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Abstract
The state of the art in machine translation is not good enough to be able to

guarantee high quality translations at all times. In some fields, it is necessary
to always obtain error-free translations, and the tendency is to use the help of
a professional to correct them, making use of processes such as post-editing or
interactive translation. The usual way of human-machine interaction is through
the use of the keyboard and mouse. The user positions the cursor in front of
an incorrect word, type the correction, and the system provides a new suffix.
In this master’s thesis, we are going to develop two extensions to this system:
the integration of mouse actions, and the use of confidence measures. These
extensions have already been developed previously for statistical models, but
have not yet been developed and tested in neural models. Once we develop
the extensions in an interactive neural translation system, we will compare the
results of the experiments to see the improvement obtained.

In the first proposal, we introduce the use of mouse actions as the only input
information to the system to correct the translations. The position of the mouse
when correcting a word offers enough information to the system to be able to
generate a new suffix without typing in the correction. The translation is correct
from the beginning to the position where the user has moved the cursor, also
indicating that the next word is incorrect. Furthermore, if the generated suffix
is incorrect again, a new correction can be requested, providing the system with
the extra information that the next word is incorrect again. Finally, an approach
has also been developed where the user can move the cursor in the middle of
the words, correcting at the character level.

In the second proposal, we reduce the effort that a translator has to make,
by reducing the number of sentences and words that they have to correct. In
conventional interactive translation systems, the human translator has to check
every sentence and every word. In this extension, the system provides us with
an estimation of how correct it thinks the translated words are, and the user
only has to check those that do not exceed a certain threshold. This extension
has been extended to also provide sentence estimations.

In this master’s thesis, these two approaches, that attempt to reduce user
effort during the translation session, have been developed. Furthermore, our
results using neuronal models have been compared, with those obtained in pre-
vious works using statistical models. The results obtained show that there is a
greater reduction in the number of words to write when using neural models.
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Resumen
El estado del arte en traducción automática aún no es lo suficiente bueno

como para ser capaz de garantizar en todo momento traducciones de alta calidad.
En algunos campos es necesario obtener siempre traducciones libres de errores,
y se tiende a utilizar la ayuda de un profesional que las corrija, haciendo uso de
procesos como la posedición o la traducción interactiva. La forma habitual de
interacción entre el traductor humano y el software de traducción es mediante
el uso del teclado y el ratón. El usuario posiciona el cursor delante de la palabra
incorrecta, teclea la corrección, y el sistema proporciona un nuevo sufijo. En
esta tesis de máster vamos a desarrollar dos ampliaciones a este sistema: la
integración de las acciones del ratón, y el uso de medidas de confianza. Estas
ampliaciones ya han sido desarrolladas previamente para modelos estad́ısticos,
pero aún no han sido desarrolladas y probadas en modelos neuronales. Una vez
desarrollemos las ampliaciones en un sistema de traducción neuronal interactiva
compararemos los resultados de los experimentos para ver la mejora obtenida.

En la primera propuesta planteamos la utilización de las acciones del ratón
como único valor de entrada al sistema para corregir las traducciones. La
posición del ratón al corregir una palabra, ofrece suficiente información al sis-
tema como para poder generar un nuevo sufijo sin que el usuario llegue a teclear
la corrección. La traducción es correcta desde el inicio, hasta la posición donde
el usuario ha movido el cursor, indicando además que la siguiente palabra es
incorrecta. Además, en el caso de que el sufijo generado vuelva a ser incorrecto,
se puede pedir una nueva corrección, proporcionado al sistema la información
extra de que la siguiente palabra vuelve a ser incorrecta. Finalmente, también
se ha desarrollado una aproximación donde el usuario puede mover el cursor en
medio de las palabras, realizando una corrección a nivel de carácter.

En la segunda propuesta reducimos el esfuerzo que tiene que realizar un
traductor, al disminuir la cantidad de oraciones y palabras que tiene que corregir.
En los sistemas convencionales de traducción interactiva el traductor humano
tiene que comprobar todas las oraciones y cada una de las palabras. En esta
ampliación, el sistema nos proporciona una estimación sobre como de correctas
cree que son las palabras traducidas, y el usuario solamente tiene que comprobar
aquellas que no superen un cierto umbral. Esta ampliación ha sido extendida
para también poder proporcionar estimaciones de las oraciones.

En este trabajo de fin de máster se han desarrollado estas dos aproxima-
ciones que intentan reducir el esfuerzo del usuario durante la sesión de tra-
ducción. Además, se han comparado nuestros resultados haciendo uso de mod-
elos neuronales, con los obtenidos en trabajos anteriores que utilizaron modelos
estad́ısticos. Los resultados obtenidos demuestran que hay una mayor reducción
en la cantidad de palabras a escribir al utilizar modelos neuronales.
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Resum
L’estat de l’art en traducció automàtica encara no és prou bo per a ser capaç

de garantir en tot moment traduccions d’alta qualitat. En alguns camps és nec-
essari obtindre sempre traduccions lliures d’errors, i es tendeix a utilitzar l’ajuda
d’un professional que les corregisca, fent ús de processos com la postedició o la
traducció interactiva. La forma habitual d’interacció entre el traductor humà i
el programa de traducció és mitjançant l’ús del teclat i el ratoĺı. L’usuari posi-
ciona el cursor davant de la paraula incorrecta, tecleja la correcció, i el sistema
proporciona un nou sufix. En aquesta tesi de màster desenvoluparem dues am-
pliacions a aquest sistema: la integració de les accions del ratoĺı, i l’ús de mesures
de confiança. Aquestes ampliacions ja han sigut desenvolupades prèviament per
a models estad́ıstics, però encara no han sigut desenvolupades i provades en
models neuronals. Una vegada desenvolupem les ampliacions en un sistema de
traducció neuronal interactiva compararem els resultats dels experiments per a
veure la millora obtinguda.

En la primera proposta plantegem la utilització de les accions del ratoĺı com
a únic valor d’entrada al sistema per a corregir les traduccions. La posició del
ratoĺı al corregir una paraula, ofereix suficient informació al sistema com per
a poder generar un nou sufix sense que l’usuari arribe a teclejar la correcció.
La traducció és correcta des de l’inici, fins a la posició on l’usuari ha mogut el
cursor, indicant a més que la següent paraula és incorrecta. A més, en el cas
que el sufix generat torne a ser incorrecte, es pot demanar una nova correcció,
proporcionant al sistema la informació extra del fet que la següent paraula
torna a ser incorrecta. Finalment, també s’ha desenvolupat una aproximació on
l’usuari pot moure el cursor enmig de les paraules, realitzant una correcció a
nivell de caràcter.

En la segona proposta redüım l’esforç que ha de realitzar un traductor al
disminuir la quantitat d’oracions i paraules que ha de corregir. En els sistemes
convencionals de traducció interactiva el traductor humà ha de comprovar totes
les oracions i cadascuna de les paraules. En aquesta ampliació, el sistema ens
proporciona una estimació sobre com de correctes creu que són les paraules
tradüıdes, i l’usuari solament ha de comprovar aquelles que no superen un cert
valor. Aquesta ampliació ha sigut estesa per a també poder proporcionar esti-
macions de les oracions.

En aquest treball de fi de màster s’han desenvolupat aquestes dues aproxi-
macions que intenten reduir l’esforç de l’usuari durant la sessió de traducció. A
més, s’han comparat els nostres resultats fent ús de models neuronals, amb els
obtinguts en treballs anteriors que van utilitzar models estad́ıstics. Els resultats
obtinguts demostren que hi ha una major reducció en la quantitat de paraules
a escriure a l’utilitzar models neuronals.
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Overview

This master’s thesis focus on the application of different techniques about inter-
active machine translation applied to a neural machine translator, to decrease
the effort required by the human translator to interactively correct the sentences
with these systems. The thesis is structured as follows:

• Chapter 1 begins by introducing machine translation, and move through
similar disciplines that lead us to the interactive translation and the mul-
tiple approaches to improve it.

• Chapter 2 explains the various implementations and tests done to improve
the interactive translation system, trying to reduce the effort of the human
translator.

• Chapter 3 presents the results collected in our experiments and compare
them with the obtained by other authors using statistical models.

• Chapter 4 contains the conclusions of the thesis and proposes some future
work to extend the content of the project.
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Chapter 1

1 Introduction

Language has always been an essential aspect of our lives. It helps us to commu-
nicate with the people, allowing us to share information and ideas. Nowadays,
there are more than 6000 different languages around the world, and we still
have the necessity of sharing information among all of us, even with this huge
mixture of languages.

Since ancient times, the translators had the arduous work to translate a huge
number of documents. In additions, there was not always a translator for every
pair of languages. The first modern approach to Machine Translation (MT) was
proposed by Warren Weaver the year 1949, after the successes in code-breaking
achieved during the Second World War.

The next years, lots of money and efforts were put in the research on MT.
It was thought that in a few years, they would get fully automatic high quality
translations, but that was not the case. In the year 1966, the ALPAC (Com-
mittee, 1966) published a report where concluded that MT was more expensive,
less accurate, and slower than human translation and was not likely to reach
the high quality wanted soon.

Despite all, some groups continued with the research in that field. In the last
years, the different approaches to MT have greatly varied, from the old rule-
based systems, to the new neural-based systems. But even nowadays, despite all
improvements made, machine translations are not perfect. And, in most cases,
a professional translator is required to obtain high quality translations.

In 1997, the Canadian government started a new project focused on Interac-
tive Machine Translation (IMT), TransType (Langlais et al., 2000). In this field,
the main objective is to decrease the effort needed of the translator to correct
the sentences interactively with the computer. Since then, has been made new
approaches in IMT, achieving many improvements. Section 1.7 and 1.8 explains
some of these approaches.

