two indices used in

2D array equivalent"""↪→

r = j + (self.yn - 1)*i + (self.yn - 1)*(self.xn - 1)*k

return r

@staticmethod

def newanddelete(index, array):

"""Method in charge of extracting and deleting an element from an

array"""↪→

new = array[index]

array = np.delete(array, index, axis=0)

return new, array

def plotisfull(self):

"""Plotting of the Eulerian grid represented in isfull"""

cP = clusterPlot(self.rc, self.lc, self.folder)

cP.plotAll('IsFull')

def plotBoundary(self):

"""Plotting of the resulting cluster boundaries"""

sP = skeletonPlot(self.bound3d, self.fakeSkel, folder=self.folder)

sP.snapPlot(title='Eulerian Boundary')

class eulerianSkeleton:

"""This class is in charge of creating a brute skeleton defining the

cluster's shape based on Eulerian cell centers which have,↪→

161

J. EULERIANAPPROACH.PY

not only a sufficient separation from any predefined cluster boundary,

but also a separation from all other skeleton particles↪→

within the cluster. The input to this class is:

rc and lc: Eulerian cell centers and labels, as per generated in the

previous class↪→

bound3d: 2D array of coordinates of cluster boundary points

eps: Neighborhood radius of the previous DBSCAN analysis, used as a

reference length↪→

ks: Defines, when multiplied by eps, the minimum separation between

skeleton particles↪→

kc: Defines, when multiplied by kc, the minimum separation to hold

between skeleton particles and boundary particles↪→

folder: folder in which to save resulting plots

"""

def __init__(self, rc, lc, bound3d, eps, ks=0.8, kc=0.15, folder=''):

self.rc = rc

self.lc = lc

self.bound3d = bound3d

self.eps = eps

self.dx = abs(rc[0, 1] - rc[1, 1])

self.ds = eps*ks

self.crash = kc*eps

self.folder = folder

self.zs = np.unique(self.rc[:, 2])

self.skel = np.array([0, 0, 0])

def run(self, title='EulerianSkeleton'):

print('Topological Skeletonization of Clusters')

start = time.time()

for z in self.zs:

print(' Z = ' + str(round(z, 3)))

self.forZ(z)

self.skel = self.skel[1:, :]

print('Execution Time: ' + str(round(time.time() - start, 3)))

self.plotSkel(title)

def forZ(self, z):

releC = ((self.rc[:, 2] == z) & (self.lc != -1))

self.clusters = self.rc[releC, :]

self.labels = self.lc[releC]

releB = self.bound3d[:, 2] == z

self.boundary = self.bound3d[releB, :]

self.nbrs = NearestNeighbors(n_neighbors=1).fit(self.boundary)

162

J. EULERIANAPPROACH.PY

for l in np.unique(self.labels):

self.forCluster(l)

def forCluster(self, l, ksample=0.3):

"""This method analyzes a single DBSCAN-labelled cluster in a single

2D snapshot in Z, and determines a set of Eulerian cell↪→

centers which are the farthest away possible from all boundary

particles and are separated enough from each other."""↪→

cluster = self.clusters[self.labels == l]

cluster = cluster[np.random.choice(np.arange(len(cluster)),

max(int(ksample*len(cluster)), 1))]↪→

cluNbrs = NearestNeighbors(radius=50*self.ds).fit(cluster)

score = np.array([])

for i,r in enumerate(cluster):

minD, _ = self.nbrs.kneighbors(np.reshape(r, (1, -1)))

score = np.append(score, minD)

taken = [np.argmax(score)] #Array defining which Eulerian cell

centers already define the skelleton↪→

done = False

it = 0

while not done:

it += 1

#Every taken cell has a best ranked, far enough, not taken cell

distances, indices = cluNbrs.radius_neighbors(cluster[taken, :])

far = []

for i, row in enumerate(distances):

farenough = indices[i][row > self.ds] #Which Eulerian cell

centers are far enough from the current skeleton

particle?

↪→

↪→

farvirgin = [x for x in farenough if x not in taken] #Which

of these are not already taken?↪→

farvirgin = [f for f in farvirgin if score[f] > self.crash]

#Which of these are not too close to cluster boundaries?↪→

if len(far) == 0:

far = farvirgin

else:

far = [f for f in far if f in farvirgin]

if len(far) == 0:

done = True #If no candidates for skeleton particles

exist, stop↪→

break

if len(far) > 0:

163

J. EULERIANAPPROACH.PY

finalround = score[far]

taken.append(far[np.argmax(finalround)])

if it > 100:

done = True

self.skel = np.vstack((self.skel, cluster[taken, :]))

def plotSkel(self, title='EulerianSkeleton'):

self.plot = skeletonPlot(self.bound3d, self.skel, folder=self.folder)

self.plot.snapPlot(title)

class optimumCellSize:

"""Class used to analyze the effect of cell size on the number of

populated Eulerian cells"""↪→

def __init__(self, cluster, labels, eps, k0=0.088, k1=0.3):

ks = np.linspace(k0, k1)

filled = np.zeros(len(ks))

for i,k in enumerate(ks):

app = eulerianAnalysis(cluster, labels, eps, kx=k, ky=k)

filled[i] = app.testSnapshot()*100

plt.figure()

plt.plot(ks, filled)

plt.xlabel('Cell Size [-]')

plt.ylabel('Percentage of Populated Cells [%]')

plt.title('Evolution of Filled Cells with Cell Size')

eu = eulerianAnalysis(np.load('allPoints.npy'),

np.load('DBSCANlabels.npy'), np.load('eps.npy'), boundMethod=None,

kx=0.2, ky=0.2)

↪→

↪→

eu.run()

bound3d = np.load('bound3d.npy')

rc = np.load('cellCenters.npy')

lc = np.load('cellLabels.npy')

eps = np.load('eps.npy')

rc = eu.rc

lc = eu.lc

#

z1 = rc[0, 2]

z2 = rc[-1, 2]

take = ((rc[:, 2] == z1) | (rc[:, 2] == z2))

takeB = ((bound3d[:, 2] == z1) | (bound3d[:, 2] == z2))

sk = eulerianSkeleton(rc[take], lc[take], bound3d[takeB], eps, 1.6)

164

K. CLUSTERCONNECT.PY

sk.run('test')

K clusterConnect.py

import numpy as np

from sklearn.neighbors import NearestNeighbors

import time

from skeletonPlot import skeletonPlot

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: Based on the resulting Brute Skeleton representation of

several DBSCAN clusters within different levels of Z,↪→

this script is in charge of examining the connectivity of every brute

skeleton point with all others, by determining whether↪→

a straight line between both skeleton points collides with a cluster

boundary or not. In order to examine connectivities along↪→

different levels of Z, the projection of the skeleton point to the other

level of Z is used instead of the original skeleton point.↪→

Álvaro Tomás Gil - UIUC 2020

class skeletonConnect:

"""This is the main class of the script. Based on the resulting Brute

Skeleton representation of several DBSCAN clusters within different

levels of Z,

↪→

↪→

this script is in charge of examining the connectivity of every brute

skeleton point with all others, by determining whether↪→

a straight line between both skeleton points collides with a cluster

boundary or not. In order to examine connectivities along↪→

different levels of Z, the projection of the skeleton point to the other

level of Z is used instead of the original skeleton point.↪→

For the inputs:

skel: 2D array of 3D skeleton point positions

bound3d: 2D array of 3D boundary particle positions

eps: float, Neighborhood radius of the previous DBSCAN analysis, used as

a reference length↪→

kb: float, Determines the neighborhood distance with which to extract

relevant skeleton positions, by multiplying it with eps↪→

kc: float, Determines the neighborhood distance under which to assume

that a trajectory between two skeleton points has collided↪→

with a cluster boundary, by multiplying it with eps

ks: float, Determines the separation distance between adjacent points

defining the trajectory connecting two skeleton particles,↪→

165

K. CLUSTERCONNECT.PY

by multiplying it by eps

folder: folder in which to save resulting plots"""

def __init__(self, skel, bound3d, eps, kb=5, kc=0.1, ks=0.02, folder=''):

self.skel = skel

self.bound3d = bound3d

self.eps = eps

self.folder = folder

self.ds = ks * eps

self.zs = np.unique(bound3d[:, 2])

self.dz = np.abs(self.zs[1] - self.zs[0]) / 4

#Neighborhood of skeleton particles

self.nbrs = NearestNeighbors(radius=kb * eps,

algorithm='auto').fit(skel)↪→

#Neighborhood of boundary particles, for collisions

self.collision = NearestNeighbors(radius=kc * eps,

algorithm='auto').fit(bound3d)↪→

#For every skeleton particle, this list contains a list of connected

skeleton particles↪→

self.connexions = [[] for i in range(len(self.skel))]

self.trajs = np.array([0, 0, 0])

def run(self):

"""Main method of the class, in charge of its execution."""

print('Determination of Skeleton Connectivity')

start = time.time()

for i in range(len(self.skel)):

connexions, trajs = self.forSkelP(i)

if trajs is not None:

self.connexions[i] = connexions

self.trajs = np.vstack((self.trajs, trajs))

self.trajs = self.trajs[1:, :]

self.mutualizer()

self.labeller()

self.plotTrajs()

print('Execution Time: ' + str(round(time.time() - start, 3)))

def forSkelP(self, i):

"""For a single skeleton point, defined by index i, this method

examines whether it can be connected to nearby skeleton↪→

particles with straight trajectories, taking into account the point's

projections on the two adjacent levels of Z"""↪→

166

K. CLUSTERCONNECT.PY

r = self.skel[i, :2]

thisZ = self.skel[i, 2]

thisZi = np.argmin(np.abs(self.zs - thisZ))

#allZ samples adjacent Z levels as well as the Z level of skeleton

point i↪→

allZ = self.zs[max(0, thisZi - 1):min(len(self.zs), thisZi + 1) + 1]

connexions = []

trajs = np.array([0, 0, 0])

for z in allZ:

r1 = np.append(r, z)

conn, traj = self.findNeigh(r1, thisZ)

if traj is not None:

connexions = connexions + conn

trajs = np.vstack((trajs, traj))

if len(trajs.shape) == 2:

trajs = trajs[1:, :]

else:

trajs = None

return connexions, trajs

def findNeigh(self, r, originalZ):

