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Abstract

Breast cancer is currently the leading cause of death due to cancer in women, after lung cancer.
For its diagnosis and staging, detection of metastatic tissue in axillary lymph nodes is occa-
sionally used, since lymphatic spread is the main prognostic factor, especially in early stages.
However, the pathologist’s work in this diagnosis is considerably complex and tedious, so the need
to automate this process arises. In the present work, we propose models based on Convolutional
Neural Networks for the identification of metastasis in sections of axillary lymph nodes stained
in H&E. Models developed from scratch and models based on fine-tuning of pre-trained networks
are exposed, some of them with performances good enough for their application in the clinical
reality of hospitals. In addition, these state-of-the-art techniques are compared to others based
on traditional machine learning feature extractors and classifiers, identifying the advantages and
disadvantages of each approach. Finally, a Grad-CAM study is carried out that serves as a tool
for the comprehension of deep learning, since it allows the pathologist to visualize the activations
of the proposed networks.

Keywords: machine learning, deep learning, convolutional neural network, breast cancer diag-
nosis, axillary lymph node, medical imaging, computer vision, fine-tuning, Grad-CAM

iii





Resumen

El cáncer de mama se impone en la actualidad como la principal causa de muerte por cáncer
en mujeres, después del cáncer de pulmón. Para su diagnóstico y estadificación, en ocasiones se
recurre a la detección de tejido metastásico en ganglios linfáticos axilares, ya que la diseminación
linfática es el principal factor pronóstico, sobre todo en estadíos iniciales. Sin embargo, la labor
del patólogo en este diagnóstico es considerablemente compleja y tediosa, por lo que nace la
necesidad de automatizar este proceso. En el presente trabajo, se proponen modelos basados en
Redes Neuronales Convolucionales para la identificación de metástasis en secciones de ganglios
linfáticos axilares tintados en H&E. Se exponen modelos de redes diseñadas específicamente para
este objetivo y modelos basados en ajuste fino de redes pre-entrenadas, algunos de ellos con
rendimientos suficientemente buenos para su aplicación en la realidad clínica de los hospitales.
Además, se comparan estas técnicas de vanguardia con otras basadas en extractores de carac-
terísticas y clasificadores tradicionales de aprendizaje automático, identificando las ventajas y
desventajas de cada planteamiento. Finalmente, se realiza un estudio Grad-CAM que sirve como
herramienta para la comprensión del aprendizaje profundo, ya que permite al patólogo la visu-
alización de las activaciones de las redes propuestas.

Palabras clave: aprendizaje automático, aprendizaje profundo, red neuronal convolucional,
diagnóstico de cáncer de mama, ganglio linfático axilar, imagen médica, visión artificial, ajuste
fino, Grad-CAM
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Resum

El càncer de mama s’imposa en l’actualitat com la principal causa de mort per càncer en dones,
després del càncer de pulmó. Per al seu diagnòstic i estadificació, a vegades es recorre a la detecció
de teixit metastàtic en ganglis limfàtics axil·lars, ja que la disseminació limfàtica és el principal
factor pronòstic, sobretot en estadis inicials. No obstant això, la labor del patòleg en aquest diag-
nòstic és considerablement complexa i tediosa, pel que naix la necessitat d’automatitzar aquest
procés. En el present treball, es proposen models basats en Xarxes Neuronals Convolucionals per
a la identificació de metàstasi en seccions de ganglis limfàtics axil·lars tintats en H&E. S’exposen
models de xarxes dissenyades específicament per a aquest objectiu i models basats en ajust fi
de xarxes pre-entrenades, alguns d’ells amb rendiments prou bons per a la seua aplicació en
la realitat clínica dels hospitals. A més, es comparen estes tècniques d’avantguarda amb altres
basades en extractors de característiques i classificadors tradicionals d’aprenentatge automàtic,
identificant els avantatges i desavantatges de cada plantejament. Finalment, es realitza un estudi
Grad-CAM que serveix com a eina per a la comprensió de l’aprenentatge profund, ja que permet
al patòleg la visualització de les activacions de les xarxes proposades.

Paraules clau: aprenentatge automàtic, aprenentatge profund, xarxa neuronal convolucional,
diagnòstic de càncer de mama, gangli limfàtic axil·lar, imatge mèdica, visió artificial, ajust fi,
Grad-CAM
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Chapter 1

Introduction

Human intelligence is our ability to reason, solve problems, understand complex ideas, and
abstract concepts and learn from our experiences. Intelligence is not limited to an encyclopedic
knowledge but includes a deep capacity to understand the environment and to learn from it.

The ambition to create machines capable of emulating human intelligence has been a constant
from the mid-twentieth century until today. However, there is a name with which most of the
scientific community agrees when it comes to finding the origin: Alan Turing (1912-1954). His
well-known publication Computer Machinery and intelligence [91] begins the revolution that
artificial intelligence represents today.

Throughout the 1950s machine learning was born as an artificial intelligence application. The
principle of it is to design algorithms capable of learning from experience, capable of automating
tasks and, in fact, learning from their mistakes and perfecting themselves. Proof of this are
the pioneering works of Frank Rosenblatt in the design of the Perceptron in 1958 [70] or the
sophisticated models present today, some used in this work.

It is not surprising, therefore, that the applications of machine learning have reached something
as sensitive as the medical image. The potential of a machine learning algorithm to learn and to
rival with expert pathologists is of particular interest to the scientific community. The medical
image is part of a machine learning application known as Computer Vision, which aims to
design algorithms capable of emulating the behavior of a human eye, being able to classify images
based on criteria such as color, shapes or textures. Furthermore, medical image classification
is usually a supervised learning problem, in which the algorithm is taught with previously
classified images, so that it is capable, once it has learned, of classifying unknown (unclassified)
images on its own.

Today the most widespread technique in medical imaging are Convolutional Neural Net-
works (CNNs), introduced in 1998 by LeCun et al. in their revolutionary paper Gradient-based
learning applied to document recognition [53]. CNNs fall within a machine learning discipline
known as deep learning. They have benefited greatly from the advancement in image ac-
quisition devices and the storage of information in large databases, as well as the increase in
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Chapter 1. Introduction

computational resources and the GPU-acceleration. In short, they have superseded the tradi-
tional machine learning techniques, such as k-Nearest Neighbors or Support Vector Machines,
whose main problem resided in the extraction of relevant features, since they usually required
extensive knowledge of the problem and sophisticated feature engineering. CNNs are a promis-
ing alternative to all machine learning algorithms developed so far, with potential application to
virtually any Computer Vision problem, achieving state-of-the-art results.

1.1 Motivation

This thesis was presented by Javier Abad Martínez as a final project of the degree in Telecom-
munication Technologies and Services Engineering in July 2020 and was linked to a grant from
the Spanish Ministry of Education and Professional Training that same year.

This document develops a CNN-based model to detect metastatic tissue in sections of axillary
lymph nodes removed from patients with breast cancer. Breast cancer is the most common cancer
in women and the main cause of death due to cancer after lung cancer. A popular technique
to diagnose breast cancer and its stage is by detecting metastases in the axillary lymph nodes,
since lymphatic spread is the main prognostic factor.

In this context, this thesis finds its motivation in looking for a deep learning model capable of
helping pathologists in the diagnosis of breast cancer, specifically in its staging, and being able
to define a treatment accordingly.

Furthermore, this document was developed in parallel with another thesis by the same author
entitled A comparison of machine learning models for the detection of metastatic tissue in axillary
lymph nodes [1] in which a benchmark of models based on hand-crafted learning techniques,
known for several decades, is developed. Furthermore, [1] aims to demonstrate that some of
these techniques may be more convenient than cutting-edge ones, such as CNNs. Therefore, this
document has a second motivation: to compare the proposals of traditional models used in [1]
with solutions based on Convolutional Neural Networks. The conclusions can be interesting to
start a line of research on which methods are better depending on the circumstances, reaching
maximum importance in something as sensitive as the diagnosis of breast cancer.

1.2 Summary of the methodology followed

For the preparation of this work, a methodology was followed that occupied most of the academic
year 2019-2020, that is, from September 2019 to July 2020.

The methodology followed can be summarized in four parts. First, an introduction to artificial
intelligence, deep learning, and the Python programming language. Next, it was necessary to
delve into the deep learning technique used – the Convolutional Neural Networks –, as well as to
become familiar with the biological background and to do a bibliographic review on how similar
problems had been approached. Once the problem and its possible approaches were known, in a
third phase different solutions were proposed, some based on models designed from scratch and
others on more specialized techniques such as fine-tuning. Finally, this document was written
and revised.

2



Chapter 1. Introduction

In short, the four parts of the methodology followed are:

1. Preliminary work:

• Introduction to artificial intelligence, machine learning and deep learning. Specialized
bibliography was succinctly reviewed.

• Introduction to the Python programming language. Through courses from the Cours-
era platform, the author became familiar with the handling of variables and structures
in Python, for example, the generation of loops, conditionals or methods. This was
decisive, since all the proposed models are based on this language. It has to be noted
that Python programming was not given to the author during his degree.

2. Methodological development:

• Study of the biological background of the problem. The author studied about breast
cancer and its classification based on lymphatic spread. In addition, the importance
of the axillary lymph node in this diagnosis was studied in depth.

• In-depth bibliographic review of the state-of-the-art in the classification of medical
images. Several models based on deep learning and, more specifically, on Convolutional
Neural Networks were studied.

• Completion of specialized courses in image classification using CNNs in Python. Specif-
ically, a 40-hour classroom course was attended organized by the Computer Vision and
Behavior Analysis Lab (CVBLab). CVBLab is a research group that belongs to the
Universidad Politécnica de Valencia specialized in signal, image and video processing,
as well as in data science and the creation of automatic prediction models.

3. Proposal and selection of models:

• Characterization of the database. The origin of the database was studied and a set
of non-useful images was discarded. Furthermore, its distribution and characteristics
were analyzed in order to develop suitable models.

• Design of the models from scratch. Over thirty different models were developed, incor-
porating increasingly sophisticated techniques and modules. Finally, of all the designs,
three were chosen based on their classification capacity and for didactic reasons, se-
lecting those that best reflected the fulfilment of the objectives of the thesis.

• Design of the models based on fine-tuning. Based on the bibliographic review, those
pre-trained architectures that were considered most appropriate for our problem were
chosen, based on criteria of simplicity, popularity, suitability and classification capacity.
Specifically, six models were selected.

• Study of specialized metrics in machine learning and their use in comparing the pro-
posed models.

4. Writing and revision of the thesis.
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1.3 Structure of the thesis

This section summarizes the structure of the thesis. This is also reflected in the content index.

Chapter 1 is the introduction to the work. The first part (Sections 1.1, 1.2 and 1.3) serves as a
preface, defining some of the concepts that will appear recurrently in the document, as well as
a declaration of intent, exposing the motivation of the work, and some considerations, such as
the methodology followed. Section 1.4 summarizes the objectives of the present work, separating
the general ones from those related to sustainable development. Next, Section 1.5 is a review
of the state-of-the-art in the classification of histopathological images. Supported by several
references, the section succinctly comments on cutting-edge techniques in this discipline, which
serve as an example for the present work. Finally, Section 1.6 studies the biological background
of the problem. Therefore, it defines breast cancer, how it is classified and the importance of
its diagnosis. Next, the importance of detection techniques for lymph node metastases to treat
breast cancer is highlighted, as is the one in this study.

Chapter 2 develops in depth the theoretical framework of the proposed models. It introduces
deep learning through Artificial Neural Networks, specifically with the well-known multilayer
perceptron. The characteristics and functioning of the model used are then detailed: Convolu-
tional Neural Networks. The chapter explains its composition and some techniques used to create
more sophisticated networks that will ultimately result in better classifiers. Finally, fine-tuning is
explained as a powerful technique to obtain excellent results in practically any Computer Vision
problem.

Chapter 3 defines the methodology followed. Firstly, the database used, the materials and the
metrics with which the models are evaluated are explained. All the proposed models are explained
in detail below.

Chapter 4 summarizes the results obtained. It separates those obtained with the models from
scratch and those that use fine-tuning. Furthermore, Grad-CAM is presented as a technique
to validate the correct functioning of the proposed models, visualizing the activations in the
classifications of some of the histopathological images from our database.

Chapter 5 covers the discussion of the results. Therefore, it analyzes the values obtained in
Chapter 4. In addition, there is a specific section where it compares the performance of the
system proposed in this document with that proposed in [1] based on traditional machine learn-
ing algorithms. Finally, Section 5.3 explains the limitations of the work, that is, the biases,
assumptions, and simplifications.

Finally, Chapter 6 summarizes the conclusions and describes the potential future work to improve
the present model.
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1.4 Objectives

1.4.1 General objectives

This section presents the general objectives of the work. These serve as a guide and are directly
related to the conclusions stated in Section 6.1. The objectives are as follows:

• Study the importance of lymphatic spread as the main prognostic factor in the diagnosis
and staging of breast cancer, especially in early stages. Along these same lines, understand
the biological background and the usefulness of detecting metastatic tissue in axillary lymph
nodes for this diagnosis.

• Develop a model based on Convolutional Neural Networks capable of detecting metastatic
tissue in patches of axillary lymph node sections stained with H&E (haematoxylin-eosin).

• Experiment with techniques of different levels of sophistication in creating models from
scratch to later analyze their classification capacity. In this sense, demonstrate that the in-
corporation of these techniques improves the applicability of the models and their suitability
in hospitals.

• Use fine-tuning in the creation of models based on pre-trained architectures. Demonstrate
the usefulness of this technique and its applicability in virtually any Computer Vision
problem.

• Compare cutting-edge techniques with others based on traditional machine learning, such as
k-Nearest Neighbors (k-NN), Support Vector Machines (SVM) and Random Forest. Define
the advantages and disadvantages of each and the suitability of each solution depending on
the problem and the context.

• Provide a tool that facilitates the understandability of deep learning and its applicability
in medical imaging. Specifically, implement a technique that allows network validation by
expert pathologists, so that they can verify the coherency of the identified patterns.

1.4.2 Sustainable development objectives

Furthermore, it is relevant to highlight objectives directly related to sustainable development.
Since the present project aspires to have a real application, it is necessary to establish objectives
that favor the environment, the economy, and society. The objectives are:

• Favor the diagnosis and treatment of breast cancer, facilitating these functions for the
pathologist thanks to the direct integration of the techniques presented in this document
in hospitals.

• Analyze the computational cost and, consequently, the carbon footprint linked to machine
learning techniques. Evaluate and compare different models that can benefit from GPU-
acceleration to reduce this cost and environmental impact.

• Democratize the technology developed in this thesis and stimulate the creation of projects
along the same lines, with direct implementation and the ability to help in settings and
problems as sensitive as the diagnosis of breast cancer.
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1.5 State-of-the-art review

The application of machine learning techniques to Computer Vision has brought about a real
revolution in object detection, classification and segmentation problems. Therefore, it is not
surprising that machine learning models have been applied to extremely sensitive fields, such
is the case of medical imaging. Medical image comprises the set of procedures used to obtain
clinically meaningful information in order to define early diagnoses and prognoses in patients.
In this context, an effort has been made in recent years to integrate the human knowledge
of medical experts with machine learning techniques. This symbiosis has achieved state-of-
the-art performance in the field of medical imaging techniques, such is the case of positron
emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI)
mammography, X-ray and ultrasound [18].

