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ABSTRACT

We introduce the notion of pointwise cyclic-noncyclic relatively non-
expansive pairs involving orbits. We study the best proximity point
problem for this class of mappings. We also study the same problem
for the class of pointwise noncyclic-noncyclic relatively nonexpansive
pairs involving orbits. Finally, under the assumption of weak proximal
normal structure, we prove a coincidence quasi-best proximity point
theorem for pointwise cyclic-noncyclic relatively nonexpansive pairs in-
volving orbits. Examples are provided to illustrate the observed results.
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1. INTRODUCTION

Let A, B be nonempty subsets of Banach space X. A mapping T : AUB —
AU B is said to be cyclic provided that T(A) C B and T(B) C A. On the
other hand, a mapping S: AUB — AU B is said to be noncyclic if S(A) C A
and S(B) C B.
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For a cyclic mapping T': AUB — AU B, a point p € AU B is said to be a
best proximity point provided that

d(p, Tp) = dist(A4, B).

Furthermore, we say that a pair (A, B) of subsets in a Banach space satisfies
a property if each of the sets A and B has that property. Similarly, the pair
(A, B) is called convex if both A and B are convex; moreover we write

(A,B)C(E,F)& ACEBCF.
In addition, we will use the following notations:
d(A,B) =sup{|lz —y| : x € A,y € B};
6(z, B) = sup{||z —y|| : y € B}.
For a nonempty, bounded and convex subset F' of a Banach space X, we write
r2(F) = sup{|lx —yl| : y € F};
r(F) =inf{r,(F):z € F};
F.={zeF:r,(F)=r(F)}.
In 2017, M. Gabeleh introduced the notion of a pointwise cyclic relatively

nonexpansive mapping involving orbits, and proved a theorem on the existence
of best proximity points.

Definition 1.1 ([11]). Let (A, B) be a nonempty pair of subsets of a Banach
space X. A mapping T : AUB — AU B is said to be pointwise cyclic relatively
nonexpansive involving orbits if T is cyclic and for any (z,y) € A x B, if
|z — y|| = dist(A, B), then

Tz — Ty = dist(4, B),
and otherwise, there exists a function a: A x B — [0, 1] such that
IT2 — Tyl < oz, )z — yll + (1 - a(z, 5)) min{8.[0%(y; 00)], 6,[0%(; o)},
where, for any (z,y) € A x B

3:[0%(y; 00)] = sup ||z = T*"y||,  6,[0%(w;00)] = sup | T*"x — y].
neN neN

Note that, if A = B, then we say that T is a pointwise nonexpansive mapping
involving orbits. In [12], M. Gabeleh, O. Olela Otafudu, and N. Shahzad
considered a pair of mappings T and S. According to [12], for a nonempty pair
of subsets (A, B) in a metric space (X, d), and a cyclic-noncyclic pair (T;.S) on
AUB (thatis, T : AUB — AUB is cyclicand S : AUB — AU B is noncyclic);
they called a point p € AU B a coincidence best prozimity point for (T;S) if

d(Sp,Tp) = dist(A4, B).

Note that if S = I, the identity map on AU B, then p € AU B is a best
proximity point for T'.
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In 2019, A. Abkar and M. Norouzian introduced the concept of coincidence
quasi-best proximity point and proved the existence of such points for quasi-
cyclic-noncyclic contraction pairs. We remark that the coincidence quasi-best
proximity point theory is more general and includes both the best proximity
point theory and the coincidence best proximity point theory.

Definition 1.2 ([2]). Let (A, B) be a nonempty pair of subsets of a metric
space (X,d) and 7,5 : X — X be a quasi-cyclic-noncyclic pair on A U B;
that is, T(A) C S(B) and T(B) C S(A). A point p € AU B is said to be a
coincidence quasi-best proximity point for (T’ S) if

d(Sp,Tp) = dist(S(A), S(B)).

In case that S = I, the point p reduces to a best proximity point for 7.

In this article, we will focus on the coincidence quasi-best proximity point
problem for pointwise cyclic-noncyclic and noncyclic-noncyclic relatively non-
expansive pairs. To do this, we need to recall some definitions and theorems.
We begin with the following definition which is a modification of a concept in
[8].

