
@
Appl. Gen. Topol. 21, no. 2 (2020), 331-347

doi:10.4995/agt.2020.13926

c© AGT, UPV, 2020

Weak proximal normal structure and

coincidence quasi-best proximity points

Farhad Fouladi a, Ali Abkar a and Erdal Karapınar b,c

a Department of Pure Mathemathics, Faculty of Science, Imam Khomeini International University,

Qazvin 34149, Iran (fa folade@yahoo.com; abkar@sci.ikiu.ac.ir)
b ETSI Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Viet-

nam (erdalkarapinar@tdmu.edu.vn, erdalkarapinar@yahoo.com)
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Abstract

We introduce the notion of pointwise cyclic-noncyclic relatively non-
expansive pairs involving orbits. We study the best proximity point
problem for this class of mappings. We also study the same problem
for the class of pointwise noncyclic-noncyclic relatively nonexpansive
pairs involving orbits. Finally, under the assumption of weak proximal
normal structure, we prove a coincidence quasi-best proximity point
theorem for pointwise cyclic-noncyclic relatively nonexpansive pairs in-
volving orbits. Examples are provided to illustrate the observed results.
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1. Introduction

Let A,B be nonempty subsets of Banach space X. A mapping T : A∪B →
A ∪ B is said to be cyclic provided that T (A) ⊆ B and T (B) ⊆ A. On the
other hand, a mapping S : A∪B → A∪B is said to be noncyclic if S(A) ⊆ A
and S(B) ⊆ B.
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For a cyclic mapping T : A ∪B → A ∪B, a point p ∈ A ∪B is said to be a
best proximity point provided that

d(p, Tp) = dist(A,B).

Furthermore, we say that a pair (A,B) of subsets in a Banach space satisfies
a property if each of the sets A and B has that property. Similarly, the pair
(A,B) is called convex if both A and B are convex; moreover we write

(A,B) ⊆ (E,F ) ⇔ A ⊆ E,B ⊆ F.

In addition, we will use the following notations:

δ(A,B) = sup{‖x− y‖ : x ∈ A, y ∈ B};
δ(x,B) = sup{‖x− y‖ : y ∈ B}.

For a nonempty, bounded and convex subset F of a Banach space X, we write

rx(F ) = sup{‖x− y‖ : y ∈ F};
r(F ) = inf{rx(F ) : x ∈ F};
Fc = {x ∈ F : rx(F ) = r(F )}.

In 2017, M. Gabeleh introduced the notion of a pointwise cyclic relatively
nonexpansive mapping involving orbits, and proved a theorem on the existence
of best proximity points.

Definition 1.1 ([11]). Let (A,B) be a nonempty pair of subsets of a Banach
space X. A mapping T : A∪B → A∪B is said to be pointwise cyclic relatively
nonexpansive involving orbits if T is cyclic and for any (x, y) ∈ A × B, if
‖x− y‖ = dist(A,B), then

‖Tx− Ty‖ = dist(A,B),

and otherwise, there exists a function α : A×B → [0, 1] such that

‖Tx− Ty‖ ≤ α(x, y)‖x− y‖+ (1− α(x, y))min{δx[O2(y;∞)], δy[O2(x;∞)]},

where, for any (x, y) ∈ A×B

δx[O2(y;∞)] = sup
n∈N

‖x− T 2ny‖, δy[O2(x;∞)] = sup
n∈N

‖T 2nx− y‖.

Note that, if A = B, then we say that T is a pointwise nonexpansive mapping
involving orbits. In [12], M. Gabeleh, O. Olela Otafudu, and N. Shahzad
considered a pair of mappings T and S. According to [12], for a nonempty pair
of subsets (A,B) in a metric space (X, d), and a cyclic-noncyclic pair (T ;S) on
A∪B (that is, T : A∪B → A∪B is cyclic and S : A∪B → A∪B is noncyclic);
they called a point p ∈ A ∪B a coincidence best proximity point for (T ;S) if

d(Sp, Tp) = dist(A,B).

Note that if S = I, the identity map on A ∪ B, then p ∈ A ∪ B is a best
proximity point for T .
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In 2019, A. Abkar and M. Norouzian introduced the concept of coincidence
quasi-best proximity point and proved the existence of such points for quasi-
cyclic-noncyclic contraction pairs. We remark that the coincidence quasi-best
proximity point theory is more general and includes both the best proximity
point theory and the coincidence best proximity point theory.

Definition 1.2 ([2]). Let (A,B) be a nonempty pair of subsets of a metric
space (X, d) and T, S : X → X be a quasi-cyclic-noncyclic pair on A ∪ B;
that is, T (A) ⊆ S(B) and T (B) ⊆ S(A). A point p ∈ A ∪ B is said to be a
coincidence quasi-best proximity point for (T ;S) if

d(Sp, Tp) = dist(S(A), S(B)).

In case that S = I, the point p reduces to a best proximity point for T .
In this article, we will focus on the coincidence quasi-best proximity point

problem for pointwise cyclic-noncyclic and noncyclic-noncyclic relatively non-
expansive pairs. To do this, we need to recall some definitions and theorems.
We begin with the following definition which is a modification of a concept in
[8].

