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Air pollution monitoring has recently become an issue of utmost importance in our society. Despite the fact that crowdsensing
approaches could be an adequate solution for urban areas, they cannot be implemented in rural environments. Instead, deploying a
fleet ofUAVs could be considered an acceptable alternative. Embracing this approach, this paper proposes the use ofUAVs equipped
with off-the-shelf sensors to perform air pollution monitoring tasks. These UAVs are guided by our proposed Pollution-driven
UAV Control (PdUC) algorithm, which is based on a chemotaxis metaheuristic and a local particle swarm optimization strategy.
Together, they allow automatically performing themonitoring of a specified area usingUAVs. Experimental results show that, when
using PdUC, an implicit priority guides the construction of pollutionmaps by focusing on areas where the pollutants’ concentration
is higher. This way, accurate maps can be constructed in a faster manner when compared to other strategies. The PdUC scheme is
compared against various standardmobility models through simulation, showing that it achieves better performance. In particular,
it is able to find the most polluted areas with more accuracy and provides a higher coverage within the time bounds defined by the
UAV flight time.

1. Introduction

Industrial growth has brought unforeseen technological
advances to our societies. Unfortunately, the price to pay
for these advances has been an increase of air pollution
worldwide, affecting both our health [1] and our lifestyle.

Air quality monitoring is relevant not only for the people
living in urban areas, but also because it directly affects crops
and different animals/insects in rural environments [2].Thus,
different solutions for measuring air quality should be sought
for such environments.

For abovementioned reasons, environmental organiza-
tions and governmental institutions are beginning to con-
sider the monitoring of environmental pollutants as a pri-
mary goal [3, 4].

The majority of methods used insofar to keep track of air
pollution inmajor cities rely on fixedmonitoring stations [5].

However, the use of such dedicated architectures and hard-
ware for pollutionmonitoring is outmatched, in theory, by the
use of crowdsensing [6] in areas with a high population den-
sity. Also, new ground-vehicle-based mobile sensors, which
would theoretically be able to cover the same areas as the fixed
solutions while employing a reduced number of agents, are
emerging as a viable alternative (e.g., [7, 8]).

With respect to the widespread use of small pollution
monitoring sensors embedded in mobile vehicles, the possi-
ble scenarios can be divided into two main classes:

(i) Urban environments, where it is possible to embed the
sensors on a wide set of vehicles like bicycles [9, 10] or
cars [8].

(ii) Rural and industrial areas, where vehicular traffic is
scarce and limited to themain transportation arteries.
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In the latter case, crowdsensing often fails to provide enough
data to obtain realistic measurements having the required
granularity.

Regarding crowdsensing approaches, projects like [11–
13] relied on crowdsensing solutions to monitor pollution in
urban areas. However, in rural and industrial zones, available
options are quite more limited. In the particular case of large
rural or industrial areas, a fleet of mobile vehicles could be
efficiently used to cover the vast distances associated with
them. Furthermore, the use of autonomous sensor carriers
is even more encouraged in this case due to the following
considerations:

(i) The relative absence of civilian population to be taken
care of during robotic operations.

(ii) Stable and regulated positioning of obstacles.
(iii) Fewer constraints concerning UAV flight laws
(iv) Safety and security concerns, as some areas could be

dangerous to access for human operators.

Since, in these environments, ground access is usually
hindered and full of obstacles, the most feasible way to
implement a fleet ofmobile pollutionmonitoring robots is via
Unmanned Aerial Vehicles (UAVs) [14].

Taking the aforementioned issues into consideration,
in this paper we propose the use of UAVs equipped with
commercial and off-the-shelf (COTS) devices and sensors to
implement a service of air pollutionmonitoring that leverages
the use of bioinspired approaches as its main control strategy.
These choices allow covering a specific area automatically and
enable discovering the pollution distribution of a large area by
prioritizing the most polluted zones inside it.

We show that, using our chemotaxis-based approach for
UAV path control, it is possible to achieve faster and more
accurate estimations about the location of the most polluted
areas with respect to classical area-search approaches. Our
analysis also takes into account uncertainty-based consider-
ations in the sensor sampling operations.

This paper is organized as follows: in Section 2 we refer
to some related works addressing UAV-based sensing, UAV
mobility models, and UAV control protocols. Sections 3 and
4 present an overview of the UAV Configuration and the
UAV Control System, respectively. In Section 5, we compare
our algorithm against the Billiard and Spiral mobility models
via simulation. Section 6 discusses the open issues in air
pollution monitoring using UAVs. Finally, in Section 7, we
present the conclusions of our work.

2. Related Works

UAV-based solutions have experienced a very substantial
increase in the last decade, especially in the past five years.
Back in 2004, NASA experts defined a wide set of civil
applications for UAVs [15], highlighting their potential in
the near future in areas such as commercial, Earth Sciences,
national security, and land management. This preliminary
report was ratified years later by authors such as Hugenholtz
et al. [16], who explained how the use of UAVs could
revolutionize researchmethods in the fields of Earth Sciences

and remote sensing. In [17], authors display the results of
a detailed study on different UAVs aspects, showing their
applicability in Agriculture and Forestry, Disaster Monitor-
ing, Localization and Rescue, Surveillance, Environmental
Monitoring, Vegetation Monitoring, Photogrammetry, and
so on.