"""Given a skeleton point position r, this method finds the nearby

skeleton positions which can be connected↪→

by means of a straight trajectory, and outputs the indices of the

connected neighbors as well as the connecting↪→

trajectory points."""

thisZ = r[2]

distance, indexes = self.nbrs.radius_neighbors(np.reshape(r, (1,

-1)))↪→

indexes = indexes[0]

distance = distance[0]

indexes = indexes[distance > 1e-10]

take = ((self.skel[indexes, 2] >= thisZ - self.dz) &

(self.skel[indexes, 2] <= thisZ + self.dz))↪→

indexes = indexes[take]

connexions = []

trajs = np.array([0, 0, 0])

for i in indexes:

r2 = self.skel[i, :]

conn, traj = self.areConnected(r, r2, originalZ)

167

K. CLUSTERCONNECT.PY

if conn:

connexions.append(i)

trajs = np.vstack((trajs, traj[::5, :]))

if len(trajs.shape) == 2:

trajs = trajs[1:, :]

else:

trajs = None

return connexions, trajs

def areConnected(self, r1, r2, originalZ):

"""Given two positions r1 and r2, this method is in charge of

determining whether a straight line between both↪→

points is at any point closer than kc * eps to a cluster boundary. If

this is not so, both points are said to be connected,↪→

(connected = True), and the trajectory between both is returned. In

the case in which r1 is not an actual skeleton↪→

point but rather a projection into an adjacent level in Z, this

method returns a different trajectory than the one↪→

employed to study connectivities. This trajectory is the straight

line between the original skeleton point at its original↪→

Z and the second skeleton point."""

thisZ = r1[2]

connected = True

traj = self.defTraj(r1, r2)

indexes = self.collision.radius_neighbors(traj,

return_distance=False)↪→

for i, v in enumerate(traj):

ind = indexes[i]

take = ((self.bound3d[ind, 2] >= thisZ - self.dz) &

(self.bound3d[ind, 2] <= thisZ + self.dz))↪→

ind = ind[take]

if len(ind) > 0:

connected = False

break

if connected and originalZ != thisZ:

r1[2] = originalZ

traj = self.defTraj(r1, r2)

return connected, traj

def defTraj(self, r1, r2):

168

K. CLUSTERCONNECT.PY

"""This simple method outputs the points belonging to the straight

trajectory between points r1 and r2"""↪→

numPts = np.ceil(np.linalg.norm(r1 - r2) / self.ds)

traj = np.linspace(r1, r2, numPts)

return traj

def plotTrajs(self):

"""This method invokes class skeletonPlot to define a descriptive

plot of the determined connections"""↪→

self.plot = skeletonPlot(self.bound3d, self.trajs, skel2=self.skel,

labels=self.labels, folder=self.folder)↪→

self.plot.messyPlot(title = 'Connectivity of Skeleton Points',

labelS = 'Connexions')↪→

self.plot.snapPlot(title='Connectivity of Skeleton Points',

labelS='Connexions')↪→

def mutualizer(self):

"""Based on a list of connexions, this method makes sure that if i is

included in the connexions of j, so is j included↪→

in the connexions of i."""

for i, c in enumerate(self.connexions):

for j in c:

if i not in self.connexions[j]:

self.connexions[j].append(i)

def labeller(self):

"""Based on the defined connexions, this method is in charge of

assigning a label to each skeleton particle, such that↪→

connected skeleton points have the same label, but only the lowest

possible labels are assigned."""↪→

self.labels = [0 for i in range(len(self.skel))]

print(' Assignment of Cluster Labels')

for _ in range(1):

for i, c in enumerate(self.connexions):

if self.labels[i] == 0:

self.labels[i] = max(self.labels) + 1

print('SP: ' + str(i) + '. Connexions: ' + str(c) + '. Li:

' + str(self.labels[i]))↪→

for j in c:

print('SP: ' + str(j) + '. Lj: ' + str(self.labels[j]))

l = self.labels[j]

current = self.labels[i]

if l == 0:

self.labels[j] = current

elif l < current and l > 0:

169

L. RELABELLER.PY

self.mergeLabels(l, current)

elif l > current:

self.mergeLabels(current, l)

un, counts = np.unique(self.labels, return_counts=True)

res = [(un[i], counts[i]) for i in range(len(un))]

print(' Cluster Labels and Frequencies: ', res)

def mergeLabels(self, winner, loser):

"""In the case in which two already labelled skeleton points are

found to be connected, this method determines↪→

which label should be propagated (winner), and which label (loser)

should be substituted."""↪→

print('Winner: ' + str(winner) + '. Loser: ' + str(loser))

for i, l in enumerate(self.labels):

if l == loser:

self.labels[i] = winner

self.new = self.labels.copy()

for i, l in enumerate(np.unique(self.labels)):

for j, k in enumerate(self.labels):

if k == l:

self.new[j] = i

self.labels = self.new.copy()

L relabeller.py

import numpy as np

from sklearn.neighbors import NearestNeighbors

import matplotlib.pyplot as plt

from clusterPlot import clusterPlot

import time

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: Based on a previous DBSCAN cluster labeling for every

2D snapshot in Z, and a set of labeled skeleton↪→

particles, which takes into account their connectivity across different 2D

snapshots in Z, this script is in charge of↪→

replacing the old DBSCAN label assigned to every cluster particle by the

label of the skeleton particles within each cluster.↪→

For every skeleton particle, the closest cluster particle is determined,

and its DBSCAN label is extracted. Then, all↪→

170

L. RELABELLER.PY

cluster particles sharing such DBSCAN label have their cluster label set to

the label of the skeleton particle. This script is↪→

also in charge of determining the area in each 2D snapshot in Z which

belongs to each of the new skeleton particle labels.↪→

Álvaro Tomás Gil - UIUC 2020

class relabeller:

"""Based on a previous DBSCAN cluster labeling for every 2D snapshot

in Z, and a set of labeled skeleton↪→

particles, which takes into account their connectivity across

different 2D snapshots in Z, this script is in charge of↪→

replacing the old DBSCAN label assigned to every cluster particle by

the label of the skeleton particles within each cluster.↪→

For every skeleton particle, the closest cluster particle is

determined, and its DBSCAN label is extracted. Then, all↪→

cluster particles sharing such DBSCAN label have their cluster label

set to the label of the skeleton particle. This script is↪→

also in charge of determining the area in each 2D snapshot in Z which

belongs to each of the new skeleton particle labels. Inputs:↪→

data: 2D array containing all particle locations projected into a set

of 2D planes for different values of Z↪→

oldlab: Array containing the DBSCAN labels assigned to each particle

of data. As many elements as data. Label -1 corresponds to non-cluster

particles

↪→

↪→

skel: 2D array containing the positions of all skeleton particles

describing the cluster's interior↪→

newlab: Array of labels assigned to every skeleton particles. As many

elements as skel.↪→

oldAreas: List of dicts containing as many elements as Z levels.

Every dict has, for a DBSCAN label as a key, the assined area as a value↪→

folder: folder in which to save resulting plots"""

def __init__(self, data, oldlab, skel, newlab, oldAreas, folder=''):

self.data = data

self.skel = skel

self.newlab = newlab

self.oldAreas = oldAreas

self.folder = folder

self.zs = np.unique(data[:, 2])

self.dz = np.abs(self.zs[1] - self.zs[0])/4

self.dZ = np.abs(self.zs[1] - self.zs[0])

self.clusters = data[oldlab != -1]

self.oldlab = oldlab[oldlab != -1]

self.nextL = max(self.newlab)

171

L. RELABELLER.PY

self.new = np.zeros(len(self.oldlab)) #0 for _ in

range(len(self.oldlab))]↪→

self.nbrs = NearestNeighbors(n_neighbors = 1, algorithm =

'auto').fit(self.clusters)↪→

def run(self):

print('Relabelling of Cluster Particles')

start = time.time()

for i, z in enumerate(self.zs):

print(' Z = ' + str(round(z, 4)) + ' -

Percentage Relabelled: ' +

str(round(len(np.nonzero(self.new)[0])*100/len(self.new),

3)) + '%.')

↪→

↪→

↪→

self.forZsnap(z)

self.verify()

print('Execution Time: ' + str(round(time.time() - start,

3)))↪→

self.labelPlot()

self.computeVolume()

def forZsnap(self, thisZ):

"""Method in charge of isolating cluster and skeleton

particles relevant to the current 2D snapshot in Z and

executing the procedure"""

↪→

↪→

#relevantS indexes skel with skeleton particles within the Z

level described by thisZ↪→

self.relevantS = np.arange(len(self.skel))[((self.skel[:, 2]

>= thisZ - self.dz) & (self.skel[:, 2] <= thisZ +

self.dz))]

↪→

↪→

self.spneigh = NearestNeighbors(n_neighbors=15,

algorithm='auto').fit(self.skel[self.relevantS])↪→

relevantC indexes clusters with cluster particles within

the Z level described by thisZ↪→

self.relevantC =

np.arange(len(self.clusters))[((self.clusters[:, 2] >=

thisZ - self.dz) & (self.clusters[:, 2] <= thisZ +

self.dz))]

↪→

↪→

↪→

for i in self.relevantS:

self.forSkelPoint(i)

self.assignZeros()

def forSkelPoint(self, i):

172

L. RELABELLER.PY

"""Method in charge of extracting a skeleton particle, its

label, its closest cluster particle, and the label of the

latter. Then,

↪→

↪→

the method calls updateLabels"""

sp = self.skel[i, :]

closest = self.nbrs.kneighbors(np.reshape(sp, (1, -1)),

return_distance = False)↪→

loserL = self.oldlab[closest[0][0]]

winnerL = self.newlab[i]

self.updateLabels(winnerL, loserL)

def updateLabels(self, winner, loser):