Definition 1.3. Let (A4, B) be a nonempty pair of subsets of a Banach space
X and S: AUB — AU B be a noncyclic mapping on AU B. A convex pair
(S(A), S(B)) is called a proximal pair if for each (a1,b1) € A X B, there exists
(a2,b2) € A x B such that for each 7,5 € {1,2} with i # j we have

|Sa; — Sb;|| = dist(S(A), S(B)).
Given (A, B) a pair of nonempty subsets of a Banach space X, the associated
proximal pair of (S(A), S(B)) is the pair (S(4§), S(B§)) given by
A :={a € A:|Sa— Sb|| =dist(S(A), S(B)) for some b € B},
B :={be€ B:|Sa— Sb|| =dist(S(A),S(B)) for some a € A},

In fact, if the pair (S(A), S(B)) is nonempty, weakly compact and convex,
then its associated pair (S(Ag), S(B§)) is also nonempty, weakly compact and
convex. Furthermore, we have

dist(S(A3), S(BY)) = dist(S(A), S(B)).

The proof of the above statements goes in the same lines as in the case for the
pair (A, B); see for instance [21]. Here’s a definition we derive from [8] and
we’ve made some changes to meet our needs.

Definition 1.4. Let (K7, K3) be a nonempty pair of subsets of a Banach space
X and S : K1UKs — K1 UK5 be a noncyclic mapping on K; UK5. We say that
a convex pair (S(K1), S(K2)) has proximal normal structure (PNS) if for any
closed, bounded, convex and proximal pair (S(H;),S(Hz)) C (S(K1),S(K2))
which

dist(S(H,), S(Hz)) = dist(S(K1), S(K2)), 6(S(H,), S(Hz)) > dist(S(H,), S(Hs)),
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there exists (x,y) € H; X Hy such that
6(Sz, S(Hz)) < 0(S(H1),S(Hz)), 6(Sy,S(H1)) <6(S(Hy),S(Hz)).

Note that the pair (K, K) has proximal normal structure if and only if K
has normal structure in the sense of Brodskii and Milman (see [4] and [20]).

Theorem 1.5 ([8]). Every bounded, closed and convex pair in a uniformly
convexr Banach space X has prorimal normal structure.

The following definition is a modification of what already appeared in [11].

Definition 1.6. Let (K3, K3) be a nonempty pair of subsets of a Banach
space X and S : K3 U Ky — K; U K5 be a noncyclic mapping on K; U K.
We say that a convex pair (S(K7), S(K3)) has weak proximal normal structure
(WPNS) if for each nonempty, weakly compact and convex proximal pair
(S(H1),S(Hs2)) C (S(K1),S(K2)) for which

dist(S(Hy), S(Hs)) = dist(S(K1), S(K2)), d(S(H1),S(Hz)) > dist(S(H1), S(Hz)),
there exists (z,y) € Hi x Hj such that
(S, S(Ha)) < 6(S(Hy),S(Hz)), 6(Sy, S(Hy)) <(S(Hy),S(Hy)).

In this article, we intend to generalize some results of [8] and [11]. Our results
have the following advantages: First, we introduce the class of the pointwise
cyclic-noncyclic and noncyclic-noncyclic relatively nonexpansive pairs involving
orbits, that in particular, includes the class of pointwise cyclic-noncyclic and
noncyclic-noncyclic relatively nonexpansive mappings involving orbits. Second,
we consider a pair of mappings while the previous articles are concerned with
one single mapping, and finally, we study the coincidence quasi-best proximity
point problem, which in particular, includes the best proximity point problem
as a special case.

2. CYCLIC-NONCYCLIC PAIRS

We begin this section by introducing the new concept of a pointwise
cyclic-noncyclic relatively nonexpansive pair involving orbits.

Definition 2.1. Assume that (A, B) is a nonempty pair of subsets of a Banach
space X and T,S : AUB — AU B are two mappings. A pair (T;5) is said
to be a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits
if (T;S) is a cyclic-noncyclic pair and for any (z,y) € A x B, if ||la — y|| =
dist(S(A4), S(B)), then

[Tz — Tyl = dist(S(A), S(B)), |[[Sz— Syl = dist(S(A), S(B))
and otherwise, there exists a function «: A x B — [0, 1] such that
1Tz —Ty|| < a(z,y)||Sz— Syl +(1—a(z,y)) max{s,[O*(y; 00)], [0 (; 00)]},
where, for any (z,y) € Ax B

3:[0%(y; 00)] = sup |z = T*"yl|,  6,[O%(w;00)] = sup | T*"x — y].
neN neN
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We note that if S = I, then the class of pointwise cyclic-noncyclic relatively
nonexpansive pairs involving orbits reduces to the class of pointwise cyclic
relatively nonexpansive mappings involving orbits introduced in [11].

Definition 2.2 ([20]). We say that a Banach space X has the property (C) if
every bounded decreasing sequence of nonempty, closed and convex subsets of
X have a nonempty intersection.

