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Abstract

In this project, a facial recognition system based on the concepts of machine vision with
convolutional neural networks (CNNs), machine learning and distributed computing is proposed,
developed and deployed to Azure. The project consists of three parts: the design of an
architecture focused on reducing the bandwidth required to transport the images from the
cameras to the cloud servers; the design and implementation of the software that compresses
the data near the cameras; and the design and implementation of a REST APl for image
processing easily scalable to large deployments in the cloud.

The reduction of the bandwidth required for the transmission of images from the cameras to
the cloud is achieved by pre-processing the data in an intermediate node near their generation
through the use of edge computing techniques.

In the pre-processing stage, the faces contained in each of the frames captured by the cameras
belonging to that node are identified and extracted. The new images that only contain the faces
are then sent to the cloud, where they are classified among the known people. By only sending
the portions containing faces instead of sending the entirety of the frames, a significant
reduction in the required bandwidth is achieved.

At the cloud, a REST APl has been designed and implemented in containers handled by a
Kubernetes deployment in the Azure cloud. In these containers, the system that recognizes the
faces received from the edge is executed. The load is distributed among the different
containers, whose number can be scaled to suit the workload. This API not only allows the
recognition of people for whom the model has been trained; it can also incorporate people into
the dataset, remove people from the dataset, as well as retrain the recognition model to identify
people in the new dataset and start using the new model immediately and without any
downtime. All the information extracted in this process is stored in a database that allows its
later analysis.
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Resumen

En este proyecto se propone y desarrolla un sistema de reconocimiento facial basado en los
conceptos de visibn maquina con redes neuronales convolucionales (CNNs), aprendizaje
maquina y computacién distribuida. El proyecto esta formado por tres partes: el disefio de una
arquitectura centrada en la reduccién del ancho de banda necesario para transportar las
imagenes desde las camaras a los servidores en la nube; el disefio e implementacion del
software que comprime los datos cerca de las cdmaras; y el disefio e implementacidn de una API
REST adaptable a grandes despliegues para el procesado de las imagenes en la nube.

La reduccién del ancho de banda requerido para la transmisién de las imagenes de las cdmaras
ala nube se consigue mediante el preprocesado de los datos en un nodo intermedio cerca de su
generacién mediante el uso de técnicas de computacién en el borde (edge computing).

En la etapa de preprocesado se identifican y extraen las caras contenidas en cada uno de los
fotogramas capturados por las cdmaras pertenecientes a ese nodo. Las imdagenes que ya sdlo
contienen las caras son entonces enviadas a la nube, en la cual se clasifican entre las personas
conocidas. Al sélo enviar las porciones que contienen caras en lugar de enviar los fotogramas
enteros se consigue una reduccidn significativa del ancho de banda requerido.

En el extremo cloud, se ha disefiado e implementado una APl REST en contenedores manejados
por un despliegue de Kubernetes en la nube Azure. En estos contenedores se ejecuta el sistema
gue reconoce las caras recibidas desde el edge. La carga esta distribuida entre los diferentes
contenedores, cuyo numero puede variarse para adaptarse a la carga de trabajo. En esta API no
s6lo se permite el reconocimiento de personas para las que el modelo se ha entrenado; también
se puede incorporar personas al set de datos, eliminar personas del set de datos, asi como
reentrenar el modelo de reconocimiento para identificar las personas en el nuevo set de datos
y empezar a usar el nuevo modelo de forma inmediata y sin downtime. Toda la informacion
extraida en este proceso es almacenada en una base de datos que permite su posterior analisis.
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Resum

En este projecte es proposa i desenvolupa un sistema de reconeiximent facial basat en els
conceptes de visid maquina en xarxes neuronals convolucionals (CNNs), aprenentatge maquina
i computacid distribuida. El projecte esta format per tres parts: el disseny d'una arquitectura
centrada en la reduccié de I'ample de banda necessari per transportar les imatges des de les
cameres als servidors en el nivol; el disseny i implementacié del software que comprimix les
dades prop de les cameres; i el disseny i implementacié d'una APl REST adaptable a grans
desplegaments per al processat de les imatges en el navol.

La reduccio de I'ample de banda requerit per a la transmissio de les imatges de les cameres al
nuvol s'aconsegueix per mig del preprocessat de les dades en un nodo intermig prop de la seua
generacid per mig del Us de técniques de computacio a la vora (edge computing).

En l'etapa de preprocessat s'identifiquen i s'extreuen les cares contingudes en cada un dels
fotogrames capturats per les cameres pertanyents a este node. Les imatges que ja només
contenen les cares sén llavors enviades al nuvol, en la qual es classifiquen entre les persones
conegudes. A I'només enviar les porcions que contenen cares en lloc d'enviar els fotogrames
sancers s'aconsegueix una reduccio significativa de I'ample de banda requerit.

A l'extrem cloud, s'ha dissenyat i implementat una APl REST en contenidors manejats per un
desplegament de Kubernetes en el ndvol Azure. En estos contenidors s'executa el sistema que
reconeix les cares rebudes des del edge. La carrega esta distribuida entre els diferents
contenidors, el nombre pot variar-se per adaptar-se a la carrega de treball. En esta API no només
es permet el reconeiximent de persones per a les que el model s'ha entrenat; també es pot
incorporar persones a el set de dades, eliminar persones de el set de dades, aixi com reentrenar
el model de reconeiximent per identificar les persones en el nou set de dades i comengar a
utilitzar el nou model de forma immediata i sense indisponibilitat. Tota la informacio extreta en
este procés és emmagatzemada en una base de dades que permet la seua posterior analisi.
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Chapter 1: INTRODUCTION

At the beginning of the computing age, the data that were obtained by the different systems
were processed locally. This was in part due to the lack of a telecommunications infrastructure
capable of sending these data across cities.

Nowadays, in the cloud age, almost all the data processing has been moved to “the cloud”, i.e.
the data are being sent from where they are generated to remote servers for processing.
However, due to the popularization of the Internet of Things (IoT), there has been an increase
in the generation of highly-distributed data, which leads to doubling the number of IP
connections every 2.5 years [1], which poses a challenge for the underlying data communication
networks.

The cost of data transport in some high-bandwidth applications, such as video surveillance and
analysis, is becoming a barrier for the advancement of the technology, as these distributed data
can quickly saturate the traditional pyramidal structure of Internet Service Providers’ (SP)
networks.

It is because of this that both the bandwidth required and the distance that the data need to
travel for an application must be reduced as much as possible. With this goal in mind, in these
high-bandwidth applications, the data needs to be compressed or pre-processed near the
devices that are producing it.

The tendency of bringing data processing nearer to the devices that are generating them is
known as edge computing, and it is predicted to be one of the technological trends of the decade
[2], as it becomes the most cost-effective and highest performance solution in which many new
technologies, such as 5G, rely heavily.

1.1 MARKET OVERVIEW

In the following subsections, an overview of the video surveillance market is provided. This
overview focuses on both the home and large-scale markets, identifying the main actors and
providing a brief analysis of their products.

1.1.1 Home and Small Business Security
In the home and small business market, the customers have a low count of cameras on-
premises, and it is common to have most of the work performed in the cloud.

1.1.1.1 Ring

The Ring ecosystem [3] provides solutions and devices for home automation and home security.
The device catalog includes a large number of devices which integrate a camera for monitoring
purposes.

The processing on the devices themselves is limited in most cases to motion detection.
Whenever motion is detected, the camera performs a predefined function. This function could
be to record the images and upload them to the cloud or to send a message to a device through
the cloud.

The images are stored in the cloud servers, where not much processing is performed. The
storage of these images is part of a service provided by Ring under the name of Ring Protect.
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As the system does all the processing in the camera in order to save bandwidth, the processing
is limited and it may not provide the user with as much insightful information as offered by other
systems.

1.1.1.2 Nest

The Nest ecosystem [4] provides mainly home automation services, although it also has a range
of devices that target home security. Their home security catalog includes cameras, alarm
systems, locks, and other devices.

The processing is carried out mainly in the cloud, since the cameras only performs motion
detection.

The system processes in the cloud the images sent by the different cameras. Via this processing,
it decides whether there is a relevant event. It then classifies all events in a series of categories
using artificial intelligence. This service is called Nest aware.

The problem with a service that relies so heavily on the cloud computation, and that provides
services with 24/7 cloud recording is that each camera requires an expensive fixed upload
bandwidth (approx. 1.2 Mbps/camera according to Nest, but usually 5 Mbps/camera for a
typical H264 1080P camera). However, in the type of scenario that this system is used (where
there are few cameras per location), this may be the best solution, as high-level processing in
the camera is computationally expensive and performing local processing is expensive as well,
as a new computation device is required.

Furthermore, by moving all the processing to the cloud, the system can provide the user with
much more useful information than it would be able to provide if all the processing were to be
done in the cameras themselves. However, for large deployments, this system would prove
inefficient, due to the bandwidth requirements previously mentioned.

1.1.1.3 Xiaomi

The last Home automation system in this brief analysis is the Xiaomi Smart Home ecosystem [5],
which is composed by a great variety of sensors, actuators, cameras, alarms, etc. Regarding the
security cameras, there are several models that offer different on-device processing capabilities.

The processing is mostly performed in the cameras, where the images are analyzed to determine
whether there is motion in the scene, and if so, the camera starts recording locally.

There are also some cameras in the catalog that perform Al humanoid detection to increase the
versatility of the motion detection system.

In this system, both the processing and the storing of the video is performed locally in the
cameras. It is because of this that the cloud serves as a mere aggregation and user access
platform.

This type of system does not saturate the communications networks when deployed in large
scale as others do. However, the system requires much more local processing in the cameras
themselves, which may not be the most efficient way to process things. Also, as the end devices
lack the processing capabilities of the cloud, the information provided to the user is very limited
when compared to other systems that process the information in the cloud.

10
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1.1.2 Lage-Scale Security
In the large-scale business market, the customers have a high number of cameras on-premises,
and it is common to have most of the work performed on-site.

1.1.2.1 Anyvision

The Israeli face recognition company installs high-performance and large-scale video
surveillance systems for companies and governments all around the world. These systems can
be configured in many ways, although based on some recent installations in Spain, the system
seems to be installed near the cameras if there is a great mass of cameras in a given location.
This means that the camera does no processing, so any IP video camera may be used with the
system.

It also means that there are servers installed on-premises to process the video generated by the
cameras. This is done by processing the images and identifying the individuals and their actions.
The processed data can then be transmitted to a central controller. In the central controller the
data are aggregated and a general view of the system is offered with real-time analytics.

This type of installation poses a problem: either you have the cameras transmitting the video
over the internet or you process it on-site. If the video is processed on-site, the installations
need to be modified in order to accommodate the system’s servers.

A better solution than the type of installation being reviewed could be to only partially process
the images on-site just enough to reduce the bandwidth without requiring the installation of a
server room on-site. This could be something that is already done by Anyvision in some
deployments, although, as their technology is closed source, it is difficult to tell without more
information.

1.2 OPEN SOURCE PROJECTS

There are many open source projects that target image processing and face recognition, some
of which use machine learning models to achieve this. In the machine learning field, the biggest
companies (Google, OpenAl, etc.) publish most of their work allowing access to the international
scientific community.

In this section, an overview is given of some of the publicly available machine learning-based
face recognition projects, as a general view of the state of the art of this rapid-evolving field.

1.2.1 OpenFace

The OpenFace project [6] is an implementation of the FaceNet face recognition architecture
proposed by Google researchers [7]. The OpenFace architecture, as shown in Figure 1,
implements image detection, image transformation (to get the face straight), image cropping,
feature embedding generation, and feature embedding classification.

11
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Figure 1: Diagram of the OpenFace Architecture

The architecture on which OpenFace is based is commonly found in many other
implementations. Some of these implementations even share some of the Python code of the
OpenFace implementation. This is probably due to OpenFace being one of the first open source
projects to use this face recognition architecture.

1.2.2 A FaceNet Implementation

There is a very popular implementation of the Google FaceNet architecture, which also goes by
the name of FaceNet [8]. It uses the Tensorflow platform [9] to manage the DNN model required
to obtain the embeddings and to run the Multi-Task Cascaded Convolutional Neural Networks
(MTCNN) face detection.

As it is based on the FaceNet architecture, the system proposed in this implementation is quite
similar to that of the OpenFace project, going so far as to share some of its base code with it.

This project not only provides the architecture and the code to run the face recognition (in
Python), but also two pre-trained face embeddings generation DNNs that can be used in
conjunction with a face detector and a classifier to perform the face recognition.

This system and its pre-trained face features embedding extractors can be commonly found in
other open source projects. This is due to the complexity and especially the cost of training a
modern DNN from scratch to perform embedding generation.

1.2.3 A FaceNet Docker Implementation

This final project [10] is also based on the FaceNet architecture by Google, and on the FaceNet
implementation [8] previously discussed. It provides another Python implementation of the
base algorithm which is also prepared to run inside a Docker container.

It is somewhat different from the other implementations as it uses Pytorch FaceNet [11] as the
basis for face detection and feature extraction. The Pytorch FaceNet provides pre-trained

12
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models for face detection and recognition. These models are the same as the ones offered in
[8], showing how common the use of these pre-trained models is in the open source community.

This project has served as the inspiration and basis for the present work, as it has provided a
starting platform which has then been heavily modified and adapted to the specific needs of this
work. The modification has mainly consisted in adding many functions, modifying the existent
functions to add much more functionality, changing the classifier and other libraries used in the
original implementation, and improving the efficiency of the training process; and all of this,
using an edge (distributed) computing approach in the architecture design.