If we focus specifically on research using quadrotor
multicopters, authors like Gupte et al. [18] and Colomina and
Molina [19] consider that, given their high maneuverability,
compactness, and ease of use, different applications for these
devices are being found in areas including civil engineering,
search and rescue, emergency response, national security,
military surveillance, border patrol, and surveillance, as well
as in other areas such as Earth Sciences, where they can be
used to study climate change, glacier dynamics, and volcanic
activity or for atmospheric sampling, among others.

In our case, we are more interested in atmospheric
sampling to measure air pollution levels. In this research
area, Anderson and Gaston [20] highlight the applicability
of UAVs in the field of ecology, emphasizing that the spatial
and temporal resolutions of the data obtained by traditional
methods often fail to adapt well to the requirements of local
ecology-oriented research. Furthermore, the use of UAVs,
when flying at low altitudes and speeds, offers new oppor-
tunities in terms of ecological phenomena measurements,
enabling the delivery of data with a finer spatial resolution.
In fact, Zhang and Kovacs [21] explain how the images taken
by small UAVs are becoming an alternative to high-resolution
satellite images, which are muchmore expensive, to study the
variations in crop and soil conditions. Specifically, the use of
UAVs is considered a good alternative given its low cost of
operation in environmental monitoring, its high spatial and
temporal resolution, and its high flexibility in the scheduling
of image acquisitions. A good example of this use can be
found in the work of Bellvert et al. [22], which shows how,
by using a multicopter equipped with a thermal camera, it
was possible to obtain a very precise map of water levels in a
vineyard, thereby achieving significant advances in the field
of precision agriculture.

Focusing on our topic, despite the presence of several
works related to air pollution monitoring using Unmanned
Aerial Systems (UAS), the majority of these involve, mainly,
swarmcreation or communication interaction between them.
An example of such work is [23], where authors propose
a mobility model for a group of nodes following “Virtual
Tracks” (highways, valley, etc.) operating in a predefined
“Switch Station” mode, through which nodes can split or
merge with another group of nodes.

Different works have been done related to mounting
sensors in Unmanned Aerial Vehicles. In this regard, Erman
et al. [24] use an UAV equipped with a sensor to create
a Wireless Sensor Network, thereby enabling each UAV to
act as a sink or as a node, but it does not try to optimize
the monitoring process. Teh et al. [25] propose a fixed-wind
aircraft carrying a sensor node that acts as a mobile gateway,
showing the communication between the UAV and different
static base stations which monitor the pollution. In this case,
theUAVonly recovers the data collected by the stations. Khan
et al. [26] propose the design of a lightweight laser-based
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sensor for measuring trace gas species using UAVs, mainly
analyzing how the optical sensor captures the air pollution
samples. In [27], authors use a large-sized aircraft equipped
with ozone sensors to cover a wide area in an automated
manner, showing how the UAV improves the sampling
granularity.

If we analyze works related to mobility models for
UAS mobility control that could be used for air pollution
monitoring tasks, we can observe that basically no work
focuses on the coverage improvement for a certain area.

For instance, in [28], authors propose a mobility model
based on the Enhanced Gauss-Markov model to eliminate or
limit the sudden stops and sharp turns that the random way-
point mobility model typically creates. Also, in [29], authors
present a semirandom circular movement (SRCM) based
model. They analyze the coverage and network connectivity
by comparing results against a random waypoint mobility
model.

The authors of [30] compare their models against ran-
domwaypoint-based,Markov-based, and Brownian-motion-
based algorithms to cover a specific area, analyzing the
influence of the use of collision avoidance systems in the
time to achieve full area coverage. The work in [31] compares
the results of using the “Random Mobility Model” and the
“Distributed Pheromone Repel Mobility Model” as direction
decision engines (next waypoint) in UAV environments. The
authors of [32] propose an algorithm to cover a specific area;
it selects a point in space along with the line perpendicular
to its heading direction and then drives the UAV based on
geometric considerations.

There are works focusing on using UAVs for specific tasks
involving autonomousmovements. An example is [33], where
authors present a mobility model for the self-deployment of
an Aerial Ad Hoc Network in a disaster scenario in order
to create a flying and flexible communications infrastructure
that victims can use. The mobility model proposed is based
mainly on the Jaccard dissimilarity metric to control the
deployment of the Unmanned Aerial Vehicles composing the
network. A similar work is presented in [34], where instead
an in-network density analysis is used to select the physical
areas that need to be visited by a flying robot.

Focusing solely on existing proposals addressingmobility
models, we can find works such as [35] where authors
propose the Paparazzi Mobility Model (PPRZM) by defining
five types of movements—Stay-On, Waypoint, Eight, Scan,
and Oval—following a defined state machine with different
probabilities to change between states. There are even studies
following animal-based navigation patterns. An example
of such work is [36], where authors investigate the UAV
placement and navigation strategies with the end goal of
improving network connectivity, using local flocking rules
that aerial living beings like birds and insects typically follow.