Definition 1.3. Let (A,B) be a nonempty pair of subsets of a Banach space
X and S : A ∪ B → A ∪ B be a noncyclic mapping on A ∪ B. A convex pair
(S(A), S(B)) is called a proximal pair if for each (a1, b1) ∈ A×B, there exists
(a2, b2) ∈ A×B such that for each i, j ∈ {1, 2} with i ∕= j we have

‖Sai − Sbj‖ = dist(S(A), S(B)).

Given (A,B) a pair of nonempty subsets of a Banach spaceX, the associated
proximal pair of (S(A), S(B)) is the pair (S(As

0), S(B
s
0)) given by

As
0 := {a ∈ A : ‖Sa− Sb‖ = dist(S(A), S(B)) for some b ∈ B},

Bs
0 := {b ∈ B : ‖Sa− Sb‖ = dist(S(A), S(B)) for some a ∈ A},

In fact, if the pair (S(A), S(B)) is nonempty, weakly compact and convex,
then its associated pair (S(As

0), S(B
s
0)) is also nonempty, weakly compact and

convex. Furthermore, we have

dist(S(As
0), S(B

s
0)) = dist(S(A), S(B)).

The proof of the above statements goes in the same lines as in the case for the
pair (A,B); see for instance [21]. Here’s a definition we derive from [8] and
we’ve made some changes to meet our needs.

Definition 1.4. Let (K1,K2) be a nonempty pair of subsets of a Banach space
X and S : K1∪K2 → K1∪K2 be a noncyclic mapping on K1∪K2. We say that
a convex pair (S(K1), S(K2)) has proximal normal structure (PNS) if for any
closed, bounded, convex and proximal pair (S(H1), S(H2)) ⊆ (S(K1), S(K2))
which

dist(S(H1), S(H2)) = dist(S(K1), S(K2)), δ(S(H1), S(H2)) > dist(S(H1), S(H2)),
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there exists (x, y) ∈ H1 ×H2 such that

δ(Sx, S(H2)) < δ(S(H1), S(H2)), δ(Sy, S(H1)) < δ(S(H1), S(H2)).

Note that the pair (K,K) has proximal normal structure if and only if K
has normal structure in the sense of Brodskii and Milman (see [4] and [20]).

Theorem 1.5 ([8]). Every bounded, closed and convex pair in a uniformly
convex Banach space X has proximal normal structure.

The following definition is a modification of what already appeared in [11].

Definition 1.6. Let (K1,K2) be a nonempty pair of subsets of a Banach
space X and S : K1 ∪ K2 → K1 ∪ K2 be a noncyclic mapping on K1 ∪ K2.
We say that a convex pair (S(K1), S(K2)) has weak proximal normal structure
(WPNS) if for each nonempty, weakly compact and convex proximal pair
(S(H1), S(H2)) ⊆ (S(K1), S(K2)) for which

dist(S(H1), S(H2)) = dist(S(K1), S(K2)), δ(S(H1), S(H2)) > dist(S(H1), S(H2)),

there exists (x, y) ∈ H1 ×H2 such that

δ(Sx, S(H2)) < δ(S(H1), S(H2)), δ(Sy, S(H1)) < δ(S(H1), S(H2)).

In this article, we intend to generalize some results of [8] and [11]. Our results
have the following advantages: First, we introduce the class of the pointwise
cyclic-noncyclic and noncyclic-noncyclic relatively nonexpansive pairs involving
orbits, that in particular, includes the class of pointwise cyclic-noncyclic and
noncyclic-noncyclic relatively nonexpansive mappings involving orbits. Second,
we consider a pair of mappings while the previous articles are concerned with
one single mapping, and finally, we study the coincidence quasi-best proximity
point problem, which in particular, includes the best proximity point problem
as a special case.

2. Cyclic-noncyclic pairs

We begin this section by introducing the new concept of a pointwise
cyclic-noncyclic relatively nonexpansive pair involving orbits.

Definition 2.1. Assume that (A,B) is a nonempty pair of subsets of a Banach
space X and T, S : A ∪ B → A ∪ B are two mappings. A pair (T ;S) is said
to be a pointwise cyclic-noncyclic relatively nonexpansive pair involving orbits
if (T ;S) is a cyclic-noncyclic pair and for any (x, y) ∈ A × B, if ‖x − y‖ =
dist(S(A), S(B)), then

‖Tx− Ty‖ = dist(S(A), S(B)), ‖Sx− Sy‖ = dist(S(A), S(B))

and otherwise, there exists a function α : A×B → [0, 1] such that

‖Tx−Ty‖ ≤ α(x, y)‖Sx−Sy‖+(1−α(x, y))max{δx[O2(y;∞)], δy[O2(x;∞)]},
where, for any (x, y) ∈ A×B

δx[O2(y;∞)] = sup
n∈N

‖x− T 2ny‖, δy[O2(x;∞)] = sup
n∈N

‖T 2nx− y‖.
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We note that if S = I, then the class of pointwise cyclic-noncyclic relatively
nonexpansive pairs involving orbits reduces to the class of pointwise cyclic
relatively nonexpansive mappings involving orbits introduced in [11].

Definition 2.2 ([20]). We say that a Banach space X has the property (C) if
every bounded decreasing sequence of nonempty, closed and convex subsets of
X have a nonempty intersection.