For C C X, we denote the diameter of C by 6(C). A point x € C is a
diametral point of C' provided that sup{||z — y|| : y € C} = 6(C). A convex
set K C X is said to have normal structure if for each bounded convex subset
H of K which contains at least two points, there is some point x € H which is
not a diametral point of H.

Lemma 2.3 ([20]). Assume that X is a Banach space with the property (C),
then F. is nonempty, closed and convex.

Lemma 2.4 ([20]). Assume that F' is a closed and convex subset of a Banach
space X which contains at least two points. If F has normal structure, then
O(F.) < O(F).

Theorem 2.5. Assume that K is a nonempty, bounded, closed and convex
subset of a Banach space X with property (C). Suppose that K has normal
structure. Let (T, S) be a pointwise cyclic-noncyclic relatively nonexpansive pair
involving orbits on K. Then there exists a point p € K such that ||Tp—Sp|| = 0.

Proof. Suppose I' denotes the collection of all nonempty, closed and convex
subsets of K such that (7,95) is a pointwise cyclic-noncyclic relatively non-
expansive pair involving orbits on K. By Zorn’s Lemma, I' has a minimal
member, say F'. We complete the proof by verifying that F' consists of a single
point. Assume that x € F,.. In this case, for any y € F, we have

1Sz —yll <sup{[|z -yl : 2 € F}
=1y (F) = r(F),

therefore,
sup{||Sz — y|| : € F.} <r(F).

Then,
rsz(F) = sup{[[Sz —yl| : y € F'}
<sup{||Sz —y| :x € F.,y € F}

< sup{r(F),y € F'}
=r(F).
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Then, for any z € F. we have rg,(F) = r(F); that is, S : F. — F.. Moreover,
for any x,y € F. we have ||Sz — Sy|| < r(F). On other hand, for any =,y € F,,

8.:[0%(y; 00)] = sup [l — T*"y||
neN

<sup{|lz —z||:z € F}
=r.(F) =r(F).
Similarly, for any z,y € F. we have §,[0%(z;00)] < r(F). In particular, for
each z,y € F,,
Tz —Ty|| < a(z,y)|Sz — Syl + (1 — a(z,y)) max{d, [0 (y; )], §,[0% (z; )]}
< afz,y)r(F) + (1 — alz,y)r(F)
= r(F);
that is, rr(F) = r(F). Then, T : F, — F.. By Lemma 2.3, we have F, € T". If
0(F) > 0, then by Lemma 2.4, F, is properly contained in F which contradicts
the minimality of F'. Hence 0(F) = 0 and F consists of a single point; this is,

there exists a point p € K such that Tp = p and Sp = p. So, there exists a
p € K such that |Tp —p| = 0. O

Theorem 2.6. Assume that (A, B) is a nonempty pair of subsets in a Banach
space X with PNS. Let T, S : AUB — AU B be a pointwise cyclic-noncyclic
relatively nonexpansive pair involving orbits, and such that T(A) C S(B) and
T(B) C S(A). Suppose that (S(A),S(B)) is a weakly compact and convex pair
of subsets in X. Then there exists (z,y) € A X B such that for p € {x,y} we
have

ITp — Spl| = dist(5(A), S(B)).

Proof. The result follows from Theorem 2.5 if dist(S(A4),S(B)) = 0, so we
assume that dist(S(A), S(B)) > 0. Let (S(A4§), S(B§)) be the associated prox-
imal pair of (S(A),S(B)). We have already observed that S(A§) and S(Bg)
are nonempty, weakly compact and convex, moreover

dist(S(AZ), S(BY)) = dist(S(A), S(B)).

Assume that x € A§, then there exists y € B§ such that ||Sz — Sy|| =
dist(S(A4),S(B)). On other hand, (T;S) is a pointwise cyclic-noncyclic rel-
atively nonexpansive pair involving orbits. Thus,

[T(Sz) — T(Sy)|| = dist(S(A), S(B)), [|S(Sz) — S(Sy)|| = dist(S(A), S(B)).
This implies that
[S(Sz) — S(Sy)|l = dist(S(AF), S(BF)),
and
[T(Sz) — T(Sy)|| = dist(S(AF), S(B7))-
Therefore, we have

T(Sx) € S(Bg), T(Sy) € S(Ap);
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that is,

T(S(A3)) € S(Bg),  T(S(Bg)) € S(Ap)-
Similarly,

S(S5(45)) € S(Ag),  S(S(Bg)) € S(Bg)-
So, for each x € A§ and y € B§ we have

[T(Sz) = T(Sy)|l = dist(S(A5), S(B5)),
and

15(Sz) = S(Sy)l| = dist(S(A5), S(Bg))-

Clearly (S(Ay),S(B§)) also has proximal normal structure. Now, assume that
2 denotes the collection of all nonempty subsets S(F') of S(A§) U S(B§) for
which S(F)NS(A§) and S(F)NS(B§) are nonempty, closed, convex, and such
that

T(S(F)NS(A)) € S(F)NS(BE), T(S(F)NS(Bg)) € S(F)NS(A]),
and
S(S(F)NS(AR)) € S(F)NS(AE), S(S(F)NS(BG)) € S(F)NS(Bp),
and so
dist(S(F) N S(Ap), S(F) N S(Bg)) = dist(S(A), S(B)).

