Closure formula for ideals in intermediate rings

John Paul Jala Kharbhin and Sanghita Dutta
Department of Mathematics, North Eastern Hill University, Mawkynroh, Umshing, Shillong - 22, India (jpkharbhih@gmail.com, sanghita22@gmail.com)
Communicated by F. Mynard

Abstract

In this paper, we prove that the closure formula for ideals in $C(X)$ under m topology holds in intermediate rings also. i.e. for any ideal I in an intermediate ring with m topology, its closure is the intersection of all the maximal ideals containing I.

2010 MSC: 46E25; 54C30; 54C35; 54C40.

KEYWORDS: m topology; rings of continuous functions; β-ideals.

1. Introduction

The m topology on $C(X)$ was defined by Hewitt in [9]. Let $C_{m}(X)$ denote the ring $C(X)$ equipped with m topology. $C_{m}(X)$ was shown to be a topological ring. In any topological ring, the closure of a proper ideal is either a proper ideal or the whole ring [8, 2M1]. Amongst other results, Hewitt in [9] showed that every maximal ideal in $C(X)$ under m topology is closed. He conjectured that every m closed ideal of $C(X)$ is an intersection of maximal ideals of $C(X)$. This conjecture was settled by Gillman, Henriksen and Jerison [7]. It was also settled independently by T.Shirota [12]. In [7](also [8, 7Q.3]), it was further shown that the closed ideals in $C^{*}(X)$ (under subspace m topology) coincide with the intersections of maximal ideals in $C^{*}(X)$ if and only if X is pseudocompact.

Intermediate rings denoted by $A(X)$, are rings of continuous functions which lie in between $C^{*}(X)$ and $C(X)$. These rings were studied by Donald Plank as β - subalgebras in [10]. Subsequently, a number of researchers generated renewed interests in these intermediate rings as can be seen in [11], [5], [2], [4], [3] and [1].

Given a real number $\epsilon>0$ and $g \in A(X)$, let $E_{\epsilon}(g)[8,2 \mathrm{~L}]$ denote the set $\{x \in X:|g(x)| \leq \epsilon\}$. Given $\epsilon>0, f \in A(X)$, it is not difficult to construct a function t satisfying $f t=1$ on the complement of $E_{\epsilon}(f)$. i.e. $E_{\epsilon}(f) \in \mathscr{Z}_{A}(f) \forall$ $\epsilon>0$. Given an ideal I in $A(X)$, let I^{\prime} denote the intersection of all the maximal ideals of $A_{m}(X)$ that contain I. Evidently I^{\prime} is closed. Let $f \in A(X)$ and $E \in Z(X)$. Then, f is said to be E^{c}-regular, if $\exists g \in A(X)$ such that $f g_{\left.\right|_{E^{c}}}=1$. For each $f \in A(X)$, let $\mathscr{Z}_{A}(f)$ denote the set $\{E \in Z(X): f$ is $E^{c}-$ regular $\}$. For an ideal I of $A(X), \mathscr{Z}_{A}[I]$ denote the set $\bigcup_{f \in I} \mathscr{Z}_{A}(f)$. The set of cluster points of a z-filter \mathscr{F} is denoted by $S[\mathscr{F}]$. An ideal I in $A(X)$ is said to be a β-ideal if $\mathscr{Z}_{A}(f) \subset \mathscr{Z}_{A}[I] \Longrightarrow f \in I$. We shall denote intermediate rings $A(X)$ with m topology by $A_{m}(X)$. For undefined terms and references, we refer the reader to [8].

In this paper, we ask if Hewitt's formula for closure of an ideal holds for the case of $A_{m}(X)$ also. We answer this question in the affirmative, and as an outcome we obtain the result that an ideal in an intermediate ring is closed iff the ideal is a β-ideal.

Theorem 1.1 ([5, Theorem 3.3]). Let M_{A}^{p} be the maximal ideal of $A(X)$ corresponding to the point p of βX. Then

$$
M_{A}^{p}=\left\{f \in A(X): p \in S\left[\mathscr{Z}_{A}(f)\right]\right\} .
$$

2. Closure formula in intermediate rings

Let $U_{A}(X)$ denote the set of positive units of $A(X)$. For each $f \in A(X)$ and each $u \in U_{A}(X)$, let $B_{A}(f, u)$ denote the collection $\{g \in A(X):|f-g|<u\}$. For each $f \in A(X)$, the set $\mathscr{B}_{f}=\left\{B_{A}(f, u): u \in U_{A}(X)\right\}$ forms a base for the neighborhood system at f and the topology so formed is the m topology in $A(X)$.