1.1 Machine Translation

The main goal of MT is to translate text from a source language to the target
language utilizing a computer. The first MT systems proposed, took a simplistic
view, translating every word of the corpus, and reordering it following a set of
rules of the target language. Since then, after more than 50 years of research,
and new approaches to the problem, the machine translations are not perfect
yet.

The different approaches to the MT problem can be classified according to
different criteria (Ortiz Mart́ınez, 2011):

• Based on the input type: text or speech.
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• Based on the character of the application used by the translator. These
applications are divided into four groups: applications to translate the
input into a database query; applications to produce an approximated
translation for its later correction in post-edition; applications to interac-
tively generate the output in collaboration with the user; and finally, fully
automated translation systems.

• Based on the translation technology. We can identify two main approaches:
rule-based systems and corpus-based systems. The rule-based systems
consist of a set of translation rules created by a human expert that denote
how to translate from one language to another. This process has a high
cost due to the knowledge needed of both languages. In recent years, a
new approach appeared and gained relevance, the corpus-based systems.
These, only need a parallel text to extract all the information needed by
the system to generate the translations, taking away the cost of the human
expert.

The project focuses on corpus-based systems. And, in Section 1.2 and 1.3,
the two main approaches are explained.

1.2 Statistical Machine Translation

Statistical machine translation (SMT) is a corpus-based approach to MT, that
search for patterns in large amounts of parallel texts, to be able to assign the
probability of a sentence from the target language, of being the translation of
another sentence from the source language.

More formally, given a sentence xJ1 = x1, ..., xJ from the source language

X. To find the sentence ŷÎ1 = ŷ1, ..., ŷÎ , from a target language Y , that has the
highest probability of being the translation of xJ1 , we could compute it according
to:

ŷÎ1 = arg max
I,yI

1

Pr(yI1 |xJ1 ) (1.1)

In practice, the probability distribution Pr(yI1 |xJ1 ) is calculated through a
log-linear combination between an array of models (Och and Ney, 2004):

ŷÎ1 = arg max
I,yI

1

{
N∑

n=1

λn · log fn(yI1 , x
J
1 )

}
(1.2)

where fn(yI1 , x
J
1 ) can be the language model Pr(yI1), the translation model

Pr(xJ1 |yI1), or any model that represents a significant feature for the transla-
tion. N is the number of different models or features used, and λn is the weight
of each feature for the log-linear combination.

There are three main challenges on the probabilistic modelling that SMT
faces:

2



• Model definition: The development of models that approximate the
best possible the translation probability distribution Pr(yI1 |xJ1 ).

• Parameter estimation: The estimation of the parameters of the models
defined through the available data, that usually is parallel texts.

• Search problem: The search through all the possibilities, to find the
translation with the highest probability. Most systems tackle the problem
via suboptimals, but fast search algorithms.

1.3 Neural Machine Translation

The first ideas of MT using neural networks date back to the 90s (Castaño and
Casacuberta, 1997). However, the results of these works were disappointing and
not further explored. Recently, the first successful Neural Machine Translation
(NMT) experiments have been done (Cho et al., 2014; Sutskever et al., 2014b) ,
and actually is used in almost all the MT systems (Wu et al., 2016; Klein et al.,
2017) . Most of them have dealt with the problem as a sequence-to-sequence
transduction task (Graves, 2013), using a neural encoder-decoder model for
building MT systems.

NMT follows the same idea used by SMT to solve the translation problem.

Ergo, it tries to generate the sentence ŷÎ1 with the highest translation probability
for the source sentence xJ1 . This is:

ŷÎ1 = arg max
I,yI

1

Pr(yI1 |xJ1 ) (1.3)

Applying the chain rule of the probability, we can factorize this expression
into:

ŷÎ1 = arg max
I,yI

1

I∏
i=1

Pr(yi | yi−1
1 , xJ1 ) (1.4)

We can model the conditional probability using a neural model with param-
eters Θ. Note that we are taking logarithms for the sake of numerical stability:

ŷÎ1 ≈ arg max
I,yI

1

I∑
i=1

log p(yi | yi−1
1 , xJ1 ; Θ̂) (1.5)

The value of these parameters Θ are obtained from trying to minimize the
minus log-likelihood, on a set of a parallel corpus S = {x(s), y(s)}Ss=1, consisting
of S sentence pairs.

Θ̂ = arg min
Θ

S∑
s=1

I(s)∑
i=1

− log p(y
(s)
i | y

i−1(s)
1 , x

(s)
1 ; Θ) (1.6)

NMT solves the SMT problems using only one big neural network. The
three main challenges that we found before are addressed as follows:

3



• Model definition: The neural networks used in NMT directly approxi-
mate the probability distribution Pr(yI1 |xJ1 ).

• Parameter estimation: All the parameters of the neural network are
trained jointly through gradient descent, trying to minimize the minus
log-likelihood as seen in Equation 1.6.

• Search problem: Most NMT systems use the method called beam search
to find the best translation.

1.3.1 Search Problem

The search problem is built on the idea of how to generate the highest proba-

bility translation sentence ŷÎ1 , from the source sentence xJ1 , with the parameters
Θ from the neural model. The vast majority of search methods exploit the
factorization of the conditional probability, shown in the Equation 1.5.

Usually, the target sentence is generated incrementally, starting from a
null-hypothesis (a hypothesis with no words) initialized with the beginning-
of-sentence token (<bos>). Step by step, the words are being added to the
hypothesis until the end-of-sentence token is added (<eos>). The neural model
provides a score to each one of the words from the search tree. At the end of
the process, we have a search tree with all the possible translations, where each
hypothesis path starts from the root (marked as <bos>) and ends in a leaf
(marked as <eos>). Hence, the goal is to find the path with the highest score
from the root to a leaf.

Each word of the tree branches to V new paths, where V is the size of the
vocabulary. The huge size of the search tree generated keeps off the possibility
of making an exhaustive search. To tackle this problem we used a method called
beam search (Lowerre and Reddy, 1976). This approach limits the branching
factor to a maximum predefined value, called size of the beam (b). At each
level of the tree, the partial hypothesis set is expanded with all the vocabulary,
but only the new b hypotheses with the highest score continue in this set. If a
complete hypothesis is generated, it is a moved to a set of completed hypothesis,
and the beam size is decreased by one. This process is repeated until the size of
the beam reaches zero. Then, the method returns the most probable hypothesis
from the set of completed ones.

With this method, we solve the computational high cost problem of the
search, besides having the control of the cost with the parameter b. Although,
we risk getting suboptimal translations by not fully extending the tree.

1.3.2 Subword NMT

The size of the vocabularies is a limiting aspect of NMT: MT is an open-
vocabulary task, while the NMT models require finite vocabularies. An in-
teresting idea is the use of subwords: instead of translating sequences of words,
we can translate sequences of subwords. In this way, an unknown word can be

4



Figure 1.1: Beam Search with a Beam size of 2. At each level of the tree, despite
being generated five new paths, only two of them are continued.

split into multiple known subwords for its translation. The Byte Pair Encoding
(BPE) (Sennrich et al., 2016) algorithm is very adequate for this purpose.

BPE is a data compression technique that iteratively replaces the most fre-
quent pair of bytes in a sequence with a single, unused byte. This technique
is adapted for word segmentation, instead of merging frequent pairs of bytes,
it merges frequent sequences of characters. At the start, the method splits
each word of the vocabulary into a list of characters, plus a special end-of-word
symbol. Each different character is a symbol of the new vocabulary. At each
iteration, the method merges the two most frequent consecutive character se-
quences in a new symbol. The final symbol vocabulary size, is equal to the
size of the initial vocabulary, plus the number of merge operations done. BPE
obtains different granularities of the representation of words: Rare words tends
to be represented as sequences of multiple subwords, due to its low frequency.
While most common words could tend to be represented without segmentation.

Although BPE decreases the likelihood of finding out-of-vocabulary words,
it can still happen. Even so, the general strategies for replacing unknown words
can still be used (Luong et al., 2015b,a).

r . → r.
l o → lo

lo w → low
e r. → er.

l o w e s t n r i r. lo low er.

Figure 1.2: BPE merge operations learned from dictionary {’low’, ’lowest’,
’newer’, ’wider’}, and final symbol vocabulary.
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1.4 Neural Network Architectures

During the years, a large variety of neural networks architectures have been
designed to tackle different problems. Our problem is of the kind sequence-to-
sequence, as we are trying to get a translation from a source sentence. In this
section, we review the main architectures presented in the system used for our
project.

1.4.1 Recurrent Neural Network

The main feature of the Recurrent Neural Networks (RNN) is that between
its connections we can find directed cycles. This allows the system to have an
internal hidden-state, of size h, that will change recurrently with the time steps.
Given a sequence of inputs xT1 = x1, ..., xT , with each x ∈ Rx, a standard RNN
(Sutskever et al., 2014a) computes a sequence of outputs yT1 = y1, ..., yT , with
each y ∈ Ry by iterating the following equation:

ht = sigm(Whxxt +Whhht−1 + bh)

yt = W yhht + by

whereWhx, Whh andW yh are the input-to-hidden, hidden-to-hidden and hidden-
to-output weight matrices to estimate, b are the bias terms and ’sigm’ is the
sigmoid activation function. Despite being a powerful sequence modeller, it has
some drawbacks that are corrected in other approaches (see Section 1.4.1 and
1.4.1).

Bidirectional recurrent neural networks

One of the downsides of RNN is that the input sequence is only used in one
direction, generally from the left to the right. However, Schuster and Paliwal
(1997) proposed an architecture that reads the sequence in both directions with
a forward and backward RNN, the Bidirectional RNN (BRNN).