"""Method in charge of examining all cluster particles with

label 'loser' and assigning label 'winner' to them"""↪→

take = [(self.new[i] == 0 and self.oldlab[i] == loser) for i

in self.relevantC]↪→

intersect = [(self.new[i] != 0 and self.oldlab[i] == loser

and self.new[i] != winner) for i in self.relevantC]↪→

toChange = self.relevantC[take] #these cluster particles

havent had their labels substituted by one of an SP

before

↪→

↪→

toJudge = self.relevantC[intersect] #these have, but such

label is different than the one currently imposed↪→

for i in toChange:

self.new[i] = winner

for i in toJudge: #What if a cluster particle has already had

its label updated?↪→

self.new[i] = self.decideIntersect(winner,

self.new[i], i)↪→

def decideIntersect(self, l1, l2, i):

"""This method is in charge of resolving a conflict in new

label assignment. If a cluster particle is to be

relabelled

↪→

↪→

with a skeleton particle label when it has already been

assigned another skeleton particle label, this cluster particle↪→

is to be assigned the skeleton particle label of the skeleton

particle which is closest of the two."""↪→

r = self.clusters[i, :]

SP1 = [j for j in self.relevantS if self.newlab[j] == l1]

SP2 = [j for j in self.relevantS if self.newlab[j] == l2]

173

L. RELABELLER.PY

dist, closest = self.spneigh.kneighbors(np.reshape(r, (1,

-1)))↪→

closest indexes relevantS, not skel!

relevantS, and thus SP1 and SP2 do index skel

winner = 0

for sp, d in enumerate(dist[0]):

if self.relevantS[closest[0][sp]] in SP1:

winner = l1

elif self.relevantS[closest[0][sp]] in SP2:

winner = l2

if winner > 0:

break

if winner == 0:

print(' Intersection between SP labels ' +

str(l1) + ' and ' + str(l2) + ' yielded no

result.')

↪→

↪→

sp = self.relevantS[closest[0][sp]]

winner = self.newlab[sp]

print(' Winner is then SP label ' +

str(winner))↪→

return winner

def assignZeros(self):

"""Since it may be the case that smaller clusters are not

assigned a skeleton particle, this method is in charge of↪→

generating a new skeleton particle label exclusively for

these clusters."""↪→

abandoned = [i for i in self.relevantC if self.new[i] == 0]

labels = np.unique([self.oldlab[i] for i in abandoned])

for l in labels:

self.nextL += 1

assign = [i for i in abandoned if self.oldlab[i] ==

l]↪→

for j in assign:

self.new[j] = self.nextL

def verify(self):

"""Once the relabeling procedure is finished, this method is

in charge of verifying if all skeleton particle labels↪→

coincide with the labels of the closest cluster particles."""

self.agree = [False for i in range(len(self.skel))]

for i,sp in enumerate(self.skel):

closest = self.nbrs.kneighbors(np.reshape(sp, (1,

-1)), return_distance = False)↪→

174

L. RELABELLER.PY

if self.new[closest[0][0]] == self.newlab[i]:

self.agree[i] = True

else:

print(' SP ' + str(i) + ' at ' +

str(sp) + ' with label ' +

str(self.newlab[i]) + ' has a cluster

label of ' +

str(self.new[closest[0][0]]))

↪→

↪→

↪→

↪→

print(' From the ' + str(len(self.skel)) + ' skeleton

particles present, ' + str(sum(self.agree)) + ' (' +

str(round(sum(self.agree)*100/len(self.skel), 3)) + '%)

coincide with their relabelled cluster label.')

↪→

↪→

↪→

def labelPlot(self):

"""Plotting of relabelled clusters."""

self.plot = clusterPlot(self.clusters, self.new, self.folder)

self.plot.plotAll('Relabelled Clusters')

def computeVolume(self):

"""Based on previously areas per new label, the algorithm

estimates the cluster's volume based on a linear

interpolation."""

↪→

↪→

self.createIndex()

self.volumes = [0 for _ in np.unique(self.new)]

for i, z in enumerate(self.zs[:-1]):

areas1 = self.newAreas[i + 1]

areas0 = self.newAreas[i]

for k in areas0.keys():

if k in areas1.keys():

self.volumes[k - 1] += 0.5 *

(areas0[k] + areas1[k]) * self.dZ↪→

else:

self.volumes[k - 1] += 0.5 *

areas0[k] * self.dZ↪→

for k in areas1.keys():

if k not in areas0.keys():

self.volumes[k - 1] += 0.5 *

areas1[k] * self.dZ↪→

self.volumePlot()

def createIndex(self):

175

L. RELABELLER.PY

"""For every initial DBSCAN label, this method determines to

which new skeleton particle label this label has been

converted.

↪→

↪→

This method is also in charge of comparing old and new

labelling of cluster particles, and based on the areas per 2D snapshot in

Z

↪→

↪→

assigned to each old cluster label, compute the areas per 2D

snapshot assigned to each new cluster label. """↪→

self.new = self.new.astype(int)

self.newAreas = [0 for _ in self.zs]

for i,z in enumerate(self.zs):

oldAreas = self.oldAreas[i]

areadict = {}

self.relevantC = np.arange(len(self.clusters))[

((self.clusters[:, 2] >= z - self.dz) &

(self.clusters[:, 2] <= z + self.dz))]↪→

maxNew = np.max(self.new[self.relevantC])

maxOld = np.max(self.oldlab[self.relevantC])

index = np.zeros((maxOld + 1, maxNew))

for j, l1, l2 in zip(self.relevantC,

self.oldlab[self.relevantC],

self.new[self.relevantC]):

↪→

↪→

index[l1, l2 - 1] += 1

#For every old label, divide each of the transitions

to each skeleton particle label by the total in

the old label

↪→

↪→

for j, row in enumerate(index):

if np.sum(row) == 0:

print('e')

index[j] = row/np.sum(row)

#For every new label, compute the associated area

based on the old estimated areas↪→

for j, col in enumerate(np.transpose(index)):

total = 0

for k, fraction in enumerate(col):

if k in oldAreas.keys():

total += oldAreas[k]*fraction

areadict[j + 1] = total

self.newAreas[i] = areadict

def volumePlot(self, top=10):

176

M. TEMPORALTRACKING.PY

"""This method is simply in charge of plotting a bar plot

comparing cluster volumes"""↪→

fig = plt.figure()

fig.set_size_inches(18.5, 9.5)

ax = fig.add_subplot(111)

label = ['Cluster ' + str(i) for i in range(1,

len(self.volumes) + 1)]↪→

volumesC = np.sort(self.volumes)[::-1][:top]

sortI = np.argsort(self.volumes)[::-1][:top]

label = [label[i] for i in sortI]

cmap = plt.get_cmap('plasma')

c = cmap(volumesC)

ax.bar(range(top), volumesC, tick_label=label, width=0.5,

color=c)↪→

ax.tick_params(labelsize=18)

plt.ylabel('Volume [m^3]', fontsize=18)

plt.title('Volume per Cluster', fontsize=22)

plt.savefig(self.folder + 'Volume per Cluster')

plt.close('all')

M temporalTracking.py

import numpy as np

from sklearn.neighbors import NearestNeighbors

from temporalPlot import temporalPlot

import matplotlib.pyplot as plt

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is designed to analyze an already-processed

pair of sets of particle positions, for adjacent instants of time.↪→

The carried out analysis is basically focused on comparing neighboring

topologies for skeleton points of both time instants.↪→

For each skeleton point, the distance to the closest boundary particle in

every direction is measured, and then each skeleton↪→

point of the first time instant is paired with the skeleton point of the

second time frame which has the most similar set↪→

of measured distances and which is within an area of expected translation.

The main output of this analysis is an array↪→

177

M. TEMPORALTRACKING.PY

of transitions which, for every cluster label of the first time frame,

takes into account the cluster labels which they↪→

theoretically have adopted in the second time frame.

Álvaro Tomás Gil - UIUC 2020

class temporalTracker:

"""This class is designed to analyze an already-processed pair of sets of

particle positions, for adjacent instants of time.↪→

The carried out analysis is basically focused on comparing neighboring

topologies for skeleton points of both time instants.↪→

For each skeleton point, the distance to the closest boundary particle in

every direction is measured, and then each skeleton↪→

point of the first time instant is paired with the skeleton point of the

second time frame which has the most similar set↪→

of measured distances and which is within an area of expected

translation. The main output of this analysis is an array↪→

of transitions which, for every cluster label of the first time frame,

takes into account the cluster labels which they↪→

theoretically have adopted in the second time frame.

For the inputs:

pairs: List of two ints, containing the time instants to compare

v: Float representing the channel flow bulk velocity associated to the

datasets↪→

urms: Fluctuating particle velocity, proportional to the flow bulk

velocity↪→

ksens: Float, which when multiplied with the distance that a particle at

v travels between both time instants, defines↪→

the neighborhood radius with which to carry out the distance measurements

for each skeleton point↪→

kfocus: Float, which when multiplied with the distance that a particle at

v travels between both time instants, describes↪→

the area of interest in which to look for skeleton points in the second

time frame which have similar distance measures↪→

dirs: Number of distance measurements to carry out for each skeleton

point↪→

root: Address from which to retrieve time instant data"""

def __init__(self, pair, v=7.7 * 0.15e-3 / 100, urms=0.1, ksens=3,

kfocus=1, dirs=10, root='./Data/v78/t_'):↪→

self.v = v

self.pair = pair

self.add = [root + str(p) + '/' for p in pair]

self.d = v * (pair[1] - pair[0])

eps = np.mean([np.load(a + 'eps.npy') for a in self.add])

self.sensorRadius = ksens * eps

178

M. TEMPORALTRACKING.PY

self.regionRadius = [urms * self.d, kfocus]

self.sk = [np.load(a + 'skeletonize.npy') for a in self.add]

self.bound = [np.load(a + 'bound3d.npy') for a in self.add]

self.labels = [np.load(a + 'SKlabels.npy') for a in self.add]

self.volumes = [np.load(a + 'DBSCANVolumes.npy') for a in self.add]

self.nbrs = [NearestNeighbors(radius=self.sensorRadius,

algorithm='auto').fit(b) for b in self.bound]↪→

self.zs = np.unique(self.sk[0][:, 2])

self.connections = np.array([0, 0, 0])

self.connAngles = []

