
Optimal SDN managed non-IP
transport for 5G networks

Aaron Montilla Vicent

School of Electrical Engineering

Bachelor’s thesis
Espoo 13.6.2019

Supervisor

Prof Raimo Kantola

Advisor

Dr Jose Costa Requena

Copyright c⃝ 2020 Aaron Montilla Vicent

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Aaron Montilla Vicent
Title Optimal SDN managed non-IP transport for 5G networks
Degree programme Electronics and electrical engineering
Major Telecommunication Engineering Code of major ELEC0007
Teacher in charge Prof Raimo Kantola
Advisor Dr Jose Costa Requena
Date 13.6.2019 Number of pages 46 Language English
Abstract
The wide spread of smartphones and tablets leads to a concern about the bandwidth
and resources consumption. For this reason, a new and better transport solution is
needed to achieve a more efficient use of the network capacity.

In this project, the aim will be to achieve a good method to optimize the transport
in the network. The implementation will be done with a modification of the GTP
tunnel managed by a centralized SDN controller. This new transport will be added
to an SDR network to deliver optimized transport in 5G networks.
Keywords srsLTE, USRP, connection, eNode B, EPC, SDN , bandwidth

4

Contents
Abstract 3

Contents 4

Abbreviations 6

1 Introduction 7

2 Previous solutions for this project 9

3 Proposed solution 11

4 Installation 12
4.1 UHD and GNU installation . 12
4.2 srsLTE installation . 13

5 SIM configuration 15

6 Common errors in the implementation 16
6.1 IP addresses . 16
6.2 EPC and eNB connection . 16
6.3 Frequency band allocation . 16
6.4 Cell phone connection . 17

7 Working instructions 18
7.1 EPC instructions . 18
7.2 eNB instructions . 18

8 Results 21

9 GTP tunnel modification 23
9.1 Modification Statement . 23
9.2 Programming of the adjustments . 23

9.2.1 Sockets . 24
9.2.2 Management of the incoming data 24
9.2.3 Forwarding of the packets to the Gateway 24
9.2.4 Users database . 26
9.2.5 Open vSwitch . 26

10 Final results 28
10.1 Connection of two UE with different transports 28

11 Summary 32

12 Future research 33

5

References 34

A Appendix: Additional commands 36

B Appendix: Configuration files 37
B.1 enb.conf file . 37
B.2 rr.conf file . 40
B.3 sib.conf file . 42
B.4 drb.conf file . 45

6

Abbreviations
EPC Evolved Packet Core
eNB Evolved Node B
USRP Universal Software Radio Peripheral
LTE Long Term Evolution
SDN Software Defined Networking
GTP GPRS Transport Protocol
GPRS General Packet Radio Service
TEID Tunnel Endpoint Identifier
MCC Mobile Country Code
MNC Mobile Network Code
HSS Home Subscriber Server
AMF Access and Mobility Management Function
SMF Session Management Function
MME Mobility Management Entity
UPF User Plane Function
APU Accelerated Processing Unit
UE User Equipment
EARFCN E-UTRA Absolute Radio Frequency Channel Number
UHD USRP Hardware Driver
VLAN Virtual Local Area Network
SDR Software Defined Radio
OVS Open Virtual Switch
ARP Address Request Protocol
UDP User Datagram Protocol
NOMA Non-Orthogonal Multiple Access
OMA Orthogonal Multiple Access
MAC Media Access Control
IP Internet Protocol
TCP Transmission Control Protocol
OPEX Operative Expensiveness
SGW Service Gateway
RACH Radio Access Channel
PRACH RACH Preamble
SQL Structured Query Language
IMSI International Mobile Subscriber Identity
ID Identifier
GSM Global System for Mobile Communication
UMTS Universal Mobile Telecommunications System
PDCP Packet Data Converge Protocol

1 Introduction
The huge increase in the use of bandwidth and resources consumption due to the
wide spread of smartphones and tablets is leading to a concern about these.

Figure 1: Number of smartphones in billions per year between 2016-2021 [1].

As the graph shows, the increase in the number of smartphones is unstoppable,
reaching 3.2 billions in 2019 and with a prevision of 3.8 billions in 2021. This problem
will increase with the incoming 5G networks and the amount of connected devices
that these will make possible. According to the specifications of the incoming system
it will suppose an increment of 100 times over the 4G in terms of devices connected
per unit of area. Moreover, 5G systems are suppose to provide an increment of the
data rate between 10 and 100 times over 4G networks.

This situation will be unsustainable with the methods that the networks are using
currently, this is the reason why new methods and implementations are needed to
solve this problem which will get worse with time.