The forward
−−−→
RNN reads the input sequence as normally, xT1 = x1, ..., xT , and

calculates a sequence of forward hidden-states
−→
h T

1 =
−→
h 1, ...,

−→
h T . The backward

←−−−
RNN reads the sequence from right to left , x1

T = xT , ..., x1, and calculates a

sequence of backward hidden states
←−
h T

1 =
←−
h 1, ...,

←−
h T .

Each element of the output sequence yT1 = y1, ..., yT is calculated by combin-

ing the forward hidden-states
−→
ht with the backward hidden-states

←−
ht . The most

common combination strategy is to concatenate them, although others can also
be used (e.g. summation or averaging).

yt =
−→
ht ⊕

←−
ht
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Long short-term memory units

The other problem that has the general version of RNN is the called vanishing
gradient (Bengio et al., 1994), which makes difficult network training when mod-
elling long-term relationships. The Long Short-Term Memory units (LSTM)
introduced by Hochreiter and Schmidhuber (1997) is one of the most popular
recurrent architectures and solves this problem.

In addition to the hidden-state ht ∈ Rh seen in the RNN, the LSTM cells
also save a new internal vector ct ∈ Rh called memory. Each cell has an input,
forget and output gate whose output activation vectors are Γf

t , Γi
t, Γo

t ∈ Rh.
These gates module the information that flows through the cell.

In this approach, the hidden-state is calculated from the memory of the cell,
and the vector from the output gate. A Hadamard product is done between
both of them, also called element-wise product:

ht = ct ⊗ Γo
t (1.7)

With the memory state from the last time-step and the output vectors from
the forget and input gate, we can calculate the new memory state, used in the
previous equation.

ct = Γf
t ⊗ ct−1 ⊕ Γi

t ⊗ c̄t (1.8)

c̄t = tanh
(
Whhht−1 +Whxxt + bh

)
(1.9)

where Whh and Whx are the hidden-to-hidden and input-to-hidden weight ma-
trices; bh is the bias term and ’tanh’ is the hyperbolic tangent activation func-
tion.

The forget, input and output activation gates are calculated as follows:

Γf
t = sigm(Whx

f xt +Whh
f ht−1 + bhf ) (1.10)

Γi
t = sigm(Whx

i xt +Whh
i ht−1 + bhi ) (1.11)

Γo
t = sigm(Whx

o xt +Whh
o ht−1 + bho ) (1.12)

where ’sigm’ is the sigmoid activation function; Whx
f , Whx

i and Whx
o are the

input-to-hidden weight matrics of each gate; and bhf , bhi and bho are the bias
terms.

1.4.2 Attention Mechanisms

Attention mechanisms (Chorowski et al., 2015) have become an essential com-
ponent of neural architectures, especially in the context of NMT using sequence-
to-sequence models. Generally, the sequence-to-sequence models were composed
of an encoder-decoder architecture, where the encoder processed the input into
a context vector of a fixed length (Sutskever et al., 2014b). Then, the decoder
is initialized with this context vector and starts generating the output.
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Figure 1.3: LSTM cell. The output (ct, ht) depends on the input and, the
hidden-state and memory from the last time-step. The information is filtered
through the forget, input and output gates.

The main problem of using a fixed-length context vector is that it has to
remember long sequences. Once it has processed the entire sequence, is very
common that the earlier parts of it have been forgotten and do not show in the
last hidden-state. The attention mechanisms were created to solve this problem,
using a dynamic context vector.

Generalizing this concept, given an input sequence xn1 = x1, ..., xn, the at-
tention mechanism generates a representation sequence zn1 = z1, ..., zn. This
representation is contextualized to focus on those elements that are more im-
portant for the current time-step.

For this purpose, we use a state vector, called query, for weighing the input
sequence xn1 . Both objects are related by means of an attention function, that
calculates the compatibility scores for each one of the elements from the input
sequence. Finally, these scores are used to compute a weighted average of the
elements of the sequence, zn1 .

1.5 Computer Assisted Translation

Nowadays, the MT systems are still not able to generate translations with high
quality, despite all the advances achieved and the big data-sets of parallel texts
procured. There are domains where is strictly necessary that all the translations
are error-free, in these cases is needed an expert to assist the translation process.

In the beginning, the users received a set of machine-translated sentences and
had to correct them by themselves. Over time and technological improvements,
the interaction human-machine increased cause of the development of an array
of new tools that aimed to assist the human in the translation process.

Computer-Aided Translation (CAT) (Gambier and Doorslaer, 2010) aims to
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use computer software to assist a human expert to generate translations. In this
case, the translation process is carried principally by a human, not like in MT,
where the human only is involved in the pre- or post-editing.

Since 1960, after realizing the difficulty of getting high quality translations
from a fully automatic MT, researchers have been working on CAT. With the
rapid evolution of technology, the tools became more accessible, affordable, pop-
ular and even necessary. Some of the most used tools are:

• Translation Memories: Translation Memories (TM) software is the
most well-known CAT tool. TM divides the text to be translated into seg-
ments, and lookup for similar segments already translated in its database.
Finally, when it finds a similar segment it suggests to reuse it.

• Language Search-Engines: Language search-engines work like tradi-
tional search engines, but without using the Internet to search the result.
It seeks the results of the search in a large database of translation memory,
finding similar fragments of previously translated texts.

• Terminology Managers: Terminology management software let the
user manage their terminology bank, with the ability to automatically
search for these terms and check whether have been translated correctly.

• Aligners: Aligners build a parallel corpus from the source and destination
documents. The tool divides the text into segments, and determine which
segments match with each other.

• Post-Editors: Post-Edition software provides the user with a first machine-
translated output from the text to translate. Domain specific models are
used to get better results.

• Interactive Machine Translation: Interactive Machine Translation,
is a paradigm where the human translator interacts with the predictions
done by the computer to generate the final translations. There are dif-
ferent approaches to IMT like Interactive-predictive machine translation
and Confidence Measures.

1.6 Interactive Machine Translation

Interactive Machine Translation (IMT) is a sub-field of CAT where translator
and machine software work interactively. The MT system generates a hypothesis
with the available information. Whenever it is wrong, the user provides feedback
to the system, and a new hypothesis is generated.

One of the most recent projects in this field is Casmacat (Alabau et al.,
2013, 2014), funded by the European Commission. It aimed to be a working
environment for translators with an array of innovative features that were not
available in other tools. It included and combined an innovative set of IMT fea-
tures: Intelligent autocompletion (Barrachina et al., 2009b), Confidence mea-
sures (González-Rubio et al., 2010), Prediction length control (Alabau et al.,
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2012), Search and Replace, Word alignment information (Brown et al., 1993)
and Prediction rejection (Sanchis-Trilles et al., 2008b).

This sub-field of CAT encompasses many different techniques. With the
improvement in the MT models, the effort that the translator needs to do will
decrease because of the higher quality translations. Besides all those improve-
ments, human interaction plays a very important role, so techniques or features
that speed up the work also are very useful.

In this project, we focus on reducing the word strokes that the user has to
do in order of correcting the translation. On the one hand, we generate new
translations before the user types the correct word, eliminating the writing cost
in the case of getting it right (see Section 2.1). On the other hand, we use con-
fidence measure to select which words need checking and which are presumably
correct (see Section 2.2).

1.7 Interactive-Predictive Machine Translation

Interactive-Predictive Machine Translation (IPMT) was firstly introduced by
(Barrachina et al., 2009a) following the TransType project ideas and formalizing
the interactive-predictive translation framework under a statistical point of view.

As previously mentioned, translations done with the current models, and
therefore the systems, are still far from perfect. One alternative to the post-
editing could be this approach, the IPMT paradigm. Under this paradigm,
translations are considered as an iterative process between translator and com-
puter. This way, the model takes into account the input sentence and the cor-
rections done by the user. Generally, this interaction is a left to right process,
although other kinds of interactions are possible.

SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p)
(ŝh)

( )
To switch on:

ITER-1

(p)
(st)
(k)
(ŝh)

To
switch on:
power

on the printer:

ITER-2

(p)
(st)
(k)
(ŝh)

To power on the printer:
( )
(#)

( )
FINAL (p ≡ y) To power on the printer:

Figure 1.4: IPMT session to translate a Spanish sentence into English. Non-
validated hypotheses are displayed in italics, whereas accepted prefixes are
printed in normal font.

Figure 1.4 illustrates a typical IPMT session. Initially, the user is provided

10



with a source sentence x to be translated. The reference y, is the correct trans-
lation of the sentence that the user will try to obtain. At iteration 0, the IPMT
system provides the first hypothesis ŝh, and the prefix p remains empty cause
the user still does not supply any corrections. At the next iteration, the user
validates the prefix p as correct, positioning the cursor in a certain position of s,
and corrects the next word by typing k. With this correction, the IPMT system
provides a new suffix ŝh, that the user will have to validate in the next itera-
tions. The process continues until the whole sentence is correct and is validated
introducing the special token ’#’.

1.7.1 Neural Framework

Following the works that introduced the Interactive Neural Machine Translation
Knowles and Koehn (2016); Peris et al. (2017). The paths on the search tree
mentioned in Section 1.3.1, are generated from left to right. In the same way,
this kind of feedback interaction, validates the sentences from left to right,
doing natural the inclusion of IPMT into NMT systems. Given a translation

hypothesis ŷÎ1 = ŷ1, ..., ŷÎ , the validated part with the correction made by the
user has the form f = ŷi1. Given a prefix ŷi1, only a single path from the search
tree can include it. Introducing the user feedback f = ŷi1, Equation 1.5 can be

reformulated as next to get the suffix ŷÎi+1:

ŷÎi+1 ≈ arg max
I,yI

i+1

I∑
i′=i+1

log p(yi′ | yi
′−1
i+1 , x

J
1 , f = ŷi1; Θ) (1.13)

As well, if we want a more general Equation to generate another hypothesis
from the root of the search tree, we can tweak it, adding the Kronecker delta
function.