For C ⊆ X, we denote the diameter of C by δ(C). A point x ∈ C is a
diametral point of C provided that sup{‖x − y‖ : y ∈ C} = δ(C). A convex
set K ⊆ X is said to have normal structure if for each bounded convex subset
H of K which contains at least two points, there is some point x ∈ H which is
not a diametral point of H.

Lemma 2.3 ([20]). Assume that X is a Banach space with the property (C),
then Fc is nonempty, closed and convex.

Lemma 2.4 ([20]). Assume that F is a closed and convex subset of a Banach
space X which contains at least two points. If F has normal structure, then
δ(Fc) < δ(F ).

Theorem 2.5. Assume that K is a nonempty, bounded, closed and convex
subset of a Banach space X with property (C). Suppose that K has normal
structure. Let (T, S) be a pointwise cyclic-noncyclic relatively nonexpansive pair
involving orbits on K. Then there exists a point p ∈ K such that ‖Tp−Sp‖ = 0.

Proof. Suppose Γ denotes the collection of all nonempty, closed and convex
subsets of K such that (T, S) is a pointwise cyclic-noncyclic relatively non-
expansive pair involving orbits on K. By Zorn’s Lemma, Γ has a minimal
member, say F . We complete the proof by verifying that F consists of a single
point. Assume that x ∈ Fc. In this case, for any y ∈ Fc we have

‖Sx− y‖ ≤ sup{‖z − y‖ : z ∈ F}
= ry(F ) = r(F ),

therefore,

sup{‖Sx− y‖ : x ∈ Fc} ≤ r(F ).

Then,

rSx(F ) = sup{‖Sx− y‖ : y ∈ F}
≤ sup{‖Sx− y‖ : x ∈ Fc, y ∈ F}
≤ sup{r(F ), y ∈ F}
= r(F ).
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Then, for any x ∈ Fc we have rSx(F ) = r(F ); that is, S : Fc → Fc. Moreover,
for any x, y ∈ Fc we have ‖Sx−Sy‖ ≤ r(F ). On other hand, for any x, y ∈ Fc,

δx[O2(y;∞)] = sup
n∈N

‖x− T 2ny‖

≤ sup{‖x− z‖ : z ∈ F}
= rx(F ) = r(F ).

Similarly, for any x, y ∈ Fc we have δy[O2(x;∞)] ≤ r(F ). In particular, for
each x, y ∈ Fc,

‖Tx− Ty‖ ≤ α(x, y)‖Sx− Sy‖+ (1− α(x, y))max{δx[O2(y;∞)], δy[O2(x;∞)]}
≤ α(x, y)r(F ) + (1− α(x, y))r(F )

= r(F );

that is, rTx(F ) = r(F ). Then, T : Fc → Fc. By Lemma 2.3, we have Fc ∈ Γ. If
δ(F ) > 0, then by Lemma 2.4, Fc is properly contained in F which contradicts
the minimality of F . Hence δ(F ) = 0 and F consists of a single point; this is,
there exists a point p ∈ K such that Tp = p and Sp = p. So, there exists a
p ∈ K such that ‖Tp− p‖ = 0. □
Theorem 2.6. Assume that (A,B) is a nonempty pair of subsets in a Banach
space X with PNS. Let T, S : A ∪B → A ∪B be a pointwise cyclic-noncyclic
relatively nonexpansive pair involving orbits, and such that T (A) ⊆ S(B) and
T (B) ⊆ S(A). Suppose that (S(A), S(B)) is a weakly compact and convex pair
of subsets in X. Then there exists (x, y) ∈ A × B such that for p ∈ {x, y} we
have

‖Tp− Sp‖ = dist(S(A), S(B)).

Proof. The result follows from Theorem 2.5 if dist(S(A), S(B)) = 0, so we
assume that dist(S(A), S(B)) > 0. Let (S(As

0), S(B
s
0)) be the associated prox-

imal pair of (S(A), S(B)). We have already observed that S(As
0) and S(Bs

0)
are nonempty, weakly compact and convex, moreover

dist(S(As
0), S(B

s
0)) = dist(S(A), S(B)).

Assume that x ∈ As
0, then there exists y ∈ Bs

0 such that ‖Sx − Sy‖ =
dist(S(A), S(B)). On other hand, (T ;S) is a pointwise cyclic-noncyclic rel-
atively nonexpansive pair involving orbits. Thus,

‖T (Sx)− T (Sy)‖ = dist(S(A), S(B)), ‖S(Sx)− S(Sy)‖ = dist(S(A), S(B)).

This implies that

‖S(Sx)− S(Sy)‖ = dist(S(As
0), S(B

s
0)),

and

‖T (Sx)− T (Sy)‖ = dist(S(As
0), S(B

s
0)).

Therefore, we have

T (Sx) ∈ S(Bs
0), T (Sy) ∈ S(As

0);
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that is,

T (S(As
0)) ⊆ S(Bs

0), T (S(Bs
0)) ⊆ S(As

0).

Similarly,

S(S(As
0)) ⊆ S(As

0), S(S(Bs
0)) ⊆ S(Bs

0).

So, for each x ∈ As
0 and y ∈ Bs

0 we have

‖T (Sx)− T (Sy)‖ = dist(S(As
0), S(B

s
0)),

and

‖S(Sx)− S(Sy)‖ = dist(S(As
0), S(B

s
0)).