Since, S(A§)US(Bg) € £ and Q is nonempty, we may assume that {S(Fy,)}aca
is a decreasing chain in Q such that S(Fy) = NaeaS(Fuo). Then S(Fp) N
S(A5) = Nacal(S(Fy) N S(Af)), so S(Fy) N S(A§) is nonempty, closed and
convex. Similarly, S(Fy) N S(B§) is nonempty, closed and convex. Also,

T(S(Fo) N S(43)) € S(F)) N S(Bg).  T(S(Fo) N S(By)) € S(Fv) N S(A3)
and

S(S(Fo) N S(Ap)) € S(Fo) N S(A7),  S(S(Fo) N S(Bg)) € S(Fo) N S(Bg)-
To show that S(Fp) € Q we only need to verify that

dist(S(Fo) N S(AR), S(Fo) NS(Bg)) = dist(S(A), S(B)).
Note that for each a € J it is possible to select
Sxo € S(Fo) NS(AY), Sya € S(Fo)NS(B)
such that
ISzq — Syall = dist(S(A), S(B)).

It is also possible to choose convergent subnets {Sxz,/} and {Sys } (with the
same indices), say

lim Szo = Sz, lim Sy. = Sy.
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Then clearly Sx € S(Fp) N S(A§) and Sy € S(Fp) N S(B§). By weak lower
semicontinuity of the norm, we have || Sz — Sy|| < dist(S(A), S(B)); hence,
dist(S(A4), S(B)) < dist(S(Fo) NS(Ap), S(Fo) N S(Bg)) < [[Sz — Syl < dist(S(A), S(B)).
Therefore,
dist(S(Fo) N S(AR), S(Fo) NS(BG)) = dist(S(A), S(B)).

Since, every chain in €2 is bounded below by a member of €2, Zorn’s Lemma
implies that {2 has a minimal element, say S(K). Assume that S(K7) = S(K)N
S(A§) and S(K32) = S(K) N S(B§). Observe that if

6(S(K1), S(K2)) = dist(S(K1), S(K2)),
then for any = € S(K), we have
Tz — Sz|| = dist(S(K1), S(K2)) = dist(S(A), S(B)).
Similarly, for any y € S(K), we have
[Ty — Syl = dist(S(K1), S(K3)) = dist(S(A), S(B)).
Now, we assume that
8(S(K1), S(K2)) > dist(S(K1), S(K2)).

We complete the proof by showing that this leads to a contradiction. Since
S(K) is minimal, it follows that (S(K), S(K?2)) is a proximal pair in (S(A§), S(B§)).
By the PN S property of X, there exist (z1,y1) € K1 x K5 and 8 € (0,1) such
that

0(Sw1, S(Ky)) < BO(S(K1), S(K2)) and  6(Syr, S(K1)) < B6(S(K), S(K2)).

Since, (S(K1),S(K3)) is a proximal pair, there exists (z2,y2) € K7 X Ka such
that for each distinct 4,5 € {1, 2}, we have

1Sz — Sy;|| = dist(S(K1), S(K2)).

So, for each u € S(K3) we have

Sz + Sx Sr1—u Sxto—u
=5 —ull < 15—+ 175
L BO(S(K), S(K2)) | 0(S(Ky), S(K2))

2
= ad(S(K1),S(K2)),

where o = # € (0,1). Assume that Swy = (Smlg—sm and Swy = (Syl'gisyﬂ
Then

(5(Sw1,S(K2)) S Oé(S(S(K1),S(K2)) and 5(51112,5([(1)) S Oéé(S(Kl),S(Kg))
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Since,
diSt(S(Kl),S(KQ)) S ||Sw1 — SU}2||

1l (Sz1+ Sxa)  (Syr + Sy2) H
2 2

< 211521 — Sl + 15z — Sl
= dist(S(K1), S(K2)),
we have ||Sw; — Swal| = dist(S(K7), S(K3)). Put
S(L1) = {Sz € S(K1) : 6(5x, S(K2)) < ad(S(K1), S(K2))},
S(Lz) = {Sy € S(K2) : 6(Sy, S(K1)) < abd(S(K1), S(K3))}

Then for each i = 1,2, S(L;) is a nonempty, closed and convex subset of S(K;)
and since Sw; € S(L1) and Swq € S(L2), we have

dist(S(K1), S(K3)) < dist(S(L1), S(La)) < ||Swy — Swy|| = dist(S(K1), S(K2)).
Therefore,
dist(S(L1), S(Lz2)) = dist(S(K), S(K3)) = dist(S(A), S(B)).

