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Resum
The boolean satisfiability problem is a very important problem in computer

science, affecting a great variety of fields, this work attempts to study how well
genetic algorithms perform when applied to the SAT problem in comparison with
some popular existing SAT solvers.
In order to study the genetic algorithms, the effects of the different genetic ope-
rators are analyzed through experimental evaluation, using this analysis the best
performing genetic algorithms are selected for comparison with the SAT solvers.
The experiments performed indicate that hybrid genetic algorithms outperform
pure genetic algorithms and local search algorithms, such as the SAT solvers
analyzed, outperform them both when applied to SAT problems.

Paraules clau: algoritme genètic, satisfacibilidad booleana, operadors genètics,
solucionador SAT

Resumen
El problema de satisfacibilidad booleana es un problema muy importante en

el campo de la informatica ya que afecta a una gran variedad de campos, este tra-
bajo intenta estudiar el comportamiento de los algoritmos aplicados a problemas
SAT para luego compararlos con algunos de los solucionadores SAT existentes
más populares.
Para poder estudiar el comportamiento del algoritmo genético, se analizan los
efectos de los distintos operadores genéticos a partir de la evaluación experimen-
tal, utilizando dicho análisis se seleccionan los mejores algoritmos genéticos para
compararlos con los solucionadores SAT.
Los experimentos llevados a cabo indican que los algoritmos genéticos hibridos
funcionan mejor que los algoritmos genéticos puros y los algoritmos de busque-
da local, como los solucionadores SAT analizados, funcionan mejor que ambos a
la hora de solucionar problemas SAT.

Palabras clave: algoritmo genético, satisfacibilidad booleana, operadores genéti-
cos, solucionador SAT

Abstract
El problema de satisfacibilidad booleana és un problema molt important en

el camp de la informatica ja que afecta a una gran varietat de camps, este treball
intenta estudiar com es comporten el algoritmes genetics aplicats a problemes
SAT per a despres compararlos amb alguns dels solucionadors SAT existents més
populars.
Per a poder estudiar el comportament de l’algoritme genètic, s’analitzen els efectes
dels distints operadors genètics a partir de l’avaluació experimental, utilitzant la
dit anàlisi se seleccionen els millors algoritmes genètics per a comparar-los amb
els solucionadors SAT.
Els experiments duts a terme indiquen que els algoritmes genètics híbrids fun-
cionen millor que els algoritmes genètics purs i els algoritmes de cerca local, com
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els solucionadors SAT analitzats, funcionen millor que ambdós a l’hora de solu-
cionar problemes SAT.

Key words: genetic algorithms, boolean satisfiability, genetic operators, SAT solver
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CHAPTER 1

Introduction

The Boolean satisfiability problem (SAT) consists of determining an assignment of vari-
ables such that a given Boolean expression evaluates to True, or proving no such assign-
ment can exist; It is a very famous problem in logic and computer science since it was the
first problem proven to be NP-Complete, thus finding an efficient general SAT solver is
bound to advance the P vs NP problem, which is considered by many to be one of the
most important open problems in computer science and is actually one of the unsolved1

seven millennium problems stated by the Clay Mathematics Institute on May 24, 2000.
This work attempts to study the behavior of genetic algorithms applied to a restricted
version of the SAT problem called the 3-SAT problem, which is still NP-complete. It will
attempt to do so by analyzing the behavior of genetic algorithms based on different oper-
ators and hyper-parameters tested on a series of 3-SAT problems, and then grading them
against each other, the best ranking genetic algorithms found will then be compared with
some of the most popular open source SAT solvers.

1.1 Objectives

The main objective of this work is to generate a series of genetic algorithms which can
solve 3-SAT problem instances, these algorithms will be compared with some existing
popular open source SAT solvers, in order to determine if a random search algorithm can
compete with the local search used by most solvers.
A secondary objective is to determine the effect the different genetic operators and their
parameters have on the evolution of the population, and how this affects both the explo-
ration of the search space and the exploitation of the available solutions/individuals.
The point of the analysis of the different genetic operators and parameters stated as a
secondary objective, is to determine the configuration of the genetic algorithms which
will be compared with the SAT solvers explained in Section 2.5 in order to carry out the
main objective.

1.2 Motivation

The study of the boolean satisfiability problem, and by extension P vs NP, is of great
importance to computer scientists and the scientific community at large since any proof
relating P and NP is bound to have a great impact on a wide range of fields, from compu-
tational theory and mathematics to economics and game theory, philosophy and many
others.

1The Poincaré Conjecture is the only solved millennium problem
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The boolean satisfiability problem also has practical applications on fields such as auto-
matic theorem proving and circuit design, it even has some applications in planning for
artificial intelligence.
Genetic algorithms are not usually applied to decision problems such as the SAT prob-
lem since they are best suited for optimization problems, nonetheless applying them to a
decision problem poses an interesting challenge in converting either the algorithm or the
problem.
This work converts the decision problem into an optimization one through the use of
the maxsat fitness function explained in section 3.2, which allows for the incremental im-
provement of the fitness function needed by genetic algorithms.
It is also interesting to determine the effects of the different genetic operators on the be-
havior of the genetic algorithms, since this knowledge can help design better algorithms
in the future.
The effect of the parameters is analyzed through the experimental evaluation of the algo-
rithms on selected SAT instances, shown in chapter 5.
Though the problem studied in this work is the boolean satisfiability problem the genetic
algorithm designed can be used on a wide variety of problems through minimal changes
to the code, the genetic operators are also designed in a modular way so the algorithm
can be constructed with any combination of them.

1.3 Outline

This work is organized as follows:

Chapter 2 provides an overview of the background information necessary to under-
stand this work.
Among the required information one can find explanations for the boolean satisfiability
problem, P vs Np and the field of computational complexity and finally completeness
and hardness, in the sections 2.2, 2.3 and 2.4 respectively.
There is also a basic explanation for how genetic algorithms work in Section 2.1.
The SAT solvers which will be compared with the genetic algorithms are explained in
Chapter 2, Section 2.5
Chapter 3 lays out a more in-depth description of how genetic algorithms work, along
with detailed descriptions of the genetic operators and the different algorithms which
can be used to carry out each operation.
Chapter 4 explains the specific details of the design of the genetic_algorithm class and the
functionality of the developed implementation in Section 4.1, the database structure used
to log the results of the experiments is shown in Section 4.2 and an overview of how the
actual experiments are run can be found in Section 4.3.
In chapter 5 the effect of the different genetic operators on the success rate of the algorithm
is analyzed through experimentation, the best combinations found are run on a harder
subset of problems, these executions are analyzed again in order to select the genetic al-
gorithm/s which will be compared with the SAT solvers explained in section 2.5.
Chapter 6 describes the final conclusions of this work.



CHAPTER 2

Preliminaries

2.1 Genetic Algorithms

A genetic algorithm is a meta-heuristic designed to mimic the behavior of natural se-
lection, it does so by evolving a population of candidate solutions through the use of
biologically inspired operators. First proposed by John Holland in 1975 (10.5555/531075),
genetic algorithms are based on the process of natural selection, they simulate it, albeit in
a pretty simplified manner, through the use of the different genetic operators:

– The selection operator simulates the selection process which occurs in nature in
which fitter individuals have more probability of surviving and passing on their
genes to the next generation.

– The crossover operator mimics the genetic information exchange which occurs when
two creatures breed.

– The mutation operator simulates the "randomness" of the genetic information ex-
change process, when exchanging genetic information the resulting genetic string
is not always a copy of the parents since random mutations have a probability of
occurring.

– The population replacement operator simulates the life and death cycle in nature,
where old individuals die off and get replaced by the young individuals.

Initially a population of random candidate solutions is generated, then the popula-
tion is ranked using a fitness function which measures how well each individual in the
population solves the problem; Once every individual has a fitness value associated, the
individuals which will be used to generate the next population are selected based on said
value and grouped into pairs, these pairs are called parents and the process of choosing
them is called selection.
With the parents now selected begins the crossover process, for every parent pair the par-
ent genes are split and recombined in order to form two new individuals, these new
individuals are the children which will form the new generation.
Before the children are added to the new population they must undergo the mutation pro-
cess, where there is a chance that some genes inside the individual’s genetic code might
change; After every individual has been mutated the old population is replaced, either
partially or totally, by a new population made of the mutated children through a process
called replacement; The new population is then ranked and the processes of selection, mu-
tation and replacement are run again, this continues until a solution has been found or
the maximum number of iterations for the algorithm is reached.

3



Figure 2.1: Genetic Algorithm diagram, own work based on (genetic_algorithm)

A genetic algorithm is a population based random search algorithm (Cochran2011) since
the initial population is randomly generated, but it differs from other random search
algorithms due to the fact that a genetic algorithm performs a guided random search
through the use of the biological operators mentioned above; These biological operators
mimic the processes of evolution and natural selection, albeit in a pretty simplified man-
ner.

2.2 3-SAT Problem

The boolean satisfiability problem is the problem of determining, for a given boolean ex-
pression, if there exists an assignment of values, such that the formula evaluates to True,
or proving no such assignment exists and therefore the formula will always evaluate to
False. For example, having variables {x1, x2, x3, x4} and the boolean expression:

(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

It is trivial to find an assignment of variables such that the given expression evaluates to
True (eg. {True, True, False, False}), consequently this expression is said to be satisfiable,
but for this other boolean expression:

(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

There exists no such assignment, the equation will never be solved by tweaking the vari-
able values, therefore it is an unsatisfiable expression.
Any algorithm designed to solve SAT instances must distinguish between satisfiable and
unsatisfiable problems however, barring some trivial or contradictory expressions, this
can only be done by attempting to solve the actual problems, since no one can assert that
no solution exists if they haven’t searched the whole solution space.
Due to the inherently random nature of Genetic Algorithms one can not be sure the whole



solution space has been searched and, in consequence, won’t be able to assert with con-
fidence that no solution exists, only that no solution has been found in the given amount
of time, this is the main reason why this work will focus only on SAT instances which are
known to be solvable.
Since genetic algorithms do not systematically try all solutions for a given problem, when
attempting unsolvable 3-SAT instances the genetic algorithm would never stop, or it
would only do so after its maximum number of iterations is reached, after which one
can not prove that no solution exists, only that no solution has been found by the algo-
rithm in the specified amount of time.
All the boolean SAT expressions used throughout this work are in conjunctive normal
form or CNF, this means that all formulas are a conjunction (∧) of clauses (or a single
clause), these clauses contain the variables and the disjunction (∨) operator, they can also
contain the negation (¬) operator; Both of the boolean formulas shown above are in con-
junctive normal form.
3-SAT is a restricted version of SAT where each clause has exactly three variables in it, the
problem of determining the satisfiability of a 3-SAT formula in conjunctive normal form
is also NP-Complete (Karp2010)

2.3 P vs NP

Computational complexity theory is a branch of mathematics and theoretical computer
science, which tries to classify different mathematical problems according to the compu-
tational resources needed to solve them, usually the measured resources are time and
storage space, though other complexity measures can also be used.
The analysis of complexity is done using a mathematical model of computation, this
model allows us to analyze the performance of algorithms inside a theoretical computa-
tion machine, which means we can compare different algorithms without worrying about
the details of their specific implementations.
The most common model of computation used is called a Turing machine (turingm), it is
a useful model of computation when trying to study an algorithm’s performance on real
machines, since anything that can be calculated using a traditional computer can also be
computed using a Turing machine.
Different types of Turing machines can be used to define different complexity classes,
the most commonly used are Deterministic Turing machines which follow instructions se-
quentially, much like traditional computers, and Non-deterministic Turing machines which
behaves stochastically, since at any given time step it can have more than one instruction
and will choose which one to execute randomly.

Complexity classes are defined by establishing upper bounds to the resources avail-
able for the aforementioned Turing machines; For example the complexity class P is com-
posed of all the problems which can be solved by a deterministic Turing machine in
polynomial time, P is a class with a time constraint, the amount of space used is irrele-
vant for this categorization. There exist four fundamental classes based on the resources
constrained:

– DTIME[t(n)] is composed of all the problems which can be solved by a determin-
istic Turing machine in t(n) amount of time

– NTIME[t(n)] is composed of all the problems which can be solved by a non-deterministic
Turing machine in t(n) amount of time

– DSPACE[s(n)] is composed of all the problems which can be solved by a determin-
istic Turing machine in s(n) amount of space



Figure 2.2: Left: Deterministic Turing machine computation tree. Right: Non-deterministic Tur-
ing machine computation tree. (computation_trees)

– NSPACE[s(n)] is composed of all the problems which can be solved by a non-
deterministic Turing machine in s(n) amount of space

Using these fundamental classes the complexity class P can be defined as the union
of all problems in DTIME[t(n)] where t(n) is polynomial time, formally:

P = DTIME[nO(1)] =
⋃

k∈N

DTIME[nk]

Figure 2.3: Relations between some of the canonical complexity classes (complexity_classes)

The boundaries between classes shown in figure 2.3 are not hard boundaries, which
means all classes could theoretically be the same class, though there exists proof that at
least one of the boundaries must not be equal.
This leads us to one of the main unsolved problems in computational theory, is P equal



to NP?, in other words, can all problems which can be verified in polynomial time by
a deterministic Turing machine also be solved by that same deterministic machine in
polynomial time?
This work attempts to study the application of genetic algorithms towards the search of
this question, it does so by attempting to solve the 3-SAT problem, which is NP-Hard,
through the use of these methods.
Due to the stochastic nature of the algorithms they cannot be used to determine any
proof for unsolvable cases of the problem (explained in subsection 2.2), in spite of this,
their behavior when applied to solvable instances, may yield insight into how stochastic
processes can help improve local exploration methods.

2.4 Completeness and Hardness

Inside the different complexity classes there exists a certain type of problems which are
said to be Hard, a problem P is considered hard if all other problems in the complexity
class can be reduced to P using a polynomial time reduction; If problem A can be trans-
formed into an instance of problem B in polynomial time, then problem A is polynomial
time reducible to B.
A hard problem is at least as difficult to solve as the hardest problems in the complexity
class, this means if there exists a solver for the hard problem, it can be used to demon-
strate that all other problems in the complexity class can also be solved in the same
amount of time, since they can be reduced to the hard problem in polynomial time. A
problem does not need to be in a complexity class, for it to be considered hard in relation
to that same complexity class.
If a problem is hard in relation to the same complexity class it is found in, that problem
is considered Complete, the complete problems represent the hardest problems in that
complexity class.

Figure 2.4: NP-Hard and NP-Complete boundaries (complete_hard)

The boolean satisfiability problem was the first problem proven to be NP-Complete
(Cook1971), therefore finding a polynomial time algorithm which solves the SAT prob-
lem is akin to proving P = NP, the reverse is also true, if one can prove that no polyno-
mial time algorithm for the SAT problem can exist, then P! = NP is also proven.



2.5 SAT Solvers

Most of the modern SAT solvers, as evidenced by the contestants of the SAT-RACE1

through the years (Een2000; Gebser2007; Hamadi2009; Biere2017), are based on two al-
gorithms, the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and the conflict-driven
clause learning (CDCL) algorithm.

2.5.1. DPLL

The DPLL algorithm works by selecting a variable and splitting the problem into two
simplified ones where said variable is assigned True and False respectively, then it chooses
another variable and keeps splitting the problem recursively until a solution is found or
all options have been checked (Davis1962).
The algorithm also uses some optimizations at each step in order to reduce the effective
search space, these optimizations are the same as the ones explained in the trivial case,
remove unit variables and remove pure variables sections which appear later in this work.

2.5.2. CDCL

The CDCL algorithm works by first selecting a variable and assigning the value True or
False to it, this assignment is "remembered" in the decision state, then it applies boolean con-
straint propagation (BCP) to the resulting clauses, which analyzes the unsatisfied clauses
in search for clauses where two of the three variables are evaluated to False, it assigns a
value to the other variable such that it evaluates to True, the resulting clauses are then
analyzed again, this procedure continues until no more assignments can be made.
After applying BCP it constructs an implication graph in order to find any conflicts in the
variable assignments, if any conflict is found a new clause which negates the assignments
that led to said conflict is derived and added to the clauses, then the algorithm backtracks
to the decision state where the conflicting variable value is assigned.
If no conflicts are found in the implication graph the algorithm selects another variable
and runs again, this process continues until all the variables have been assigned a value.