Clearly (S(As
0), S(B

s
0)) also has proximal normal structure. Now, assume that

Ω denotes the collection of all nonempty subsets S(F ) of S(As
0) ∪ S(Bs

0) for
which S(F )∩S(As

0) and S(F )∩S(Bs
0) are nonempty, closed, convex, and such

that

T (S(F ) ∩ S(As
0)) ⊆ S(F ) ∩ S(Bs

0), T (S(F ) ∩ S(Bs
0)) ⊆ S(F ) ∩ S(As

0),

and

S(S(F ) ∩ S(As
0)) ⊆ S(F ) ∩ S(As

0), S(S(F ) ∩ S(Bs
0)) ⊆ S(F ) ∩ S(Bs

0),

and so

dist(S(F ) ∩ S(As
0), S(F ) ∩ S(Bs

0)) = dist(S(A), S(B)).

Since, S(As
0)∪S(Bs

0) ∈ Ω and Ω is nonempty, we may assume that {S(Fα)}α∈Ω

is a decreasing chain in Ω such that S(F0) = ∩α∈ΩS(Fα). Then S(F0) ∩
S(As

0) = ∩α∈Ω(S(Fα) ∩ S(As
0)), so S(F0) ∩ S(As

0) is nonempty, closed and
convex. Similarly, S(F0) ∩ S(Bs

0) is nonempty, closed and convex. Also,

T (S(F0) ∩ S(As
0)) ⊆ S(F0) ∩ S(Bs

0), T (S(F0) ∩ S(Bs
0)) ⊆ S(F0) ∩ S(As

0)

and

S(S(F0) ∩ S(As
0)) ⊆ S(F0) ∩ S(As

0), S(S(F0) ∩ S(Bs
0)) ⊆ S(F0) ∩ S(Bs

0).

To show that S(F0) ∈ Ω we only need to verify that

dist(S(F0) ∩ S(As
0), S(F0) ∩ S(Bs

0)) = dist(S(A), S(B)).

Note that for each α ∈ J it is possible to select

Sxα ∈ S(Fα) ∩ S(As
0), Syα ∈ S(Fα) ∩ S(Bs

0)

such that

‖Sxα − Syα‖ = dist(S(A), S(B)).

It is also possible to choose convergent subnets {Sxα′} and {Syα′} (with the
same indices), say

lim
α′

Sxα′ = Sx, lim
α′

Syα′ = Sy.
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Then clearly Sx ∈ S(F0) ∩ S(As
0) and Sy ∈ S(F0) ∩ S(Bs

0). By weak lower
semicontinuity of the norm, we have ‖Sx− Sy‖ ≤ dist(S(A), S(B)); hence,

dist(S(A), S(B)) ≤ dist(S(F0) ∩ S(As
0), S(F0) ∩ S(Bs

0)) ≤ ‖Sx− Sy‖ ≤ dist(S(A), S(B)).

Therefore,

dist(S(F0) ∩ S(As
0), S(F0) ∩ S(Bs

0)) = dist(S(A), S(B)).

Since, every chain in Ω is bounded below by a member of Ω, Zorn’s Lemma
implies that Ω has a minimal element, say S(K). Assume that S(K1) = S(K)∩
S(As

0) and S(K2) = S(K) ∩ S(Bs
0). Observe that if

δ(S(K1), S(K2)) = dist(S(K1), S(K2)),

then for any x ∈ S(K1), we have

‖Tx− Sx‖ = dist(S(K1), S(K2)) = dist(S(A), S(B)).

Similarly, for any y ∈ S(K2), we have

‖Ty − Sy‖ = dist(S(K1), S(K2)) = dist(S(A), S(B)).

Now, we assume that

δ(S(K1), S(K2)) > dist(S(K1), S(K2)).

We complete the proof by showing that this leads to a contradiction. Since
S(K) is minimal, it follows that (S(K1), S(K2)) is a proximal pair in (S(As

0), S(B
s
0)).

By the PNS property of X, there exist (x1, y1) ∈ K1 ×K2 and β ∈ (0, 1) such
that

δ(Sx1, S(K2)) ≤ βδ(S(K1), S(K2)) and δ(Sy1, S(K1)) ≤ βδ(S(K1), S(K2)).

Since, (S(K1), S(K2)) is a proximal pair, there exists (x2, y2) ∈ K1 ×K2 such
that for each distinct i, j ∈ {1, 2}, we have

‖Sxi − Syj‖ = dist(S(K1), S(K2)).

So, for each u ∈ S(K2) we have

‖Sx1 + Sx2

2
− u‖ ≤ ‖Sx1 − u

2
‖+ ‖Sx2 − u

2
‖

≤ βδ(S(K1), S(K2))

2
+

δ(S(K1), S(K2))

2
= αδ(S(K1), S(K2)),

where α = 1+β
2 ∈ (0, 1). Assume that Sw1 = (Sx1+Sx2)

2 and Sw2 = (Sy1+Sy2)
2 .

Then

δ(Sw1, S(K2)) ≤ αδ(S(K1), S(K2)) and δ(Sw2, S(K1)) ≤ αδ(S(K1), S(K2)).
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Since,

dist(S(K1), S(K2)) ≤ ‖Sw1 − Sw2‖

= ‖ (Sx1 + Sx2)

2
− (Sy1 + Sy2)

2
‖

≤ 1

2
[‖Sx1 − Sy2‖+ ‖Sx2 − Sy1‖]

= dist(S(K1), S(K2)),

we have ‖Sw1 − Sw2‖ = dist(S(K1), S(K2)). Put

S(L1) = {Sx ∈ S(K1) : δ(Sx, S(K2)) ≤ αδ(S(K1), S(K2))},
S(L2) = {Sy ∈ S(K2) : δ(Sy, S(K1)) ≤ αδ(S(K1), S(K2))}.