13
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Chapter 2: PROPOSED SOLUTION AND DESIGN

2.1 THE SOLUTION — OBJECTIVES

The objective of this project is to design a system that obtains useful information from a video
recording system while requiring a small amount of data bandwidth and a low processing power
in the edge computing. All of this while providing a smart scalable solution with high availability.

To achieve these goals the system architecture designed and implemented in this document
divides the image processing into two parts: edge computing and cloud computing.

2.2 THE ARCHITECTURE

The face recognition architecture implemented in this project has been designed to perform
most of the processing in the cloud, as many of the systems seen in the introduction. However,
it has a key distinction: to reduce the bandwidth required between the cameras and the cloud,
the data are pre-processed in edge computing servers close to the cameras. This enables to
reduce the amount of data transmitted from the edge to the cloud. The bandwidth reduction is
achieved by extracting face images candidates in the edge, and sending them to the cloud for
final extraction and recognition, instead of sending the whole video streams.

The edge face extraction is optimized for speed, while the cloud face extraction is optimized for
accuracy. This way, as explained in this section, the bandwidth compression is achieved without
a great computational cost in the edge, enabling the implementation of the system in small and
compact edge nodes, as further detailed in following sections. The edge nodes perform a
preliminary selection of candidate faces, while the cloud nodes extract the real faces and discard
the non-face images.

In the distributed computing scheme shown in Figure 2, the size of the data transmitted is
reduced and the useful information is increased in the path from the cameras to the database.
In other words: the connection between the cameras and edge computing devices has the
greatest bandwidth requirement while the connection between the edge computing devices
and the cloud has a lower bandwidth requirement as the information is more compact. Also, the
information sent from the cloud processing to the database and NFS storage is even lower in
size, while containing all the relevant information.

14
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Figure 2: Architecture of the Distributed Computing

The diagram found in Figure 3 represents the same architectural scope as the one in Figure 2,
although in this diagram, the focus is on a single data path, showing both the logical and physical
connections of the system. As may be seen, the video streams generated by the cameras are fed
into the edge computing module, where the faces are extracted. Note that the faces will be
processed and extracted again in the cloud as the algorithm used in the edge processing is
optimized for speed and the algorithm used in the cloud for accuracy.
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Figure 3: Network and Data Flow of the Distributed Computing Architecture for one Camera Stream
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The edge node decodes the original high-resolution video, extracting the frames. These frames
are processed looking for face candidates. The algorithm used to detect the faces in the frames
is optimized for speed, not for accuracy, as the edge processing power is assumed to be low.

To avoid missing faces, the minimum confidence level to determine that a face candidate is sent
to the cloud is set to a low enough value. Therefore, as seen in Figure 4, there will be a certain
percentage of face candidates that do not really contain a face in the image. This is not a
problem, as the images are then sent to the cloud to be processed again, but this time with a
better face detection algorithm that will discard the incorrect images.

Face Candidates
Detected

“Ultra-Light” CNN

Face Detection &
Extraction

Figure 4: Face Candidates Extraction on Edge Computing

The images received by the Cloud API are then analyzed by one of the most accurate face
detectors available, as there is no processing power limitation: the MTCNN face detector [12].
This is done, as shown in Figure 5, to discard the images that do not contain a face and to prepare
those that do contain a face for the feature extractor.
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Figure 5: Image Pre-processing and Extraction as Input for the FaceNet-like Architecture

The faces detected and processed are then fed to the face recognition and classification system
shown in Figure 6, which is based on the Google FaceNet [7] face recognition architecture. This
system uses a Convolutional Neural Network (CNN) trained to extract feature vectors
(embeddings) [13] connected to a multiclass Support Vector Machine [14] (SVM) classifier. This
classifier is trained to classify an embedding extracted from an image of one of the people
included in the training dataset.
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Figure 6: Google FaceNet Face Recognition Architecture with multiclass SVM

Note that apart from the candidate face images, the camera ID and location in which the image
was captured are also sent by the Edge node to the Cloud processing servers; these data are
stored along with the face ID of the face image into the Detections table inside the DB server.
This can be used to trace the movements of the people in the locations being monitored.
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For greater flexibility and to allow deployment sizes that range from less than 10 cameras to
1000s of cameras, the data processing stage has been designed so that it can be scaled in an
automated fashion by the use of cloud infrastructure providers.

As shown in Figure 7, a Kubernetes cluster is used to process the images and both an NFS server
and a DB server are used as common storage for all the instances that are running in the
Kubernetes deployment in the different nodes of the cluster.

Kubernetes Cluster Storage Cluster

Azure/AWS/Gcloud/Custom

Figure 7: Kubernetes and Storage Architecture

All the data required to train and to run the facial detection system and all of the accompanying
functions that are discussed in later sections of this document are stored in the NFS server and
DB server, (see Figure 7).

This processing architecture allows for self-healing and implements on-the-fly updates to both
the classification model (when there is a change in the people that the system is trained to
recognize) and the API backend code, without any downtime. This means that it is not only a
proof of concept or a laboratory test, but the start of what could be a facial recognition
architecture that with a few modifications could be deployed to production.

With this method, state-of-the-art tracking, recognition and behavioral analysis methods can be
scaled up to be implemented in commercial, governmental or military applications, evenin areas
where it is not feasible neither to have the processing power required to process the images
on-site nor to have a good connectivity to the central processing servers to send the
unprocessed video feeds.

2.3 INTEGRATION WITH MOBILE ANDROID AND I0S APP API
Two projects have been developed simultaneously to create a smart distributed computing and
low bandwidth surveillance system: a mobile APP for Android and iOS [15] and this project.

To allow for the interconnection between both projects, an API call has beenimplemented (face-
recognition/send-results) that sends the detection data to the cloud infrastructure where the
Mobile APP API runs. This allows for easy interconnection between both projects.

Therefore, the connectivity scheme for the operation of both systems together involves, as
shown in Figure 8, the edge computing device, the Cloud APl and the APP API.
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Figure 8: General Diagram of Interconnection with the Mobile APP API

When joining both projects, this system gains an interface to interact with the user of the system
providing statistics regarding detections and locations. The goal is to demonstrate how the
system could be used in a security surveillance scenario.

2.4 THE ALGORITHM

As seen in the previous subsections, the FaceNet-like face matching algorithm used in this
project has two steps: face features extraction and face matching. In the first step, the different
features conveyed in the facial image are used to generate an embedding vector that defines
the face. In the second step, the vector is used to pair the face image with the best matching
face identity from the ones in the Dataset (providing a confidence level for the match).

2.4.1 Feature Extraction

For the face feature extraction, a Convolutional Neural Network (CNN) is used. This type of
network is characterized by containing convolutional layers, fully connected layers, and many
other supporting layers such as pooling, dropout, etc.

The convolutional layers are steps of the network that perform a correlation operation (not a
proper convolution, although the name could seem to imply it) of the input of the layer with a
filter. This correlation is stored in the output of the layer. Usually, in this type of layers the
dimensions of the image are reduced while the depth or feature information is enlarged in each
of the steps.

The pooling layers are used in between convolutional layers to pool or reduce the dimensions
of the matrix, usually reducing the spatial resolution while keeping the feature depth. This way,
the characteristics found in the image are made less specific to the location of the characteristic
and more specific to the type of characteristic.

The fully connected layers consist of a single layer of neurons in which each one of the neurons
is connected to all of the outputs from the previous layer. This is the reason behind the “fully
connected” name, as each one of the neurons of a particular layer are fully connected to the
previous layer.
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In the CNN, the image analysis usually starts with a number of convolutional layers, pooling
layers, and other supporting layers, and it ends with a series of fully connected layers. The
convolutional layers extract the features from the input image and the fully connected layers
use these features to determine what should be placed at the output of the CNN.

In this project, the output of the network needs to be an embedding that can be used as an
identifier of the person in the image. This is achieved by training the network to obtain
embeddings that are as similar as possible for images that belong to the same person, and as
different as possible for images that belong to different persons.

2.4.2 Embedding Classification

Once the face embedding has been obtained, the group to which it pertains, (i.e. the identity of
the person in the image, from which the embedding has been derived) needs to be determined.
This can be achieved by many different methods, most of which require to have a database in
which the embeddings associated to the different identities used for training purposes are
stored.

A simple method to determine which of the known identities best matches the embedding is to
find the closest known embedding, i.e. the embedding that has the lowest distance (Euclidean,
Manhattan [16]) to the current embedding in the database.

A better method would be to obtain the average of the embeddings for a given identity and then
find the average embedding with the lowest distance to the embedding obtained by the Feature
Extractor for the current image.

A refinement of the first method is to use more than one embedding in the comparison: instead
of finding the closest embedding we could find the K-closest embeddings, and set the identity
as the one that appears most times in the K-nearest embeddings. This is known as the K-nearest
neighbors method [17].

Another very popular method that may achieve even better performance than the previous
methods is the Support Vector Machine (SVM) [14]. With standard SVM, a model is trained to
differentiate between two classes or options in an optimal manner. This can be expanded for
more than two classes. Because of its accuracy advantages, this is the method that will be used
in this project; specifically, a linear kernel variant of the multiclass SVM.

2.5 FEATURE EXTRACTORS

The state of the art in Convolutional Neural Networks is analyzed in this section to provide a
broad vision of the different feature extraction architectures and why the pre-trained Inception
ResNet v1 [13] is used in this project to obtain the embedding for the input image.

There is not a one-fits-all feature extraction architecture. The best selection depends on the
intended use. In this project, the feature extractor must perform a low number of computations
per iteration, as there may be many faces being processed per minute, reaching thousands
depending on the deployment size. Simultaneously, it is required to maintain a high accuracy,
as the face vector embeddings must separate the different identities with enough confidence
for the intended number of users.

There is a great number of feature extraction architectures that are being studied and proposed
by the scientific community. The two most recent and innovative methods that could be used
for this project are analyzed in the following subsections, as well as an additional third version
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which, while not being the most efficient for the task, is the best available in a pre-trained form.
The last one fits very well the needs of this project, as its focus is not to train a new type of CNN
for feature extraction (which would be a project in itself), but to design, implement and test a
new video surveillance and face recognition architecture.

2.5.1 MobileNet v3

The MobileNet [18] CNN is specifically designed for its use in mobile devices. It is adapted for
the execution in mobile CPUs using “hardware aware network architecture search” techniques.
It achieves very high accuracy in the ImageNet [19] dataset with a very low per-frame latency as
shown in Figure 9 for different parameter sizes, enabling for real-time processing even in mobile
CPUs.

The fact that it is designed to use a limited amount of computing power in CPUs while
maintaining a high accuracy suits the purpose of this design, and enables the architecture to
process the face images in any system, independently of the type of processing devices installed
(without requiring specialized hardware such as GPUs or TPUs) and with a low memory usage.
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Figure 9: Performance of MobileNetV3 as a function of different multipliers and resolutions in the ImageNet Top-11
[18]

All these characteristics make it a good option for applications that require a high-throughput,
and good accuracy.

2.5.2 EfficientNet

What started as a project to find a better way for scaling up and down CNN architectures, ended
producing a new CNN model known as EfficientNet [20]. These Convolutional Neural Networks
are based on an architecture of their own and use the same scaling method proposed by the
researchers to create a series of CNNs that perform better than comparable architectures at
ImageNet and other tests (see Figure 10). They achieve better performance for the same
number of CNN computation parameters, as well as less parameters and calculations for the
same target accuracy. This efficiency is exactly what is required by projects like this to achieve
the desired accuracy and throughput without the use of a large and expensive resource pool.

1 Top-1 accuracy: the accuracy of the neural network when checking if the ground truth signal matches
the class predicted with the highest probability. As opposed to Top-5 accuracy, where the comparison
includes the top 5 classes with the highest predicted probability.
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Figure 10: Performance of EfficientNet as a function of the number of parameters. Comparison with other network
types in the ImageNet Top-1 [20]

When compared to the MobileNet architecture (which is an architecture already designed for
low parameter count), the variant BO of EfficientNet obtains a better accuracy with a slightly
lower number of parameters, as shown in Table 1. However, the number of parameters is not
the only consideration when choosing a network, as the number of operations required to
compute an iteration, while closely related to the number of parameters, is not equivalent.

Network Top-1 Accuracy (%) | Parameters (Millions)
EfficientNet B3 81.7 12
EfficientNet B1 79.2 7.8
EfficientNet BO 77.3 5.3
MobileNet V3-Large | 75.2 5.4
MobileNet V3-Small | 67.4 2.5

Table 1: Accuracy vs. number of parameters for EfficientNet and MobileNet V3

Given the good efficiency and high adaptability of the EfficientNet feature extraction CNN, it is
a candidate for future improvements of the facial recognition architecture designed in this
project.

2.5.3 Inception ResNet vl

Finally, the CNN that has been used for this project is the Inception ResNet v1 [21]. This CNN is
based on the Inception v3 and Inception v4 architectures, to which it adds Residual Networks
(ResNet).

The residual networks consist on skip connections that jump over some of the layers of the CNN.
This method keeps the long processing path that can extract deep characteristics and ads a
shorter path that allows the CNN to be trained more efficiency by avoiding some problems such
as the vanishing gradients.