The SAT solvers shown below will be compared with the best performing genetic
algorithms found throughout this work.

2.5.3. MiniSat

MiniSat is an extensible SAT solver first developed in 2003 by Niklas Eén and Niklas
Sörensson at Chalmers University of Technology, Sweden (Een2000), the version used
throughout this work is MiniSat v2.2.0, the second public release of MiniSat 2 which won
the SAT-Race in 2006.
MiniSat is based on the CDCL algorithm though it improves the basic version by apply-
ing the techniques of watched literals and dynamic variable ordering.

– Watched literals improves the efficiency of the constraint propagator, reducing the
amount of work that must be done during backtracking, this results in less time
needed to check the satisfiability of the formulas (Gent2006).

1The SAT Race or SAT Competition is a yearly competition for SAT solvers organized by the International
Conference on Theory and Applications of Satisfiability Testing



– Dynamic variable ordering alters the order in which the variables are instanced by
tree-search algorithms, a good ordering is known to improve the efficiency of the
search algorithms (Bacchus1995).

2.5.4. ManySat

ManySat is a portfolio-based SAT solver, first developed in 2008 by Y. Hamadi, S. Jabbour,
and L. Sais it won best parallel SAT solver in the SAT-Race 2008 and silver and bronze
medals in the SAT-Race 2010.
Portfolio-based SAT solvers run various algorithms in parallel, and stop as soon as any
one of them reaches an answer, this allows them to exploit the multiprocessing capabili-
ties of modern processors by running various algorithms concurrently, which helps offset
the weaknesses of each specific algorithm thereby making the portfolio-based algorithm
more robust.
ManySat uses variations of the DPLL and CDCL algorithms in its portfolio, each of the
variations uses a specific set of parameters such that the generated strategies are orthog-
onal yet complementary (Hamadi2009).

2.5.5. zChaff

zChaff is an implementation of the Chaff algorithm, originally developed by Dr. Lintao
Zhang it is currently being maintained by Yogesh Mahajan.
Chaff is a variation of the DPLL algorithm designed by researchers at Princeton Univer-
sity (Moskewicz2001), it improves the algorithm by using the watched literals technique
and a decision heuristic called Variable State Independent Decaying Sum which changes the
variable selection process, in addition to some other enhancements such as conflict clause
deletion and early restarts.

2.5.6. Clasp

Clasp is a conflict-driven answer set solver developed in 2007 by Martin Gebser, Ben-
jamin Kaufmann, André Neumann, and Torsten Schaub at the Institut für Informatik in
Universität Potsdam, it is part of Potassco, the Potsdam Answer Set Solving Collection
(Gebser2007).
Clasp and its variants won gold and silver medals during the SAT Races of 2009, 2011
and 2013, in all cases the medals were won in the crafted instances category.
Clasp’s main algorithm works through conflict-driven nogood learning, it generates a set
of nogoods, which are variables whose value has been set using the Clark completion pro-
cedure, it also creates an initial positive atom-body-dependency graph which is used to
detect conflicts, then it applies the unit clause rule to said nogoods set, along with some
decision heuristics, the process of generating nogoods and applying the unit clause rule
is repeated until a conflict is found, in which case it backtracks to the nogood assignment
which caused the conflict through the atom-body-dependency graph, or until no more
assignments can be made.

2.5.7. Lingeling, Treengeling and Plingeling

Lingeling is a SAT solver developed in 2010 by Armin Biere at the Institute for Formal
Models and Verification in Johannes Kepler University, Linz, Austria; Along with its vari-
ants Treengeling, Plingeling and others, it won gold, silver and bronze medals during the



SAT Races of 2010, 2011, 2013, 2014, 2016, 2017, 2018 and 2020, most of them in the paral-
lel algorithms track with the variants Plingeling and Treengeling.
Lingeling uses a standard CDCL algorithm with various pre-processing techniques inter-
leaved, these include SCC decomposition for extracting equivalences, failed literal prob-
ing, which assigns a value to a variable then propagates it, if it fails the opposite value
is assigned, and lazy hyper binary resolution, which combines multiple resolution steps
for the boolean formula into one (Biere2010).
Plingeling is a multi-threaded version of Lingeling, where each thread runs a separate
SAT solver instance, it is thus a portfolio-based parallel SAT solver.
Treengeling is also a parallel solver which uses the same structure as Plingeling for paral-
lel processing, the main differences between the two algorithms are the way the different
SAT solvers are instanced in each thread and the information that is shared between said
threads (Biere2012).

2.5.8. CaDiCaL

Cadical is also developed by Armin Biere at the Institute for Formal Models and Veri-
fication in Johannes Kepler University, Linz, Austria, it was first presented during the
SAT Race 2017 (Biere2017), year in which it won gold medal in the category of Satisfi-
able+Unsatisfiable problems; Cadical also won another gold medal during the SAT Race
2018 in the Unsatisfiable problems category.
Cadical’s main search loop is based on the CDCL algorithm but it expands on it by apply-
ing formula simplification methods at each time step, this procedure is called in-processing
(Jarvisalo2012), the three in-processing methods used by Cadical are:

– probing: failed literal probing learns the binary clauses through hyper binary reso-
lution, these clauses are later used to remove equivalent variables and duplicated
binary clauses.

– subsumption: subsumption checks are used to remove the subsumed learned clauses,
subsumed clauses are clauses which contain the same information, or a subset of
it, than another clause, therefore they can be safely discarded without affecting the
original formula.

– variable elimination: (bounded) variable elimination is used along with subsumption
checks to eliminate variables from the clauses, or substitute them by an equivalent
definition in order to simplify the formula.

Though this list covers many of the winners of the SAT race through the years, it does
not include them all due to the time constraints and limited resources allowed for the
development of this work.
Still, the list attempts to include a series of solvers based on different algorithms and dif-
ferent implementations/optimizations of the same algorithms in order to compare the
genetic algorithm with the widest range of behaviors possible.
The analysis of the SAT solvers is also useful for the implementation of the genetic algo-
rithm, since some of the local optimizations used by the solvers can be implemented in
said algorithm.
These optimizations are used to reduce the solution space which must be searched, ef-
fectively turning the genetic algorithm into a hybrid genetic algorithm, their design and
implementation for a genetic algorithm are shown in sections 3.8 and 2 respectively.



CHAPTER 3

Genetic Algorithms

This chapter and the subsequent ones offer a more in depth explanation of the actual de-
sign and implementation of the genetic algorithms and their operators used throughout
this work, along with an experimental analysis of said implementations and posterior
comparison with the SAT solvers explained in section 2.5.

3.1 Codification of individuals

The first step when designing a genetic algorithm is choosing an adequate method of
representation for the solution domain, this means choosing a way of representing the
candidate solutions to the problem which allows for the application of the biological
operators needed.
Usually this is achieved by encoding the solution as a fixed size list of values, also called
bit string representation (Gottlieb), though other encodings such as variable sized lists
or tree-like representations may also be used, fixed size list representations are easier
to work with since the genetic material is easier to split and align which allows for a
simpler crossover operator, this makes it one of the most common representations for
genetic algorithms (Loviskova2015; Harmeling2000; Bhattacharjee2017; Gottlieb).
The representation chosen for the SAT solutions is a binary encoding, each individual’s
genotype1 is a single fixed size list where the values are binary digits, these digits are
named genes and they represent the True (1) or False (0) values of the variables in the SAT
instance, their position in the genotype list indicates which variable the value is assigned
to. For the following boolean expression:

(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3)

A solution can be represented as a list of size 4 where each of the elements is either True,
encoded as a 1 or False, encoded as a 0; Using this representation the solution S becomes
S′:

S = {x1 = True, x2 = False, x3 = False, x4 = True}
S′ = {1, 0, 0, 1}

3.2 Fitness Function

Once the genotype of the individuals has been established, the next step when design-
ing a genetic algorithm is choosing the fitness function which will be used to rank the

1The genotype is the complete set of genes of an individual
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individuals based on how well they solve the problem; The individual’s fitness value is
called phenotype since it is considered to be the "physical" expression of the individual’s
genotype.
The fitness function chosen is based on the maximum satisfiability problem which tries
to find the maximum number of clauses which can be solved in a boolean expression;
The fitness value for each individual is equal to the number of clauses it solves for the
given boolean expression. Formally:

fMAXSAT(x) = c1(x) + ... + cm(x)

where ci(x) represents the truth value of the ith clause.
fMAXSAT is one of the most common fitness functions used by genetic algorithms attempt-
ing to solve SAT problems (Gottlieb; Marchiori1999; folino).

3.3 Initial Population

The initial population is formed by randomly generating individuals until the established
population size N is reached, the initial population size depends on the difficulty or size
of the problem attempted, the population should be big enough to allow for the explo-
ration of the whole solution space, an increase in population size carries with it an in-
crease in the computational cost of each iteration therefore a balance must be found in
order to solve the problems in an adequate amount of time.
For each individual a list of I random integers is selected from the discrete uniform dis-
tribution in the interval [0, 1] using numpy’s randint function2 where I is equal to the
number of variables in the boolean expression to be solved.
If any of the equation’s variables has already been set through the problem-specific op-
timizations, the gene representing that variable is also set to the same value, once each
individual’s genome has been established they are added to the population list.

3.4 Selection

Selection is the process by which the individuals are chosen from the population in order
to become the parents of the new generation, special care must be taken when selecting
the parent pairs so as to maintain sufficient genetic diversity in the resulting children
population and prevent premature convergence.
If too much emphasis is put on the fitness value, individuals with a high value can
quickly dominate the population by filling it with copies of themselves, thereby reducing
the effective search space of the algorithm by forcing it to focus only on the most effective
solutions found up to that moment.
While this effect can be desirable once the algorithm is reaching the end of its running
time, it is best to avoid it in the initial stages and instead try to maintain a high genetic
diversity.
There exist many different selection algorithms each with their own characteristics and
computational cost, some of them are explained below and will be used throughout this
work as tunable parameters of the designed genetic algorithm.

2https://numpy.org/doc/stable/reference/random/generated/numpy.random.randint.html



3.4.1. Random Selection

The individuals are randomly selected from the population independent of their fitness
value, once an individual has been selected as a parent it is removed from the population
so it cannot be chosen again.
The probability of each individual being selected is defined as:

P(i) =
1
N

Where P(i) is the probability of selecting the individual i and N is the total number
of individuals in the population

3.4.2. Roulette Selection

Roulette selection assigns a normalized value to each individual equal to the individual’s
fitness value divided by the sum of all fitness values in the population, each individual
is assigned a range between 0 and 1 the size of which depends on its normalized value, a
random real number between 0 and 1 is chosen and the individual upon whose range it
falls is selected as a parent, then the process begins anew.
This selection process is akin to assigning a slice of a wheel to each individual, with fitter
individuals getting bigger slices, then spinning the wheel like a roulette and wherever
the ball lands it chooses that individual.
The selection probability of each individual is proportionate to its fitness, formally:

P(i) =
f (i)

∑N
j=1 f (j)

where f (i) is the fitness value for the individual i.

3.4.3. Rank Selection

Rank selection sorts the individuals in the population by fitness value and ranks them
from best N to worst 1, then it assigns a fitness value to each individual equal to its rank
divided by the total rank, finally another selection method must be used with the new
fitness values, usually roulette selection.
The probability of selecting each individual can be defined as:

P(i) =
rank(i)

N ∗ (N − 1))

where rank(i) is the rank assigned to the individual i.

3.4.4. Tournament Selection

In tournament selection, K individuals are randomly selected from the population, those
individuals are compared amongst each other and the one with the highest fitness value
is selected to become a parent; The process is repeated until enough parents are selected
to form the next generation. The probability of each individual being selected as a parent
is:



P(i) =

{ f (i)
∑k

j=1 f (j)
i f i ∈ [1, n− k− 1]

0 i f i ∈ [n− k, n]

where k is the tournament size and n is the number of times the tournament is re-
peated (Jebari2013).

3.4.5. Truncation Selection

Truncation selection sorts the individuals by their fitness value from best to worst, then
selects the top X% to become the parents for the new generation, the children are all
formed from combinations of those chosen individuals, self-mating is not allowed.

3.4.6. Stochastic Universal Sampling

In stochastic universal sampling first the total fitness value is calculated, this value is
equal to the sum of all fitness values in the population, then said fitness value is divided
by the total number of parents needed to create the next generation (np) resulting in the
distance between points.
A random integer is chosen between 0 and distance, then np− 1 more points are chosen
by adding the distance to the previous point starting from the random point.
Once all the points have been selected, the individuals are mapped to a line such that the
size of the line segment for each individual is proportional to its fitness value, wherever
the chosen points fall along that line, those individuals are selected to become the parents
of the next generation.

Figure 3.1: Stochastic Universal Sampling, individuals 1, 2, 3, 4, 6, 8 are selected. (PenchevaT2009)

Stochastic universal sampling is very similar to roulette selection though it fixes one
of its pitfalls by not allowing individuals with a very high fitness to dominate the process,
this gives weaker members of the population a chance to be chosen.

3.4.7. Annealed Selection

Annealed selection (Jyotishree) is a blend of roulette wheel selection and rank selection,
which tries to fix the shortcomings of both these methods by shifting from exploration
(with rank selection) in the early stages of the algorithm gradually towards exploitation
(with roulette wheel selection) as the algorithm reaches the maximum number of itera-
tions allowed.
Annealed selection works by computing both the rank fitness value and the roulette fit-
ness value for each individual, each value is multiplied by a factor which determines the
importance of said value, these factors depend on the current generation value and are
responsible for the gradual shift from exploration to exploration.
Formally:



fa(i) = frank(i) ∗ ra + fwheel(i) ∗ rb

where fa(i) is the final fitness value for individual i, frank(i) is its rank fitness value
and fwheel(i) is its roulette wheel fitness value.
ra is a factor which starts at 1 and decreases by 1

Ngen
each generation, while rb starts

at 0 and increases by 1
Ngen

each generation (Ngen is the maximum number of iterations
allowed). The probability for selecting an individual i as a parent is:

Px(i) =
fa(i)

∑N
i=1 fa(i)

3.5 Crossover

Crossover in genetic algorithms is the process by which the genotype of the selected par-
ents is recombined in order to generate new individuals, this process is analogous to the
recombination of genetic material with occurs naturally during sexual reproduction in
biology.
The purpose of the crossover operator is to attempt to generate novel offspring, theo-
retically with a higher fitness value than their parents though this isn’t always achieved
in practice, in order to explore the solution space through recombination of the existing
solutions/individuals.
All the crossover operators used throughout this work operate on a bit-string representa-
tion of the genetic material of each individual, though other different genetic operators or
variations of the ones shown in this paper can also be used to operate on different genetic
representations.

3.5.1. Single-point Crossover

In single point crossover a natural number between 0 and L is randomly chosen, L is
equal to the length of the genotype for the individuals, each parents gene string is split
at the point chosen and the resulting halves are combined amongst each other with the
resulting children each having some of their gene string coming from one parent and the
rest from the other.

Figure 3.2: Single point crossover example with cutting point equal to 3

3.5.2. Two-point Crossover

Two point crossover is very similar in behavior to single point crossover but instead of
choosing a single split point two of them are chosen, the children each are a copy of one



parents with the substring of their gene string which appears between the two chosen
points interchanged with the other children/parent.

Figure 3.3: Two point crossover example with cutting points equal to 2 and 4

3.5.3. Sliding Window Crossover

Sliding window crossover starts with a fixed window size W established by the user,
with the sliding window starting at point 0 up to point W − 1 the parents exchange the
genetic material inside the window, the corresponding children are saved in a temporary
list, the sliding window then moves one cell over and the parents interchange the genetic
material in the new window forming two more children, once the sliding window reaches
the end (L−W − 1) and all the different children have been added to the temporary list,
the 2 fittest children with differing genotypes are selected, the rest are discarded.

Figure 3.4: Sliding window crossover example with window length equal to 3

3.5.4. Random Map Crossover

Random map crossover first generates an array of size L formed natural numbers be-
tween 0 and 1, if the random map has a 0 in position i, then the parents interchange the
gene at said position, if the random map instead has a 1 at position i the parents maintain
the same gene.