Then for each i = 1, 2, S(Li) is a nonempty, closed and convex subset of S(Ki)
and since Sw1 ∈ S(L1) and Sw2 ∈ S(L2), we have

dist(S(K1), S(K2)) ≤ dist(S(L1), S(L2)) ≤ ‖Sw1 − Sw2‖ = dist(S(K1), S(K2)).

Therefore,

dist(S(L1), S(L2)) = dist(S(K1), S(K2)) = dist(S(A), S(B)).

Now, assume that Sx ∈ S(L1) and Sy ∈ S(K2). Then Sx ∈ S(As
0) and

Sy ∈ S(Bs
0); that is, x ∈ As

0 and y ∈ Bs
0. Thus,

‖T (Sx)− T (Sy)‖ = dist(S(A), S(B)) ≤ δ(Sx, S(K2)) ≤ αδ(S(K1), S(K2)).

So, T (Sy) ∈ B(T (Sx);αδ(S(K1), S(K2))) ∩ S(K1); that is,

T (S(K2)) ⊆ B(T (Sx);αδ(S(K1), S(K2))) ∩ S(K1) := S(K ′
1).

Clearly S(K ′
1) is closed and convex. Also, if Sy ∈ S(K2) satisfies ‖Sx−Sy‖ =

dist(S(A), S(B)), then

‖T (Sx)− T (Sy)‖ = dist(S(K1), S(K2)).

Since, T (Sy) ∈ S(K ′
1), we conclude that dist(S(K

′
1), S(K2)) = dist(S(A), S(B)).

Therefore, S(K ′
1) ∪ S(K2) ∈ Ω and by the minimality of S(K) we must have

S(K ′
1) = S(K1). Hence,

S(K1) ⊆ B(T (Sx);αδ(S(K1), S(K2)));

that is, δ(T (Sx), S(K1)) ≤ αδ(S(K1), S(K2)) and since Sx ∈ S(L1) was arbi-
trary, we obtain T (S(L1)) ⊆ S(L2). Similarly, T (S(L2)) ⊆ S(L1), S(S(L1)) ⊆
S(L1) and S(S(L2)) ⊆ S(L2). Thus, S(L1)∪S(L2) ∈ Ω, but δ(S(L1), S(L2)) ≤
αδ(S(K1), S(K2)), contradicting the minimality of S(K). □

Corollary 2.7. Assume that (A,B) is a nonempty pair of subsets in a uni-
formly convex Banach space X. Let T, S : A ∪ B → A ∪ B be a pointwise
cyclic-noncyclic relatively nonexpansive pair involving orbits, and such that
T (A) ⊆ S(B) and T (B) ⊆ S(A). Suppose that (S(A), S(B)) is a bounded,
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closed and convex pair of subsets in X. Then there exists (x, y) ∈ A× B such
that for p ∈ {x, y} we have

‖Tp− Sp‖ = dist(S(A), S(B)).

3. Noncyclic-noncyclic pairs

In this section we study the case in which both mappings are noncyclic. In-
deed, we first introduce a pointwise noncyclic-noncyclic relatively nonexpansive
pair involving orbits, and proceed to study its best proximity points.

Definition 3.1. Assume that (A,B) is a nonempty pair of subsets of a Banach
space X and T, S : A ∪ B → A ∪ B are two mappings. A pair (T ;S) is said
to be a pointwise noncyclic-noncyclic relatively nonexpansive pair involving
orbits if (T ;S) is a noncyclic-noncyclic pair and for any (x, y) ∈ A × B, if
‖x− y‖ = dist(S(A), S(B)), then

‖Tx− Ty‖ = dist(S(A), S(B)), ‖Sx− Sy‖ = dist(S(A), S(B))

and otherwise, there exists a function α : A×B → [0, 1] such that

‖Tx− Ty‖ ≤ α(x, y)‖Sx− Sy‖+ (1− α(x, y))max{δx[O(y;∞)], δy[O(x;∞)]},
where, for any (x, y) ∈ A×B

δx[O(y;∞)] = sup
n∈N

‖x− Tny‖, δy[O(x;∞)] = sup
n∈N

‖Tnx− y‖.

Theorem 3.2. Assume that (A,B) is a nonempty pair of subsets in a strictly
convex Banach space X with PNS, and T, S : A ∪ B → A ∪ B is a point-
wise noncyclic-noncyclic relatively nonexpansive pair involving orbits such that
T (A) ⊆ S(A) and T (B) ⊆ S(B). Suppose that (S(A), S(B)) is a weakly com-
pact and convex pair of subsets in X. Then, there exists x0 ∈ A and y0 ∈ B
such that

Tx0 = x0, T y0 = y0

and

‖x0 − y0‖ = dist(S(A), S(B)).

