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Abstract 
In this project, a facial recognition system based on the concepts of machine vision with 

convolutional neural networks (CNNs), machine learning and distributed computing is proposed, 

developed and deployed to Azure.  The project consists of three parts: the design of an 

architecture focused on reducing the bandwidth required to transport the images from the 

cameras to the cloud servers; the design and implementation of the software that compresses 

the data near the cameras; and the design and implementation of a REST API for image 

processing easily scalable to large deployments in the cloud. 

The reduction of the bandwidth required for the transmission of images from the cameras to 

the cloud is achieved by pre-processing the data in an intermediate node near their generation 

through the use of edge computing techniques. 

In the pre-processing stage, the faces contained in each of the frames captured by the cameras 

belonging to that node are identified and extracted.  The new images that only contain the faces 

are then sent to the cloud, where they are classified among the known people.  By only sending 

the portions containing faces instead of sending the entirety of the frames, a significant 

reduction in the required bandwidth is achieved. 

At the cloud, a REST API has been designed and implemented in containers handled by a 

Kubernetes deployment in the Azure cloud.  In these containers, the system that recognizes the 

faces received from the edge is executed.  The load is distributed among the different 

containers, whose number can be scaled to suit the workload.  This API not only allows the 

recognition of people for whom the model has been trained; it can also incorporate people into 

the dataset, remove people from the dataset, as well as retrain the recognition model to identify 

people in the new dataset and start using the new model immediately and without any 

downtime.  All the information extracted in this process is stored in a database that allows its 

later analysis. 

  



                                                                                                                                                              
 

 

Resumen 
En este proyecto se propone y desarrolla un sistema de reconocimiento facial basado en los 

conceptos de visión máquina con redes neuronales convolucionales (CNNs), aprendizaje 

máquina y computación distribuida. El proyecto está formado por tres partes: el diseño de una 

arquitectura centrada en la reducción del ancho de banda necesario para transportar las 

imágenes desde las cámaras a los servidores en la nube; el diseño e implementación del 

software que comprime los datos cerca de las cámaras; y el diseño e implementación de una API 

REST adaptable a grandes despliegues para el procesado de las imágenes en la nube. 

La reducción del ancho de banda requerido para la transmisión de las imágenes de las cámaras 

a la nube se consigue mediante el preprocesado de los datos en un nodo intermedio cerca de su 

generación mediante el uso de técnicas de computación en el borde (edge computing). 

En la etapa de preprocesado se identifican y extraen las caras contenidas en cada uno de los 

fotogramas capturados por las cámaras pertenecientes a ese nodo. Las imágenes que ya sólo 

contienen las caras son entonces enviadas a la nube, en la cual se clasifican entre las personas 

conocidas. Al sólo enviar las porciones que contienen caras en lugar de enviar los fotogramas 

enteros se consigue una reducción significativa del ancho de banda requerido. 

En el extremo cloud, se ha diseñado e implementado una API REST en contenedores manejados 

por un despliegue de Kubernetes en la nube Azure. En estos contenedores se ejecuta el sistema 

que reconoce las caras recibidas desde el edge. La carga está distribuida entre los diferentes 

contenedores, cuyo número puede variarse para adaptarse a la carga de trabajo. En esta API no 

sólo se permite el reconocimiento de personas para las que el modelo se ha entrenado; también 

se puede incorporar personas al set de datos, eliminar personas del set de datos, así como 

reentrenar el modelo de reconocimiento para identificar las personas en el nuevo set de datos 

y empezar a usar el nuevo modelo de forma inmediata y sin downtime. Toda la información 

extraída en este proceso es almacenada en una base de datos que permite su posterior análisis. 

  



                                                                                                                                                              
 

 

Resum 
En este projecte es proposa i desenvolupa un sistema de reconeiximent facial basat en els 

conceptes de visió màquina en xarxes neuronals convolucionals (CNNs), aprenentatge màquina 

i computació distribuïda. El projecte està format per tres parts: el disseny d'una arquitectura 

centrada en la reducció de l'ample de banda necessari per transportar les imatges des de les 

càmeres als servidors en el núvol; el disseny i implementació del software que comprimix les 

dades prop de les càmeres; i el disseny i implementació d'una API REST adaptable a grans 

desplegaments per al processat de les imatges en el núvol. 

La reducció de l'ample de banda requerit per a la transmissió de les imatges de les càmeres al 

núvol s'aconsegueix per mig del preprocessat de les dades en un nodo intermig prop de la seua 

generació per mig del ús de tècniques de computació a la vora (edge computing). 

En l'etapa de preprocessat s'identifiquen i s'extreuen les cares contingudes en cada un dels 

fotogrames capturats per les càmeres pertanyents a este node. Les imatges que ja només 

contenen les cares són llavors enviades al núvol, en la qual es classifiquen entre les persones 

conegudes. A l'només enviar les porcions que contenen cares en lloc d'enviar els fotogrames 

sancers s'aconsegueix una reducció significativa de l'ample de banda requerit. 

A l'extrem cloud, s'ha dissenyat i implementat una API REST en contenidors manejats per un 

desplegament de Kubernetes en el núvol Azure. En estos contenidors s'executa el sistema que 

reconeix les cares rebudes des del edge. La càrrega està distribuïda entre els diferents 

contenidors, el nombre pot variar-se per adaptar-se a la càrrega de treball. En esta API no només 

es permet el reconeiximent de persones per a les que el model s'ha entrenat; també es pot 

incorporar persones a el set de dades, eliminar persones de el set de dades, així com reentrenar 

el model de reconeiximent per identificar les persones en el nou set de dades i començar a 

utilitzar el nou model de forma immediata i sense indisponibilitat. Tota la informació extreta en 

este procés és emmagatzemada en una base de dades que permet la seua posterior anàlisi. 
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Chapter 1: INTRODUCTION 

At the beginning of the computing age, the data that were obtained by the different systems 

were processed locally. This was in part due to the lack of a telecommunications infrastructure 

capable of sending these data across cities. 

Nowadays, in the cloud age, almost all the data processing has been moved to “the cloud”, i.e. 

the data are being sent from where they are generated to remote servers for processing. 

However, due to the popularization of the Internet of Things (IoT), there has been an increase 

in the generation of highly-distributed data, which leads to doubling the number of IP 

connections every 2.5 years [1], which poses a challenge for the underlying data communication 

networks. 

The cost of data transport in some high-bandwidth applications, such as video surveillance and 

analysis, is becoming a barrier for the advancement of the technology, as these distributed data 

can quickly saturate the traditional pyramidal structure of Internet Service Providers’ (SP) 

networks. 

It is because of this that both the bandwidth required and the distance that the data need to 

travel for an application must be reduced as much as possible. With this goal in mind, in these 

high-bandwidth applications, the data needs to be compressed or pre-processed near the 

devices that are producing it. 

The tendency of bringing data processing nearer to the devices that are generating them is 

known as edge computing, and it is predicted to be one of the technological trends of the decade 

[2], as it becomes the most cost-effective and highest performance solution in which many new 

technologies, such as 5G, rely heavily. 

1.1 MARKET OVERVIEW 
In the following subsections, an overview of the video surveillance market is provided. This 

overview focuses on both the home and large-scale markets, identifying the main actors and 

providing a brief analysis of their products. 

1.1.1 Home and Small Business Security 

In the home and small business market, the customers have a low count of cameras on-

premises, and it is common to have most of the work performed in the cloud. 

1.1.1.1 Ring 

The Ring ecosystem [3] provides solutions and devices for home automation and home security. 

The device catalog includes a large number of devices which integrate a camera for monitoring 

purposes. 

The processing on the devices themselves is limited in most cases to motion detection. 

Whenever motion is detected, the camera performs a predefined function. This function could 

be to record the images and upload them to the cloud or to send a message to a device through 

the cloud. 

The images are stored in the cloud servers, where not much processing is performed. The 

storage of these images is part of a service provided by Ring under the name of Ring Protect. 
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As the system does all the processing in the camera in order to save bandwidth, the processing 

is limited and it may not provide the user with as much insightful information as offered by other 

systems. 

1.1.1.2 Nest 

The Nest ecosystem [4] provides mainly home automation services, although it also has a range 

of devices that target home security. Their home security catalog includes cameras, alarm 

systems, locks, and other devices. 

The processing is carried out mainly in the cloud, since the cameras only performs motion 

detection. 

The system processes in the cloud the images sent by the different cameras. Via this processing, 

it decides whether there is a relevant event. It then classifies all events in a series of categories 

using artificial intelligence. This service is called Nest aware. 

The problem with a service that relies so heavily on the cloud computation, and that provides 

services with 24/7 cloud recording is that each camera requires an expensive fixed upload 

bandwidth (approx. 1.2 Mbps/camera according to Nest, but usually 5 Mbps/camera for a 

typical H264 1080P camera). However, in the type of scenario that this system is used (where 

there are few cameras per location), this may be the best solution, as high-level processing in 

the camera is computationally expensive and performing local processing is expensive as well, 

as a new computation device is required. 

Furthermore, by moving all the processing to the cloud, the system can provide the user with 

much more useful information than it would be able to provide if all the processing were to be 

done in the cameras themselves. However, for large deployments, this system would prove 

inefficient, due to the bandwidth requirements previously mentioned. 

1.1.1.3 Xiaomi 

The last Home automation system in this brief analysis is the Xiaomi Smart Home ecosystem [5], 

which is composed by a great variety of sensors, actuators, cameras, alarms, etc. Regarding the 

security cameras, there are several models that offer different on-device processing capabilities. 

The processing is mostly performed in the cameras, where the images are analyzed to determine 

whether there is motion in the scene, and if so, the camera starts recording locally. 

There are also some cameras in the catalog that perform AI humanoid detection to increase the 

versatility of the motion detection system. 

In this system, both the processing and the storing of the video is performed locally in the 

cameras. It is because of this that the cloud serves as a mere aggregation and user access 

platform. 

This type of system does not saturate the communications networks when deployed in large 

scale as others do. However, the system requires much more local processing in the cameras 

themselves, which may not be the most efficient way to process things. Also, as the end devices 

lack the processing capabilities of the cloud, the information provided to the user is very limited 

when compared to other systems that process the information in the cloud. 
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1.1.2 Lage-Scale Security 

In the large-scale business market, the customers have a high number of cameras on-premises, 

and it is common to have most of the work performed on-site. 

1.1.2.1 Anyvision 

The Israeli face recognition company installs high-performance and large-scale video 

surveillance systems for companies and governments all around the world. These systems can 

be configured in many ways, although based on some recent installations in Spain, the system 

seems to be installed near the cameras if there is a great mass of cameras in a given location. 

This means that the camera does no processing, so any IP video camera may be used with the 

system. 

It also means that there are servers installed on-premises to process the video generated by the 

cameras. This is done by processing the images and identifying the individuals and their actions. 

The processed data can then be transmitted to a central controller. In the central controller the 

data are aggregated and a general view of the system is offered with real-time analytics. 

This type of installation poses a problem: either you have the cameras transmitting the video 

over the internet or you process it on-site. If the video is processed on-site, the installations 

need to be modified in order to accommodate the system’s servers. 

A better solution than the type of installation being reviewed could be to only partially process 

the images on-site just enough to reduce the bandwidth without requiring the installation of a 

server room on-site. This could be something that is already done by Anyvision in some 

deployments, although, as their technology is closed source, it is difficult to tell without more 

information. 

1.2 OPEN SOURCE PROJECTS 
There are many open source projects that target image processing and face recognition, some 

of which use machine learning models to achieve this. In the machine learning field, the biggest 

companies (Google, OpenAI, etc.) publish most of their work allowing access to the international 

scientific community. 

In this section, an overview is given of some of the publicly available machine learning-based 

face recognition projects, as a general view of the state of the art of this rapid-evolving field. 

1.2.1 OpenFace 

The OpenFace project [6] is an implementation of the FaceNet face recognition architecture 

proposed by Google researchers [7]. The OpenFace architecture, as shown in Figure 1, 

implements image detection, image transformation (to get the face straight), image cropping, 

feature embedding generation, and feature embedding classification. 
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Figure 1: Diagram of the OpenFace Architecture 

The architecture on which OpenFace is based is commonly found in many other 

implementations. Some of these implementations even share some of the Python code of the 

OpenFace implementation. This is probably due to OpenFace being one of the first open source 

projects to use this face recognition architecture. 