The use of UAVs for air pollutionmonitoring in a specific
area using multirotor drones is, however, still not present
in scientific literature, and this work can be seen as one of
the first approaches in this direction. Our contribution can
be divided into two parts: (i) the design of a low-cost and
open-source UAV equipped with off-the-shelf sensors for
monitoring tasks and (ii) the deployment of a protocol called
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Figure 1: Proposed UAV with air pollution sensors.

PdUC (Pollution-drivenUAVControl) to automatically track
a target area by focusing on the most polluted regions.

3. Overview of the Proposed Solution

To implement a solution for air pollution monitoring using
UAVs we have to consider, like in any cyber-physical system,
two main aspects: (i) the hardware configuration and (ii) the
control process for controlling the system behavior.

By following these guides, our proposal can also be split
into two parts: (i) the physical configuration of the UAV and
the environmental sensors and (ii) the algorithm to control
the UAV for automatically monitoring a specific area called
Pollution-driven UAV Control (PdUC).

Even though we are not proposing, in this paper, an
implementation using real UAVs, we nevertheless present the
specification of the devised cyber-physical system.

3.1. UAV Configuration. We have designed a scheme to
dynamically drive the UAV by connecting the UAV control
module to a Raspberry Pi [37] and connecting the latter to the
set of pollution sensors via an analog converter. The scheme
is shown in Figure 1.

The UAV is driven using a Pixhawk Autopilot [38, 39],
which controls its physical functioning. The Raspberry Pi is
mounted over the UAV chassis and connected to the Pixhawk
through a serial port. The sensors are connected to the
Raspberry Pi using a Grove Raspberry Hat (GrovePi) [40],
which allows connecting different kinds of COTS sensors
easily. Specifically, we are using

(i) Pixhawk Autopilot: a high-performance flight control
module suitable for several types of autonomous vehi-
cles including multirotors, helicopters, cars, boats,
and fixed-wind aircrafts. It is developed under the
independent, open hardware Pixhawk project, and
it has two main components: (i) an Autopilot hard-
ware provides an industry standard autopilot mod-
ule designed as a 168MHz Cortex M4F CPU with
3D ACC/Gyro/MAG/Baro sensors, microSD slot, 5
UARTs, CAN, I2C, SPI, ADC, and so on; (ii) an
Autopilot software that includes a real-time Operat-
ing System (RTOS) with a POXIS-style environment
to control the drone.
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Figure 2: UAV control loop.

(ii) Raspberry Pi: one of the most popular single-board-
computers (SBC) worldwide. It is a low-cost and
small-sized piece of hardware that allows exploring
computing and that supports different Operating
Systems. The most popular of them is Raspbian,
which is based on Debian, although Ubuntu Mate
or Windows 10 IoT Core can also be installed,
thereby allowing using several programming lan-
guages. Besides, all Raspberry Pi versions benefit
from several input/output ports operating at 5V, thus
being ideal for all sorts of IoT projects.

(iii) GrovePi: extension board that allows connecting sev-
eral analog/digital grove ports to a Raspberry Pi in an
easyway. It has several grove ports: seven digital ports,
three analog ports, three I2C ports, one serial port to
the GrovePi, and a serial connector to the Raspberry
Pi.

(iv) Grove Sensors: sensors which use a grove-stand-
ardized connector, providing an easy connection to
different boards like GrovePi.There are several COTS
environmental sensors such as CO2, CO, or alco-
hol. Specifically, we mostly focus on ozone sensors
(MQ131).

Figure 2 shows the closed-loop control scheme of our
proposal. The Pixhawk Autopilot is responsible for the phys-
ical control system of the UAV (lower level), while the Rasp-
berry Pi is in charge of the Guidance system (higher level)
determining the way forward.

3.2. Autonomous Driving. To deploy an algorithm for auto-
matically monitoring a specific area we have analyzed, first of
all, different existing possibilities that could be useful to our
goals.

So, to elaborate the proposed PdUC solution, we have
used specific techniques such as the metaheuristics and
optimization algorithms described below.

3.2.1. Chemotaxis Metaheuristic. The use of rotary-wing
UAVs, equipped with chemical sensors and tasked to survey
large areas, could follow chemotactic [41] mobility pat-
terns, since their flight behavior could easily implement the

following two-phase algorithm: first, read a pollution concen-
tration while hovering; next, follow a chemotactic step.

Chemotaxis metaheuristics are based on bacteria move-
ment. In this model, the microorganisms react to a chemical
stimulus by moving towards areas with a higher concentra-
tion of some components (e.g., food) or moving away from
others (e.g., poison). In our system, we have considered the
following adaptation of the chemotaxis. Let us consider an

agent 𝑖 moving on a Euclidean plane, located at position 󳨀→𝑃 𝑖𝑗
from an absolute reference axis, and moving along time in
sequential steps 𝑗. For every chemotactic step, a new position󳨀→𝑃 𝑖𝑗 is calculated based on the previous one, defined by 𝑥𝑖𝑗−1
and 𝑦𝑖𝑗−1, plus a step size 𝑑𝑖 applying a random direction 𝜃𝑖𝑗,
as specified in (1).