#Transitions has as many rows as labels in the old time instant, and

as many columns as labels in the new time↪→

instant. By taking the i-th row of the dataset, the j-th column

represents how many skeleton points from the↪→

cluster label i in the old time frame are paired with a cluster

label j in the new time instant↪→

self.transitions = np.zeros((len(np.unique(self.labels[0])),

len(np.unique(self.labels[1])) + 1))↪→

self.paired = np.hstack((np.reshape(self.labels[0], (-1, 1)),

np.zeros((len(self.labels[0]), 1))))↪→

self.pairedString = [['t = ' + str(self.pair[0]) + ' - Cluster ' +

str(int(i)), 0] for i in self.labels[0]]↪→

self.dirs = np.array([0, 0, 0])

self.corresponding = np.array([])

for theta in np.linspace(0, 2 * np.pi, dirs):

x = np.cos(theta)

y = np.sin(theta)

z = 0

self.dirs = np.vstack((self.dirs, np.array([x, y, z])))

self.corresponding = np.append(self.corresponding, theta)

self.dirs = self.dirs[1:, :]

def run(self):

self.proximities = [self.proximities2D(self.sk[i], i) for i in

range(2)]↪→

self.aveD = np.mean(self.proximities[0], axis=1) # Mean distance to

neighboring boundary particles↪→

self.regionRadii = self.regionRadius[0] + self.regionRadius[1] *

self.aveD↪→

self.focus = NearestNeighbors(radius=np.max(self.regionRadii),

algorithm='auto').fit(self.sk[1])↪→

179

M. TEMPORALTRACKING.PY

for i, sk in enumerate(self.sk[0]):

self.forSkelPoint(i)

print('Out of ' + str(len(self.sk[0])) + ' skeleton points of the

first time frame, ' + str(sum(self.transitions[:, 0])) + ' (' +

str(

↪→

↪→

round(sum(self.transitions[:, 0]) * 100 / len(self.sk[0]),

3)) + ' %) are not paired with another skeleton point in

the second time frame')↪→

print('Connecting Vectors are on average oriented ' +

str(round(np.mean(self.connAngles) * 180 / np.pi, 3)) + ' degrees

wrt the X axis')

↪→

↪→

for l in np.unique(self.labels[0]):

members = sum(self.labels[0] == l)

topNew = np.argsort(self.transitions[l - 1, :])[::-1][:5]

counts = np.sort(self.transitions[l - 1, :])[::-1][:5]

print('For the ' + str(members) + ' skeleton points in the first

time instant with label ' + str(l) + ': ')↪→

for i in range(5):

if counts[i] > 0:

if topNew[i] == 0:

add = ' ' + str(counts[i]) + ' (' +

str(round(counts[i] * 100 / members, 3)) + ' %)

are not paired with any skeleton point from the

next time instant'

↪→

↪→

↪→

else:

add = ' ' + str(counts[i]) + ' (' +

str(round(counts[i] * 100/ members, 3)) + ' %)

are paired in the next time instant with cluster

label ' + str(topNew[i])

↪→

↪→

↪→

print(add)

self.plotResults()

def proximities2D(self, skel, i):

"""This method measures, for every skeleton point in skel, the

distances to the closest boundary particle in each↪→

direction. These distances in each direction are returned via

proximities, which is an array witg as many rows↪→

as skel and as many columns as dirs. For the input:

skel: 2D array of 3D skeleton positions

i: Int dictating which time instant to take into account"""

distAll, indiAll = self.nbrs[i].radius_neighbors(skel)

proximities = np.zeros((1, len(self.dirs)))

180

M. TEMPORALTRACKING.PY

for j, x in enumerate(skel):

dist = distAll[j]

if len(dist) > 0:

indi = indiAll[j]

vecs = self.bound[i][indi, :] - x

dots = np.matmul(vecs, np.transpose(self.dirs)) # As many

rows as len(vecs), as many columns as len(dirs)↪→

maxDot = np.argmax(dots, axis=1) # as many elements as vecs,

indexes dirs↪→

covered = [] # indexes vecs, same len as dirs

for k in range(len(self.dirs)):

intheway = np.ndarray.flatten(np.argwhere(maxDot == k))

indexes vecs↪→

if len(intheway) == 1:

covered.append(intheway[0])

elif len(intheway) > 1:

d = dist[intheway]

take = np.argmin(d)

covered.append(intheway[take])

else:

covered.append(-1)

dist = np.append(dist, self.sensorRadius)

distances = dist[covered]

else:

distances = self.sensorRadius * np.ones((1, len(self.dirs)))

proximities = np.vstack((proximities, distances))

return proximities[1:]

def forSkelPoint(self, i, dt=0.15):

"""For the skeleton point of the first time frame specified by index

i, this method looks for the neighboring↪→

skeleton points of the next time frame close to the points expected

position, and extracts the skeleton point of↪→

the next time frame which has the closest measures of proximitiy

distances, as well as its cluster label. dt is↪→

the actual time step in ms"""

r = self.sk[0][i, :]

label = self.labels[0][i]

distances = self.proximities[0][i, :]

rexpected = r + self.d * np.array([1, 0, 0])

possible = self.focus.radius_neighbors(np.reshape(rexpected, (1,

-1)), return_distance=False, radius=self.regionRadii[i])↪→

181

M. TEMPORALTRACKING.PY

possible = [p for p in possible[0] if self.sk[1][p, 2] == r[2]]

toCompare = self.proximities[1][possible, :]

deviations = np.sum((toCompare - distances)**2, axis=1)

if len(deviations) == 0:

newLabel = 0

else:

closest = possible[np.argmin(deviations)]

newLabel = self.labels[1][closest]

connection = np.linspace(r, self.sk[1][closest, :], 100)

self.connections = np.vstack((self.connections, connection))

angle = np.arctan2(connection[-1, 1] - connection[0, 1],

connection[-1, 0] - connection[0, 0])↪→

self.connAngles.append(angle)

self.transitions[label - 1, newLabel] += 1

self.paired[i, 1] = newLabel

if newLabel == 0:

self.pairedString[i][1] = 't = ' + str(self.pair[1] * dt / 100) +

' ms - Unpaired'↪→

else:

self.pairedString[i][1] = 't = ' + str(self.pair[1] * dt / 100) +

' ms - Cluster ' + str(newLabel)↪→

def plotResults(self):

self.plot = temporalPlot(self.sk, self.bound, self.labels,

self.connections, self.add[1])↪→

self.plot.snapPlot()

self.plot.sankeyPlot(self.pairedString)

class temporalTrackerGlobal:

"""This class simply invokes temporalTracker for more than one pair of

time instants, and is able to track topology↪→

evolutions over a greater extent of time.

For the inputs:

pairs: 2D list where each element is a pair of time instants to examine

dt: Time step for 100 iterations"""

def __init__(self, pairs, dt=0.15, root='./Data/v78/t_'):

self.pairs = pairs

self.trackers = [0 for _ in pairs]

self.transitions = [0 for _ in pairs]

self.volumes = []

self.times = []

for i, p in enumerate(pairs):

tt = temporalTracker(p, root=root)

tt.run()

self.trackers[i] = tt

182

M. TEMPORALTRACKING.PY

self.transitions[i] = tt.transitions

self.volumes.append([t for t in tt.volumes[0]])

self.times.append(p[0] * dt / 100)

if i==len(pairs) - 1:

self.volumes.append([t for t in tt.volumes[1]])

self.times.append(p[1] * dt / 100)

def trackCluster(self, c=1):

"""This method tracks a certain cluster c, by observing the cluster

to which its majority of skeleton points↪→

transform into, and plotting the number of skeleton points and volume

of such cluster at each time instant"""↪→

volumes = np.zeros(len(self.pairs) + 1)

skel = np.zeros(len(self.pairs) + 1)

cluster = c

for i, p in enumerate(self.pairs):

volumes[i] = self.volumes[i][cluster - 1]

skel[i] = np.sum(self.transitions[i][cluster - 1, :])

cluster = np.argmax(self.transitions[i][cluster - 1, 1:]) + 1

if i == len(self.pairs) - 1:

volumes[i + 1] = self.volumes[i + 1][cluster - 1]

skel[i + 1] = sum(self.trackers[i].labels[1] == cluster)

fig, ax1 = plt.subplots()

fig.set_size_inches(16, 11)

color = 'tab:red'

ax1.set_xlabel('Time [ms]', fontsize=18)

plt.xticks(fontsize=15)

plt.grid()

ax1.set_ylabel('Cluster Volume [m^3]', color=color, fontsize=18)

ax1.plot(self.times, volumes, color=color)

ax1.tick_params(axis='y', labelcolor=color, labelsize=15)

ax1.set_title('Evolution of Volume and Number of Skeleton Points of

Cluster ' + str(c), fontsize=20)↪→

ax2 = ax1.twinx()

color = 'tab:blue'

ax2.set_ylabel('Member Skeleton Points [-]', color=color,

fontsize=18)↪→

ax2.plot(self.times, skel, color=color)

ax2.tick_params(axis='y', labelcolor=color, labelsize=15)

fig.tight_layout()

pairs = [[0, 100], [100, 200], [200, 300], [300, 400], [400, 500]]

pairs = [[0, 500], [500, 1000], [1000, 1500], [1500, 2000]]

183

N. TEMPORALPLOT.PY

tt = temporalTrackerGlobal(pairs, root='./Data/t_')

tt.trackCluster(1)

plt.show()

N temporalPlot.py

import numpy as np

from matplotlib import cm

import matplotlib.pyplot as plt

import imageio

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is in charge of plotting by means of a GIF

file, how a set of classified clusters evolve↪→

between two time instants. In order to do so, for every snapshot in Z, the

cluster boundaries and skeleton points are plotted↪→

together, and the pairing between skeleton points is also displayed.

Álvaro Tomás Gil - UIUC 2020

class temporalPlot:

"""This class is in charge of plotting by means of a GIF file, how a set

of classified clusters evolve↪→

between two time instants. In order to do so, for every snapshot in Z,

the cluster boundaries and skeleton points are plotted↪→

together, and the pairing between skeleton points is also displayed.