1.2.2 A FaceNet Implementation 

There is a very popular implementation of the Google FaceNet architecture, which also goes by 

the name of FaceNet [8]. It uses the Tensorflow platform [9] to manage the DNN model required 

to obtain the embeddings and to run the Multi-Task Cascaded Convolutional Neural Networks 

(MTCNN) face detection. 

As it is based on the FaceNet architecture, the system proposed in this implementation is quite 

similar to that of the OpenFace project, going so far as to share some of its base code with it. 

This project not only provides the architecture and the code to run the face recognition (in 

Python), but also two pre-trained face embeddings generation DNNs that can be used in 

conjunction with a face detector and a classifier to perform the face recognition. 

This system and its pre-trained face features embedding extractors can be commonly found in 

other open source projects. This is due to the complexity and especially the cost of training a 

modern DNN from scratch to perform embedding generation. 

1.2.3 A FaceNet Docker Implementation 

This final project [10] is also based on the FaceNet architecture by Google, and on the FaceNet 

implementation [8] previously discussed. It provides another Python implementation of the 

base algorithm which is also prepared to run inside a Docker container. 

It is somewhat different from the other implementations as it uses Pytorch FaceNet [11] as the 

basis for face detection and feature extraction. The Pytorch FaceNet provides pre-trained 
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models for face detection and recognition. These models are the same as the ones offered in 

[8], showing how common the use of these pre-trained models is in the open source community. 

This project has served as the inspiration and basis for the present work, as it has provided a 

starting platform which has then been heavily modified and adapted to the specific needs of this 

work. The modification has mainly consisted in adding many functions, modifying the existent 

functions to add much more functionality, changing the classifier and other libraries used in the 

original implementation, and improving the efficiency of the training process; and all of this, 

using an edge (distributed) computing approach in the architecture design. 
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Chapter 2: PROPOSED SOLUTION AND DESIGN 

2.1 THE SOLUTION – OBJECTIVES 
The objective of this project is to design a system that obtains useful information from a video 

recording system while requiring a small amount of data bandwidth and a low processing power 

in the edge computing. All of this while providing a smart scalable solution with high availability. 

To achieve these goals the system architecture designed and implemented in this document 

divides the image processing into two parts: edge computing and cloud computing. 

2.2 THE ARCHITECTURE 
The face recognition architecture implemented in this project has been designed to perform 

most of the processing in the cloud, as many of the systems seen in the introduction. However, 

it has a key distinction: to reduce the bandwidth required between the cameras and the cloud, 

the data are pre-processed in edge computing servers close to the cameras. This enables to 

reduce the amount of data transmitted from the edge to the cloud. The bandwidth reduction is 

achieved by extracting face images candidates in the edge, and sending them to the cloud for 

final extraction and recognition, instead of sending the whole video streams. 

The edge face extraction is optimized for speed, while the cloud face extraction is optimized for 

accuracy. This way, as explained in this section, the bandwidth compression is achieved without 

a great computational cost in the edge, enabling the implementation of the system in small and 

compact edge nodes, as further detailed in following sections. The edge nodes perform a 

preliminary selection of candidate faces, while the cloud nodes extract the real faces and discard 

the non-face images. 

In the distributed computing scheme shown in Figure 2, the size of the data transmitted is 

reduced and the useful information is increased in the path from the cameras to the database. 

In other words: the connection between the cameras and edge computing devices has the 

greatest bandwidth requirement while the connection between the edge computing devices 

and the cloud has a lower bandwidth requirement as the information is more compact. Also, the 

information sent from the cloud processing to the database and NFS storage is even lower in 

size, while containing all the relevant information. 
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Figure 2: Architecture of the Distributed Computing 

The diagram found in Figure 3 represents the same architectural scope as the one in Figure 2, 

although in this diagram, the focus is on a single data path, showing both the logical and physical 

connections of the system. As may be seen, the video streams generated by the cameras are fed 

into the edge computing module, where the faces are extracted. Note that the faces will be 

processed and extracted again in the cloud as the algorithm used in the edge processing is 

optimized for speed and the algorithm used in the cloud for accuracy. 

 

Figure 3: Network and Data Flow of the Distributed Computing Architecture for one Camera Stream 
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The edge node decodes the original high-resolution video, extracting the frames. These frames 

are processed looking for face candidates. The algorithm used to detect the faces in the frames 

is optimized for speed, not for accuracy, as the edge processing power is assumed to be low. 

To avoid missing faces, the minimum confidence level to determine that a face candidate is sent 

to the cloud is set to a low enough value. Therefore, as seen in Figure 4, there will be a certain 

percentage of face candidates that do not really contain a face in the image. This is not a 

problem, as the images are then sent to the cloud to be processed again, but this time with a 

better face detection algorithm that will discard the incorrect images. 

 

Figure 4: Face Candidates Extraction on Edge Computing 

The images received by the Cloud API are then analyzed by one of the most accurate face 

detectors available, as there is no processing power limitation: the MTCNN face detector [12]. 

This is done, as shown in Figure 5, to discard the images that do not contain a face and to prepare 

those that do contain a face for the feature extractor. 
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Figure 5: Image Pre-processing and Extraction as Input for the FaceNet-like Architecture 

The faces detected and processed are then fed to the face recognition and classification system 

shown in Figure 6, which is based on the Google FaceNet [7] face recognition architecture. This 

system uses a Convolutional Neural Network (CNN) trained to extract feature vectors 

(embeddings) [13] connected to a multiclass Support Vector Machine [14] (SVM) classifier. This 

classifier is trained to classify an embedding extracted from an image of one of the people 

included in the training dataset. 

 

Figure 6: Google FaceNet Face Recognition Architecture with multiclass SVM 

Note that apart from the candidate face images, the camera ID and location in which the image 

was captured are also sent by the Edge node to the Cloud processing servers; these data are 

stored along with the face ID of the face image into the Detections table inside the DB server. 

This can be used to trace the movements of the people in the locations being monitored. 
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For greater flexibility and to allow deployment sizes that range from less than 10 cameras to 

1000s of cameras, the data processing stage has been designed so that it can be scaled in an 

automated fashion by the use of cloud infrastructure providers. 

As shown in Figure 7, a Kubernetes cluster is used to process the images and both an NFS server 

and a DB server are used as common storage for all the instances that are running in the 

Kubernetes deployment in the different nodes of the cluster. 

 

Figure 7: Kubernetes and Storage Architecture 

All the data required to train and to run the facial detection system and all of the accompanying 

functions that are discussed in later sections of this document are stored in the NFS server and 

DB server, (see Figure 7). 

This processing architecture allows for self-healing and implements on-the-fly updates to both 

the classification model (when there is a change in the people that the system is trained to 

recognize) and the API backend code, without any downtime. This means that it is not only a 

proof of concept or a laboratory test, but the start of what could be a facial recognition 

architecture that with a few modifications could be deployed to production. 

With this method, state-of-the-art tracking, recognition and behavioral analysis methods can be 

scaled up to be implemented in commercial, governmental or military applications, even in areas 

where it is not feasible neither to have the processing power required to process the images 

on-site nor to have a good connectivity to the central processing servers to send the 

unprocessed video feeds. 

2.3 INTEGRATION WITH MOBILE ANDROID AND IOS APP API 
Two projects have been developed simultaneously to create a smart distributed computing and 

low bandwidth surveillance system: a mobile APP for Android and iOS [15] and this project. 

To allow for the interconnection between both projects, an API call has been implemented (face-

recognition/send-results) that sends the detection data to the cloud infrastructure where the 

Mobile APP API runs. This allows for easy interconnection between both projects. 

Therefore, the connectivity scheme for the operation of both systems together involves, as 

shown in Figure 8, the edge computing device, the Cloud API and the APP API. 
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Figure 8: General Diagram of Interconnection with the Mobile APP API 

When joining both projects, this system gains an interface to interact with the user of the system 

providing statistics regarding detections and locations. The goal is to demonstrate how the 

system could be used in a security surveillance scenario. 

2.4 THE ALGORITHM 
As seen in the previous subsections, the FaceNet-like face matching algorithm used in this 

project has two steps: face features extraction and face matching. In the first step, the different 

features conveyed in the facial image are used to generate an embedding vector that defines 

the face. In the second step, the vector is used to pair the face image with the best matching 

face identity from the ones in the Dataset (providing a confidence level for the match). 

2.4.1 Feature Extraction 

For the face feature extraction, a Convolutional Neural Network (CNN) is used. This type of 

network is characterized by containing convolutional layers, fully connected layers, and many 

other supporting layers such as pooling, dropout, etc. 

The convolutional layers are steps of the network that perform a correlation operation (not a 

proper convolution, although the name could seem to imply it) of the input of the layer with a 

filter. This correlation is stored in the output of the layer. Usually, in this type of layers the 

dimensions of the image are reduced while the depth or feature information is enlarged in each 

of the steps. 

The pooling layers are used in between convolutional layers to pool or reduce the dimensions 

of the matrix, usually reducing the spatial resolution while keeping the feature depth. This way, 

the characteristics found in the image are made less specific to the location of the characteristic 

and more specific to the type of characteristic. 

The fully connected layers consist of a single layer of neurons in which each one of the neurons 

is connected to all of the outputs from the previous layer. This is the reason behind the “fully 

connected” name, as each one of the neurons of a particular layer are fully connected to the 

previous layer. 
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In the CNN, the image analysis usually starts with a number of convolutional layers, pooling 

layers, and other supporting layers, and it ends with a series of fully connected layers. The 

convolutional layers extract the features from the input image and the fully connected layers 

use these features to determine what should be placed at the output of the CNN. 

In this project, the output of the network needs to be an embedding that can be used as an 

identifier of the person in the image. This is achieved by training the network to obtain 

embeddings that are as similar as possible for images that belong to the same person, and as 

different as possible for images that belong to different persons. 

2.4.2 Embedding Classification 

Once the face embedding has been obtained, the group to which it pertains, (i.e. the identity of 

the person in the image, from which the embedding has been derived) needs to be determined. 

This can be achieved by many different methods, most of which require to have a database in 

which the embeddings associated to the different identities used for training purposes are 

stored. 

A simple method to determine which of the known identities best matches the embedding is to 

find the closest known embedding, i.e. the embedding that has the lowest distance (Euclidean, 

Manhattan [16]) to the current embedding in the database. 

A better method would be to obtain the average of the embeddings for a given identity and then 

find the average embedding with the lowest distance to the embedding obtained by the Feature 

Extractor for the current image. 

A refinement of the first method is to use more than one embedding in the comparison: instead 

of finding the closest embedding we could find the K-closest embeddings, and set the identity 

as the one that appears most times in the K-nearest embeddings. This is known as the K-nearest 

neighbors method [17]. 

Another very popular method that may achieve even better performance than the previous 

methods is the Support Vector Machine (SVM) [14]. With standard SVM, a model is trained to 

differentiate between two classes or options in an optimal manner. This can be expanded for 

more than two classes. Because of its accuracy advantages, this is the method that will be used 

in this project; specifically, a linear kernel variant of the multiclass SVM. 

2.5 FEATURE EXTRACTORS 
The state of the art in Convolutional Neural Networks is analyzed in this section to provide a 

broad vision of the different feature extraction architectures and why the pre-trained Inception 

ResNet v1 [13] is used in this project to obtain the embedding for the input image. 

There is not a one-fits-all feature extraction architecture. The best selection depends on the 

intended use. In this project, the feature extractor must perform a low number of computations 

per iteration, as there may be many faces being processed per minute, reaching thousands 

depending on the deployment size. Simultaneously, it is required to maintain a high accuracy, 

as the face vector embeddings must separate the different identities with enough confidence 

for the intended number of users. 

There is a great number of feature extraction architectures that are being studied and proposed 

by the scientific community. The two most recent and innovative methods that could be used 

for this project are analyzed in the following subsections, as well as an additional third version 
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which, while not being the most efficient for the task, is the best available in a pre-trained form. 

The last one fits very well the needs of this project, as its focus is not to train a new type of CNN 

for feature extraction (which would be a project in itself), but to design, implement and test a 

new video surveillance and face recognition architecture. 