󳨀→𝑃 𝑖𝑗 = (𝑥
𝑖
𝑗−1𝑦𝑖𝑗−1) + (

𝑑𝑖 × cos (𝜃𝑖𝑗)𝑑𝑖 × sin (𝜃𝑖𝑗)) , (1)

𝜃𝑖𝑗 = {{{
𝜃𝑖𝑗−1 + 𝛼𝑖𝑗, 𝑝𝑖𝑗 ≥ 𝑝𝑖𝑗−1,
−𝜃𝑖𝑗−1 + 𝛽𝑖𝑗, 𝑝𝑖𝑗 < 𝑝𝑖𝑗−1. (2)

The direction 𝜃𝑖𝑗, as shown in (2), is calculated on the basis
of the concentration value of a certain chemical component,
sampled by an agent 𝑖 at step 𝑗: 𝑝𝑖𝑗. With respect to the pre-
viously sampled value 𝑝𝑖𝑗−1, the following two types of move-
ments are contemplated:Run andTumble. In the former, Run,
when the component concentration is increased with respect
to the previous sample, the movement continues to follow
the same direction as before (𝜃𝑖𝑗−1) plus a random angle 𝛼𝑖𝑗.
Regarding the latter, Tumble, when the concentration is
decreasing, the movement takes a turn in the opposite
direction −𝜃𝑖𝑗−1, plus a random angle 𝛽𝑖𝑗. Notice that both 𝛼𝑖𝑗
and 𝛽𝑖𝑗 are used to introduce variability and to maximize the
gradient, allowing reaching the most polluted areas faster.

3.2.2. Particle Swarm Optimization. Particle Swarm Opti-
mization (PSO) is a technique introduced in [42] where a
solution to a problem is represented as a particle 𝑝𝑖 moving
in a D-dimensional space at a time 𝑡; each particle 𝑝𝑖
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Figure 3: Overview of different states associated with the PdUC algorithm.

maintains its position 𝑝𝑖𝑡 and its best performance position𝑝𝑖𝑏. To determine the next position 𝑝𝑖𝑡+1, PSO calculates the
stochastic adjustment in the direction of the previous local
best position of 𝑖’s 𝑝𝑖𝑏 element, along with the general best
position of any element 𝑝𝑔

𝑏
, as shown in

𝑝𝑖𝑡+1 = 𝛼 ⋅ 𝑝𝑖𝑡 + 𝑈 (0, 𝛽) ⋅ (𝑝𝑖𝑏 − 𝑝𝑖𝑡) + 𝑈 (0, 𝛽)
⋅ (𝑝𝑔
𝑏
− 𝑝𝑖𝑡) , (3)

where 𝛼 and 𝛽 are constants to calibrate the algorithm and𝑈(0, 𝛽) is a random number between [0, 𝛽].
4. Proposed Autonomic Solution

To consistently drive the UAVs, so as to achieve the desired
area coverage goals, we have devised the following algorithm,
which incorporates a chemotactic approach.

4.1. PdUC Algorithm. In this context, we have developed
an algorithm called Pollution-driven UAV Control (PdUC),
based on the chemotaxis metaheuristic concept, to search an
area for the highest pollution concentration levels. Once this
pollution hotspot is found, the flying drone covers the whole
area by following a spiral movement, starting from the most
polluted location.

Our algorithm is composed of two phases: (i) a search
phase, in which the UAV searches for a globally maximum

pollution value, and (ii) an exploration phase, where the UAV
explores the surrounding area, following a spiral movement,
until one of the following conditions occurs: it covers the
whole area, the allowed flight time ends, or it finds another
maximum value, in which case it returns to the search phase,
as shown Figure 3.

The exploration phase is based mainly on two previously
described techniques: a chemotaxis metaheuristic and a
local particle swarm optimization algorithm. As detailed
in Algorithm 1, initially, before the UAV starts its first
movement, it samples the pollution value and puts it in a
buffer. For each chemotactic step, it starts to hover, collects
another sample, and compares it with the previous one. If the
sampling variation is positive (increasing), the UAV follows
a “Run” chemotaxis direction, with a random 𝛼𝑖𝑗 of [−30, 30]
degrees. Otherwise, if the sampling variation is decreasing,
the UAV calculates the “Tumble” chemotaxis direction in the
reverse orientation with a random 𝛽𝑖𝑗 of [−150, 150] degrees,
although modified by the actual maximum value reached
(𝑚𝑑𝑖), as shown in Figure 4. Equation (4) denotes the formula
to calculate the new direction, and 𝛾 specifies the weight of
the𝑚𝑑𝑖, which must be between 0 and 1.