Now, assume that Sx € S(L;) and Sy € S(Kz2). Then Sz € S(A45) and
Sy € S(Bg); that is, v € A§ and y € Bj. Thus,

1T(Sz) — T(Sy)| = dist(S(A), S(B)) < 6(Sz, S(K2)) < ad(S(K71), S(K2)).
So, T(Sy) € B(T(Sx); ad(S(K1), S(K2))) N S(K1): that s,
T(S(K2)) € B(T(Sx);ad(S(K1),S(K2))) N S(Ky) :== S(K7).

Clearly S(K7) is closed and convex. Also, if Sy € S(K3) satisfies ||Sz — Sy|| =
dist(S(A), S(B)), then

[T(Sz) = T(Sy)|| = dist(S(K1), S(K2)).
)

2
Since, T'(Sy) € S(K), we conclude that dist(S(K7), S(K2)) = dist(S(A), S(B)).
Therefore, S(K1) U S(K3) € Q and by the minimality of S(K) we must have
S(K}) = S(K7). Hence,

S(Ky1) € B(T(Sz); a6(S(K1), S(K2)));

that is, §(T'(Sz), S(K1)) < ad(S(K1),S(K3)) and since Sx € S(L;) was arbi-
trary, we obtain T'(S(L1)) C S(Lz). Similarly, T(S(L2)) C S(L1), S(S(L1)) C
S(L1) and S(S(L2)) C S(La). Thus, S(L1)US(L2) € Q, but 6(S(L1), S(Ls2)) <
ad(S(K1),S(K2)), contradicting the minimality of S(K). O

Corollary 2.7. Assume that (A, B) is a nonempty pair of subsets in a uni-
formly convex Banach space X. Let T,S : AUB — AU B be a pointwise
cyclic-noncyclic relatively nonexpansive pair involving orbits, and such that
T(A) C S(B) and T(B) C S(A). Suppose that (S(A),S(B)) is a bounded,
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closed and convex pair of subsets in X. Then there exists (x,y) € A X B such
that for p € {x,y} we have

ITp — Spl| = dist(5(A), S(B)).

3. NONCYCLIC-NONCYCLIC PAIRS

In this section we study the case in which both mappings are noncyclic. In-
deed, we first introduce a pointwise noncyclic-noncyclic relatively nonexpansive
pair involving orbits, and proceed to study its best proximity points.

Definition 3.1. Assume that (A, B) is a nonempty pair of subsets of a Banach
space X and T,S : AUB — AU B are two mappings. A pair (T;5) is said
to be a pointwise noncyclic-noncyclic relatively nonexpansive pair involving
orbits if (T 5) is a noncyclic-noncyclic pair and for any (z,y) € A x B, if
|z — y|| = dist(S(A), S(B)), then

|7 — Tyl| = dist(S(4), S(B)), [|Sx — Sy|| = dist(S(A), S(B))

and otherwise, there exists a function o : A x B — [0, 1] such that

1T — Tyl < ale,y)lISz - Syl + (1 - ale,y)) max{8, [0(y; 50)], 6,[0(w; )]},
where, for any (z,y) € A x B

02[O(y; 00)] = sup [lz = T"y||,  6,[O(x;00)] = sup [Tz - y].
neN neN

Theorem 3.2. Assume that (A, B) is a nonempty pair of subsets in a strictly
convexr Banach space X with PNS, and T,S : AUB — AU B is a point-
wise noncyclic-noncyclic relatively nonexpansive pair involving orbits such that
T(A) C S(A) and T(B) C S(B). Suppose that (S(A),S(B)) is a weakly com-

pact and convex pair of subsets in X. Then, there exists g € A and yo € B
such that

Txg =m0, Tyo=1yo
and
[zo — yoll = dist(S(A), S(B)).