2.5.1 MobileNet v3 

The MobileNet [18] CNN is specifically designed for its use in mobile devices. It is adapted for 

the execution in mobile CPUs using “hardware aware network architecture search” techniques. 

It achieves very high accuracy in the ImageNet [19] dataset with a very low per-frame latency as 

shown in Figure 9 for different parameter sizes, enabling for real-time processing even in mobile 

CPUs. 

The fact that it is designed to use a limited amount of computing power in CPUs while 

maintaining a high accuracy suits the purpose of this design, and enables the architecture to 

process the face images in any system, independently of the type of processing devices installed 

(without requiring specialized hardware such as GPUs or TPUs) and with a low memory usage. 

 

Figure 9: Performance of MobileNetV3 as a function of different multipliers and resolutions in the ImageNet Top-11 
[18] 

All these characteristics make it a good option for applications that require a high-throughput, 

and good accuracy. 

2.5.2 EfficientNet 

What started as a project to find a better way for scaling up and down CNN architectures, ended 

producing a new CNN model known as EfficientNet [20]. These Convolutional Neural Networks 

are based on an architecture of their own and use the same scaling method proposed by the 

researchers to create a series of CNNs that perform better than comparable architectures at 

ImageNet and other tests (see Figure 10). They achieve better performance for the same 

number of CNN computation parameters, as well as less parameters and calculations for the 

same target accuracy. This efficiency is exactly what is required by projects like this to achieve 

the desired accuracy and throughput without the use of a large and expensive resource pool. 

 
1 Top-1 accuracy: the accuracy of the neural network when checking if the ground truth signal matches 
the class predicted with the highest probability. As opposed to Top-5 accuracy, where the comparison 
includes the top 5 classes with the highest predicted probability. 
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Figure 10: Performance of EfficientNet as a function of the number of parameters. Comparison with other network 
types in the ImageNet Top-1 [20] 

When compared to the MobileNet architecture (which is an architecture already designed for 

low parameter count), the variant B0 of EfficientNet obtains a better accuracy with a slightly 

lower number of parameters, as shown in Table 1. However, the number of parameters is not 

the only consideration when choosing a network, as the number of operations required to 

compute an iteration, while closely related to the number of parameters, is not equivalent. 

Network Top-1 Accuracy (%) Parameters (Millions) 

EfficientNet B3 81.7 12 

EfficientNet B1 79.2 7.8 

EfficientNet B0 77.3 5.3 

MobileNet V3-Large 75.2 5.4 

MobileNet V3-Small 67.4 2.5 
Table 1: Accuracy vs. number of parameters for EfficientNet and MobileNet V3 

Given the good efficiency and high adaptability of the EfficientNet feature extraction CNN, it is 

a candidate for future improvements of the facial recognition architecture designed in this 

project. 

2.5.3 Inception ResNet v1 

Finally, the CNN that has been used for this project is the Inception ResNet v1 [21]. This CNN is 

based on the Inception v3 and Inception v4 architectures, to which it adds Residual Networks 

(ResNet). 

The residual networks consist on skip connections that jump over some of the layers of the CNN. 

This method keeps the long processing path that can extract deep characteristics and ads a 

shorter path that allows the CNN to be trained more efficiency by avoiding some problems such 

as the vanishing gradients. 

The performance of this type of network is said to be between those of Inception v3 and 

Inception v4, although the performance-per-computation or performance-per-memory 
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required metrics would vary depending on the type of data that the network has to learn to 

predict, as well as the computing capabilities of the hardware on which it is trained and run. 

One of the most relevant reasons why Inception ResNet v1 is the CNN used in the feature 

extraction stage of this project is because there is an open-source, well-known, pre-trained 

version available for face embedding generation [13]. This version has been trained over roughly 

100,000 iterations, which requires both a great computation power and a long time. 

2.6 PROPOSED EDGE COMPUTING DEVICES 
Although in this project the edge computing is not implemented in an edge device, candidates 

for this task are selected in this section for possible practical implementations of the system. 

The edge nodes perform video and image manipulation and compression operations. These 

types of operations require the use of a GPU to be performed efficiently. The goal when selecting 

a device is to reduce the cost, the energy consumption and the infrastructure required for its 

operation, while increasing the throughput and number of camera stream that it can process 

simultaneously. 

Given the target characteristics of the devices, the best choice is a single board computer. As 

the GPU is an important requirement for video handling, the TPU and CPU-only options are 

discarded. The best solutions seem to be provided by NVIDIA Corporation [22]. 

The devices considered are part of the NVIDIA Jetson family [23]. Shown in Table 2 are some of 

the most relevant characteristics for the proposed usage, such as the decoding and encoding 

throughputs, measured in video streams per second. 

Device Encoding (HEVC [24]) Decoding (HEVC) 

Jetson Nano Up to 4x1080p@30 fps Up to 8x1080p@30 fps 

Jetson Xavier NX Up to 12x1080p@30 fps Up to 32x1080p@30 fps 

Jetson Xavier AGX Up to 32x1080p@30 fps Up to 52x1080p@30 fps 
Table 2: Encoding and Decoding capabilities of the different devices of the Jetson family 

According to Table 2, the Jetson Nano could theoretically be used for installations of up to 4 

high-resolution cameras, while the Jetson AGX Xavier module could be used for installations of 

up to 32 high-resolution cameras if only the decoding and encoding capabilities were to be 

considered. 

However, there are more things to be done by the edge processing apart from video decoding, 

such as face detection. The face detection performed by the edge device would probably be 

implemented in the GPU, as these devices are very efficient at processing parallel data such as 

images or CNN inference. Performing the decoding, resizing, face detection, cropping and 

compression operations would probably reduce the number of streams by a factor of 2, and the 

frame rate to 10 fps for an efficient algorithm, leading to a reduced performance. 

In the case of the Xavier NX and the Xavier AGX, thanks to the Neural Accelerators included in 

these devices, the face detection algorithm could be accelerated, and the GPU could be 

offloaded to be able to process more streams per device. The downside is that these devices 

entitle a cost much higher than the more basic Jetson Nano. 
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2.7 CLOUD COMPUTING 
The Cloud API was planned to be implemented in a Cloud provider, and after reviewing the most 

prominent available choices (AWS [25], GCloud [26] and Azure [27]), Microsoft Azure cloud was 

chosen for its growing success and mature Kubernetes support. 

Prior to the implementation in the Azure cloud provider, the system was installed in an HP 360e 

(16 c / 32 t, 96 Gb RAM) server with VMware’s ESXi Hypervisor [28]. However, as the architecture 

had been planned to use devices available in the cloud such as load balancers, it was later 

migrated to the Azure cloud and adapted to the specific requirements of this cloud provider’s 

Kubernetes implementation. 

The Docker images used in the Kubernetes deployment were also built/compiled in an online 

service (Docker Hub [29]) to have them readily available for downloading by the Cloud 

infrastructure. This system was connected to a GitHub [30] repository to which all the changes 

were committed, and from which automated builds were issued. 
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Chapter 3: SCHEDULE AND TASKS 

3.1 SCHEDULE OF THE PROJECT 
The project definition and initial research started in the middle of the Fall semester of 2019, and 

its development and implementation continued throughout the Spring and Summer semesters 

of 2020. 

The finalization date of the project is around mid-August. The last month has been dedicated to 

both conclude the project by improving some routines and styles, and to write the project final 

report. 

3.2 TASKS PERFORMED 
The research and development conducted during the realization of this project could be divided 

in the following tasks: 

- Setting of project objectives 

- Project outline 

- Research of the state of the art 

- Complete project definition 

- Testing several codes and bases for the face recognition 

- Final design of the architecture 

- Coding of the image processing 

- Coding of the Cloud API 

- Implementation of the Cloud API in Docker 

- Implementation of the Cloud API in Kubernetes 

- Implementation of the Kubernetes cluster in Azure 

- Testing and improvement of the system 

- Write interfacing functions to test the system 

- Add database and database functions to the Cloud API 

- Write edge programs to interact with the Cloud API 

- Create the final demo functions to interact with the Cloud API 

- Write the report 
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Chapter 4: RESOURCES USED 

In this chapter, the resources that have been used during the project are explained. These 

resources range from Python libraries to pre-trained CNN models and even hardware or cloud 

resources. 

4.1 BASE CODE 
The code for the Cloud API is based on the face detection code in [31]. This code has been used 

as a template and has been completely modified to fit the requirements of this project, adapting 

several functions and creating many others to provide the API services and Kubernetes 

integration. 

The code for the Edge nodes is based on the code in [32]. This code has been used to handle the 

detection of faces with a fast model. More code has then been added in order to send the 

extracted faces to the Cloud API. Also, some demo programs have been prepared based on this 

code, for instance: to add persons to the database from a webcam or a file; to recognize in real-

time from a webcam, a file or a video stream; and to assess the efficiency and performance of 

the system. These programs use the cloud functions to handle the face recognition. 

4.2 LIBRARIES – CLOUD API 
Many libraries have been used for the development of this project. The ones that do not come 

with the base Python 3 installation can be found in the following subsections, where both the 

functions and the use that is given to them is explained. 

4.2.1 NumPy 

The NumPy library [33] is a packet for mathematical operations and scientific computing for 

Python. It is open source and can be used freely without restrains under the BSD license. 

In this project, the NumPy library is used for many mathematical calculations, data type 

conversions and data storage variable types. It is especially useful as it provides a range of 

variables and functions that are not available within the base Python 3 mathematical functions. 

4.2.2 Pillow 

The Pillow library [34] is a packet for image handling, processing and storage based on the 

well-known Python Imaging Library (PIL). It can be used for tasks like reading or storing images, 

and some basic image processing. 

In this project, the Pillow library is used to read and write image files, as well as to handle image 

rotations. 

4.2.3 Facenet PyTorch 

The Facenet PyTorch library [35] provides pretrained Inception ResNet V1 models in PyTorch, as 

well as an implementation of MTCNN also in PyTorch. Both these features are of great relevance 

for this project, as they provide key functionality required to run both the face extraction (from 

the source images) and the face embedding generation. 

4.2.4 Torch and TorchVision 

The PyTorch library [36] provides a way to deal with tensors and dynamic neural networks in a 

simple fashion. It provides tensor computation capabilities and deep neural networks functions. 
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The TorchVision packet [37] provides access to commonly used datasets, model architectures 

and image transforms that can be leveraged in computer vision applications. 

In this project, the PyTorch library is used in conjunction with the TorchVision library to 

transform the tensors used in the project to different sizes and to obtain lists of the different 

images in the database used to train the SVM classifier. 

4.2.5 OpenCV Python 

The OpenCV library [38] provides a series of tools for developers and researchers of computer 

vision and machine learning software. It includes thousands of algorithms that can be integrated 

in the different applications that use it. 

In this project, the OpenCV library is used to perform many operations regarding image 

processing for the pre-processing pipeline where the image is optimized prior to its input to the 

embedding generation CNN. 

4.2.6 Scikit Learn 

The Scikit Learn library [39] provides tools for predictive data analysis. These predictions can use 

one of the many prediction mathematical models and methods available within the library. 

In this project, the Support Vector Machine (SVM) predictor is used in the shape of a Linear SVM 

kernel for multiclass classification. This is used in the classification part, where the embedding 

generated by the feature extractor is fed into the Linear SVM classifier to obtain the Face ID to 

which the face in the image being processed pertains.  

4.2.7 Joblib 

The Joblib library [40] provides a set of tools to pipeline and to cache functions, storing them on 

disk. This allows for faster execution of recurrent functions and avoiding re-evaluation of 

commands. 

In this project, Joblib is used to store the face recognition pipeline, that is later used by the API 

by simply loading the job instead of creating the same resources again and again. This allows to 

speed up the processing of single images in one-image batches. 

4.2.8 Flask and Flask RESTPlus 

The Flask library [41] is used in conjunction with the Flask RESTPlus library [42] to allow easy 

development and implementation of APIs with additional option to use Swagger [43] 

documentation. 

In this project, both the Flask and Flask RESTPlus libraries are used to build the API calls and 

functions that allow the system to handle all the types of requests required to service the 

different maintenance and usage HTTP requests. 