The accumulation of histopathological images has gone hand in hand with an increasing need
for computer-assisted diagnosis techniques based on machine learning. However, meaningful fea-
ture extraction engineering, capable of describing the images, is considerably complex, requiring
extensive subject matter knowledge. For this reason, the incorporation of deep learning [52]
techniques represents a real revolution in the field of medical imaging, obtaining state-of-the-art
results in pathological image analysis and outperforming in many applications other machine
learning techniques that use feature extractors based on hand-crafted learning and traditional
classifiers such as k-Nearest Neighbors, Support Vector Machines or Random Forest. Deep
learning incorporates feature engineering into its learning process, so there is no need for manual
feature extraction, and aims to solve virtually any classification problem [6].

Deep learning is extremely convenient when the number of images available is very large, however
this is not usually possible in medical imaging, where the data collection process is tedious and
complex. Faced with this challenge, various strategies have been developed, such as dividing the
whole histopathological images (whole slide image (WSI) [64]) into two-dimensional or three-
dimensional patches [87] [13] [71] [81]; expanding the dataset by generating synthetic images via
affine transformations, such as data augmentation [13] [71] [81] [80]; or the use of transfer learn-
ing and fine-tuning, inheriting pre-trained models with previously optimized parameters [83].
Furthermore, the use of these techniques has been greatly benefited from advances in high-tech
Central Processing Units (CPUs) and Graphics Processing Units (GPUs), and the development
of increasingly sophisticated techniques and models [32] [38] [60] [86]. The integration of these
techniques has materialized in increasingly refined proposals, with better results in the classifi-
cation of histopathological images. Specifically, the Convolutional Neural Networks (CNNs) are
the ones that have had a greater role in this field, repeatedly demonstrating their applicabil-
ity and suitability in the clinical environment of hospitals and medical research [62] [19] [101].
In any case, it is relevant to highlight the usefulness of other models such as Deep Generative
Models [76] – including Deep Boltzmann Machines (DBMs) and Deep Belief Networks (DBNs)
– whose results are widely contrasted in the literature, for example, in cell segmentation [24],
brain disease diagnosis [59] and tissue classification [92].

A specific and recurring application of these technologies is the detection, classification and
staging of breast cancer. The usefulness of deep learning has been widely demonstrated, for
example, in the diagnosis of breast cancer using histopathological images of axillary lymph nodes,
in fact, equaling and outperforming expert pathologists, according to several studies [5] [56] [3].
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Specifically, CNNs are the technique that stands out in this diagnosis, with state-of-the-art
results.

However, it is relevant to underline that CNNs cannot be considered the panacea of all medical
imaging problems. There are several examples where traditional methods, such as k-Nearest
Neighbors or Support Vector Machines, obtain better results than deep learning techniques [65].
In addition, there are several criticisms that CNNs receive, based on their high computational
cost, their tendency to overfit and their instability, which cast doubt on their real usefulness [2].
In addition, another criticism of CNNs is the difficulty of understanding their decision-making
process, presenting themselves on most occasions as black-boxes. This problem has been tried to
solve, for example, by visualizing the responses of neural networks in their classification process
[77] [102] or by using influence functions [45].

1.6 Biological background

1.6.1 Breast cancer

Breast cancer originates from the uncontrolled proliferation of healthy breast cells, which begin
to mutate and form a conglomerate of cells known as a tumor. If the tumor is cancerous, it
will be a malignant tumor. Malignant tumors can grow and spread throughout the body, unlike
benign tumors, which can grow, but not spread. The spread of cancer through the body through
the blood or lymph vessels is called metastasis [10].

The diagnosis of breast cancer in women is more common than that of any other type of cancer,
including skin cancer. In addition, it is the second most common reason for death from cancer in
women, after lung cancer. According to the American Cancer Society, it is estimated that in 2020
more than 276,480 women will be diagnosed with invasive breast cancer in the United States and
will produce a total of 42,170 deaths of women in this same country. Currently, there are more
than 3 million women who have been diagnosed with this disease throughout the United States.
Finally, the average risk that a woman will develop cancer in the United States throughout her
life is around 13%, that is, 1 in 8 women will develop this disease [12].

There are several ways to classify breast cancer. In this work, the so-called staging is the used
method, particularly the TNM staging system. TNM is based on the size of the tumor (T); if it
has spread through the lymph nodes (N) and, if so, where and how much; and if it has spread to
other parts of the body (M), that is, if it has metastasized. Under the TNM indicator, the patient
is identified with one of the five different stages, which cover the development of the cancer from
the moment the cell becomes carcinogenic (stage 0) to an advanced stage or metastasis where
the cancer has spread throughout the rest of the body (stage 4) [10].

7



Chapter 1. Introduction

1.6.2 Lymphatic dissemination in breast cancer

The "N" in the TNM indicator corresponds to lymphatic spread. It is relevant to differentiate
here between regional and distant lymph nodes. Regionals can be located under the arm (known
as axillary lymph nodes), above and below the clavicle, or below the sternum (known as internal
mammary lymph nodes). Rather, distant lymph nodes will be located in the rest of the body.
Therefore, it is expected that a breast cancer in a lower stage will be present only through
regional lymph nodes, reaching the distant ones as the disease progresses.

The spread of cancer by lymph nodes is the most relevant prognostic factor in the initial stages,
above the size of the tumor (T) and whether it metastasizes (M). Thus, it is a definitive indicator
when diagnosing, classifying, and defining the treatment of a patient with breast cancer [10].

Finally, there is a popular form of diagnosis of breast cancer called sentinel lymph node biopsy
(SLNB). The sentinel lymph node is the one to which cancer cells are most likely to spread
from the primary tumor. In the case of breast cancer, this is usually the axillary lymph node.
Therefore, the procedure will consist on the removal and examination of the sentinel axillary
lymph node (SLN) to see if it has metastatic tissue. This study would define whether the cancer
has been able to spread throughout the rest of the body, which allows a diagnosis of the patient’s
stage. Moreover, on examination of the lymph node, the pathologist will require staining to
obtain an overview of the tissue samples [47].

1.6.3 The haematoxylin and eosin (H&E) stain

A popular stain is haematoxylin-eosin (H&E). Since most cells do not have their own color, their
direct observation by light microscopy does not allow their morphology to be analyzed properly.
To be able to observe it, stains are used in order to color different structures in specific ways,
making it easier to differentiate them within a tissue.

Specifically, the haematoxylin-eosin stain colours with haematoxylin the acidic structures in blue
and purple while using eosin for basic components, colouring them in pink tones [37]. Figure 1.1
shows some histological images stained in H&E.

Figure 1.1: Histological images of axillary lymph nodes stained with H&E.
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1.6.4 Automatic detection of metastasis in sentinel axillary lymph nodes
(SLN)

New technologies in medicine have allowed high resolution digitization of stains with histopatho-
logical tissue, including haematoxylin-eosin staining. Advances in scanners allow the storage
of large databases of medical images that can be processed by machine learning models for
classification [28].

Section 1.5 studies the current state-of-the-art techniques used for medical images. In the present
work, the problem is characterized to the detection of metastases in sentinel axillary lymph nodes
(SLN). As mentioned, this analysis has a fundamental relevance in the staging of breast cancer
and, therefore, in the definition of a treatment for the patient, especially in early stages.

Applying machine learning to this particular problem is highly desirable. Pathologists’ general
diagnosis of SLN is especially complex, often leading to erroneous conclusions. One study found
that expert pathologists change up to 24% of SLN diagnoses after reviewing them [97]. Fur-
thermore, the analysis is considerably tedious and time consuming. It is, therefore, especially
interesting to create an algorithm capable of classifying quickly and with high accuracy a SLN
susceptible to metastasize.
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Chapter 2

Theoretical framework

This chapter develops the theoretical framework in which this work is included. In a first section,
Artificial Neural Networks are introduced, specifically a type of neural network widely used in
pattern recognition: the multilayer perceptron. In addition, some machine learning techniques
used to build more sophisticated models, with better learning capacity and, ultimately, classi-
fication power, are summarized. The multilayer perceptron actually serves as the basis for the
networks that really concern us: Convolutional Neural Networks (CNNs). CNNs are explained
in detail in the second part of the chapter, where their structure, their operation and the hy-
perparameters that model them are explored. Finally, the last section briefly explains some of
the most popular and best performing CNN architectures in the ImageNet database. In this
way, the power of the use of transfer learning and fine-tuning is highlighted by inheriting these
pre-trained networks and customizing them for any problem.

2.1 Introduction to Artificial Neural Networks

The ambition to create intelligent systems, capable of learning and making decisions based on
their own experience, has been a constant for more than 50 years. Modern computers vastly
outperform humans thanks to powerful numerical processing, memories capable of storing large
amounts of information, and the ability to calculate multiple scenarios and alternatives. However,
until today it has not been possible to create a machine capable of totally emulating the human
being, that is, his ability to solve abstract problems, to learn from his mistakes or, simply, to
imagine or to be creative. It is in artificial intelligence and, more specifically, in Artificial Neural
Networks (ANN, from now on), where a symbiosis has been achieved between both domains.

The term "neural network" originates from experiments to find mathematical representations
of biological information processing systems, such as those proposed by von der Malsburg [57]
and McCulloch [58]. ANNs aspire to solve virtually any problem of classification, prediction,
optimization or patter recognition, obtaining state-of-the-art results.
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In this section, the multilayer perceptron is introduced as a type of ANN widely present in
the specialized literature on artificial intelligence. It is important to note, therefore, that the
multilayer perceptron is simply a type of network and is not fully equivalent to ANN. Within
the taxonomy proposed in [39] there are other techniques based on ANNs applicable to multiple
problems, such as radial basis function networks [9], Hopfield networks [33] or ART models [11].

2.1.1 The multilayer perceptron

The multilayer perceptron is, without a doubt, the most widely used type of ANN. Its popularity
is justified by its success in solving considerably complex problems, serving as an alternative and
outperforming the results obtained by traditional statistical techniques [78]. The multilayer per-
ceptron also performs well for virtually any problem, regardless of discipline. This is due, among
other reasons, to the fact that it does not require any assumption regarding the distribution of
the data it receives as input, and can even model complex non-linear functions and obtain very
satisfactory results when generalizing to a set of independent data [34].

The multilayer perceptron is constituted as a system of interconnected neurons. A neuron is
a computational unit characterized by weights and an activation function. In this way, given
an input, the output of the neuron will be computed by applying the activation function on the
matrix product between the input and the weights. On the one hand, weights are the equivalent,
for example, to the coefficients in a linear regression problem. The objective will be to optimize
these weights for each of the neuron layers, so that the predictions made are as accurate as
possible. On the other hand, the activation function modifies the output of the product to
implement nonlinearities. It is precisely the superposition of these nonlinearities that allows
to model more complex problems. As will be seen later, in the multilayer perceptron learning
algorithm – known as back-propagation – it is essential that the derivation of the activation
function is easily computable. For this reason, the most commonly used functions are sigmoid,
softmax, hyperbolic tangent, and rectified linear unit (ReLU). It is precisely the latter that
obtains the best results in deep networks and, therefore, the most used, as demonstrated by
Glorot et al. in [26].
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Figure 2.1: Functioning and parameters of a neuron.

The structure and functioning of a neuron is thus defined. These neurons are placed in rows
called layers, making up the set of layers the neural network. The multilayer perceptron is
described as a fully-connected structure, with all neurons in each layer connected to all neurons
in the previous and next. The first layer, known as the visible layer, does not really have a
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computational function, it simply represents the vector of inputs. The following layers are known
as hidden layers since they are not directly exposed to the input. These are characterized by
the weights and an activation function, generally ReLU. Finally, the output layer represents the
classifier. In classification problems, such as the one in this document, this will determine which
category the object belongs to. Again, it will be characterized by the weights and an activation
function, however, in this case the function will be sigmoid or softmax, in most cases. Sigmoid is
frequent in binary classification, establishing a threshold of 0.5 to discriminate between the two
categories, while softmax is used in any type of classification, computing the object’s probability
of belonging to each of the categories and selecting the highest. Figure 2.2 illustrates a simple
neural network based on the multilayer perceptron.

Input layer Hidden layer Output layer

Output

Input 1

Input 2

Input 3

Figure 2.2: Example of a multilayer perceptron with a single hidden layer of four neurons. The input layer is
formed by a vector of three components, expressed with three neurons. The output layer has only one neuron, so
the network will be used for binary problems.

Finally, it remains to define the process of classification and learning of the multilayer perceptron.
These are linked to two very well-known mechanisms in the machine learning literature: forward-
propagation and back-propagation.

Forward-propagation is the mechanism of generating an output from an input or, in other
words, the process by which the multilayer perceptron predicts the category to which the input
belongs. Each hidden layer receives the input data, performs the matrix product and applies
the activation function to the result. Next, it sequentially passes the output to the next hidden
layer, until it reaches the output layer, where the object is finally classified.

On the other hand, it is in the back-propagation mechanism that the value and success of
the multilayer perceptron really lies. It has been seen that each neuron is characterized by op-
timized weights that, during forward-propagation, will result in the most accurate predictions
possible. The network learning process, from which these weights are optimized, is known as
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back-propagation, and was introduced by Rumelhart et al. in their well-known publication [73].
The idea is as follows: the optimal weights must be those that minimize the loss function, calcu-
lated by comparing the predictions made with the true labels of the objects that are classified.
These true labels are called the ground truth. It should not be forgotten that the problem dealt
with in this document is a supervised learning problem and, therefore, the ground truth is known
in the training phase, that is, in the network learning phase. In this way, the back-propagation
algorithm aims to locate the absolute minimum of the loss function that the system models.
To this end, the most widely used technique is the gradient descent, along with its modifica-
tions and improvements, among which RMSProp, Adam or SGR stand out. Furthermore, the
programmer can control this learning process by setting the learning rate and the momentum.
The learning rate is a hyperparameter that quantifies how much the weights are updated, so
a very low learning rate can lead to very slow convergences, while a very high learning rate can
cause learning to diverge or not find the absolute minimum. Momentum, meanwhile, helps the
gradient escape from the local minimums. In short, back-propagation will consist of a process
of minimization of the loss function in which the weights will be updated following the gradient
descent technique and the defined learning rate. The gradient descent algorithm and the process
of updating the weights include considerable mathematical development, illustrated in Appendix
A and Appendix B, respectively.

In summary, the operation of the multilayer perceptron can be summarized in the following steps:

1. Initialization of weights. It can be a random initialization or using newer techniques, such
as He initialization [30], or Xavier initialization [50]. Initializing with zeros is disregarded
in all cases.

2. Forward-propagation: the input vector – with the objects to classify – propagates through
the hidden layers until obtaining a prediction.

3. The predictions are compared with the actual values, and the value of the loss function is
computed.

4. Back-propagation: the error calculated in the loss function is propagated, updating the
weights to minimize this value.