Definition 2.1. Let $A(X)$ be an intermediate subring. For an ideal I in $A(X)$, let $\Delta_{A}(I)=\left\{p \in \beta X: M_{A}^{p} \supset I\right\}$.
Theorem 2.2. Let I be an ideal in $A(X)$ and $p \in \beta X-\Delta_{A}(I)$. Then, $\exists f \in$ $I \cap C^{*}(X)$ such that $f^{\beta}(p)=1$.

Proof. Since $p \notin \Delta_{A}(I)$, so $M_{A}^{p} \not \supset I$. Therefore, $\exists g \in I$, such that $g \notin M_{A}^{p}$. So, \exists a neighborhood U of $p($ in $\beta X)$ which does not meet E, for some $E \in \mathscr{Z}_{A}(g)$. Now $E \in \mathscr{Z}_{A}(g) \Longrightarrow g l_{\left.\right|^{c}}=1$ for some $l \in A(X)$. Let $f \in C^{*}(X)$ be such that $0 \leq f \leq 1, f^{\beta}(p)=1$ and

$$
\begin{equation*}
f^{\beta}\left(U^{c}\right)=0 . \tag{2.1}
\end{equation*}
$$

We define $h: X \rightarrow \mathbb{R}$ by

$$
h(x)=\left\{\begin{array}{l}
\frac{f(x)}{\left(\frac{f f(x)+1) l(x) g(x)}{}, \text { if } x \in \operatorname{cl}_{\beta X} U \cap X\right.} \\
0, \text { if } x \in(\beta X-U) \cap X .
\end{array}\right.
$$

Then, h is well-defined and continuous. In fact $h \in A(X)$ since $h \in C^{*}(X)$. Moreover the definition of h shows that f is a multiple of g so that $f \in I$, which completes the proof.
Theorem 2.3. Let Ω be an open subset of βX such that $\Omega \supset \Delta_{A}(I)$ for some ideal I in $A(X)$. Then, given ϵ with $0<\epsilon<1, \exists g \in I$ with $0 \leq g \leq 1$ such that $\Omega \cap X \supset E_{\epsilon}(g)$.

Proof. Let $p \in \beta X-\Omega$. Then, $p \notin \Delta_{A}(I)$. By theorem 2.2 we see that $\exists g_{p} \in I \cap C^{*}(X)$ such that $g_{p}^{\beta}(p)=1$. We choose an $\epsilon \in \mathbb{R}$ with $0<\epsilon<1$. Let

$$
\Sigma_{p}=\left\{q \in \beta X: g_{p}^{\beta}(q)>\sqrt{\epsilon_{0}}\right\}
$$

Then, Σ_{p} is open in βX and non-empty as $p \in \Sigma_{p}$. Now, the collection $\left\{\Sigma_{p}: p \in \beta X-\Omega\right\}$ forms an open cover for the compact set $\beta X-\Omega$. Let $\left\{\Sigma_{p_{1}}, \Sigma_{p_{2}}, \ldots, \Sigma_{p_{n}}\right\}$ be a finite subcover of this open cover. Let $g=g_{p_{1}}^{2}+g_{p_{2}}^{2}+$ $\ldots+g_{p_{n}}^{2}$. For any $p \in \beta X-\Omega$, we then have $g^{\beta}(p)=\left(g_{p_{1}}^{\beta}(p)\right)^{2}+\left(g_{p_{2}}^{\beta}(p)\right)^{2}+$ $\ldots+\left(g_{p_{n}}^{\beta}(p)\right)^{2}>\epsilon$. Therefore, if $\left|g^{\beta}(p)\right| \leq \epsilon$, then $p \notin \beta X-\Omega$. i.e. $p \in \Omega$. Hence, $E_{\epsilon}(g) \subset \Omega \cap X$.

Definition 2.4. Let $f \in A(X)$. We say that f is $Z C$-related to I, if $\exists \epsilon>0$, such that $Z(f) \supset C \supset E_{\epsilon}(g)$ for some cozero-set C and some $g \in I$.