The performance of this type of network is said to be between those of Inception v3 and
Inception v4, although the performance-per-computation or performance-per-memory

22



) POLITECNICA ol o

DE VALENCIA

< %‘ UNIVERSITAT _ TELECOM ESCUELA

ILLINOIS TECH

required metrics would vary depending on the type of data that the network has to learn to
predict, as well as the computing capabilities of the hardware on which it is trained and run.

One of the most relevant reasons why Inception ResNet v1 is the CNN used in the feature
extraction stage of this project is because there is an open-source, well-known, pre-trained
version available for face embedding generation [13]. This version has been trained over roughly
100,000 iterations, which requires both a great computation power and a long time.

2.6 PROPOSED EDGE COMPUTING DEVICES
Although in this project the edge computing is not implemented in an edge device, candidates
for this task are selected in this section for possible practical implementations of the system.

The edge nodes perform video and image manipulation and compression operations. These
types of operations require the use of a GPU to be performed efficiently. The goal when selecting
a device is to reduce the cost, the energy consumption and the infrastructure required for its
operation, while increasing the throughput and number of camera stream that it can process
simultaneously.

Given the target characteristics of the devices, the best choice is a single board computer. As
the GPU is an important requirement for video handling, the TPU and CPU-only options are
discarded. The best solutions seem to be provided by NVIDIA Corporation [22].

The devices considered are part of the NVIDIA Jetson family [23]. Shown in Table 2 are some of
the most relevant characteristics for the proposed usage, such as the decoding and encoding
throughputs, measured in video streams per second.

Device Encoding (HEVC [24]) Decoding (HEVC)
Jetson Nano Up to 4x1080p @30 fps Up to 8x1080p@30 fps
Jetson Xavier NX Up to 12x1080p@30 fps | Up to 32x1080p@30 fps

Jetson Xavier AGX | Up to 32x1080p@30 fps | Up to 52x1080p@30 fps
Table 2: Encoding and Decoding capabilities of the different devices of the Jetson family

According to Table 2, the Jetson Nano could theoretically be used for installations of up to 4
high-resolution cameras, while the Jetson AGX Xavier module could be used for installations of
up to 32 high-resolution cameras if only the decoding and encoding capabilities were to be
considered.

However, there are more things to be done by the edge processing apart from video decoding,
such as face detection. The face detection performed by the edge device would probably be
implemented in the GPU, as these devices are very efficient at processing parallel data such as
images or CNN inference. Performing the decoding, resizing, face detection, cropping and
compression operations would probably reduce the number of streams by a factor of 2, and the
frame rate to 10 fps for an efficient algorithm, leading to a reduced performance.

In the case of the Xavier NX and the Xavier AGX, thanks to the Neural Accelerators included in
these devices, the face detection algorithm could be accelerated, and the GPU could be
offloaded to be able to process more streams per device. The downside is that these devices
entitle a cost much higher than the more basic Jetson Nano.
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2.7 CLoup COMPUTING

The Cloud API was planned to be implemented in a Cloud provider, and after reviewing the most
prominent available choices (AWS [25], GCloud [26] and Azure [27]), Microsoft Azure cloud was
chosen for its growing success and mature Kubernetes support.

Prior to the implementation in the Azure cloud provider, the system was installed in an HP 360e
(16 c/32t,96 Gb RAM) server with VMware’s ESXi Hypervisor [28]. However, as the architecture
had been planned to use devices available in the cloud such as load balancers, it was later
migrated to the Azure cloud and adapted to the specific requirements of this cloud provider’s
Kubernetes implementation.

The Docker images used in the Kubernetes deployment were also built/compiled in an online
service (Docker Hub [29]) to have them readily available for downloading by the Cloud
infrastructure. This system was connected to a GitHub [30] repository to which all the changes
were committed, and from which automated builds were issued.

24



522 UNIVERSITAT
YMEE) POLITECNICA
DE VALENCIA

ILLINOIS TECH

Chapter 3:  SCHEDULE AND TASKS

_ TELECOM ESCUELA
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3.1 SCHEDULE OF THE PROJECT

The project definition and initial research started in the middle of the Fall semester of 2019, and
its development and implementation continued throughout the Spring and Summer semesters

of 2020.

The finalization date of the project is around mid-August. The last month has been dedicated to
both conclude the project by improving some routines and styles, and to write the project final

report.

3.2 TASKS PERFORMED

The research and development conducted during the realization of this project could be divided

in the following tasks:

- Setting of project objectives

- Project outline

- Research of the state of the art

- Complete project definition

- Testing several codes and bases for the face recognition
- Final design of the architecture

- Coding of the image processing

- Coding of the Cloud API

- Implementation of the Cloud APl in Docker

- Implementation of the Cloud API in Kubernetes

- Implementation of the Kubernetes cluster in Azure

- Testing and improvement of the system

- Write interfacing functions to test the system

- Add database and database functions to the Cloud API
- Write edge programs to interact with the Cloud API

- Create the final demo functions to interact with the Cloud API

- Write the report
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Chapter 4: RESOURCES USED

In this chapter, the resources that have been used during the project are explained. These
resources range from Python libraries to pre-trained CNN models and even hardware or cloud
resources.

4.1 BAse CoDE

The code for the Cloud APl is based on the face detection code in [31]. This code has been used
as a template and has been completely modified to fit the requirements of this project, adapting
several functions and creating many others to provide the API services and Kubernetes
integration.

The code for the Edge nodes is based on the code in [32]. This code has been used to handle the
detection of faces with a fast model. More code has then been added in order to send the
extracted faces to the Cloud API. Also, some demo programs have been prepared based on this
code, for instance: to add persons to the database from a webcam or a file; to recognize in real-
time from a webcam, a file or a video stream; and to assess the efficiency and performance of
the system. These programs use the cloud functions to handle the face recognition.

4.2 LIBRARIES—CLOUD API

Many libraries have been used for the development of this project. The ones that do not come
with the base Python 3 installation can be found in the following subsections, where both the
functions and the use that is given to them is explained.

4.2.1 NumPy
The NumPy library [33] is a packet for mathematical operations and scientific computing for
Python. It is open source and can be used freely without restrains under the BSD license.

In this project, the NumPy library is used for many mathematical calculations, data type
conversions and data storage variable types. It is especially useful as it provides a range of
variables and functions that are not available within the base Python 3 mathematical functions.

4.2.2 Pillow

The Pillow library [34] is a packet for image handling, processing and storage based on the
well-known Python Imaging Library (PIL). It can be used for tasks like reading or storing images,
and some basic image processing.

In this project, the Pillow library is used to read and write image files, as well as to handle image
rotations.

4.2.3 Facenet PyTorch

The Facenet PyTorch library [35] provides pretrained Inception ResNet V1 models in PyTorch, as
well as an implementation of MTCNN also in PyTorch. Both these features are of great relevance
for this project, as they provide key functionality required to run both the face extraction (from
the source images) and the face embedding generation.

4.2.4 Torch and TorchVision
The PyTorch library [36] provides a way to deal with tensors and dynamic neural networks in a
simple fashion. It provides tensor computation capabilities and deep neural networks functions.
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The TorchVision packet [37] provides access to commonly used datasets, model architectures
and image transforms that can be leveraged in computer vision applications.

In this project, the PyTorch library is used in conjunction with the TorchVision library to
transform the tensors used in the project to different sizes and to obtain lists of the different
images in the database used to train the SVM classifier.

4.2.5 OpenCV Python

The OpenCV library [38] provides a series of tools for developers and researchers of computer
vision and machine learning software. It includes thousands of algorithms that can be integrated
in the different applications that use it.

In this project, the OpenCV library is used to perform many operations regarding image
processing for the pre-processing pipeline where the image is optimized prior to its input to the
embedding generation CNN.

4.2.6 Scikit Learn
The Scikit Learn library [39] provides tools for predictive data analysis. These predictions can use
one of the many prediction mathematical models and methods available within the library.

In this project, the Support Vector Machine (SVM) predictor is used in the shape of a Linear SVM
kernel for multiclass classification. This is used in the classification part, where the embedding
generated by the feature extractor is fed into the Linear SVM classifier to obtain the Face ID to
which the face in the image being processed pertains.

4.2.7 Joblib

The Joblib library [40] provides a set of tools to pipeline and to cache functions, storing them on
disk. This allows for faster execution of recurrent functions and avoiding re-evaluation of
commands.

In this project, Joblib is used to store the face recognition pipeline, that is later used by the API
by simply loading the job instead of creating the same resources again and again. This allows to
speed up the processing of single images in one-image batches.

4.2.8 Flask and Flask RESTPlus

The Flask library [41] is used in conjunction with the Flask RESTPlus library [42] to allow easy
development and implementation of APIs with additional option to use Swagger [43]
documentation.

In this project, both the Flask and Flask RESTPIlus libraries are used to build the API calls and
functions that allow the system to handle all the types of requests required to service the
different maintenance and usage HTTP requests.

4.29 uwsal

The uWSGI packet [44] allows Python APIs to run in a server with multithreading and all the
necessary tools. This allows the HTTP request to be handled by uWSGI and, therefore, to be
stored in queues and dispatched to the different threads of execution.

The uWSGI server has been used in this project to dispatch the HTTP requests that are received
by each Pod to the different processing threads available in that Pod, while queuing the requests
that cannot be handled immediately.
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4.2.10 Werkzeug
The Werkzeug library [45] is a WSGI web application library. It provides a series of tools that can
be used in the Python code that is being run to interact with the WSGI server.

In this project, the Werkzeug library is used to deal with the images that are received by the
uWSGI server via HTTP Post requests. It provides a series of data structures that can be used to
receive files in the Flask API.

4.2.11 Requests
The Requests library [46] provides a way to perform HTTP requests without complex socketing.
It can perform all types of HTTP requests and can send many types of data annexed to them.

In this project, the Requests library is used to send the results of the face recognition and
extraction to the external Mobile APP APl when required.

4.2.12 MySQL Connector
The MySQL Connector library for Python [47] provides a way to connect to SQL databases and
send all types of queries to these databases. The queries can both obtain and store information.

In this project, the MySQL Connector library is used to connect to a database which stores
information regarding the people that the system can recognize and the detections of these
people.

4.2.13 Matplotlib
The Matplotlib library [48] aids with the visualization of data in Python. It does so by providing
functions to display data on the screen in meaningful ways such as graphs and plots.

In this project, the Matplotlib library has been used during the development stages for the
visualization of images and data, which helps to visualize the changes to the images in the
processing and facial extraction pipelines.

4.3 LIBRARIES — EDGE PROCESSING

In the Edge Processing program, some libraries are used, including some that overlap with the
ones used in the Cloud API, such as OpenCV and NumPy. The ones that do not come
incorporated into the base Python 3 installation can be found in the following subsections.

43.1 OpenCV
The OpenCV library [38] has already been described in the section corresponding to the Cloud
API.

In this project, OpenCV is used in the Edge Processing to capture the video received in the node,
extract the frames, resize the images, change the color palette and some other things.

4.3.2 NumPy
The NumPy library [33] has already been described in the section corresponding to the Cloud
API.

In this project, NumPy is used in the Edge Processing for many mathematical operations relating
to the images, the handling of detection scores and other uses.
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4.3.3 ONNX
The Open Neural Network Exchange (ONNX) library [49] is a standard for machine learning
interoperability that allows the storage and representation of machine learning models.

In this project, ONNX is used in the Edge Processing to read the CNN model (Ultra-Light) used to
detect the location of the faces in the input image extracted from the video streams received by
the Edge Node.

4.3.4 Requests
The Requests library [46] has already been described in the section corresponding to the Cloud
API.

In this project, the Requests library is used in the Edge Processing to send the face images
extracted from the input video feeds to the Cloud API for further processing.

4.4 HARDWARE AND CLOUD RESOURCES
For prototyping purposes, an HP DL360e Server with 32 threads and 96 Gb of RAM running
VMWare ESXi has been used to run some containers, Kubernetes, NFS and DB tests.

For development of the application and for the final implementation and testing, an Azure
deployment has been used, with many servers running the Kubernetes cluster, the NFS storage
server and the DB server.

4.5 BUILDS PIPELINE

Regarding container builds, the pipeline that has provided automated builds for this project is
composed of a GitHub private repository with all the source code connected to a Docker Hub
account, in which a private repository compiles and releases builds as new commits are sent to
the GitHub.
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Chapter 5: IMPLEMENTATION

To achieve the design objectives previously explained, the facial recognition architecture has
been implemented both locally for the Edge Computing functions and in the Azure Cloud for the
Cloud API.

In this chapter, both the program implementations of the architecture described as well as the
program flows and APl request routines for some common maintenance and model update tasks
are included.

5.1 CAMERAS

In a real deployment, the video streams processed by the edge computing nodes would come
from a series of cameras deployed on-site. However, as this is not a production deployment but
rather a test deployment, the cameras have been substituted by pre-recorded video streams
(live video stream could also be used).

The video streams are stored in local storage in the computer used as an edge computing node.
These video feeds are then read by the edge computing program in the same way as they would
be read if the video were to be coming from an online stream (from an IP camera).

5.2 EDGE COMPUTING

The edge computing nodes carry out the extraction of the faces included in the different frames
of the video feeds coming from the cameras. This extraction is performed with a lower accuracy
when compared with the re-extraction in the cloud, as processing speed is key and false positives
are corrected in the Cloud API re-extraction.

Each edge computing processing node only requires the execution of one thread of the frame
and face extraction program per each video feed that requires to be processed simultaneously
(i.e., one thread per camera).

As in this test deployment the cameras have been substituted by video files, the number of
threads is not limited by the number of cameras available.