For the inputs:

skel: List of two elements, where each element is a 2D array of 3D

positions of skeleton points for each of the time↪→

instants compared.

bound: List of two elements, where each element is a 2D array of 3D

positions of cluster boundary points for each of the time↪→

instants compared.

labels: List of two elements, where each element is a list of cluster

label for the skeleton points of each of the time↪→

instants compared.

connections: 2D array of 3D points defining connections between skeleton

points of the first time frame with the second one↪→

folder: folder in which to save resulting plots"""

def __init__(self, skel, bound, labels, connections, folder=''):

self.skel = skel

184

N. TEMPORALPLOT.PY

self.bound = bound

self.labels = labels

self.folder = folder

self.connections = connections

self.zs = np.unique(skel[0][:, 2])

Combinations of marker and marker boundary colors are made in order

to increase the possibilities of marker types↪→

self.skelUniqueLabels = [0, 0]

self.skelColors = [0, 0]

self.skelColorsB = [0, 0]

self.boundC = [0, 0]

self.cm = [cm.get_cmap('winter'), cm.get_cmap('autumn')]

for i in range(2):

self.skelUniqueLabels[i] = np.unique(self.labels[i])

strength = np.linspace(0, 0.8, len(self.skelUniqueLabels[i]))

np.random.shuffle(strength)

self.skelColors[i] = [self.cm[i](each) for each in strength]

np.random.shuffle(strength)

self.skelColorsB[i] = [self.cm[i](each) for each in strength]

normalized = (self.bound[i][:, 2] - np.min(self.zs)) /

(np.ptp(self.zs))↪→

self.boundC[i] = self.cm[i](normalized)

def snapPlot(self, title='Temporal Tracking of Particle Clusters'):

"""This method plots each two-dimensional domain separately, but

joins all of them in a GIF animation which allows↪→

a 3D evolution of them to be visualized."""

def update(choose):

fig, ax = plt.subplots()

fig.set_size_inches(18.5, 9.5)

self.plotInstance(choose, ax)

ax.legend()

ax.set_title('Z = ' + '{0:03f}'.format(choose), fontsize=24)

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

ax.tick_params(axis='both', which='major', labelsize=15)

plt.axis('equal')

ax.set_xlim(np.min(self.bound[0][:, 0]), np.max(self.bound[0][:,

0]))↪→

ax.set_ylim(np.min(self.bound[0][:, 1]), np.max(self.bound[0][:,

1]))↪→

185

N. TEMPORALPLOT.PY

fig.canvas.draw()

image = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8')

image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))

plt.close()

return image

kwargs_write = {'fps': 1.0, 'quantizer': 'nq'}

imageio.mimsave(self.folder + title + '.gif', [update(i) for i in

self.zs], fps=2)↪→

def plotInstance(self, choose, ax):

if len(self.zs) >= 2:

dz = (self.zs[1] - self.zs[0]) / 4

else:

dz = 0.001 * self.zs[0]

takeC = self.connections[:, 2] == choose

ax.scatter(self.connections[takeC, 0], self.connections[takeC, 1],

s=5, marker='D')↪→

for i in range(2):

if i == 0:

label = 'Old Skeleton - Cluster '

labelB = 'Old Cluster Boundary'

else:

label = 'New Skeleton - Cluster '

labelB = 'New Cluster Boundary'

takeB = self.bound[i][:, 2] == choose

takeS = ((self.skel[i][:, 2] >= choose - dz) & (self.skel[i][:,

2] <= choose + dz))↪→

self.plotLabels(ax, self.skel[i][takeS, :],

self.labels[i][takeS], self.skelColors[i],

self.skelColorsB[i], label, marker='P')

↪→

↪→

ax.scatter(self.bound[i][takeB, 0], self.bound[i][takeB, 1],

c=self.boundC[i][takeB], s=1, label=labelB)↪→

@staticmethod

def plotLabels(ax, data, labels, colors, colorsB, label, marker='.',

size=75):↪→

unique_labels = np.unique(labels)

for k, col, colB in zip(unique_labels, colors, colorsB):

class_member_mask = (labels == k)

xy = data[class_member_mask]

186

N. TEMPORALPLOT.PY

if len(xy) > 0:

if label is not None:

ax.scatter(xy[:, 0], xy[:, 1],

c=np.reshape(np.array(col), (1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1, -1)),

s=size, marker=marker,↪→

label=label + str(k))

else:

ax.scatter(xy[:, 0], xy[:, 1],

c=np.reshape(np.array(col), (1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1,

-1)), s=size, marker=marker, label='')↪→

def sankeyPlot(self, paired):

from pySankey import sankey

import pandas as pd

df = pd.DataFrame(data=paired, columns=['Old Cluster', 'New

Cluster'])↪→

sankey.sankey(df['Old Cluster'], df['New Cluster'], 'Cluster

Evolution through Movement of Skeleton Points', fontsize=15,

aspect=2, figure_name=self.folder + 'Sankey Diagram of Cluster

Evolution')

↪→

↪→

↪→

from matplotlib.sankey import Sankey

#

if num == 1:

transitions = [transitions]

#

previous = np.ones((1, np.size(transitions, axis=1)))

for i,t in enumerate(transitions):

#

ranking = np.argsort(np.sum(t, axis=1))[::-1][:topClusters]

for j,r in enumerate(ranking):

fig = plt.figure()

ax = fig.add_subplot(111, xticks=[], yticks=[])

ax.set_title('Time Step ' + str(i) + ' - Cluster ' +

str(r), fontsize=24)↪→

sankey = Sankey(ax=ax)

total = sum(t[r, :])

flows = []

labels = []

for k, f in enumerate(previous[:, j + 1]):

if i == 0:

flows.append(f)

187

O. VORONOICLUSTER.PY

else:

flows.append(f / total)

labels.append('Old Cluster ' + str(k + 1))

#

for k, f in enumerate(t[r, :]):

flows.append(- f / total)

if k == 0:

labels.append('Unpaired')

else:

labels.append('New Cluster ' + str(k))

#

sankey.add(flows=flows, orientations=[0 for _ in flows],

labels=labels)↪→

sankey.finish()

O voronoiCluster.py

import numpy as np

from scipy.spatial import Voronoi, ConvexHull

from sklearn.neighbors import NearestNeighbors

import matplotlib.pyplot as plt

import time

from voronoiPlot import voronoiPlot

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is designed perform the 3D particle cluster

analysis of a dataset of particle positions↪→

employing Voronoi tesselations. First, the dataset of positions is cropped

to a specified set of dimensions. Then,↪→

the Voronoi cells corresponding to the particles are determined, and those

of a volume corresponding to a cluster particle↪→

will be isolated. Then the connectivity of these Voronoi cells will be

studied, in order to determine global cluster volumes.↪→

Lastly, this script allows for a topological validation of a set of

skeleton points, by examining what percentage of these↪→

skeleton points exist in regions which this Voronoi analysis classifies as

belonging to particle clusters.↪→

Álvaro Tomás Gil - UIUC 2020

class VoronoiCluster:

"""This is the main class of the script, in charge of performing the 3D

particle cluster analysis of a dataset of particle positions↪→

188

O. VORONOICLUSTER.PY

employing Voronoi tesselations. First, the dataset of positions is

cropped to a specified set of dimensions. Then,↪→

the Voronoi cells corresponding to the particles are determined, and

those of a volume corresponding to a cluster particle↪→

will be isolated. Then the connectivity of these Voronoi cells will be

studied, in order to determine global cluster volumes. For the input:↪→

data: 2D array of 3D positions of all particles

filename: If data is None, VTK file from which to load the data

ranges: Limits of the domain in the form [[xmin, xmax], [ymin, ymax],

[zmin, zmax]]"""↪→

def __init__(self, ranges=[[0.108, 0.162], [0.008, 0.032], [0.013,

0.028]], data=None, filename='prt_TG_ductVe8_780000.vtk'):↪→

print('Clustering Analysis of Turbulent Particle-laden Flow with

Voronoi Volumes')↪→

self.ranges = np.array(ranges)

self.data = data

self.times = [0, 0]

if data is None:

self.loadVTK(filename)

def loadVTK(self, filename):

"""This method is in charge of loading the VTK file in order to

obtain an un-projected set of particle positions"""↪→

import vtk

print('Extracting Dataset')

start = time.time()

reader = vtk.vtkPolyDataReader()

reader.SetFileName(filename)

reader.Update()

polydata = reader.GetOutput()

n = polydata.GetNumberOfPoints()

self.data = np.array([0, 0, 0])

for i in range(0, n, 1):

vraw = list(polydata.GetPoint(i))

inRange = np.all([vraw[0] > self.ranges[0,0], vraw[0] <

self.ranges[0,1], vraw[1] > self.ranges[1,0], vraw[1] <

self.ranges[1,1], vraw[2] > self.ranges[2,0], vraw[2] <

self.ranges[2,1]])

↪→

↪→

↪→

if inRange:

self.data = np.vstack((self.data, np.array(vraw)))

if i % 50000 == 0:

189

O. VORONOICLUSTER.PY

print(' Out of the ' + str(n) + ' particles in the

dataset, ' + str(i) + ' (' + str(round(i*100/n, 3)) +

' %) have been processed, and ' + str(len(self.data)

- 1) + ' have been stored.')