Definition 2.5. For an ideal I of $A(X)$, we define

$$
K_{A}(I)=\{f \in A(X): f \text { is } Z C \text {-related to } I\}
$$

Theorem 2.6. For every ideal I of an intermediate subring $A_{m}(X)$, we have $K_{A}(I) \subset I$ and $c l_{m}\left(K_{A}(I)\right)=c l_{m}(I)$.
Proof. Let $f \in K_{A}(I)$. Then, $\exists \epsilon>0$ such that $Z(f) \supset C \supset E_{\epsilon}(g)$ for some cozero-set C and some $g \in I$. Let us denote $E_{\epsilon}(g)$ by E. Since $E \in \mathscr{Z}_{A}(g)$, $\exists l \in A_{m}(X)$ such that $(g l)_{\left.\right|_{E^{c}}}=1$. Now, we define h by

$$
h(x)=\left\{\begin{array}{l}
0, \text { if } x \in \operatorname{cl}_{X} C \\
\frac{f}{(|f|+1) l g} \text { if } x \notin C .
\end{array}\right.
$$

Then, h is a well-defined bounded function. Moreover, h is continuous. i.e. $h \in C^{*}(X) \subset A(X)$. Also, we get $f=h(|f|+1) l g$, which shows that $f \in I$. Thus $K_{A}(I) \subset I$ and hence $\operatorname{cl}_{m}\left(K_{A}(I)\right) \subset \operatorname{cl}_{m}(I)$. To prove that $\operatorname{cl}_{m}(I) \subset$ $\mathrm{cl}_{m}\left(K_{A}(I)\right)$, it is enough to prove that $I \subset \operatorname{cl}_{m}\left(K_{A}(I)\right)$. So, we take a $g \in I$. Let $\pi \in U_{A}(X)$. We define f by

$$
f(x)=\left\{\begin{array}{l}
0, \text { if }-\frac{\pi(x)}{2} \leq g(x) \leq \frac{\pi(x)}{2} \\
g(x)-\frac{\pi(x)}{2}, \text { if } g(x)>\frac{\pi(x)}{2} \\
g(x)+\frac{\pi(x)}{2}, \text { if } g(x)<-\frac{\pi(x)}{2}
\end{array}\right.
$$

Then, f lies in the π neighborhood of g. We also notice that $f \in A_{m}(X)$ since f may be rewritten as follows :

$$
f(x)=\left[\left(g(x)-\frac{\pi(x)}{2}\right) \vee 0\right]+\left[\left(g(x)+\frac{\pi(x)}{2}\right) \wedge 0\right]
$$

We shall now show that $f \in K_{A}(I)$. Let $C=\left\{x \in X:-\frac{\pi(x)}{2}<g(x)<\frac{\pi(x)}{2}\right\}$. Then $Z(f) \supset C$. Moreover, C is the cozero-set of the function $h \in A(X)$ defined by:

$$
h(x)=\left(|g(x)|-\frac{\pi(x)}{2}\right) \wedge 0
$$

We choose any real number $\epsilon>0$ and define a function θ by $\theta(x)=\frac{4 \epsilon g(x)}{\pi(x)}$. Clearly, $\theta \in I$. Moreover $|\theta(x)| \leq \epsilon \Longleftrightarrow|g(x)| \leq \frac{\pi(x)}{4}$. In otherwords, $x \in E_{\epsilon}(\theta) \Longleftrightarrow|g(x)| \leq \frac{\pi(x)}{4}$. But, $|g(x)| \leq \frac{\pi(x)}{4} \Longrightarrow x \in Z(f)$. Hence $Z(f) \supset C \supset E_{\epsilon}(\theta)$ which completes the proof.
Example 2.7. Now, we will give an example of an ideal I such that $K_{A}(I) \subsetneq I$. Let $X=\mathbb{R}$ and $A(X)=C(X)$. Let $I=M_{0}$. We will show that $K_{A}(I)=O_{0}$. Firstly, if $f \in O_{0}$, then \exists an open set C such that $0 \in C \subset Z(f)$. Now, $\exists \epsilon>0$ such that $E=[-\epsilon, \epsilon] \subset C$. Then $E=E_{\epsilon}(g)$, where g is the identity map on \mathbb{R}. Moreover, C is a cozero-set as X is a metric space. Hence we have $f \in K_{A}(I)$. Secondly, if $f \in K_{A}(I)$, then $\exists g \in I, \epsilon>0$ such that $Z(f) \supset C \supset E_{\epsilon}(g)$ for some cozero-set C. Since $0 \in E_{\epsilon}(g)$, this gives that $Z(f)$ is a neighborhood of 0 i.e. $f \in O_{0}$.
Theorem 2.8. $k \in I^{\prime} \Longleftrightarrow S\left[\mathscr{Z}_{A}(k)\right] \supset \Delta_{A}(I)$.
Proof. (\Rightarrow) We assume that $k \in I^{\prime}$. Let $p \in \Delta_{A}[I]$. Then, $M_{A}^{p} \supset I$ and so $k \in M_{A}^{p}$. By definition of $M_{A}^{p}, p \in S\left[\mathscr{Z}_{A}(k)\right]$.
(\Leftarrow) Let M_{A}^{p} be a maximal ideal which contains I. So, $p \in \Delta_{A}(I)$ and thus, $p \in S\left[\mathscr{Z}_{A}(k)\right]$. Therefore, $k \in M_{A}^{p}$ and hence $k \in I^{\prime}$.