4.2.9 uWSGI 

The uWSGI packet [44] allows Python APIs to run in a server with multithreading and all the 

necessary tools. This allows the HTTP request to be handled by uWSGI and, therefore, to be 

stored in queues and dispatched to the different threads of execution. 

The uWSGI server has been used in this project to dispatch the HTTP requests that are received 

by each Pod to the different processing threads available in that Pod, while queuing the requests 

that cannot be handled immediately. 
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4.2.10 Werkzeug 

The Werkzeug library [45] is a WSGI web application library. It provides a series of tools that can 

be used in the Python code that is being run to interact with the WSGI server. 

In this project, the Werkzeug library is used to deal with the images that are received by the 

uWSGI server via HTTP Post requests. It provides a series of data structures that can be used to 

receive files in the Flask API. 

4.2.11 Requests 

The Requests library [46] provides a way to perform HTTP requests without complex socketing. 

It can perform all types of HTTP requests and can send many types of data annexed to them. 

In this project, the Requests library is used to send the results of the face recognition and 

extraction to the external Mobile APP API when required. 

4.2.12 MySQL Connector 

The MySQL Connector library for Python [47] provides a way to connect to SQL databases and 

send all types of queries to these databases. The queries can both obtain and store information. 

In this project, the MySQL Connector library is used to connect to a database which stores 

information regarding the people that the system can recognize and the detections of these 

people. 

4.2.13 Matplotlib 

The Matplotlib library [48] aids with the visualization of data in Python. It does so by providing 

functions to display data on the screen in meaningful ways such as graphs and plots. 

In this project, the Matplotlib library has been used during the development stages for the 

visualization of images and data, which helps to visualize the changes to the images in the 

processing and facial extraction pipelines. 

4.3 LIBRARIES – EDGE PROCESSING 
In the Edge Processing program, some libraries are used, including some that overlap with the 

ones used in the Cloud API, such as OpenCV and NumPy. The ones that do not come 

incorporated into the base Python 3 installation can be found in the following subsections. 

4.3.1 OpenCV 

The OpenCV library [38] has already been described in the section corresponding to the Cloud 

API. 

In this project, OpenCV is used in the Edge Processing to capture the video received in the node, 

extract the frames, resize the images, change the color palette and some other things. 

4.3.2 NumPy 

The NumPy library [33] has already been described in the section corresponding to the Cloud 

API. 

In this project, NumPy is used in the Edge Processing for many mathematical operations relating 

to the images, the handling of detection scores and other uses. 
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4.3.3 ONNX 

The Open Neural Network Exchange (ONNX) library [49] is a standard for machine learning 

interoperability that allows the storage and representation of machine learning models. 

In this project, ONNX is used in the Edge Processing to read the CNN model (Ultra-Light) used to 

detect the location of the faces in the input image extracted from the video streams received by 

the Edge Node. 

4.3.4 Requests 

The Requests library [46] has already been described in the section corresponding to the Cloud 

API. 

In this project, the Requests library is used in the Edge Processing to send the face images 

extracted from the input video feeds to the Cloud API for further processing. 

4.4 HARDWARE AND CLOUD RESOURCES 
For prototyping purposes, an HP DL360e Server with 32 threads and 96 Gb of RAM running 

VMWare ESXi has been used to run some containers, Kubernetes, NFS and DB tests. 

For development of the application and for the final implementation and testing, an Azure 

deployment has been used, with many servers running the Kubernetes cluster, the NFS storage 

server and the DB server. 

4.5 BUILDS PIPELINE 
Regarding container builds, the pipeline that has provided automated builds for this project is 

composed of a GitHub private repository with all the source code connected to a Docker Hub 

account, in which a private repository compiles and releases builds as new commits are sent to 

the GitHub. 
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Chapter 5: IMPLEMENTATION 

To achieve the design objectives previously explained, the facial recognition architecture has 

been implemented both locally for the Edge Computing functions and in the Azure Cloud for the 

Cloud API. 

In this chapter, both the program implementations of the architecture described as well as the 

program flows and API request routines for some common maintenance and model update tasks 

are included. 

5.1 CAMERAS 
In a real deployment, the video streams processed by the edge computing nodes would come 

from a series of cameras deployed on-site. However, as this is not a production deployment but 

rather a test deployment, the cameras have been substituted by pre-recorded video streams 

(live video stream could also be used). 

The video streams are stored in local storage in the computer used as an edge computing node. 

These video feeds are then read by the edge computing program in the same way as they would 

be read if the video were to be coming from an online stream (from an IP camera). 

5.2 EDGE COMPUTING 
The edge computing nodes carry out the extraction of the faces included in the different frames 

of the video feeds coming from the cameras. This extraction is performed with a lower accuracy 

when compared with the re-extraction in the cloud, as processing speed is key and false positives 

are corrected in the Cloud API re-extraction. 

Each edge computing processing node only requires the execution of one thread of the frame 

and face extraction program per each video feed that requires to be processed simultaneously 

(i.e., one thread per camera). 

As in this test deployment the cameras have been substituted by video files, the number of 

threads is not limited by the number of cameras available. 

To achieve the task at hand, the program that runs in the edge node acts as shown in Figure 11, 

connecting to the video stream in the setup phase, and extracting the frames until the program 

is terminated or the video stream stops. The extracted frames are then processed by a face 

detection algorithm that provides the position and size of the detected faces in the image. This 

information is then used to extract the faces from the original image. Once the faces have been 

extracted, they are then sent to the cloud API for further processing and identification. 
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Figure 11: Flowchart of the Edge Node Video Processing Program 

The connection to the video streams, which in the case of the test implementation in this project 

are actually video files, is performed by the OpenCV library. This library handles everything from 

opening the connection to closing it, including the obtention of individual frames. 

To extract the faces in the input frame, the program uses a model encoded in an ONNX file. This 

model is a CNN (Ultra-Light) that has been trained to detect faces in an image and provide their 

position and size. 
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Finally, for every face that is detected, its image is extracted and sent to the Cloud API via an 

HTTP POST request using the Requests library. When the image has been processed by the 

Cloud, the detection information is stored in the detections table in the Cloud database. 

5.3 AZURE CONFIGURATION 
In the following subsections, the creation and setup of the resources required to run the 

Kubernetes facial recognition application on the Azure cloud are explained. 

5.3.1 Create Resource Group 

The first step in the process is to create a resource group. In Microsoft’s Azure, a resource group 

is defined as “a collection of resources that share the same lifecycle, permissions, and policies”. 

The use of resource groups allows to join the resources of a project under the same group. This 

poses multiple benefits from the maintenance, DevOps and billing standpoints. 

In this project, a resource group called “face-recognition-res-group” is created in the (Europe) 

France Central datacenter with the configuration shown in Figure 12. This resource group holds 

all the resources required for the project (Kubernetes cluster, load balancers, virtual machines, 

etc.). 

 

Figure 12: Face Recognition Resource Group Creation 

5.3.2 Create Cloud Shell 

There are many ways to access the resources and services in the Azure cloud. In this project they 

are accessed through the Azure Cloud Shell. This allows to run Bash or PowerShell commands to 

interact from any place with the resources hosted in the cloud. The first time the console is 

accessed, a storage drive is created within a new default resource group, as shown in Figure 13. 
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Figure 13: Azure Cloud Shell Initial Storage Setup 

  

5.3.3 Create Kubernetes Cluster 

The second step is to create a Kubernetes cluster which will run the Kubernetes Services, 

Deployments and Pods required for this system. 

This cluster is part of the resource group created in the previous step. It runs in the (Europe) 

France Central Azure datacenter. The Kubernetes version installed into the nodes in the primary 

node pool is 1.16.10. 

The system nodes are based on the Standard B2ms node type, which is powered by 2 Virtual 

CPU (VCPU) cores and 8 GiB of RAM per node. For testing purposes, more nodes have been 

added. In one of the tests, 3 Standard E2s_v3 nodes were used. These nodes provide each 2 

VCPUs and 16 GiB of RAM. The minimum settings to run the system are with the system node 

count set to 1. In a different deployment, the node type and number would be set to different 

values according to the requirements of the specific system. 

The name of the Kubernetes cluster is set to face-recognition-k8s-cluster. All the configuration 

is introduced into the Azure wizard as shown in Figure 14. There are more options that could be 

modified in other setup pages, although they are omitted in this document. 
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Figure 14: Azure Kubernetes Cluster Creation 

In the Authentication tab, the Authentication method is changed from a “service principal” to a 

“system-assigned” managed identity, leaving the parameters as shown in Figure 15. This 

instructs the Azure cloud to generate a managed identity (login credentials) for the resource 

being created, which will be follow the lifecycle of the resource (i.e., will be removed if the 

resource is ever removed and will be automatically renewed when required). Afterwards, the 

cluster can be created. 
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Figure 15: Azure Kubernetes Cluster Authentication Configuration 

Once the deployment of the cluster and monitoring metrics for the Azure Insights shown in 

Figure 16 has finished, the cluster can be added to the cloud shell for management. 

 

Figure 16: Result of the Kubernetes Cluster Creation 

5.3.4 Add Kubernetes Cluster to Cloud Shell 

To manage the cluster from the Azure Cloud Shell, the credentials have been pulled with the 

get-credentials command, as shown in Figure 17. This command gets the credentials for a given 

resource and stores them in the cloud shell to allow the access to this resource from the shell. 

 

Figure 17: Addition of the Kubernetes Cluster to the Azure Cloud Shell 
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5.3.5 Check Setup 

As a final step, the status of the nodes, Services, Deployments and Pods can be checked to make 

sure that everything is running as it should. The interaction with the Kubernetes cluster is 

performed via the “kubectl” command tool. To obtain the health information, two kubectl 

commands have been executed (“kubectl get nodes” and “kubectl get all”) in the Azure Cloud 

Shell, as shown in Figure 18. 

 

Figure 18: Check of the Setup of the Kubernetes Cluster in the Azure Cloud Shell 

5.3.6 NFS Storage VM 

The NFS server is hosted in a Virtual Machine (VM). This VM is independent of the Kubernetes 

deployment and therefore keeps the data safe from any problems with Pods. Note that this can 

also be implemented in Kubernetes with something called persistent volumes, although it can 

be more of a hassle to keep in a prototyping environment. 

The configuration of this machine, as shown in Figure 19, is in a 1 VCPU, 1 Gb of RAM VM. The 

machine is assigned to the Azure Kubernetes Service (AKS) virtual network to allow the group to 

access the VM without routing. The machine is configured to run the Ubuntu Server OS ver. 

18.04 Long Term Service (LTS). 

 

Figure 19: NFS Server Basic Configuration Information 

To be able to access the VM from its public IP, the SSH port for the machine must be opened in 

the security group to which the VM has been added (the AKS security group). Besides, the 

internal IP address of the VM is made static so that it can be configured in the Kubernetes 

Deployment YAML file. 
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5.3.7 Database Server 

In this project, the database server is run in a Kubernetes Pod, so no extra configuration is 

required. 

5.4 API DESIGN 
The Cloud API that runs on Azure has been designed with modularity, scalability, and adaptability 

in mind, with a special focus on reliability and high availability. Because of this, the architecture 

has been designed using Kubernetes deployments and Kubernetes Services. 

The general overview of the cloud system, as found in Figure 20, is composed of a Kubernetes 

cluster, a storage server for the dataset and the machine learning models storage (in the Dataset 

and Models folders), and a database for storage of the people and their detections in the 

different cameras and locations (in the People and Detections DB tables). 

 

Figure 20: Overview of the Cloud Servers Structure 

The information stored in the NFS server is accessed by the replicas of the Kubernetes 

deployment to train the embedding SVM classifier in the case of the Dataset folder, and to store 

and retrieve the latest SVM classifier and embedding generator from the Models folder, with 

the file structure shown in Figure 21. 

 

Figure 21: NFS Storage File Structure 
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The structure of the Dataset folder, as shown in Figure 22, has all the images used to train the 

classifier in folders with the ID of the person as their name. These folders are created and 

removed and these images are stored and deleted with the use of Cloud API calls. When the 

basic training API function is called, these images are used to train the SVM classifier to 

distinguish between the different people stored in the Dataset folder. 
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Figure 22: Dataset Folder File Structure 
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As also seen in Figure 22, there are two other elements stored in the Dataset folder: the 

embeddings.txt (referred to as Embeddings) and labels.txt (referred to as Labels) files. These 

files contain the embeddings corresponding to the images in the Dataset folder and the labels 

that are associated to those embeddings (first embedding in Embeddings file corresponds to the 

first label in Labels file, etc.). 