To achieve the task at hand, the program that runs in the edge node acts as shown in Figure 11,
connecting to the video stream in the setup phase, and extracting the frames until the program
is terminated or the video stream stops. The extracted frames are then processed by a face
detection algorithm that provides the position and size of the detected faces in the image. This
information is then used to extract the faces from the original image. Once the faces have been
extracted, they are then sent to the cloud API for further processing and identification.
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Figure 11: Flowchart of the Edge Node Video Processing Program

The connection to the video streams, which in the case of the testimplementation in this project
are actually video files, is performed by the OpenCV library. This library handles everything from
opening the connection to closing it, including the obtention of individual frames.

To extract the faces in the input frame, the program uses a model encoded in an ONNX file. This
model is a CNN (Ultra-Light) that has been trained to detect faces in an image and provide their
position and size.

31



[T UNIVERSITAT _TELECOM ESCUELA

ILLINOIS TECH lll7) poLITECNICA e
- DE VALENCIA TELECOMUNICACION

Finally, for every face that is detected, its image is extracted and sent to the Cloud API via an
HTTP POST request using the Requests library. When the image has been processed by the
Cloud, the detection information is stored in the detections table in the Cloud database.

5.3 AzURE CONFIGURATION
In the following subsections, the creation and setup of the resources required to run the
Kubernetes facial recognition application on the Azure cloud are explained.

5.3.1 Create Resource Group
The first step in the process is to create a resource group. In Microsoft’s Azure, a resource group
is defined as “a collection of resources that share the same lifecycle, permissions, and policies”.

The use of resource groups allows to join the resources of a project under the same group. This
poses multiple benefits from the maintenance, DevOps and billing standpoints.

In this project, a resource group called “face-recognition-res-group” is created in the (Europe)
France Central datacenter with the configuration shown in Figure 12. This resource group holds
all the resources required for the project (Kubernetes cluster, load balancers, virtual machines,
etc.).

Microsoft Azure @ 2 Search resources, services, and docs (G+/)

Home > Resource groups

Create a resource group

Basics  Tags Review + create

Resource group - A container that holds related resources for an Azure solution. The resource group can include zll the
resources for the solution, or only those resources that you want to manage as a group. You decide how you want to
allocate resources to resource groups based on what makes the most sense for your organization. Learn maore 4

Project details

Subscription * (D | Free Trial v |

Resource group * () | face-recognition-res-group v |

Resource details

Region * (@ | (Europe) France Central ~ |

Figure 12: Face Recognition Resource Group Creation

5.3.2 Create Cloud Shell

There are many ways to access the resources and services in the Azure cloud. In this project they
are accessed through the Azure Cloud Shell. This allows to run Bash or PowerShell commands to
interact from any place with the resources hosted in the cloud. The first time the console is
accessed, a storage drive is created within a new default resource group, as shown in Figure 13.
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X
st. View pricing
* Subscription
1 Free Tria i Show advanced settings
Create storage | Close

Figure 13: Azure Cloud Shell Initial Storage Setup

5.3.3 Create Kubernetes Cluster
The second step is to create a Kubernetes cluster which will run the Kubernetes Services,
Deployments and Pods required for this system.

This cluster is part of the resource group created in the previous step. It runs in the (Europe)
France Central Azure datacenter. The Kubernetes version installed into the nodes in the primary
node pool is 1.16.10.

The system nodes are based on the Standard B2ms node type, which is powered by 2 Virtual
CPU (VCPU) cores and 8 GiB of RAM per node. For testing purposes, more nodes have been
added. In one of the tests, 3 Standard E2s_v3 nodes were used. These nodes provide each 2
VCPUs and 16 GiB of RAM. The minimum settings to run the system are with the system node
count set to 1. In a different deployment, the node type and number would be set to different
values according to the requirements of the specific system.

The name of the Kubernetes cluster is set to face-recognition-k8s-cluster. All the configuration
is introduced into the Azure wizard as shown in Figure 14. There are more options that could be
modified in other setup pages, although they are omitted in this document.
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Basics | Mode pools  Authentication Metwarking Integrations Tags Review + create

Azure Kubernetes Service (AKS) manages your hosted Kubernetes environment, making it quick and easy to deploy and
manage containerized applications without container orchestration expertise. It also eliminates the burden of ongoing
operations and maintenance by provisioning, upgrading, and scaling resources on demand, without taking your applications
offline. Learn more about Azure Kubernetes Service

Project details

Select a subscription to manzage deployed resources and costs. Use resource groups like folders to organize and manage zll
YOUr resources,

Subscription * (D | Free Trial R |

Resource group * () | face-recognition-res-group o |

Create new

Cluster details

Kubernetes cluster name * (0 | face-recognition-k8s-cluster /|
Region * (@ | {Europe) France Central ~ |
Kubernetes version * () | 1.16.10 (default) N |

Primary nede pool

The number and size of nodes in the primary node pool in your cluster. For production workloads, at least 3 nodes are
recommended for resiliency. For development or test workloads, only one node is required. You will not be able to change the
node size after cluster creation, but you will be able to change the number of nodes in your cluster after creation. If you would
like additional node pools, you will need to enable the “X" feature on the “Scale” tab which will allow you to add mare node
poals after creating the cluster. Learn more about node pools in Azure Kubernetes Service

MNode size * (D Standard B2s
2 vcpus, 4 GIB memory
Change size

Mode count * (& O

Figure 14: Azure Kubernetes Cluster Creation

I”

In the Authentication tab, the Authentication method is changed from a “service principal” to a
“system-assigned” managed identity, leaving the parameters as shown in Figure 15. This
instructs the Azure cloud to generate a managed identity (login credentials) for the resource
being created, which will be follow the lifecycle of the resource (i.e., will be removed if the
resource is ever removed and will be automatically renewed when required). Afterwards, the
cluster can be created.
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Basics MNode pools Authentication MNetworking Integrations Tags Review + create

Cluster infrastructure

The cluster infrastructure authentication specified is used by Azure Kubernetes Service to manage cloud resources attached to
the cluster. This can be either a service principal o or a system-assigned managad identity o

Authentication method O Service principal '@:' System-assigned managed identity

Kubernetes authentication and authorization

Authentication and authorization are used by the Kubernetes cluster to control user access to the cluster as well as what the
user may do once authenticated. Learn mare about Kubernetes authentication cf

Role-based access control (RBAC) (D) (®) Enabled O Disabled

Node pool OS disk encryption

By default, all disks in AKS are encrypted at rest with Microsoft-managed keys. For additional control over encryption, you can
supply your own keys using a disk encryption set backed by an Azure Key Vault. The disk encryption set will be used to encrypt
the OS disks for all node pools in the cluster. Learn more &

Encryption type (Default) Encryption at-rest with a platform-managed key e

Figure 15: Azure Kubernetes Cluster Authentication Configuration

Once the deployment of the cluster and monitoring metrics for the Azure Insights shown in
Figure 16 has finished, the cluster can be added to the cloud shell for management.

@ Your deployment is complete

= Deployment name: microsoft.aks-20200722155008 Start time:  7/22/2020, 3:54:29 PM
Subscription: Correlation ID:  2d578e0d-584a-4b26-92c4-b253ec5544bd
Resource group: ecognition-res-group

~~ Deployment details (Download)

Resource Type Status Operation details
@ ClusterMonitor ngMetricPulisherRoleAssignmentDefp Microsoft.Resources/deployments OK Operation details
@ face-recognition-kas-cluster Microsoft.ContainerService/managedClusters oK Operation details
9 s Microsoft Resources/deployments oK Operation details
9 v Microsoft.Resources/deployments QK Operation details

Figure 16: Result of the Kubernetes Cluster Creation

5.3.4 Add Kubernetes Cluster to Cloud Shell

To manage the cluster from the Azure Cloud Shell, the credentials have been pulled with the
get-credentials command, as shown in Figure 17. This command gets the credentials for a given
resource and stores them in the cloud shell to allow the access to this resource from the shell.

Requesting a Cloud Shell.
Connecting terminal...

Welcome to Azure Cloud Shell

Type "az" to use Azure CLT
Type "help" to learn about Cloud Shell

MOTD: Read more about PowerShell in CloudShell: https://aka.ms/pscloudshell/docs

Authenticating to Rzure ...
: Building your ure drive ...
P8 /home/carlos> az aks g ou f nition
Merged " : arlos/.
P3 /home/carlos> I

Figure 17: Addition of the Kubernetes Cluster to the Azure Cloud Shell
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5.3.5 Check Setup

As afinal step, the status of the nodes, Services, Deployments and Pods can be checked to make
sure that everything is running as it should. The interaction with the Kubernetes cluster is
performed via the “kubectl” command tool. To obtain the health information, two kubectl
commands have been executed (“kubectl get nodes” and “kubect! get all”) in the Azure Cloud
Shell, as shown in Figure 18.

PS /home/carlos> kubectl get nodes

HLME STATUS BOLES AGE VERSTION

aks-agentpool-14406622-vm=ss000000 Ready agent 13m vl.1le.10
B8 /home/carleos> kubectl get all

MNAME TYEE CLUSTER-TIP EXTERNAL-TP FPORT (3) LGE
service/kubernetes ClusterIP 10.0.0.1 <none> 443/ 7CP 1ém
P3 /home/carlos> I

Figure 18: Check of the Setup of the Kubernetes Cluster in the Azure Cloud Shell

5.3.6  NFS Storage VM

The NFS server is hosted in a Virtual Machine (VM). This VM is independent of the Kubernetes
deployment and therefore keeps the data safe from any problems with Pods. Note that this can
also be implemented in Kubernetes with something called persistent volumes, although it can
be more of a hassle to keep in a prototyping environment.

The configuration of this machine, as shown in Figure 19, isina 1 VCPU, 1 Gb of RAM VM. The
machine is assigned to the Azure Kubernetes Service (AKS) virtual network to allow the group to
access the VM without routing. The machine is configured to run the Ubuntu Server OS ver.
18.04 Long Term Service (LTS).

Basics

Subscription Free Trial

Resource group face-recognition-res-group

Virtual machine name NFS-Server

Region France Central

Availability options No infrastructure redundancy required
Image Ubuntu Server 18.04 LTS

Size Standard B1s (1 vepu, 1 GiB memory)
Authentication type SSH public key

Username azureuser

Key pair name AzureUser

Azure Spot No

Figure 19: NFS Server Basic Configuration Information

To be able to access the VM from its public IP, the SSH port for the machine must be opened in
the security group to which the VM has been added (the AKS security group). Besides, the
internal IP address of the VM is made static so that it can be configured in the Kubernetes
Deployment YAML file.
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5.3.7 Database Server
In this project, the database server is run in a Kubernetes Pod, so no extra configuration is
required.

5.4 API DESIGN

The Cloud APl that runs on Azure has been designed with modularity, scalability, and adaptability
in mind, with a special focus on reliability and high availability. Because of this, the architecture
has been designed using Kubernetes deployments and Kubernetes Services.

The general overview of the cloud system, as found in Figure 20, is composed of a Kubernetes
cluster, a storage server for the dataset and the machine learning models storage (in the Dataset
and Models folders), and a database for storage of the people and their detections in the
different cameras and locations (in the People and Detections DB tables).

Pod Pod Pod Pod .
. -

Kubernetes Cluster Storage Cluster
Azure/AWS/Geloud/Custom

Figure 20: Overview of the Cloud Servers Structure

The information stored in the NFS server is accessed by the replicas of the Kubernetes
deployment to train the embedding SVM classifier in the case of the Dataset folder, and to store
and retrieve the latest SVM classifier and embedding generator from the Models folder, with
the file structure shown in Figure 21.

<NFS Storage>

NFS (Folder)

Dataset Models

<Dataset Folder <Models Folder
Content> Content>

Figure 21: NFS Storage File Structure
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The structure of the Dataset folder, as shown in Figure 22, has all the images used to train the
classifier in folders with the ID of the person as their name. These folders are created and
removed and these images are stored and deleted with the use of Cloud API calls. When the
basic training APl function is called, these images are used to train the SVM classifier to
distinguish between the different people stored in the Dataset folder.
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Figure 22: Dataset Folder File Structure
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As also seen in Figure 22, there are two other elements stored in the Dataset folder: the
embeddings.txt (referred to as Embeddings) and labels.txt (referred to as Labels) files. These
files contain the embeddings corresponding to the images in the Dataset folder and the labels
that are associated to those embeddings (first embedding in Embeddings file corresponds to the
first label in Labels file, etc.).

These files are generated either when the embedding generation API call is used or when the
images and IDs are added to the dataset. In fact, whenever one image is added to the dataset,
the embedding of this image is generated and appended to the Embeddings file, with the
corresponding label appended to the Labels file. When an ID is removed, not only its folder is
removed, but also the embeddings and labels associated with that ID.

Keeping the Embeddings and Labels files up to date allows the use of an optimized SVM training
method where, instead of going through the Dataset folder generating embeddings for each of
the images every time the system is trained, the system can read the Embeddings and Labels
files and use them to train the classifier. This is much faster than re-generating the embeddings
every time the classifier is trained, especially if only a few images have been added since the last
training.

The Models folder contains the models that are generated every time the classifier is trained, as
may be seen in Figure 23. The Joblib files containing the SVM classifier and the CNN feature
extractor are stored with the time when the training of the SVM classifier started as their name.
This data is relevant as the moment the training starts is the moment when the Embeddings and
Labels files are read, and therefore the instant in which these files contained the information
that was used to train that version of the model.