5. The process is repeated until the error and, therefore, the accuracy are satisfactory.

This implementation corresponds to what is known as on-line training, in which the network is
trained in sequential order as new data becomes available. However, the most common and, in
fact, used in this document, is to use batch training. In this one there is a specific training
set that will serve to train the network. This training set is divided into a set of batches –
typically 32, 64 or 128 instances each – which are progressively introduced into the network,
which adjusts its weights accordingly. In [4] the interested reader can consult the principles of
both approaches and their advantages and disadvantages. Furthermore, every time the entire
set of training data passes over the network, an "epoch" is said to have passed. Both the size
of the batch and the number of training epochs are decisions to be made by the programmer,
often selected empirically or by trial and error.

The principles of the multilayer perceptron have been explained in depth in this section. However,
this is one of the simplest versions of neural networks. In the next sections, some techniques are
introduced to improve network performance, such as the use of dropout and batch normalization,
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as well as some practices to ensure correct generalization of the ANN in a separate data set,
such as the use of data augmentation. Finally, the training, validation and test processes are
detailed. This will serve as a basis for Section 2.2 to delve into the technique used in this work:
Convolutional Neural Networks.

2.1.2 Dropout

One of the main problems present in ANNs is the possibility of overfitting. Overfitting is
produced by over-training the model using the same data set, so that it ends up identifying
excessively specific patterns and features of these specific instances, making it impossible to
generalize them to an independent dataset.

Srivastava et al. propose in [86] a solution to overfitting through the use of dropout. Dropout
consists of randomly ignoring some neurons during the training phase. In this way, during the
training with each of the batches, each neuron in the layer will have a probability p of staying
connected or, in other words, a 1− p probability of disconnecting and, therefore, not fitting. It
is relevant to mention that dropout is applied exclusively in training, keeping all the neurons
connected both in the validation and in the test. Figure 2.3 illustrates the operation of the layers
of a neural network without and with dropout.

(a) (b)

Figure 2.3: (a) Standard Neural Network and (b) After applying dropout.

2.1.3 Batch normalization

Training deep ANNs is considerably complicated due to the fact that the distribution of the
inputs of each layer changes during it, as the weights of the previous layers also change. In
other words, small changes in previous layers affect subsequent layers. This effect, in addition,
is amplified when the network is deeper. This is a great difficulty for the programmer, who must
be extremely careful when choosing the initialization of the weights and the hyperparameters
that model the training, such as the learning rate. This problem is known as internal covariance
shift [82] and results in excessively slow trainings.
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In practice, this effect can be reduced by using ReLU as activation function [60], correct initial-
ization of weights [25] or small learning rates. However, in 2015 Ioffe and Szegedy propose batch
normalization [38], addressing this problem by integrating this normalization as a part of the
network. The method consists of normalizing the output of the previous layer by subtracting the
batch mean and dividing by the batch standard deviation. However, systematically normalizing
the weights in this way will involve adding noise to the network, making the weights be further
from the optimal, so the gradient descent algorithm will undo this normalization to minimize the
loss function. Therefore, after normalization, two new trainable parameters (γ and β) are added,
which will be adjusted during training so that the gradient descent algorithm optimizes them
instead of directly performing a denormalization. Specifically, γ works as a “standard deviation”
and β as a “mean”. Figure 2.4 illustrates the integration of batch normalization to a system.

Figure 2.4: On the right a standard network, on the left a network to which batch normalization has been
integrated. β and γ are incorporated as new hyperparameters of the system. Retrieved from How does Batch
Normalization Help Optimization?, by A. Ilyas et. al, 2018, https://gradientscience.org/batchnorm/.
Copyright by gradient science.

In short, the use of batch normalization allows higher learning rates to be used, speeding up the
training of the network, as well as reducing the importance of the initialization of the weights. In
addition, it acts as a regulator just like dropout, since it incorporates noise into the system. In
the original paper [38] the success of batch normalization is evident in achieving state-of-the-art
results in the classification of the ImageNet dataset, accelerating training to require only 7% of
the original training steps

2.1.4 Data Augmentation

Neural networks and, more specifically, Convolutional Neural Networks (see Section 2.2) perform
considerably well in Computer Vision tasks. However, one of the main problems is their high
dependence on large databases for training to avoid overfitting. This problem is especially
prevalent in tasks related to medical imaging, where images tend to be a scarce resource, as
is the present work.

In order to build useful and generalizable models to independent databases, it is essential to
avoid overfitting, and data augmentation is a powerful technique to achieve this. It consists of
increasing the training set by generating synthetic images from the training images. This artificial
data creation process is generally based on image manipulation: geometric transformations,
flipping, color space transformations, rotations, translations, cropping, etc. [84].
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The use of data augmentation to regularize and avoid overfitting in medical imaging problems
is widely contrasted in the literature, for example, in the classification of skin lesions [23] or
liver pathologies [43]. It is relevant to mention that this is not the only regularization technique
that exists, but there are many others such as the previously mentioned dropout and batch
normalization.

2.1.5 Training, validation and test

In the previous sections, ANNs have been illustrated, using the well-known example of the
multilayer perceptron, as well as some regularization techniques that increase the sophistication
of the network. This section explains how this model is trained, validated and tested.

There are several approaches that can be found in the literature on how to split the dataset.
The traditional stance consists of a single partition on training and test data. The idea is as
follows: if the model has been adjusted – that is, it has learned – from a dataset, it would be
unfair to evaluate its performance on that same dataset. Therefore, an independent dataset
(test) is reserved to test the performance of the fitted model on unknown and therefore unbiased
data. Specifically, in the case of supervised learning, the labels of the test set are known and,
therefore, testing serves as an evaluation of the model, comparing the correct labels with the
predicted ones. This approach is the one proposed, for example, by recognized machine learning
books [41] [49].

In this document, however, we bet on a double partition. After dividing the original dataset
between training and testing, the training set is divided again between “real” training and vali-
dation. This validation set will allow to evaluate the accuracy of the model in each of the epochs,
thus studying its learning and identifying the possible overfitting. In this way, the use of the
test set is limited to the generalization of the final model. This position is also recurrent in the
literature, for example in [75]. In general, the test set represents 10-15% of the total, while the
validation 20-25% of the training data.

It is convenient now to summarize each of the identified sets:

• Training set: it is used to adjust the model parameters, these are, the weights of the layers,
among others. It tries to find optimal parameters that minimize the loss function.

• Validation set: gives information on the accuracy obtained by the model in each epoch on
an independent dataset during training. In this way, it is possible to monitor the learning
process and identify overfitting problems.

• Test set: once the model has been trained, it is generalized to an independent dataset
to evaluate its performance. Unlike validation, this assessment is only done once and is
computed out of training.

Training set Test setValidation set

Figure 2.5: Double partition of the dataset: training and validation, and test.

17



Chapter 2. Theoretical framework

2.2 Convolutional Neural Networks

For decades, conventional machine learning techniques have been limited to processing data in its
raw form. Extensive knowledge in the domain and feature extraction engineering was necessary
to obtain satisfactory results, so that it was possible to represent the data by means of more
meaningful information and, therefore, it was easier to recognize patterns that would serve to
classify the objects. This problem was especially prevalent in Computer Vision, due to the
complexity of training the algorithm to emulate the behavior of the human eye, that is, of being
able to identify textures, colors or shapes.

In this context, the success of deep learning is not surprising. Deep learning is a representation
learning technique with multiple levels of representation, so it is capable of decomposing input
data into representations of increasing levels of abstraction, starting from raw data to complex
patterns. Finding its usefulness in Computer Vision problems is easy: the initial layers will be
able to identify general shapes and contours, while, as the network becomes deeper, it will locate
more specific and differentiating shapes and features.

Among the deep learning techniques, the most popular have been Convolutional Neural Networks
(CNNs, from now on), introduced by LeCun et al. in [53]. CNNs are imposed as an ideal
technique for any Computer Vision problem, obtaining state-of-the-art results in problems as
diverse as traffic signal recognition [16], biological image segmentation [63] or facial detection [51],
among others. However, the total success of CNNs did not come until the ImageNet competition
of 2012, where the AlexNet network obtained excellent results in the classification of more than
a million images in 1,000 different categories. Furthermore, CNNs have benefited greatly from
advances in GPU-acceleration [15], as well as regularization techniques such as dropout, batch
normalization or data augmentation.

Some of the advantages of CNNs are the independence with the space and time distributions of
the images or the decrease of trainable parameters compared to other types of networks, since
it is a system based on filter banks, instead of products with whole matrices like the multilayer
perceptron. This section explains in detail the parts of a CNN, its parameters and its operation.
In addition, two techniques are introduced that increase CNNs’ sophistication and performance:
the residual blocks and the inception blocks.

2.2.1 Convolutional layer

The convolutional layers are the feature extractors of the image. Each convolutional layer is
characterized by a bank of filters known as kernels. The operation consists of a convolution
between the features represented as the input of the layer and the kernel, so that they get more
and more specific features from the original images as the network gets deeper. In this way,
the kernel goes through the image convolving itself with the different sections of it. The kernel
functioning is defined by a stride. The stride explains the movement of the kernel in the different
dimensions, so that if the stride has a value of two, the filter will move with two pixel shifts, first
in the width and then in the height of the image (assuming that it is grayscale and there is no
third dimension). This process is repeated as many times as kernels the bank has, a value that
can be parameterized by the network designer, obtaining as many results as defined filters. The
result of convolving all the filters with the input is known as feature mapping.
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In the case of working in multi-dimensional color spaces (e.g. RGB, HSV), the kernel will have
this same depth, so that the results of convolving in all the dimensions are added together,
resulting in a single dimension matrix. Figure 2.6 illustrates this operation, using a 3x3 filter on
the three color channels of the image.

Figure 2.6: Example of convolution with a RGB image. The convolution is computed with a 3x3 kernel with
the image section in its three channels (Red, Green, and Blue), and then added together with the bias. The result
of the operation will have only one channel. Retrieved from A Comprehensive Guide to Convolutional Neural
Networks — the ELI5 way, by S. Saha, 2018, https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53. Copyright by Towards Data Science.

Due to the border effect, it can be the case that the input does not exactly match the kernel
and, therefore, the output does not maintain the same dimensions. Here are two approaches: fill
the input with zeros (zero-padding or same-padding) or drop the part of the image where the
filter does not fit (valid-padding), leaving only the valid part of the image. In the first case,
the output will be the same size as the input, being smaller in the second case. This decision is
parameterizable and will depend on the particular problem

Finally, the result of the operation is passed through an activation function, typically ReLU. As
in the multilayer perceptron, this serves to model possible nonlinearities in system relationships.

Thus, in CNNs the parameters to be optimized are the filter coefficients, unlike the multilayer
perceptron where complete matrices are fitted. Furthermore, the functioning of the convolu-
tional layers is based on two principles. The first is that images tend to have highly correlated
local groups of pixels, representing, for example, the same object. The second is that the pixel
distributions are invariant of their location, that is, an object can appear anywhere in the image.
Consequently, the result when applying the kernel to the image will be similar in both locations,
thus facilitating the identification of patterns in different parts of the image.
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2.2.2 Pooling layer

The main problem with convolution is its high computational cost. If, in addition, a high
number of kernels is defined, for each input there will be a convolution with K different filters.
This dimensionality increases with the depth of the net, considerably slowing down the training.
For example, if the input image is 28x28x1 in size and a filter bank with 32 kernels of 3x3 size is
applied, the feature mapping will be 28x28x32 (assuming zero-padding), which is 32 times larger
than the original. It is therefore interesting to reduce this dimensionality, while maintaining the
dominant features extracted.

Since the dominant features are invariant with their position and orientation, a pooling layer can
be applied to reduce the dimensionality and, consequently, the computational cost. This layer is
also characterized by a kernel, which defines the section in which the pooling is computed and
goes through the entire image. There are two popular pooling techniques:

• Average pooling: computes the average of the portion of the image covered by the kernel.

• Max pooling: returns the maximum value of the portion covered by the kernel. Furthermore,
max pooling works as a noise suppressor and therefore tends to reproduce better results
than average pooling.

Figure 2.7 illustrates an example of each of these techniques, using a 2x2 size kernel.
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Figure 2.7: Exemplification of the operations of max pooling and average pooling.

2.2.3 Fully-connected layer

The fully-connected layer is basically a multilayer perceptron (see Section 2.1.1) which, after
having gone through several blocks of convolutional layers and pooling, is fed with information
from which it is capable of finding patterns and, therefore, classifying. The previous convolutional
layers should have been able to extract high-level features from which the multilayer perceptron
can learn, while also being able to identify possible non-linear relationships in this space.

Therefore, the output of the last convolutional block is simply flattened and inserted into the
perceptron, which may be made up of several layers of neurons defined by weights and an
activation function. Finally, the object will be classified in a last layer whose activation function
will typically be softmax or sigmoid. Figure 2.8 represents a complete CNN, made up of the
different layers described throughout these sections.
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Figure 2.8: Example of a Convolutional Neural Network. Two of the convolutional blocks are shown, consisting
of a convolution layer, ReLU activation and pooling. A classifier consisting of a flatten, a fully-connect layer
and softmax activation for the classification is added. The network classifies the input among various means of
transport. Retrieved from Basics of the Classic CNN, by C. Churh Chatterjee ,2019 ,https://towardsdatasci
ence.com/basics-of-the-classic-cnn-a3dce1225add. Copyright by Towards Data Science.

In summary, CNNs, the principles of their operation and their basic structure have been in-
troduced. The next two sections describe two techniques used in CNNs that aim to improve
their performance, especially in considerably complex problems where pattern identification is
not trivial, not even for the human eye.

2.2.4 Residual blocks

In Section 2.1 it was explained that ANNs are universal approximators, which implies that they
necessarily have to increase the accuracy with the depth of the network to be able to model
any type of problem [34]. Therefore, it would be expected that CNNs could be used for any
classification based on Computer Vision, however, this is not the case. ANNs in general and,
more specifically, CNNs present training problems when they are excessively deep. For example,
due to vanishing gradients, the gradient in very deep networks vanishes to very small values,
preventing the weights or kernels from changing value and adjusting [46]. Another problem is
known as the degradation problem, which identifies that counterintuitively the accuracy of
training begins to degrade at a point when the network is too deep, not achieving satisfactory
results [72].

He et al. introduce in [29] the revolutionary concept of residual blocks to solve these problems.
The authors propose the ResNet architecture as a robust network, immune to the problems of
vanishing gradients and degradation. The approach is to add a shortcut that allows the output
from one layer to feed not only to the subsequent layer but also to a further one, for example
two or three layers ahead. Figure 2.9 illustrates the basis of this technique.
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Figure 2.9: Residual learning: a building block. From Deep Residual Learning for Image Recognition [30], by
K. He et. al, 2015.

Including the information from the previous layers in the subsequent layers implies that the
deeper ones have both specific and more general information, which involves that theoretically
they will have, at least, the same results as the shallow layers. In addition, adding residual
blocks in no case affects negatively the performance of the network since, in the case in which
they do not contribute anything, the weights of the residual block would take a value of zero,
which would be equivalent to a traditional network. Two basic types of residual blocks can be
identified, depending on whether the input / output dimensions coincide or not:

• The identity block. The default residual block simply adds shallow layer information to the
deep layer input using a shortcut.