These files are generated either when the embedding generation API call is used or when the 

images and IDs are added to the dataset. In fact, whenever one image is added to the dataset, 

the embedding of this image is generated and appended to the Embeddings file, with the 

corresponding label appended to the Labels file. When an ID is removed, not only its folder is 

removed, but also the embeddings and labels associated with that ID. 

Keeping the Embeddings and Labels files up to date allows the use of an optimized SVM training 

method where, instead of going through the Dataset folder generating embeddings for each of 

the images every time the system is trained, the system can read the Embeddings and Labels 

files and use them to train the classifier. This is much faster than re-generating the embeddings 

every time the classifier is trained, especially if only a few images have been added since the last 

training. 

The Models folder contains the models that are generated every time the classifier is trained, as 

may be seen in Figure 23. The Joblib files containing the SVM classifier and the CNN feature 

extractor are stored with the time when the training of the SVM classifier started as their name. 

This data is relevant as the moment the training starts is the moment when the Embeddings and 

Labels files are read, and therefore the instant in which these files contained the information 

that was used to train that version of the model. 

 

Figure 23: Models Folder File Structure 

The database hosted in the database server has two tables as shown in Figure 24: one for the 

people that can be recognized by the system and one for the detections of the system. The first 

includes only the name of the person (the Face ID) and an ID as Primary auto-incremental Key, 
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although it is prepared so that more information can be included depending on the specific 

application of the system. 

 

Figure 24: Relational Database Table Structure Diagram 

The Detections table contains the time of detection, the location, the camera ID, the Face ID and 

an ID as Primary auto-incremental Key. This allows to store the most relevant information 

regarding individual detections, although more information could be added if required by the 

application. 

The Face_ID is a Unique Key in the People table and a Foreign Key in the Detections table. The 

relationship between the two is of one to many, with one in the People table (as it is a Unique 

Key) to many in the Detections table. 

As seen in Figure 25, when a request comes into the system, it is received by a Load Balancer 

that decides to which of the Kubernetes replicas of the Kubernetes processing Deployment it 

sends the request. 

 

Figure 25: Cloud API Kubernetes Structure and HTTP Request Handling 
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There are many types of requests that can be handled by the Cloud API. These requests can be 

classified into five types: dataset modification, model update, face recognition, database 

querying, and debugging. 

In the following subsections, the different types of requests are explained with flowcharts that 

show the basic actions performed by the Cloud API when one of these requests is performed. 

5.4.1 Dataset Query and Update 

As previously stated, the Dataset folder contains the images used for training the SVM classifier, 

stored in folders with the name of the ID to which the images inside pertain. 

There are Cloud API calls to see the current state of the Dataset, to Add an ID, to Add an image 

and to Remove an ID. 

An HTTP GET request to the <address>/dataset URL returns the name of all the IDs stored in the 

Dataset folder along the number of images for each ID. This is accomplished by following the 

procedure given in Figure 26. 

 

Figure 26: HTTP GET /dataset API Call Flowchart 
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An HTTP POST request to the <address>/dataset/<ID> URL adds a new ID to the Dataset folder. 

When this operation is performed, as shown in Figure 27, a new folder is added to the Dataset 

and a new person is added to the People table in the database. Some checks are also performed, 

including security checks to make sure that the folder is created in the expected path. 

 

Figure 27: HTTP POST /dataset/<ID> API Call Flowchart 

An HTTP POST request to the <address>/dataset/<ID>/image URL that contains an image and a 

Face ID adds this new image to the ID in the Dataset. This operation not only stores the received 

image in the Dataset folder, but as shown in Figure 28, also generates the embedding for the 

image and appends this and the label to the Embeddings and Labels files. 
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Figure 28: HTTP POST /dataset/<ID>/image API Call Flowchart 

An HTTP DELETE request to the <address>/dataset/<ID> URL removes the ID and all the images 

stored of this ID. Furthermore, as shown in Figure 29, the ID is also removed from the People 
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table in the database and the label and all the embeddings related to this ID are removed from 

the Embeddings and Labels files. 

 

Figure 29: HTTP DELETE /dataset/<ID> API Call Flowchart 

5.4.2 Model Update 

There are several functions available to update the classification model. If there are images in 

the Dataset but the Embeddings and Labels files have not been generated, they can be 

generated by running the “generate embeddings” API call. 
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If the Embeddings and Labels files are present and a new ID and images are added, or an existing 

ID is removed or more images are added to an existing ID, the system can be trained with the 

contents of the Embeddings and Labels files by running the optimized train call. In case the 

system is to be trained from scratch without considering nor updating the Embeddings and 

Labels files, the “train” API call can be used. 

Starting with the generation of the Embeddings and Labels files, an HTTP POST request to the 

<address>/model/generate-emb URL creates the Embeddings and Labels files with the images 

and IDs present in the Dataset, as shown in Figure 30.  

 

Figure 30: HTTP POST /model/generate-emb API Call Flowchart 

The embedding generation task, as shown in Figure 30 blocks the Dataset as to avoid 

inconsistencies between the contents of the Embeddings and Labels files and the contents of 

the dataset folder. 

An HTTP POST request to the <address>/model/optimized-train URL, as shown in Figure 31, 

trains the classifier model with the data available in the Embeddings and Labels files. During this 

training the Dataset is blocked to avoid modifications to the files while they are being read. 
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Figure 31:HTTP POST /model/optimized-train API Call Flowchart 

An HTTP POST request to the <address>/model/train URL triggers a from-scratch training of the 

model that, as shown in Figure 32, generates embeddings and labels for all of the images in the 

dataset but does not store them. These embeddings and labels are then used to train the model. 

This operation blocks the dataset while the images are being accessed. 
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Figure 32: HTTP POST /model/train API Call Flowchart 

5.4.3 Face Recognition 

Three functions are provided by the API to perform face recognition with the latest model 

available. These functions vary in where the detection data is stored or sent to. The processed 

data can either be sent as a response to the user, sent to an external service or stored in the 

internal Detections table of the database. 

An HTTP GET request to the <address>/face-recognition/get-results URL that contains an image 

in the request payload returns the face(s’) identities in the image, with the probability and 

location of each one. As shown in Figure 33, the function gets an image as input and returns a 

JSON with the results. 
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Figure 33: HTTP GET /face-recognition/get-results API Call Flowchart 

An HTTP POST request to the <address>/face-recognition/send-results URL that contains an 

image, the camera ID, and the location in the request’s payload triggers the recognition of the 

face(s) in the image. As shown in Figure 34, after the recognition is performed, the system sends 

to a predefined remote server each face detected with the camera ID and the location. 
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Figure 34: HTTP POST /face-recognition/send-results API Call Flowchart 

Finally, an HTTP POST request to the <address>/face-recognition/store-results URL that contains 

the image to be processed, the location, and the camera ID triggers the extraction of the face(s) 

in the image following the procedure in Figure 35. The face(s) recognized in the image is(are) 

then stored in the detection database with the other data received in the request payload. 
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Figure 35: HTTP POST /face-recognition/store-results API Call Flowchart 

The only limit to how many of the get-results, send-results and store-results API calls can be 

processed simultaneously is imposed by the hardware running the Kubernetes containers. In 

addition, it is important to remember that there is no downtime when a new model is trained, 

only a slight delay in the first requests after the model has been trained. 
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5.4.4 Database Querying 

A series of functions have been implemented to retrieve the data stored in the database, 

although if these data were to be used for any specific application, the requests would probably 

need to be adapted to the particular needs of the application. 

The data stored in the People table of the database can be retrieved with an HTTP GET request 

to the <address>/database/people URL. The procedure involves an SQL query to the database 

server as shown in Figure 36, and returns a JSON with the data in the table. 

 

Figure 36: HTTP GET /database/people API Call Flowchart 

An HTTP GET request to the <address>/database/<ID>/last-known-location URL that contains a 

Face ID returns a JSON with the last location where the person identified by the Face ID was 

detected, with the camera ID and with the Timestamp of the detection, as shown in Figure 37. 
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Figure 37: HTTP GET /database/<ID>/last-known-location API Call Flowchart 

5.4.5 Debugging Requests 

Some API calls have been implemented for debugging purposes. These functions are necessary 

to obtain data regarding the execution of the Cloud API calls and to force some situations in 

debugging scenarios. 

The first of these calls is one to obtain the Cluster IP address of the node executing a given 

request (in the case of the load balancer Deployment with multiple replicas of the application 

running concurrently this IP address varies from request to request). It can be obtained with an 

HTTP GET request to the <address>/debug/IP URL. The details of the procedure performed in 

the cloud server when this request is received can be found in Figure 38. 
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Figure 38: HTTP GET /debug/IP API Call Flowchart 

Also, the name of the node executing a request can be obtained by sending an HTTP GET request 

to the <address>/debug/node-name URL. This triggers the execution of the procedure in Figure 

39, which returns the name of the node executing the request. 
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Figure 39: HTTP GET /debug/node-name API Call Flowchart 

Sometimes, due to premature node deletion or for testing purposes, the dataset is left blocked. 

It can be unblocked without accessing the NFS server by sending an HTTP POST request to the 

<address>/debug/unblock-dataset URL. As shown in Figure 40, this action unblocks the dataset. 

 

Figure 40: HTTP POST /debug/unblock-dataset API Call Flowchart 



                                                                                                                                                              
 

56 
 

5.4.6 Common Procedures 

There are some procedures which would be used in a day-to-day basis working with the Cloud 

API, such as adding someone to the system, removing someone from the system or recognizing 

someone. The most relevant of these procedures are described in this subsection from the 

viewpoint of the interaction with the Cloud API. 

The procedure to add someone to the system is shown in Figure 41. It consists in adding the 

Face ID, adding the images one by one to the system and then training the classifier by 

requesting an optimized training. In this process, the embeddings and labels generated before 

this procedure are used in conjunction with the ones generated when adding the images to train 

the multiclass SVM classifier. 

 

Figure 41: Add ID, Images and Train Procedure Flowchart 

To remove a user from the system, the procedure shown in Figure 42 is used. It consists in 

requesting the removal of the ID, what will internally remove all the images associated with the 

ID as well as the images for this ID. This is followed by a request for an optimized training to 
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make the changes effective in the classifier (if adding and/or deleting many IDs and/or images, 

it is possible and recommendable to perform the optimized only once at the end). 

 

Figure 42: Remove ID (and Images) and Train Procedure Flowchart 

To get the identities of the face(s) in an image, the procedure is to send the get-faces request as 

shown in Figure 43, which returns the identities of the face(s) detected by the Cloud API. 
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Figure 43: Get Face(s) in Image Procedure Flowchart 

The procedure in Figure 44 can be used to send the identities of the face(s) in an image to an 

external server/API. This external API is part of an application that has been implemented by 

one of the members of the research team within which this project has been developed. 
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Figure 44: Send Face(s) Procedure Flowchart 

Finally, the procedure to store the face(s) detected in an image, shown in Figure 45, can be used 

to store the result of the detections in the Cloud database. 
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Figure 45: Store Face(s) Procedure Flowchart 

5.5 API DEPLOYMENT 
A requirement to deploy the API into the Cloud Servers, in this case the Microsoft Azure servers, 

is to have access to a console with control over the Kubernetes nodes of the system. To simplify 

this task, the Azure cloud Shell has been used. 

To deploy the application to the Azure servers, the first task is to get the storage machines 

working, as they are necessary for the normal operation of the Python code running the Cloud 

API on the Kubernetes Deployment. 

The NFS VM that was previously created has now to be configured to run an NFS server. This 

requires the following actions: installation of the “nfs-kernel-server” package; creation of the 

folders to be exported; setting the right access permissions and ownership to the exported 

folders; configuration of the exports file; and restart of the NFS kernel. After all these tasks have 

been performed, the Kubernetes application can be deployed.  
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To deploy the Kubernetes application, the first step is to clone the Github repository with the 

YAML configuration files for the Deployment to the Azure Cloud Shell storage. Afterwards, the 

database Pod, the database and face recognition Services and the face recognition Deployment 

YAML files of the application can be implemented with the kubectl command line tool. 