<NFS Folder>

Models

|
|

face_recogniser_< face_recogniser_<

timestamp1>.pkl timestampN>.pkl

Figure 23: Models Folder File Structure

The database hosted in the database server has two tables as shown in Figure 24: one for the
people that can be recognized by the system and one for the detections of the system. The first
includes only the name of the person (the Face ID) and an ID as Primary auto-incremental Key,
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although it is prepared so that more information can be included depending on the specific

application of the system.

’PK D Int(11) 1ton———— §FK Face_ID VarChar(50)
Face_ID {Unique Key} VarChar(50) Timestamp Timestamp

| Location VarChar(50)

Camera_ID VarChar(50)

Figure 24: Relational Database Table Structure Diagram

The Detections table contains the time of detection, the location, the camera ID, the Face ID and
an ID as Primary auto-incremental Key. This allows to store the most relevant information
regarding individual detections, although more information could be added if required by the
application.

The Face_ID is a Unique Key in the People table and a Foreign Key in the Detections table. The
relationship between the two is of one to many, with one in the People table (as it is a Unique
Key) to many in the Detections table.

As seen in Figure 25, when a request comes into the system, it is received by a Load Balancer
that decides to which of the Kubernetes replicas of the Kubernetes processing Deployment it
sends the request.

Kubernetes Load Kubernetes APP
Balancing Service Deployment
Node 1
Load
Balancer Node 2
External IP
API Request 1 AB:C:D Pod 1 Pod 2 Pod 3
Node N

Figure 25: Cloud API Kubernetes Structure and HTTP Request Handling
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There are many types of requests that can be handled by the Cloud API. These requests can be
classified into five types: dataset modification, model update, face recognition, database
guerying, and debugging.

In the following subsections, the different types of requests are explained with flowcharts that
show the basic actions performed by the Cloud APl when one of these requests is performed.

5.4.1 Dataset Query and Update
As previously stated, the Dataset folder contains the images used for training the SVM classifier,
stored in folders with the name of the ID to which the images inside pertain.

There are Cloud API calls to see the current state of the Dataset, to Add an ID, to Add an image
and to Remove an ID.

An HTTP GET request to the <address>/dataset URL returns the name of all the IDs stored in the
Dataset folder along the number of images for each ID. This is accomplished by following the
procedure given in Figure 26.

Start

List the items in the
Dataset folder

Select only the items
that are directories

Count the items
inside each directory

Send directory name
+ number of files
inside as a JSON

response

End

Figure 26: HTTP GET /dataset API Call Flowchart
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An HTTP POST request to the <address>/dataset/<ID> URL adds a new ID to the Dataset folder.
When this operation is performed, as shown in Figure 27, a new folder is added to the Dataset
and a new person is added to the People table in the database. Some checks are also performed,
including security checks to make sure that the folder is created in the expected path.

Start °

Yes

Is system
processing a J IsID
blocking Abort 4—VYes already in
request? dataset?
No No

v Y

Normalize ID name
according to internal

Create folder in

h . dataset
naming convention
Is Insert person into
path in dataset People table in the
No Abort
folder? (Security. —> database
check)
Yes

° -

Figure 27: HTTP POST /dataset/<ID> API Call Flowchart

An HTTP POST request to the <address>/dataset/<ID>/image URL that contains an image and a
Face ID adds this new image to the ID in the Dataset. This operation not only stores the received
image in the Dataset folder, but as shown in Figure 28, also generates the embedding for the
image and appends this and the label to the Embeddings and Labels files.
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Is there an
image in the
request?

Block the dataset

Store the image in

the NFS storage in

the NFS/Dataset/ID
folder

Image from
request
Is system payload
processing a
blocking
request?

No

y

Normalize ID name
according to internal
naming convention

Load embeddings
and labels files

Generate
embedding and
label for new image

Append the
embedding and
Yes label to the
embeddings and
labels files
IsID in dataset? No
Yes Unblock the dataset
End

Figure 28: HTTP POST /dataset/<ID>/image API Call Flowchart

An HTTP DELETE request to the <address>/dataset/<ID> URL removes the ID and all the images
stored of this ID. Furthermore, as shown in Figure 29, the ID is also removed from the People
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table in the database and the label and all the embeddings related to this ID are removed from

the Embeddings and Labels files.

Start

Yes
Is system
processing a J
blocking
reguest?

|

No

v

Normalize ID name
according to internal
naming convention

Is
path in dataset
folder? (Security
check)

|

Yes

:

Is ID
already in
dataset?

No—p»

No—p

Block dataset

Abort

Abort

Remove folder from
dataset

Remove person
from People table in
the database

Load embeddings
and labels file

Remove
embeddings and
labels for the
selected ID from the
embeddings and
labels file

Unblock Dataset

End

Figure 29: HTTP DELETE /dataset/<ID> API Call Flowchart

5.4.2 Model Update

There are several functions available to update the classification model. If there are images in
the Dataset but the Embeddings and Labels files have not been generated, they can be

generated by running the “generate embeddings” API call.
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If the Embeddings and Labels files are present and a new ID and images are added, or an existing
ID is removed or more images are added to an existing ID, the system can be trained with the
contents of the Embeddings and Labels files by running the optimized train call. In case the
system is to be trained from scratch without considering nor updating the Embeddings and
Labels files, the “train” API call can be used.

Starting with the generation of the Embeddings and Labels files, an HTTP POST request to the
<address>/model/generate-emb URL creates the Embeddings and Labels files with the images
and IDs present in the Dataset, as shown in Figure 30.

Start
Yes
Is system
processing a

blocking

request?
Store embeddings

and labels in
embeddings and
No labels files

Block the dataset

Unblock the dataset

Generate
embeddings and

labels
End

Figure 30: HTTP POST /model/generate-emb API Call Flowchart

The embedding generation task, as shown in Figure 30 blocks the Dataset as to avoid
inconsistencies between the contents of the Embeddings and Labels files and the contents of
the dataset folder.

An HTTP POST request to the <address>/model/optimized-train URL, as shown in Figure 31,
trains the classifier model with the data available in the Embeddings and Labels files. During this
training the Dataset is blocked to avoid modifications to the files while they are being read.
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Start °
Yes
Is system J
process.lng @ Unblock the dataset
blocking
request?
No

Block the dataset Train the classifier

bLOCj‘; the 4 Store the model in
embeddings an the Models folder
labels

Figure 31:HTTP POST /model/optimized-train API Call Flowchart

An HTTP POST request to the <address>/model/train URL triggers a from-scratch training of the
model that, as shown in Figure 32, generates embeddings and labels for all of the images in the
dataset but does not store them. These embeddings and labels are then used to train the model.
This operation blocks the dataset while the images are being accessed.
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Start °
Yes
Is system
process‘mg : Unblock the dataset
blocking
request?
No
Block the dataset Train the classifier
em:eedndﬁ;atseand Store maodel in
8 Models folder
labels

Figure 32: HTTP POST /model/train API Call Flowchart

5.4.3 Face Recognition

Three functions are provided by the APl to perform face recognition with the latest model
available. These functions vary in where the detection data is stored or sent to. The processed
data can either be sent as a response to the user, sent to an external service or stored in the
internal Detections table of the database.

An HTTP GET request to the <address>/face-recognition/get-results URL that contains an image
in the request payload returns the face(s’) identities in the image, with the probability and
location of each one. As shown in Figure 33, the function gets an image as input and returns a
JSON with the results.
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Figure 33: HTTP GET /face-recognition/get-results API Call Flowchart
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An HTTP POST request to the <address>/face-recognition/send-results URL that contains an
image, the camera ID, and the location in the request’s payload triggers the recognition of the
face(s) in the image. As shown in Figure 34, after the recognition is performed, the system sends
to a predefined remote server each face detected with the camera ID and the location.
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Start

Are there
all the required
items in the
request?

|

Yes

Y

Is there
a new model ——Yes— Load model
available?

——No—P Abort

Image from

Pre-process the

. request
image

payload

Recognize the

face(s)
Send the face(s) ID, Camera ID
the camera ID and and location
the location to the from request
external server payload
End

Figure 34: HTTP POST /face-recognition/send-results API Call Flowchart

Finally, an HTTP POST request to the <address>/face-recognition/store-results URL that contains
the image to be processed, the location, and the camera ID triggers the extraction of the face(s)
in the image following the procedure in Figure 35. The face(s) recognized in the image is(are)
then stored in the detection database with the other data received in the request payload.
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Start

l

Are there
the required
items in the

request?

——No—p» Abort

Yes

Is there
a new model ——Yes— Load model
available?

Image from
request
payload

Pre-process the
image

Recognize the
facel(s)

Store the face(s) ID,
the camera ID and
the location in the
detections table of
the database

Camera ID
and location

from request
payload

End

Figure 35: HTTP POST /face-recognition/store-results API Call Flowchart

The only limit to how many of the get-results, send-results and store-results API calls can be
processed simultaneously is imposed by the hardware running the Kubernetes containers. In
addition, it is important to remember that there is no downtime when a new model is trained,
only a slight delay in the first requests after the model has been trained.
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5.4.4 Database Querying

A series of functions have been implemented to retrieve the data stored in the database,
although if these data were to be used for any specific application, the requests would probably
need to be adapted to the particular needs of the application.

The data stored in the People table of the database can be retrieved with an HTTP GET request
to the <address>/database/people URL. The procedure involves an SQL query to the database
server as shown in Figure 36, and returns a JSON with the data in the table.

Start

Start connection to
the Database

Retrieve data stored
in the People table
with an SQL query

Send back the data
in the People table
in a JSON response

End

Figure 36: HTTP GET /database/people API Call Flowchart

An HTTP GET request to the <address>/database/<ID>/last-known-location URL that contains a
Face ID returns a JSON with the last location where the person identified by the Face ID was
detected, with the camera ID and with the Timestamp of the detection, as shown in Figure 37.

52



T _TELECOM ESCUELA
\ UNIVERSITAT TECNICA VLC SUPERIOR
5} POLITECNICA DE INGENIERIA DE

DE VALENCIA TELECOMUNICACION

ILLINOIS TECH

Start

Start connection to
Database

Retrieve last
location of Face ID in
Detections Table

Return the last
detection of the ID
(Camera ID,
Location,
Timestamp) in a
ISON response

End

Figure 37: HTTP GET /database/<ID>/last-known-location API Call Flowchart

5.4.5 Debugging Requests

Some API calls have been implemented for debugging purposes. These functions are necessary
to obtain data regarding the execution of the Cloud API calls and to force some situations in
debugging scenarios.

The first of these calls is one to obtain the Cluster IP address of the node executing a given
request (in the case of the load balancer Deployment with multiple replicas of the application
running concurrently this IP address varies from request to request). It can be obtained with an
HTTP GET request to the <address>/debug/IP URL. The details of the procedure performed in
the cloud server when this request is received can be found in Figure 38.
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Figure 38: HTTP GET /debug/IP API Call Flowchart
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Also, the name of the node executing a request can be obtained by sending an HTTP GET request
to the <address>/debug/node-name URL. This triggers the execution of the procedure in Figure

39, which returns the name of the node executing the request.
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Start

Obtain the 0S node
name

Return the node
name as result

End

Figure 39: HTTP GET /debug/node-name API Call Flowchart

Sometimes, due to premature node deletion or for testing purposes, the dataset is left blocked.
It can be unblocked without accessing the NFS server by sending an HTTP POST request to the
<address>/debug/unblock-dataset URL. As shown in Figure 40, this action unblocks the dataset.

Start

Is dataset

blocked? Ne End

Yes

Unblock dataset

End

Figure 40: HTTP POST /debug/unblock-dataset API Call Flowchart
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5.46 Common Procedures

There are some procedures which would be used in a day-to-day basis working with the Cloud
API, such as adding someone to the system, removing someone from the system or recognizing
someone. The most relevant of these procedures are described in this subsection from the
viewpoint of the interaction with the Cloud API.

The procedure to add someone to the system is shown in Figure 41. It consists in adding the
Face ID, adding the images one by one to the system and then training the classifier by
requesting an optimized training. In this process, the embeddings and labels generated before
this procedure are used in conjunction with the ones generated when adding the images to train
the multiclass SVM classifier.

Start °

For each image,
send POST request
to /dataset/<ID>/

image

Obtain

Name/Face
1D

Send POST request ) Images added
End with 4—No——
to /dataset/<ID> newith error o successfully?

Yes

Y

Send POST request
———No—P End with errar to /model/
optimized-train

ID added
successfully?

Obtain
images of End with error  [&——No
the subject

Trained
successfully?

Yes

v

End

Figure 41: Add ID, Images and Train Procedure Flowchart

To remove a user from the system, the procedure shown in Figure 42 is used. It consists in
requesting the removal of the ID, what will internally remove all the images associated with the
ID as well as the images for this ID. This is followed by a request for an optimized training to
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make the changes effective in the classifier (if adding and/or deleting many IDs and/or images,
it is possible and recommendable to perform the optimized only once at the end).

Start

Obtain
Name/Face
1D

Send DELETE
request to /dataset/
<ID>

Y

ID removed

End with error  J@——No—
successfully?

Yes

y

Send POST request
to /model/
optimized-train

Trained

End with error  [d——No
successfully?

Yes

End

Figure 42: Remove ID (and Images) and Train Procedure Flowchart

To get the identities of the face(s) in an image, the procedure is to send the get-faces request as
shown in Figure 43, which returns the identities of the face(s) detected by the Cloud API.
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Obtain image
to recognize

Send POST request
to /model/face-
recognition/get-

results

Face(s)

End N .
: © recognized?