To determine when PdUC has found a maximum local
value, we use a TTL (time-to-live) counter. When PdUC
finds a maximum value, the TTL is reset and increasing
until a new maximum pollution value is found or until the
maximumTTL value is reached. In this case, PdUC reverts to
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(1) while isSearching do
(2) 𝑝𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛2 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛(𝑝2)
(3) ∇𝑝𝑜𝑙𝑙 ← 𝑝𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛2 − 𝑝𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛1

(4) 𝑝1 ← 𝑝2
(5) if ∇𝑝𝑜𝑙𝑙 > 0 then
(6) 𝑡𝑡𝑙 ← 0
(7) 𝑝2 ← Run(𝑝1)
(8) 𝑝𝑚𝑎𝑥 ← 𝑝2
(9) else
(10) 𝑝2 ← 𝑇𝑢𝑚𝑏𝑙𝑒(𝑝1)
(11) 𝑡𝑡𝑙 ← 𝑡𝑡𝑙 + 1
(12) 𝑝2 ← 𝐴𝑑𝑗𝑢𝑠𝑡𝑃𝑆𝑂(𝑝2, 𝑝𝑚𝑎𝑥)
(13) if 𝑖𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐴𝑟𝑒𝑎(𝑝2) then
(14) 𝑀𝑜V𝑒𝑇𝑜(𝑝2)
(15) else
(16) 𝑝2 ← 𝑇𝑢𝑚𝑏𝑙𝑒(𝑝1)
(17) if 𝑡𝑡𝑙 > 𝑡𝑡𝑙𝑚𝑎𝑥 then
(18) 𝑖𝑠𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 ← 𝑓𝑎𝑙𝑠𝑒
(19) 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 ← 𝑡𝑟𝑢𝑒
(20) end

Algorithm 1: PdUC search phase.
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Figure 4: PdUC algorithm: calculation of a new direction.

the exploration phase since it considers that a localmaximum
value has been found.

𝜃𝑖𝑗 = {{{
𝜃𝑖𝑗−1 + 𝛼𝑖𝑗, Run,
(1 − 𝛾) (−𝜃𝑖𝑗−1 + 𝛽𝑖𝑗) + 𝛾𝑚𝑑𝑖, Tumble. (4)

Once a maximum value is reached, the next phase is to
explore the surrounding area. As shown in algorithm 2, this
is achieved by following an Archimedean spiral similar to
the one depicted in Figure 5. Starting from the maximum
value, it covers the surrounding area by applying a basic step
size 𝑑𝑖𝑗 and changing it depending on the detected pollution
variations, a procedure that is similar to the 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 phase.
If the variation is less than a preset value 𝑐𝑖, the step size
increases until reaching 3 × 𝑑𝑖𝑗; otherwise, it decreases until𝑑𝑖𝑗 is reached. If a maximum pollution value is found, PdUC
automatically returns to the exploration phase. Finally, once

d1

dn

d2
d3

r1 r2 rm

R1
R2

Figure 5: PdUC algorithm: exploration phase.

thewhole area is covered, theUAVchanges to a return-to-base
(RTB) mode to finish the exploration.

4.2. Algorithm Optimization. Next, analyzing the overall
behavior, we have introduced somemodifications to optimize
the performance of the proposed PdUC algorithm.

4.2.1. Spiralling with Alternating Directions. As shown in
Figure 6, to avoid large steps in the exploration phase when
the spiral center is next to a border, the direction of the spiral
will alternate for each round to allow minimizing the length
of some of the steps. To this purpose, for each spiral round,
we calculate the direction adopted as being the opposite
direction with reference to the previously used one. The
system can get the general size of the area to search, as well as
its borders, before starting the mission. This procedure takes
place in line 4 of Algorithm 2. In detail, it follows

𝜃𝑠,𝑟 = {{{
𝛼 + 𝛽𝑠,𝑐, if 𝑟 is even,
𝛼 − 𝛽𝑠,𝑐, if 𝑟 is odd,

𝑝𝑠,𝑟 = (𝑥𝑠𝑦𝑠) = (
𝑥𝑐 + 𝑅𝑠 × cos (𝜃𝑠,𝑟)𝑦𝑐 + 𝑅𝑠 × sin (𝜃𝑠,𝑟)) ,

(5)