ŷÎ1 ≈ arg max
I,yI

1

I∑
i′=1

log p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1; Θ) (1.14)

the probability distribution can be expressed as follows:

p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1; Θ) =

®
δ(yi′ , ŷi′), if i′ ≤ i
p(yi′ | yi

′−1
1 , xJ1 , f = ŷi1; Θ), otherwise

(1.15)

where δ(·, ·) is the Kronecker delta:

δ(yi′ , ŷi′) =

®
1, yi′ ≡ ŷi′
0, otherwise

(1.16)

This process assures that the validated prefix is present in the search tree,
and can be seen as generating the most probable suffix.
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1.8 Confidence Measures

The other IMT approach for MT that we use in the project is the Confidence
Measures (CM). Normally, the user has to check each of the words, from the
hypothesis generated by the machine, to correct them. This approach reduces
the effort that the user needs to do by decreasing the number of words that have
to check per sentence.

Confidence estimation has been extensively studied for speech recognition,
and recently introduced to MT (Blatz et al., 2004; Ueffing et al., 2003). Since
then, research has studied which models calculate the most reliable confidence
estimations (Ueffing and Ney, 2005b; Sanchis et al., 2007). CM can be used,
among other applications, within IPTM systems (González-Rubio et al., 2010;
González-Rubio et al., 2010). The main feature of these systems is the human-
machine interactivity, for this reason, the model used to obtain the confidence
scores should get them the fastest possible without interrupting the interaction.
In this project, we used the IBM Model 1(see Section 2.2).

From our point of view, we can see CM as a conventional pattern classi-
fication problem, where each word of a given translation is classified whether
correct or incorrect. Picked a word classification threshold, all the words with
a confidence estimation below it are classified as incorrect. Although individual
words are more likely to be correct than are whole sentences, this process can
be extrapolated to a sentence level (see Section 2.2.2).

SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p)
(ŝh)

( )
To switch on a printer:

ITER-1

(p)
(st)
(k)
(ŝh)

To switch on
a printer
the

printer:

ITER-2

(p)
(st)
(k)
(ŝh)

To switch on the printer:
( )
(#)

( )
FINAL (p) To switch on the printer:

Figure 1.5: IPMT session to translate a Spanish sentence into English. Non-
validated hypotheses are displayed in italics, whereas accepted prefixes are
printed in normal font. Words classified as incorrect are displayed underlined.

Figure 1.5 illustrates a typical IPMT session with CM. Initially, the user
is provided with a source sentence x to be translated. The reference y, is the
correct translation of the sentence that the user will try to obtain. At iteration
0, the IPMT system provides the first hypothesis ŝh, and the prefix p remains
empty cause the user still does not supply any correction. At the next iteration,
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the system requests a correction by the user of the next word marked as incor-
rect, ’a’, and the user corrects it by typing the word k. With this correction, the
IPMT system provides a new suffix ŝh. The process continues until the system
thinks that does not remain more incorrect words, and the user validated it.

As seen in Figure 1.5, although the obtained sentence is correct, it is different
from the reference. One main problem of CM applied to the IPMT is that we
have no longer assure perfect translations. Instead, we have to find the CM
model and threshold value that best suits our case, reducing the human effort
without giving up the quality of the translations.

1.9 Conclusion

In this chapter, we have seen how started the machine translation field, and how
once researchers figured that it was very difficult to obtain high-quality transla-
tions, started to investigate on how to improve the human-machine interaction
in the translation process. Until now, there is a good range of features that
could be implemented and combined in an IMT tool to reduce the effort done
by the user, but we focus on IPMT and CM systems.

In the next chapter, we are going to see how are implemented in an INMT
model two different approaches. The first of them being the introduction of
mouse actions into IPMT systems, and the second, the use of IBM Model 1 in
a CM system.
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Chapter 2

2 Introducing mouse actions and confidence
measures in INMT

As said previously in Section 1.5, despite all the improvements done in MT,
the current state of the art is far away from getting high-quality translations.
Because of this, the research on IMT has increased, and new approaches have
appeared.

In recent years, new approaches to this paradigm have been researched,
and the vast majority of them were developed using SMT models. Due to how
approximately recent are neural models, most of these approaches have not been
tried on them.

In this project we are going to implement two approaches on a Interactive
Neural Machine Translation (INMT) system. On one hand, we implemented
the most basic kind of human interaction, the mouse action (see Section 2.1).
On the other, we added a CM, calculated with the IBM Model , to a IPMT
based on NMT (see Section 2.2).

2.1 Mouse Actions in IPMT

Generally, the feedback that the IPTM systems receive is the correction of one
word of the sentence provided (see Section 1.7). To give this feedback, the
professional human must have moved the mouse to the position with the error,
clicked and wrote the correct word.

Sanchis-Trilles et al. (2008b) proposed to enrich the user-machine interaction
by introducing Mouse Actions (MA) as an additional information source for the
system. We will consider two types of MAs, called non-explicit (or positioning)
MAs (see Section 2.1.1) and interaction-explicit MAs (see Section 2.1.2). The
main feature of both is that they just use actions that the expert can do with the
mouse, by positioning and clicking, with the assumption that these interactions
have a lower cost than writing the correct word.

2.1.1 Non-Explicit Mouse Actions

In IPTM systems, before typing a new word to correct a hypothesis, the user
needs to position the cursor in place to change it. By doing so, the user already
is providing very useful information to the system: he is validating a prefix,
since the start until the mouse position, and at the same time he is marking the
next word as incorrect.

As said, usually, the user would have to type the correct word, but just with
this information provided with the positioning of the mouse, we can generate
a new hypothesis. This new hypothesis has the same corrected prefix, and the
next word is changed to another different. Note that this does not mean the

14



next hypothesis will be correct, but in the worst case, the user only would have
to type the correct word as usually, as the mouse is already in position.

This kind of MA is called non-explicit because it does not require any ad-
ditional action from the user: to correct a word he has to position the mouse
in the place he wants, and we are taking advantage of this action suggesting a
new suffix hypothesis.

SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p)
(ŝh)

( )
To switch on:

ITER-1
(p)
(st)
(ŝh)

To
‖ switch on:

power on the printer:

ITER-2

(p)
(st)
(k)
(ŝh)

To power on the printer:
( )
(#)

( )
FINAL (p ≡ y) To power on the printer:

Figure 2.1: IPMT session to translate a Spanish sentence into English using
non-explicit Mouse Actions. Non-validated hypotheses are displayed in italics,
whereas accepted prefixes are in normal font. The MAs are indicated by the
symbol ’‖’.

Figure 2.1 illustrates a typical IPMT session where a non-explicit MA is
done. Initially, the user is provided with a source sentence x to be translated.
The reference y, is the correct translation of the sentence that the user will try
to obtain. At iteration 0, the IPMT system provides the first hypothesis ŝh, and
the prefix p remains empty cause the user still does not supply any correction.
At the next iteration, the user position the cursor before word ’switch’, with the
purpose of typing in ’power’. By doing so, the user is validating the prefix ’To’,
and signalling that the word ’switch’ is incorrect. Before typing in anything,
the system provides a new suffix ŝh. Finally, the user only has to accept the
last translation as the system has corrected it correctly.

This scenario is very similar to the explained in Section 1.7.1, where the
user inserts the word k into the system to correct the hypothesis. Both cases
use a prefix to generate the new hypothesis, but now, instead of finding a suffix
that starts with a given word k, we are looking for a suffix that must not start
with a given word sl. Equation 1.14 can be reformulated as next to get the new
hypothesis:

ŷÎ1 ≈ arg max
I,yI

1

I∑
i′=1

log p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1, sl; Θ) (2.1)

where f = ŷi1 is the validated prefix by the user. Note, that in this case we do
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not have the corrected word to add it. And sl is the first word of the incorrect
suffix.

Now, we have a new case in the probability distribution for the first word of
the suffix:

p(yi′ |yi
′−1

1 , xJ1 , f = ŷi1, sl; Θ) =


δ(yi′ , ŷi′), if i′ ≤ i
[ yi′ 6= sl ] p(yi′ | yi

′−1
1 , xJ1 , f = ŷi1, sl; Θ), if i′ = i+ 1

p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1, sl; Θ), otherwise

(2.2)
where δ(·, ·) is the Kronecker delta and [P ] is an Iverson bracket:

δ1(yi′ , ŷi′) =

®
1, yi′ ≡ ŷi′
0, otherwise

(2.3)

[ yi′ 6= sl] =

®
1, yi′ 6= sl

0, otherwise
(2.4)

This process assures that the validated prefix is present in the search tree,
and can be seen as generating the most probable suffix assuring that the first
word is different from the wrong one.

2.1.2 Interaction-explicit Mouse Actions

Until now, all the actions done by the user did not suppose an extra cost,
because to correct a word, the user still must move the cursor to the correct
position. If the system provides suggestions which are good enough, even if the
first suggestion of the system was wrong, the user may ask for a new suffix,
performing a MA without introducing a whole new word.

To perform this kind of MA, the user needs to perform a click before typing
any word. In this case, the user needs to indicate explicitly that he wants a
new suggestion, in contrast to the non-explicit positioning. For that, this kind
of action is called interaction-explicit MA. The user can make as many MAs as
needed, having in mind that are less costly than introducing a whole new word.