Note: in the case of the test environment in which this has been deployed, the access to the 

Docker Hub used to build the docker containers has been restricted, setting it up as a private 

repository. For accessing private repositories, a credential has been added with the “kubectl 

create secret docker-registry” command. 
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Chapter 6: INTERACTION PROGRAMS AND RESULTS 

A series of programs have been developed to test the Cloud API for its performance and 

reliability. These programs include raw performance benchmarks as well as real-world use cases. 

Programs have also been developed to showcase the capability of the system to add and remove 

Face IDs at ease without any downtime. This is demonstrated by adding a person while the 

system is being used to analyze the images of a camera in real-time. This way, a person that 

appears as unrecognized becomes recognized once the classifier finishes training. 

6.1 RAW PERFORMANCE IN REQUESTS PER SECOND 
To show the performance of the system, two configurations have been tested: one pod alone 

and a deployment of 10 replicas. This allows to see how the system scales with more pods and 

how the number of VCPU cores available constrains the overall system performance. 

To test the different systems, concurrent HTTP POST requests are sent simultaneously from a 

laptop. For this, the GRequests Python library [50] is used. This library allows for asynchronous 

transmission of HTTP requests and is based on the Resquests [46] and Gevent [51] libraries. 

The HTTP POST requests are sent to the address/face-recognition/get-results URL accompanied 

by a test image from the Labeled Faces in the Wild (LFW) dataset [52], in this example an image 

with the face of actor Harrison Ford. The image sent in the request is always the same for 

consistency and comparability of the results. 

To measure the performance, the system sends all the requests at once and measures the time 

to complete all the requests. Afterwards, it checks that the system has processed all the requests 

correctly and there are no errors. The time that the operation takes to complete, combined with 

the requests sent, are used to estimate the requests handled per second by the server with a 

given set of conditions (number of CPU cores, RAM, number of nodes). 

In the first case, only one Pod executing the Cloud API code in a 2 v-Core node with 8 Gb of RAM. 

A program is created to stress test the system by sending a number of HTTP requests 

simultaneously. As shown in Table 3, by sending many requests at once, the effect of having two 

threads running in the Pod can be seen, as by sending more than one concurrent request, the 

system processes double the number of requests per second when compared with only one 

request. 

Number of Requests Seconds to Complete Requests per Second 

1 0.318 3.144 

25 3.428 7.298 

50 6.638 7.536 

75 9.862 7.606 

100 13.162 7.606 
Table 3: Relation Between Number of Requests and Requests per Second for One Pod 

By running multiple Pods across two Kubernetes nodes enables the system to improve the 

performance. With a Deployment of 10 replicas in two nodes with a total of 24 Gb of RAM and 

4 v-Cores, the system provides the performance given in Table 4. The results do not show double 

the performance of the example with one Pod mainly for two reasons: the benchmark code is 

not able to send the such a high number of requests simultaneously very efficiently; the large 
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number of Pods running concurrently has a detrimental effect in the total performance as only 

4 cores are available. 

Number of Requests Seconds to Complete Requests per Second 

100 15.156 6.846 

200 21.604 9.278 

300 27.052 11.112 
Table 4: Relation Between Number of Requests and Requests per Second for a Ten Pod Deployment 

6.2 ONLINE SWAGGER DOCUMENTATION 
The Cloud API includes an online documentation that can be used as a reference manual for all 

the API calls, as well as a platform to send one-time queries, debugging queries or manually 

perform any function of the system. 

This documentation, as shown in Figure 46, includes a description of all the methods available 

in the Cloud API, with their addresses and the types of HTTP Requests to be performed. 

 

Figure 46: Swagger Online Cloud API Documentation 
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If one of the views of the API calls is expanded as shown in Figure 47, the manual expands on 

the input data to the call, including data types, an example result of a successful and 

unsuccessful execution of the call, and the meaning of the different HTTP status codes. It also 

provides the option to perform an API call via the “Try it out” button. 

 

Figure 47: Expanded View of the Add Image Call of the Online Cloud API Documentation 

By clicking the “try it out” button in Figure 47, an interface like the one shown in Figure 48 is 

offered. From this interface, the user can perform the API call from the browser itself, which 

simplifies testing and allows quick interaction and learning of the framework. 
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Figure 48: “Try it out” View of the HTTP POST /dataset/<ID>/image Call of the Cloud API Documentation 

Once the function is executed, it also shows the result obtained and the data returned by the 

API (in case there is any). With some of the functions (as the one in this example), the only data 

returned by the API is an HTTP code 200, which means that the request has been processed 

successfully and there is no further work to be done. 

6.3 ADD ID AND IMAGES FROM DATASET 
A program has been developed to add new users to the dataset. This program takes instructions 

from the Command Line Interface (CLI) and obtains the images from the folder described in the 

instructions. 

The program can add Face IDs, add images to the system for a given Face ID and instruct the 

Cloud API to perform an optimized training based on the labels and embeddings files in the 

Dataset folder. 

The input arguments to the program are: 

- Input-folder: Points to the address of the directory with the images to be uploaded. 

- Person-ID: Name of the Face ID to which the images are to be added. 

- IP-address: The Cloud API ingress IP address (points to the Load Balancer). 

- Create-ID: If present in the command, indicates that the program must sent a Face ID 

creation request prior to sending the images. 

- Train: If present in the command, indicates that the program must send an Optimized 

train request to the Cloud API once the ID has been created and the images have been 

added. 

As shown in the flowchart in Figure 49, the program first checks whether it has to add the face 

ID and, if so, it sends a request to the Cloud API. Afterwards, the program adds all the images in 

the input-folder argument. Finally, if the train argument is present in the command, the program 

sends an optimized train request to the Cloud API.  
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Figure 49: Add ID and Images from Dataset Program Flowchart 

In this program, the images are not processed locally by the program, as they are supposed to 

be preprocessed and to only contain the images of the subject to be added to the system. 

An example of the command used to run this program and the console output during execution 

can be found in Figure 50. The HTTP response code 200 indicates that there were no problems 

during in the execution of the request.  
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Figure 50: Console Output for the Add ID and Images from Dataset CLI Program 

The time it takes the system from the start of the program execution until the new ID is added, 

the images are added, the system has been trained to recognize the new person (and any new 

recognition request will use the newly trained classifier) can be as low as 30 seconds or less (in 

the example in Figure 50 with 12 images it was 26 seconds). The specific time will depend on the 

number of images to be added and the number of images already present in the dataset, as the 

SVM classifier will take longer to train for higher number of dataset images (larger Labels and 

Embeddings files), even when using the optimized train function (which omits the generation of 

the image embeddings). 

As previously mentioned, this process is completely compatible with the recognition of images 

and allows the system to keep operational while the ID and images are added and while the SVM 

classifier is trained. Once this process is finished, the system will start using the newly trained 

classifier seamlessly and without any interruption to system operations. 

6.4 ADD ID AND IMAGES FROM CAMERA 
The Add ID and Images from Camera program aids with the task of adding a new user to the face 

recognition system. The difference between this program and the Add ID and Images from 

Dataset one lies on the source of the images added to the Face ID. Instead of using pre-processed 

images available in a folder, this program uses the webcam connected to the computer where 

the program is running to capture the images which it then processes by extracting the faces to 

later send them to the Cloud API. 

At the end of the process, the program can also instruct the Cloud API to perform an optimized 

training so that the new face is recognized using the face recognition API calls. 

The input arguments of the program are: 

- Person-ID: Name of the Face ID to which the images are to be added. 

- IP-address: The Cloud API ingress IP address (the address points to the Load Balancer). 

- Img-number: the number of face images to be taken, pre-processed and sent to the 

Cloud API to add them to the Face ID. 

- Create-ID: If present in the command, indicates that the program must sent a Face ID 

creation request prior to sending the images. 
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- Train: If present in the command, indicates that the program must send an Optimized 

train request to the cloud API once the ID has been created and the images have been 

added. 

As shown in the flowchart in Figure 51, the program first loads the tensorflow model used to 

detect the faces. If the create-id argument is present, it sends the add ID request to the Cloud 

API. Afterwards, the program captures images from the camera, extracts the faces in the images 

and sends these images to the Cloud API. Once the number of face images sent to the cloud 

matches the number given in the img-number argument, the camera is released. Finally, if the 

train argument is provided, an optimized train request is sent to the Cloud API. 

 

Figure 51: Add ID and Images from Camera Program Flowchart 

Note that if more than one face is detected in the images from the camera, the system will add 

none for that frame, as it does not know which one is the user that is being added. Once only 
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one face is detected, the system will resume sending the face images to the cloud until the 

img-number is reached. 

An example of the command used to run this program and part of the output provided by the 

program in the CLI is shown in Figure 52.As in the other programs, the code 200 means that the 

request has been processed successfully.  

 

Figure 52: Console Output for the Add ID and Images from Camera CLI Program 

The process to add the images from the camera takes more time than if the picture is feed from 

a folder, as the face picture has to be extracted and sent to the Cloud API, and these capture 

and extraction processes take more time. 

The face detection and extraction processes are performed so that the images sent to the Cloud 

API do contain a face. Given the extra processing involved, the total time to add 20 images of a 

subject shown in Figure 52 took approximately one minute to complete. 

The program displays one window with the images captured by the camera with a purple box 

surrounding the face being added and another window with the face image being sent to the 

Cloud API. An example of the contents of the general view window is shown in Figure 53. 
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Figure 53: Windows for the Add ID and Images from Camera Program 

The actual image being sent to the Cloud API is slightly larger than the box in Figure 53. This is 

important, as a tightly cut face image may not perform well in the MTCNN face detection 

algorithm on the Cloud API. 

6.5 REAL-TIME FACE RECOGNITION FROM CAMERA 
A program has been developed to allow for face recognition from the webcam in the computer 

running the program. It allows to capture images from the camera, detect and extract the faces, 

send the detected faces to the Cloud API, get the identities for the faces and display the 

identities as an overlay to the original image. 

The input arguments of the program are: 

- IP-address: The Cloud API ingress IP address (the address points to the Load Balancer). 

- Min-size: Minimum face image size on the long axis. Smaller images are discarded. 

- Max-size: Maximum face image size on the long axis. Larger images are resized. 

- Min-confidence: Minimum confidence level to show result of face recognition. 

- Multithreading: Send all face images in a frame simultaneously to the Cloud API 

(improves performance). 

The box surrounding the faces is color-coded to represent the result of the face recognition: 

- No box: the face is not detected by the local program. 

- Red box: the face candidate is detected by the local program, although the Cloud API 

does not have enough confidence that the image sent contains a face to recognize it. 

- Blue box: the face is detected by both the local program and the Cloud API, but the 

Cloud API does not have enough confidence about the identity of the face so as to 

show it in the box (this confidence level can be changed in the local program). 

- Green box with recognized identity: the face is detected by both the local program and 

the Cloud API, and the face is recognized by the Cloud API with enough confidence to 

show it in the box label. 
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The face recognition of the images from the camera is achieved by following the procedure in 

Figure 54. The program starts by loading the face detection model. It then obtains an image from 

the camera, processes it, extracts the faces, and sends them to the Cloud API for face 

recognition. With the results of the face recognition, the program displays the boxes 

surrounding the faces in the original frame, with the detected identities. 

 

Figure 54: Real-Time Face Recognition from Camera Program Flowchart 

The program provides the two windows shown in Figure 55: one with the original image 

captured by the camera and another one with a slightly larger crop of the face image being sent 

to the Cloud API. 
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Figure 55: Camera Windows from the Real-Time Face Recognition from Camera Program 

Sending to the cloud an image covering more area than the actual face detected is important, 

as a tightly cut face image may not perform well in the MTCNN face detection algorithm on the 

Cloud API. 

Note that all the programs are also capable of detecting multiple faces in the same frame. In the 

case of multiple faces present in the frame, the face images are alternated in the cropped view 

window on the left in Figure 55. 

6.6 FACE RECOGNITION FROM VIDEO FILE OR VIDEO STREAM 
To perform the face recognition and the display of results in the images from a video file or a 

video stream, the video recognition program allows to select the source of the video and then 

performs the recognition in this video. 