↪→

↪→

↪→

self.data = self.data[1:, :]

rangeStr = '_x[' + str(self.ranges[0,0]) + ',' +

str(self.ranges[0,1]) + ']_y[' + str(self.ranges[1,0]) + ',' +

str(self.ranges[1,1]) + ']_z[' + str(self.ranges[1,0]) + ',' +

str(self.ranges[1,1]) + '].npy'

↪→

↪→

↪→

np.save('VoronoiData' + rangeStr, self.data)

print('Elapsed Time: ' + str(round(time.time() - start, 3)))

def volumePDF(self, maxVar=-1, bins=75, threshold=1):

"""This method is in charge of carrying out the Voronoi Tessellation

of the supplied data, and obtaining a PDF↪→

of the resulting normalized Voronoi volumes. It also compares this

PDF with the one that would result from↪→

a set of Poisson distributed points."""

print('Cluster Identification Based on Voronoi Volumes')

start = time.time()

self.vor = Voronoi(self.data)

self.volumes, self.nonB = self.voronoiVolumes(self.vor)

self.nonBI = np.arange(0, len(self.vor.point_region))[self.nonB]

self.volumes_sorted = np.sort(self.volumes)

self.oldOrder = np.argsort(self.volumes)

if maxVar > 0:

means = [np.mean(self.volumes_sorted)]

varMean = []

topV = -1

#Discard some very big Voronoi cells which unnecessarily alter

the mean volume. Stop once the mean volume does↪→

#not vary more than maxVar with an elimination of these large

cells. Deactivate this part with maxVar= < 0↪→

for i in range(250):

volumes = self.volumes_sorted[:-(i + 1)]

means.append(np.mean(volumes))

varM = (means[-1] - means[-2])/means[-2]

varMean.append(varM)

if np.abs(varM) < maxVar and topV == -1:

topV = -(i + 1)

self.oldOrder = self.oldOrder[:topV]

self.volumes_sorted = self.volumes_sorted[:topV]

self.V = self.volumes_sorted/np.mean(self.volumes_sorted)

190

O. VORONOICLUSTER.PY

self.bins = np.logspace(np.log(np.min(self.V)),

np.log(np.max(self.V)), bins)↪→

self.PDF, _ = np.histogram(self.V, bins=self.bins, density=True)

self.bins = (self.bins[1:] + self.bins[:-1]) / 2

self.RandomPDF = self.PoissonPDF(self.bins)

self.intersectPDFs(threshold=threshold)

self.assignLabels()

self.times[0] = time.time() - start

print('Elapsed Time: ' + str(round(time.time() - start, 3)))

def voronoiVolumes(self, vor):

"""Given a Voronoi Object, this method is in charge of obtaining the

volume of each Voronoi Cell, and classifying it↪→

as a boundary cell if one of its vertex indices is -1 or if any of

its vertices is outside the domain of interest"""↪→

volumes = np.array([])

data = vor.points

limits = [[np.min(data[:, 0]), np.max(data[:, 0])], [np.min(data[:,

1]), np.max(data[:, 1])], [np.min(data[:, 2]), np.max(data[:,

2])]]

↪→

↪→

nonB = [False for _ in data]

for i, region in enumerate(vor.point_region):

indices = vor.regions[region]

if -1 not in indices:

v = vor.vertices[indices]

isWithin = self.checkVertices(v, limits)

if isWithin:

volumes = np.append(volumes, ConvexHull(v).volume)

nonB[i] = True

return volumes, nonB

@staticmethod

def checkVertices(vertices, limits):

"""Given a set of Voronoi Vertices, this simple methods checks if all

of them are maintained within the range↪→

of the form [[xmin, xmax], [ymin, ymax], [zmin, zmax]] expressed in

limits"""↪→

isWithin = True

for i,v in enumerate(vertices):

x = v[0]

y = v[1]

z = v[2]

if x < limits[0][0] or x > limits[0][1]:

191

O. VORONOICLUSTER.PY

isWithin = False

break

if y < limits[1][0] or y > limits[1][1]:

isWithin = False

break

if z < limits[2][0] or z > limits[2][1]:

isWithin = False

break

return isWithin

@staticmethod

def PoissonPDF(v):

"""Given a set of normalized Voronoi volumes, this method computes

the corresponding PDF, as per Ferenc et al. 1992"""↪→

from scipy.special import gamma

a = 3.24174

b = 3.24269

c = 1.26861

g = gamma(a / c)

k1 = c * b ** (a / c) / g

pdf = k1 * np.power(v, (a - 1)) * np.exp(- b * np.power(v, c))

return pdf

def intersectPDFs(self, threshold=1):

"""This method determines at which normalized Voronoi volumes do the

Random PDF and the obtained PDF intersect"""↪→

diff = np.abs(self.PDF - self.RandomPDF)

half = np.argmax(self.RandomPDF)

start = np.nonzero(self.PDF > 0.5*np.max(self.PDF))[0][0]

end = np.nonzero(self.RandomPDF[half:] <

0.5*np.max(self.RandomPDF))[0][0] + half↪→

if start == 0 and half == 0:

self.cut1 = 0

else:

self.cut1 = np.argmin(diff[start:half]) + start

self.V1 = self.bins[self.cut1] * threshold

self.cut2 = np.argmin(diff[half:end]) + half

self.V2 = self.bins[self.cut2]

def assignLabels(self):

"""This obtains a list of indexes of points which can be labeled as

cluster particles."""↪→

192

O. VORONOICLUSTER.PY

clusters = np.arange(0, len(self.V))[self.V < self.V1] #indexes

self.V, volumes_sorted, and oldOrder↪→

self.clusterV = self.volumes_sorted[clusters]

clusters = self.oldOrder[clusters] #indexes volumes

self.clusters = self.nonBI[clusters] #indexes self.vor and self.data

self.easyLabel = np.zeros(len(self.data))

self.easyLabel[self.clusters] = 1

print('Out of ' + str(len(self.data)) + ' particles, ' +

str(len(self.clusters)) + ' (' +

str(round(len(self.clusters)*100/len(self.data), 3)) +' %) are

labelled as cluster particles.')

↪→

↪→

↪→

def optimumBins(self, b0=100, b1=10000, n=100):

"""This method tracks the evolution of the first intersection between

PDFs with the number of bins in the PDF"""↪→

self.intersections = []

for i in np.linspace(b0, b1, n):

self.volumePDF(bins=i)

self.intersections.append(self.V1)

plt.figure()

plt.plot(np.linspace(b0, b1, n), self.intersections)

plt.xlabel('Number of Bins [-]')

plt.ylabel('Normed Voronoi Volume of Intersection [-]')

plt.title('Evolution of Intersection Volume with Number of Bins')

def connectClusterCells(self):

print('Connectivities of Cluster Cells')

start = time.time()

self.connect = connectClusters(self.vor, self.clusters)

self.connect.run()

self.labels = self.connect.labels

self.unique_labels = np.unique(self.labels)

clusters = [c for c in self.unique_labels if c != -1]

self.volumesC = [0 for _ in clusters]

clustLabels = [self.labels[i] for i in self.clusters]

for i,l in enumerate(clustLabels):

self.volumesC[l] += self.clusterV[i]

self.volumePlot()

self.times[1] = time.time() - start

print('Elapsed Time: ' + str(round(time.time() - start, 3)))

193

O. VORONOICLUSTER.PY

def plotVolumePDFs(self, topV=3, noSecond=True):

"""This method plots the obtained PDF and the PDF of the randomly

distributed case together with their intersection↪→

points."""

take = self.bins < topV

fig = plt.figure()

plt.plot(self.bins[take], self.PDF[take], label='Preferential

Distribution')↪→

plt.plot(self.bins[take], self.RandomPDF[take], label='Random

Distribution')↪→

plt.plot(self.V1*np.ones(50), np.linspace(0, self.PDF[self.cut1]),

'--', label='First Intersection - V = ' + str(round(self.V1, 2)))↪→

if not noSecond:

plt.plot(self.V2 * np.ones(50), np.linspace(0,

self.PDF[self.cut2]), '--', label='Second Intersection - V =

' + str(round(self.V2, 2)))

↪→

↪→

plt.xlim([0, topV])

plt.title('Voronoi Cell Volume PDF')

plt.xlabel('Normed Volume [-]')

plt.ylabel('PDF [-]')

plt.legend()

def plotClusters(self):

"""Plots all particles, sorting them into cluster or non-cluster

particles according to the Voronoi classification"""↪→

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

fig.set_size_inches(18.5, 9.5)

ax.set_title('Identification of Cluster Particles with Voronoi

Volumes', fontsize=22)↪→

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

ax.set_zlabel('z [m]', fontsize=18)

strength = np.linspace(0, 0.8, len(self.unique_labels))

np.random.shuffle(strength)

colors = [plt.cm.nipy_spectral(each) for each in strength]

np.random.shuffle(strength)

colorsB = [plt.cm.nipy_spectral(each) for each in strength]

for k, col, colB in zip(self.unique_labels, colors, colorsB):

a = 1

s = 3

if k == -1:

Black used for noise.

col = [1, 0, 0]

194

O. VORONOICLUSTER.PY

a = 0.3

s = 1

class_member_mask = (self.labels == k)

xy = self.data[class_member_mask]

if len(xy) > 0:

ax.scatter(xy[:, 0], xy[:, 1], xy[:, 2],

c=np.reshape(np.array(col), (1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1, -1)),

alpha=a, s=s, label='Cluster ' + str(k))↪→

def plotVolumeContours(self):

"""Plots all particles, coloring them as a function of their

associated Voronoi cell volume"""↪→

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

fig.set_size_inches(18.5, 9.5)

ax.set_title('Particle Positions Colored by Voronoi Volumes',

fontsize=22)↪→

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

ax.set_zlabel('z [m]', fontsize=18)

pos = ax.scatter(self.data[self.nonB, 0], self.data[self.nonB, 1],

self.data[self.nonB, 2], s=10, c=self.volumes, cmap='plasma')↪→

cbar = fig.colorbar(pos, ax=ax)

cbar.ax.tick_params(labelsize=15)

def plotVoronoiCell(self, cells):

"""Plots a single Voronoi cell, with its Voronoi vertices as well. To

gain perspective wrt to the rest of the points,↪→

the limits of the plots are set according to the limits of all the

point positions."""↪→

for i in cells:

#i indexes volumes

i = self.nonBI[i] #now i indexes vor.point_region

vI = self.vor.regions[self.vor.point_region[i]]

v = self.vor.vertices[vI, :]

r = v

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

fig.set_size_inches(18.5, 9.5)

ax.set_title('Voronoi Cell of Particle ' + str(i))

ax.set_xlabel('x [m]')