3.5.5. Uniform Crossover

In uniform crossover genes are interchanged between parents uniformly. For each child
half of their genetic material will come from one parent and half from the other in an
alternating fashion; For example for child 1 the first gene will be from parent 1 the second
from parent 2 the third from parent 1 again and so on, while the second child starts with
the first gene from parent 2, the second from parent 1, etc...



Figure 3.5: Random map crossover example with map 0, 1, 1, 1, 0, 1

Figure 3.6: Uniform crossover example

3.6 Mutation

Mutation is the process by which the genotype of individuals generated through crossover
is changed in order to introduce more genetic diversity in the population.
Maintaining genetic diversity is essential for the exploration of the solution space, if
enough genetic diversity is lost the algorithm will focus too much on the dominating so-
lutions and the exploration will get stuck in the local optimal solutions, in other words,
the algorithm will focus too much on the exploitation of the available solutions while
neglecting the exploration of the solution space.
The probability of the mutation process occurring in an individuals genotype is given by
the parameter pm, this value must not be set too high or the search of the solution space
will degenerate to a random search, it also must not be set too low or the mutation pro-
cess will barely have any effects on the population.
Since the representation used throughout this work is a bit-string representation, the mu-
tation process can be done by flipping one or more genes inside the individuals genotype;
Some of the different techniques used to achieve this are explained below.

3.6.1. Single Bit Flip

In single bit flip a random number between 0 and L− 1 is chosen, L is equal to the length
of the gene string of the individuals, once the random number is chosen the bit indexed at
that location in the gene string is flipped, if its value is 1 it is changed to 0 and vice-versa.



3.6.2. Multiple Bit Flip

Multiple bit flip is very similar to single bit flip with the main difference being the number
of bits flipped in the gene string; In multiple bit flip a random number of bits between 0
and L− 1 is chosen to be flipped instead of only one.

3.6.3. Single Bit Greedy

Single bit greedy flips one bit, if the fitness of the new individual is higher than that of the
original the new individual is returned, if its not higher then the bit is flipped back to its
original state and the next bit in the sequence is flipped, this process continues until one
of the individuals generated has higher fitness than the original or the last bit is reached
with none being better, in which case the original individual is returned.

3.6.4. Single Bit Max Greedy

Single bit max greedy is a variant of single bit greedy, it works very similarly to single bit
greedy but instead of returning the first individual better than the original, it stores all of
the "improved" individuals in a list and once the algorithm reaches the end of the gene
string, it returns the one with the highest fitness.

3.6.5. Multiple Bit Greedy

Multiple bit greedy also works very similarly to single bit greedy when it comes to flip-
ping bits, but when an individual with better fitness than the original is generated it is
not returned, instead the process continues flipping bits on the new improved individ-
ual starting by the bit right to the one just flipped. The process continues until the end
of the gene string is reached, then the improved individual is returned, if no improved
individual exists the original individual is returned.

3.6.6. FlipGA

FlipGA works exactly like multiple bit greedy, but when the end of the gene string is
reached instead of returning it, the algorithm is run again using the new gene string as
its input. The algorithm is run as many times as necessary until no further improvements
can be obtained, once the algorithm is run and none of the new individuals generated are
an improvement over the "original" individual, FlipGA stops and returns said individual.

3.7 Population Replacement

Once the array of individuals generated through crossover has undergone the mutation
process they have to be added into the population, this presents a challenge, since the
total size of the population must remain the same some individuals from the old popula-
tion have to be selected for removal which can lead to the loss of some good solutions.
This loss of good solutions can be alleviated to some extent through the use of Elitism
where a number of the best solutions in the population are added to the next generation
in order to ensure they don’t get replaced, the number of solutions saved is given as a
percentage of the population using the parameter Ep. The two basic types of replacement
strategies are Generational and Steady-State replacement:



– Generational Replacement: The whole population is replaced by the new individuals
at each time step, unless elitism is active, then the top X% best solutions from the
old population also carry over to the new one.

– Steady-State Replacement: Only a small fraction of the population (2 individuals) is
replaced at each time step, elitism has no effect on steady-state replacement.

Generational replacement is faster at exploring the solution space than steady-state
replacement but it can quickly lead to the loss of good solutions if elitism is not used and
steps to ensure the new population generated is an improvement over the old one are not
taken.
In steady-state replacement new individuals are immediately added to the population,
which enables them to be selected as parents for the next children, while this greatly re-
duces the cost of each iteration it also means it is slower at exploring the solution space
since only 0 to 2 new individuals can be generated at each time step, this can also lead to
premature convergence if the algorithm focuses too much in the fittest individuals.
The population replacement techniques analyzed throughout this work are explained
below, all the methods explained below can work as both generational replacement func-
tions and as steady-state replacement functions, unless explicitly stated otherwise.

3.7.1. Random Replacement

In random replacement for each new individual added to the population, a random in-
dividual from the old population is removed. This method does not obtain great results
in practice since it takes no care to not remove good individuals, instead choosing them
randomly independent of their fitness.

3.7.2. Mu-Lambda Replacement

Mu-Lambda replacement (Jyotishree2012a) is derived from generational replacement
but instead of replacing the old population with the new individuals, they are both mixed
into a temporary population and ranked according to their fitness, then the best S indi-
viduals are selected as the new population, S is equal to the population length established
in the GA’s parameters.
A variant of mu-lambda replacement has also been implemented, in this variant the num-
ber of children generated through the selection, crossover and mutation operators is S ∗ 2
and instead of mixing the old population with the children to rank them, it ranks only
the children and selects the best S− Ep ∗ S individuals to form the new population, along
with the individuals selected through elitism.

3.7.3. Parent Replacement

In parent replacement the parents get replaced by their offspring, therefore each individ-
ual is only allowed to breed once, while this helps in introducing genetic diversity to the
population in can also lead to the loss of good solutions if a parent with a high fitness is
replaced by its child with a lower fitness value.
This method is exclusively a steady-state replacement function and cannot be used for
generational replacement.



3.7.4. Weak Parent Replacement

Weak parent replacement is derived from parent replacement with the main change being
that instead of replacing the parents with their offspring, the four of them are added to a
temporary list and ranked according to their fitness value, then the best two individuals
are selected to be added back to the general population.
This method is exclusively a steady-state replacement function and cannot be used for
generational replacement.

3.7.5. Delete Replacement

In delete replacement I individuals are chosen from the old population using the same
selection function used during the selection process, then those individuals are deleted
and I individuals from the children array are chosen in the same way, but instead of
deleting them they are added to the population and the replacement process ends.
This algorithm reduces the convergence speed of the genetic algorithm which helps in
avoiding premature convergence where the algorithm gets stuck in local optima.

3.8 Problem Specific Optimizations

Before running the genetic algorithm on the 3-SAT problem instance, some local search
optimizations can be applied to the problem instance in order to try and reduce the size
of the solution space which must be searched (Bhattacharjee2017), by applying local op-
timizations in combination with the genetic operators it becomes a hybrid genetic algo-
rithm.

3.8.1. Trivial Case

If the problem instance contains only negated variables or only positive variables then
we can safely assign the value 0 or 1 to all of them and the boolean equation will evaluate
to True.
For example, in the boolean expression:

(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

contains only positive variables therefore by setting them all to true {x1, x2, x3, x4} =
{1, 1, 1, 1} the expression is satisfied.

3.8.2. Remove Unit Variables

If the boolean expression contains unit clauses, these are clauses with a single variable
in them, the value of the variable can be set to 0 or 1 accordingly, since the expression
must be satisfied in order to satisfy the whole boolean expression, with the variable set,
all clauses in which said variable is True can be removed from the expression and the
negated form of the variable can also be removed from the rest of the clauses.
For example, in the boolean expression:

(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)



the first clause is a unit clause, we can safely assign a value to the variable it contains
(x1 = 1), then we can remove the clauses where it appears in its positive form and remove
its negated form from the clauses where it appears, this results in the following boolean
expression:

(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

3.8.3. Remove Pure Variables

If a variable appears only in negated form or only in positive form in the whole boolean
expression, then said variable can be safely set to 0 (if negated) or 1 and all clauses which
contain the variable can be removed from the expression.
For example, in the boolean expression:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

x1 only appears in positive form in the expression, therefore we can set x1 = 1 and
remove all clauses where it appears, the resulting simplified boolean expression is:

(x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

3.9 Conclusions

This chapter explains the characteristics and behavior of some of the most commonly
used operators in genetic algorithms and expands on the information about how the al-
gorithms work given in section 2.1.
The design of the implementation for the explained genetic operators is shown in chapter
4, while the actual code can be found in listing 2.
Chapter 5 contains the experimental evaluation of the operators along with the posterior
analysis performed on said experiments; The final combination/s of genetic operators
used in the algorithm/s is also selected and compared with the SAT solvers in the same
chapter.
Although the amount of genetic operators analyzed is extensive, it is by no means a
complete list of all the available operators, it would be convenient to expand the list of
genetic operators analyzed in order to include other operators such as boltzmann selec-
tion (Lee2003), reduced surrogate crossover (crossover_ops) or partial shuffle mutation
(Abdoun2012).





CHAPTER 4

Genetic Algorithm Design

4.1 The genetic algorithm class

The genetic algorithm is designed as a modular genetic algorithm where the selection,
crossover, mutation and population replacement functions are all set as parameters when
the genetic algorithm is initialized, along with all other parameters which said functions
might need.
The genetic algorithm is designed to work with both generational and steady state re-
placement strategies, this can be set through a parameter during the initialization phase.
The parameters which need to be set before running the genetic algorithm are:

– filename: The name of the file containing the 3-SAT problem instance.

– max_iterations: The maximum number of iterations allowed.

– pop_size: Length of the population array.

– elitism: The number of best individuals which will carry over from one generation
to the next.

– steady_state_replacement: Is a boolean which when set to True enables the steady
state replacement strategy and disables the generational.

– save_to_db: Is a boolean which controls data logging to the database.

– plot_distributions: Is a boolean which controls if the distributions are logged when
the algorithm is over.

After initializing the algorithm, before actually running it, some parameters have to be
set through the function set_params, this function sets the selection, crossover, mutation
and population replacement functions which will be used by the algorithm and their
respective parameters.
The arguments of the set_params function are:

– selection_func: Sets the selection function.

– crossover_func: Sets the crossover function.

– mutation_func: Sets the mutation function.

– replacement_func: Sets the population replacement function.

23



– mutation_rate: Is the frequency with which the genes in the genetic string mutate,
expressed as a real number between 0 and 1, both included.

– truncation_proportion: Is the number of best individuals which will be selected from
the population to breed by the truncation selection method, expressed as a fraction
of the population size.

– tournament_size: Is the number of individuals which will compete in each tourna-
ment in the tournament selection method.

– crossover_window_len: Is the length of the sliding window used by the sliding win-
dow crossover method, expressed as a fraction of the genetic string length.

– num_individuals: Is the number of individuals which will be selected for deletion
in order to be replaced by the selected children in the delete replacement method,
expressed as a fraction of the population size.

Once the genetic algorithm has been initialized and the parameters have been set,
an initial population of random individuals is generated, then all the individuals are
evaluated using the fitness function and stored in a tuple array alongside their fitness
value.
The array containing the individuals and their fitness values is used as the population
input in the selection functions.

Selection Function Parameters
Random population, num. parents
Roulette population, num. parents
Roulette W/ Elimination population, num. parents
Rank population, num. parents
Truncation population, num. parents, truncation_proportion
Tournament population, num. parents, tournament_size
Stochastic Universal Sampling population, num. parents
Annealed population, num. parents, max. iterations, current iteration

Table 4.1: Selection function parameters

– population is the array where the population formed by all the individuals in the
current generation is stored.

– num. parents is the number of parents which will be selected to breed, 2 if steady
state replacement is used, and PopulationLength− Elitism if generational replace-
ment is used.

– max iterations is the maximum number of iterations allowed in the genetic algo-
rithm.

The selection functions all return a list of parent tuples, where each tuple contains two
individuals that have been selected as parents, these parent tuples are used as the in-
put for all the crossover functions, where the genetic material of the two parents will be
exchanged to form the children.



Crossover Function Parameters
Single point parent tuple
Two points parent tuple
Sliding window parent tuple, crossover_window_len
Random map parent tuple
Uniform parent tuple

Table 4.2: Crossover function parameters

The crossover functions receive one parent tuple as input and output one children
tuple, then all the children tuples generated are put into a children array and fed into
a function which navigates the children array one by one and feeds the corresponding
genetic strings into the mutation function.

Mutation Function Parameters
Single bit gene string, mutation_rate
Multiple bit gene string, mutation_rate
Single bit greedy gene string, mutation_rate
Single bit max greedy gene string, mutation_rate
Multiple bit greedy gene string, mutation_rate
FlipGA gene string, mutation_rate

Table 4.3: Mutation function parameters

All mutation functions receive one genetic string as their input and output another
genetic string, they are also all dependent on the mutation_rate parameter.
The resulting modified genetic strings are all stored inside an array called mchildren which
will be used as one of the inputs for the population replacement functions.

Population Replacement Replacement mode Parameters
Generational generational elitism, mchildren, population
Mu Lambda generational, steady state mchildren, population, population size
Mu Lambda Offspring generational, steady state mchildren, population size
Delete generational, steady state mchildren, population, num_individuals, selection method
Random generational, steady state mchildren, population
Parents steady state mchildren, parent tuple, population
Weak Parents steady state mchildren, parent tuple, population

Table 4.4: Population replacement function parameters

– mchildren is the array of mutated children genetic strings.

– selection method is the selection function which will be used to choose the individu-
als.

– parent tuple refers to the pair of individuals which were used to generate the chil-
dren pair in mchildren.

The population replacement functions return an array (or set) of individuals which
become the new population, the current iteration value is increased by one and the algo-
rithm begins again by selecting parents from the new population.



4.2 Data logging and processing

The genetic algorithm is connected to a database where the information about the exe-
cution of said algorithm on a 3SAT problem instance can be logged; Logging the results
to the database can be controlled by setting the boolean parameter save_to_db during the
initialization of the genetic algorithm, if set to True the results will be logged.
The table ga_run stores the results of the execution, the genetic operators used by the al-
gorithm (selection, crossover, ...) and the parameters used by said functions, it also stores
information about the cost of the execution.
ga_run_generations stores the information about each individual generation used by the
algorithm, while the table ga_run_population stores the population list containing all the
individuals in each generation.
The database structure is shown in the diagram below:

Figure 4.1: BBDD design schema

– num_fitness_evals: is a variable used to measure the cost of each generation, it records
the number of fitness evaluations used by each genetic operator, the sum of which
is the total cost of the generation.

– num_bit_flips: is also used to measure the cost of each generation, but it records the
number of bit flips in each individuals genetic string used by the genetic operators.

– population_set_length: is the length of the population array when converted to a set,
if no duplicates are allowed this value is equal to the population_length, this value is
useful as a simple proxy of genetic diversity in the population.

The genetic algorithm can also calculate the phenotypic and genotypic variance and
distributions in each generation.
The phenotypic distribution is the list of fitness values of each individual in the popula-
tion, while the variance is a value calculated using the following formula:
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where n is equal to the population length, Xi is the fitness value of individual i and X
is the mean of all the fitness values in the population.
The genotypic distribution is a list of values where each value corresponds to the sum for
the Hamming distances between each individuals gene string and the rest of the popula-
tion divided by the population length, formally:

GVi =
∑n

j=1,j 6=i DistH(xi, xj)

n

where DistH(x, y) returns the hamming distance between x and y, xi is the genetic
string of individual i and GVi is the actual value stored in the list.
The hamming distance between two strings measures the number of substitutions needed
to transform one string into the other.
The genotypic distributions are used throughout this work to measure the genetic diver-
sity inside the different populations, the genotypic variance is calculated using the same
formula as the phenotypic variance but substituting the fitness values for GV values.

4.3 Design of the experiments

Due to the prohibitively large computational cost, for the scope of this project, of running
all the combinations of genetic operators and variations of their respective parameters
on all the satisfiable uniform random 3-SAT problems in the SATLIB benchmark set, the
experimentation part of this work is broken down into different phases.