The input arguments of the program are: 

- IP-address: The Cloud API ingress IP address (the address points to the Load Balancer). 

- Video-source: The web address of the video stream or the file path of the video file. 

- Skip-frames: Number of frames to be skipped. For 30fps, if set to 5, the effective 

framerate is 5fps. 

- Target-fps: Approximate target frames per second. Only for video files. 

- Min-size: Minimum face image size on the long axis. Smaller images are discarded. 

- Max-size: Maximum face image size on the long axis. Larger images are resized. 

- Min-confidence: Minimum confidence level to show result of face recognition. 

- Multithreading: Send all face images in a frame simultaneously to the Cloud API 

(improves performance). 

The procedure followed by the program in order to achieve the recognition and to display the 

results is shown in Figure 56. This procedure is the same as the one of the real-time camera 

recognition but changing the source of the images from the integrated camera to the video file 
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or video stream of choice. It is also worth to mention that all the frames from a file are 

processed, while in the case of the camera, if there are significant processing delays, many 

frames could be skipped. 

 

Figure 56: Face Recognition from Video File or Video Stream Program Flowchart 

The user interface of this program is based on the interface in the real-time face recognition 

with camera program. The faces are either not detected (no bounding box), detected by the 

local program but not by the Cloud API (red box), detected by both the local program and the 

Cloud API but not recognized (blue box), or detected by both the local program and the cloud 

API and recognized (green box with the recognized identity). 

The results of this program are displayed similarly to those of the program that recognizes the 

faces from the video recorded by the camera. As shown in Figure 57, the data is divided in two 

windows: one for the video frames with the overlay of the boxes and another for the face images 

being sent to the cloud for recognition. 
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Figure 57: Windows from the Face Recognition from Video Program [53] 

An example of how the frame window looks when fed a frame with known faces (green), 

unknown faces (blue), and bad quality or obstructed face images (red) is shown in Figure 58. 

 

Figure 58: Example Scene for the Face Recognition from Video Program [53] 

6.7 FACE EXTRACTION FROM VIDEO FILE OR VIDEO STREAM 
A program has been designed to extract the faces in a video file or stream. It is used to test the 

bandwidth savings achieved by using the architecture proposed in this project. 

The input arguments of the program are: 

- Video-source: The web address of the video stream or the file path of the video file. 

- Output-folder: Output folder where the face images extracted are stored. 
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- Skip-frames: Number of frames to be skipped. For 30 fps, if set to 5, the effective 

framerate is 5 fps. 

- Target-fps: Approximate target frames per second. Only for video files. 

- Min-size: Minimum face image size on the long axis. Smaller images are discarded. 

- Max-size: Maximum face image size on the long axis. Larger images are resized. 

The procedure followed by the program to extract the faces from the video stream or file and 

to store them to a folder is shown in Figure 59. The extraction process is similar to that 

performed in the video recognition, storing the face images to a local folder instead of sending 

the images to the Cloud API. 

 

Figure 59: Face Extraction and Storage from Video File Program Flowchart 

The user interface of this program is quite similar to the one of the face recognition from video 

file or video stream, with a different color coding and without the names of the recognized faces, 

as this program does not send the images to the Cloud API, neither it recognizes them locally. 

The only color used, as shown in Figure 60, is white, meaning that the face has been detected 

by the local program and is going to be stored into the local folder selected (if the face image 

size on the long axis is greater than the fixed minimum. 
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Figure 60: Frame and Extracted Face Image Windows Obtained with the Face Extraction from Video Program 

6.8 FACE RECOGNITION FROM FOLDER 
The face recognition from folder program provides an interface to send the face images from a 

folder to the Cloud API for recognition. The input arguments of the program are: 

- IP-address: The Cloud API ingress IP address (the address points to the Load Balancer). 

- Input-folder: The folder with the images to upload. 

- Dry-run: If included, the images are sent to the cloud but no results are obtained. For 

benchmarking purposes. 

- Stats: Shows statistics of the images sent. 

The procedure followed by the program to send the images from the folder to the Cloud API for 

recognition is shown in Figure 61. The program reads all the images from the folder and sends 

them to the Cloud API. If the dry-run parameter is present, then the images are sent to a special 

dummy address that will not send back any results. This address is used for benchmarking 

purposes. 
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Figure 61: Face Recognition from Folder Program Flowchart 

This program provides all the data through the CLI, as shown in Figure 62. Therefore, there is 

only one window open with the output of the program. It provides confirmation of the 

submission of the images and, in case the dry-run argument is not present, it also provides the 

recognition results. At the end of the execution, if requested, it provides statistics regarding the 

submission. 
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Figure 62: Console Output for the Face Recognition from Folder Program 

6.9 BANDWIDTH SAVINGS BENCHMARK 
In these tests, the face extraction and image transmission programs are used to obtain and send 

the images of the faces found in the different test videos used for the experiment. The process 

is monitored, measuring many parameters to achieve a greater knowledge of the bandwidth-

saving performance of the system. 

The videos used for the tests contain images of the flow of people in various streets in different 

locations around the world. Each one of the videos shows a different density of people, leading 

to a wide variety of test scenarios. This allows to fully demonstrate the variability of the 

bandwidth savings achieved with the architecture designed in this document depending on the 

density of people in the video feeds analyzed. 

The variations in the bandwidth required depends on the number of faces in a video stream. 

This is due to how the system achieves the bandwidth savings, which is linearly dependent on 

the number of faces detected and transmitted on each of the frames processed, as well as on 

the size of the faces in pixels. To differentiate between the different face densities, five 

categories will be considered as shown in Table 5, defined by the number of face images sent 

per minute. 

Range Face images per minute 

Very low density <5 

Low density 5-50 

Medium density 50-500 

High density 500-1000 

Very high density >1000 
Table 5: Face Density Ranges 

In the following subsections, videos falling under the medium density, high density and very high 

density categories are used to test the system. These videos have each a length of 10 minutes. 

Links to their web addresses can be found in each of the subsections. 
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To emulate a security IP camera, the videos are converted to 6 fps by the face extraction 

program. IP video surveillance cameras require an approximate bandwidth of 4 Mbps when 

sending 1080P video at reasonable qualities and framerates of 6-10 fps [54] [55]. 

The video file size used for the comparison is determined from the assumption of the 4 Mbps 

bandwidth required for a surveillance camera transmitting stream of 6 fps at 1080P. 

The face extraction process is configured so that face images that are too small to be recognized 

(less than 30 px in the short axis, in our case) are discarded, while face images that are over a 

certain threshold (150 px in the long axis, in our case) are compressed to reduce the space and 

bandwidth required to transmit and process them. 

6.9.1 Medium Density 

The video from [56] has a facial density that falls into the medium density category, given that, 

after extracting the faces from the video, as shown in Figure 63, the average number of face 

images detected and extracted per minute has been determined to be 305.4. The data used to 

obtain this metric can be found in Table 6. The total file size of the pictures, the average per 

image file size, and the average height and width in pixels of the face images have been 

determined from the analysis of the face images extracted can also be found in Table 6. 

 

Figure 63: Face Extraction Window – Example of Medium Density 

Video length 600 s 

Number of face images 3054 

Face images per minute 305.4 

Total face image files size 10.05 MB 

Average image file size 3.37 KB 

Average image height 91 px 

Average image width 76 px 

Average image size 7845 px 
Table 6: Extracted Face Images Data – Example of Medium Density 
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After the face images have been extracted from the video, they are sent to the cloud API. The 

transmission to the API has been monitored using the network capture program Wireshark [57] 

to obtain network usage statistics. These statistics are more adequate than the extracted image 

file size to determine the actual bandwidth savings obtained by using the architecture proposed 

in this document versus transmitting the whole video feed over the network. The results of this 

test are the bandwidth used by the images in the network, the average per image network size, 

the number of network packets sent, and the network overhead which is extra percentage used 

by the system when sending the images to the Cloud compared to the size of the images being 

sent (in this case 14 MB and 10.05 MB respectively). These results can be found in Table 7. Note 

that, as this test has been performed in a real environment, the transmission of the data has 

been affected by the network conditions, meaning that there may have been retransmission of 

network packets due to erroneous packets, lost packets, excessive network delays, etc. This 

means that if the test were repeated, the results would be quite similar but not necessarily 

equal. 

Network packets 45536 

Size in network 14 MB 

Average image network size 4.69 KB 

Network overhead 39.3% 
Table 7: Network Transmission Data – Example of Medium Density 

From the data gathered during the face image extraction and transmission, and from all the 

assumptions made regarding a hypothetical system sending the video camera feeds directly to 

the cloud (network bitrate of 4 Mbps per camera), the size reduction factor shown in Table 8 is 

obtained. This factor indicates a great reduction in the network bandwidth required for the 

recognition of the faces in the video using the proposed architecture. 

Average network bitrate 0.19 Mbps 

Estimated IP camera bitrate 4 Mbps 

Estimated IP camera video size 300 MB 

Bandwidth reduction factor (factor that divides) 21.4 
Table 8: Bandwidth Reduction Factor – Example of Medium Density 

6.9.2 High Density 

The video from [58] has a facial density that falls into the high density category, given that after 

extracting the faces from the video, as shown in Figure 64, the average number of face images 

detected and extracted per minute has been determined to be 864.9. The data used to obtain 

this metric can be found in Table 9. Following the same procedure as in the medium density test, 

the results of the test with the high density video are also shown in Table 9. 
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Figure 64: Face Extraction Window – Example of High Density 

Video length 602 s 

Number of face images 8678 

Face images per minute 864.9 

Total face image files size 23.8 MB 

Average image file size (kb) 2.81 KB 

Average image height 91 px 

Average image width 76 px 

Average image size (pixels) 7647 px 

Network packets 123850 

Size in network 34.74 MB 

Average image network size 4.10 KB 

Network overhead 46.0% 

Average network bitrate 0.46 Mbps 

Estimated IP camera bitrate 4 Mbps 

Estimated IP camera video size 301 MB 

Bandwidth reduction factor (factor that divides) 8.7 
Table 9: Test Results – Example of High Density 

The bandwidth reduction factor in Table 9 obtained in the high density test shows an important 

bandwidth reduction, although not of the same magnitude as the medium density test. 

6.9.3 Very High Density 

The video from [59] has a facial density that falls into the very high density category, given that 

after extracting the faces from the video, as shown in Figure 65, the average number of face 

images detected and extracted per minute has been determined to be 1479.2. The data used to 
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obtain this metric can be found in Table 10. Following the same procedure as in the medium 

density test, the results of the test with the very high density video are shown in Table 10. 

 

Figure 65: Face Extraction Window – Example of Very High Density 

Video length 601 s 

Number of face images 14817 

Face images per minute 1479.2 

Total face image files size 51.01 MB 

Average image file size (kb) 3.53 KB 

Average image height 91 px 

Average image width 74 px 

Average image size (pixels) 7755 px 

Network packets 221712 

Size in network 70.22 MB 

Average image network size 4.85 KB 

Network overhead 37.7% 

Average network bitrate 0.93 Mbps 

Estimated IP camera bitrate 4 Mbps 

Estimated IP camera video size 300.5 MB 

Bandwidth reduction factor (factor that divides) 4.3 
Table 10: Test Results – Example of Very High Density 

The bandwidth reduction factor in Table 10 obtained in the very high density test shows a 

remarkable bandwidth reduction, far off the result of the medium density test as expected, but 

still providing more than a four times reduction in the bandwidth required, even in such a 

challenging environment. 
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6.9.4 Discussion of Results 

The results of the bandwidth reduction tests conducted in the previous subsections have led to 

the obtention of the bandwidth reduction factors shown in Table 11. The bandwidth reduction 

factor is represented as dependent on the number of faces detected and extracted by the edge 

program per minute. The metric also depends on the average size of the faces extracted. 

Range Face images per 
minute 

Expected bandwidth 
reduction factor 

Very low density <5 >1365x 

Low density 5-50 1365x-137x 

Medium density 50-500 137x-14x 

High density 500-1000 14x-7x 

Very high density >1000 <7x 
Table 11: Face Density Ranges and Expected Bandwidth Reduction 

The bandwidth reduction estimation shown in Table 11 has been obtained considering a 4 Mbps 

camera stream and an average 4.5 KB per face image transmitted. The average image size has 

been obtained as an average of the tests shown in this section and of other tests conducted 

during the development of this project. 
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Chapter 7: BRIEF CYBERSECURITY ANALYSIS 

The architecture designed in this project is mainly focused on the reduction of bandwidth 

through the use of edge computing. Even so, attention has also been paid to system 

cybersecurity, as demonstrated by some of the attack mitigations incorporated in the code. 