195

O. VORONOICLUSTER.PY

ax.set_ylabel('y [m]')

ax.set_zlabel('z [m]')

ax.scatter(r[:, 0], r[:, 1], r[:, 2], s=5, alpha=0.5, label='Cell

Boundaries')↪→

ax.scatter(self.data[i, 0], self.data[i, 1], self.data[i, 2],

s=25, label='Cell Center')↪→

ax.set_xlim3d(np.min(self.data[:, 0]), np.max(self.data[:, 0]))

ax.set_ylim3d(np.min(self.data[:, 1]), np.max(self.data[:, 1]))

ax.set_zlim3d(np.min(self.data[:, 2]), np.max(self.data[:, 2]))

limits = np.vstack((np.array([np.max(self.data[:, 0]),

np.max(self.data[:, 1]), np.max(self.data[:, 2])]),

np.array([np.min(self.data[:, 0]), np.min(self.data[:, 1]),

np.min(self.data[:, 2])])))

↪→

↪→

↪→

ax.scatter(limits[:, 0], limits[:, 1], limits[:, 2], s=1)

ax.legend()

def volumePlot(self, top=10):

"""This method is simply in charge of plotting a bar plot comparing

cluster volumes"""↪→

fig = plt.figure()

fig.set_size_inches(18.5, 9.5)

ax = fig.add_subplot(111)

label = ['Cluster ' + str(i) for i in range(1, len(self.volumesC) +

1)]↪→

volumesC = np.sort(self.volumesC)[::-1][:top]

sortI = np.argsort(self.volumesC)[::-1][:top]

label = [label[i] for i in sortI]

cmap = plt.get_cmap('plasma')

c = cmap(volumesC)

ax.bar(range(top), volumesC, tick_label=label, width=0.5, color=c)

ax.tick_params(labelsize=18)

plt.ylabel('Volume [m^3]', fontsize=18)

plt.title('Volume per Cluster', fontsize=22)

plt.savefig('Voronoi Volumes per Cluster')

def timePiePlot(self, pctM=0.04):

"""This method simply generates a plot of the time consumption

associated to each step of the analysis."""↪→

names = ['Voronoi Tesselation', 'Connectivity of Cluster Cells']

dict = {}

for i,j in zip(names, self.times):

dict[i] = j

196

O. VORONOICLUSTER.PY

total = sum(dict.values())

title = 'Time Consumption per Step of Voronoi Analysis - Total [s]=

' + str(round(total, 3))↪→

labels = []

values = []

for v in dict.keys():

if dict[v] / total > pctM:

labels.append(v + ' - ' + str(round(dict[v], 3)) + ' (' +

str(round(dict[v] * 100 / total, 2)) + ' %)')↪→

else:

labels.append(v)

values.append(dict[v] / total)

labdis = 1.07

cmap = plt.get_cmap("plasma")

c = np.arange(len(dict.keys())) / len(dict.keys())

colors = cmap(c)

fig = plt.figure()

fig.set_size_inches(12, 7)

plt.title(title, fontsize=22)

plt.pie(dict.values(), labels=labels, shadow=True, startangle=0,

labeldistance=labdis, colors=colors)↪→

plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as

a circle.↪→

class connectClusters:

"""This class connects Voronoi cells labeled as cluster cells into larger

clusters, by applying a cluster label to↪→

each Voronoi cell. For the input:

vor: Voronoi object from scipy.spatial of a dataset of particle positions

clusters: List of indices indexing the dataset employed in vor,

referencing non-boundary Voronoi cells which are cluster cells"""↪→

def __init__(self, vor, clusters):

self.vor = vor

self.clusters = clusters.astype(int)

self.N = len(clusters)

self.isCluster = [i in self.clusters for i in

range(len(self.vor.point_region))]↪→

self.labels = [-1 for _ in self.vor.point_region]

self.maxLabel = 0

self.pairs = vor.ridge_points

self.taken = []

self.it = 0

197

O. VORONOICLUSTER.PY

def run(self):

"""Main method of the class"""

for i,p in enumerate(self.pairs):

self.forPointPair(i)

if i % 100000 == 0:

print('Percentage Processed: ' + str(round(i * 100 /

len(self.pairs), 3)) + '. Existing Cluster Labels: ',

len(np.unique(self.labels)))

↪→

↪→

def forPointPair(self, i):

"""For a Voronoi ridge specified by i, this method processes the

adjacent Voronoi cell centers, assigning↪→

the corresponding cluster label to each of them."""

areCluster = [self.isCluster[j] for j in self.pairs[i]]

if sum(areCluster) > 1:

#If at least two neighboring cells are cluster cells, four

possible cases exist: 1. none of them have been previously↪→

#labeled and thus a new cluster label has to be defined, 2. all

have been labeled with the same cluster label↪→

#and as a result nothing is to be done, 3. only few of them has

been labeled with a cluster label which is↪→

#then propagated to the other cells, 4. or several have been

assigned different cluster labels, and thus the older↪→

#cluster label has to be propagated.

labels = [self.labels[j] for j in self.pairs[i]]

already = [j != -1 for j in labels]

if sum(already) == 0: #None of the cell centers have been

assigned a cluster label↪→

for j,p in enumerate(self.pairs[i]):

if areCluster[j]:

self.labels[p] = self.maxLabel

self.maxLabel += 1

else: #At least one of the cell centers has been assigned a

cluster label↪→

contesting = [j for j in labels if j != -1]

toAssign = min(contesting)

for j,p in enumerate(self.pairs[i]):

if areCluster[j]:

if labels[j] == -1:

self.labels[p] = toAssign

elif labels[j] != toAssign:

self.propagateLabel(toAssign, labels[j])

self.maxLabel = np.max(self.labels) + 1

198

O. VORONOICLUSTER.PY

def propagateLabel(self, l1, l2):

"""This method solves a conflict of labels by propagating the older

(lower) label to the Voronoi cells labeled with the↪→

newer label"""

if l1 != l2:

winner = min(l1, l2)

loser = max(l1, l2)

loserN = 0

superiorN = 0

for i,l in enumerate(self.labels):

if l == loser:

loserN += 1

self.labels[i] = winner

if l > loser:

superiorN += 1

self.labels[i] = l - 1

print('Loser Label is ' + str(loser) + ' . With ' + str(loserN)

+ ' associated cells. Winner label is ' + str(winner))↪→

class VoronoiValidation:

"""This class carries out the validation of a set of skeleton points to

which a cluster label has been assigned,↪→

by comparing these labels to the ones which result of performing a 3D

clustering analysis with Voronoi. For each↪→

skeleton point, this class extracts its closest Voronoi cell, as well as

the cluster label assigned to such cell. Then,↪→

for each skeleton cluster label, one can examine what percentage of its

skeleton points has been misclassified.↪→

For the inputs:

data: 2D array of 3D positions of Voronoi cell centers, or essentially

particle positions↪→

vorLabels: List of same length as data, assigning a Voronoi cluster label

to each cell center↪→

skel: 2D array of 3D positions of skeleton points

skelLabels: List of same length as skel, assigning a cluster label to

each skeleton point↪→

expelExtreme: boolean determining whether to expel skeleton particles

from the upper and lower levels of Z from the analysis"""↪→

def __init__(self, data, vorLabels, skel, skelLabels,

expelExtremes=True):↪→

self.data = data

self.vorLabels = [v + 1 for v in vorLabels]

self.skel = skel

self.skelLabels = [s - 1 for s in skelLabels]

199

O. VORONOICLUSTER.PY

if expelExtremes:

maxZ = np.max(self.skel[:, 2])

minZ = np.min(self.skel[:, 2])

expel = [i for i in range(len(self.skel)) if self.skel[i, 2] ==

maxZ or self.skel[i, 2] == minZ]↪→

self.skel = np.delete(self.skel, expel, axis=0)

self.skelLabels = np.delete(self.skelLabels, expel, axis=0)

self.nbrs = NearestNeighbors(n_neighbors=1).fit(self.data)

self.uniqueVor = np.unique(self.vorLabels)

self.uniqueSkel = np.unique(self.skelLabels)

self.memberships = np.zeros((len(self.uniqueSkel),

len(self.uniqueVor)))↪→

self.isCorrect = [1 for _ in self.skel]

def run(self):

"""Main method of the class, in charge of examining skeleton cluster

label and presenting results"""↪→

for l in self.uniqueSkel:

mask = np.arange(len(self.skel))[self.skelLabels == l]

counts = self.findNearest(mask)

self.memberships[l] = counts

#self.memberships is an array of as many rows as skeleton labels and

as many columns as Voronoi cluster labels,↪→

#where the i-th row shows for all skeleton points of cluster label i,

how many belong to each of the Voronoi↪→

#cluster labels. More precisely, the j-th column of the i-th row of

this array shows how many skeleton points↪→

#of cluster label i have a closest Voronoi cell center of label j.

print('Out of ' + str(len(self.skel)) + ' skeleton points, ' +

str(sum(self.memberships[:, 0])) + ' (' +

str(round(sum(self.memberships[:, 0]) * 100/len(self.skel), 3)) +

' %) appear in areas classified as void areas by Voronoi')

↪→

↪→

↪→

for l in self.uniqueSkel:

members = sum(self.skelLabels == l)

topVor = np.argsort(self.memberships[l])[::-1][:5] - 1

counts = np.sort(self.memberships[l])[::-1][:5]

print('For the ' + str(members) + ' skeleton points with label '

+ str(l) + ': ')↪→

for i in range(5):

if counts[i] > 0:

if topVor[i] == -1:

200

O. VORONOICLUSTER.PY

add = ' ' + str(counts[i]) + ' (' +

str(round(counts[i] * 100 / members, 3)) + ' %)

are not associated with a Voronoi cluster cell'

↪→

↪→

else:

add = ' ' + str(counts[i]) + ' (' +

str(round(counts[i] * 100/ members, 3)) + ' %)

belong to the Voronoi Cluster with label ' +

str(topVor[i])

↪→

↪→

↪→

print(add)

self.plotResults()

def findNearest(self, i):

"""For a list i of indexes of skeleton point positions, this method

examines the closest Voronoi cel center to each↪→

skeleton point, and based on this counts how many of the skeleton

points belong to each Voronoi label. Note that↪→

memberships is a vector where its i-th element shows how many of the

skeleton positions have a closest Voronoi↪→

cell of label i."""

skel = self.skel[i, :]

closest = self.nbrs.kneighbors(skel, return_distance=False)

memberships = np.zeros(len(self.uniqueVor))

for j, c in enumerate(closest):

c = c[0]

nearLabel = self.vorLabels[c]

memberships[nearLabel] += 1

if nearLabel == 0:

self.isCorrect[i[j]] = 0

return memberships

def plotResults(self):