Conv ConvBN BNReLU ReLU

Figure 2.10: Identity block.

• The convolutional block. The information passed through the shortcut is also convolved,
therefore changing its dimensions. Furthermore, this implies that the residual block has
weights to optimize.

Conv ConvBN BNReLU ReLU

Conv BN

Figure 2.11: Convolutional block.
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In addition to ResNet, the CNN research community has proposed several alternatives based on
residual blocks that obtain state-of-the-art results. Some are ResNext, developed by Xie et al.
in [98], or DensetNet by Huang et al. [36].

2.2.5 Inception blocks

Vanishing gradients and degradation are not the only problems that can arise in the development
of a CNN, especially when they are very deep. Section 2.2.1 explained that the designer has to
make several decisions when implementing convolutional layers, among which is the kernel size.
This decision is not trivial and has a considerable impact on the classification capacity of the
network, that is, on the accuracy obtained. Some reasons why kernel size is a determining
decision are:

1. The objects to be classified within the image can present considerable size variations. CNNs
are invariant to the location and rotation of objects, however, they can have very varied
sizes and arrangements. Figure 2.12 shows, for example, different ways in which a dog can
be represented. In this sense, it is difficult to choose a filter that can generate good results
regardless of whether, for example, the dog is in profile or lying down.

(a) (b) (c)

Figure 2.12: Images of a French bulldog in different positions: (a) lying down (b) standing and (c) in profile.

2. Along the same lines, a large kernel will be more useful when the information in the image
is distributed globally, while a small kernel size will be more convenient if the information
is distributed locally, that is, concentrated in sections of the picture.

3. In addition, one of the factors to evaluate in a CNN is the computational cost. In general,
the use of smaller or larger kernels will imply a lower or higher computational cost, since
they determine the number of convolutions performed in each image.

In this context, Szegedy et al. introduce in 2015 the GoogLeNet architecture, also known as
Inception [90]. GoogLeNet makes use of so-called inception blocks to overcome the aforemen-
tioned problems, achieving state-of-the-art results in classification challenges with the ImageNet
dataset. Inception blocks are based on computing several convolutions in parallel, with different
kernel sizes, to later concatenate the results of each one. The module introduced in [90] proposes
three different convolutions with 1x1, 3x3 and 5x5 size kernels, in addition to a max pooling.
Figure 2.13 shows the simplest inception block, known as the naive version.
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Figure 2.13: Inception module, naïve version. From Going deeper with convolutions [90], by C. Szegedy et. al,
2015.

One of the problems raised was that CNNs are computationally very expensive. GoogLeNet
proposes to decrease the complexity of the inputs by adding a previous convolution with a 1x1
kernel. This convolution iterates for all pixels in the image, so if, for example, the input image
has dimensions 96x96x3, the output will be 96x96x1. Thus, to reduce the number of inputs, this
1x1 convolution is incorporated before the layers with 3x3 and 5x5 convolutions, and after the
max pooling layer. The final module is the one shown in Figure 2.14.

Figure 2.14: Inception module with dimension reductions. From Going deeper with convolutions [90], by C.
Szegedy et. al, 2015.

The success of Inceptionv1 led to the development of later versions. In [89] Inceptionv2 and Incep-
tionv3 were presented, which proposed improvements over their previous version. Inceptionv4
was introduced in [88]. Precisely in [88] the Inception-ResNet architecture is also developed,
which combines the inception blocks with the residual blocks seen in Section 2.2.4.

In short, the last sections have explained how CNNs are structured. Its basic parts have been
detailed, as well as accessory modules used to create more sophisticated networks, with better
classification power. In the next section, transfer learning and fine-tuning are introduced, two
extremely useful techniques applicable to virtually any Computer Vision problem.
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2.3 Transfer learning and fine-tuning with CNN pre-trained
architectures

Traditional machine learning advocates for the creation of unique and particular models that
are specific to the problem they are trying to solve. The operation of these systems, however, is
conditioned on having databases large enough to train the model. Furthermore, this requirement
is even more prevalent the more parameters the model has, that is, the deeper the CNN is.

However, human beings do not function in this way. They transfer knowledge about other
domains when new challenges arise, so that they never start from absolute ignorance. In order to
emulate this behavior, transfer learning was born from pioneering works such as those of Pratt
from 1992 in [66] and, more in depth, those published in the Machine Leaning journal in 1997
[67]. Transfer learning consists of exploiting machine learning models that present good results in
specific problems for our particular problem. In addition, one of its main applications is in deep
learning: inheriting architectures from CNNs that have achieved state-of-the-art performances
in recognized databases – for example, ImageNet – as feature extractors, to later add a classifier
– the top-level – based on a multilayer perceptron that is particular to our problem, for example,
when defining the number of categories. In this way, the weights of the convolutional blocks
that extract the contours, figures, textures or colors from the images are maintained, and the
top-level layers are exclusively trained.

A strategy within transfer learning is fine-tuning. In this approach, not only the top-level layers
are trained, but also the deeper layers of feature extraction. The reason is that it is not enough
to add a different top-level classifier to particularize a problem, but rather that the last layers
of the network must necessarily be different, since the specific features that are extracted are
specific and particular to each problem. For example, if the inherited CNN has shown excellent
results in classifying dog breeds, the latest convolutional blocks are most likely optimized, for
example, to identify whether the image is of a very furry or a little furry dog. If we want to design
a network capable of differentiating between types of wooden furniture (chair, table, wardrobe,
etc.), these last convolutional layers must be re-trained and optimized, since the patterns to be
recognized now will be, for example, certain specific textures or shapes in the wood.

In short, the use of fine-tuning and transfer learning can overcome problems related to the lack
of images or slow training. In this section, we introduce some of the best-known networks in
the CNNs literature, which obtained state-of-the-art results in the classification of the ImageNet
database. ImageNet is a database with more than 14 million annotated images, belonging to more
than 20,000 categories. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is
held annually, where the leading experts in deep learning and Computer Vision propose innovative
models that compete to obtain the best results in this database. The competition provides over
1.2 million images from 1,000 categories. The ILSVRC has allowed a rapid development in the
theory of CNNs, for example, in the presentation of novel techniques such as residual blocks
or inception blocks [74]. Some of the pre-trained networks in ImageNet are summarized below:
VGG, Inception, ResNet, DenseNet, MobileNet and Xception.
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2.3.1 VGG

VGG architecture was created by Simonyan and Zisserman, members of the Oxford Visual Ge-
ometry Group, in 2014 in their paper Very Deep Convolutional Networks for Large Scale Im-
age Recognition [85]. It is considered the successor to AlexNet [48], the network developed by
Krizhevsky et al. that revolutionized the world of CNNs in 2012.

VGG stands out for its simplicity, using a standard architecture with only 3x3 convolutional
kernel layers, 3x3 max pooling and ReLU activation for feature extraction and a multilayer
perceptron with two fully-connected layers and softmax activation for classification into 1,000
ImageNet categories.

Its training follows the technique called pre-training, in which shallower versions of the same
network are adjusted first and then used to initialize the deeper version. However, this makes
training very time consuming. In addition, VGG architectures have considerably high memory
occupancies, which is also a drawback.

Finally, the difference between VGG16 and VGG19 lies in the number of layers, the first being,
therefore, shallower than the second.

2.3.2 GoogLeNet

The GoogLeNet or Inception architecture was introduced in 2014 by Szegedy et al. in their
paper Going Deeper with Convolutions [90]. Unlike VGG, the Inception architecture proposes
an "exotic" structure, different from the CNNs mechanism seen so far. The reason is that it
includes inception blocks to solve problems related to kernel size selection. Section 2.2.5 explains
in detail what these inception blocks that characterize GoogLeNet consist of.

In addition to using inception blocks, the first version of GoogLeNet (Inceptionv1) is character-
ized, for example, by using two auxiliary softmax classifiers on two of the inception blocks, to
compute an "auxiliary loss function". This serves to overcome the problem of vanishing gradients.

After Inceptionv1, later versions have been raised, for example, Inceptionv2, Inceptionv3 and
Inceptionv4. Inceptionv3 is the one used in this work. This architecture was published in 2015
by Szegedy et al. in Rethinking the Inception Architecture for Computer Vision [36] and includes
batch normalization, factorized 7x7 convolutions, and the use of RMSProp as an optimizer,
among other things. In addition, its occupation in memory is lower than that of VGG.

2.3.3 ResNet

Another of the great advances in CNNs came from the Microsoft team led by He et al. in 2016
with the publication of the paper Deep Residual Learning for Image Recognition [29]. This post
introduces the residual blocks to the world of deep learning, widely-tested performance technique,
and ubiquitous in post-ResNet architectures. In Section 2.2.4 the residual blocks, the problems
they solve and the advantages of their application are explained in depth.

The network presented in [31] was called ResNet50 since it is made up of 50 layers. The residual
blocks serve as a solution for degradation and vanishing gradients. Like VGG, convolutions are
mostly 3x3 kernel, however the network is much deeper. The optimizer used in its original version
was SGD.
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Finally, with the introduction of identity mapping in the 2016 publication Identity Mappings
in Deep Residual Networks, performance is improved by obtaining state-of-the-art results in
ImageNet image classification [31].

2.3.4 Xception

Xception architecture was introduced in 2017 by François Chollet, creator of the Keras library.
The original publication Xception: Deep Learning with Depthwise Separable Convolutions [14]
uses the Inception network as its base, replacing the standard inception blocks with modified
depthwise separable convolutions. In fact, the name Xception comes from Extreme Incep-
tion, surpassing the network created by Szegedy et al. by obtaining higher accuracy scores in
the ImageNet database.

It is therefore relevant to briefly explain what the depthwise separable convolutions consist of.
These separate the standard convolution into two steps: depthwise convolution and pointwise
convolution. Depthwise convolution is a convolution without changing the image depth, defined
by the color space (e.g. RGB, HSV), so that the kernel moves through each of the channels
separately (3 in the case of RGB). Pointwise convolution is a single convolution with 1x1 kernel,
that is, it iterates for each pixel in the image. This process is repeated as many times as kernels
the filter bank has. For example, if the input image has a size of 12x12x3 and the kernel 5x5,
in the first step three outputs will be obtained – one for each channel – of size 8x8x1 (12 - 5 +
1 = 8) that, when put together, will result in an 8x8x3 image. In the pointwise convolution, an
8x8x1 image is obtained. If a bank with 32 kernels is used, the final size will be 8x8x32. This
same result would be the one that would have been obtained by directly computing the normal
convolution, however, the number of operations would have been much greater. Therefore, the
separable depthwise convolution serves to decrease the computational cost.

The Xception network restates this idea and introduces the separable modified depthwise con-
volutions, in which the order between the depthwise convolution and the pointwise convolution
simply changes. This is because it uses inception blocks, in which convolution with kernel 1x1 al-
ways precedes convolution nxn. Additionally, the Xception architecture includes residual blocks,
inspired in ResNet.

2.3.5 DenseNet

In 2017 the combined effort of Conwell University, Tsinghua University and Facebook AI Research
allowed the creation of DenseNet in the publication Densely Connected Convolutional Networks
[36]. DenseNet stood out for its high classification power, beating ResNet on ImageNet, using a
very low number of parameters.

The DenseNet idea is based on the residual blocks introduced by ResNet. In this architecture,
all layers feed all subsequent layers, which implies that the deeper layers have extremely specific
and extremely general knowledge. Empirically, this allows the layers to be much more compact.

Maintaining a structure similar to the rest, it mainly uses convolutional layers with 3x3 kernel
and ReLU activation in the extraction of features. Also, it uses batch normalization to regularize
and average pooling 2x2 to decrease dimensionality. Finally, the classification is based on the
softmax function.
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2.3.6 MobileNet

Finally, another network that achieved state-of-the-art results with ImageNet in 2017 is Mo-
bileNet. The paper MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications [35] published by Howard et al. introduces this network as a very powerful tool for
Computer Vision mobile applications, due to its small size and complexity. The model is based
on three techniques: separable depthwise convolutions, width multiplier (α) and resolution mul-
tiplier (ρ).

Regarding the separable depthwise convolutions, as explained in the Xception network (Section
2.3.4), they considerably reduce the number of operations by separating the standard convolution
in two steps. On the other hand, width multiplier controls the width of the input in each of the
layers. If the value of α is one, there will be no compression. Obviously, with lower values of α
the accuracy obtained will decrease. Finally, resolution multiplier ρ controls the resolution of the
image. Therefore, the computational cost can be reduced at the cost of a decrease in resolution
and, therefore, a loss of information. Apart from these particularities, MobileNet maintains a
structure with ReLU as activation and batch normalization to regularize.

MobileNet has been shown to deliver excellent results on both complex and simpler problems,
thanks to its ability to adapt using the α and ρ value.

In short, these sections have served as a summary of some of the most popular CNN architectures.
Fine-tuning is applied to these, so that they customized to any problem, obtaining generally
excellent results.
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Methodology

3.1 Materials, apparatus and procedures

This section describes the materials, apparatus and procedures followed and used in the devel-
opment of the experimental part of the work. It begins with an illustration of the materials
used, that is, the hardware and software needed. Next, the database containing the images is
explained, that is, their format and the process that was carried out in order to obtain them, as
well as some relevant considerations. Finally, the meaning and calculation of the metrics used
to evaluate the project results are justified.

3.1.1 Equipment and programming environment

The project was carried out on a computer with an 8th Generation Intel R© Core TM i7-8750H
processor with six cores, with 16 GBytes of DDR4 RAM running at 2666MHz. Moreover, the
hardware includes a NVIDIA GeForce GTX 1060 graphics card. The operating system used is
Windows 10 64-bit.

We have chosen to implement the different models proposed in Google Colab mounted on Google
Drive, to facilitate the transfer of files. Google Colab is a free environment based on the open
source project Jupyter Notebook that allows its users to run and implement machine learning
models in the cloud. Jupyter is an interactive environment that allows Python code to be
executed dynamically, acting as a client-server application. In this way, Google Colab allows
users to take advantage of the simplicity of Jupyter using Google Virtual Machines (VMs), to
which the computer connects remotely. Google Colab offers both Tensor Processing Unit (TPU)
and Graphical Processing Unit (GPU) as computing resources. In our case, we benefit from
GPU-acceleration as it is supported by our code. Specifically, the GPU used with Google Colab
is the NVIDIA Tesla P100 with 16 GBytes of RAM. The following picture, taken directly from
Google, pictures a typical Google Cloud infrastructure.
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Figure 3.1: Picture of Google’s Cloud TPU v3 Pods. Retrieved from Google Cloud. Cloud TPU, by Google,
https://cloud.google.com/tpu?hl=es-419.

The programming language used will be Python 3.7, using the high level framework specialized
in deep learning Keras, specifically the version 2.3.1, and using TensorFlow 2.2.0 as backend. In
addition, other libraries are required such as Numpy (version 1.18.4) for scientific computing,
Pandas (version 1.0.3) for data manipulation and analysis, OpenCV (version 4.1.1) for Computer
Vision, and Scikit-learn (version 0.23.1) for data pre-processing and computation of machine
learning specific metrics.