During the genetic operator removal phase, shown in section 5.1, a small subset of
"easy" problems is chosen in order to run all the different combinations of genetic opera-
tors on said problems, once all combinations have been run on the chosen problem subset
the success rate of each operator is calculated by dividing the number of problems solved
by the total number of problems attempted using the specified operator.
The success rate for each problem category is then multiplied by the weight assigned to
that category, then they are all added up to form the final score of that operator, the ge-
netic operators with a high enough score are then selected for phase two.
The second phase, described in section 5.1, is very similar to the first one, but the analy-
sis is performed on a subset of 10 3-SAT problems with 100 variables each, and only the
genetic operators chosen during the first phase will be run on them; An analysis of the
effects of the combinations of the genetic operators on the success rate of the algorithm is
also carried out during this phase.
During the third experimentation phase the 10 best combinations of genetic operators
found during the second phase are run on a harder subset of 3-SAT problems with 175
variables each.
The analysis performed in this phase is different from that of phase 2, taking into account
not only the success rate of the algorithms but also, their computational cost and the phe-
notypic and genotypic evolution of their populations.
The fourth and final phase is where the best combinations of genetic operators found
during the third phase are compared with the SAT solvers explained in section 2.5.



4.4 Implementation

All of the algorithms and experiments in this work are written in python 3.7.7 due to it be-
ing the preferred language of the main researcher of this work is most comfortable with,
which allows for a rapid iteration of the code necessary to implement the algorithms and
run the experiments.
The python code is run on Debian 12.2 inside a docker container with the following de-
pendencies installed through the python package manager pip3:

– numpy

– matplotlib

– sklearn

– psycopg2-binary

– seaborn

The database used is PostgreSQL 12.2 run on Debian 12.2 inside a docker container, an-
other docker container with pgAdmin 4.18 on Alpine linux is also used to access and
query the database.
A final docker container running Ubuntu 18.04 with Jupyter notebook and python 3.7.7
is also utilized to generate the different graphs and plots used throughout this work.
The deployment of all the containers except the one containing the Jupyter notebook is
carried out through a docker-compose file, the Jupyter container is deployed using a shell
script.
All of the code used can be found in Annex .2, as well as in a public git repository1.

1https://github.com/punkyfer/3sat_genetic_algorithm



CHAPTER 5

Experimental Evaluation &
Analysis

5.1 Genetic operator removal

During the phase of genetic operator removal, all of the different combinations of genetic
operators which form the genetic algorithm are run on a small subset of "easy" problems
from the SATLIB benchmark set; This is done in order to quickly eliminate the genetic
operators which do not lead to good results before proceeding with a more in depth
analysis, this step is necessary to reduce the computational cost of the subsequent exper-
iments.
Each of the combinations of genetic operators is run many times on the same subset of
40 3-SAT problems, 10 problems with 20 variables, 10 with 50, 10 with 75 and finally 10
problems with 100 variables, all problems have been chosen from the SATLIB benchmark
problem data set, one of the data sets used during the SAT-Race.
The measured value is the success rate which is equal to the number of problems solved
divided by the total number of problems attempted, this value is commonly used when
measuring genetic algorithms applied to SAT instances (Gottlieb; Bhattacharjee2017;
Marchiori1999) since it offers a good representation of how well the algorithms will per-
form.
The success rate can be used in this work without making any adjustments since all the
problems attempted are solvable, this requirement is needed due to the inefficiency of
genetic algorithms with unsolvable instances explained in subsection 2.2.

All the experiments are run with the same parameters, except the experiments with
parents and weak parents population replacement operators, which have higher number
of maximum iterations (5000), the values used are listed below:

– max_iterations = 1000

– pop_size = 1000

– elitism = 0.01

The parameters needed by some genetic operators also remain constant throughout
the different runs:

– mutation_rate = 0.05

– crossover_window_len = 0.4
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uf20 uf50 uf75 uf100 score
random 0.837 0.495 0.247 0.131 73.11
roulette 0.71 0.17 0.056 0.02 28.9

roulette w/
elimination

0.8 0.41 0.187 0.11 61.53

rank 0.81 0.42 0.156 0.09 57.9
tournament 0.74 0.33 0.107 0.049 44.23

stochastic 0.781 0.293 0.123 0.07 46.5
annealed 0.778 0.418 0.164 0.093 58.06

truncation 0 0 0 0 0

Table 5.1: Selection operators

– num_individuals = 0.4

– tournament_size = 5

– truncation_proportion = 1/3

uf20 uf50 uf75 uf100 score
generational 0.87 0.472 0.177 0.1 64.27

mu lambda 0.987 0.562 0.274 0.172 85.59
mu lambda

offspring
0.917 0.631 0.279 0.172 88.01

delete n 0.795 0.267 0.127 0.063 45.07
random 0.8 0.157 0.057 0.025 30.62
parents 0 0 0 0 0

weak
parents

0 0 0 0 0

Table 5.2: Population replacement operators

From the results of the experiments shown in the tables above, it is not difficult to see
that the selection operator truncation, as well as the population replacement operators
parents and weak parents fail to find solutions for the easy problem instances, therefore it
is highly unlikely that they will perform better on more difficult problems and so these
operators can be safely removed.

5.2 Genetic operator analysis

The purpose of the second phase of the analysis is finding the best combinations of ge-
netic operators, this is done by analyzing the success rate of each genetic operator when
combined with a different genetic operator.
The table 5.3 shows the success rate of the genetic algorithm when using the specified
combinations of crossover and mutation operators; The tables showing the other combi-
nations of genetic operators can be found in tables 3 to 7 in Annex .1; All of the values
shown in the specified tables are obtained by analyzing the runs of the algorithm on a
subset of 10 3-SAT problems with 100 variables each.

Using the separated success rates, a value is assigned to each combination of genetic
operators, this value is equal to the sum of the success rates for all the pairs of operators
which can be formed using the specified genetic operators.



two points
window
sliding

random map single point uniform

single bit 0.1 0.137 0.1 0.016 0.015
multiple bit 0.08 0.2 0.033 0 0

flip ga 0.3 0.05 0.35 0.3 0.2

greedy
single bit

0.075 0 0.1 0 0

max greedy
single bit

0.1 0 0.15 0.1 0

greedy
multiple bit

0.367 0 0.182 0.2 0.143

Table 5.3: Success rate obtained with the specified crossover and mutation operators on problems
with 100 variables.

f (selop, crosop, mutop, repop) = sr(selop, crosop) + sr(selop, mutop) + sr(selop, repop)+

sr(crosop, mutop) + sr(crosop, repop) + sr(mutop, repop)

where selop, crosop, mutop, repop are the selected operators for the selection, crossover,
mutation and population replacement processes respectively, sr(op1, op2) is the success rate
calculated with the two specified genetic operators; For example:

f (random, two_points, f lip_ga, generational) = 0.182 + 0.24 + 0.08 + 0.3 + 0.1 + 0.5 = 1.402

Using this formula, all combinations of genetic operators are assigned a value and
then ranked in descending order, the best combinations of genetic operators are shown
in table 5.4.



selection crossover mutation
replacement
population

score

random two points greedy
multiple bit mu lambda 1.75

elimination
roulette random map flip ga generational 1.713

elimination
roulette two points flip ga generational 1.53

rank two points greedy
multiple bit mu lambda 1.44

elimination
roulette

window
sliding flip ga generational 1.415

random two points flip ga generational 1.403

random random map greedy
multiple bit mu lambda 1.372

random two points greedy
multiple bit

offspring
mu lambda

1.371

random two points flip ga mu lambda 1.353

random two points greedy
multiple bit generational 1.3

random two points flip ga offspring
mu lambda

1.288

random random map flip ga mu lambda 1.21

random random map greedy
multiple bit generational 1.05

random random map greedy
multiple bit

offspring
mu lambda

1.04

random two points single bit generational 0.592

Table 5.4: Top ranked combinations of genetic operators and randomly selected worse combina-
tion for comparison

5.3 In depth analysis

In this phase the top 14 ranked genetic algorithms found during the genetic operator
analysis phase, as well as a randomly selected worse genetic algorithm, are run on a
harder subset of 10 3-SAT problems with 175 variables each; The population size is in-
creased to 2000 for these runs, but all the other parameters remain the same.
The randomly selected combination of genetic operators used for comparison with the
top ranked genetic algorithms, along with its score is shown in table 5.4

Running time is not usually used as a computational cost measure due to the differ-
ences in the operating systems, programming language versions, hardware architecture,
system load, and others, which might affect the running times and therefore give a dis-
torted view of the algorithms.
Nonetheless, this work uses time as a proxy of computational cost to quickly eliminate
genetic operator combinations with too high a cost, and offer a rough initial comparison
of the cost of the different algorithms.
To offset the problems mentioned above which distort the running time of the algorithms
all experiments have been run on the same system and each of the algorithms analyzed
has also been run multiple times on each problem, this allows us to obtain the average



time cost across multiple runs which should offer a more accurate picture of the real
running time of each algorithm.

Figure 5.1: Time cost in seconds per iteration for the parameter combinations shown in table 5.5

Figure 5.1 shows the running time of each algorithm displayed in seconds/iteration,
which is the number of seconds each algorithm takes to complete an iteration; The algo-
rithm with roulette w/ elimination selection, sliding window crossover, flip ga mutation and
generational replacement has been removed due to its extremely high running time (45.33
seconds), though a chart with its cost included can be seen in 1.

Table 5.5 shows the number assigned to each combination of genetic operators, along
with the success rate of said combinations when applied to the chosen "hard" SATLIB
problems with 175 variables.
Analyzing the evolution of the population in the different genetic algorithms can help
explain the results obtained in table 5.5, this analysis is done using the average fitness
of the population as the phenotype, and the average length of the population without
duplicates divided by the total length of the population as the genotype.
The measurement used as the genotype is the length of the population array when con-
verted to a set, this is a simplified proxy of the real genotypic diversity.
The real genotypic diversity is calculated using the manhattan distance between the indi-
viduals as explained in section 4.2, though it is not used in this case due to the extremely
high computational cost of calculating it.
Figure 5.2 shows the phenotypic and genotypic evolution for all the selected genetic op-
erator combinations in unsolved problems with 175 variables, the values displayed on
the table are obtained by averaging all the unsolved runs with the specified genetic op-
erator combination.
Single runs on some hard unsolved problems can be found in annex .1.

The worst combinations obtained in table 5.5 are the combinations numbered 12, 11, 9,
8, 7, 5, 2 and 1, which coincide with the graphs in figure 5.2 where the genetic diversity is
quickly lost, this means the population is filled with copies of the best individuals which
forces the algorithm to focus only on those solutions.
While this shift toward exploitation is desirable during the final stages of the algorithm,
doing it too soon leads to a reduced exploration phase which means the algorithm will
explore less of the solution, this increases its chances of getting stuck in local optimum
points and reduces its chances of finding the global optimum.



number selection crossover mutation
replacement
population

success rate

1 random two points single bit generational 0

2 rank two points greedy
multiple bit mu lambda 0.07

3 random two points greedy
multiple bit mu lambda 0.2

4 elimination
roulette random map flip ga generational 0.09

5 elimination
roulette

window
sliding flip ga generational 0

6 elimination
roulette two points flip ga generational 0.09

7 random two points greedy
multiple bit generational 0

8 random two points greedy
multiple bit

offspring
mu lambda

0

9 random two points flip ga offspring
mu lambda

0

10 random random map greedy
multiple bit mu lambda 0.2

11 random random map greedy
multiple bit generational 0

12 random random map greedy
multiple bit

offspring
mu lambda

0

13 random two points flip ga generational 0.33
14 random random map flip ga mu lambda 0.52
15 random two points flip ga mu lambda 0.23

Table 5.5: Genetic operator combination id and success success rate of runs for problems with 175
variables.

Even though combination number 1 maintains a good phenotypic diversity during its
evolution, its success rate is the worst of them all, since it fails to exploit its available
solutions enough to find the answer to the problem stated.

The best combinations found in table 5.5 are 14, 13, 15, 3 and 10, in that order, but
combinations 15 and 3 can be removed since they display a very high loss of diversity
during the initial phase down to a stable small population of the fittest individuals, this
can be seen in figure 5.2, this loss of diversity is also shown in figures 9 and 10 which
show the behavior of the combinations on solved runs, as well as figures 2 to 8 which
show unsolved runs.
The combinations numbered 15 and 3 instead focus mostly on the exploitation of those
solutions, this makes them highly conditioned by the initial population generated since
they barely explore any new solutions after the first stages of the algorithm.

Figures 5.3 and 5.4 show a discrepancy with combination number 13, since it does
less fitness evaluations than combination number 13, yet it has a higher time cost per
iteration, this higher time cost can be explained by the computational cost of each of the
different operators between them.
The time cost of the implementation of each genetic operator is shown in table 5.6, while
the difference between the population replacement operators is much greater, this has
little effect on the final running time of each algorithm since the replacement function



Figure 5.2: Average phenotypic and genotypic diversity for unsolved runs of problems with 175
variables

Figure 5.3: Average number of fitness evaluations per iteration for the specified genetic operator
combinations

is only executed once per iteration, while the mutation operators get executed once per
individual every iteration.



Figure 5.4: Average number of seconds per iteration for the specified genetic operator combina-
tions

With a population size of 2000 the two points genetic operator is 0.0252 seconds slower
than the random map operator, this difference is much larger than the difference of 32.75 ∗
10−5 seconds found between the population replacement operators.
This increase in execution time does not carry with it an increase in the computational
power of the algorithm since combination number 13 obtains a worse success rate than
combination number 14 which takes less time to run.
For this reasons combination number 13 is removed from the best combinations, the al-
gorithms chosen to be compared with the SAT solvers are numbers 14 and 10.

genetic operator time cost
two points 58.62 ∗ 10−5

random map 57.36 ∗ 10−5

mu lambda 56.88 ∗ 10−5

generational 24.13 ∗ 10−5

Table 5.6: Time cost of the specified genetic operators.

Combination number 10 can be seen as a simplified version of number 14 since they
are virtually identical, they have the same genetic operators except for the mutation func-
tion, while combination number 14 uses a recursive version of the multiple bit greedy mu-
tation operator called flip ga, combination number 10 uses the basic multiple bit greedy
operator.
The use of flip ga increases the success rate of the algorithm, though it also carries with
it an increase in execution time, as shown in table 5.6, due to the increased number of
fitness evaluations and bit flips carried out every iteration, this can be seen in figures 5.3
and 5.5 respectively.



Figure 5.5: Average number of bit flips per iteration for the specified genetic operator combina-
tions

5.4 Comparison with SAT solvers

All of the SAT solvers explained in section 2.5 are run on 100 problems of each problem
size (20, 50, 75, 125, 150, 175, 200, 225, 250) from the SATLIB benchmark dataset.
Table 5.7 shows only the running time of the SAT solvers evaluated since all of them
satisfy all of the SAT problems in the allotted amount of time, therefore they all have a
success rate of 1.0.
Only the experiments on the harder problems are shown in table 5.7, this is due to the
fact that the time spent by each solver on the easier problems is so small that for all events
and purposes it can be considered 0, the remaining results are shown in table 8.

sat solver uf150 uf175 200 225 250
cadical 0.02 0.07 0.18 0.51 1.55
clasp 0.01 0.02 0.05 0.16 0.58

lingeling 0.05 0.09 0.19 0.57 2.19
manysat 0.01 0.01 0.04 0.1 0.33
minisat 0.01 0.03 0.09 0.29 1.26

plingeling 0.06 0.07 0.13 0.23 0.52
treengeling 0.05 0.08 0.19 0.26 0.55

zchaff 0.02 0.04 0.2 0.68 4.97

Table 5.7: Average time cost (in seconds) for each problem of the specified size solved using the
specified solver.

Tables 5.9 and 5.8 show the success rate and time cost of the selected genetic algo-
rithms when applied to the same problems as the SAT solvers, though in this case only
the easier problems are shown since they already offer enough information to compare
the genetic algorithms with the SAT solvers.



operator
genetic

uf20 uf50 75 100 uf125

flip ga 0.14 3.74 22.78 69.06 137.36

greedy
multiple bit

0.17 4.24 13.88 33.71 62.79

Table 5.8: Average time cost (in seconds) for each problem of the specified size solved using the
specified mutation operator.

operator
genetic

uf20 uf50 75 100 uf125

flip ga 1 0.93 0.72 0.44 0.37

greedy
multiple bit

1 0.85 0.59 0.37 0.27

Table 5.9: Success rate for the problems of the specified size solved using the specified mutation
operator.