Proof. Suppose that (S(As
0), S(B

s
0)) is the associated proximal pair of (S(A), S(B)),

and choose x ∈ As
0. Then there exists y ∈ Bs

0 such that ‖Sx − Sy‖ =
dist(S(A), S(B)), and furthermore

‖T (Sx)− T (Sy)‖ = dist(S(A), S(B)) = dist(S(As
0), S(B

s
0)).

Thus, T : S(As
0) → S(As

0) and similarly, T : S(Bs
0) → S(Bs

0). Now let Ω
denote the collection of nonempty subsets S(F ) of S(As

0) ∪ S(Bs
0) for which

S(F ) ∩ S(As
0) and S(F ) ∩ S(Bs

0) are nonempty, closed and convex,

T (S(F ) ∩ S(As
0)) ⊆ S(F ) ∩ S(As

0), T (S(F ) ∩ S(Bs
0)) ⊆ S(F ) ∩ S(Bs

0),

S(S(F ) ∩ S(As
0)) ⊆ S(F ) ∩ S(As

0), S(S(F ) ∩ S(Bs
0)) ⊆ S(F ) ∩ S(Bs

0)
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and

dist(S(F ) ∩ S(As
0), S(F ) ∩ S(Bs

0)) = dist(S(A), S(B)).

Since, S(As
0) ∪ S(Bs

0) ∈ Ω, Ω is nonempty. We proceed as in the proof of
Theorem 2.6 to show that Ω has a minimal element S(K). Assume that
S(K1) = S(K) ∩ S(As

0), and S(K2) = S(K) ∩ S(Bs
0). First, assume that

one of the sets is a singleton, say S(K1) = {x}. Then Tx = x and if y is the
unique point of S(K2) for which ‖x− y‖ = dist(S(K1), S(K2)), it must be the
case that Ty = y. Since, ‖y − x‖ = dist(S(A), S(B)), we are finished. So, we
may assume that S(K1) and S(K2) have positive diameter and because the
space is strictly convex, this in turn implies that

δ(S(K1), S(K2)) > dist(S(K1), S(K2)).

We shall see that this leads to a contradiction. Since (S(As
0), S(B

s
0)) has prox-

imal normal structure, we may define S(L1) and S(L2) as in the proof of The-
orem 2.6. Choose Sx ∈ S(L1). For any Sy ∈ S(K2), we have Sx ∈ S(As

0) and
Sy ∈ S(Bs

0); that is, x ∈ As
0 and y ∈ Bs

0. Thus, ‖Sx− Sy‖ = dist(S(A), S(B))
and so,

‖T (Sx)− T (Sy)‖ = dist(S(A), S(B)) ≤ δ(Sx, S(K2)) ≤ αδ(S(K1), S(K2)).

This implies that

T (Sy) ∈ B(T (Sx);αδ(S(K1), S(K2))) ∩ S(K2),

thus,

T (S(K2)) ⊆ B(T (Sx);αδ(S(K1), S(K2))) ∩ S(K2).

It follows from the minimality of S(K) that S(K2) ⊆ B(T (Sx);αδ(S(K1), S(K2)))
and this in turn implies that

δ(T (Sx), S(K2)) ≤ αδ(S(K1), S(K2)).

Therefore, T (Sx) ∈ S(L1); in fact T (S(L1)) ⊆ S(L1). Similarly, T (S(L2)) ⊆
S(L2), S(S(L1)) ⊆ S(L1) and S(S(L2)) ⊆ S(L2). Since, S(L1) and S(L2) are,
respectively, nonempty, closed and convex subsets of S(K1) and S(K2) and
since for α < 1 we have

δ(S(L1), S(L2)) ≤ αδ(S(K1), S(K2)),

which contradicts the minimality of S(K). □

Corollary 3.3. Assume that (A,B) is a nonempty pair of subsets in a uni-
formly convex Banach space X and T, S : A ∪ B → A ∪ B is a pointwise
noncyclic-noncyclic relatively nonexpansive pair involving orbits such that T (A) ⊆
S(A) and T (B) ⊆ S(B). Suppose that (S(A), S(B)) is a bounded, closed and
convex pair of subsets in X. Then, there exists x0 ∈ A and y0 ∈ B such that

Tx0 = x0, T y0 = y0

and

‖x0 − y0‖ = dist(S(A), S(B)).
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4. WPNS and cyclic-noncyclic pairs

In this section, and under weak proximal normal structure, we discuss the
coincidence quasi-best proximity point problem for pointwise cyclic-noncyclic
relatively nonexpansive pairs involving orbits.

Lemma 4.1. Assume that (A,B) is a nonempty pair of subsets in a Banach
space X, and T, S : A ∪ B → A ∪ B is a pointwise cyclic-noncyclic relatively
nonexpansive pair involving orbits such that T (A) ⊆ S(B) and T (B) ⊆ S(A).
Suppose that (S(A), S(B)) is a weakly compact and convex pair of subsets in X.
Then, there exists (S(K1), S(K2)) ⊆ (S(As

0), S(B
s
0)) ⊆ (S(A), S(B)) which is

minimal with respect to being nonempty, closed, convex and T and S-invariant
pair of subsets of (S(A), S(B)), such that

dist(S(K1), S(K2)) = dist(S(A), S(B)).

Moreover, the pair (S(K1), S(K2)) is proximal.