Yes

Provide Face
IDs data

Figure 43: Get Face(s) in Image Procedure Flowchart

The procedure in Figure 44 can be used to send the identities of the face(s) in an image to an
external server/API. This external API is part of an application that has been implemented by
one of the members of the research team within which this project has been developed.
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Figure 44: Send Face(s) Procedure Flowchart
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Finally, the procedure to store the face(s) detected in an image, shown in Figure 45, can be used

to store the result of the detections in the Cloud database.
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End

Figure 45: Store Face(s) Procedure Flowchart

5.5 API DEPLOYMENT

A requirement to deploy the APl into the Cloud Servers, in this case the Microsoft Azure servers,
is to have access to a console with control over the Kubernetes nodes of the system. To simplify
this task, the Azure cloud Shell has been used.

To deploy the application to the Azure servers, the first task is to get the storage machines
working, as they are necessary for the normal operation of the Python code running the Cloud
APl on the Kubernetes Deployment.

The NFS VM that was previously created has now to be configured to run an NFS server. This
requires the following actions: installation of the “nfs-kernel-server” package; creation of the
folders to be exported; setting the right access permissions and ownership to the exported
folders; configuration of the exports file; and restart of the NFS kernel. After all these tasks have
been performed, the Kubernetes application can be deployed.
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To deploy the Kubernetes application, the first step is to clone the Github repository with the
YAML configuration files for the Deployment to the Azure Cloud Shell storage. Afterwards, the
database Pod, the database and face recognition Services and the face recognition Deployment
YAML files of the application can be implemented with the kubectl command line tool.

Note: in the case of the test environment in which this has been deployed, the access to the
Docker Hub used to build the docker containers has been restricted, setting it up as a private

repository. For accessing private repositories, a credential has been added with the “kubectl
create secret docker-registry” command.
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Chapter 6: INTERACTION PROGRAMS AND RESULTS

A series of programs have been developed to test the Cloud API for its performance and
reliability. These programs include raw performance benchmarks as well as real-world use cases.

Programs have also been developed to showcase the capability of the system to add and remove
Face IDs at ease without any downtime. This is demonstrated by adding a person while the
system is being used to analyze the images of a camera in real-time. This way, a person that
appears as unrecognized becomes recognized once the classifier finishes training.

6.1 RAW PERFORMANCE IN REQUESTS PER SECOND

To show the performance of the system, two configurations have been tested: one pod alone
and a deployment of 10 replicas. This allows to see how the system scales with more pods and
how the number of VCPU cores available constrains the overall system performance.

To test the different systems, concurrent HTTP POST requests are sent simultaneously from a
laptop. For this, the GRequests Python library [50] is used. This library allows for asynchronous
transmission of HTTP requests and is based on the Resquests [46] and Gevent [51] libraries.

The HTTP POST requests are sent to the address/face-recognition/get-results URL accompanied
by a test image from the Labeled Faces in the Wild (LFW) dataset [52], in this example an image
with the face of actor Harrison Ford. The image sent in the request is always the same for
consistency and comparability of the results.

To measure the performance, the system sends all the requests at once and measures the time
to complete all the requests. Afterwards, it checks that the system has processed all the requests
correctly and there are no errors. The time that the operation takes to complete, combined with
the requests sent, are used to estimate the requests handled per second by the server with a
given set of conditions (number of CPU cores, RAM, number of nodes).

Inthe first case, only one Pod executing the Cloud API code in a 2 v-Core node with 8 Gb of RAM.
A program is created to stress test the system by sending a number of HTTP requests
simultaneously. As shown in Table 3, by sending many requests at once, the effect of having two
threads running in the Pod can be seen, as by sending more than one concurrent request, the
system processes double the number of requests per second when compared with only one
request.

Number of Requests | Seconds to Complete | Requests per Second
1 0.318 3.144
25 3.428 7.298
50 6.638 7.536
75 9.862 7.606
100 13.162 7.606

Table 3: Relation Between Number of Requests and Requests per Second for One Pod

By running multiple Pods across two Kubernetes nodes enables the system to improve the
performance. With a Deployment of 10 replicas in two nodes with a total of 24 Gb of RAM and
4 v-Cores, the system provides the performance given in Table 4. The results do not show double
the performance of the example with one Pod mainly for two reasons: the benchmark code is
not able to send the such a high number of requests simultaneously very efficiently; the large
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number of Pods running concurrently has a detrimental effect in the total performance as only

4 cores are available.

Number of Requests

Seconds to Complete

Requests per Second

100 15.156 6.846
200 21.604 9.278
300 27.052 11.112

Table 4: Relation Between Number of Requests and Requests per Second for a Ten Pod Deployment

6.2 ONLINE SWAGGER DOCUMENTATION

The Cloud APl includes an online documentation that can be used as a reference manual for all
the API calls, as well as a platform to send one-time queries, debugging queries or manually
perform any function of the system.

This documentation, as shown in Figure 46, includes a description of all the methods available
in the Cloud API, with their addresses and the types of HTTP Requests to be performed.

Face Recognition Framework “®

[ Base URL: / ]
http://40.66.58.248/swagger.json

A face recognition API for cloud deployment with the capability of running multiple replicas concurrently without conflicts.

default Default namespace o

‘m /database/people ‘
Im /database/{ID}/last-known-location ‘
’ /dataset ‘
Im /dataset/{ID} ]
[ /dataset/{ID} l
‘m /dataset/{ID}/image ‘
Im /debug/IP l
‘. /debug/node-name ‘
|
|
|
|
|
|
|

lm /debug/unblock-dataset
I m /face-recognition/get-results

‘ /face-recognition/send-result

Im /face-recognition/store-result
‘ /model/generate-emb
Im /model/optimized-train
[m /model/train

Figure 46: Swagger Online Cloud APl Documentation
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If one of the views of the API calls is expanded as shown in Figure 47, the manual expands on
the input data to the call, including data types, an example result of a successful and
unsuccessful execution of the call, and the meaning of the different HTTP status codes. It also
provides the option to perform an API call via the “Try it out” button.

POST /dataset/{ID}/image
Name Description
IDjk=nicd Face ID to which the image is added
string
(query)
image * reauired Image to add.
file
(formData)
Responses Response content type [ application/json v l ’
Code Description
Image added successfully
Error adding image

Example Value | Model

{

"error_message": "string"

Figure 47: Expanded View of the Add Image Call of the Online Cloud APl Documentation

By clicking the “try it out” button in Figure 47, an interface like the one shown in Figure 48 is
offered. From this interface, the user can perform the API call from the browser itself, which
simplifies testing and allows quick interaction and learning of the framework.
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OST /dataset/{ID}/image

‘ Parameters Cancel ’

Name Description

[Jip) &% e Face ID to which the image is added

string

(query) ID - Face ID to which the image is added

image * reauired Image to add.
file

(formbata) Choose File |No file chosen

Figure 48: “Try it out” View of the HTTP POST /dataset/<ID>/image Call of the Cloud API Documentation

Once the function is executed, it also shows the result obtained and the data returned by the
API (in case there is any). With some of the functions (as the one in this example), the only data
returned by the APl is an HTTP code 200, which means that the request has been processed
successfully and there is no further work to be done.

6.3 ADD ID AND IMAGES FROM DATASET

A program has been developed to add new users to the dataset. This program takes instructions
from the Command Line Interface (CLI) and obtains the images from the folder described in the
instructions.

The program can add Face IDs, add images to the system for a given Face ID and instruct the
Cloud API to perform an optimized training based on the labels and embeddings files in the
Dataset folder.

The input arguments to the program are:

- Input-folder: Points to the address of the directory with the images to be uploaded.

- Person-ID: Name of the Face ID to which the images are to be added.

- IP-address: The Cloud APl ingress IP address (points to the Load Balancer).

- Create-ID: If present in the command, indicates that the program must sent a Face ID
creation request prior to sending the images.

- Train: If present in the command, indicates that the program must send an Optimized
train request to the Cloud APl once the ID has been created and the images have been
added.

As shown in the flowchart in Figure 49, the program first checks whether it has to add the face
ID and, if so, it sends a request to the Cloud API. Afterwards, the program adds all the images in
the input-folder argument. Finally, if the train argument is present in the command, the program
sends an optimized train request to the Cloud API.
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Figure 49: Add ID and Images from Dataset Program Flowchart
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In this program, the images are not processed locally by the program, as they are supposed to
be preprocessed and to only contain the images of the subject to be added to the system.

An example of the command used to run this program and the console output during execution
can be found in Figure 50. The HTTP response code 200 indicates that there were no problems

during in the execution of the request.
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(base) C:\Users\adsam\Desktop\Face_Recognition_Project\face-recognition\interaction-with-framewor
k\add-user-from-dataset>python add_user.py --ip-address 48.66.58.248 --input-folder C:\Users\adsa
\Desktop\Face_Recognition_Project\Datasets\1lfw\Harrison_Ford --person-id "Harrison Ford" --creat

e-id --train

ID add request had response: 200

Img add request for Harrison_Ford_e001.jpg had response:

Img add request for Harrison_Ford_0002.jpg had response:

Img add request for Harrison_Ford_0©03.jpg had response:

Img add request for Harrison_Ford_0604.jpg had response:

Img add request for Harrison_Ford_e@05.jpg had response:

Img add request for Harrison_Ford_0006.7jpg had response:

Img add request for Harrison_Ford_e007.jpg had response:

Img add request for Harrison_Ford_0008.jpg had response:

Img add request for Harrison_Ford_0009.jpg had response:

Img add request for Harrison_Ford_0©10.jpg had response:

Img add request for Harrison_Ford_0@11.jpg had response:

Img add request for Harrison_Ford_0@12.7jpg had response:

Optimized training request had response code: 200

Figure 50: Console Output for the Add ID and Images from Dataset CLI Program

The time it takes the system from the start of the program execution until the new ID is added,
the images are added, the system has been trained to recognize the new person (and any new
recognition request will use the newly trained classifier) can be as low as 30 seconds or less (in
the example in Figure 50 with 12 images it was 26 seconds). The specific time will depend on the
number of images to be added and the number of images already present in the dataset, as the
SVM classifier will take longer to train for higher number of dataset images (larger Labels and
Embeddings files), even when using the optimized train function (which omits the generation of
the image embeddings).

As previously mentioned, this process is completely compatible with the recognition of images
and allows the system to keep operational while the ID and images are added and while the SVM
classifier is trained. Once this process is finished, the system will start using the newly trained
classifier seamlessly and without any interruption to system operations.

6.4 ADD ID AND IMAGES FROM CAMERA

The Add ID and Images from Camera program aids with the task of adding a new user to the face
recognition system. The difference between this program and the Add ID and Images from
Dataset one lies on the source of the images added to the Face ID. Instead of using pre-processed
images available in a folder, this program uses the webcam connected to the computer where
the program is running to capture the images which it then processes by extracting the faces to
later send them to the Cloud API.

At the end of the process, the program can also instruct the Cloud API to perform an optimized
training so that the new face is recognized using the face recognition API calls.

The input arguments of the program are:

- Person-ID: Name of the Face ID to which the images are to be added.

- IP-address: The Cloud APl ingress IP address (the address points to the Load Balancer).

- Img-number: the number of face images to be taken, pre-processed and sent to the
Cloud API to add them to the Face ID.

- Create-ID: If present in the command, indicates that the program must sent a Face ID
creation request prior to sending the images.
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- Train: If present in the command, indicates that the program must send an Optimized
train request to the cloud API once the ID has been created and the images have been
added.

As shown in the flowchart in Figure 51, the program first loads the tensorflow model used to
detect the faces. If the create-id argument is present, it sends the add ID request to the Cloud
API. Afterwards, the program captures images from the camera, extracts the faces in the images
and sends these images to the Cloud API. Once the number of face images sent to the cloud
matches the number given in the img-number argument, the camera is released. Finally, if the
train argument is provided, an optimized train request is sent to the Cloud API.

Start

Load face detection

model
Is create-id arg Send add ID request
. Yes—P
in request? e to Cloud API
No

For img-number

images:
- Capture image Images from
- Process image camera

- Send Add Image
request to Cloud API

:

Is train arg in Send optimized train
Yes—p
request? s request to Cloud API
No
\
End

Figure 51: Add ID and Images from Camera Program Flowchart

Note that if more than one face is detected in the images from the camera, the system will add
none for that frame, as it does not know which one is the user that is being added. Once only
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one face is detected, the system will resume sending the face images to the cloud until the
img-number is reached.

An example of the command used to run this program and part of the output provided by the
program in the CLI is shown in Figure 52.As in the other programs, the code 200 means that the
request has been processed successfully.

(base) C:\Users\adsam\Desktop\Face_Recognition_Project\face-recognition\interaction-with-framewor
k\add-user-with-camera>python add-user-with-camera.py --person-id Adrian --ip-address 40.66.58.24
8 --img-number 20 --create-id --train
ID add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
add request had response: 200
request had response: 200
request had response: 200
request had response: 200
. Please wait
training request had response code: 200

Figure 52: Console Output for the Add ID and Images from Camera CLI Program

The process to add the images from the camera takes more time than if the picture is feed from
a folder, as the face picture has to be extracted and sent to the Cloud API, and these capture
and extraction processes take more time.

The face detection and extraction processes are performed so that the images sent to the Cloud
APl do contain a face. Given the extra processing involved, the total time to add 20 images of a
subject shown in Figure 52 took approximately one minute to complete.