Nevertheless, not being the main target, there are some security protections that have not been 

considered, as they are either implementation dependent or application dependent. Due to this, 

while several security functions and vulnerability and exploitability mitigations have been 

implemented, there are some basic features that should be additionally incorporated prior to 

the actual deployment of the system in a production environment, especially when the data 

transmitted to and from the Cloud API have to be confidential. 

7.1 EXPLOITABILITY MITIGATIONS 
In some of the Calls of the Cloud API, the inputs provided in the request fields are used to access 

the filesystem. This means that if left untreated, inserting expressions such as “../” into those 

fields could allow attackers to access areas of the filesystem to which they are not authorized, 

as they are out-of-bounds. This has been solved by checking that the path to which the functions 

that handle user-provided inputs access is not out of the scope of their access (e.g. the Dataset 

folder in the case of adding or deleting IDs). 

In the Cloud API, some of the requests handle user inputs and use them to send an SQL query 

to the Database server. These inputs cannot be directly inserted into an SQL query, as this would 

open a door for SQL injections attacks. This type of attacks perform unauthorized access or 

modification of the database by inserting special commands into the user inputs that are later 

included in the SQL query. This enables attackers to read or make changes outside of the scope 

of the query. 

To block the SQL injection attacks, the system parses the inputs via the mysql connector’s built-in 

functions. These functions take the query template and the user-defined input parameters in 

different variables, so that they can check that there are no special characters or illegal 

expressions in the user-provided inputs. 

In the cloud infrastructure, the Virtual Machine (VM) that runs the Network File Storage (NFS) 

service is accessible through SSH for development purposes. In a production environment, this 

connection should be made through a Virtual Private Network (VPN) instead of over the 

internet, where anyone can try passwords. However, to partially mitigate this, instead of 

authenticating with a user-password combination, the access authentication is performed with 

a certificate, increasing the security of the system. 

7.2 FURTHER CYBERSECURITY IMPROVEMENTS 
As previously mentioned, there are some cybersecurity mitigations and cybersecurity 

vulnerability patches that have not been implemented in this project since they are 

implementation dependent. This means that they would have had to be implemented again in 

any new deployment. 

The Cloud API is designed as a RESTful API. Due to this, the requests are sent with the HTTP 

protocol. This protocol is not secure and is vulnerable to both confidentiality and integrity losses. 

The solution to this is to use HTTP over Transport Layer Security (TLS). This combination is known 
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as the HTTP Secure (HTTPS) protocol. To implement it, the Cloud API servers should be 

configured with a security certificate for the connection, and HTTPS capabilities should be 

enabled in the Web Server handling the API Calls. 

The connection between the Edge Nodes and the Cloud API, as well as the connection between 

the programs used by the employees performing maintenance operations (e.g. user add and 

user delete operations) and the Cloud API is not authenticated. This lack of authentication 

means that anyone with access to the Public IP address used as the ingress for the API is able to 

interact with it. This may not be optimal for a production deployment, and device and employee 

authentication should be implemented. 

Both the HTTPS security and the device/employee authentication could be implemented by 

adding an extra authentication and unpacking deployment before the currently implemented 

processing deployment. This deployment would handle both the authentication and the HTTPS 

requests. It would then send the extracted HTTP requests to the processing deployment. This 

way, the processing deployment would perform the same operations as in the current system. 

This would also allow to add an extra division of the processing pods, between face recognition 

handlers and training and dataset maintenance handlers, as the intermediate deployment could 

determine to which it should send the HTTP request depending on its URL. 

The API calls to the Cloud API require a significant processing time (given the complexity of the 

service being provided) to generate an answer when compared with an average HTTP or PHP 

webpage server. This means that a Distributed Denial of Service (DDoS) attack would not require 

much traffic to achieve its goal of taking down the service (or generating a great traffic spike 

which would lead to high Cloud Computing billing if using auto-scaling services, an option of the 

proposed architecture). This would be greatly mitigated with the aforementioned user 

authentication, as the DDoS could be contained into the authentication phase which is orders 

of magnitude faster than the processing phase. 

Finally, both the libraries used in the project and the code that has been developed should be 

periodically checked for new security updates and any vulnerabilities that may be discovered by 

the international community and may affect the code. 
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Chapter 8: BRIEF LEGAL ANALYSIS 

The popularization of the use of facial recognition systems is generating controversy all around 

the world. Legislation is being implemented to protect face biometrics as much as other types 

of biometrics such as DNA and fingerprints are already being protected. 

Faces are public identifiers that humans use daily to recognize the people in their environment. 

Face recognition systems use the same information as humans do to identify people in pictures 

and video feeds. Therefore, faces can be considered personal identifiers and, as such, should be 

protected by the privacy legislation of countries. 

8.1 EUROPEAN UNION’S GENERAL DATA PROTECTION REGULATION 
According to the General Data Protection Regulation (GDPR), active since 2018 in the European 

Union, face images are considered biometric data. Biometric data are considered sensitive 

personal information by the GDPR. As sensitive information, face images are subject to a high 

level of legal protection, which requires the highest level of data protection. 

Furthermore, under the protection provided by the sensitive personal data category of the 

GDPR, the use of the facial features of a person is highly restricted. It is protected to the extent 

that, in most cases, these characteristics can only be used after user consent has been provided 

to the processor of the information. This fact leads to the use of facial recognition software 

almost exclusively by governmental agencies, where its use can be justified as of importance for 

public safety. For this reason, facial recognition is commonly found in law enforcement use. 

8.2 UNITED STATES 
In the United States, facial recognition software is being used by many law enforcement 

agencies, both federal and state ones. This massive use of facial recognition is backed by an 

extensive network of databases that contain pictures of hundreds of millions of people. The 

storage of this information over many departmental databases poses a severe risk to individual 

privacy due to a high risk of information leakage and potential misuse. 

Many senators, legislators and public leading figures have spoken out against this indiscriminate 

use of facial recognition software in the US. They allege that it not only attacks individual privacy, 

but also creates new problems; problems such as false positives that may lead to the arrest of 

innocent individuals or the bias of certain systems when dealing with people of different race 

and skin color. 

Although there is no major federal legislation regarding the use of facial features for face 

recognition, there are state laws that regulate the use of biometric identifiers, such as the Illinois 

Biometric Information Privacy Act (BIPA) [60]. This law protects biometric identifiers from being 

obtained or stored by companies without the previous explicit consent of the citizen. 

In the Illinois BIPA, biometric identifiers are defined as “retina or iris scan, fingerprint, voiceprint, 

or scan of hand or face geometry”. It is noteworthy that biometric identifiers do not include 

“writing samples, written signatures, photographs, human biological samples used for valid 

scientific testing or screening, demographic data, tattoo descriptions, or physical descriptions 

such as height, weight, hair color, or eye color”. 
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Face recognition systems would fall under the definition of “face geometry” biometric identifiers 

and, as such, the companies that intend to use them would require the explicit consent of the 

user/citizen being scanned, under the Illinois BIPA. 
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Chapter 9: CONCLUSIONS 

After the completion of this project, the following conclusions can be drawn regarding the 

system design: 

1. A face recognition architecture optimized for low bandwidth between the installation 

site and the cloud, low processing power in the edge, high availability and high 

scalability in the cloud has been designed. 

2. A Cloud API has been designed in Python to accommodate the face recognition 

procedures, following RESTful naming guidelines and best practices. 

3. The deployment has been realized so that it can be rapidly scaled up to running 

hundreds of instances of the Cloud API code if necessary, which allows for both high 

availability and scalability. 

4. The system has been designed so that new faces can be added to the list of people 

that can be recognized without any face recognition downtime while training the 

system for the new people. 

5. The training time of the classifier has been significantly reduced by storing and 

maintaining updated the embeddings extracted from the known images of the 

individuals that can be recognized by the system. 

6. The system has been prepared to be able to work both standalone and in cooperation 

with a mobile APP that provides valuable statistics to the user. 

7. A brief cybersecurity analysis with security considerations and maintenance 

recommendations has been provided for future implementations. 

8. A brief legal analysis of face recognition systems has been carried out to give a 

fundamental view regarding deployment considerations in both the US and EU. 

Furthermore, the following conclusions can be drawn with respect to the system 

implementation: 

9. The Cloud API has been implemented in a Kubernetes deployment in the Microsoft 

Azure cloud, which is accessible through the internet. 

10. The system has been equipped with shared network storage to allow for scalability. 

11. A database has been integrated as one of the destinations of the detections done by 

the system to allow for further analysis. 

12. A series of programs have been developed to serve as edge computing to detect faces 

from a variety of sources (web camera, video file, video stream) and send them to the 

Cloud API. 

13. All programs that interact with the Cloud API to recognize the faces in a web camera, 

camera signal, video stream or video file include options to configure which frames to 

process, which face images to send, and how much to compress them before being 

sent. 

14. The recognition requests for the faces detected in a given frame can be sent 

simultaneously for reduced frame processing times, in all the programs that interact 

with the Cloud API to recognize faces. 

15. Several programs have been integrated to allow for the system management from the 

employee’s point of view, with routines that enable adding new people to the 

recognition system and adding new reference images from different sources. 

16. An ID can be completely removed from the system with only two API calls leaving no 

trace in the storage or the recognition system for improved legal compliance. 



                                                                                                                                                              
 

89 
 

The results of the testing conducted lead to the following conclusions: 

17. The correct functionality of the system has been demonstrated with a series of tests 

designed to cover the most relevant functionality. 

18. The performance of the system has been measured, and its scalability has been tested. 

19. The bandwidth reduction, which was the primary motivation and objective of the 

system, has been proven in a test scenario. 

As a summary, we can affirm that the system implemented has proved that the architecture 

proposed in this project achieves what it was originally designed for: reducing the bandwidth in 

face recognition of video surveillance systems, thanks to the use of a design based on Edge 

Computing. Furthermore, it achieves scalability and high availability thanks to the 

implementation on a Kubernetes cluster. 
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Chapter 10: FUTURE WORK 

The following work is proposed for future extensions of this project, that can improve the 

application to real cases, with advanced performance and user interaction: 

1. Train a new face feature extractor based on the newest and most efficient 

architectures such as MobileNet V3 or EfficientNet. This would allow the system to 

recognize the faces with improved accuracy and efficiency. 

2. Further optimize the classifier for large number of IDs, as the current version works 

great for small to medium sizes but may struggle with hundreds or thousands of IDs. 

3. Optimize the face detection routine of the Cloud API to obtain even higher 

performance per CPU core, although the performance is already good for the 

complexity of the operations being performed. 

4. Further reduce the bandwidth of the edge computing nodes to the Cloud API by 

removing remarkably similar face images of the same person from frame to frame. 

This can be achieved by tracking the faces and not sending similar images of the same 

face. 

5. Implement the edge processing in a specific device as the ones suggested in Chapter 2. 

This would allow to speed-up the edge processing by taking advantage of the 

hardware acceleration provided by GPUs and TPUs. 

6. Implement an even faster face detection algorithm in the edge, as this algorithm is to 

be optimized towards speed and not accuracy, taking into account that false positives 

are not a problem, given that the accuracy is provided by the second face detection, 

which is performed in the cloud. 

7. Divide the work being performed by the face recognition Pod between face 

recognition and dataset and model management. 

8. Implement edge node and employee program authentication. 

9. Implement HTTPS security with a security certificate from a well-known Certification 

Authority (CA). 

10. Implement Distributed Denial of Service protection or mitigation in the Cloud API for 

improved robustness. 

11. Detect the approximate distance between people in the camera frames using face size 

and distance between faces for certain applications, like COVID infection prevention. 

12. Design an analysis program that uses the detections information in the database to 

create processed high-level information. 

13. Design an algorithm that groups unknown faces based on embedding similarity 

allowing to add new people from the camera feeds and enabling to track unknown 

people with auto-generated identities. 
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