5.5 Conclusions

From the results obtained in tables 5.7, 5.8, 5.9 and 5.5 it is clear that genetic algorithms
algorithms are no match for the analyzed SAT solvers, which are superior to the genetic
algorithms for solving SAT instances in every way, from the success rate to the execution
time.
Though the execution time for the genetic can be decreased it comes with a decrease in
the success rate and vice versa.
The biggest difference in execution time comes from the stochastic nature of the genetic
algorithms, even though the mutation operators selected try to mitigate this by apply-
ing more local exploration on each individual, the running time of the algorithm is still
highly dependent on the initial population generated.
Another limiting factor is the fact that genetic algorithms have no memory of the previ-
ous populations, therefore it is possible for them to waste computing cycles by mutating
the same solutions multiple times, only the mutation operator is mentioned since it’s the
process where the algorithm spends the most amount of time.
This could be limited to a certain extent by using a dictionary where the key is the indi-
vidual and the value is the same individual after undergoing the mutation process, the
dictionary can be used due to the fact that the mutation operators selected are determin-
istic processes, therefore for the same input they will always generate the same result;
The randomness in the mutation process comes from the fact that an individual has a
probability of not undergoing process.
Due to the time constraints imposed on this work, some optimizations which could im-
prove the execution time of the genetic algorithms have not been implemented.
Chief among these optimizations is designing parallel implementations of the selection,
crossover and mutation operators since these are the biggest computational costs and
also the best suited for parallel processing, the population replacement operator is only
executed once every iteration therefore a parallel is not needed.
Using a dictionary should decrease the computation time at an increased cost in the space
needed to run the algorithm.
Some techniques from the field of hyper-parameter optimization could also be imple-
mented to help search for a more optimum assignment of values to the parameters used
by the genetic algorithm, this should increase the success rate of the algorithm.
Even though the genetic algorithms can be improved by adding memory, implementing



parallel operators or fine-tuning the parameters, through the analysis performed in this
chapter it is shown that the biggest improvements to the algorithm occur when more lo-
cal search is applied to the individuals generated.
This is in line with the results displayed in tables 5.7, 5.8, 5.9 and 5.5 which show the local
search algorithms outperforming the genetic algorithms, so while the genetic algorithms
can be improved by applying more local search, this defeats the purpose since using a
pure local search algorithm will offer better results.





CHAPTER 6

Conclusions

This work aimed to study the behavior of genetic algorithms when applied to SAT prob-
lems in order to determine if they could be a viable alternative to the local search algo-
rithms which currently dominate the SAT-Race.
Through the experimental evaluation carried out in chapter 5 it is demonstrated that the
best genetic algorithms for solving SAT instances are the ones where most local search is
performed, proving the usefulness of hybrid genetic algorithms.
Yet even the best genetic algorithms found through experimentation, under-perform
when compared to the selected SAT solvers which all have a higher success rate and
a lower execution time than the genetic algorithms.
While the results obtained are discouraging for genetic algorithms as SAT solvers, the
research is nonetheless useful since it gives insight into the behavior of said algorithms
and how the different genetic operators affect the exploration of the solution space.
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.1 Annex A

Figure 1: Time cost in seconds per iteration for all the parameter combinations shown in table 5.5

uf20 uf50 uf75 uf100 score
single point 0.582 0.164 0.042 0.016 24.59

two points 0.905 0.595 0.27 0.173 85.4
sliding window 0.805 0.271 0.114 0.081 45.3

random map 0.905 0.606 0.28 0.15 84.4
uniform 0.818 0.317 0.129 0.068 48.69

Table 1: Crossover operators



uf20 uf50 uf75 uf100 score
single bit 0.706 0.164 0.042 0.048 27.79

multiple bit 0.83 0.337 0.075 0.062 45.27
single bit

greedy
0.723 0.272 0.133 0.05 43.03

single bit
max greedy

0.793 0.322 0.119 0.071 47.98

multiple bit
greedy

0.98 0.637 0.326 0.222 98.1

flip ga 1 0.75 0.433 0.133 103.27

Table 2: Mutation operators

random
elimination

roulette
rank annealed roulette tournament stochastic

single point 0.014 0.014 0.014 0.02 0 0.028 0.025
two points 0.182 0.067 0.2 0.1 0.1 0 0.1

sliding window 0.2 0.174 0.1 0.1 0.02 0.1 0.1
random map 0.08 0.162 0 0.133 0.1 0.1 0.1

uniform 0.067 0.041 0.05 0.1 0 0.25 0.083

Table 3: Success rate obtained with the specified selection and crossover operators on problems
with 100 variables.

random
elimination

roulette
rank annealed roulette tournament stochastic

single bit 0.054 0.07 0.027 0.055 0.027 0.04 0.05
multiple bit 0.05 0.04 0.15 0.1 0 0 0

flip ga 0.24 0.4 0.333 0.2 0.05 0.2 0.2

greedy
single bit

0.1 0.043 0.1 0.1 0 0 0

max greedy
single bit

0.1 0.2 0.1 0.1 0 0 0

greedy
multiple bit

0.37 0.133 0.133 0.2 0 0.1 0.3

Table 4: Success rate obtained with the specified selection and mutation operators on problems
with 100 variables.

random
elimination

roulette
rank annealed roulette tournament stochastic

generational 0.08 0.163 0.04 0.08 0.06 0.05 0.08
mu lambda 0.19 0.1 0.1 0 0 0.1 0

offspring
mu lambda

0.125 0.1 0.171 0.14 0 0 0

random 0 0.031 0 0.1 0 0 0
delete n 0 0 0 0 0 0.067 0.1

Table 5: Success rate obtained with the specified selection and population replacement operators
on problems with 100 variables.



two points
window
sliding

random map single point uniform

generational 0.1 0.128 0.138 0.014 0.018
mu lambda 0.19 0.1 0.1 0.06 0

offspring
mu lambda

0.183 0.2 0.14 0.1 0.1

random 0 0.154 0 0.014 0
delete n 0 0.1 0 0.02 0.08

Table 6: Success rate obtained with the specified crossover and population replacement operators
on problems with 100 variables.

single bit multiple bit flip ga
greedy

single bit
max greedy
single bit

greedy
multiple bit

generational 0.075 0 0.5 0.1 0.2 0.2
mu lambda 0.06 0.05 0.25 0.1 0.1 0.45

offspring
mu lambda

0.1 0.133 0.257 0.1 0.1 0.143

random 0.014 0.05 0.3 0 0.1 0.2
delete n 0.02 0 0.2 0 0 0.2

Table 7: Success rate obtained with the specified mutation and population replacement operators
on problems with 100 variables.

sat solver uf20 uf50 75 100 125
cadical 0 0.01 0 0 0.01
clasp 0 0 0 0.01 0

lingeling 0.01 0 0.02 0.04 0.04
manysat 0 0 0 0 0.01
minisat 0 0 0 0.01 0

plingeling 0.01 0.02 0.02 0.05 0.05
treengeling 0.01 0.02 0.02 0.05 0.05

zchaff 0 0 0 0 0.01

Table 8: Average time cost (in seconds) for each problem of the specified size solved using the
specified solver.



Figure 2: Phenotypic and genotypic diversity for unsolved runs of problem uf175-01.cnf



Figure 3: Phenotypic and genotypic diversity for unsolved runs of problem uf175-02.cnf



Figure 4: Phenotypic and genotypic diversity for unsolved runs of problem uf175-03.cnf



Figure 5: Phenotypic and genotypic diversity for unsolved runs of problem uf175-04.cnf



Figure 6: Phenotypic and genotypic diversity for unsolved runs of problem uf175-05.cnf



Figure 7: Phenotypic and genotypic diversity for unsolved runs of problem uf175-08.cnf



Figure 8: Phenotypic and genotypic diversity for unsolved runs of problem uf175-10.cnf



Figure 9: Phenotypic and genotypic diversity for solved runs of problem uf175-03.cnf



Figure 10: Phenotypic and genotypic diversity for solved runs of problem uf175-08.cnf

Figure 11: Phenotypic and genotypic diversity for solved runs of problem uf175-10.cnf



.2 Annex B

import functions as fn
import time
from datetime import datetime

############# CONSTANTS #############
infinite = 2**31

############# GA CLASS #############

class GeneticAlgorithm:

def __init__(self, filename, max_iters=1000, pop_size=100, elitism=0.1,
allow_duplicates=True,
steady_state_replacement=False, save_to_db = True, plot_results = True

, max_workers = 1):
self.filename = filename
self.num_vars, self.clauses = fn.read_problem(filename)
self.set_vars = [infinite]*self.num_vars
self.sol_value = fn.trivial_case(self.clauses)
self.clauses, self.set_vars = fn.remove_pure_vars(self.clauses, self.

set_vars)
self.clauses, self.set_vars = fn.remove_unit_vars(self.clauses, self.

set_vars)
self.fitness_func = fn.maxsat_fitness
self.selection_func = fn.roulette_selection
self.selection_params = ()
self.crossover_func = fn.single_point_crossover
self.crossover_params = ()
self.mutation_func = fn.single_bit_flip
self.mutation_params = (0.1,)

self.max_iters = max_iters
self.pop_size = pop_size
self.elitism = int(elitism*pop_size)
self.log_level = None
self.ret_cost = True
self.steady_state_replacement = steady_state_replacement
self.allow_duplicates = allow_duplicates
self.save_to_db = save_to_db
self.db_conn = None
self.max_workers = max_workers
if self.save_to_db:

self.db_conn = fn.get_db_connection(dbname=’genetic_algorithm’,
user=’postgres’, password=’changeme’)

self.plot_results = plot_results

fn.fitness_dict = {}



def set_log_level(self, log_level=None):
self.log_level = log_level

def set_params(self, selection_func="roulette",
crossover_func="single point", mutation_func="single bit",

replacement_func="generational",
mutation_rate=0.1, tournament_size=5, crossover_window_len=0.4,

num_individuals=0.5, truncation_proportion=1/3):

self.fitness_func = fn.maxsat_fitness

self.mutation_rate=mutation_rate
self.tournament_size=tournament_size
self.truncation_proportion = truncation_proportion
self.crossover_window_len = crossover_window_len
self.selection_func_str = selection_func
self.crossover_func_str = crossover_func
self.mutation_func_str = mutation_func

self.replacement_func = replacement_func
if self.steady_state_replacement:

self.num_individuals = 1
else:

self.num_individuals = int(self.pop_size*num_individuals)

initial_pop_funcs = {
’random’:fn.random_population,

}

initial_pop_params = {
’random’:(self.num_vars, self.set_vars, self.pop_size, self.

allow_duplicates,),
}

selection_funcs = {
’random’: fn.random_selection,
’roulette’:fn.roulette_selection,
’roulette elimination’:fn.roulette_selection_with_elimination,
’rank’:fn.rank_selection,
’tournament’:fn.tournament_selection,
’stochastic’:fn.stochastic_universal_sampling_selection,
’annealed’: fn.annealed_selection,
’truncation’:fn.truncation_selection

}

selection_params = {
’random’:[],
’roulette’:[],
’roulette elimination’:[],
’rank’:[],
’tournament’:[tournament_size,],



’stochastic’:[],
’annealed’:[self.max_iters, 0],
’truncation’:[truncation_proportion,]

}

crossover_funcs = {
’single point’:fn.single_point_crossover,
’two points’:fn.two_point_crossover,
’sliding window’:fn.sliding_window_crossover,
’random map’:fn.random_map_crossover,
’uniform’:fn.uniform_crossover

}

crossover_params = {
’single point’:(self.ret_cost,),
’two points’:(self.ret_cost,),
’sliding window’:(self.clauses, crossover_window_len,self.ret_cost

,),
’random map’:(self.ret_cost,),
’uniform’:(self.ret_cost,)

}

mutation_funcs = {
’single bit’:fn.single_bit_flip,
’multiple bit’:fn.multiple_bit_flip,
’single bit greedy’:fn.single_bit_greedy,
’single bit max greedy’:fn.single_bit_max_greedy,
’multiple bit greedy’:fn.multiple_bit_greedy,
’flip ga’:fn.flip_ga

}
mutation_params = {

’single bit’:(mutation_rate,self.ret_cost,),
’multiple bit’:(mutation_rate,self.ret_cost,),
’single bit greedy’:(mutation_rate,self.clauses,self.ret_cost,),
’single bit max greedy’:(mutation_rate,self.clauses,self.ret_cost,)

,
’multiple bit greedy’:(mutation_rate,self.clauses,self.ret_cost,),
’flip ga’:(mutation_rate,self.clauses,self.ret_cost,)

}

self.initial_pop_func = initial_pop_funcs["random"]
self.initial_pop_params = initial_pop_params["random"]

self.selection_func = selection_funcs[selection_func]
self.sel_params = selection_params[selection_func]

self.crossover_func = crossover_funcs[crossover_func]
self.cross_params = crossover_params[crossover_func]

self.mutation_func = mutation_funcs[mutation_func]



self.mut_params = mutation_params[mutation_func]

def get_filename(self):
filename = self.filename.split("/")[-1].replace(’.cnf’,’’) + "_"
if self.allow_duplicates == False:

filename += "set_"
if self.steady_state_replacement:

filename += "steady_state_"
filename += self.selection_func_str.replace(’ ’,’_’) + "_"
filename += self.crossover_func_str.replace(’ ’,’_’) + "_"
filename += self.mutation_func_str.replace(’ ’,’_’) + "_"
filename += self.replacement_func.replace(’ ’,’_’) + "_"
filename += datetime.now().strftime("%m-%d-%Y_%H:%M:%S")
return filename

def start_ga(self):
# Generate initial population
cur_iter = 0
t_fitness_evals, t_num_flips = 0,0
max_fitness = 0

if self.plot_distributions:
phenotype_distributions = []
genotype_distributions = []

populations = []
pop_fitness_dict = {}

if self.log_level=="time":
t0 = time.time()

population = self.initial_pop_func(*self.initial_pop_params)
pop_set = fn.get_pop_set(population)

if self.log_level=="time":
t1 = time.time()
print ("Initial population function: ", t1-t0)

if self.save_to_db:
ga_run_id = fn.add_ga_run(conn=self.db_conn, problem=self.filename.

split(’/’)[-1],
max_iterations=self.max_iters, pop_size=len(population), elitism

=self.elitism,
selection_function=self.selection_func_str, crossover_function=

self.crossover_func_str, mutation_function=self.
mutation_func_str,

mutation_rate=self.mutation_rate, tournament_size=self.
tournament_size, crossover_window_len=self.
crossover_window_len, population_replacement_function=self.
replacement_func, num_individuals=self.num_individuals,
truncation_proportion=self.truncation_proportion, num_clauses
=len(self.clauses))



fn.add_ga_run_population(conn=self.db_conn, ga_run_id=ga_run_id,
population=population, observation="Initial population")

while (self.sol_value==-1 and cur_iter < self.max_iters):

if self.selection_func_str=="annealed":
self.sel_params[1] = cur_iter

num_fitness_evals, num_flips = 0, 0

if self.log_level=="time":
t0 = time.time()

pop_fitness, max_fitness, max_fit_indiv = fn.evaluate_population(
population, self.clauses, self.fitness_func, pop_fitness_dict,
self.max_workers)

for i, indiv in enumerate(population):
if type(indiv) == type(()):

pop_fitness_dict[indiv]=pop_fitness[i][1]
else:

pop_fitness_dict[tuple(indiv)]=pop_fitness[i][1]

if self.plot_results or self.save_to_db:
fitness_arr, genes_arr = [], []
for x in pop_fitness:

fitness_arr.append(x[1])
genes_arr.append(’’.join([str(y) for y in x[0]]))

phenotype_distributions.append(fitness_arr)
genotype_distributions.append(genes_arr)

populations.append(population)

num_fitness_evals += len(population) # Since we evaluated the whole
population

if fn.maxsat_solution_found(self.clauses, max_fitness):
if self.save_to_db:

fn.add_ga_run_result(self.db_conn, ga_run_id, True,
max_fit_indiv, cur_iter, max_fitness, t_fitness_evals,
t_num_flips)

fn.add_ga_run_generation(conn=self.db_conn, ga_run_id=
ga_run_id, generation_num=cur_iter,
max_fitness=max_fitness, population_length=len(population),

population_set_length=len(pop_set),
num_fitness_evals=num_fitness_evals, num_bit_flips=

num_flips, num_clauses=len(self.clauses), fitness_array
= fitness_arr)

fn.add_ga_run_population(conn=self.db_conn, ga_run_id=
ga_run_id, population=population, observation="Solution
found")

fn.close_db_connection(self.db_conn)

if self.plot_results:



self.plot_distributions(populations, genotype_distributions,
phenotype_distributions)

return (True, max_fit_indiv, cur_iter, max_fitness,
t_fitness_evals, t_num_flips)

if self.log_level=="time":
t1 = time.time()
print ("Calculate population fitness: ", t1-t0)

if self.replacement_func=="mu lambda offspring":
num_children = len(pop_fitness)*2
if self.steady_state_replacement:

num_children = 4
elif self.steady_state_replacement or self.replacement_func in ["

parents", "weak parents"]:
num_children = 2

else:
num_children = len(pop_fitness)-self.elitism

new_children = set()
while len(new_children) < num_children:

# Select parents
if self.log_level=="time":

t0 = time.time()

parents = self.selection_func(pop_fitness, num_children, *self.
sel_params)

if self.log_level=="time":
t1 = time.time()
print ("Selection function: ", t1-t0)

#Generate parent pairs
if self.log_level=="time":

t0 = time.time()

parent_pairs = []
while len(parents)>=2:

p1 = fn.get_random_int(0, len(parents))
parent_1 = parents.pop(p1)[0]
p2 = fn.get_random_int(0, len(parents))
parent_2 = parents.pop(p2)[0]
parent_pairs.append([parent_1, parent_2])

if self.log_level=="time":
t1 = time.time()
print ("Generate parent pairs: ", t1-t0)

if self.log_level=="time":
t0 = time.time()

# Generate children through crossover



children = []
for parent_pair in parent_pairs:

prechildren = self.crossover_func(parent_pair, *self.
cross_params)

if self.ret_cost:
num_fitness_evals += prechildren[1]
num_flips += prechildren[2]
prechildren = prechildren[0]

children += prechildren

if self.log_level=="time":
t1 = time.time()
print ("Generate children: ", t1-t0)

if self.log_level=="time":
t0 = time.time()

# Mutate children
children = fn.mutate_population(children, self.mutation_func,

self.mut_params, self.ret_cost, self.max_workers)
if self.ret_cost:

num_fitness_evals += children[1]
num_flips += children[2]
children = children[0]

if self.log_level=="time":
t1 = time.time()
print ("Mutate population: ", t1-t0)

if self.log_level=="time":
t0 = time.time()

if self.allow_duplicates:
new_children = children

else:
for child in children:

if tuple(child) not in population:
new_children.add(tuple(child))

if len(new_children)>=len(pop_fitness)-self.elitism:
break

# Replace population
if self.replacement_func=="generational":

population = fn.generational_replacement(self.allow_duplicates,
self.elitism, new_children, pop_fitness)

else:
children_fitness, _, _ = fn.evaluate_population(new_children,

self.clauses, self.fitness_func, pop_fitness_dict, self.
max_workers)

for i, indiv in enumerate(new_children):
if type(indiv) == type(()):

pop_fitness_dict[indiv]=children_fitness[i][1]
else:



pop_fitness_dict[tuple(indiv)]=children_fitness[i][1]
num_fitness_evals += len(new_children)

if self.replacement_func=="mu lambda offspring":
population = fn.mu_lambda_replacement(self.allow_duplicates,

children_fitness, self.pop_size)
elif self.replacement_func=="mu lambda":

population = fn.mu_lambda_replacement(self.allow_duplicates,
pop_fitness+children_fitness, self.pop_size)

elif self.replacement_func == ’delete n’:
population = fn.delete_n(self.allow_duplicates,

children_fitness, pop_fitness, self.num_individuals, self.
selection_func, self.sel_params)

elif self.replacement_func == ’random replacement’:
population = fn.random_replacement(self.allow_duplicates,

children_fitness, pop_fitness)
elif self.replacement_func == ’parents’:

population = fn.parent_replacement(self.allow_duplicates,
children_fitness, parent_pairs, pop_fitness_dict,
pop_fitness)

elif self.replacement_func == ’weak parents’:
population = fn.weak_parent_replacement(self.allow_duplicates

, children_fitness, parent_pairs, pop_fitness_dict,
pop_fitness)

if self.log_level=="time":
t1 = time.time()
print ("Replace population: ", t1-t0)
print("------------------------------------")

cur_iter += 1
t_fitness_evals += num_fitness_evals
t_num_flips += num_flips

if cur_iter % 1 == 0:
if self.log_level==’all’:

print ("Generation {}, Max Fitness {}/{}".format(cur_iter,
max_fitness, len(self.clauses)))

if self.allow_duplicates:
pop_set = fn.get_pop_set(population)
print ("Pop Len {}, Pop Set Len {}".format(len(population),

len(pop_set)))
else:

print ("Pop Len {}".format(len(population)))
if self.save_to_db:

fn.add_ga_run_generation(conn=self.db_conn, ga_run_id=
ga_run_id, generation_num=cur_iter,
max_fitness=max_fitness, population_length=len(population),

population_set_length=len(pop_set),
num_fitness_evals=num_fitness_evals, num_bit_flips=

num_flips, num_clauses=len(self.clauses),
fitness_array = fitness_arr)



fn.add_ga_run_population(conn=self.db_conn, ga_run_id=
ga_run_id, population=population)

if self.save_to_db:
fn.add_ga_run_result(self.db_conn, ga_run_id, False, None, cur_iter

, max_fitness, t_fitness_evals, t_num_flips)
fn.add_ga_run_generation(conn=self.db_conn, ga_run_id=ga_run_id,

generation_num=cur_iter,
max_fitness=max_fitness, population_length=len(population),

population_set_length=len(pop_set),
num_fitness_evals=num_fitness_evals, num_bit_flips=

num_flips, num_clauses=len(self.clauses),
fitness_array = fitness_arr)

fn.add_ga_run_population(conn=self.db_conn, ga_run_id=ga_run_id,
population=population, observation="No solution")

fn.close_db_connection(self.db_conn)

if self.plot_results:
self.plot_distributions(populations, genotype_distributions,

phenotype_distributions)
return (False, [], cur_iter, max_fitness, t_fitness_evals, t_num_flips

)

def plot_distributions(self, populations, genotype_distributions,
phenotype_distributions):
gen_distribs = fn.get_genotypic_distribution(genotype_distributions,

max_workers=10)
norm_gen_distrib = fn.normalize_distributions(gen_distribs, max([max(x

) for x in gen_distribs]))
norm_phen_distrib = fn.normalize_distributions(phenotype_distributions

, len(self.clauses))
#fn.plot_violin_graph(norm_phen_distrib, "Fitness percentage", "

Phenotypic Distributions", self.get_filename(), "phenotype")
#fn.plot_violin_graph(norm_gen_distrib, "Mean Hamming Distance

percentage", "Genotypic Distributions", self.get_filename(), "
genotype")

fn.plot_means(norm_gen_distrib, norm_phen_distrib, self.get_filename()
)

#fn.animate_3d_distributions(populations, self.get_filename(), "PCA")
#fn.animate_3d_distributions(populations, self.get_filename(), "SVD")
#fn.animate_3d_distributions(populations, self.get_filename(), "NMF")
#fn.animate_3d_distributions(populations, self.get_filename(), "

FactorAnalysis")
#fn.animate_3d_distributions(populations, self.get_filename(), "

KernelPCA")
#fn.animate_phenotypic_distributions(norm_phen_distrib, self.

get_filename())
#fn.animate_genotypic_distributions(norm_gen_distrib, self.

get_filename())

def get_run_average(self, num_runs=10):



succ_runs, fail_runs = 0,0
prev_ret = self.ret_cost
self.ret_cost = True
total_iters, total_fitness_evals, total_flips = [],[],[]
for i in range(num_runs):

sol_found, sol, num_iters, fitness, num_fitness_evals, num_flips =
self.start_ga()

if sol_found:
succ_runs += 1
total_iters += [num_iters]
total_fitness_evals += [num_fitness_evals]
total_flips += [num_flips]

print ("-----------Problem-----------")
print ("Filename: ", self.filename.split(’/’)[-1])
print ("Location: ", ’/’.join(self.filename.split(’/’)[:-1])+’/’)
print ("----------Parameters---------")
sel_str = "Selection function: "+self.selection_func_str
if self.selection_func_str==’tournament’:

sel_str += ’(tournament_size = ’+str(self.sel_params[0])+’)’
print (sel_str)
cross_str = "Crossover function: " + self.crossover_func_str
if self.crossover_func_str==’sliding window’:

cross_str += ’(window_len = ’+str(self.cross_params[1])+’)’
print (cross_str)
mut_str = "Mutation function: " + self.mutation_func_str
if self.mutation_func_str in [’single bit’, ’multiple bit’]:

mut_str += ’(mutation_rate = ’+str(self.mut_params[0])+’)’
print (mut_str)
print ("------------Results----------")
print ("Success Rate: ", succ_runs/num_runs)
print ("Average num iterations: ", sum(total_iters)/num_runs)
print ("Average num fitness evaulations: ", sum(total_fitness_evals)/

num_runs)
print ("Average num flips: ", sum(total_flips)/num_runs)
print ("-----------------------------")
self.ret_cost = prev_ret

############# PROGRAM #############
log_levels = [’all’, ’time’]
initial_pop_funcs = [’random’]
fitness_funcs = [’maxsat’]
selection_funcs = [’random’, ’roulette’, ’roulette elimination’, ’rank’, ’

tournament’, ’stochastic’, ’annealed’, ’truncation’]
crossover_funcs = [’single point’, ’two points’, ’sliding window’, ’random

map’, ’uniform’]
mutation_funcs = [’single bit’, ’multiple bit’, ’single bit greedy’, ’

single bit max greedy’, ’multiple bit greedy’, ’flip ga’]
replacement_funcs = [’generational’, ’mu lambda’, ’mu lambda offspring’, ’

delete n’, ’random replacement’, ’parents’, ’weak parents’]



# Parents and Weak Parents replacement functions use
steady_state_replacement

best_selection_funcs = [’random’, ’roulette elimination’, ’rank’]
best_crossover_funcs = [’two points’, ’random map’]
best_mutation_funcs = [’multiple bit greedy’, ’flip ga’]
best_replacement_funcs = [’mu lambda’, ’generational’, ’mu lambda offspring

’]

best_combinations = [0,1,1,0]

filename = ’uf75-02.cnf’
foldername = ’./data/uf75-325’
max_iters = 100
pop_size = 1000
elitism = 0.01
num_individuals_to_replace = 0.4
mutation_rate = 0.05
crossover_window_len = 0.4
tournament_size = 5
truncation_proportion = 1/3

for filename in fn.read_folder(foldername):
gen_alg = GeneticAlgorithm(filename=filename, max_iters=max_iters,

pop_size=pop_size, elitism=elitism,
steady_state_replacement = False, allow_duplicates=True, save_to_db=

False, plot_results=False, max_workers=1)
gen_alg.set_params(selection_func=best_selection_funcs[

best_combinations[0]], crossover_func=best_crossover_funcs[
best_combinations[1]],

mutation_func=best_mutation_funcs[best_combinations[2]],
replacement_func=best_replacement_funcs[
best_combinations[3]],

mutation_rate=mutation_rate, tournament_size=tournament_size
,

crossover_window_len=crossover_window_len, num_individuals=
num_individuals_to_replace,

truncation_proportion=truncation_proportion)
gen_alg.set_log_level(’none’)

sol_found, sol, iteration, fitness, num_fitness_evals, num_flips =
gen_alg.start_ga()

if sol_found:
print ("Solution found in iteration {} > {}".format(iteration, sol)

)
print ("Num fitness evals: {}, Num bit flips: {}".format(

num_fitness_evals, num_flips))
print ("s SATISFIABLE")

else:
print ("Solution not found in {} iterations".format(iteration))



print ("Max fitness found: {}/{}".format(fitness, len(gen_alg.
clauses)))

print ("s SOLUTION NOT FOUND")

Listing 1: Genetic Algorithm

import numpy as np
import random
import sys
import psycopg2
from datetime import datetime as dt
import os
from concurrent import futures
import itertools
import seaborn as sns
import matplotlib as mpl
mpl.rc(’figure’, max_open_warning = 0)
import matplotlib.pyplot as plt
import glob
import re
import subprocess
import scipy.stats as sp
import hashlib
from multiprocessing import Pool
import pandas as pd
import sklearn.decomposition as sd

############# CONSTANTS #############
infinite = 2**31
levene_constant = 0.05
fp_in = "./gifs/image_*.png"
fp_out = "./gifs/"

############# FUNCTIONS #############

def get_random_int(bot, top):
return np.random.randint(bot, top)

def read_folder(folder_path):
files = []
for file in os.listdir(folder_path):

if len(file)>4 and file[-4:]==’.cnf’:
files.append(folder_path+’/’+file)

return files

def read_problem(filepath):
with open(filepath, ’r’) as fp:

all_clauses = ""
for line in fp.readlines():

if line[0]==’c’:
continue

if line[0]==’p’:



num_vars = int(line.split()[2])
num_clauses = int(line.split()[3])

else:
all_clauses += " "+line.replace(’\n’,’’)

clauses = [[] for x in range(num_clauses)]
clause = 0
for num in all_clauses.split():

if num==’0’:
clause+=1

elif num==’%’:
break

else:
clauses[clause].append(int(num))

return num_vars, clauses

def get_pop_set(population):
unique_pop = set()
for indiv in population:

unique_pop.add(str(indiv))
return unique_pop

def get_indiv_count(population, indiv):
str_pop = [str(x) for x in population]
return str_pop.count(indiv)

def append_to(dest_list, elem):
if type(dest_list) == type(set()):

dest_list.add(elem)
elif type(dest_list) == type([]):

dest_list.append(elem)
return dest_list

def animate_phenotypic_distributions(population_distributions, filename):
min_f, max_f = 2**31, 0
for distribution in population_distributions:

max_d, min_d = max(distribution), min(distribution)
if max_d > max_f: max_f = max_d
if min_d < min_f: min_f = min_d

for i, distribution in enumerate(population_distributions):
fig, ax = plt.subplots()
plot = sns.distplot(distribution, bins=20, norm_hist=True, ax=ax)
ax.set_xlim(min_f, max_f)
#ax.set_ylim(0, 100)
plt.title("Generation {}".format(i))
plt.xlabel("Fitness")
plt.ylabel("Bin frequency")

textstr = [’variance=%.3f’ % (np.var(distribution), )]
if i>0 and np.var(distribution)>0:



statistic, result = sp.levene(distribution,
population_distributions[i-1])

# if levene result (p value) < 0.05 there is a difference between
the variance of the populations

textstr.append(r’levene p=%.3f’ % (result))
ttest,pval = sp.ttest_ind(distribution, population_distributions[i

-1], equal_var=result > levene_constant)
textstr.append(r’t-test p=%.3f’ % (pval))
# if pval < threshold (0.05, 0.1) reject the null hypothesis of

equal averages

textstr = ’\n’.join(textstr)
# these are matplotlib.patch.Patch properties0
props = dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.5)

# place a text box in upper left in axes coords
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14,

verticalalignment=’top’, bbox=props)

plt.savefig("gifs/image_{}.png".format(i))

file_out = fp_out + ’phenotype_’ + filename + ’.gif’
filenames = sorted(glob.glob( fp_in),key=lambda x:float(re.findall("

([0-9]+?)\.png",x)[0]))
subprocess.call("convert -delay 50 " + " ".join(filenames) + " -loop 5 "