where 𝜃𝑠,𝑟 defines the angle in round 𝑟 and step 𝑠, 𝛼 is the
initial angle, and 𝛽𝑠 is the angle in step 𝑠. Using it, angle 𝜃𝑠,𝑟
and the next point 𝑝𝑠 are calculated using as a reference the
coordinates for the spiral center (𝑥𝑐 and 𝑦𝑐) and radius 𝑅𝑠.
4.2.2. Skipping Previously Monitored Areas. As shown in
Figure 7, to avoidmonitoring the same areamultiple times, all
samples, which were taken within the area monitored during
the exploration phase, are internally stored. For this purpose,
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(1) while isExploring do
(2) 𝑟𝑜𝑢𝑛𝑑 ← 𝑟𝑜𝑢𝑛𝑑 + 1
(3) 𝑟𝑜𝑢𝑛𝑑𝑠𝑖𝑧𝑒 ← 2𝜋 ⋅ (𝑟𝑜𝑢𝑛𝑑 + 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑥𝑡)/2
(4) 𝑟𝑜𝑢𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← −𝑝𝑟𝑒V𝑖𝑜𝑢𝑠𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
(5) 𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑢𝑛𝑡 ← 2𝜋/(𝑟𝑜𝑢𝑛𝑑𝑠𝑖𝑧𝑒/𝑑)
(6) 𝑠𝑡𝑒𝑝 ← 0
(7) 𝑎𝑛𝑔𝑙𝑒 ← 0
(8) while 𝑠𝑡𝑒𝑝 < 𝑟𝑜𝑢𝑛𝑑𝑠𝑖𝑧𝑒 and 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 do
(9) if 𝑖𝑠𝐼𝑛𝑠𝑖𝑑𝑒𝐴𝑟𝑒𝑎(𝑝2) and 𝑖𝑠𝑁𝑜𝑡𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑒𝑑(𝑝2) then
(10) 𝑝𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛2 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛(𝑝2)
(11) if 𝑝2 > 𝑝𝑚𝑎𝑥 then
(12) 𝑠𝑡𝑜𝑟𝑒(𝑝𝑚𝑎𝑥)
(13) 𝑠𝑡𝑜𝑟𝑒(𝑟𝑜𝑢𝑛𝑑)
(14) 𝑖𝑠𝐸𝑥𝑝𝑙𝑜𝑟𝑖𝑛𝑔 = 𝑓𝑎𝑙𝑠𝑒
(15) 𝑖𝑠𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒
(16) 𝑝𝑚𝑎𝑥 = 𝑝2
(17) else
(18) ∇𝑝𝑜𝑙𝑙 ← 𝑝2𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑝1𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛
(19) 𝑀𝑜V𝑒𝑇𝑜(𝑝2)
(20) 𝑠𝑡𝑒𝑝 ← 𝑠𝑡𝑒𝑝 + 𝑑
(21) 𝑎𝑛𝑔𝑙𝑒 ← 𝑎𝑛𝑔𝑙𝑒 + 𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑢𝑛𝑡 × 𝑟𝑜𝑢𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
(22) 𝑝1 ← 𝑝2
(23) 𝑝2 ← 𝑁𝑒𝑥𝑡𝑃𝑜𝑖𝑛𝑡(𝑝1, 𝑎𝑛𝑔𝑙𝑒, 𝑠𝑡𝑒𝑝)
(24) 𝑝𝑟𝑒V𝑖𝑜𝑢𝑠𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑟𝑜𝑢𝑛𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
(25) end

Algorithm 2: PdUC exploration phase.
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d2d3

r1r2rm

Figure 6: PdUC algorithm: alternating spiral direction.

PdUC maintains a list containing the location of the central
position of all spirals with their respective radius to determine
the monitored areas (as a circumference determined by a
center and a radius). Next, in the exploration phase, all points
inside these circles are omitted for the sake of celerity, as
shown in line 9 of Algorithm 2.

Previously
monitored
area

Previous 
maximum

Actual 
maximum

d1

dn

d2d3

r1r2rm

Figure 7: PdUC algorithm: skipping monitored areas.

5. Validation and Simulation

To validate our protocol, we have run several simulations
with different configurations implemented in the OMNeT++
simulation tool, as shown in Figure 8.

To prepare a suitable data environment, we have created
various pollution distributionmaps representing ozone levels
to be used as inputs for testing. These pollution maps were
generated using the R Graph tool [43] and following a
Kriging-based interpolation [44]. In particular, a Gaussian
distribution is used to adjust the parameters coming from
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Figure 8: Example simulation scenario showing possible initial UAV positions over a randomly generated pollution map.

random data sources of ozone concentration. The actual
values range between 40 and 180 ppb, thereby providing a
realistic ozone distribution.

Figure 9 shows some samples of the created maps,
which have the highest pollution concentration (areas in red)
located at completely different positions due to the stochastic
scenario generation procedure adopted.

Using the previously created data as input, we have
run several simulations using OMNeT++, comparing our
protocol against both the Billiard and Spiral mobility pat-
terns. In the simulator, we have created a mobility model

implementation of PdUC. In addition, to simulate the sam-
pling process, we have configured OMNeT++ to periodically
performmeasurements taken from the pollution distribution
map defined for the test.

Figure 10 shows an example of the path followed by an
UAV using the PdUC algorithm as a guidance system. As
expected, the UAV starts a search process throughout the
scenario until it locates a position with the highest degree
of pollution (local maximum). Afterward, it follows a spiral
pattern to gain awareness of the surrounding gradients. If,
while following the spiral-shaped scan path, it finds a higher



Journal of Advanced Transportation 9

1000

2000

3000

2000 30001000

40

60

80

100

120

140

160

(a)

1000

2000

3000

2000 30001000

40

60

80

100

120

140

160

(b)

1000

2000

3000

2000 30001000

40

60

80

100

120

140

160

(c)

1000

2000

3000

2000 30001000

40

60

80

100

120

140

160

(d)

Figure 9: Pollution distribution examples used for validation.