Proof. The proof essentially goes in the same lines as in the proof of Theorem
2.6. We omit the details. □

Theorem 4.2. Assume that (A,B) is a nonempty pair of subsets in a Ba-
nach space X with WPNS, and T, S : A ∪ B → A ∪ B is a pointwise cyclic-
noncyclic relatively nonexpansive pair involving orbits such that T (A) ⊆ S(B)
and T (B) ⊆ S(A). Suppose that (S(A), S(B)) is a weakly compact and convex
pair of subsets in X. Then (T ;S) has a coincidence quasi-best proximity point.

Proof. By Lemma 4.1, assume that (S(K1), S(K2)) is a minimal, weakly com-
pact, convex and proximal pair which is T and S-invariant, and such that
dist(S(K1), S(K2)) = dist(S(A), S(B)). Notice that

con(T (S(K1))) ⊆ S(K2)

and so,

T (con(T (S(K1)))) ⊆ T (S(K2)) ⊆ con(T (S(K2))).

Similarly,

T (con(T (S(K2)))) ⊆ con(T (S(K1)));

that is, T is cyclic on con(T (S(K1))) ∪ con(T (S(K2))).
On other hand, S is noncyclic on con(S(S(K1))) ∪ con(S(S(K2))). The

minimality of (S(K1), S(K2)) implies that

con(T (S(K1))) = S(K2) and con(T (S(K2))) = S(K1).

Besides,

con(S(S(K1))) = S(K1) and con(S(S(K2))) = S(K2).

We note that if δ(S(K1), S(K2)) = dist(S(K1), S(K2)) = dist(S(A), S(B)),
then every point of S(K1) ∪ S(K2) is a coincidence quasi-best proximity point
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of (T ;S) and we are finished. Otherwise, since (S(A), S(B)) has WPNS, there
exists a point (x1, y1) ∈ K1 ×K2 and c ∈ (0, 1), so that

δ(Sx1, S(K2)) ≤ c δ(S(K1), S(K2)), δ(Sy1, S(K1)) ≤ c δ(S(K1), S(K2)).

Since (S(K1), S(K2)) is a proximal pair, there exists (x2, y2) ∈ K1 ×K2 such
that

‖Sx1 − Sy2‖ = ‖Sx2 − Sy1‖ = dist(S(A), S(B)).

Put Su := Sx1+Sx2

2 and Sv := Sy1+Sy2

2 . Then, (Su, Sv) ∈ S(K1)× S(K2) and

‖Su− Sv‖ = dist(S(K1), S(K2)).

Moreover, for each z ∈ K2, we have

‖Su− Sz‖ = ‖Sx1 + Sx2

2
− Sz‖

≤ 1

2
[‖Sx1 − Sz‖+ ‖Sx2 − Sz‖]

≤ c+ 1

2
δ(S(K1), S(K2)).

Now, if r := c+1
2 , then r ∈ (0, 1) and δ(Su, (S(K2)) ≤ rδ(S(K1), S(K2)).

Similarly, we can see that δ(Sv, (S(K1)) ≤ rδ(S(K1), S(K2)). Assume that

S(L1) = {Sx ∈ S(K1) : δ(Sx, S(K2)) ≤ rδ(S(K1), S(K2))},
S(L2) = {Sy ∈ S(K2) : δ(Sy, S(K1)) ≤ rδ(S(K1), S(K2))}.

Thus, (Su, Sv) ∈ S(L1)×S(L2) and so, dist(S(L1), S(L2)) = dist(S(K1), S(K2)).
Moreover, (S(L1), S(L2)) is a weakly compact and convex pair in X. We show
that T is cyclic on S(L1)∪S(L2). Suppose Sx ∈ S(L1) and Sy ∈ S(K2). Then,
similar to proof of Theorem 2.6, Sx ∈ S(As

0) and Sy ∈ S(Bs
0); that is, x ∈ As

0

and y ∈ Bs
0. Thus,

‖T (Sx)− T (Sy)‖ = dist(S(A), S(B)) ≤ δ(Sx, S(K2)) ≤ rδ(S(K1), S(K2)).

So, T (Sy) ∈ B(T (Sx); rδ(S(K1), S(K2))); that is,

T (S(K2)) ⊆ B(T (Sx); rδ(S(K1), S(K2)))

and

S(K1) = conT (S(K2)) ⊆ B(T (Sx); rδ(S(K1), S(K2))).

Therefore, δ(T (Sx), S(K1)) ≤ rδ(S(K1), S(K2)); that is, T (Sx) ∈ S(L2).
Thus, T (S(L1)) ⊆ S(L2). Similarly, T (S(L2)) ⊆ S(L1), S(S(L1)) ⊆ S(L1)
and S(S(L2)) ⊆ S(L2). Hence, T is cyclic and S is noncyclic on S(L1)∪S(L2).
The minimality of (S(K1), S(K2)) now implies that

S(L1) = S(K1) and S(L2) = S(K2).

Now, we have

δ(S(K1), S(K2)) = sup
x∈K1

δ(Sx, S(K2)) ≤ rδ(S(K1), S(K2)),

which is a contradiction. □
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5. Examples

We clarify the above results with some examples.

Example 5.1. Let A = [−4, 0] and B = [0, 4] be subsets of the uniformly
convex Banach space (R, |.|). For any x ∈ A ∪B we define

Tx = −1

4
x, Sx =

1

2
x.

Then,

T (A) = [0, 1] ⊆ [0, 2] = S(B), T (B) = [−1, 0] ⊆ [−2, 0] = S(A).