+ file_out, shell=True)
for f in sorted(glob.glob(fp_in)):

os.remove(f)

def animate_3d_distributions(populations, filename,
dimensionality_reduction):

if dimensionality_reduction == "PCA":
pca = sd.PCA(n_components=3)

elif dimensionality_reduction == "SVD":
pca = sd.TruncatedSVD(3)

elif dimensionality_reduction == "NMF":
pca = sd.NMF(n_components=3, max_iter=100000)

elif dimensionality_reduction == "FactorAnalysis":
pca = sd.FactorAnalysis(n_components=3)

elif dimensionality_reduction == "KernelPCA":
pca = sd.KernelPCA(n_components=3)

pandas_dfs = []
max_ind = [0,0,0]
min_ind = [2**31,2**31,2**31]
for i, distribution in enumerate(populations):

principalComponents = pca.fit_transform(distribution)
dataframe = pd.DataFrame(data = principalComponents, columns=[’

principal component 1’,
’principal component 2’, ’principal component 3’])



pandas_dfs.append(dataframe)
if dataframe.min()[0]<min_ind[0]: min_ind[0] = dataframe.min()[0]
if dataframe.min()[1]<min_ind[1]: min_ind[1] = dataframe.min()[1]
if dataframe.min()[2]<min_ind[2]: min_ind[2] = dataframe.min()[2]

if dataframe.max()[0]>max_ind[0]: max_ind[0] = dataframe.max()[0]
if dataframe.max()[1]>max_ind[1]: max_ind[1] = dataframe.max()[1]
if dataframe.max()[2]>max_ind[2]: max_ind[2] = dataframe.max()[2]

for i, principalDf in enumerate(pandas_dfs):

fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)
ax.set_ylim(min_ind[1]-1, max_ind[1]+1)
ax.set_xlim(min_ind[0]-1, max_ind[0]+1)
ax.set_zlim(min_ind[2]-1, max_ind[2]+1)
plt.title("Generation {}".format(i))
ax.set_xlabel("Principal Component 1")
ax.set_ylabel("Principal Component 2")
ax.set_zlabel("Principal Component 3")

ax.scatter(principalDf[’principal component 1’],principalDf[’principal
component 2’],
principalDf[’principal component 3’], c=’r’, marker=’o’)

plt.savefig("gifs/image_{}.png".format(i))

file_out = fp_out + dimensionality_reduction + ’_analysis_’ + filename +
’.gif’

filenames = sorted(glob.glob( fp_in),key=lambda x:float(re.findall("
([0-9]+?)\.png",x)[0]))

subprocess.call("convert -delay 50 " + " ".join(filenames) + " -loop 5 "
+ file_out, shell=True)

for f in sorted(glob.glob(fp_in)):
os.remove(f)

def plot_violin_graph(pop_distributions, y_axis, title, filename, dist_type
):
fig, ax = plt.subplots(figsize=(30,15))
ax.violinplot(pop_distributions, showmeans=True, widths=0.7)
plt.title(title)
plt.xlabel("Generation number")
plt.ylabel(y_axis)
file_out = fp_out + dist_type + ’_’ + filename + ’.png’
plt.savefig(file_out)

def plot_means(genotype_distributions, phenotype_distributions, filename):
fig, ax = plt.subplots(figsize=(30,15))

ind_arr = [x for x in range(len(genotype_distributions))]



gen_mean, gen_dev = get_mean_distributions(genotype_distributions)
gen_lower, gen_upper = [], []
for i in range(len(gen_mean)):

gen_lower += [gen_mean[i]-gen_dev[i]]
gen_upper += [gen_mean[i]+gen_dev[i]]

phen_mean, phen_dev = get_mean_distributions(phenotype_distributions)
phen_lower, phen_upper = [], []
for i in range(len(phen_mean)):

phen_lower += [phen_mean[i]-phen_dev[i]]
phen_upper += [phen_mean[i]+phen_dev[i]]

ax.fill_between(ind_arr, gen_upper, gen_lower, color="lightcyan")
ax.plot(ind_arr, gen_mean, color="blue", lw=2, label="Genotype mean")
#plt.plot(ind_arr, gen_mean, color =’g’)

ax.fill_between(ind_arr, phen_upper, phen_lower, color="lightyellow",
alpha=0.7)

ax.plot(ind_arr, phen_mean, color="brown", lw=2, label="Phenotype mean")

ax.set_title("Genotypic vs Phenotypic mean evolution")
ax.set_xlabel("Generation number")
ax.set_ylabel("Mean percentage")
ax.legend()
file_out = fp_out + ’bbands_’ + filename + ’.png’
plt.savefig(file_out)

def get_mean_distributions(pop_distributions):
mean_dists = []
deviation_dists = []
for distrib in pop_distributions:

mean_dists += [np.mean(distrib)]
deviation_dists += [np.std(distrib)]

return mean_dists, deviation_dists

def normalize_distributions(pop_distributions, max_value):
normalized_dists = []
for distribution in pop_distributions:

new_dist = []
for indiv in distribution:

new_dist += [indiv/max_value]
normalized_dists += [new_dist]

return normalized_dists

def hamming_distance(chain1, chain2):
chaine1 = hashlib.md5(chain1.encode()).hexdigest()
chaine2 = hashlib.md5(chain2.encode()).hexdigest()
return sum(c1 != c2 for c1, c2 in zip(chaine1, chaine2))

def get_hamming_distances(population, hamming_dict=None):
pop = []



for indiv in population:
dist = 0
for indiv2 in population:

if indiv!=indiv2:
if hamming_dict != None:

try:
ld = hamming_dict[tuple(indiv)+tuple(indiv2)]

except:
ld = hamming_distance(indiv, indiv2)
hamming_dict[tuple(indiv)+tuple(indiv2)] = ld

else:
ld = hamming_distance(indiv, indiv2)

dist += ld
dist /= len(population)
pop.append(dist)

if hamming_dict != None:
return pop, hamming_dict

return pop

def get_genotypic_distribution(pop_distributions, max_workers=1):
genotype_distributions = []

if max_workers == 1:
hamming_dict = {}
for population in pop_distributions:

pop, hamming_dict = get_hamming_distances(population, hamming_dict)
genotype_distributions.append(pop)

else:
for i in range(0,len(pop_distributions), max_workers):

p = Pool(processes=max_workers)
data = p.map(get_hamming_distances, pop_distributions[i:i+10])
p.close()
genotype_distributions += data

return genotype_distributions

def animate_genotypic_distributions(genotype_distributions, filename):
min_f, max_f = 2**31, 0
for pop in genotype_distributions:

tmin = min(pop)
tmax = max(pop)
if tmin < min_f: min_f = tmin
if tmax > max_f: max_f = tmax

for i, distribution in enumerate(genotype_distributions):
fig, ax = plt.subplots()
plot = sns.distplot(distribution, bins=20, ax=ax)
ax.set_xlim(min_f,max_f)
#ax.set_ylim(0, len(distribution))



plt.title("Generation {}".format(i))
plt.xlabel("Hamming distance")
plt.ylabel("Bin frequency")

textstr = [’variance=%.3f’ % (np.var(distribution), )]
if i>0 and np.var(distribution)>0:

statistic, result = sp.levene(distribution, genotype_distributions[
i-1])

# if levene result (p value) < 0.05 there is a difference between
the variance of the populations

textstr.append(r’levene p=%.3f’ % (result))
ttest,pval = sp.ttest_ind(distribution, genotype_distributions[i

-1], equal_var=result > levene_constant)
textstr.append(r’t-test p=%.3f’ % (pval))
# if pval < threshold (0.05, 0.1) reject the null hypothesis of

equal averages

textstr = ’\n’.join(textstr)
# these are matplotlib.patch.Patch properties0
props = dict(boxstyle=’round’, facecolor=’wheat’, alpha=0.5)

# place a text box in upper left in axes coords
ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=14,

verticalalignment=’top’, bbox=props)
plt.savefig("gifs/image_{}.png".format(i))

file_out = fp_out + ’genotype_’ + filename + ’.gif’
filenames = sorted(glob.glob( fp_in),key=lambda x:float(re.findall("

([0-9]+?)\.png",x)[0]))
subprocess.call("convert -delay 50 " + " ".join(filenames) + " -loop 5 "

+ file_out, shell=True)
for f in sorted(glob.glob(fp_in)):

os.remove(f)

############# DATABASE HELPER FUNCTIONS #############

def get_db_connection(dbname=’genetic_algorithm’, user=’pyuser’, password=’
123456’):
conn, cursor = None, None
try:

conn = psycopg2.connect(database=dbname, user=user, password=password,
host=’192.168.1.4’, port=5432)

except (Exception, psycopg2.DatabaseError) as error:
print(error)

return conn

def close_db_connection(conn):
try:

if conn is not None:



conn.close()
except (Exception, psycopg2.DatabaseError) as error:

print(error)

def add_ga_run(conn, problem, max_iterations, pop_size, elitism,
selection_function, crossover_function,
mutation_function, mutation_rate, tournament_size, crossover_window_len,

population_replacement_function,
num_individuals, truncation_proportion, num_clauses):
new_id = -1
try:

with conn:
cursor = conn.cursor()
sql_string = "INSERT INTO ga_run (created_timestamp, problem,

max_iterations, pop_size, elitism, \
selection_function, crossover_function, mutation_function,\
population_replacement_function, mutation_rate,

tournament_size, crossover_window_len, \
num_individuals, truncation_proportion, num_clauses) VALUES \
(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)

RETURNING id;"
cursor.execute(sql_string, (dt.now(), problem, max_iterations,

pop_size, elitism, selection_function, crossover_function,
mutation_function, population_replacement_function,
mutation_rate, tournament_size, crossover_window_len,
num_individuals, truncation_proportion, num_clauses))

new_id = cursor.fetchone()[0]

except (Exception, psycopg2.DatabaseError) as error:
print (error)

return new_id

def add_ga_run_result(conn, ga_run_id, sol_found, solution, num_iterations,
max_fitness, num_fitness_evals, num_bit_flips):

try:
with conn:

cursor = conn.cursor()
sql_string = "UPDATE ga_run SET updated_timestamp = %s, sol_found =

%s, solution = %s, \
num_iterations = %s, max_fitness = %s, num_fitness_evals = %s,

num_bit_flips = %s WHERE id = %s"
cursor.execute(sql_string, (dt.now(), sol_found, solution,

num_iterations,
max_fitness, num_fitness_evals, num_bit_flips, ga_run_id))

except (Exception, psycopg2.DatabaseError) as error:
print (error)

def add_ga_run_generation(conn, ga_run_id, generation_num, max_fitness,
population_length, population_set_length, num_fitness_evals,
num_bit_flips, num_clauses, fitness_array):
mean = float(np.mean(fitness_array))



median = float(np.median(fitness_array))
mode = sp.mode(fitness_array)
mode_value = float(mode[0][0])
mode_count = int(mode[1][0])
deviation = float(np.std(fitness_array))
try:

with conn:
cursor = conn.cursor()
sql_string = "INSERT INTO ga_run_generations (time_stamp, ga_run_id

, generation_num, max_fitness, \
population_length, population_set_length,

num_fitness_evals, num_bit_flips, num_clauses, \
mean, median, mode, mode_count, standard_deviation) VALUES

\
(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"

cursor.execute(sql_string, (dt.now(), ga_run_id, generation_num,
max_fitness, population_length,

population_set_length, num_fitness_evals, num_bit_flips,
num_clauses, mean, median, mode_value,

mode_count, deviation))
except (Exception, psycopg2.DatabaseError) as error:

print (error)

def add_ga_run_population(conn, ga_run_id, population, ga_run_generation_id
=None, observation=None):
try:

with conn:
cursor = conn.cursor()
sql_string = "INSERT INTO ga_run_population (ga_run_id,

ga_run_generation_id, population, observations) VALUES (%s, %s,
%s, %s)"

cursor.execute(sql_string, (ga_run_id, ga_run_generation_id,
population, observation))

except (Exception, psycopg2.DatabaseError) as error:
print (error)

############# CNF SIMPLIFICATION #############

def trivial_case(clauses):
num_pos = 0
num_neg = 0
for clause in clauses:

for num in clause:
if num > 0: num_pos += 1
else: num_neg += 1

if num_neg == 0:
return 1

if num_pos == 0:
return 0

return -1



def remove_unit_vars(clauses, set_vars):
"""

remove_unit_vars

Finds clauses with a single variable in them
and sets the variable so the clause equals True

"""
unit_clauses = 0
new_clauses = clauses[:]
for i, clause in enumerate(clauses):

if len(clause)==1:
# Clause found
unit_clauses += 1
#new_clauses = clauses[:i]+clauses[i+1:]
new_clauses.pop(i)
# Set Variable
if clause[0]>=0: set_vars[clause[0]-1] = 1
else: set_vars[abs(clause[0])-1] = 0
for j, new_clause in enumerate(new_clauses):

if 0-clause[0] in new_clause:
# Remove negative value from clauses since its False
new_clauses[j].remove(0-clause[0])

for new_clause in clauses:
if clause[0] in new_clause:

if new_clause in new_clauses:
# Remove clause since its solved
new_clauses.remove(new_clause)

break
if unit_clauses==0:

return new_clauses, set_vars
else:

return remove_unit_vars(new_clauses, set_vars)

def remove_pure_vars(clauses, set_vars):
"""

remove_pure_vars

For every variable it searches through all the clauses,
if the variable only appears in negated form, it sets it to False
if the variable only appears in "positive" form, it sets it to True
if the variable doesn’t appear in the clauses, any value will do

"""
new_clauses = clauses[:]
for i in range(len(set_vars)):

pos_var, neg_var = 0, 0
for clause in clauses:

if i+1 in clause: pos_var += 1
elif -(i+1) in clause: neg_var += 1

if pos_var > 0 and neg_var == 0:
set_vars[i] = 1

elif neg_var > 0 and pos_var == 0:
set_vars[i] = 0



elif neg_var == 0 and pos_var == 0:
# Any value will do, since the variable doesn’t appear in the

formulas
set_vars[i] = 0

if set_vars[i] != infinite:
for clause in clauses:

if i+1 in clause:
new_clauses.remove(clause)

elif -(i+1) in clause:
new_clauses.remove(clause)

return new_clauses, set_vars

############# GENERATE INITIAL POPULATION #############

def random_population(num_vars, set_vars, pop_size, allow_duplicates):
if allow_duplicates:

population = []
else:

population = set()
while(len(population)<pop_size):

for p in range(pop_size):
rpop = np.random.randint(2, size=num_vars)
for j, var in enumerate(set_vars):

if var != infinite:
rpop[j] = var

if allow_duplicates:
population.append(rpop.tolist())

else:
population.add(tuple(rpop.tolist()))

return population

def satisfy_clauses_population(num_vars, set_vars, pop_size, clauses,
allow_duplicates):
#NOT USED
if allow_duplicates:

population = []
else:

population = set()
while len(population)<pop_size:

for p in range(pop_size):
indiv = [0]*num_vars
for clause in clauses:

rind = np.random.randint(len(clause))
if clause[rind]>=0: indiv[clause[rind]-1] = 1
else: indiv[abs(clause[rind])-1] = 0

if allow_duplicates:
population.append(indiv)

else:
population.add(indiv)

return population

############# EVALUATE POPULATION #############



def evaluate_population(population, clauses, fitness_function, fitness_dict
, max_workers=1):
pop_fitness = []
max_fitness = 0
max_fit_indiv = None
if max_workers == 1:

for pop in population:
try:

if type(pop)==type(()):
fitness = fitness_dict[pop]

else:
fitness = fitness_dict[tuple(pop)]

except:
fitness = fitness_function(clauses, pop)

if fitness >= max_fitness:
max_fitness = fitness
max_fit_indiv = pop

pop_fitness.append([pop, fitness])
else:

ex = futures.ProcessPoolExecutor(max_workers=max_workers)
results = ex.map(fitness_function, itertools.repeat(clauses, len(

population)), population)
for i, fitness in enumerate(results):

pop_fitness.append([population[i], fitness])
if fitness >= max_fitness:

max_fitness = fitness
max_fit_indiv = population[i]

return pop_fitness, max_fitness, max_fit_indiv

############# FITNESS FUNCTIONS #############
fitness_dict = {}
def maxsat_fitness(clauses, var_arr):