3.1.2 Characterization of the database

The database used comes from a Challenge organized by Kaggle, a subsidiary of Google LLC.
Kaggle is a community specialized in machine learning, where experts and amateurs can share
knowledge and keep themselves updated with the newest trends. However, Kaggle’s main objec-
tive is to organize machine learning competitions where users from all over the world compete
to solve a problem. The problem that is addressed in this document can be found in [94], and
consists of, as explained on several occasions, identifying metastatic tissue in patches of sections
of axillary lymph nodes, stained with H&E. The Kaggle database comes from another database
known as PatchCamelyon (PCam) [95]. The difference between the two databases is due to the
fact that the Kaggle database has eliminated duplicated images that PCam contained. Also,
PCam derives from the original database: The Camelyon16 Challenge.

The Camelyon16 Challenge [96] was a Grand Challenge organized in 2016 by the International
Symposium on Biomedical Imaging (ISBI) in which research groups from around the world
competed to develop a machine learning algorithm that was capable of identifying metastases
in axillary lymph nodes of women with breast cancer. Some notable participants were Harvard
Medical School or MIT. The paper [22] details the conditions of the competition. However, in
this section it is only relevant to mention, without going into far too many details, how the
images were obtained. The original Camelyon16 Challenge dataset was made up of 400 WSIs
(Whole Slide Images) obtained from patients at Radboud University Medical Center (RUMC)
and University Medical Center Utrecht (UMCU). RUMC images were obtained with a digital
scanner Pannoramic 250 Flash II from 3DHISTECH, while UMCU images were obtained with
the NanoZoomer-XR Digital slide scanner C12000-01, produced by Hamamatsu Photonics. The
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images were classified by expert pathologists. Furthermore, the categories – cancer and non-
cancer – are balanced following the proportion 50/50.

Since the Grand Challenge WSIs are considerably difficult to manage, the PCam is a simplifi-
cation of it. In PCam the images were converted to the HSV color space, blurred and passed
through a filter that eliminated those whose saturation was less than 0.07. Each of the WSI was
sampled obtaining several 96X96 pixel patches from each WSI, and saved in .H5 format. Each
patch is marked with an annotation that takes the value of “1” if the central region of size 32x32
pixels contains metastatic tissue and “0” otherwise. The area outside the 32x32 section does not
influence the annotation, it is simply used to facilitate the use of some models that do not apply
zero-padding. The sampling was done by iteratively choosing a WSI and selecting a patch within
it, that could have a positive (cancer) or negative (non-cancer) annotation with a probability of
p. For consistency with the original dataset, the p was selected such that the ratio of positives
to negatives was 50/50. The annotations for each image are saved in a .csv file identified with
the image to which they refer. The final dataset consisted of 262,144 images for training, 32,768
for validation and 32,768 for test.

The Kaggle challenge, in short, further simplifies PCam. The first difference is that, as mentioned,
it eliminates the duplications that appeared by the probabilistic sampling in PCam. In addition,
the format of the images is .tif and not .H5, therefore, it facilitates even more their handling.
Regarding the rest, it is identical to the PCam database: image size, annotation system, etc.
Kaggle also facilitates the split between images: 220,025 for both training and validation and
57,458 for test. However, the whole test set available in Kaggle was not labelled and only the
220,025 set was left available for all training, validation and test. Figure 3.2 shows some of these
images with their respective annotations.

(a) Class “0” (b) Class “1” (c) Class “0”

(d) Class “0” (e) Class “1” (f) Class “1”

Figure 3.2: Six randomly chosen images from the training set with their respective labels. Class “1” refers to
tissue that metastasizes, while Class “0” refers to healthy tissue. Retrieved from Histopathologic Cancer Detection
Dataset, by B. Veeling, https://www.kaggle.com/c/histopathologic-cancer-detection/data. Copyright by
Kaggle
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Thus, a first partition was made between training and test, assigning 187,000 images to the first
and 33,025 to the second, selected at random. Therefore, an adequate proportion of 15% is
maintained for the test. The first dataset, in addition, uses in all the presented models the 20%
for the validation, that is, 37,400 images. Figure 3.3 illustrates the proportion of images for each
class in the two main sets.
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Figure 3.3: Distribution of the classes (cancer and non-cancer) in the training and validation set and the test
set.

It is observed that they are somewhat unbalanced, in favor of the “Non-cancer” class in the two
sets, with approximately 60% in both cases.

3.1.3 Description of the metrics used

Chapter 4 presents the results of the predictive model, both for validation and for test. Therefore,
it is important to define the metrics that will quantify the degree of success of each of the models.

First, the following simple concepts can be defined as they will serve as indicators within the
metrics themselves. These are the types of solutions that each classification can lead to, and
they are as follows:

True positive (TP): the model detects metastatic tissue in the section and, indeed, the lymph
node presents it.

False positive (FP): the model detects metastatic tissue in the section, but the lymph node
has only healthy cells.

True negative (TN): the model does not detect metastatic tissue and, indeed, the lymph node
presents only healthy cells.
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False negative (FN): the model does not detect metastatic tissue in the section, but the lymph
node does present it.

These indicators can be summarized in what is known as the confusion matrix, which is exem-
plified showing the four alternatives graphically in Figure 3.4.
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Figure 3.4: Confusion matrix with the possible solutions in our problem.

Furthermore, using these indicators, more complex and informative metrics can be formulated
[42]:

Accuracy. It is the most intuitive metric and the one generally used in validation. It is calculated
using the quotient between the correctly classified categories and the totals. Its main limitation
is the lack of information: it is an excessively generic metric and does not give information on
how powerful the CNN is to identify metastasis or healthy tissue. Obviously, the higher this
value, the better, reaching the unit if all the predictions have been correct.

Accuracy =
TP + TN

TP + FP + TN + FN
(3.1)

Precision. Defines the power of the model to correctly classify a particular category. In the
present work, the main interest is to detect in which patches metastatic tissue exists. Therefore,
the precision will quantify the proportion of images that actually presented it over the total
images that have been classified as such, including the erroneous ones. Again, the higher the
value, the better. In the best case, FP=0 and therefore the precision will be the unit.

Precision =
TP

TP + FP
(3.2)

Recall. It quantifies the number of correct predictions of a certain category out of the total
of those that really belong to that same category. In this case, it measures the images that
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the model has correctly classified with metastasis over the total images that actually present it.
Recall is also known as true positive rate or sensitivity.

Recall =
TP

TP + FN
(3.3)

F1-Score. It is a weighted average between precision and recall, so it takes into account both
false positives (FP) and false negatives (FN). It is a less intuitive measure but more used than
accuracy when evaluating and comparing various models.

F1− Score = 2
Recall ∗ Precision
Precision+Recall

(3.4)

ROC curve. The ROC curve is one of the most relevant metrics for machine learning. It
confronts the true positive rate (y axis) with the false positive rate (x axis), the latter being
understood as the complementary probability of the specificity.

Specificity =
TN

TN + FP
= 1− FPR (3.5)

Where FPR is the false positive rate. The ROC curve is an excellent tool for observing the
ability of the model to separate between classes. To deepen about this measure, the interested
reader is referred to [103].

Area Under Curve (AUC). After studying the ROC curve, AUC is defined as the area under
it. Therefore, it is possible to quantify with a metric the power of the model to separate between
classes. As expected, the higher the AUC, the better the model.

3.2 Description of the proposed predictive models

This section describes in detail all the proposed Convolutional Neural Networks. In the first
part, the networks from scratch are exposed, that is, those designed by the author in its entirety
and that have not benefited from the use of transfer learning or fine-tuning, but have optimized
their parameters from scratch. In the second section, on the contrary, pre-trained network
architectures are illustrated to which fine-tuning has been applied to particularize them to our
problem. Specifically, the inherited CNNs are versions of those exposed in Section 2.3: VGG19,
Inceptionv3, ResNet50, Xception, DenseNet201 and MobileNet. The weights of these have been
adjusted in the ImageNet dataset.

3.2.1 Convolutional Neural Networks from scratch

Here are explained three CNNs designed from scratch, each with a higher level of sophistication
than the previous one. In this way, the first network will be limited to incorporating the elemental
layers and techniques, without including any exotic structure. This is, for example, convolutional
layers, dropout layers, the use of batch normalization and multilayer perceptron for classification.
The second network also includes the use of residual blocks. It draws from the architecture of
the first network, which is given greater depth thanks to the use of this technique. Finally, the
third network incorporates the inception blocks. An architecture based on a ResNet-Inception
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combination was chosen instead of integrating the inception modules in isolation, since it obtained
better results. Therefore, the details of each network are specified below. However, in a first
part, the characteristics that the three networks have in common are discussed, for example, the
use of data augmentation, the partitioning of the dataset or the pre-processing used.

It is relevant to highlight that the networks from scratch exposed in this section represent less
than the 10% of the total models tested in the experimental phase. During this phase, up to 35
models were proposed, varying the optimizers, different structures and combinations of residual
blocks and inception blocks, or top-levels. In short, the parameters and architectures of the three
models described below were empirically chosen based on criteria of classification capacity and
applicability to real environments.

First of all, it is necessary to mention what characteristics the three CNNs from scratch share.
On the one hand, basic pre-processing has been applied in all of them, both to images and
annotations. A factor of 1/255 has been applied to the images, so that the intensity of each pixel
is described by a number between 0 and 1 (the RGB space describes the intensity of each color
with 8 pixels, that is, with a value between 0 and 255). The reason is given by LeCun himself
in [54] and is that simply rescaling makes the back-propagation algorithm more efficient, with a
faster convergence. The annotations, on the other hand, have been transformed by means of a
binarization, that is, one-hot encoding has been applied to them. Thus, the categorical labels "0"
(non-cancer) and "1" (cancer) become 01 and 10, respectively. In addition, data augmentation
has been used to generate synthetic images in all three models. The manipulations used have
been rotations, zooms, flipping and cropping. It is important to mention that the implementation
of data augmentation in TensorFlow discards the original images, therefore, only the synthetic
ones are used in training. Logically, in the test no manipulation is applied to the images. The
loss function is binary cross-entropy in all cases (See Appendix B). Finally, the partitions of 15%
of the total images for the test and 20% of the training for validation are maintained, in addition
to a batch size of 32 both in training and test and a total of 50 epochs. The batch size and the
number of epochs have been chosen since they empirically show satisfactory results with all the
proposed models. In order to make a consistent comparison, these values have been maintained
for all CNNs, but in any case, in all of them, the training times were reasonable, in addition to
showing a tendency to stabilize with respect to the accuracy scores and the losses in the last
epochs. This implies that, in any case, the networks were sufficiently well trained. It is likely
that if a higher number of epochs had been chosen there could have been overfitting problems.

Model from scratch #1

Model from scratch #1 is illustrated in Figure 3.5. It is a shallow CNN, made up of three
convolutional blocks. Each block is characterized by a convolutional layer, batch normalization, a
second convolutional layer, another batch normalization, max pooling and dropout, in that order.
The two convolutional layers of each block are identical, with the same number of kernels, kernel
size 3x3, stride 1x1, valid-padding, ReLU activation, and Xavier initialization for the weights
(see Section 2.2). The number of kernels is increasing for each block, being 32, 64 and 128 for
the first, second and third blocks, respectively. The rest of the layers are the same in all blocks:
standard batch normalization, max pooling 2x2 and dropout with p = 0.25. These convolutional
blocks are followed by a multilayer perceptron, which classifies the extracted features. The
multilayer perceptron begins by applying a flattening to the feature vector, and then classifies
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using three fully-connected layers: the first with 512 neurons and ReLU activation, the second
with 128 neurons and ReLU activation, and the last, for classification, with two neurons – one per
category – and softmax function. The first two fully-connected layers are separated by dropout
with p = 0.25. Finally, the optimizer used in training is the Stochastic Gradient Descent (SGD),
with a learning rate = 0.001, momentum = 0.9 and using the Nesterov momentum (see Annex
A). The complexity of the definitive network is characterized by 4,549,538 parameters, of which
4,548,642 are trainable, and training had a computational cost of approximately 7.46 hours.
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Figure 3.5: Model from scratch #1.

Model from scratch #2

Model from scratch #2 is the one shown in Figure 3.6. Thanks to the incorporation of the residual
modules, this network is considerably deeper, both because there are more blocks and because
each block has a higher number of convolutional layers. The model is made up of eight blocks,
each consisting of a convolutional residual block followed by a max pooling and a dropout. It is
recalled that in the convolutional residual block the shortcut is also convolved, unlike the identity
residual block. In this way, each convolutional residual block is made up of three convolutional
layers – separated by a batch normalization – and a shortcut with another convolutional layer.
It is relevant to note that, in this case, unlike the previous one, batch normalization is applied
before ReLU activation – which, in fact, is the recommendation in the original paper. For each
block, the first and third layers have a kernel size of 1x1, while in the middle layer it is 3x3.
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Same-padding and a stride of 1x1 is used in all layers and the initialization of the weights is,
again, Xavier. A convolution is applied to the shortcut identical to that of the third layer of
each block. The number of kernels is increasing with the depth of the network, being for each
block the same for the first and second layers and the quadruple of these for the third and the
shortcut. Thus, the first block has filters [32, 32, 128], the second [64, 64, 256] and so on up to
the eighth with [1024, 1024, 4096]. Regarding the other layers (dropout, batch normalization and
max pooling) they are identical to those of the first CNN. It has been decided to keep dropout
as a regulator as it experimentally shows good performance in residual blocks [100]. After the
eighth block, a Global Average Pooling (GAP) is applied to reduce dimensionality and prevent
overfitting. GAP is a widely used technique on CNN that demonstrates excellent results, the
interested reader can be further informed in the paper [55]. The classifier used is a multilayer
perceptron identical to that of the previous CNN. Finally, the chosen optimizer is now Adam with
learning rate = 0.0001 (see Annex A). The complexity of the definitive network is characterized
by 34,403,106 parameters, of which 34,362,786 are trainable, and training had an approximate
computational cost of 6.94 hours.
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Figure 3.6: (a) Model from scratch #2 and (b) Convolutional_block [F1,F2,F3]
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Model from scratch #3

Finally, Model from scratch #3 is the one in Figure 3.8. This architecture uses inception blocks,
whose structure is explained in Figure 3.7. The difference with respect to the previous is the use
of a ResNet-Inception module, which combines the characteristic blocks of both architectures.
The ResNet-Inception module is the same as the convolutional residual block of the previous
CNN, but now the convolutions are based on inception modules, that is, three convolutions in
parallel of different resolutions (1x1, 3x3, 5x5) are computed and subsequently concatenated. In
our case, the three parallel convolutions use same-padding, Xavier initialization, and the same
number of kernels. They therefore differ only in kernel size. A max pooling is also carried out in
parallel. In addition, it is recalled that before the 3x3 and 5x5 convolutions and after the max
pooling, a 1x1 convolutional layer is applied, which will have the same characteristics, but with
half the filters. In the proposed model, only one ResNet-Inception module is used as the first
block. Therefore, blocks 2 to 8 are identical to the second model. Then a GAP and the classifier
are incorporated, which, again, are identical to the those used in previous models. Finally,
the chosen optimizer is Adam with learning rate = 0.0001 (see Annex A). The complexity of
the final network is characterized by 35,172,066 parameters, of which 35,129,826 are trainable,
and training had an approximate computational cost of 18.43 hours. It is precisely this high
computational cost that has limited the implementation of more ResNet-Inception modules.
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Figure 3.7: Inception_block with F filters. Structure of the inception blocks used in Model from scratch #3.
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Figure 3.8: (a) Model from scratch #3 and (b) ResNet-Inception_block [F1,F2,F3]

The three implemented CNNs from scratch are thus defined. Chapter 4 presents the results of
these models in our problem in particular, using specialized machine learning metrics, such as
those described in Section 3.1.3. In addition, its performance is compared with that obtained
with other popular networks to which fine-tuning is applied to adapt them to the present problem.
The following section summarizes these networks and the design decisions that have been made
for their fine-tuning.
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3.2.2 CNNs based on fine-tuning of pre-trained architectures

In Section 2.3 transfer learning and fine-tuning were explained as two extremely useful techniques
applicable to any image classification problem. This section presents the CNNs resulting from
applying fine-tuning to some of the most popular architectures that present state-of-the-art
results with the ImageNet dataset. In fact, the base-models will have the weights optimized
after classifying the ImageNet images. To these models, fine-tuning will be applied, retraining
some of the deeper layers and incorporating a classifier, since only the feature extraction part
is inherited. Specifically, the selected models are: VGG19, Inceptionv3, ResNet50, Xception,
DenseNet201 and MobileNet.