Start

End

Figure 10: Example of an UAV path when adopting the PdUC
mobility model.

pollution value, the algorithm again switches to the search
phase. Finally, when the entire target area has been sampled,
the algorithm finishes.

Table 1: Simulation parameters.

Parameter Value
Area 4 × 4Km
Pollution range [40–180] ppb
Sampling error 10 ppb
Max. speed 20m/s
Sampling time 4 seconds
Step distance 100m
Mobility models Billiard, Spiral, and PdUC

To compare the three options under study, we recreate,
using the R Graph tool, the pollution distributionmaps using
the simulation output as the input for the Kriging-based
interpolation. In this way, we obtain new pollution maps for
comparison against the ones used as reference.

Table 1 summarizes the parameters used in the simula-
tions.

Since we are proposing the PdUC algorithm for rural
environments, the simulation area defined is a 4 × 4Km
area. As indicated above, the pollution distribution relies on
synthetic maps that are generated by combining a random
Kriging interpolation following aGaussianmodel with values
between 40 and 180 units based on the Air Quality Index
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Figure 11: Cumulative Distribution Function of the time spent
at covering the complete area for the Billiard, Spiral, and PdUC
mobility models.

(AQI) [45]. Since samples are taken using off-the-shelf sen-
sors, which are not precise, we introduce a random sampling
error of ±10 ppb based on real tests using theMQ131 (Ozone)
sensor. In our simulation, we set the maximum UAV speed
to 20m/s, a value achievable by many commercial UAVs.
The step distance defined between consecutive samples is
100 meters. Once a new sampling location is reached, the
monitoring time per sample is defined to be 4 seconds.

The mobility models used are Billiard, Spiral, and PdUC.
Thesemodels have different assumptions regarding the initial
UAV position. In the Billiard model, the UAV starts in a
corner of the target area and then covers the whole area
by “bouncing” when reaching the borders. The Spiral model
starts at the center of the area to cover and then gradually
moves to the periphery of the scenario following a spiral
pattern. Finally, PdUC is set to start at a random position
within the target area.

We now proceed by analyzing the time required to cover
the entire area using each of the approaches being tested.
For this purpose, we defined 100 simulations for each model
(Billiard, Spiral, and PdUC) and determined the required
time to cover the whole area, estimating the pollution map
afterward.

For each run, the starting position of theUAV is randomly
set on the map, as shown in Figure 8.

Figure 11 shows the Cumulative Distribution Function
relative to the time required to cover the whole area for the
three mobility models. It can be seen that the Billiard and
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Figure 12: Relative error comparison between the PdUC, Billiard,
and Spiral mobility models at different times, when analyzing all the
values.

Spiral models do not depend on the start position, spending
a nearly constant time (5600 and 2600 seconds, resp.) for
each configuration defined. In the case of the PdUCmobility
model, since it reacts to air pollution, the time required
to cover the complete area varies between 1800 and 4300
seconds, depending on the start position.

Due to battery restrictions, it is interesting to analyze how
fast each mobility model discovers the most polluted areas
and how accurately does it recreate the pollution distribution.
For this purpose, we analyze the relative error for the three
mobility models at different time instants (600, 1200, 1800,
2400, 3000, and 6000 seconds); this error is defined by

𝑒𝑡 = ∑
𝑚
𝑖=1∑𝑛𝑗=1 󵄨󵄨󵄨󵄨󵄨(𝑠𝑥,𝑦,𝑡 − 𝑏𝑥,𝑦) /Δ𝑏󵄨󵄨󵄨󵄨󵄨𝑚 ⋅ 𝑛 , (6)

where 𝑒𝑡 is the relative error at time 𝑡; 𝑠𝑥,𝑦,𝑡 is the recreated
pollution value at position (𝑥, 𝑦) using the samples taken
during simulation until time 𝑡, 𝑏𝑥,𝑦 is the reference pollution
value at position (𝑥, 𝑦), and 𝑛 and 𝑚 are the dimensions of
the target area, respectively.

Figure 12 shows the temporal evolution of the relative
error between the three mobility models (Billiard, Spiral, and
PdUC) and the original one. We can observe that all mobility
models have roughly the same behavior: they start with a
high relative error, which is foreseeable since we are using
Kriging interpolation to recreate the pollution distribution,
and it tends to the mean value when the number of samples
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Figure 13: Relative error comparison between PdUC, Billiard, and
Spiral mobility models at different times when only considering
values higher than 120 ppb.

is not enough. Then, as more samples become available, the
spatial interpolation process quickly becomes more precise.

Although the three mobility models are similar, the
spiral approach achieves a better performance in terms of
relative error reduction. However, if we analyze only the
most polluted regions, that is, regions characterized by values
higher than a certain threshold (120 and 150 ppm in our case,
based onAQI [45]), we find that PdUC clearly provides better
results.