"""This method plots the skeleton particles labeled according to

whether their closest Voronoi cell is classified↪→

as a cluster cell or not."""

clusters = self.data[[i for i in range(len(self.data)) if

self.vorLabels[i] != 0], :]↪→

vorLabels = [self.vorLabels[i] for i in range(len(self.data)) if

self.vorLabels[i] != 0]↪→

self.plot = voronoiPlot(clusters, self.skel, self.skelLabels,

self.isCorrect, vorLabels)↪→

self.plot.snapPlot()

data = np.load('VoronoiValidation_Data.npy')

201

P. VORONOIPLOT.PY

tr = VoronoiCluster(data)

tr.volumePDF()

np.save('VoronoiValidation_Clusters.npy', tr.clusters)

np.save('VoronoiValidation_ClusterVolumes.npy', tr.clusterV)

tr.plotVolumePDFs()

#

tr.connectClusterCells()

tr.plotClusters()

tr.timePiePlot()

np.save('VoronoiValidation_ClusterLabels.npy', tr.connect.labels)

np.save('VoronoiValidation_VolumeperCluster.npy', tr.volumesC)

#

skel = np.load('skeletonize.npy')

skelLabels = np.load('SKlabels.npy')

vv = VoronoiValidation(data, tr.connect.labels, skel, skelLabels)

vv.run()

P voronoiPlot.py

import numpy as np

from matplotlib import cm

import matplotlib.pyplot as plt

import imageio

Development of data analysis tools for the topological and temporal

analysis of clusters of particles in turbulent flow↪→

Script Description: This script is in charge of plotting by means of a GIF

file, the constellation of skeleton points↪→

interior to each two-dimensional cluster along with the Voronoi cell

centers classified as cluster centers. On the one↪→

hand, skeleton positions are labeled according to their three-dimensional

cluster, as well as according to whether their↪→

closest Voronoi cell is that of a cluster cell or not. On the other hand,

Voronoi cell centers are labeled according to↪→

the cluster labeled assigned to them.

Álvaro Tomás Gil - UIUC 2020

class voronoiPlot:

"""This class is in charge of plotting by means of a GIF file, the

constellation of skeleton points↪→

interior to each two-dimensional cluster along with the Voronoi cell

centers classified as cluster centers. On the one↪→

202

P. VORONOIPLOT.PY

hand, skeleton positions are labeled according to their three-dimensional

cluster, as well as according to whether their↪→

closest Voronoi cell is that of a cluster cell or not. On the other hand,

Voronoi cell centers are labeled according to↪→

the cluster labeled assigned to them.

For the inputs:

data: 2D array of 3D positions corresponding to Voronoi cluster cell

centers↪→

skel: 2D array of 3D positions of skeleton points.

skelLabels: list of the same length as skel, assigning a cluster label to

each skeleton point↪→

skelProx: list of the same length as skel, assigning a 1 to skeleton

points whose closest Voronoi cell center is that↪→

of a cluster cell

vorLabels: list of the same length as data, assigning a cluster label to

each Voronoi cell center↪→

folder: folder in which to save resulting plots"""

def __init__(self, data, skel, skelLabels, skelProx, vorLabels,

folder=''):↪→

self.skel = skel

self.skelLabels = skelLabels

self.skelProx = skelProx

self.vorLabels = vorLabels

self.folder = folder

self.zs = np.unique(skel[:, 2])

#Project Voronoi cell centers onto the finite number of levels of Z

self.data = np.array([0, 0, 0])

self.vorLabels = []

dz = abs(self.zs[1] - self.zs[0]) / 2

for i, z in enumerate(self.zs):

take = ((data[:, 2] < z + dz) & (data[:, 2] > z - dz))

this = data[take, :2]

this = np.hstack((this, z * np.ones((sum(take), 1))))

self.data = np.vstack((self.data, this))

newLabels = [vorLabels[i] for i in range(len(data)) if take[i]]

self.vorLabels = self.vorLabels + newLabels

self.data = self.data[1:, :]

Combinations of marker and marker boundary colors are made in order

to increase the possibilities of marker types↪→

self.skelUniqueLabels = np.unique(self.skelLabels)

strength = np.linspace(0, 0.8, len(self.skelUniqueLabels))

203

P. VORONOIPLOT.PY

np.random.shuffle(strength)

self.skelColors = [plt.cm.autumn(each) for each in strength]

np.random.shuffle(strength)

self.skelColorsB = [plt.cm.autumn(each) for each in strength]

#Marker colors for Voronoi cell centers

self.vorUniqueLabels = np.unique(self.vorLabels)

strength = np.linspace(0, 1, len(self.vorUniqueLabels))

np.random.shuffle(strength)

self.vorColors = [plt.cm.winter(each) for each in strength]

def snapPlot(self, title='Topological Coincidence Between Skeleton Points

and Voronoi Cell Centers'):↪→

"""This method plots each two-dimensional domain separately, but

joins all of them in a GIF animation which allows↪→

a 3D evolution of them to be visualized."""

def update(choose):

fig, ax = plt.subplots()

fig.set_size_inches(18.5, 9.5)

self.plotInstance(choose, ax)

ax.legend()

ax.set_title('Z = ' + '{0:03f}'.format(choose), fontsize=24)

ax.set_xlabel('x [m]', fontsize=18)

ax.set_ylabel('y [m]', fontsize=18)

ax.tick_params(axis='both', which='major', labelsize=15)

plt.axis('equal')

ax.set_xlim(np.min(self.data[:, 0]), np.max(self.data[:, 0]))

ax.set_ylim(np.min(self.data[:, 1]), np.max(self.data[:, 1]))

fig.canvas.draw()

image = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8')

image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))

plt.close()

return image

kwargs_write = {'fps': 1.0, 'quantizer': 'nq'}

imageio.mimsave(self.folder + title + '.gif', [update(i) for i in

self.zs], fps=2)↪→

def plotInstance(self, choose, ax):

if len(self.zs) >= 2:

dz = (self.zs[1] - self.zs[0]) / 4

else:

dz = 0.001 * self.zs[0]

204

P. VORONOIPLOT.PY

take = self.data[:, 2] == choose

takeS = ((self.skel[:, 2] >= choose - dz) & (self.skel[:, 2] <=

choose + dz))↪→

skelCluster = [takeS[i] and self.skelProx[i] == 1 for i in

range(len(takeS))]↪→

skelVoid = [takeS[i] and self.skelProx[i] == 0 for i in

range(len(takeS))]↪→

data = self.data[take, :]

skelClusterLabels = [self.skelLabels[i] for i in

range(len(self.skelLabels)) if skelCluster[i]]↪→

skelVoidLabels = [self.skelLabels[i] for i in

range(len(self.skelLabels)) if skelVoid[i]]↪→

vorLabels = [self.vorLabels[i] for i in range(len(self.vorLabels)) if

take[i]]↪→

self.plotLabels(ax, data, vorLabels, self.vorColors, self.vorColors,

None, size=15)↪→

self.plotLabels(ax, self.skel[skelCluster, :], skelClusterLabels,

self.skelColors, self.skelColorsB, 'Coinciding Skeleton Points of

Cluster ', marker='^')

↪→

↪→

self.plotLabels(ax, self.skel[skelVoid, :], skelVoidLabels,

self.skelColors, self.skelColorsB, 'Non-Coinciding Skeleton

Points of Cluster ', marker='v')

↪→

↪→

@staticmethod

def plotLabels(ax, data, labels, colors, colorsB, label, marker='.',

size=100):↪→

unique_labels = np.unique(labels)

for k, col, colB in zip(unique_labels, colors, colorsB):

class_member_mask = (labels == k)

xy = data[class_member_mask]

if len(xy) > 0:

if label is not None:

ax.scatter(xy[:, 0], xy[:, 1],

c=np.reshape(np.array(col), (1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1, -1)),

s=size, marker=marker,↪→

label=label + str(k))

else:

ax.scatter(xy[:, 0], xy[:, 1],

c=np.reshape(np.array(col), (1, -1)),↪→

edgecolors=np.reshape(np.array(colB), (1,

-1)), s=size, marker=marker, label='')↪→

205

	List of Illustrations
	Introduction
	Methods of Analysis
	Methodology for 3D Spatial Characterization
	Clustering Analysis of a 2D Snapshot
	Introduction to Clustering Algorithms
	DBSCAN and OPTICS
	Towards Adapted Hyperparameters: Minimum Number of Points within the Cluster
	Towards Adapted Hyperparameters:
	Results

	Determination of Cluster Boundaries within the 2D Snapshot
	What Sort of Cluster Boundary is Desirable?
	Description of Employed Method
	Adequate Selection of Parameters
	Results
	Attempted Alternatives

	Definition of a Brute Skeleton Describing 2D Cluster Topology
	What is a Brute Skeleton and why is it worth defining?
	Description of Employed Method
	Adequate Selection of Parameters
	Results
	Attempted Alternatives

	Re-determination of Cluster Labels based on 3D Skeleton Point Connectivity
	Extrapolation to the 3D Case
	Description of Employed Method
	Results
	Attempted Alternatives

	Temporal Tracking of Cluster Topology
	Introduction
	Description of Employed Method
	Adequate Selection of Parameters
	Results

	Evaluation based on Voronoi Tessellations Analysis
	Application of Voronoi Tessellations to cluster Analysis
	Evaluation of the Clustering Analysis of a 2D Snapshot
	Evaluation of the Clustering Analysis of a 3D Database
	Topological Coincidence of Clusters
	Volumetric Coincidence of Clusters

	Comparison of Computational Performance

	Conclusions
	References
	Appendices
	Organization of Presented Code
	OpenSliceVTK.py
	clusteringAnalysis.py
	clustering3D.py
	OPTICS.py
	DBSCAN.py
	clusterPlot.py
	boundaryFinder.py
	skeletonPlot.py
	eulerianApproach.py
	clusterConnect.py
	relabeller.py
	temporalTracking.py
	temporalPlot.py
	voronoiCluster.py
	voronoiPlot.py