First of all, it is important to highlight how the different architectures have been configured and
trained, since the process has been the same for the six models. First of all, the architecture
is inherited with the optimized weights in ImageNet, not including the top-level, that is, the
classifier. The classifier is incorporated into this base-model, consisting of a Global Average
Pooling and three fully-connected layers: the first of 1024 neurons and ReLU activation, the
second 512 and this same activation, and the third of 2 neurons – since there are two possible
categories – and softmax function. The fully-connected layers are separated by dropout with
p = 0.2. The classifier is identical on all models except the VGG19, as will be indicated. Next,
a brief 3-epochs training is carried out, but optimizing exclusively the top-level. This will serve
to initialize the classifier weights with reasonable values. Fine-tuning is then applied, unfreezing
some of the deeper convolutional blocks of the base-model. The number of layers to be fine-
tuned has been empirically obtained, performing three to five tests per model. Finally, the
network is trained with the optimizer and the indicated loss function. The optimizer is specific
to each model and the loss function is binary cross-entropy (see Annex B). Regarding the training
images, data augmentation has been applied in the same conditions as in the CNNs from scratch
of the previous section. Finally, the annotations have been transformed to one-hot, and the
pre-processing for the images is the one that each of the inherited models used when classifying
ImageNet, so that in each case it will be different. The batch size and number of epochs are,
again, 32 and 50, respectively.

For the VGG19, fine-tuning is applied to convolutional blocks 2 to 5, leaving only the first
block frozen. In other words, practically the entire network is optimized. Also, in this case
the classification function is sigmoid instead of softmax and with two neurons instead of one.
The reason is that with softmax and with one-neuron sigmoid it was not possible to optimize the
weights during training and, therefore, the maximum accuracy score obtained was unsatisfactory,
probably because the gradient descent was trapped in a local minimum. This is particularly
curious, especially since with the sigmoid function it is normal to use only one neuron. In any
case, the two-neurons sigmoid was the one that obtained the best results and, therefore, is the
selected architecture. The optimizer used is SGD with learning rate = 0.001, decay = 0.001/50,
momentum = 0.9 and without using the Nesterov momentum (see Annex A). The complexity
of the definitive network is characterized by 25,269,826 parameters, of which 25,009,666 are
trainable, and training had an approximate computational cost of 6.54 hours.

In Inceptionv3 fine-tuning is applied from layer 172 onwards – the model has 310 hidden lay-
ers. The optimizer used is SGD with learning rate = 0.0001, momentum = 0.9 and with
Nesterov momentum (see Annex A). The complexity of the definitive network is characterized
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by 24,426,786 parameters, of which 18,839,938 are trainable, and training had an approximate
computational cost of 6.28 hours.

In ResNet50 fine-tuning is applied from layer 103 onwards – the model has 174 hidden layers.
The optimizer used is Adamax with learning rate = 0.001 (see Annex A). The complexity of the
definitive network is characterized by 26,211,714 parameters, of which 22,074,882 are trainable,
and their training had an approximate computational cost of 7.78 hours.

In Xception fine-tuning is applied from layer 76 onwards – the model has 131 hidden layers. The
optimizer used is Nadam with learning rate = 0.0001 (see Annex A). The complexity of the
definitive network is characterized by 23,485,482 parameters, of which 15,868,290 are trainable,
and training had an approximate computational cost of 6.67 hours.

In DenseNet201 fine-tuning is applied from layer 481 onwards – the model has 706 hidden layers.
The optimizer used is SGD with learning rate = 0.001, decay = 0.001/50, momentum = 0.9

and without Nesterov momentum (see Annex A). The complexity of the definitive network is
characterized by 20,814,914 parameters, of which 9,475,330 are trainable, and training had a
computational cost of approximately 7.13 hours.

Finally, in MobileNet fine-tuning is applied from layer 44 onwards – the model has 86 hidden
layers. The optimizer used is Adam with learning rate = 0.00001 (see Annex A). The com-
plexity of the definitive network is characterized by 4,804,290 parameters, of which 4,513,282 are
trainable, and training had an approximate computational cost of 6.55 hours.

Table 3.1 summarizes the characteristics of the six models based on fine-tuning, indicating the
frozen layers, the optimizers used in their training, the total and trainable hyperparameters, and
the computational cost of their training, understanding this as the time taken in the same.
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Model Frozen Total Optimizer Parameters Cost (hours)
layers layers (trainable)

VGG19 6 21 Extended SGD: 25,269,826 6.54
decay and momentum (25,009,666)

Inceptionv3 171 310 Extended SGD: 24,426,786 6.28
momentum and Nesterov (18,839,938)

ResNet50 102 174 Adamax 26,211,714 7.78
(22,074,882)

Xception 75 131 Nadam 23,485,482 6.67
(15,868,290)

DenseNet201 480 706 Extended SGD: 20,814,914 7.13
decay and momentum (9,475,330)

MobileNet 43 86 Adam 4,804,290 6.55
(4,513,282)

Table 3.1: Summary of the models based on fine-tuning. The optimizer, the frozen and total layers, the trainable
and total parameters and the computational cost in training are indicated..

All the models based on fine-tuning used in the classification of the present problem are thus
defined. Chapter 4 illustrates the results of each of these proposals, along with those of the
CNNs from scratch
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Results

Once the models are proposed, this chapter shows the results obtained in the classification.

It is important not to forget what the main objective of the system is, since it will serve to
interpret the results obtained, especially when generalizing to the test set. It is recalled, therefore,
that the proposed system aims to detect metastatic tissue in patches of axillary lymph node
sections stained with H&E.

In a first section, the results obtained by the CNNs designed from scratch are exposed, while
the second section will summarize the performance of models based on fine-tuning of pre-trained
architectures. In both cases, the learning curves are shown first and then the value of various
metrics that evaluate the ability of the model of generalization to an independent dataset. The
metrics are those described in Section 3.1.3: accuracy, precision, recall, F1-score, specificity, and
AUC, in addition to displaying the confusion matrices and ROC curves. Finally, in the third
section, it is demonstrated the usefulness of Grad-CAM to validate the models, providing the
pathologist with a tool to visualize the network activations.

4.1 Convolutional Neural Networks from scratch

In Section 3.2.1 three CNNs from scratch models are presented, each more sophisticated than the
previous one, which integrate the techniques exposed throughout this document. The evaluation
of these three models is developed in three parts. First, the learning curves are displayed,
where the losses obtained by computing binary cross-entropy are presented together with the
accuracy for each of the 50 epochs, both for the training and for the validation. Second, the
confusion matrices are shown, indicating the meaning of each of the solutions. Third, the value
of calculating the metrics in Section 3.1.3 is presented, as well as the ROC curves linked to each
model. The analysis of these results is carried out in the Discussion (Chapter 5).

The learning curves show the losses and accuracy of the model in each of the epochs, both in
training and validation. It is to be hoped that as the epochs increase, the better adjusted will be
the model weights and, therefore, the lower the losses and the higher the accuracy scores. In the

43



Chapter 4. Results

case of training this will always happen since the losses and the accuracy are computed on the
same dataset on which the weights have been optimized. However, in the validation the model
is evaluated in an independent set and, therefore, it will serve to study if the model learns to
generalize with increasing epochs or if, for example, there are overfitting problems. Figure 4.1
shows the curves of the three models from scratch.

(a) (b)

(c)

Figure 4.1: Learning curves for (a) Model from scratch #1 (Initial model) (b) Model from scratch #2 (Model
with residual blocks) and (c) Model from scratch #3 (ResNet-Inception).

Now, Figure 4.2 shows the confusion matrices obtained when evaluating the models in the test
set, that is, the independent set of 33,025 images. The x-axis represents the predictions and
the y-axis the true labels. In each possible solution both the absolute and relative values are
indicated. Figure 3.4 in Section 3.1.3 showed the equivalence of this problem to the general
confusion matrix: true positive, true negative, false positive, false negative.
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(a) (b)

(c)

Figure 4.2: Confusion matrices for the models (a) Model from scratch #1 (Initial model) (b) Model from scratch
#2 (Model with residual blocks) and (c) Model from scratch #3 (ResNet-Inception).

Finally, Table 4.1 summarizes the scores for each of the three models on the metrics defined in
Section 3.1.3.

Model Accuracy Precision Recall F1-Score Specificity AUC

Model from scratch #1 89.97 84.68 91.83 88.11 88.71 96.40
Model from scratch #2 93.95 95.29 89.48 92.29 96.99 98.30
Model from scratch #3 94.39 91.85 94.51 93.16 94.30 98.60

Table 4.1: Figures of merit for the models from scratch.

The ROC curves can be seen in Figure 4.3. These face the true positive rate and the false positive
rate. They are also used to calculate the AUC.
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(a) (b)

(c)

Figure 4.3: ROC curves for the models (a) Model from scratch #1 (Initial model) (b) Model from scratch #2
(Model with residual blocks) and (c) Model from scratch #3 (ResNet-Inception).

4.2 CNNs based on fine-tuning of pre-trained architectures

Similarly, this section presents the results obtained by the six pre-trained architectures to which
fine-tuning has been applied: VGG19, Inceptionv3, ResNet50, Xception, DenseNet201 and Mo-
bileNet (Section 3.2.2). In this way, the learning curves and the confusion matrices are visualized,
in addition to the results of the metrics and the representation of the ROC curves.

First, Figure 4.4 shows the learning curves. Again, the values of the losses and accuracy in the
50 epochs, both for training and for validation, are represented.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Learning curves for the pre-trained models (a) VGG19 (b) Inceptionv3 (c) ResNet50 (d) Xception
(e) DenseNet201 (f) MobileNet.

Second, the confusion matrices linked to the evaluation in the test set of the six models are
presented in Figure 4.5.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Confusion matrices for the pre-trained models (a) VGG19 (b) Inceptionv3 (c) ResNet50 (d) Xception
(e) DenseNet201 (f) MobileNet.
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Finally, Table 4.2 shows the metrics obtained by each model. In addition, Figure 4.6 shows the
representations of the ROC curves.

Model Accuracy Precision Recall F1-Score Specificity AUC

VGG19 95.75 98.00 91.37 94.57 98.73 99.10
Inceptionv3 93.29 91.69 91.73 91.71 94.35 98.00
ResNet50 92.17 97.02 83.21 89.59 98.27 97.10
Xception 94.06 96.28 88.76 92.37 97.67 98.50

DenseNet201 94.19 94.38 91.07 92.70 96.31 98.60
MobileNet 94.58 96.04 90.34 93.10 97.47 98.60

Table 4.2: Figures of merit for the pre-trained models.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: ROC curves for the pre-trained models (a) VGG19 (b) Inceptionv3 (c) ResNet50 (d) Xception (e)
DenseNet201 (f) MobileNet.

This defines the behavior of all models – both from scratch and inherited networks – in training,
validation and test, using learning curves and specific machine learning metrics. In Chapter
5, we discuss these results, giving them meaning in our particular problem. In this way, its
classification capacity and its suitability for application in a practical environment, for example,
in a hospital, are evaluated.
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4.3 Visualization of the relevant histopathological patterns with
Grad-CAM

One of the main problems of deep learning and, more specifically, of CNNs is the difficulty of
its interpretation. CNNs are understood as black-boxes capable of solving any classification
problem, which implies that on many occasions the network designer is unaware of the actual
structure of the network, the activations of the neurons – which represent the identified patterns
– or, simply, what the final prediction is based on.

Faced with this problem, Selvaraju et. al created the Gradient-weighted Class Activation Map-
ping (Grad-CAM). The foundations and operation of this technique can be found in the original
paper [79]. Grad-CAM allows to visualize the activations of the network, so that the designer is
able to validate its operation, checking that it correctly identifies the patterns to make a decision
based on them. Therefore, it is a useful tool for debugging the system.

The implementation of Grad-CAM in our models provides us with a tool for understanding
CNNs. It is logical the reluctance to use CNNs in sensitive tasks, such as the diagnosis of breast
cancer, if these are presented as black-boxes, of which their operation is not really known and on
what it is based to classify. With Grad-CAM, the pathologist will be able to validate the func-
tioning of the networks, verifying that the patterns identified by them are coherent and actually
lead to the identification of tissue with metastasis. Furthermore, Grad-CAM can even identify
patterns that were previously unknown by the experts in this diagnosis. Therefore, the utility
of this technique is maximum in sensitive diagnoses such as the one of breast cancer. Figure 4.7
shows some examples of the use of Grad-CAM in our database, specifically in the classification
made by the VGG19 pre-trained network, since it is the one that presents the highest accuracy
scores.

Figure 4.7: Grad-CAM of four randomly selected images in our dataset, all correctly classified as cancerous.
The classifier model used is the one based on VGG19. The yellow areas are those in which the network iden-
tifies patterns to classify the image, therefore, they are supposed to be the sections of the lymph node where
the metastatic tissue is located. The same exercise could be done with sections without cancer, observing the
histological features identified by the network to rule out the presence of metastases.
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Discussion

Throughout Chapter 2, an exhaustive description of the nine proposed models has been de-
veloped: three CNNs from scratch and six architectures based on fine-tuning of pre-trained
networks. In this chapter, the results are discussed. The analysis will be made of all the models
simultaneously, without maintaining the separation of the previous chapter. In this way, based
on the different metrics and graphs, the suitability and classification capacity of the models is
defined, highlighting those that potentially would have better results in a real environment.

In addition, in a second section, the performances of these models are compared with those
obtained using traditional machine learning techniques.