Figure 2.2 illustrates a typical IPMT session where an interaction-explicit
MA is done. Initially, the user is provided with a source sentence x to be
translated. The reference y, is the correct translation of the sentence that the
user will try to obtain. At iteration 0, the IPMT system provides the first
hypothesis ŝh, and the prefix p remains empty cause the user still does not
supply any correction. At the next iteration, the user position the cursor before
the word ’installation’, with the purpose of typing in ’type’. By doing so, the user
is validating the prefix ’Select the’, and signalling that the word ’installation’
is incorrect. Before typing in anything, the system provides a new suffix. This
new suffix still wrong, and the user gives another opportunity to the system,
before typing the correct word, by performing an interaction-explicit MA. Now,
the system provides a new suffix knowing that the word ’install’ is also wrong.
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SOURCE (x): Seleccione el tipo de instalación.
REFERENCE (y): Select the type of installation.

ITER-0
(p)
(ŝh)

( )
Select the installation wizard.

ITER-1
(p)
(st)
(ŝh)

Select the
‖ installation wizard

install script.

ITER-2
(p)
(st)
(ŝh)

Select the
‖ install script

type of installation.

ITER-3

(p)
(st)
(k)
(ŝh)

Select the type of installation.
( )
(#)

( )
FINAL (p ≡ y) Select the type of installation.

Figure 2.2: IPMT session to translate a Spanish sentence into English using
non-explicit and interaction-explicit Mouse Actions. Non-validated hypotheses
are displayed in italics, whereas accepted prefixes are in normal font. The MAs
are indicated by the symbol ’‖’.

This time, the suffix given by the system is correct, and the user just has to
validate it as correct.

To generate a new hypothesis we can adjust Equation 2.1 as follows to instead
of just banning one word sl, forbid a sequence of words snl = s1

l , ..., s
n
l , where n

is the number of MAs performed by the user at the same position:

ŷÎ1 ≈ arg max
I,yI

1

I∑
i′=1

log p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1, s
n
l ; Θ) (2.5)

p(yi′ |yi
′−1

1 , xJ1 , f = ŷi1, s
n
l ; Θ) =


δ(yi′ , ŷi′), if i′ ≤ i
[ yi′ /∈ snl ] p(yi′ | yi

′−1
1 , xJ1 , f = ŷi1, s

n
l ; Θ), if i′ = i+ 1

p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1, s
n
l ; Θ), otherwise

(2.6)
where δ(·, ·) is the Kronecker delta and [P ] is an Iverson bracket:

δ1(yi′ , ŷi′) =

®
1, yi′ ≡ ŷi′
0, otherwise

(2.7)

[ yi′ /∈ snl ] =

®
1, yi′ /∈ snl
0, otherwise

(2.8)

As in the previous case, this process guarantees that the validated prefix is
present in the search tree. Also, assures that the first word of the suffix is not
present in the sequence of incorrect words.
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2.1.3 MAs at Charater Level

Until now, we have supposed that the user can only position the cursor before a
word. There is another approach, which enables the user to position the cursor
before any character of the sentence.

In this approach, the user is validating all the words up to the position of
the cursor, and if the cursor is in the middle of a word the left part of it. More
formally, assuming that the user has clicked in the u-th position of the i’-th
word of the hypothesis, the validated prefix could be represented as follows:

f = (ŷi
′−1

1 , ŷi′
u
1 )

where ŷi
′−1

1 is the sequence of validated words until the position i′−1, and ŷi′ ,
u
1

is the correct part of the word ŷi′ .
Figure 2.3 illustrates an example of a typical IPMT session where the user

performs a non-explicit MA at character level. The user is provided with a
source sentence x, that will translate to the reference sentence y by means of
the system. At iteration 0, the system suggests the first hypothesis ŝh, how it is
incorrect the user do not validate it. At iteration 1, the expert realizes that the
sentence is correct until the middle of the 4-th word, and instead of moving the
cursor at the start of the word, performs a MA at a character level positioning
it at the last correct character, validating the section f = (ŷ3

1 , ŷ4
4
1). Then, the

system generates a new suffix ŝh with this new information. This process is
repeated until all the sentence is validated by the user.

SOURCE (x): Va de la intención a la acción
REFERENCE (y): It’s going from intention to action

ITER-0
(p)
(ŝh)

( )
It’s going from interest to action

ITER-1
(p)
(st)
(ŝh)

It’s going from inte
‖ rest to action

ntion to action

ITER-2

(p)
(st)
(k)
(ŝh)

It’s going from intention to action
( )
(#)

( )
FINAL (p ≡ y) It’s going from intention to action

Figure 2.3: IPMT session to translate a Spanish sentence into English using
non-explicit Mouse Actions at character level. Non-validated hypotheses are
displayed in italics, whereas accepted prefixes are in normal font. The MAs are
indicated by the symbol ’‖’.

At word level, for each MA performed at the same position, only one new
word was added to the sequence of forbidden words. This happens because,
the only information that we had about the new word was that the current
one was incorrect, this approach gives us more information about it. The fact
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that the user can move the cursor to the middle of a word tells us that the
previous part of it is correct and that the next letter does not. Just the words
of the vocabulary with that beginning, excluding those which have the incorrect
character, are possible candidates. This list of possible next words is expressed
as mn

1 = m1, ...,mn.

Y

desire

M = {integer, intention}

entire full integer intention purpose whole

Figure 2.4: Constrainment of the vocabulary for character level interaction. For
this example, we assume a vocabulary of 7 words. The user provides a validated

prefix f = (ŷi
′−1

1 , ŷi′ ,
u
1 ) where the validated part of the last word is ’inte’ and

the next incorrect character is ’r ’. From the vocabulary, the only words that
begin with that prefix and do not continue with the character ’r ’ are integer
and intention. Those words compose the sequence of possible candidates.

If, after the user performs a non-explicit MA, the suffix is still incorrect, the
user can perform interaction-explicit MAs. For each one, the filtering of the
words from the vocabulary is more strict, as we have a new incorrect character.

We can formulate the set of Equations 2.5-2.8, to instead of excluding the
words from a sequence, only accept the ones that are included there:

ŷÎ1 ≈ arg max
I,yI

1

I∑
i′=1

log p(yi′ | yi
′−1

1 , xJ1 , f = ŷi−1
1 , mn

1 ; Θ) (2.9)

p(yi′ |yi
′−1

1 , xJ1 , f = ŷi−1
1 ,mn

1 ; Θ) =


δ(yi′ , ŷi′), if i′ < i

[ yi′ ∈ mn
1 ] p(yi′ | yi

′−1
1 , xJ1 , f = ŷi−1

1 , mn
1 ; Θ), if i′ = i

p(yi′ | yi
′−1

1 , xJ1 , f = ŷi1, m
n
1 ; Θ), otherwise

(2.10)
where δ(·, ·) is the Kronecker delta and [P ] is an Iverson bracket:

δ1(yi′ , ŷi′) =

®
1, yi′ ≡ ŷi′
0, otherwise

(2.11)

[ yi′ ∈ mn
1 ] =

®
1, yi′ ∈ mn

1

0, otherwise
(2.12)

Dealing with subwords

To achieve better results, we apply the method BPE (see Section 1.3.2), which
segments the words of the vocabulary in a new set of subwords. Although this
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helps to prevent finding unknown words, also, complicates the filtering of the
vocabulary to get the sequence of candidate words.

For example, if the word ’intention’ was a set of the subwords ’in’ and
’tention’, none of them begins full with the prefix’inte’, as needed in Figure 2.4.
This, makes us have to explore all the possible combinations to generate the
given prefix.

The algorithm implemented to make this search efficiently has been opti-
mized to make it as quick as possible, we do not want that the user waits more
than 1 second, as it could interrupt her flow of thought (Miller and Kelley,
1991).

The algorithm searches for combinations of subwords that contains the pre-
fix, and a minimum of one character more, that can not be one of the marked
as incorrect. The search algorithm of the system will pick the paths of the
tree with the combinations, and the sequence of next subwords that obtains the
highest score. So we do not have to find all the possible ways to finish the word,
the search algorithm automatically will pick the best.

in
tent
ion
int
e

rest
ger

in-tent
int-e-in
int-e-tent
int-e-ion
int-e-int
int-e-e
int-e-ger

ŷi′ ,
u
1 = inte

ŷi′ ,u+1 6= r

Figure 2.5: Subword combination process. Given a set of 7 subwords, a validated
prefix ŷi′ ,

u
1 and an incorrect character ŷi′ ,u+1, the algorithm provides a list with

all the suitable combinations. This process assures that the prefix is present
in the new word, and at the same time is reducing the number of possible
combinations of subwords.

2.2 IBM Model 1 as CM

In the previous approach, the user had to check all the words of the hypothesis
to validate it. As seen in Section 1.8, in the systems with a CM technique
integrated the user only have to check those words that scored lower than the
threshold set.

Most of the confidence measures which have been presented in the literature
calculate the scores either based on simple translation models such as IBM-1
or make use of information provided by an SMT system such as N-best lists
or word graphs (Blatz et al., 2004; Gandrabur and Foster, 2003; Ueffing et al.,
2003).

In this project, we used the IBM model 1 (see Section 2.2.1) to calculate the
scores. It is used in two different modes: at word level (see Section 2.2.1), and
at sentence level (see Section 2.2.2).
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2.2.1 CM model

In this project, we used the IBM Model 1 as our CM model, because it lets
us calculate the confidence scores of each word very fast, without losing perfor-
mance in identifying correct words compared to others word CMs, as seen in
the results from Blatz et al. (2004). We are in an interactive framework, the
speed is a crucial feature of the system.

Given a source sentence xJ1 and a translation hypothesis yI1 , the word confi-
dence score cw is computed as:

cw(xJ1 , yi) = arg max
0≤j≤J

p(yi|xj) (2.13)

where p(yi|xj) is the translation probability between the words yi and xj , which
we can obtain as easy as query in a dictionary. x0 is reserved for the empty
source word. We substitute, the usually used, average, for a maximal lexicon
probability because work by Ueffing and Ney (2005a) shows that the average is
dominated by this maximum.