We now prove the main result.
Theorem 2.9. The m closure of any ideal I in $A_{m}(X)$ is the intersection of all the maximal ideals containing I.
Proof. We have $\mathrm{cl}_{m}(I) \subset I^{\prime}$ as I^{\prime} is closed. To prove $I^{\prime} \subset \operatorname{cl}_{m}(I)$, it is sufficient to prove that $K_{A}\left(I^{\prime}\right) \subset K_{A}(I)$. Then, by theorem 2.6, we will get $I^{\prime} \subset \operatorname{cl}_{m} I$.

Let $f \in K_{A}\left(I^{\prime}\right)$. Then, \exists a cozero-set C, a real number $\epsilon>0$ and $\theta \in I^{\prime}$ such that

$$
\begin{equation*}
Z(f) \supset C \supset E_{\epsilon}(\theta)=E(\text { say }) \tag{2.2}
\end{equation*}
$$

Let $Z=X-C$. Then, Z and E are completely separated being disjoint zerosets. Therefore, $\exists h \in C^{*}(X), 0 \leq h \leq 1$ such that $h(E)=0$ and $h(Z)=1$.

Let $\Omega=\left\{p \in \beta X: h^{\beta}(p)<1\right\}$. We observe that $X=C \cup Z$, so $\beta X=$ $\operatorname{cl}_{\beta X} C \cup \operatorname{cl}_{\beta X} Z$. If $p \in \Omega$, i.e. $h^{\beta}(p)<1$, then $p \notin \operatorname{cl}_{\beta X} Z$ as $h^{\beta}\left(\operatorname{cl}_{\beta X} Z\right)=1$. So $p \in \mathrm{cl}_{\beta X} C$.

$$
\begin{equation*}
\text { i.e. } \operatorname{cl}_{\beta X} C \supset \Omega \text {. } \tag{2.3}
\end{equation*}
$$

Since $E \in \mathscr{Z}_{A}(\theta)$, therefore $\Omega \supset S\left[\mathscr{Z}_{A}(\theta)\right]$ because $p \in S\left[\mathscr{Z}_{A}(\theta)\right]$ gives $h^{\beta}(p)=0$. Hence by theorem 2.8 , we see that $\Omega \supset \Delta_{A}(I)$. Theorem 2.3 now gives a $g \in I$ with $0 \leq g \leq 1$ and some ϵ with $0<\epsilon<1$ such that

$$
\begin{equation*}
\Omega \cap X \supset E_{\epsilon}(g) \tag{2.4}
\end{equation*}
$$

From (2.2) and (2.3), we get,

$$
\operatorname{cl}_{\beta X} Z(f) \supset \operatorname{cl}_{\beta X} C \supset \Omega
$$

Then $\operatorname{cl}_{\beta X} Z(f) \cap X \supset \Omega \cap X$. Thus $Z(f) \supset \Omega \cap X$. Therefore, by (2.4) $Z(f) \supset \Omega \cap X \supset E_{\epsilon}(g)$. Finally, we have $\Omega \cap X$ is a co-zero-set as $\Omega \cap X=$ $\{p \in X: h(p)<1\}$.