5.1 General discussion

Here all the results obtained in Chapter 4 are analyzed. In this way, the learning curves of
the models are first discussed, identifying if any have any particular characteristic, such as
the presence of overfitting. Second, the confusion matrices are studied, giving meaning to the
different solutions that each model presents. Finally, the metrics obtained by each model are
compared, indicating which is more suitable for certain applications.

Figures 4.1 and 4.4 showed the learning curves of the models from scratch and those based on
fine-tuning, respectively. In general terms, the behavior of training and validation is adequate in
the nine models: there is a tendency to increase accuracy and decrease losses, both in training
and in validation. This means that the selected optimizers are able to find the absolute minimum
or an adequate local minimum of the loss function, and gradually converge. It is noteworthy
that the pre-trained models have more stable learning, since they start from already optimized
weights. The model from scratch #1 is particularly unstable, especially in the early epochs.
In none of the graphs an evident overfitting is identified, therefore, the positive effect of batch
normalization, dropout and data augmentation is evident. Finally, it is identified that in some
pre-trained models – such as MobileNet and DenseNet – in the initial epochs the training losses
are higher than the validation losses or, what is the same, the accuracy is lower. This is due to
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the fact that dropout is not applied in the validation and, therefore, it may show better results
than the training itself.

The CNNs confusion matrices can be seen in Figures 4.2 and 4.5. These give a general idea about
the successes and errors of each model. The two errors they can make are diagnosing a healthy
lymph node with cancer (false positive) and not detecting cancer in a lymph node that does
present metastasis (false negative). Both errors are assumed to be equally serious, and therefore
one model will be no better than the other based on which of the two errors it makes the least.
Of the three models from scratch, the one that best detects metastatic tissue is the model from
scratch #2 (97%), while the one that best identifies healthy tissue is the model from scratch #3
(95%). However, in average terms the one that is most successful and, therefore, has the best
applicability will be the model from scratch #3. On the other hand, the VGG19, ResNet50 and
Xception pre-trained models obtained excellent results to identify cancer, with 99%, 98% and
98% respectively. Of these three, the one that best detects tissue without metastasis is VGG19
(91%). Inceptionv3 is the most accurate in this diagnosis (92%). If we take into account all the
models, it could be concluded that VGG19 and model from scratch #3 have the best applicability
in a real environment, presenting good results for classifying any type of lymph node section.

Finally, Tables 4.1 and 4.2 summarized the most significant metrics for the present problem.
Based on these, it can be concluded that:

• The model with the best accuracy is the VGG19 pre-trained network, with 95.75%. There-
fore, in general terms, it will be the one that best classifies the lymph node sections. How-
ever, this metric does not give information on whether it is best in detecting cancer or
healthy tissue.

• The model with the best precision is, again, the VGG19 with 98%. Therefore, it is the
CNN that makes the least mistake when it comes to detecting cancer, since it precision
quantifies the ratio between the correct predictions of cancer and the total ones made with
this verdict.

• The model with the best recall is the model from scratch #3 with 94.51%. Therefore, it
is the model that has the best capacity to detect tissues with metastases. This metric only
takes into account patches with lymph nodes that present cancer.

• If F1-Score is used (which serves as the average between precision and recall), the best
model will be the one based on the VGG19 architecture with 94.57%, the model from
scratch #3 occupying the second position with 93.16%.

• The model with the best specificity is, again, the VGG19 with 98.73%. It is the most
powerful model for identifying healthy tissue.

• If we look at the AUC metric, the best model is VGG19 with 99.10%.

It seems that it is not possible to determine exactly which is the best model. Although the one
based on the VGG19 pre-trained network dominates on most metrics, its recall is considerably
low compared to, for example, the model from scratch #3. Therefore, the usefulness of each
proposal will depend on the application (e.g. the model from scratch #3 is better at detecting
cancer, but VGG19 makes less mistakes) and, in any case, it should be reviewed by an expert
pathologist.
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What is demonstrated is that the incorporation of more sophisticated techniques in the networks
from scratch has allowed the creation of CNNs capable of competing with powerful pre-trained
networks modified by fine-tuning. The use of residual blocks and the ResNet-Inception architec-
ture provide models with better classification capacity and, ultimately, make them more useful
and applicable to real and sensitive environments, such as cancer diagnosis in hospitals. Model
from scratch #3 represents the use of these techniques, and is capable of outperforming all
pre-trained networks in the recall metric.

In addition, all pre-trained networks have been found to perform generally well. Specifically, for
our particular problem, the VGG19, MobileNet and DenseNet networks present very satisfactory
results in practically all the metrics. VGG19 is imposed as the best in all aspects except in the
recall, where it is surpassed by Inceptionv3, model from scratch #1 and model from scratch #3.
It is relevant to note that VGG19 is the simplest of the networks along with MobileNet, and
they are exactly the ones that seem to be most useful in the present problem. Precisely the
deepest networks, such as ResNet50 and Inceptionv3, are outperformed in accuracy both by the
rest of pre-trained and by the models from scratch #2 and #3. DenseNet – which is the deepest
network – presents considerably good results overall. Table 5.1 summarizes the order of the nine
proposals from best to worst classification capacity. For simplicity, only accuracy has been taken
into account.

Model Accuracy

VGG19 95.75
MobileNet 94.58

Model from scratch #3 94.39
DenseNet201 94.19
Xception 94.06

Model from scratch #2 93.95
Inceptionv3 93.29
ResNet50 92.17

Model from scratch #1 89.97

Table 5.1: Accuracy scores for all the proposed models.

In addition, another criterion to take into account is the memory occupation of each of the
models. Table 5.2 summarizes the total and trainable parameters, and the computational cost
of the training – in hours – of the three models from scratch and the six based on fine-tuning.
Memory occupation is proportional to the number of parameters of the CNNs, therefore, it
is easy to see that, in average terms, the models based on fine-tuning have a lower memory
occupancy than the models from scratch – with the exception of the model from scratch #1,
which is particularly simple. On the other hand, within the fine-tuning based models, the
VGG19, ResNet50 and Inceptionv3 are those characterized by a greater number of parameters.
In contrast, MobileNet has a significantly lower number, up to six times less than these three.
Memory occupancy is a fundamental variable in certain environments, for example, if the device
that uses the network has a reduced memory capacity, such as a mobile phone. In this case,
the use of VGG19 could be rejected despite having the best results. Failing that, considering
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the number of network parameters, MobileNet could be the best solution, as it is also the model
with the second best results in terms of accuracy score.

Model Total parameters Trainable parameters Cost (hours)

Model from scratch #1 4,549,538 4,548,642 7.46
Model from scratch #2 34,403,106 34,362,786 6.94
Model from scratch #3 35,172,066 35,129,826 18.43

VGG19 25,269,826 25,009,666 6.54
Inceptionv3 24,426,786 18,839,938 6.28
ResNet50 26,211,714 22,074,882 7.78
Xception 23,485,482 15,868,290 6.67

DenseNet201 20,814,914 9,475,330 7.13
MobileNet 4,804,290 4,513,282 6.55

Table 5.2: Parameters – both total and trainable – and computational cost – in hours – of all the proposed
models.

Finally, through Grad-CAM we have been able to visualize network activations, so that we could
identify the patterns on which a CNN – specifically VGG19 – is based to classify the images. This
serves both to validate the proposed model – as the pathologist can verify its correct functioning
– and to detect unknown patterns, with special interest in complex diagnoses such as that of the
present work.

5.2 Comparison with other traditional machine learning
techniques

One of the objectives indicated in Chapter 1.4 was to compare Convolutional Neural Networks
with other traditional machine learning techniques, such as k-Nearest Neighbors (k-NN), Support
Vector Machines (SVM) and Random Forest.

CNNs are imposed as the state-of-the-art solution in Computer Vision since they aspire to classify
any type of problem with excellent results. However, this is at the cost of high computational
times – requiring GPU-acceleration – and the need to learn through huge databases. In the
Motivation (Section 1.1), it was explained that, in parallel to the present work, the thesis related
to the final degree project in Business Administration and Management [1] was prepared, whose
author is also Javier Abad Martínez. This thesis addresses the same problem as the current
document, but proposing solutions based on traditional machine learning algorithms. Therefore,
this section compares the results obtained using both approaches: traditional machine learning
and Convolutional Neural Networks.

It is important to highlight that this section does not aspire to be a frontal comparison, since
the experimental conditions were not the same and, therefore, it would not be fair. For example,
for training in traditional machine learning techniques, we used five times fewer images, and
the test images were different, which makes any comparison of accuracy score unfair. Also, the
framework used in training was not TensorFlow but Scikit-learn, which does not support GPU-
acceleration. GPU-acceleration means that processing speeds are multiplied by up to a factor of
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x50 when compared to CPU-based processing. In short, this section is only intended to illustrate
a different approach to CNNs, to highlight the advantages and disadvantages of each technique.

Comparison criteria are computational cost and classification capacity. The computational cost
is evaluated through the training and test times. In this case, it has been assumed that the
time is directly proportional to the number of images and that its distribution is such that it
invests the same time for all the images. Thus, to obtain the values of “Training time per image”
and “Test time per image”, the total training time and the test time have simply been divided
by the number of images in each one, that is, 187,000 and 33,025 respectively. Regarding the
classification capacity, accuracy has been chosen for simplicity.

The CNNs chosen are the five with the best accuracy scores: VGG19, MobileNet, model from
scratch #3, DenseNet and Xception. They are compared with the three techniques that obtained
the best results in [1]. In all three, color histograms [40] are used as feature extractors, using
a different classifier for each one: k-Nearest Neighbors [17], Support Vector Machines [93] and
Random Forest [8]. The interested reader is recommended to delve into these techniques in the
papers indicated in the references. Table 5.3 shows the values of each of the models for these
metrics.

Model Training time Test time Accuracy
per image (ms) per image (ms)

VGG19 119.52 0.73 95.75
MobileNet 126,.10 0.58 94.58

Model from scratch #3 354.80 2.57 94.39
DenseNet201 137.26 1.15 94.19
Xception 128.41 0.58 94.06

Color + k-NN 1.65 5.87 89.86
Color + SVM 460.13 10.96 89.73

Color + Random Forest 2.07 0.04 89.29

Table 5.3: Training times, test times and accuracy scores for the five best CNNs and the three best models
based on traditional machine learning, obtained in [1]

These data are located in Figure 5.1 and Figure 5.2. Figure 5.1 represents the time per image
that each model requires in the training set to subsequently obtain an accuracy score in an
independent test set. In contrast, Figure 5.2 reports the time it takes for the model to evaluate
the test set and obtain the indicated accuracy.
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Figure 5.1: Comparison between traditional models and CNNs based on their accuracy and training times (in
milliseconds). Circles represent the former, while triangles represent the latter.

Figure 5.2: Comparison between traditional models and CNNs based on their accuracy and test times (in
milliseconds). Circles represent the former, while triangles represent the latter.

Models based on CNNs are indicated with triangles. All of them obtain considerably better
accuracy scores than any of the other models. Regarding training times, they are much higher
than most models based on traditional machine learning, with the exception of those that use
SVM as a classifier. In particular, the network from scratch has a high computational cost.
This is due to the CNNs training process, based on epochs, which implies that they adjust their
models as many times as epochs have been indicated by the programmer. One of the problems
of this system is the danger of overfitting, which is, in fact, one of the main criticisms of CNNs.
In addition, CNNs have used a much bigger database, specifically by a factor of five. Finally,
the test times are reasonable, standing at better values than most traditional models.
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It is recalled that, in any case, CNNs have been accelerated by GPU. If they had not, the times
could have been up to fifty times higher. This would imply that the training lasted several days.
This is one of the reasons that CNNs have become so popular recently: accelerated GPU-based
computing. However, in environments where there are time restrictions and there is no GPU,
traditional machine learning models are very likely to be useful, despite having lower accuracy
scores. Similarly, special implementations of traditional machine learning models could also make
use of GPUs, reducing times enormously. Furthermore, it is recalled that CNNs require large
databases. Therefore, in case this resource is scarce, there can be interesting alternatives based,
for example, on k-Nearest Neighbors, Support Vector Machines or Random Forest.

It can be concluded that the choice of model will depend on the environment and the application.
With GPU-acceleration and many images, CNNs are most likely the best solution to a Computer
Vision problem, however, overfitting must be controlled and tests must be done in independent
test sets to fully validate the models. On the contrary, when there is a temporary restriction –
or GPU acceleration is not possible – or the number of images is low, and the accuracy score is
not relevant – for example, if it is going to be reviewed later by an expert – it is possible that
traditional machine learning models are more convenient.

5.3 Limitations

This section highlights the assumptions, possible biases and simplifications taken in the devel-
opment of the project. These come both from the database itself and from the techniques used
and, therefore, limit the conclusions and generalizations that have been reached.

Regarding the original database, it had several limitations, many of them related to the simulation
of the pathologist’s exercise as the classifier of the patches. The database has been enriched
with images that do show metastatic tissue in order to have a significant number of images
in each of the categories. However, this diagnosis is not the usual one in the routine work of
a pathologist, where, in most cases, the sentinel axillary lymph nodes (SLN) do not present
metastases. Therefore, the comparison of the proposed models with the clinical reality of the
expert pathologists is not totally fair. In addition, in the usual exercise of their profession,
pathologists have more factors when defining their diagnosis and are not based exclusively on
SLN sections. This, in short, makes comparing the performance of algorithms and pathologists
more unfair.

On the other hand, the models have been specifically trained to exclusively discriminate between
metastatic and non-metastatic tissue. Therefore, they do not have the ability to diagnose other
diseases that could be present in the lymph nodes, such as lymphomas, sarcomas, or infection.
The detection of these diseases is relevant in the routine diagnosis of pathologists and has not
been incorporated in the present work. Therefore, again, the conditions in which this work has
been carried out do not fully emulate clinical reality.

Furthermore, the images used are a simplification of the original database of the Camelyon16
Challenge. The original database was made up of WSI of higher resolution and, therefore, with
more information. The current one, on the other hand, is made up of patches resulting from
sampling the WSI, saved in lower resolution formats, such as .tif. Additionally, the test set was
not available, so the number of total images was reduced compared to the original dataset.
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Finally, the use of Google Colab VMs has meant a limitation at the level of computational
resources for creating more sophisticated networks from scratch. Model from scratch #3 already
had a very long training time, which increased exponentially with the addition of more ResNet-
Inception blocks. One of the problems of using Google Colab is that the sessions cannot run
for more than 24 hours and, therefore, it was not possible to carry out experiments with other
models that could possibly have outperformed those exposed in this document.
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Conclusions and future work

6.1 Conclusions

Finally, this section presents the final conclusions of the work. These are directly identified with
the objectives established in Section 1.4. The conclusions are as follows:

• The diagnosis of the stage of breast cancer based on lymphatic spread is essential when
defining a prognosis and a treatment. Here the detection of metastasis in sentinel axillary
lymph nodes (SLN) acquires special relevance. Therefore, its correct and early diagnosis is
essential to combat one of the main causes of death in women.