Proof. Suppose that (S(A§), S(B§)) is the associated proximal pair of (S(A4), S(B)),
and choose © € A§. Then there exists y € B§ such that ||[Sz — Sy|| =
dist(S(A4), S(B)), and furthermore

IT(Sz) —T(Sy)|| = dist(S(A), S(B)) = dist(S(A45), S(Bp))-

Thus, T : S(A45) — S(A§) and similarly, T : S(B§) — S(B§). Now let Q
denote the collection of nonempty subsets S(F') of S(A§) U S(B§) for which
S(F)N S(A5) and S(F) N S(B§) are nonempty, closed and convex,

T(S(F)NS(A4p)) € S(F) N S(Ap), T(S(F)NS(Bg)) € S(F) N S(By),

S(S(F) N S(Ag)) € S(F) N S(Ag),  S(S(F)NS(By)) € S(F) N S(Bg)
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and
dist(S(F) N S(A7), S(F) N S(Bg)) = dist(S(A), S(B)).

Since, S(AJ) U S(B§) € Q, Q is nonempty. We proceed as in the proof of
Theorem 2.6 to show that 2 has a minimal element S(K). Assume that
S(K1) = S(K) N S(Af), and S(K3) = S(K) N S(B§). First, assume that
one of the sets is a singleton, say S(K7) = {«}. Then Tz = z and if y is the
unique point of S(K3) for which ||z — y|| = dist(S(K1), S(K2)), it must be the
case that Ty = y. Since, ||y — x| = dist(S(A4), S(B)), we are finished. So, we
may assume that S(K;) and S(K3) have positive diameter and because the
space is strictly convex, this in turn implies that
6(S(K1), S(K2)) > dist(S(K1), S(K3)).

We shall see that this leads to a contradiction. Since (S(A§), S(B§)) has prox-
imal normal structure, we may define S(L;) and S(Lz) as in the proof of The-
orem 2.6. Choose Sz € S(L;). For any Sy € S(K3), we have Sz € S(A§) and
Sy € S(B§); that is, x € A§ and y € B§. Thus, ||Sz — Sy|| = dist(S(A), S(B))
and so,
IT(Sz) — T(Sy)|l = dist(S(A), S(B)) < 6(5z, S(Kz)) < ad(S(K1), S(K2)).
This implies that
T(Sy) € B(T(Sx); ad(S(K1), S(K2))) NS(K2),
thus,
T(S(Ka)) € B(T(Sw);ad(S(K1), S(K2))) 1 S(Ko).
It follows from the minimality of S(K) that S(K2) C B(T(Sx); adé(S(K1), S(K2)))
and this in turn implies that
§(T'(Sz), S(K2)) < ad(S(K1), S(K2)).

Therefore, T'(Sx) € S(Ly); in fact T(S(L1)) C S(Ly). Similarly, T(S(Lz2)) C
S(Ls), S(S(L1)) € S(Ly) and S(S(Lz2)) € S(L2). Since, S(Ly) and S(Ls) are,
respectively, nonempty, closed and convex subsets of S(K;) and S(K>) and
since for a < 1 we have

0(S(L1), S(L2)) < ad(S(K1), S(K32)),
which contradicts the minimality of S(K). O

Corollary 3.3. Assume that (A, B) is a nonempty pair of subsets in a uni-
formly convex Banach space X and T,S : AUB — AU B is a pointwise
noncyclic-noncyclic relatively nonexpansive pair involving orbits such that T(A) C
S(A) and T(B) C S(B). Suppose that (S(A),S(B)) is a bounded, closed and
convex pair of subsets in X. Then, there exists xg € A and yg € B such that

Txog =m0, Tyo=1yo
and
lzo — yoll = dist(S(A), S(B)).
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4. WPNS AND CYCLIC-NONCYCLIC PAIRS

In this section, and under weak proximal normal structure, we discuss the
coincidence quasi-best proximity point problem for pointwise cyclic-noncyclic
relatively nonexpansive pairs involving orbits.

Lemma 4.1. Assume that (A, B) is a nonempty pair of subsets in a Banach
space X, and T,S : AU B — AU B is a pointwise cyclic-noncyclic relatively
nonezpansive pair involving orbits such that T(A) C S(B) and T(B) C S(A).
Suppose that (S(A), S(B)) is a weakly compact and convex pair of subsets in X.
Then, there exists (S(K1),S(Kz2)) C (S(A§),S(B§)) C (S(A),S(B)) which is

minimal with respect to being nonempty, closed, conver and T and S-invariant
pair of subsets of (S(A), S(B)), such that

dist(S(K1), S(K2)) = dist(S(A), S(B)).
Moreover, the pair (S(K1), S(K3)) is prozimal.