After computing the confidence scores of each word, they are classified as
either correct or incorrect, depending on whether its confidence is lower or higher
the classification threshold.

2.2.2 Sentence Level

We also consider another approach where instead of getting a confidence esti-
mation of each word of the hypothesis, we just get one confidence estimation
about all the sentence. From the word confidence score Equation (2.13), we
compute two different CMs which differs in the way the word confidence scores
are combined:

MEAN CM (cM (xJ1 , y
I
i )) is computed as the geometric mean of the con-

fidence scores of the words in the sentence.

cM (xJ1 , y
I
i ) = I

Ã
I∏

i=1

cw(xJ1 , yi) (2.14)

RATIO CM (cR(xJ1 , y
I
i )) is computed as the percentage of words classified

as correct in the sentence. A word is classified as correct if its confidence exceeds
a word classification threshold hw.

cR(xJ1 , y
I
i ) =

|{yi/cw(xJ1 , y1) > hw}|
I

(2.15)

We set a sentence classification threshold value hs, the sentences that get a
confidence estimation lower than it are corrected using the conventional IPMT
procedure, and the ones that get a higher or equal value are classified as correct
and do not need correction. If we set the threshold hs = 0.0 all the sentences
will be classified as correct, and the system would work as a fully automatic
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NMT, and if we set it as hs = 1.0 all the sentences will be classified as incorrect
and the system would work as a IPMT.

2.3 Conclusion

First of all, we have seen how are integrated the MAs as a new type of feedback
in an IPMT system, the differences between the non-explicit and interaction-
explicit MAs, and the use of MA at a character level. Also, we have seen how
are implemented in the NMT system all this set of MAs.

Secondly, we have explained how works the CMs at word and sentence level,
the equations for the two types of sentence level confidence estimations, and
how are they implemented in the NMT system.

In the next chapter, we are going to see the results obtained with our models,
and compare them with the obtained in previous works that integrate the same
approaches in a system based on an SMT model.
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Chapter 3

3 Experimental Setup

In this chapter, both methodologies are tested with different parallel corpus
where we can compare the results with the obtained in SMT systems.

First of all, we introduce the software and corpora used in the experimenta-
tion; the metrics used to compare the results; how is simulated the user in the
new cases raised by the CMs; and how the experiments are organized. Finally,
the obtained results are shown, discussed and compared.

3.1 Software

In this section is described the main software used in the development of the
project.

NMT-KERAS

NMT-Keras (Álvaro Peris and Casacuberta, 2018) is a flexible toolkit for train-
ing neural models, which puts special effort in the development of advanced
applications, such as IPMT and Online Learning.

MOSES

Moses (Koehn et al., 2007) is an open-source toolkit which implements state
of the art SMT techniques. Moreover, also provides a huge set of methods to
perform the preprocessing of the corpora, and tokenize it correctly.

SUBWORD-NMT

Subword-nmt (Sennrich et al., 2015) is an open-source set of scripts which seg-
ments text into subword units. It learns a BPE just with the training text and
can apply its rules to any file.

GIZA++

GIZA++ (Och and Ney, 2003) is a word-alignment toolkit, which between oth-
ers can estimate the IBM Models 1 through 5.

3.2 Evaluation Metrics

In this section are explained all the metrics used to assess the results:

• BLEU: BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002)
is a method for the automatic evaluation of machine translation. It com-
putes a geometric mean of the precision of n-grams pn, multiplied by a
factor PB to penalise short sentences.
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BLEU = BP exp

(
N∑

n=1

log pn
N

)
(3.1)

• TER: Translation Edit Rate (TER) (Snover et al., 2006) is defined as the
minimum number of edits needed to change a hypothesis to match the
reference, normalized by the average length of the reference.

TER =
minimum no of edits

average no reference words
(3.2)

Possible edits include the insertion, deletion, and substitution of single
words as well as shifts of word sequences.

• CER: Classification Error Rate (CER) is computed as the number of
classification errors divided by the total number of classified words.

CER =
no misclassified words

no classified words
(3.3)

• WSR: Word Stroke Ratio (WSR) (Tomás and Casacuberta, 2006) is com-
puted as the number of words that the user would need to perform to gen-
erate the reference translation, normalized by the total number of words
in the sentence.

WSR =
no word strokes performed

no reference words
(3.4)

• MAR: Mouse Action Ratio (MAR) (Sanchis-Trilles et al., 2008b) is com-
puted as the number of mouse actions that the user would need to per-
form in order to generate the reference translation, normalized by the total
number of words in the sentence.

MAR =
no mouse actions performed

no reference words
(3.5)

• cMAR: Character level MAR (cMAR) is a variant of the MAR metric
where instead of normalizing the value between the number of words of
the reference, it is normalized by the total number of characters of it.

cMAR =
no mouse actions performed

no reference characters
(3.6)

• uMAR: Useful MAR (uMAR) (Sanchis-Trilles et al., 2008b) indicates the
amount of MAs which were useful, i.e. the MAs that actually generates a
new suffix with the first word correct.

uMAR =
MAC− nWSC

MAC
(3.7)
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where MAC stands for ”Mouse Action Count”, WSC for ”Word Stroke
Count” and n is the maximum number of MAs allowed for the same po-
sition.

As different experiments are done, not all the metrics appear in all of them.
We use the WSR, MAR, cMAR and uMAR metrics, in the mouse actions ex-
periments, to see the reduction in the word strokes needed against the increase
in the number of mouse actions performed. The BLEU, TER, CER and WSR
metrics are used in the confidence measure experiments to compare the WSR
reduction obtained with the quality of the sentences generated.

3.3 Corpora

In this section, we describe all the corpora that were used through the devel-
opment of the project. Three different parallel texts were used: Xerox, EU and
Europarl.

All the corpora were preprocessed of the same way. First of all, with the
scripts included in Moses, we cleaned, lower-cased and tokenized all the cor-
pora. Once we have it tokenized, we applied the subword subdivision with a
maximum of 32000 merges. As we wanted to compare our results with experi-
ments already done in SMT systems, all the corpora were already divided into
training, development and test from previous works.

In each corpus, we show the number of sentences, the average length of them,
the number of total words, and the size of the vocabulary from the training set.
The symbol ”K” means that the number given is in thousands.

Xerox

The Xerox corpus (Esteban et al., 2004) is a compendium of user manuals
for Xerox printers and photocopiers. The source language of the corpora was
English, and the language services of Xerox provided the references for German,
Spanish and French.

De-En
German English

Es-En
Spanish English

Fr-En
French English

Training

Sentences (K) 49 55 52
Avg. Length 10 12 13 11 13 11
Run. Words (K) 538 593 750 665 677 615
Vocabulary (K) 25 13 16 14 16 14

Development
Sentences 1000 1000 1000
Avg. Length 11 11 15 14 11 11
Run. Words (K) 11 11 16 14 12 11

Test
Sentences 1000 1000 1000
Avg. Length 11 12 8 7 12 11
Run. Words (K) 12 12 10 8 12 11

Table 3.1: Characteristics of the Xerox corpus.
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EU

The EU corpus (Khadivi and Goutte, 2003) is formed from the Bulletin of
the European Union, which exists in all official languages of the European
Union, and is publicly available on the internet. We used the German↔English,
Spanish↔English and French↔English pairs of languages.

De-En
German English

Es-En
Spanish English

Fr-En
French English

Training

Sentences (K) 222 214 215
Avg. Length 24 25 27 24 27 24
Run. Words (K) 5348 5698 6000 5350 5806 5283
Vocabulary (K) 152 86 84 69 91 83

Development
Sentences 400 400 400
Avg. Length 24 25 29 25 28 25
Run. Words (K) 10 10 12 10 11 10

Test
Sentences 800 800 800
Avg. Length 23 25 28 25 28 24
Run. Words (K) 18 19 23 20 22 20

Table 3.2: Characteristics of the EU corpus.

Europarl

The Europarl corpus (Koehn, 2005) is built from the Proceedings of the Euro-
pean Parliament, which exists in all official languages of the European Union,
and is publicly available on the internet. Just like before, we used the German↔
English, Spanish↔English and French↔English pairs of languages.

De-En
German English

Es-En
Spanish English

Fr-En
French English

Training

Sentences (K) 751 730 688
Avg. Length 20 21 21 20 22 20
Run. Words (K) 15257 16101 15724 15268 15599 13849
Vocabulary (K) 195 65 102 64 80 61

Development
Sentences 2000 2000 2000
Avg. Length 27 29 30 29 33 29
Run. Words (K) 55 59 60 59 67 59

Test
Sentences 2000 2000 2000
Avg. Length 27 29 30 29 33 29
Run. Words (K) 54 58 67 58 66 58

Table 3.3: Characteristics of the Europarl corpus.

3.4 User Simulation

3.4.1 MA

In the MA scenario, we assume that the user trusts the system enough to perform
up to the maximum mouse actions allowed, a value set by us, to correct the
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error. If the user reaches the maximum mouse actions allowed the correct word
is typed and a new suffix is generated.

Figure 3.1 illustrates an example where the translator has reached the limit
of MAs allowed for the session. Although he asked the system two times to
generate a new suffix, none of them corrected the word correctly, and the user
had to type manually the correct word.

By correcting manually those cases in which the system does not correct the
error, all the sentences produced are perfect, so in the next experiments, we do
not need the metrics that provide us with a quality score like BLEU or Ter.

SOURCE (x): Seleccione el tipo de instalación.
REFERENCE (y): Select the type of installation.

ITER-0
(p)
(ŝh)

( )
Select the installation wizard.

ITER-1
(p)
(st)
(ŝh)

Select the
‖ installation wizard

install script.

ITER-2
(p)
(st)
(ŝh)

Select the
‖ install script

kind installation.