The program displays one window with the images captured by the camera with a purple box
surrounding the face being added and another window with the face image being sent to the
Cloud API. An example of the contents of the general view window is shown in Figure 53.
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Figure 53: Windows for the Add ID and Images from Camera Program

The actual image being sent to the Cloud API is slightly larger than the box in Figure 53. This is
important, as a tightly cut face image may not perform well in the MTCNN face detection
algorithm on the Cloud API.

6.5 REAL-TIME FACE RECOGNITION FROM CAMERA

A program has been developed to allow for face recognition from the webcam in the computer
running the program. It allows to capture images from the camera, detect and extract the faces,
send the detected faces to the Cloud API, get the identities for the faces and display the
identities as an overlay to the original image.

The input arguments of the program are:

IP-address: The Cloud APl ingress IP address (the address points to the Load Balancer).
Min-size: Minimum face image size on the long axis. Smaller images are discarded.
Max-size: Maximum face image size on the long axis. Larger images are resized.
Min-confidence: Minimum confidence level to show result of face recognition.
Multithreading: Send all face images in a frame simultaneously to the Cloud API
(improves performance).

The box surrounding the faces is color-coded to represent the result of the face recognition:

No box: the face is not detected by the local program.

Red box: the face candidate is detected by the local program, although the Cloud API
does not have enough confidence that the image sent contains a face to recognize it.
Blue box: the face is detected by both the local program and the Cloud API, but the
Cloud API does not have enough confidence about the identity of the face so as to
show it in the box (this confidence level can be changed in the local program).

Green box with recognized identity: the face is detected by both the local program and
the Cloud API, and the face is recognized by the Cloud APl with enough confidence to
show it in the box label.
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The face recognition of the images from the camera is achieved by following the procedure in
Figure 54. The program starts by loading the face detection model. It then obtains an image from
the camera, processes it, extracts the faces, and sends them to the Cloud API for face
recognition. With the results of the face recognition, the program displays the boxes
surrounding the faces in the original frame, with the detected identities.

Start

Send the faces to
the Cloud API for

Load face detection
model

recognition
Al . Display the_ boxes
Capture image from and detections of
HEER
camera faces on top of the
camera P
original image
Preprocess the Has exit key  Ves—p End
image been pressed?
Yes No No

Is there a new
frame available?,

Extract the faces e

Figure 54: Real-Time Face Recognition from Camera Program Flowchart

The program provides the two windows shown in Figure 55: one with the original image

captured by the camera and another one with a slightly larger crop of the face image being sent
to the Cloud API.
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Figure 55: Camera Windows from the Real-Time Face Recognition from Camera Program

Sending to the cloud an image covering more area than the actual face detected is important,
as a tightly cut face image may not perform well in the MTCNN face detection algorithm on the
Cloud API.

Note that all the programs are also capable of detecting multiple faces in the same frame. In the
case of multiple faces present in the frame, the face images are alternated in the cropped view
window on the left in Figure 55.

6.6 FACE RECOGNITION FROM VIDEO FILE OR VIDEO STREAM

To perform the face recognition and the display of results in the images from a video file or a
video stream, the video recognition program allows to select the source of the video and then
performs the recognition in this video.

The input arguments of the program are:

- IP-address: The Cloud APl ingress IP address (the address points to the Load Balancer).

- Video-source: The web address of the video stream or the file path of the video file.

- Skip-frames: Number of frames to be skipped. For 30fps, if set to 5, the effective
framerate is 5fps.

- Target-fps: Approximate target frames per second. Only for video files.

- Min-size: Minimum face image size on the long axis. Smaller images are discarded.

- Max-size: Maximum face image size on the long axis. Larger images are resized.

- Min-confidence: Minimum confidence level to show result of face recognition.

- Multithreading: Send all face images in a frame simultaneously to the Cloud API
(improves performance).

The procedure followed by the program in order to achieve the recognition and to display the
results is shown in Figure 56. This procedure is the same as the one of the real-time camera
recognition but changing the source of the images from the integrated camera to the video file
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or video stream of choice. It is also worth to mention that all the frames from a file are
processed, while in the case of the camera, if there are significant processing delays, many

frames could be skipped.
Start °

Y Y

Send the faces to

Load face detection the Cloud API for

model .
recognition
A 4 h 4
Next frame Display the boxes
from file or Crapturelimage from and detections of
video stream file or video stream faces on top of the
buffer original image
Y v
Pre—process the Has exit key Vs End
image been pressed?
Yes No No
A 4 b 4
Extract the faces L— Is there a, new
frame available?

v

Figure 56: Face Recognition from Video File or Video Stream Program Flowchart

The user interface of this program is based on the interface in the real-time face recognition
with camera program. The faces are either not detected (no bounding box), detected by the
local program but not by the Cloud API (red box), detected by both the local program and the
Cloud API but not recognized (blue box), or detected by both the local program and the cloud
APl and recognized (green box with the recognized identity).

The results of this program are displayed similarly to those of the program that recognizes the
faces from the video recorded by the camera. As shown in Figure 57, the data is divided in two
windows: one for the video frames with the overlay of the boxes and another for the face images
being sent to the cloud for recognition.
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Figure 57: Windows from the Face Recognition from Video Program [53]

An example of how the frame window looks when fed a frame with known faces (green),
unknown faces (blue), and bad quality or obstructed face images (red) is shown in Figure 58.
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Figure 58: Example Scene for the Face Recognition from Video Program [53]

6.7 FACE EXTRACTION FROM VIDEO FILE OR VIDEO STREAM

A program has been designed to extract the faces in a video file or stream. It is used to test the
bandwidth savings achieved by using the architecture proposed in this project.

The input arguments of the program are:
- Video-source: The web address of the video stream or the file path of the video file.

- Output-folder: Output folder where the face images extracted are stored.
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- Skip-frames: Number of frames to be skipped. For 30 fps, if set to 5, the effective
framerate is 5 fps.

- Target-fps: Approximate target frames per second. Only for video files.

- Min-size: Minimum face image size on the long axis. Smaller images are discarded.

- Max-size: Maximum face image size on the long axis. Larger images are resized.

The procedure followed by the program to extract the faces from the video stream or file and
to store them to a folder is shown in Figure 59. The extraction process is similar to that
performed in the video recognition, storing the face images to a local folder instead of sending
the images to the Cloud API.
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Pre-process the Has exit key
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Is there a new
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Figure 59: Face Extraction and Storage from Video File Program Flowchart

frame available?,

The user interface of this program is quite similar to the one of the face recognition from video
file or video stream, with a different color coding and without the names of the recognized faces,
as this program does not send the images to the Cloud API, neither it recognizes them locally.
The only color used, as shown in Figure 60, is white, meaning that the face has been detected
by the local program and is going to be stored into the local folder selected (if the face image
size on the long axis is greater than the fixed minimum.
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Figure 60: Frame and Extracted Face Image Windows Obtained with the Face Extraction from Video Program

6.8 FACE RECOGNITION FROM FOLDER

The face recognition from folder program provides an interface to send the face images from a
folder to the Cloud API for recognition. The input arguments of the program are:

- IP-address: The Cloud APl ingress IP address (the address points to the Load Balancer).

- Input-folder: The folder with the images to upload.

- Dry-run: If included, the images are sent to the cloud but no results are obtained. For
benchmarking purposes.

- Stats: Shows statistics of the images sent.

The procedure followed by the program to send the images from the folder to the Cloud API for
recognition is shown in Figure 61. The program reads all the images from the folder and sends
them to the Cloud API. If the dry-run parameter is present, then the images are sent to a special
dummy address that will not send back any results. This address is used for benchmarking
purposes.
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Figure 61: Face Recognition from Folder Program Flowchart

This program provides all the data through the CLI, as shown in Figure 62. Therefore, there is
only one window open with the output of the program. It provides confirmation of the
submission of the images and, in case the dry-run argument is not present, it also provides the
recognition results. At the end of the execution, if requested, it provides statistics regarding the
submission.
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Figure 62: Console Output for the Face Recognition from Folder Program

6.9 BANDWIDTH SAVINGS BENCHMARK

In these tests, the face extraction and image transmission programs are used to obtain and send
the images of the faces found in the different test videos used for the experiment. The process
is monitored, measuring many parameters to achieve a greater knowledge of the bandwidth-
saving performance of the system.

The videos used for the tests contain images of the flow of people in various streets in different
locations around the world. Each one of the videos shows a different density of people, leading
to a wide variety of test scenarios. This allows to fully demonstrate the variability of the
bandwidth savings achieved with the architecture designed in this document depending on the
density of people in the video feeds analyzed.

The variations in the bandwidth required depends on the number of faces in a video stream.
This is due to how the system achieves the bandwidth savings, which is linearly dependent on
the number of faces detected and transmitted on each of the frames processed, as well as on
the size of the faces in pixels. To differentiate between the different face densities, five
categories will be considered as shown in Table 5, defined by the number of face images sent
per minute.

Range Face images per minute
Very low density <5

Low density 5-50

Medium density 50-500

High density 500-1000

Very high density | >1000

Table 5: Face Density Ranges

In the following subsections, videos falling under the medium density, high density and very high
density categories are used to test the system. These videos have each a length of 10 minutes.
Links to their web addresses can be found in each of the subsections.
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To emulate a security IP camera, the videos are converted to 6 fps by the face extraction
program. IP video surveillance cameras require an approximate bandwidth of 4 Mbps when
sending 1080P video at reasonable qualities and framerates of 6-10 fps [54] [55].

The video file size used for the comparison is determined from the assumption of the 4 Mbps
bandwidth required for a surveillance camera transmitting stream of 6 fps at 1080P.

The face extraction process is configured so that face images that are too small to be recognized
(less than 30 px in the short axis, in our case) are discarded, while face images that are over a
certain threshold (150 px in the long axis, in our case) are compressed to reduce the space and
bandwidth required to transmit and process them.

6.9.1 Medium Density

The video from [56] has a facial density that falls into the medium density category, given that,
after extracting the faces from the video, as shown in Figure 63, the average number of face
images detected and extracted per minute has been determined to be 305.4. The data used to
obtain this metric can be found in Table 6. The total file size of the pictures, the average per
image file size, and the average height and width in pixels of the face images have been
determined from the analysis of the face images extracted can also be found in Table 6.
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Figure 63: Face Extraction Window — Example of Medium Density

Video length 600 s
Number of face images 3054
Face images per minute 305.4
Total face image files size 10.05 MB
Average image file size 3.37KB
Average image height 91 px
Average image width 76 px
Average image size 7845 px

Table 6: Extracted Face Images Data — Example of Medium Density
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After the face images have been extracted from the video, they are sent to the cloud API. The
transmission to the APl has been monitored using the network capture program Wireshark [57]
to obtain network usage statistics. These statistics are more adequate than the extracted image
file size to determine the actual bandwidth savings obtained by using the architecture proposed
in this document versus transmitting the whole video feed over the network. The results of this
test are the bandwidth used by the images in the network, the average per image network size,
the number of network packets sent, and the network overhead which is extra percentage used
by the system when sending the images to the Cloud compared to the size of the images being
sent (in this case 14 MB and 10.05 MB respectively). These results can be found in Table 7. Note
that, as this test has been performed in a real environment, the transmission of the data has
been affected by the network conditions, meaning that there may have been retransmission of
network packets due to erroneous packets, lost packets, excessive network delays, etc. This
means that if the test were repeated, the results would be quite similar but not necessarily
equal.

Network packets 45536
Size in network 14 MB
Average image network size 4.69 KB
Network overhead 39.3%

Table 7: Network Transmission Data — Example of Medium Density

From the data gathered during the face image extraction and transmission, and from all the
assumptions made regarding a hypothetical system sending the video camera feeds directly to
the cloud (network bitrate of 4 Mbps per camera), the size reduction factor shown in Table 8 is
obtained. This factor indicates a great reduction in the network bandwidth required for the
recognition of the faces in the video using the proposed architecture.

Average network bitrate 0.19 Mbps
Estimated IP camera bitrate 4 Mbps
Estimated IP camera video size 300 MB
Bandwidth reduction factor (factor that divides) | 21.4

Table 8: Bandwidth Reduction Factor — Example of Medium Density

6.9.2 High Density

The video from [58] has a facial density that falls into the high density category, given that after
extracting the faces from the video, as shown in Figure 64, the average number of face images
detected and extracted per minute has been determined to be 864.9. The data used to obtain
this metric can be found in Table 9. Following the same procedure as in the medium density test,
the results of the test with the high density video are also shown in Table 9.
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Figure 64: Face Extraction Window — Example of High Density

Video length 602 s
Number of face images 8678
Face images per minute 864.9
Total face image files size 23.8 MB
Average image file size (kb) 2.81 KB
Average image height 91 px
Average image width 76 px
Average image size (pixels) 7647 px
Network packets 123850
Size in network 34.74 MB
Average image network size 4.10KB
Network overhead 46.0%
Average network bitrate 0.46 Mbps
Estimated IP camera bitrate 4 Mbps
Estimated IP camera video size 301 MB
Bandwidth reduction factor (factor that divides) | 8.7

Table 9: Test Results — Example of High Density

The bandwidth reduction factor in Table 9 obtained in the high density test shows an important
bandwidth reduction, although not of the same magnitude as the medium density test.