Corollary 2.10. Every closed ideal is a β-ideal.
Proof. First we claim that an arbitrary intersection of β-ideals is also a β-ideal. Let $\left\{I_{\alpha}: \alpha \in \Lambda\right\}$ be a collection of β-ideals. Let $\mathscr{Z}_{A}(f) \subset \mathscr{Z}_{A}\left[\bigcap I_{\alpha}\right]$. Since each I_{α} is a β-ideal, it is enough to prove that $\mathscr{Z}_{A}(f) \subset \mathscr{Z}_{A}\left[I_{\alpha}\right] \forall \alpha \in \Lambda$, for this would imply that $f \in I_{\alpha} \forall \alpha \in \Lambda$. So take $E \in \mathscr{Z}_{A}(f)$. Therefore $E \in \mathscr{Z}_{A}(g)$ for some $g \in \bigcap_{\alpha \in \Lambda} I_{\alpha}$. This then gives $E \in \mathscr{Z}_{A}\left[I_{\alpha}\right] \forall \alpha \in \Lambda$. Now, let I be a closed ideal in $A_{m}(X)$. Therefore, I is an intersection of maximal ideals. But, as every maximal ideal is a β-ideal, therefore I is an intersection of β-ideals and hence a β-ideal.

Remark 2.11. In [6, Theorem 3.13], it was shown that the β-ideals of an intermediate ring are just the intersections of maximal ideals of the ring. This says that β-ideals are closed, since maximal ideals are closed. Hence the class of β-ideals and the class of closed ideals in intermediate rings coincide. This coincidence also occurs in the case of the subring $C^{*}(X)$ with m topology. Here, the class of e-ideals is the same as the class of closed ideals $[8,2 \mathrm{M}]$. However, this coincidence does not extend to z-ideals in $C_{m}(X)$ since the ideal O^{p} is a z-ideal which is not closed.

Remark 2.12. In [1], it was proven that if an intermediate ring $A(X)$ is different from $C(X)$, then there exists at least one non-maximal prime ideal P in $A(X)$. Thus, P is not closed in $A_{m}(X)$. On the other hand if $A(X)=C(X)$ and X is a P space then each ideal in $A_{m}(X)$ is closed [8, 7Q4]. Thus within the class of P spaces X, for an intermediate ring $A(X)$, each ideal in $A_{m}(X)$ is closed $\Longleftrightarrow A(X)=C(X)$ - this is a special property of $C(X)$ which distinguishes $C(X)$ amongst all the intermediate rings (in the category of P spaces X).

Acknowledgements. The authors would like to thank the referee for the valuable comments and suggestions towards the improvement of the paper. In particular, Remark 2.12 is due to the referee.

References

[1] S. K. Acharyya and B. Bose, A correspondence between ideals and z-filters for certain rings of continuous functions - some remarks, Topology and its Applications 160, no. 13 (2013), 1603-1605.
[2] S. K. Acharyya, K. C. Chattopadhyay and D. P. Ghosh, A class of subalgebras of $C(X)$ and the associated compactness, Kyungpook Math. J. 41, no. 2 (2001), 323-324.
[3] S. K. Acharyya and D. De, An interesting class of ideals in subalgebras of $C(X)$ containing $C^{*}(X)$, Comment. Math. Univ. Carolin. 48, no. 2 (2007), 273-280.
[4] S. K. Acharyya and D. De, Characterization of function rings between $C^{*}(X)$ and $C(X)$, Kyungpook Math. J. 46 (2006), 503-507.
[5] H. L. Byun and S. Watson, Prime and maximal ideals in subrings of $C(X)$, Topology and its Applications 40 (1991), 45-62.
[6] J. M. Domínguez and J.-Gómez Pérez, Intersections of maximal ideals in algebras between $C^{*}(X)$ and $C(X)$, Topology and its Applications 98 (1999), 149-165.
[7] L. Gillman, M. Henriksen and M. Jerison, On a theorem of Gelfand and Kolmogoroff concerning maximal ideals in rings of continuous functions, Proc. Amer. Math. Soc. 5 (1954), 447-455.
[8] L. Gillman and M. Jerison, Rings of continuous functions, Univ. Ser. Higher Math, D. Van Nostrand Company, Inc., Princeton, N. J., 1960.
[9] E. Hewitt, Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64, no. 1 (1948), 45-99.
[10] D. Plank, On a class of subalgebras of $C(X)$ with applications to $\beta X \backslash X$, Fund. Math. 64 (1969), 41-54.
[11] L. Redlin and S. Watson, Maximal ideals in subalgebras of $C(X)$, Proc. Amer. Math. Soc. 100, no. 4 (1987), 763-766.
[12] T. Shirota, On ideals in rings of continuous functions, Proc. Japan Acad. 30, no. 2 (1954), 85-89.