Proof. The proof essentially goes in the same lines as in the proof of Theorem
2.6. We omit the details. ]

Theorem 4.2. Assume that (A, B) is a nonempty pair of subsets in a Ba-
nach space X with WPNS, and T,S : AUB — AU B is a pointwise cyclic-
noncyclic relatively nonexpansive pair involving orbits such that T(A) C S(B)
and T(B) C S(A). Suppose that (S(A),S(B)) is a weakly compact and convex
pair of subsets in X. Then (T';S) has a coincidence quasi-best prozimity point.

Proof. By Lemma 4.1, assume that (S(K;), S(K2)) is a minimal, weakly com-
pact, convex and proximal pair which is T" and S-invariant, and such that
dist(S(K1), S(K>)) = dist(S(A), S(B)). Notice that

con(T(S(K1))) € S(K)

and so,
T(con(T(S(K1)))) € T(S(K3)) € con(T(S(Kz)))-
Similarly,
T(con(T(5(K2)))) € con(T(S(K1)));
that is, T' is cyclic on con(T(S(K1))) Ucon(T(S(Kz2))).
On other hand, S is noncyclic on con(S(S( 1))) Ucon(S(S(K2))). The
minimality of (S(K71), S(K32)) implies that

con(T(S(K1))) = S(Kz) and con(T(S(K3))) = S(K1).
Besides,
@n(S(S(K1)) = S(K1) and @om(S(S(Ka))) = S(Kz).

We note that if §(S(K7),S(K2)) = dist(S(K1),S(K2)) = dist(S(A4), S(B)),
then every point of S(K7)U S(K3) is a coincidence quasi-best proximity point
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of (T'; S) and we are finished. Otherwise, since (S(A), S(B)) has WPNS, there
exists a point (x1,y1) € K1 X Ky and ¢ € (0,1), so that

5(S£E1,S(K2)) < Cé(S(Kl),S(K2)>7 5(53/178(](1)) < C§(S(K1)7S(K2))
Since (S(K1), S(K32)) is a proximal pair, there exists (x2,y2) € K1 x K3 such
that
1521 = Sya| = [[Sz2 — Sya|| = dist(S(A), S(B)).
Put Su = 5215572 and Sy = m Then, (Su, Sv) € S(K1) x S(K3) and
||Su — Sv|| = dist(S(K1), S(K2)).

Moreover, for each z € Ko, we have

ISu— sz = | ZE5 gy
< Sl1Se1 = S+ [1Szz — 21|
< LSS (KL, ().
Now, if r := <, then r € (0,1) and §(Su, (S(K2)) < r6(S(K1),S(K2)).
Similarly, we can see that 0(Sv, (S(K1)) < rd(S(K1),S(K2)). Assume that
S(L1) = {Sz € S(K1) : 6(Sx, S(K3)) < rd(S(K1), S(K2))},
S(Lz) = {8y € S(K3) : 6(Sy, S(K1)) < ré(S(K1), S(K2))}-

Thus, (Su, Sv) € S(L1)xS(L2) and so, dist(S(L1), S(L2)) = dist(S (K1), S(K2)).
Moreover, (S(L1),S(Lz)) is a weakly compact and convex pair in X. We show
that T is cyclic on S(L1)US(Lz). Suppose Sz € S(L;) and Sy € S(K3). Then,
similar to proof of Theorem 2.6, Sz € S(A§) and Sy € S(B}); that is, x € Aj
and y € Bj. Thus,

|T(Sz) — T(Sy)|| = dist(S(A), S(B)) < 6(Sz, S(K32)) < rd(S(K1), S(K3)).
So, T(Sy) € B(T'(Sz);r6(S(K1), S(K2))); that is,
T(S(K2)) € B(T(Sz);ré6(S(K1), S(K2)))
and
S(K1) =eonT'(S(K2)) € B(T'(Sz);76(S(K1), S(K2))).

Therefore, §(T(Sx), 1)) < r6(S(K1),S(K2)); that is, T(Sz) € S(La).
Thus, T(S( 1)) C S(Lg). Similarly, T(S(Ls)) € S(Ly1), S(S(L1)) € S(L1)
and S(S( 2)) € S(Ls). Hence, T is cyclic and S is noncyclic on S(L1)US(Ly).
The minimality of (S(K7), (KQ)) now implies that

S(Ll) (Kl) and S(LQ):S(KQ)

S(K
L

Now, we have

6(S(K1), S(K2)) = sup 6(Sz,5(K2)) < ré(S(K1), S(K2)),

rze K,

which is a contradiction. O
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5. EXAMPLES

We clarify the above results with some examples.