6.9.3 Very High Density

The video from [59] has a facial density that falls into the very high density category, given that
after extracting the faces from the video, as shown in Figure 65, the average number of face
images detected and extracted per minute has been determined to be 1479.2. The data used to
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obtain this metric can be found in Table 10. Following the same procedure as in the medium
density test, the results of the test with the very high density video are shown in Table 10.

Figure 65: Face Extraction Window — Example of Very High Density

Video length 601 s
Number of face images 14817
Face images per minute 1479.2
Total face image files size 51.01 MB
Average image file size (kb) 3.53 KB
Average image height 91 px
Average image width 74 px
Average image size (pixels) 7755 px
Network packets 221712
Size in network 70.22 MB
Average image network size 4.85 KB
Network overhead 37.7%
Average network bitrate 0.93 Mbps
Estimated IP camera bitrate 4 Mbps
Estimated IP camera video size 300.5 MB
Bandwidth reduction factor (factor that divides) | 4.3

Table 10: Test Results — Example of Very High Density

The bandwidth reduction factor in Table 10 obtained in the very high density test shows a
remarkable bandwidth reduction, far off the result of the medium density test as expected, but
still providing more than a four times reduction in the bandwidth required, even in such a
challenging environment.
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6.9.4 Discussion of Results

The results of the bandwidth reduction tests conducted in the previous subsections have led to
the obtention of the bandwidth reduction factors shown in Table 11. The bandwidth reduction
factor is represented as dependent on the number of faces detected and extracted by the edge
program per minute. The metric also depends on the average size of the faces extracted.

Range Face images per | Expected bandwidth
minute reduction factor

Very low density <5 >1365x

Low density 5-50 1365x-137x

Medium density 50-500 137x-14x

High density 500-1000 14x-7x

Very high density | >1000 <7x

Table 11: Face Density Ranges and Expected Bandwidth Reduction

The bandwidth reduction estimation shown in Table 11 has been obtained considering a 4 Mbps
camera stream and an average 4.5 KB per face image transmitted. The average image size has
been obtained as an average of the tests shown in this section and of other tests conducted
during the development of this project.
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Chapter 7: BRIEF CYBERSECURITY ANALYSIS

The architecture designed in this project is mainly focused on the reduction of bandwidth
through the use of edge computing. Even so, attention has also been paid to system
cybersecurity, as demonstrated by some of the attack mitigations incorporated in the code.
Nevertheless, not being the main target, there are some security protections that have not been
considered, as they are either implementation dependent or application dependent. Due to this,
while several security functions and vulnerability and exploitability mitigations have been
implemented, there are some basic features that should be additionally incorporated prior to
the actual deployment of the system in a production environment, especially when the data
transmitted to and from the Cloud API have to be confidential.

7.1 EXPLOITABILITY MITIGATIONS

In some of the Calls of the Cloud API, the inputs provided in the request fields are used to access
the filesystem. This means that if left untreated, inserting expressions such as “../” into those
fields could allow attackers to access areas of the filesystem to which they are not authorized,
as they are out-of-bounds. This has been solved by checking that the path to which the functions
that handle user-provided inputs access is not out of the scope of their access (e.g. the Dataset
folder in the case of adding or deleting IDs).

In the Cloud API, some of the requests handle user inputs and use them to send an SQL query
to the Database server. These inputs cannot be directly inserted into an SQL query, as this would
open a door for SQL injections attacks. This type of attacks perform unauthorized access or
modification of the database by inserting special commands into the user inputs that are later
included in the SQL query. This enables attackers to read or make changes outside of the scope
of the query.

To block the SQL injection attacks, the system parses the inputs via the mysql connector’s built-in
functions. These functions take the query template and the user-defined input parameters in
different variables, so that they can check that there are no special characters or illegal
expressions in the user-provided inputs.

In the cloud infrastructure, the Virtual Machine (VM) that runs the Network File Storage (NFS)
service is accessible through SSH for development purposes. In a production environment, this
connection should be made through a Virtual Private Network (VPN) instead of over the
internet, where anyone can try passwords. However, to partially mitigate this, instead of
authenticating with a user-password combination, the access authentication is performed with
a certificate, increasing the security of the system.

7.2 FURTHER CYBERSECURITY IMPROVEMENTS

As previously mentioned, there are some cybersecurity mitigations and cybersecurity
vulnerability patches that have not been implemented in this project since they are
implementation dependent. This means that they would have had to be implemented again in
any new deployment.

The Cloud API is designed as a RESTful API. Due to this, the requests are sent with the HTTP
protocol. This protocol is not secure and is vulnerable to both confidentiality and integrity losses.
The solution to this is to use HTTP over Transport Layer Security (TLS). This combination is known
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as the HTTP Secure (HTTPS) protocol. To implement it, the Cloud APl servers should be
configured with a security certificate for the connection, and HTTPS capabilities should be
enabled in the Web Server handling the API Calls.

The connection between the Edge Nodes and the Cloud API, as well as the connection between
the programs used by the employees performing maintenance operations (e.g. user add and
user delete operations) and the Cloud API is not authenticated. This lack of authentication
means that anyone with access to the Public IP address used as the ingress for the APl is able to
interact with it. This may not be optimal for a production deployment, and device and employee
authentication should be implemented.

Both the HTTPS security and the device/employee authentication could be implemented by
adding an extra authentication and unpacking deployment before the currently implemented
processing deployment. This deployment would handle both the authentication and the HTTPS
requests. It would then send the extracted HTTP requests to the processing deployment. This
way, the processing deployment would perform the same operations as in the current system.
This would also allow to add an extra division of the processing pods, between face recognition
handlers and training and dataset maintenance handlers, as the intermediate deployment could
determine to which it should send the HTTP request depending on its URL.

The API calls to the Cloud API require a significant processing time (given the complexity of the
service being provided) to generate an answer when compared with an average HTTP or PHP
webpage server. This means that a Distributed Denial of Service (DDoS) attack would not require
much traffic to achieve its goal of taking down the service (or generating a great traffic spike
which would lead to high Cloud Computing billing if using auto-scaling services, an option of the
proposed architecture). This would be greatly mitigated with the aforementioned user
authentication, as the DDoS could be contained into the authentication phase which is orders
of magnitude faster than the processing phase.

Finally, both the libraries used in the project and the code that has been developed should be
periodically checked for new security updates and any vulnerabilities that may be discovered by
the international community and may affect the code.
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Chapter 8: BRIEF LEGAL ANALYSIS

The popularization of the use of facial recognition systems is generating controversy all around
the world. Legislation is being implemented to protect face biometrics as much as other types
of biometrics such as DNA and fingerprints are already being protected.

Faces are public identifiers that humans use daily to recognize the people in their environment.
Face recognition systems use the same information as humans do to identify people in pictures
and video feeds. Therefore, faces can be considered personal identifiers and, as such, should be
protected by the privacy legislation of countries.

8.1 EUROPEAN UNION’S GENERAL DATA PROTECTION REGULATION

According to the General Data Protection Regulation (GDPR), active since 2018 in the European
Union, face images are considered biometric data. Biometric data are considered sensitive
personal information by the GDPR. As sensitive information, face images are subject to a high
level of legal protection, which requires the highest level of data protection.

Furthermore, under the protection provided by the sensitive personal data category of the
GDPR, the use of the facial features of a person is highly restricted. It is protected to the extent
that, in most cases, these characteristics can only be used after user consent has been provided
to the processor of the information. This fact leads to the use of facial recognition software
almost exclusively by governmental agencies, where its use can be justified as of importance for
public safety. For this reason, facial recognition is commonly found in law enforcement use.

8.2 UNITED STATES

In the United States, facial recognition software is being used by many law enforcement
agencies, both federal and state ones. This massive use of facial recognition is backed by an
extensive network of databases that contain pictures of hundreds of millions of people. The
storage of this information over many departmental databases poses a severe risk to individual
privacy due to a high risk of information leakage and potential misuse.

Many senators, legislators and public leading figures have spoken out against this indiscriminate
use of facial recognition software in the US. They allege that it not only attacks individual privacy,
but also creates new problems; problems such as false positives that may lead to the arrest of
innocent individuals or the bias of certain systems when dealing with people of different race
and skin color.

Although there is no major federal legislation regarding the use of facial features for face
recognition, there are state laws that regulate the use of biometric identifiers, such as the Illinois
Biometric Information Privacy Act (BIPA) [60]. This law protects biometric identifiers from being
obtained or stored by companies without the previous explicit consent of the citizen.

Inthe lllinois BIPA, biometric identifiers are defined as “retina or iris scan, fingerprint, voiceprint,
or scan of hand or face geometry”. It is noteworthy that biometric identifiers do not include
“writing samples, written signatures, photographs, human biological samples used for valid
scientific testing or screening, demographic data, tattoo descriptions, or physical descriptions
such as height, weight, hair color, or eye color”.
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Face recognition systems would fall under the definition of “face geometry” biometric identifiers

and, as such, the companies that intend to use them would require the explicit consent of the
user/citizen being scanned, under the Illinois BIPA.
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Chapter 9:  CONCLUSIONS

After the completion of this project, the following conclusions can be drawn regarding the
system design:

1.

A face recognition architecture optimized for low bandwidth between the installation
site and the cloud, low processing power in the edge, high availability and high
scalability in the cloud has been designed.

A Cloud API has been designed in Python to accommodate the face recognition
procedures, following RESTful naming guidelines and best practices.

The deployment has been realized so that it can be rapidly scaled up to running
hundreds of instances of the Cloud API code if necessary, which allows for both high
availability and scalability.

The system has been designed so that new faces can be added to the list of people
that can be recognized without any face recognition downtime while training the
system for the new people.

The training time of the classifier has been significantly reduced by storing and
maintaining updated the embeddings extracted from the known images of the
individuals that can be recognized by the system.

The system has been prepared to be able to work both standalone and in cooperation
with a mobile APP that provides valuable statistics to the user.

A brief cybersecurity analysis with security considerations and maintenance
recommendations has been provided for future implementations.

A brief legal analysis of face recognition systems has been carried out to give a
fundamental view regarding deployment considerations in both the US and EU.

Furthermore, the following conclusions can be drawn with respect to the system
implementation:

9.

10.

11.

12.

13.

14.

15.

16.

The Cloud API has been implemented in a Kubernetes deployment in the Microsoft
Azure cloud, which is accessible through the internet.

The system has been equipped with shared network storage to allow for scalability.

A database has been integrated as one of the destinations of the detections done by
the system to allow for further analysis.

A series of programs have been developed to serve as edge computing to detect faces
from a variety of sources (web camera, video file, video stream) and send them to the
Cloud API.

All programs that interact with the Cloud API to recognize the faces in a web camera,
camera signal, video stream or video file include options to configure which frames to
process, which face images to send, and how much to compress them before being
sent.

The recognition requests for the faces detected in a given frame can be sent
simultaneously for reduced frame processing times, in all the programs that interact
with the Cloud API to recognize faces.

Several programs have been integrated to allow for the system management from the
employee’s point of view, with routines that enable adding new people to the
recognition system and adding new reference images from different sources.

An ID can be completely removed from the system with only two API calls leaving no
trace in the storage or the recognition system for improved legal compliance.
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The results of the testing conducted lead to the following conclusions:

17. The correct functionality of the system has been demonstrated with a series of tests
designed to cover the most relevant functionality.

18. The performance of the system has been measured, and its scalability has been tested.

19. The bandwidth reduction, which was the primary motivation and objective of the
system, has been proven in a test scenario.

As a summary, we can affirm that the system implemented has proved that the architecture
proposed in this project achieves what it was originally designed for: reducing the bandwidth in
face recognition of video surveillance systems, thanks to the use of a design based on Edge
Computing. Furthermore, it achieves scalability and high availability thanks to the
implementation on a Kubernetes cluster.
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Chapter 10:  FUTURE WORK

The following work is proposed for future extensions of this project, that can improve the
application to real cases, with advanced performance and user interaction:

1.

10.

11.

12.

13.

Train a new face feature extractor based on the newest and most efficient
architectures such as MobileNet V3 or EfficientNet. This would allow the system to
recognize the faces with improved accuracy and efficiency.

Further optimize the classifier for large number of IDs, as the current version works
great for small to medium sizes but may struggle with hundreds or thousands of IDs.
Optimize the face detection routine of the Cloud API to obtain even higher
performance per CPU core, although the performance is already good for the
complexity of the operations being performed.

Further reduce the bandwidth of the edge computing nodes to the Cloud API by
removing remarkably similar face images of the same person from frame to frame.
This can be achieved by tracking the faces and not sending similar images of the same
face.

Implement the edge processing in a specific device as the ones suggested in Chapter 2.
This would allow to speed-up the edge processing by taking advantage of the
hardware acceleration provided by GPUs and TPUs.

Implement an even faster face detection algorithm in the edge, as this algorithm is to
be optimized towards speed and not accuracy, taking into account that false positives
are not a problem, given that the accuracy is provided by the second face detection,
which is performed in the cloud.

Divide the work being performed by the face recognition Pod between face
recognition and dataset and model management.

Implement edge node and employee program authentication.

Implement HTTPS security with a security certificate from a well-known Certification
Authority (CA).

Implement Distributed Denial of Service protection or mitigation in the Cloud API for
improved robustness.

Detect the approximate distance between people in the camera frames using face size
and distance between faces for certain applications, like COVID infection prevention.
Design an analysis program that uses the detections information in the database to
create processed high-level information.

Design an algorithm that groups unknown faces based on embedding similarity
allowing to add new people from the camera feeds and enabling to track unknown
people with auto-generated identities.
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