• It has been possible to design models based on Convolutional Neural Networks capable of
detecting metastatic tissue from sections of SLN stained with H&E. Therefore, the appli-
cability of deep learning and, more specifically, of CNNs in extremely sensitive fields such
as medical imaging is evident. The proposed networks present good enough performances
for their integration and use in hospitals, for example, helping in the treatment of patients
giving an early diagnosis, so that the pathologist starts from a base when defining the final
diagnosis. Another implementation could be the use of these algorithms after the pathol-
ogist’s diagnosis, so that it can be contrasted and reviewed in the case of issuing different
verdicts.

• It has been shown that it is possible to create models from scratch capable of competing
with some of the most popular pre-trained networks. Furthermore, the increase in the so-
phistication of the network has gone hand in hand with a better classification capacity and,
ultimately, greater utility and applicability in hospitals. The use of regularizing techniques
such as dropout, batch normalization and data augmentation has served to prevent over-
fitting, which is imposed as one of the biggest problems present in CNN training. Finally,
the integration of the residual and inception modules has served to create a unique and
particular architecture for the present problem, with quite good results in the detection of
metastatic tissue in axillary lymph nodes.
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• The great usefulness of fine-tuning in virtually any classification problem and, more specif-
ically, medical imaging has been exposed. The use of this technique in pre-trained architec-
tures – such as VGG19, ResNet50 or MobileNet – provides the designer with a very powerful
tool to achieve good results with relatively fast and stable training, since it benefits from
networks with previously optimized weights. The results of the pre-trained networks have
been satisfactory regardless of the inherited base-model, the one based on VGG19 and Mo-
bileNet having an especially good performance. Specifically, MobileNet is characterized by
a smaller number of parameters and, therefore, with less memory occupation, a criterion
to take into account in certain environments. In short, all these networks could have an
application in hospitals, for example, by reviewing the initial diagnosis of the pathologist,
as discussed above.

• A comparison between CNNs and other traditional machine learning techniques has been
developed. Although it has not been totally fair, it has been possible to identify some
CNN requirements that other techniques do not need, such as huge databases and high
computational costs, which require GPU-acceleration. In any case, it is concluded that it is
important to be familiar with both spheres, the most sophisticated and the most traditional,
and that the applicability of each one will depend on the specific problem and the available
resources.

• It has been possible to develop a tool based on Grad-CAM to facilitate the understanding
of the applicability of deep learning and CNNs in medical imaging. The use of Grad-CAM
– exemplified in the network based on VGG19 – allows the pathologist to visualize the
patterns that the network identifies to detect cancer, so that the expert can validate its
correct operation. Furthermore, this specific diagnosis, based on the extraction and analysis
of the sentinel axillary lymph node, stood out for being especially complex, leading experts
to error on many occasions. Therefore, the proposed technique also makes it possible to
identify previously unknown patterns that can be used for later classifications or to start
new investigations in the field.

• Furthermore, this project has a dimension and utility linked to sustainable development,
that is, it has an environmental, social, and economic component. The author supports the
integration of machine learning techniques into any field, especially the medical field. It
has been demonstrated that democratizing these technologies has a clear social value, since
they help to deal with extremely sensitive issues such as breast cancer diagnosis, serving
as support for the pathologist and in no case serving as a substitute for it. In addition,
computational cost has been studied as a variable to take into account due to the carbon
footprint. Using simpler models like k-Nearest Neighbors and Random Forest instead of
CNNs has been shown to help minimize this impact.
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6.2 Future work

Finally, in this section some possible future work routes are indicated, to improve the system
proposed in this document and potentially obtain better results.

In the present work, several deep learning solutions have been investigated, however, all of
them based on Convolutional Neural Networks. It would therefore be interesting to compare the
results obtained with those of other deep learning techniques with state-of-the-art performance in
medical imaging, such as Generative Adversarial Networks (GANs) or Deep Boltzmann Machines
(DBMs). Some successful examples of these techniques are those presented by Suk on the use of
DBMs in the detection of Alzheimer’s disease [87] or those presented by Yi et al. in the literature
review [99] on the usefulness of GANs in medical imaging.

Furthermore, one could experiment with the combination of the CNNs presented in this document
and the traditional algorithms of [1]. One of the main difficulties of traditional machine learning
is the extraction of representative features of the images. Therefore, models could be designed
whose features extraction was carried out with CNNs and the classification with algorithms such
as k-Nearest Neighbors, Support Vector Machines or Random Forest, instead of with a multilayer
perceptron.

Another problem that could be addressed is the shortage of labelled images. It is a prevalent
problem in medical imaging, to which is added the privacy of patients and the use of sensitive
information, which often leads to reluctance to share their personal data. In addition, it is
especially complex in diagnosis such as the one in the present work, where the work of the
pathologist in classifying is of fundamental importance. Therefore, unsupervised, semi-supervised
or weakly supervised learning models could be proposed, which do not depend entirely on this
labelling.

It would also be interesting to refine the proposed model, for example, by adding filters that
highlight the colors of the lymph node sections and thus make it easier to identify the patterns.
For example, it is proposed to improve the brightness and saturation of the images, as this could
potentially have an impact on better classification capacity and, ultimately, higher accuracy
scores.

Finally, some of the limitations raised in Chapter 5.3 could be overcome. The current database
is a simplification of the original (Camelyon16 Challenge), therefore, to make sure of the classifi-
cation capacity of the proposed models, they could be tested with these WSIs that, in addition,
will have a better resolution and will give more information for the classification. Obviously,
this change would involve incorporating a part of image and database treatment into the system,
since the handling of WSIs is more complex than that of images in .tif format.

In the case of implementing all of the above, it would result in a more real system and potentially
with greater classification capacity, in short, a more reliable application in hospitals.
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Appendix A

The gradient descent algorithm

A.1 Mathematical background

The gradient descent algorithm is one of the most popular and used in machine learning, funda-
mentally serving as the basis of the Neural Networks learning mechanism. The principle of the
descent by gradient is the descent by the slope of a surface that represents the loss function of
the system. In this way, with each epoch the losses will be minimized by optimizing the weights
accordingly, until the absolute minimum of the function is located and converged, or at least a
local minimum that leads to sufficiently good results. This concept is illustrated in Figure A.1.

Figure A.1: Weights update is done by gradient descent, taking steps in the opposite direction to the gradient
of the loss function. The optimization process is similar to the exploration of a surface, looking for its minimum.
From Pattern recognition and machine learning [7], by C. M. Bishop, 2006

Where wi are the weights, in this case, of the two layers of neurons that make up this network.
E(w) is understood as the loss function to be minimized. Furthermore, the non-linear relation-
ships between E and the neural network weights wi mean that the error surface is not perfectly
convex. In fact, there will be several local minimums, so it will not always be necessary, as
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previously mentioned, to find the absolute or global minimum, but there may be local minimums
with sufficiently good results. In general, all parameters of the model, including the weights wi,
are noted as θ.

Due to the absence of an analytical solution, the gradient descent opts for an iterative process
that achieves a value of the parameters θ such that ∇θE = 0. The most elementary expression
of the descent by gradient is shown in equations A.1 and A.2, of updating the parameters and
obtaining ∆θt respectively. η is the learning rate.

θt+1 = θt + ∆θ (A.1)

∆θ = −η∇θE(θ) (A.2)

The default approach to gradient descent is the batch gradient descent, where the gradient of the
loss function is computed for the entire training set. However, since gradients are calculated for
a single update, the algorithm is considerably slow, and some datasets are excessively large and
do not fit in memory. Faced with this problem, the most effective and most popular approach is
stochastic gradient descent (SGD). The parameters are updated for each training sample. In
each iteration, ∇θE is calculated for this sample and the parameters θ are updated dynamically.
In addition, another version of SGD is the one based on mini-batches, in which this same system
is followed, but updating the parameters for each mini-batch, that is, each data set into which
the training set is divided. Its main advantage is being less computationally intensive, converging
faster and usually reaching minimums with better results than the original algorithm.

However, the traditional SGD still has some drawbacks. Some of them are the difficulty of
choosing an adequate learning rate, which avoids excessively slow convergences or that diverges
so that an optimal minimum is not found, or the risk of being trapped in a local minimum
with unsatisfactory results and that does not allow to sufficiently minimize the loss function.
Considering these challenges, the following section presents the optimizers used in this work.

A.2 Gradient descent optimization algorithms

Here are some techniques and approaches to face the challenges aforementioned.

SGD extensions: step decay. Learning is optimized so that at the beginning of training
the learning rate has higher values, and it decreases as it converges. Some proposals are the
exponential decay and the 1/t decay.

SGD extensions: Momentum [68]. SGD has difficulties in areas where one dimension is
more steeply than the other, which are usually close to local optima. Momentum accelerates the
SGD in the convenient direction, avoiding unnecessary oscillations that slow down convergence.
Similarly, it helps to escape from unsatisfactory local minimums. γ is the momentum rate,
usually set to 0.9 or similar.

vt = γvt−1 + η∇θE(θ) (A.3)
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θt+1 = θt − vt (A.4)

SGD extensions: Nesterov accelerated gradient [61]. Momentum will help to converge
the algorithm faster, therefore, it is convenient to make it more intelligent. Nesterov accelerated
gradient incorporates information to the algorithm about the future position, so it includes a
corrective factor to avoid converging excessively quickly to erroneous local minimums.

vt = γvt−1 + η∇θE(θ − γvt−1) (A.5)

θt+1 = θt − vt (A.6)

Adagrad [21]. Gradient descent algorithm that adapts the learning rate depending on the
parameter. For example, it will use lower learning rates for associated parameters with frequent
features, while it will use high learning rates with infrequent features. Gt is a diagonal matrix
where each element of the diagonal i, i is the sum of the squares of the gradients with respect
to the parameter θi until the step t, and gt is the gradient at time step t. On the other hand,
ε is a term that prevents from division by zero, usually with a value around 10−8. Therefore, it
eliminates the need to manually modify the learning rate.

gt = ∇θE(θt) (A.7)

θt+1 = θt −
η√

Gt + ε
� gt (A.8)

RMSProp [27]. Modifies Adagrad to prevent aggressive reduction of the effective learning rate.
It includes a term of decay, traditionally around 0.9.

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (A.9)

θt+1 = θt −
η√

E[g2]t + ε
gt (A.10)

Adam (Adaptive Moment Estimation) [44]. Method that computes adaptive learning rates
for each parameter – using the term vt – in addition to incorporating a mt function similar to
momentum. In short, it is a softened version of RMSProp. β1 and β2 are the decay rates, the
author proposes the default values of 0.9 and 0.999, respectively.

m̂t =
mt

1− βt1
=
β1mt−1 + (1− β1)gt

1− βt1
(A.11)

v̂t =
vt

1− βt2
=
β2vt−1 + (1− β2)g2t

1− βt2
(A.12)
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θt+1 = θt −
η√
v̂t + ε

m̂t (A.13)

Adamax [44]. Generalizes the update expression vt in the Adam method. Specifically, it is
shown that using a normalization l∞ the convergence is more stable.

ut = max(β2 · vt−1, |gt|) (A.14)

θt+1 = θt −
η

ut
m̂t (A.15)

Nadam [20]. Adam version incorporating the Nesterov momentum.

θt+1 = θt −
η

v̂t + ε
(β1m̂t +

(1− β1)gt
1− βt1

) (A.16)
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The back-propagation mechanism

B.1 Mathematical background

The back-propagation mechanism [73] is the one that allows the learning of a neural network. It is
important to remember that each neuron is characterized by weights w, of which one is denoted as
b, being the independent term, and an activation function that must be easily differentiable. The
back-propagation mechanism minimizes the loss function and updates the value of the weights,
therefore, it has a direct relationship with the optimizer that we choose, for example, SGR,
RMSProp or Adam.

The objective of the back-propagation is to compute the partial derivatives ∂C
∂w and ∂C

∂b of the
loss function that models the system with respect to the weights w and the independent term
b. The most common loss functions are presented in the next section, however, it is relevant
to mention what conditions must be met. The first assumption is that it can be expressed by
averaging various loss functions. In other words, it can take the form of a summation of type
C = 1

n

∑
Cx. The second assumption is that it can be written as a function of the network

outputs. For example, in the case of the quadratic function (B.1) it can be written so that the
system outputs are included (B.2).

C =
1

N

∑
x

||y(x)− a(x)L||2 (B.1)

C =
1

N

∑
j

(yj − aLj )2 (B.2)

In short, the indicated partial derivatives must be computed. For this, an intermediate function
δlj is introduced that symbolizes the error of neuron j in layer l. Depending on the value of this
error, the cost function may be reduced a little or a lot. The expression obeys equation B.3. The
back-propagation mechanism will serve to compute the value of δlj to later relate it to ∂C

∂w and
∂C
∂b .
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δlj =
∂C

∂zlj
(B.3)

Once this concept has been introduced, the four equations that determine the behavior of back-
propagation are now summarized. Its assimilation is complex and its instantaneous understand-
ing is not expected. In fact, for this reason its use is reduced to a black-box on which the system
is built.

The first equation B.4 is the error of the output layer δL. The partial derivative measures the
rate of change of the cost function as a function of the activation of the output of layer j. The
second term measures how fast activation changes zLj . Its usual formulation is by means of a
matrix expression B.5.

δLj =
∂C

∂aLj
σ′(zLj ) (B.4)

δL = ∆aC � σ′(zL) (B.5)

The second equation B.6 is for the error δl in terms of the error in the next layer,δl+1. The product
with the transposition of the weight matrix is understood as the movement "backwards" in the
network.

δl = ((wl+1)T δl+1)� σ′(zl) (B.6)

The third equation B.7 explains the rate of change of the loss function with respect to any bias
in the network.

δlj =
∂C

∂blj
(B.7)

Finally, the fourth equation B.8 explains the rate of change of the loss function with respect to
any weight in the network.

∂C

∂wljk
= al−1k δlj (B.8)

B.2 Popular loss functions

Finally, once broadly defined how the back-propagation mechanism works, some of the most
important loss functions are introduced here. The choice of the loss function has a fundamental
relevance in the design of the model, since it is what would lead the optimizer to find the absolute
minimum or a sufficiently good local minimum [69].

In regression problems, the most common is to use Mean Squared Error Loss (B.9). It is the
desired one when the target variable follows a Gaussian distribution. Its computation is simple
and deals with the differences between the predicted and the real values.
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L =
1

N

N∑
i=0

(yi − ŷi)2 (B.9)

On the other hand, in classification problems, the use of cross-entropy is recommended (B.10).
It computes the average of the differences between the probabilities of the classes predicted for
an object (ŷ) and to the ones which it really belongs (y). In problems with a binary nature, this
function is called a binary cross-entropy. In the case of being a multiclass problem, it is called
categorical cross-entropy. Also, in problems where classes are mutually exclusive, tags tend to
be encoded using one-hot encoding. In this case, the loss function is called sparse categorical
cross-entropy. A general version can be found in equation B.11. Here, yij is a binary indicator
that defines if the object has been correctly classified, and pij is the probability of assigning the
class j to the object i. In general, there are M objects and N possible classes.

L = −
N∑
i=1

yilog(ŷi) (B.10)

L = − 1

N

N∑
i=1

M∑
j=1

yij log pij (B.11)
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