ITER-3

(p)
(st)
(k)
(ŝh)

Select the
kind installation.
type

of installation

ITER-4

(p)
(st)
(k)
(ŝh)

Select the type of installation.
( )
(#)

( )
FINAL (p ≡ y) Select the type of installation.

Figure 3.1: IPMT session to translate a Spanish sentence into English using a
maximum of 2 MAs. Non-validated hypotheses are displayed in italics, whereas
accepted prefixes are in normal font. The MAs are indicated by the symbol ’‖’.

3.4.2 CM

In the CM scenario, as we can validate imperfect sentences that differ from the
reference, we have to make two assumptions to solve the new cases that we can
find where the validated part is wrong. First, we assume that the CM makes
no mistakes in classifying the words. Second, the user is always able to correct
the word without taking into account its context.

The first assumption implies that the translator only checks the words that
the system has classified as incorrect, skipping the other words. The confidence
estimation of the system is not perfect, some words could be misclassified, pro-
voking that the sentence generated by the system is not guaranteed to be equal
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to the reference.
The second assumption is a consequence of the first one. If we skip words

that could be incorrect, the correctness of the validated prefix is no longer
guaranteed. Even so, the translator should be capable of correcting each word,
even if the previous part is wrong. We use the reference sentence to correct the
words classified as incorrect.

Although these assumptions could seem unrealistic, they are made to sim-
plify the IMT scenario and focus on the impact of adding CM to these systems.

Figure 3.2 illustrates an example where we can see how works both assump-
tions. The first assumption is very easy to show, at the first iteration, the first
word tagged as incorrect is ’wizard’, so the system misclassified the previous
word ’installation’. To correct the word, the simulated user types the word
that the reference has in the same position, without looking at its context, as
explained in the second assumption. Finally, the system does not classify an-
other word as incorrect and the translation finishes. In a perfect world, the final
sentence generated would be equal to the reference.

SOURCE (x): Seleccione el tipo de instalación
REFERENCE (y): Select the type of installation.

ITER-0
(p)
(ŝh)

( )
Select the installation wizard.

ITER-1

(p)
(st)
(k)
(ŝh)

Select the installation
wizard.
of

installation.

ITER-2

(p)
(st)
(k)
(ŝh)

Select the installation of installation.
( )
(#)

( )
FINAL (p) Select the installation of installation.

Figure 3.2: IPMT session with CM to translate a Spanish sentence into English.
Non-validated hypotheses are displayed in italics, whereas accepted prefixes are
printed in normal font. Words classified as incorrect are displayed underlined.

3.5 Experimental Results

As a first step, we built an NMT system for each pair of languages and corpus
cited in the previous section. This was done by means of the NMT-Keras toolkit,
which is a complete system for building NMT models. The system adjusted the
weights optimizing the BLEU score obtained on the development partition.

We used the architecture ’AttentionRNNEncoderDecoder ’ from NMT-Keras,
which uses a bidirectional RNN as an encoder, and as a decoder, a RNN with an
attention mechanism, followed by a deep output function, and a fully-connected
output layer with a softmax activation function to obtain the probabilities of
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the target words.
Once we had all the models built, we proceed to generate all the results and

compare them with the obtained in SMT systems. In Section 3.5.1 we compare
the results of introducing the mouse actions into NMT systems and in Section
3.5.2 the results of using CM with NMT systems.

3.5.1 Mouse Actions Results

Xerox and EU

We started by replicating the experiments done by Sanchis-Trilles et al. (2008a),
with our NMT models. In those experiments they tested the improvements in
WSR by using non-explicit and interaction-explicit MAs in the corpora Xerox
and EU. Their results can be seen in Tables 3.4 and 3.6, and ours in Tables 3.5
and 3.7.

baseline non-explicit explicit
cMAR WSR cMAR WSR WSR red. cMAR WSR WSR red.

De-En 13.5 58.5 13.5 56.2 3.9 58.4 51.9 11.3
En-De 12.6 65.1 12.6 63.2 2.9 65.0 59.2 9.1
Es-En 13.5 31.7 13.5 27.0 14.8 31.3 23.8 24.9
En-Es 10.0 27.4 10.0 24.3 11.3 27.1 21.6 21.2
Fr-En 15.7 55.0 15.7 51.5 6.4 54.6 47.1 14.4
En-Fr 13.6 55.4 13.6 52.1 6.0 54.9 48.3 12.8

Table 3.4: Experimental results with the Xerox corpus with a SMT system. All
results are in percentage. Results from Sanchis-Trilles et al. (2008a)

baseline non-explicit explicit
cMAR WSR cMAR WSR WSR red. cMAR WSR WSR red.

De-En 9.0 41.1 9.4 32.5 20.9 31.2 24.5 40.5
En-De 8.7 49.9 9.2 41.1 17.7 31.7 31.4 37.1
Es-En 6.8 34.2 7.3 27.9 18.4 20.4 22.5 34.2
En-Es 5.7 29.0 6.0 23.3 19.6 17.0 18.7 35.5
Fr-En 9.5 45.2 10.1 35.6 21.3 32.9 26.6 41.3
En-Fr 8.3 41.2 8.9 32.1 22.1 28.6 23.5 42.9

Table 3.5: Experimental results with the Xerox corpus with a NMT system. All
results are in percentage.
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baseline non-explicit explicit
cMAR WSR cMAR WSR WSR red. cMAR WSR WSR red.

De-En 14.4 60.5 14.4 58.5 3.3 60.5 53.4 11.7
En-De 13.5 62.2 13.5 60.6 2.6 62.3 56.4 9.3
Es-En 13.8 48.5 13.8 45.5 6.2 48.2 40.8 15.9
En-Es 15.9 52.1 15.9 49.0 6.0 52.3 44.9 13.8
Fr-En 14.4 44.0 14.4 40.3 8.4 43.8 36.3 17.5
En-Fr 15.6 49.6 15.6 47.0 5.2 49.8 43.1 13.1

Table 3.6: Experimental results with the EU corpus with a SMT system. All
results are in percentage. Results from Sanchis-Trilles et al. (2008a)

baseline non-explicit explicit
cMAR WSR cMAR WSR WSR red. cMAR WSR WSR red.

De-En 7.2 39.9 7.4 30.3 23.9 24.6 20.0 49.8
En-De 6.5 42.8 6.7 33.1 22.7 22.8 23.1 46.0
Es-En 5.7 30.9 5.9 21.7 29.9 17.7 13.2 57.3
En-Es 5.7 31.2 5.9 21.6 30.8 17.6 13.1 57.9
Fr-En 5.9 32.2 6.1 23.1 28.1 19.0 15.1 53.0
En-Fr 5.8 31.4 6.0 22.4 28.9 18.3 14.1 55.2

Table 3.7: Experimental results with the EU corpus with a NMT system. All
results are in percentage.

By definition, the MAR obtained in the baseline should be equal to the
obtained with the non-explicit MAs. Due to that the non-explicit MAs are
those which are already done in the baseline in order to position the cursor
before correcting a word. In the previous work, this happens as supposed, but
in ours, we can see a little difference in the values.

In our case, this happens because when the user corrects a word, we are
setting the score of that word in that position to 1, and all the others to 0. But
when the user does a non-explicit MA, only changes the score of the incorrect
word in that position to 0, giving the possibility of obtaining different suffixes
even when both options corrected the word.

It can be seen the big difference between applying this input information in
both models. Throughout all the languages pairs and for both corpora, in the
previous work, the maximum improvement using non-explicit MAs in the WSR
was of 14.8%. In our work, with an NMT system, the minimum improvement
was of 17.7%. This difference is even higher if we take a look at the results with
interaction-explicit MAs. They get a maximum improvement of 24.9%, and we
get a minimum of 34.2%.

One of the main reasons why our models obtained a better WSR improve-
ment is because our models generate higher-quality translations, this idea is
supported in the fact that in the vast majority of the cases we get a lower WSR
in the baseline. Also, the better a model is, it is more likely that the model
generates the correct suffix with less MAs.
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We can go further and compare the models that we obtained from each
corpus. Although the WSR baseline is almost the same for both cases, the
improvement obtained with the EU corpus tends to be greater. We can see the
difference between the models if we take a look at the percentage of uMAR with
the increasing of explicit MAs performed (see Figure 3.3).
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Figure 3.3: uMar evolution through the increasing of the maximum number of
explicit MAs. Xerox Es-En (left), EU Es-En (right).

In the models obtained from the Xerox corpus, the uMAR tends to decrease
when we increase the maximum number of MAs. In the pair of languages Es-En,
the percentage of useful MAs decrease from 30.6% to 0.5% with a maximum of
5 MAs. While in the EU corpus, the uMAR remains at 33%. Ergo, although
both models seemed equally good only looking at the baseline, just one of them
is taking considerable benefits of the new MAs performed by increasing the
maximum number.

Europarl

The experiments performed by Sanchis-Trilles et al. (2008b) used the Europarl
corpus, and not only take into account the interaction-explicit MAs, but they
also take a look into the improvement of the system considering one to five
maximum MAs. They compare the metrics WSR, MAR and uMAR.

Once we have built our models, for each pair of languages of the corpus,
we replicate the experiments, and the results were very similar to the obtained
in the previous subsection. The results and comparison of them can be seen
in Table 3.8. The reduction of WSR that we obtained from only performing
non-explicit MAs, on average was of 25.0%, a value very impressive compared
to the 3.2% obtained in the previous work.
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Sanchis-Trilles et al. (2008b) our work
baseline non-explicit WSR red. baseline non-explicit WSR red.