Moreover, for any (x, y) ∈ A×B, we define

α(x, y) =

!
0, if x = y

1, if x ∕= y.

If (x, y) ∈ A×B such that ‖x− y‖ = dist(S(A), S(B)) = 0, then x = y and

‖Tx− Ty‖ = dist(S(A), S(B)), ‖Sx− Sy‖ = dist(S(A), S(B)).

Otherwise,

‖Tx− Ty‖ = ‖1
4
y − 1

4
x‖ =

1

2
‖1
2
y − 1

2
x‖

=
1

2
‖Sy − Sx‖ =

1

2
‖Sx− Sy‖

≤ ‖Sx− Sy‖
= α(x, y)‖Sx− Sy‖+ (1− α(x, y))max{δx[O2(y;∞)], δy[O2(x;∞)]}.

Thus, (T ;S) is a pointwise cyclic-noncyclic relatively nonexpansive pair involv-
ing orbits, and by Corollary 2.7, there exists (x, y) ∈ A×B such that

‖Tx− Sx‖ = dist(S(A), S(B)), ‖Ty − Sy‖ = dist(S(A), S(B)).

Example 5.2. Let A = [−4,−1] and B = [1, 4] be subsets in (R, |.|). Let
K1 = [−4,−2], K2 = [2, 4] and

Sx =

"
###$

###%

−
√
−x− 2, if x ∈ A \K1√

x+ 2, if x ∈ B \K2

−3, if x ∈ K1

3, if x ∈ K2.

Therefore, S is a noncyclic mapping. Moreover,

S(A) = [−4,−3] ⊆ A, S(B) = [3, 4] ⊆ B.

So, (S(A), S(B)) is a closed, convex and bounded pair and we have

dist(S(A), S(B)) = 6.
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Suppose that

Tx =

"
###$

###%

√
−x+ 2, if x ∈ A \K1

−
√
x− 2, if x ∈ B \K2

3, if x ∈ K1

−3, if x ∈ K2.

Therefore, T is a cyclic mapping. Besides,

T (A) = [3, 4] = S(B) ⊆ B, T (B) = [−4,−3] = S(A) ⊆ A.

Moreover, we suppose that for any (x, y) ∈ A×B,

α(x, y) =

!
1, if (x, y) ∈ (A \K1)× (B \K2)

0, otherwise.

If ‖x− y‖ = dist(S(A), S(B)), then (x, y) ∈ K1 ×K2 and we have

‖Sx− Sy‖ = ‖ − 3− 3‖ = 6 = dist(S(A), S(B))

and

‖Tx− Ty‖ = ‖3− (−3)‖ = 6 = dist(S(A), S(B)).

Onherwise, for any (x, y) ∈ (A \K1)× (B \K2), we have

‖Tx− Ty‖ = ‖
√
−x+ 2− (−√

y − 2)‖
= ‖

√
−x+

√
y + 4‖ = ‖√y + 2− (−

√
−x− 2)‖

= ‖Sy − Sx‖ = ‖Sx− Sy‖
≤ α(x, y)‖Sx− Sy‖+ (1− α(x, y))max{δx[O(y;∞)], δy[O(x;∞)]}.

Thus, (T ;S) is a pointwise cyclic-noncyclic relatively nonexpansive pair involv-
ing orbits, and by Corollary 2.7, there exists (x, y) ∈ A×B such that

‖Tx− Sx‖ = dist(S(A), S(B)), ‖Ty − Sy‖ = dist(S(A), S(B)).

In fact, for any (x, y) ∈ K1 ×K2, we have

‖Tx− Sx‖ = 6 = dist(S(A), S(B)), ‖Ty − Sy‖ = 6 = dist(S(A), S(B)).

We clarify the above result with an example.

Example 5.3. Assume that A = [−4, 0] and B = [0, 4] are subsets of (R, |.|).
For any x ∈ A ∪B, we set

Tx =
1

4
x, Sx =

1

2
x.

Then,

T (A) = [−1, 0] ⊆ [−2, 0] = S(A), T (B) = [0, 1] ⊆ [0, 2] = S(B).

Moreover, we suppose that for any (x, y) ∈ A×B,

α(x, y) =

!
0, if x = y

1, if x ∕= y.
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If (x, y) ∈ A×B such that ‖x− y‖ = dist(S(A), S(B)) = 0, then x = y and

‖Tx− Ty‖ = dist(S(A), S(B)), ‖Sx− Sy‖ = dist(S(A), S(B)).

Otherwise,

‖Tx− Ty‖ = ‖1
4
x− 1

4
y‖ =

1

2
‖1
2
x− 1

2
y‖

=
1

2
‖Sx− Sy‖

≤ ‖Sx− Sy‖
= α(x, y)‖Sx− Sy‖+ (1− α(x, y))max{δx[O(y;∞)], δy[O(x;∞)]}.

Thus, (T ;S) is a pointwise noncyclic-noncyclic relatively nonexpansive pair
involving orbits, and by Corollary 3.3, there exists (x0, y0) ∈ A×B such that

‖x0 − y0‖ = dist(S(A), S(B)).

In fact, for x0 = 0 and y0 = 0, we have Tx0 = x0, Ty0 = y0 and

‖x0 − y0‖ = dist(S(A), S(B)).
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