Figures 13 and 14 show the comparison between the
Billiard, Spiral, and PdUC mobility models at different
times when only focusing on air pollution values higher
than 120 and 150 ppb, respectively. These results show that
PdUC clearly provides better results than the Billiard and
Spiral movement patterns, outperforming their accuracy
from nearly the beginning of the experiment (1200 seconds)
and reaching the lowest relative error values in just 3600
seconds, with these two othermobility approachesmore than
doubling the error values for the same time. In particular,
the Billiard mobility pattern requires about 6000 seconds to
achieve a similar degree of accuracy (120 ppb case), while
the Spiral approach is not able to achieve values as low as
PdUC in any of the cases. This occurs because PdUC focuses
on the highest values in the chemotaxis-based phase. PdUC
always prioritizes the most polluted areas in detriment of less
polluted ones, thus allowing obtaining, at least, details about
the region with the highest pollution values.
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Figure 14: Relative error comparison between PdUC, Billiard, and
Spiral mobility models at different times when only considering
values higher than 150 ppb.

To complete our study, Figure 15 presents an example
of the evolution of predicted pollution values for the whole
target area and for the three algorithms under analysis (Spiral,
Billiard, and PdUC), at different times (1200 s, 2400 s, 3600 s,
and 6000 s). We can observe that PdUC is able to quickly
find the most polluted areas, while the effectiveness of other
approaches highly depends on the actual location of pollution
hotspots in order to detect them at an early stage.

6. Open Issues

Unmanned Aerial Systems (UAS) have been quickly adopted
in different application areas due to their flexibility and rel-
atively low cost. Focusing on the environmental monitoring
area, in a previousworkwe introduced the idea of usingUAVs
for air pollutionmonitoring [46] by equipping themwith off-
the-shelf sensors. Instead, in the current paper, we introduce
an algorithm called PdUC to guide a single UAV in the task
of monitoring a specific area. However, there are still several
open issues related to this topic.

Until now, we have only considered operations limited to
a single UAV. The next step in our research is to introduce
multiple-UAVs and the associated cooperation schemes. The
following aspects need to be addressed to follow this research
line:

(i) Cooperation. To maximize the effectiveness and
reduce mapping times, it is advisable to have several
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(b.3) Spiral 3600 s (d.3) PdUC 3600 s(c.3) Billiard 3600 s

(b.4) Spiral 6000 s (d.4) PdUC 6000 s(c.4) Billiard 6000 s
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Figure 15: Visual representation of the estimation output for the PdUC, Billiard, and Spiral mobility models at different times.

UAVs that cooperate with each other to achieve the
same task, thereby accelerating the whole process and
avoiding battery exhaustion before completing the
monitoring process.

(ii) Collision Avoidance. Since the different UAVs are
expected to have some degree of autonomy regarding
theirmobility pattern, a correct coordination between
nearby UAVs is required to avoid collisions when
flying at a close range.

(iii) Communications. To achieve the aforementioned
goals of cooperation and collision avoidance, com-
munications between UAVs and between UAVs and
a central management unit are required.

On the other hand, using mobile sensors installed on
UAVs introduces new issues to the sensing process that
should also be addressed:

(i) Altitude. Despite the fact that currently most pol-
lution studies are made at a ground level, the use
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of UAVs allows determining the concentration of
pollutants at different heights, allowing determining
if there are layers of pollutants that can cause health
problems in rugged mountainsides.

(ii) Influence of the Wind. The sampling procedure
includes sensors that are sensitive to the wind con-
ditions. In addition, wind causes the overall pollution
map to be more dynamic. In this context, both issues
deserve more scrutiny.

7. Conclusions

Despite the fact that we have several options to monitor air
pollution in urban scenarios, being crowdsensing an emerg-
ing approach arousing great interest, finding an adequate
approach for industrial or rural areas remains a pending task.

Recently, Unmanned Aerial Systems have experienced
unprecedented growth, offering a platform for the fast devel-
opment of solutions due to their flexibility and relatively low
cost; in fact, they can be good options to solve the previous
requirements, allowing monitoring remote areas that are
difficult to access.

In this paper, we propose a solution where we equip an
UAV with off-the-shelf sensors for monitoring tasks, using a
Pixhawk Autopilot for UAV control, and a Raspberry Pi for
sensing and storing environmental pollution data.

To automatically analyze pollution values within a target
area, we also propose an adaptive algorithm for autonomous
navigation called Pollution-based UAV Control system
(PdUC). This algorithm allows an UAV to autonomously
monitor a specific area by prioritizing the most polluted
zones. In particular, PdUC combines different concepts
including a chemotaxis metaheuristic, a local particle swarm
optimization (PSO), and an Adaptive Spiralling technique, to
create an algorithm able to quickly search for hotspots having
high pollution values, and to cover the surrounding area as
well, thereby obtaining a complete and detailed pollutionmap
of the target region.

To validate our proposal, we compared the proposed
PdUC solution against the Billiard and Spiralmobilitymodels
through simulations implemented in OMNeT++. Simulation
experiments show that PdUC offers significantly better per-
formance at reducing prediction errors, especially regarding
the accuracy achieved for the high-values range.
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