De-En 71.6 69.0 3.6 44.6 33.4 25.2
En-De 75.9 73.5 3.2 48.2 36.9 23.6
Es-En 63.0 59.2 6.0 42.0 31.1 26.0
En-Es 63.8 60.5 5.2 44.2 33.2 24.9
Fr-En 62.9 59.2 5.9 43.4 32.5 25.1
En-Fr 63.4 60.0 5.4 40.4 30.2 25.3

Table 3.8: WSR improvement when consideraing non-explicit MAs. All results
are given in percentages.

Once we have compared the behaviour of both systems just taking account
the non-explicit MAs, we can analyse the effect of performing to a maximum
of 5 MAs per incorrect word. More specifically, taking a look at the metrics
in each step, to see how the WSR improves while, at the same time, the MAR
degrades.

In our case, performing to a maximum of 5 MAs per incorrect word pro-
duces an average improvement in WSR of about 51%, and the uMAR maintains
around 30%. The number of word strokes that the user would have to perform
is halved, and at each MA, the user has a probability of 0.3n of getting the
correct word, where n is the number MAs performed already.

In Figure 3.4, we have a comparison more in detail of both models for the
pairs of languages ’Spanish→English’. It can be seen how although both models
start with a similar value of MAR, our model ends with a significantly lower
value, due to the high percentage of uMAR, while in the other case, the lower
value of it provokes that more MA were needed to be performed to correct the
sentences.

Although in Figure 3.4 is only the comparison of one pair of languages, the
experiments were done for all the pairs, and the results obtained were very
similar to the shown there. Because of this, and to not saturate with multiple
graphs with very similar values, we decided to omit them.
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Figure 3.4: WSR improvement when considering one to five maximum MAs
in Europarl corpus. All results are given in percentages. Sanchis-Trilles et al.
(2008b) results (up), our results (down).

3.5.2 Confidence Measures Results

We built the IBM Model 1 needed to generate the confidence scores by means of
the GIZA++ toolkit. We configure it to do 10 iterations of the EM algorithm
before saving the probability matrix.

All the experiments were performed using the pair of languages Spanish-
English of the EU corpora. As it was used in the experiments that we are going
to replicate and compare next.

Word Level

First of all, we are going to replicate the experiments done by González-Rubio
et al. (2010), where they treat the confidence scores of each word from the
hypothesis individually. As in the previous section, they use SMT systems to
generate the new hypothesis, and next, we are going to see the differences from
using a NMT system instead.

Figure 3.5 shows CER for different values of the classification threshold in
both projects. The two extreme values of the graph, 0.0 and 1.0, does not

33



support any useful information to the system as they are tagging all the words
equally. Specifically, when we set the threshold to 0.0 all the words are classified
as correct, while when we use a value of 1.0, the words are classified as incorrect.

In our results, it can be seen easily in which zone where are achieved the
best values of CER. The best value was obtained for a threshold of 0.05, where
only 8% of the words were classified as incorrect. This value is so near to 0.0
that in this case would not be necessary use this CM, as it will be similar to not
provide any information to the user.
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Figure 3.5: CER for different classification threshold values when translating
from Spanish into English. All results are given in percentages. González-Rubio
et al. (2010) (left) our work (right).

In the previous work, they reach the opposite conclusion. As shown in
the graph, their evolution of CER for different classification thresholds is very
different than ours. Their best value is obtained with a classification threshold
of 0.75 and gets 37.0 CER.

In our case, the system provides so good hypothesis that even classifying
all the words as correct, the CER obtained is better than the achieved in the
previous work. These confidence scores are calculated with the IBM Model 1
which although is very quick, it does not have in consideration the context of
the word. We could have reached the point where we need better models for
our confidence scores to make them reliable again.

Next, we performed a series of experiments in which we simulated an IPMT
session where the user only is asked to correct those words that are classified as
incorrect according to the confidence classification threshold. In these experi-
ments, we compare the effort done by the user, WSR, with the quality of the
translations, TER and BLEU.
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Figure 3.6: TER (left) and BLEU (right) translation scores against WSR for
different values of the confidence classification threshold when translation from
Spanish into English.

Figure 3.6 shows the results of these experiments, where ’WSR IMT-CM ’,
’TER IMT-CM ’ and ’BLEU IMT-CM ’ correspond to the values obtained by
our simulations; ’TER SMT ’ and ’BLEU MST ’ are the scores obtained by a
fully-automatic MT; and ’WSR-IMT ’ is the score from a conventional IPMT
system.

Figure 3.6 shows a smooth transition between the fully automatic NMT
system and the conventional IPMT system. As we increase the score, more
words are classified as incorrect, and therefore, more words are corrected by the
user. We can see how affects the system, that our best CER score in Figure 3.5
is obtained with a very low classification threshold (0.05): the WSR rise very
quick in comparison with the changes in TER and BLEU.

Sentence Level

Finally, we are going to replicate, with the same models than before, the exper-
iments performed by González-Rubio et al. (2010), which tried to reduce the
translator effort depending on the confidence score of the whole sentence. The
confidence scores are calculated following Equations 2.14 (MEAN CM) and 2.15
(RATIO CM).

Figure 3.7 shows the results of both projects obtained from using the MEAN
CM to calculate the confidence score of the sentence. Note, how in our results
we have obviated values greater than 0.3 because for all of them, the system
behaved like a conventional IPMT system. In our case, the transition between
the two behaviours is done between 0.0 and 0.2, the vast majority of the sentence
confidence scores obtained were very low. While in the previous work, with the
SMT model, this transition occurs more smoothly between the classification
thresholds 0.0 and 0.6. Even so, from 0.6 and onwards, the system behaves like
a conventional IPMT system. In both cases, this is an undesired effect, since
for a large range of values there is no change in the behaviour of the system.
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The brief transition obtained in our results could be related to the quality
of the translations. As seen in the previous subsection, our model gets the best
CER score at a very low confidence classification threshold (0.05), while with
the SMT models the best CER was obtained at 0.75.
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Figure 3.7: BLEU translation scores against WSR for different values of the
sentence classification threshold using the MEAN CM. All results are given in
percentages. González-Rubio et al. (2010) (left) our work (right)

The RATIO CM confidence values depend on a word classification threshold
hw. We have performed various experiments ranging hw between 0.0 and 1.0
and see that we can expand the transition between the behaviours with this
value. The larger the value selected, the smoother the transition between the
fully automatic MT system and the conventional IPMT system. Figure 3.8
shows the results obtained from using hw = 0.4 and hw = 0.6. According to
Figure 3.8, using hw = 0.6 and a sentence classification threshold value of 0.5
we obtain a WSR reduction of 21% relative and an almost perfect translation
quality of 89 BLEU points.
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Figure 3.8: BLEU translation scores against WSR for different values of the
sentence classification threshold using the RATIO CM with hw = 0.4 and hw =
0.6. All results are given in percentage. Results obtained in our work.
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As in our experiments, in the previous work obtained that the greater was
the word classification threshold, the smoother was the transition between the
MT system and the IPMT system. Figure 3.9 shows the results obtained in the
previous work with the RATIO CM with a hw = 0.4, and it can be seen that
is very similar to our graph with a word classification threshold of 0.6. With a
sentence classification threshold value of 0.6, they obtain a WSR reduction of
20% relative and translation quality of 87 BLEU points.

Figure 3.9: BLEU translation scores against WSR for different values of the
sentence classification threshold using the RATIO CM with hw = 0.4. All
results are given in percentage. Results obtained from González-Rubio et al.
(2010).

The results obtained in the previous subsections were not encouraging of
the integration of CM into IPMT systems with NMT models, cause the best
results were obtained with a classification threshold too near to 0.0. These last
results, with the RATIO CM, indicates the opposite. With the correct values
of the word classification threshold, we can smooth the transition and select a
classification threshold that obtains an almost perfect translation quality with
less WSR than using SMT models.
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Chapter 4

4 Conclusions and Future Work

4.1 Conclusions

In this thesis, we have applied different techniques about interactive machine
translation to NMT systems, with the premise of reducing the effort done by
the translator in comparison with the needed when using SMT systems.

The techniques were tested using different corpora, and compared with pre-
vious works that used these same techniques but with different systems. These
results show how the use of these techniques into NMT systems reduce greatly
the effort that the user needs to do.

The results obtained from introducing the mouse actions as additional input
information, were very good. In all the experiments the baseline was improved,
proving that this kind of input information could be very useful and can reduce
drastically the effort needed to do to correct a translation.

On the other hand, the results obtained from integrating confidence measures
to the IPTM process were doubtful. At a sentence level, using the RATIO CM,
the results were good and proved that in this scenario the confidence scores
are useful: we can reduce the effort done by risking a bit the quality of the
translations. In the other scenarios, the classification threshold values that
obtained the best scores were so near to 0.0 that the system works as a fully
automatic SMT.

Overall, the results proved that there is still work to do in this field. With
the improvement of the models, also improve the effect that these interactive
translation techniques have on them.

4.2 Future Work

In all the experiments that we have performed the user have been simulated
following some basic rules. Not all the users behave in the same way, some of
them could do not understand how the system works, or even need time to learn
which is the best way to use it. As future work, we need to test the techniques
implemented with real translators, to study their behaviours using the system
and corroborate our results obtained with the user simulation.

Another line of work is to test the CM system using additional models to
obtain the word confidence scores. As we have seen in Section 2, the IBM
Model 1 does not have obtained the results that we thought, other models could
work better with NMT systems, even without slowing down the human-machine
interaction.

In this project, we have tested two different IMT approaches to reduce the
human effort in INTM systems. We have to implement and test new approaches
to INMT systems to compare the results and study which approach obtain the
higher WSR reduction in this kind of systems.
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Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. On the properties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259, 2014.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 577–585. Curran Asso-
ciates, Inc., 2015.

Automatic Language Processing Advisory Committee. Language and machines
computers in translation and linguistics, 1966.
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