# Since CNF formulas are of the shape (x1 OR x2 OR x3) AND (x3 OR -x2 OR
-x1)

# As soon as we find any True value inside a clause that clause is
satisfied

try:
x = fitness_dict[str(var_arr)]

except:
t_clauses = 0
for clause in clauses:

for num in clause:
if num >= 0:

if var_arr[num-1]==1:
t_clauses += 1
break

elif num <= 0:
if var_arr[abs(num)-1]==0:

t_clauses += 1
break

fitness_dict[str(var_arr)] = t_clauses



return fitness_dict[str(var_arr)]

def float_fitness(clauses, var_arr):
#NOT USED
t_res = 1
for clause in clauses:

tmp_r = 0
for num in clause:

if num<0:
if var_arr[abs(num)-1] == 0:

tmp_r += 1
else:

tmp_r += 0
else:

tmp_r += var_arr[num-1]
#if tmp_r >= 1: tmp_r = 1
t_res *= tmp_r

return t_res

def maxsat_solution_found(clauses, fitness):
if fitness >= len(clauses): return True
return False

############# SELECTION FUNCTIONS #############

def random_selection(population, num_parents):
tmp_pop = population[:]
parents = []
for _ in range(num_parents):

if len(tmp_pop)==0: tmp_pop = population[:]
ind = np.random.randint(0, len(tmp_pop))
parents.append(tmp_pop.pop(ind))

return parents

def roulette_selection_with_elimination(population, num_parents):
tmp_pop = population[:]
parents = []
for _ in range(num_parents):

if len(tmp_pop)==0: tmp_pop = population[:]
total_fitness = sum([y for x,y in tmp_pop])
probabilities = [y/total_fitness if total_fitness>0 else 0 for x,y in

tmp_pop]
if total_fitness>0:

rnum = random.random()
else:

rnum = 0
sprob = 0
for i, prob in enumerate(probabilities):

if rnum >= sprob and rnum <= sprob+prob:
parents.append(tmp_pop.pop(i))
break

sprob += prob



return parents

def roulette_selection(population, num_parents):
parents = []
total_fitness = sum([y for x,y in population])
probabilities = [y/total_fitness for x,y in population]
for _ in range(num_parents):

rnum = random.random()
sprob = 0
for i, prob in enumerate(probabilities):

if rnum >= sprob and rnum <= sprob+prob:
parents.append(population[i])
break

sprob += prob
return parents

def rank_selection(population, num_parents):
parents = []
sorted_pop = sorted(population, key=lambda x: x[1])
pop_rank = [[x, i+1] for i,x in enumerate(sorted_pop)]
total_rank = sum([y for x,y in pop_rank])
probabilities = [y/total_rank for x,y in pop_rank]
for _ in range(num_parents):

rnum = random.random()
sprob = 0
for i, prob in enumerate(probabilities):

if rnum >= sprob and rnum <= sprob+prob:
parents.append(pop_rank[i][0])
break

sprob += prob
return parents

def truncation_selection(population, num_parents, proportion):
num_indivs = int(len(population)*proportion)
parents = []
sorted_pop = sorted(population, key=lambda x: x[1])
if num_indivs >= num_parents:

for i in range(num_parents):
parents.append(sorted_pop[i])

elif num_indivs < num_parents:
while len(parents)<num_parents:

for i in range(num_indivs):
parents.append(sorted_pop[i])
if len(parents)>=num_parents:

break
return parents

def tournament_selection(population, num_parents, tournament_size):
parents = []
for i in range(num_parents):



twinner, tfitness = 0, 0
for i in range(tournament_size):

rnum = np.random.randint(len(population))
if population[rnum][1] > tfitness:

twinner = population[rnum][0]
tfitness = population[rnum][1]

parents.append([twinner,tfitness])
return parents

def stochastic_universal_sampling_selection(population, num_parents):
total_fitness = sum([x[1] for x in population])
point_distance = total_fitness/num_parents
start_point = int(np.random.uniform(0, point_distance))
points = [start_point + i * point_distance for i in range(num_parents)]

parents = []
while len(parents) < num_parents:

random.shuffle(population)
fit_sum, point = 0, 0
for indiv in population:

if len(parents)==num_parents:
break

elif fit_sum+indiv[1]>points[point]:
point+=1
parents.append(indiv)

fit_sum += indiv[1]
return parents

def annealed_selection(population, num_parents, max_generations,
generation_num):
# Combination if rank and roulette wheel selection
# Rank selection
sorted_pop = sorted(population, key=lambda x: x[1])
pop_rank = [[x, i+1] for i,x in enumerate(sorted_pop)]
total_rank = int((pop_rank[-1][1]*(pop_rank[-1][1]-1))/2)
# Roulette wheel selection
total_fitness = sum([x[1] for x in sorted_pop])
# Combination
factor = (1/max_generations)*generation_num
annealed_pop = []
total_a_fitness = 0
for i,x in enumerate(pop_rank):

annealed_fitness = (sorted_pop[i][1]/total_fitness)*(1-factor)+(x[1]/
total_rank)*(0+factor)

annealed_pop.append([x[0], annealed_fitness])
total_a_fitness += annealed_fitness

parents = []

while len(parents)<num_parents:
rnum = np.random.uniform(0, total_a_fitness)



fsum = 0
for indiv in annealed_pop:

if fsum+indiv[1]>=rnum:
parents.append(indiv[0])
break

fsum += indiv[1]

return parents

############# CROSSOVER FUNCTIONS #############

def single_point_crossover(parent_pair, ret_cost=False):
parent1, parent2 = parent_pair
fitness_evals, bit_flips = 0, 0
cut_point = np.random.randint(len(parent1))
children = [

np.concatenate((parent1[:cut_point],parent2[cut_point:])).tolist(),
np.concatenate((parent2[:cut_point],parent1[cut_point:])).tolist()
]

if ret_cost:
return children, fitness_evals, bit_flips

else:
return children

def two_point_crossover(parent_pair, ret_cost=False):
parent1, parent2 = parent_pair
fitness_evals, bit_flips = 0, 0
cut_point_1 = np.random.randint(len(parent1)-1)
cut_point_2 = np.random.randint(cut_point_1+1, len(parent1))
children = [

np.concatenate((parent1[:cut_point_1],parent2[cut_point_1:cut_point_2
],parent1[cut_point_2:])).tolist(),

np.concatenate((parent2[:cut_point_1],parent1[cut_point_1:cut_point_2
],parent2[cut_point_2:])).tolist()

]
if ret_cost:

return children, fitness_evals, bit_flips
else:

return children

def sliding_window_crossover(parent_pair, clauses, crossover_window_len
=0.4, ret_cost=False):
parent1, parent2 = parent_pair
fitness_evals, bit_flips = 0, 0
window_len = int(crossover_window_len*len(parent1))
max_fitness, max_i = [0,0], [0,0]
bad_children = [[],[]]
for i in range(len(parent1)-window_len):

bad_children[0].append(np.concatenate((parent1[:i],parent2[i:i+
window_len],parent1[i+window_len:])).tolist())



bad_children[1].append(np.concatenate((parent2[:i],parent1[i:i+
window_len],parent2[i+window_len:])).tolist())

for t in range(2):
fitness = maxsat_fitness(clauses, bad_children[t][i])
fitness_evals += 1
if fitness >= max_fitness[0]:

max_fitness[t] = fitness
max_i[t] = i

if ret_cost:
return [bad_children[0][max_i[0]], bad_children[1][max_i[1]]],

fitness_evals, bit_flips
else:

return [bad_children[0][max_i[0]], bad_children[1][max_i[1]]]

def random_map_crossover(parent_pair, ret_cost=False):
parent1, parent2 = parent_pair
fitness_evals, bit_flips = 0, 0
rand_map = np.random.randint(2, size=len(parent1))
child_1 = parent1[:]
child_2 = parent2[:]
for i, elem in enumerate(rand_map):

if elem == 0:
child_1[i] = parent2[i]
child_2[i] = parent1[i]
bit_flips += 2

if ret_cost:
return [child_1, child_2], fitness_evals, bit_flips

else:
return [child_1, child_2]

def uniform_crossover(parent_pair, ret_cost=False):
parent1, parent2 = parent_pair
# Uses alternating bits, maybe change to a normal distribution
fitness_evals, bit_flips = 0, 0
child_1 = parent1[:]
child_2 = parent2[:]
for i in range(len(parent1)):

if i%2==0:
child_1[i] = parent2[i]
child_2[i] = parent1[i]
bit_flips += 2

if ret_cost:
return [child_1, child_2], fitness_evals, bit_flips

else:
return [child_1, child_2]

############# MUTATION FUNCTIONS #############

def mutate_population(population, mutation_function, mutation_params,
ret_cost=False, max_workers=1):
fitness_evals, bit_flips = 0, 0
new_pop = []



if max_workers == 1:
for i, pop in enumerate(population):

newindiv = mutation_function(pop, *mutation_params)
if ret_cost:

fitness_evals += newindiv[1]
bit_flips += newindiv[2]
newindiv = newindiv[0]

new_pop.append(newindiv)
else:

ex = futures.ProcessPoolExecutor(max_workers=max_workers)
results = ex.map(mutation_function, population, itertools.repeat(

mutation_params[0], len(population)), itertools.repeat(
mutation_params[1], len(population)))

if ret_cost:
for indiv, fit_ev, bit_f in results:

new_pop.append(indiv)
fitness_evals += fit_ev
bit_flips += bit_f

else:
new_pop=results

if ret_cost:
return new_pop, fitness_evals, bit_flips

else:
return new_pop

def single_bit_flip(individual, mutation_rate, ret_cost=False):
fitness_evals, bit_flips = 0, 0
indiv = individual
rmut = random.random()
if rmut <= mutation_rate:

ind = np.random.randint(len(indiv))
if indiv[ind] == 1: indiv[ind] = 0
else: indiv[ind] = 1
bit_flips += 1

if ret_cost:
return indiv, fitness_evals, bit_flips

else:
return indiv

def multiple_bit_flip(individual, mutation_rate, ret_cost=False):
fitness_evals, bit_flips = 0, 0
indiv = individual
rmut = random.random()
if rmut <= mutation_rate:

num_bits = np.random.randint(len(indiv))
for x in range(num_bits):

ind = np.random.randint(len(indiv))
if indiv[ind] == 1: indiv[ind] = 0
else: indiv[ind] = 1
bit_flips += 1



if ret_cost:
return indiv, fitness_evals, bit_flips

else:
return indiv

def single_bit_greedy(individual, mutation_rate, clauses, ret_cost=False):
fitness_evals, bit_flips = 0, 0
ind_fitness = maxsat_fitness(clauses, individual)
fitness_evals += 1
max_ind = individual
rmut = random.random()
if rmut <= mutation_rate:

for j in range(len(individual)):
indiv = individual[:]
if indiv[j]==1: indiv[j]=0
elif indiv[j]==0: indiv[j]=1
bit_flips += 1
fitness_evals += 1
if maxsat_fitness(clauses, indiv)>ind_fitness:

max_ind = indiv
break

if ret_cost:
return max_ind, fitness_evals, bit_flips

else:
return max_ind

def single_bit_max_greedy(individual, mutation_rate, clauses, ret_cost=
False):
fitness_evals, bit_flips = 0, 0
ind_fitness = maxsat_fitness(clauses, individual)
fitness_evals += 1
max_ind, max_fit = individual, ind_fitness
rmut = random.random()
if rmut <= mutation_rate:

for j in range(len(individual)):
t_indiv = individual[:]
if t_indiv[j]==1: t_indiv[j]=0
elif t_indiv[j]==0: t_indiv[j]=1
tfit = maxsat_fitness(clauses, t_indiv)
fitness_evals += 1
bit_flips += 1
if tfit>max_fit:

max_ind = t_indiv
max_fit = tfit

if ret_cost:
return max_ind, fitness_evals, bit_flips

else:
return max_ind

def multiple_bit_greedy(individual, mutation_rate, clauses, ret_cost=False)
:



fitness_evals, bit_flips = 0, 0
ind_fitness = maxsat_fitness(clauses, individual)
indiv = individual[:]
rmut = random.random()
if rmut <= mutation_rate:

for j in range(len(indiv)):
t_indiv = indiv[:]
new_bit = 1
if indiv[j]==1: new_bit=0
t_indiv[j] = new_bit
t_fitness = maxsat_fitness(clauses, t_indiv)
fitness_evals += 1
bit_flips += 1
if t_fitness > ind_fitness:

ind_fitness = t_fitness
indiv = t_indiv

if ret_cost:
return indiv, fitness_evals, bit_flips

else:
return indiv

def flip_ga(individual, mutation_rate, clauses, ret_cost=False):
fitness_evals, bit_flips = 0, 0
indiv = individual[:]
ind_fitness = maxsat_fitness(clauses, indiv)
prev_fitness = ind_fitness-1
rmut = random.random()
if rmut <= mutation_rate:

while(prev_fitness<ind_fitness):
prev_fitness = ind_fitness
for j in range(len(indiv)):

t_indiv = indiv[:]
new_bit = 1
if t_indiv[j]==1: new_bit=0
t_indiv[j] = new_bit
t_fitness = maxsat_fitness(clauses, t_indiv)
fitness_evals += 1
bit_flips += 1
if t_fitness > ind_fitness:

ind_fitness = t_fitness
indiv = t_indiv

if ret_cost:
return indiv, fitness_evals, bit_flips

else:
return indiv

############# POPULATION REPLACEMENT FUNCTIONS #############
def random_replacement(allow_duplicates, children_fitness, pop_fitness):

new_pop = [x for x,y in pop_fitness]
for _ in children_fitness:

rand_ind = np.random.randint(0, len(new_pop))



new_pop.pop(rand_ind)
new_pop += [x for x,y in children_fitness]
if allow_duplicates:

return new_pop
else:

return set(new_pop)

def weak_parent_replacement(allow_duplicates, children_fitness,
parent_pairs, pop_fitness_dict, pop_fitness):
new_pop = [x for x,y in pop_fitness]
tmp_children = list(children_fitness)
new_children = []
for ppair in parent_pairs:

new_pop.remove(ppair[0])
aux = tmp_children[:2] + [[ppair[0],pop_fitness_dict[tuple(ppair[0])

]], [ppair[1],pop_fitness_dict[tuple(ppair[1])]]]
tmp_children = tmp_children[2:]
sorted_pop = sorted(aux, key=lambda x: x[1], reverse=True)
if ppair[0]==ppair[1]:

new_children += [x for x,y in sorted_pop[:1]]
else:

new_pop.remove(ppair[1])
new_children += [x for x,y in sorted_pop[:2]]

new_pop += new_children
if allow_duplicates:

return new_pop
else:

return set(new_pop)

def parent_replacement(allow_duplicates, children_fitness, parent_pairs,
pop_fitness_dict, pop_fitness):
new_pop = [x for x,y in pop_fitness]
remove_children = 0
for ppair in parent_pairs:

try:
new_pop.remove(ppair[0])

except: pass
try:

new_pop.remove(ppair[1])
except: pass

new_pop += [x for x,y in sorted(children_fitness, key=lambda x: x[1],
reverse=True)][:len(pop_fitness)-len(new_pop)]

if allow_duplicates:
return new_pop

else:
return set(new_pop)

def delete_n(allow_duplicates, children_fitness, pop_fitness,
num_individuals, selection_method, selection_params):
tmp_pop = pop_fitness[:]
tmp_children = children_fitness[:]



new_children = []
for _ in range(num_individuals):

to_kill = selection_method(tmp_pop, 1, *selection_params)[0]
if len(tmp_children)>0:

tmp_pop.remove(to_kill)
to_add = selection_method(tmp_children, 1, *selection_params)[0]
tmp_children.remove(to_add)
new_children += [to_add]

else:
break

new_pop = [x for x,y in tmp_pop] + [x for x,y in new_children]
if allow_duplicates:

return new_pop
else:

return set(new_pop)

def mu_lambda_replacement(allow_duplicates, pop_fitness, pop_size):
new_population = []
sorted_pop = sorted(pop_fitness, key=lambda x: x[1], reverse=True)
new_population = [x for x,y in sorted_pop[:pop_size]]
if not allow_duplicates: new_population = set(new_population)
return new_population

def generational_replacement(allow_duplicates, elitism, children,
pop_fitness):
if elitism == 0:

return children

if allow_duplicates:
new_population = []

else:
new_population = set()

sorted_pop = sorted(pop_fitness, key=lambda x: x[1], reverse=True)
if allow_duplicates:

new_population = children + [x for x,y in sorted_pop[:elitism]]
else:

new_population = children
for x,y in sorted_pop[:elitism]:

new_population.add(x)
return new_population

Listing 2: Auxiliary Functions