Example 5.1. Let A = [—4,0] and B = [0,4] be subsets of the uniformly
convex Banach space (R, |.|). For any z € AU B we define
1 1
Tr = — 1% Sz = o

Then,

Moreover, for any (z,y) € A x B, we define

(2,y) = 0, if z=y
ey = 1, if x=#uy.

If (z,y) € A x B such that ||z — y|| = dist(S(A), S(B)) =0, then x = y and
[Tz — Tyl| = dist(S(4), S(B)), |5z — Sy = dist(S(A), S(B)).

Otherwise,

1Tz — Tyl

sy e = Sty - L
TGy T gt T Sy T ot

1 1
318y = Szl = S [1Sz - Syl

Sz — Syl

= a(z,y)||Sz — Syl + (1 — a(z, y)) max{6,[O*(y; 00)], §,[O*(x; 00)]}.

IN

Thus, (T; S) is a pointwise cyclic-noncyclic relatively nonexpansive pair involv-
ing orbits, and by Corollary 2.7, there exists (z,y) € A x B such that

Tz — Sz|| = dist(S(A), S(B)), ||Ty — Sy|| = dist(S(A), S(B)).

Example 5.2. Let A = [-4,—1] and B = [1,4] be subsets in (R,|.|). Let
Kl = [_47 _2]7 KZ = [274} and

—/—r -2, if z€A\K;
S VI + 2, if xe€B\Ks

_3 if ek,

3, if xe K.

Therefore, S is a noncyclic mapping. Moreover,

S(A)=[-4,-3]C A, S(B)=[3,4C B.

So, (S(A),S(B)) is a closed, convex and bounded pair and we have

dist(S(A), S(B)) = 6.
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Suppose that

V-r+2, if z€A\K;
—r =2, if xe€ B\ K,
3, if reKy

-3, if xe K.
Therefore, T is a cyclic mapping. Besides,

T(A) =[3,4) = S(B) C B, T(B)=[-4,-3] = S(A) C A.

Tx =

Moreover, we suppose that for any (z,y) € A x B,
Mxﬂ){L if (vy) € (A\K) x (B\ Ka)

0, otherwise.
If ||z — y|| = dist(S(A), S(B)), then (x,y) € K; x Ky and we have
1Sz — Sy|| = || =3 =3[ = 6 = dist(5(A), S(B))
and
[Tz =Tyl = I3 = (=3)]| = 6 = dist(S(A), S(B)).
Onherwise, for any (z,y) € (A\ K1) x (B \ K3), we have
1Tz =Tyl = V-2 +2 - (=vy =2
= V=T + i+ = VT2 (V=T -2
= [|Sy — Szf| = [[Sz — Sy
< a(z,y)[[Sz — Syl + (1 — a(z, y)) max{d, [O(y; 00)], 6, [O(z; 00)] }.

Thus, (T'; S) is a pointwise cyclic-noncyclic relatively nonexpansive pair involv-
ing orbits, and by Corollary 2.7, there exists (z,y) € A x B such that

| Tz — Sz|| = dist(S(A),S(B)), ||Ty— Sy|| = dist(S(A), S(B)).
In fact, for any (z,y) € Ky x Ks, we have
|Tz — Sz|| = 6 = dist(S(A),S(B)), ||Ty— Sy| =6 =dist(S(A4),S(B)).
We clarify the above result with an example.

Example 5.3. Assume that A = [-4,0] and B = [0, 4] are subsets of (R, |.]).
For any z € AU B, we set

1 1
Tm:Zx, szix.

Then,
T(A) =[-1,0] C [-2,0] = S(4), T(B)=][0,1] C[0,2] = S(B).

Moreover, we suppose that for any (z,y) € A x B,

(2.y) = 0, if z=y
TN, if ety
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If (x,y) € A x B such that ||z — y|| = dist(S(A4),S(B)) =0, then z = y and

1Tz — Ty|| = dist(S(A4),S(B)), ||Sz— Sy| = dist(S(A), S(B)).

Otherwise,
1 1 1.1 1
Te —Ty||=|-2—=y|=zllzz— =
1Tz = Tyl = 32 = 791l = 5152 — 5ul
1
= SlIsz - syl
< [|Sz — Syl

a(z,y)|[Sz = Syl + (1 — (=, y)) max{d.[O(y; o)}, 6, [O(x; 00)]}.

Thus, (T;S) is a pointwise noncyclic-noncyclic relatively nonexpansive pair
involving orbits, and by Corollary 3.3, there exists (zg,yo) € A X B such that

[0 — yol| = dist(S(A), S(B)).

In fact, for zg = 0 and yy = 0, we have Txg = xq, Tyg = yo and

[0 = yoll = dist(S(A), S(B)).
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