The future methods must provide the existing system with implementations for
providing an increment in the efficiency of the use of the available bandwidth and
resources. SDN (Software Defined Networking) is really important to achieve the
efficiency that these new networks need. With SDN it is possible to achieve dynamic
and scalable networks.

SDN architectures, by definition, decouple network control and forwarding func-
tions, enabling the network control to become directly programmable and the un-
derlying infrastructure to be abstracted from applications and network services [2].

8

In other words, it implies the separation of the control plane and the data plane of
the network. The addition of SDN to the network allows centralized and flexible
networks and reducing time and complexity in troubleshooting. That is why most of
the previous proposed solutions and the proposed solution of this project use SDN.

The arrival of SDN came from the necessity of a new network architecture that
allow the massive use of the systems. Some of the key computing trends driving the
need for a new network paradigm include:

• Changing traffic patterns: Today’s application access different databases and
servers. The traditional client-server architecture was not longer suitable for
these applications. This attribute has been the main reason of the addition of
SDN in this the system and will be explained with more detail in the following
sections.

• The rise of cloud services: Lots of companies have embraced both public and
private cloud services. The enterprises want to access to this resources in an
agile way and on demand. Moreover, they require to perform this actions in a
highly secured environment.

• The "consumerization of IT": The previously explained increment of the number
of personal devices used by the users leads to a difficulty to accommodate all
these users within the system.

9

2 Previous solutions for this project
Previously, several solutions have been proposed to face the problem of bandwidth
and resources consumption.

The approach of many solutions consisted in NS (Network Slicing) where both
NFV (Network Function Virtualization) and SDN (Software Defined Network) are
used. Network functions virtualization is a network architecture concept that uses the
technologies of IT virtualization to virtualize entire classes of network node functions
into building blocks that may connect, or chain together, to create communication
services. NFV allows the widest possible flexibility as to the physical location of the
virtualized functions[3]. Therefore, in the ideal situation, virtualized functions are
placed where they are the most efficient but the least expensive at the same time.

This will allow a flexible Network Functions deployment and thus increasing the
efficiency of the network. Flexible deployment of Network Functions is about creating
and removing these functions when they are needed and locate them where we want
in the network for an optimal functioning. The creation and removing of the NF as
well as the location are managed by an SDN Switch making possible the reduction
of the OPEX of the network.

So the Network Slicing architecture can be summarize into two main blocks.
The first one is responsible of the slice implementation and the other one to the
management of the slices.

Figure 2: Network Slicing general architecture[4].

Other proposed solutions are about the multiple access protocol called NOMA

10

(Non-Orthogonal Multiple Access) which is a new proposal for encoding technology.
In NOMA, several users of the network can use the bandwidth at the same time
due to the difference in the power used. In the OMA (Orthogonal Multiple Access)
methods, the problem was that the spectral efficiency was low when the resources
were used by users with poor CSI (Channel State Information). Now with NOMA,
the bandwidth used by the users with poor CSI can still be accessed by the users
high CSI, increasing the spectral efficiency significantly [5].

Figure 3: OMA and NOMA schemes. [6]

With the addition of this protocol the network will achieve massive connectivity
with lower latency. These solutions are about the combination of this protocol with
the MIMO technologies, cooperative NOMA and also the interplay between cognitive
radio and NOMA.

11

3 Proposed solution
The solution proposed in this project focuses in the implementation of a new transport
method. The objective is to integrate a Software based radio node with this new
transport method to deliver optimized transport for 5G networks. This new method
will be part of the network backhaul that will allow to deliver optimized and low
latency transport managed from a centralized SDN controller.

The proposed solution will have the following steps are the main ones:

• Building a SDR based eNB using srsLTE.

• Integrate SDN functionality into the new eNB.

• Add L2 transport functionality to SDR eNB.

• Management of the network transport from eNB using SDN.

The project was faced with no previous knowledge in neither Linux environment
nor the use of a USRP.

The hardware used in this project is:

• Laptop model HP ZBook 15 G3 with Ubuntu 18.04.

• ASUS laptop with Windows 10.

• USRP model x310.

• APU Box.

• Cell phone model Samsung J6

• SIM card reader

• USB-Ethernet cables adapter

The software used to implement the network utilities is:

• srsLTE (srsenb part).

• GSim Writer.

• EPC Cumucore software.

• UHD Repository

• GNU Radio

12

4 Installation

4.1 UHD and GNU installation
Firstly, the uhd-host and UHD repository must be installed in the Ubuntu laptop. The
UHD repository is a free and open-source software driver and API for the Universal
Software Radio Peripheral (USRP). This software is created and distributed by the
Ettus Research company [7]. The installation of this repository will include all the
libraries needed for the management of the USRP in the laptop. Depending on the
USRP used, the installation will proceed differently. This project is using the model
x310 which belongs to the third generation of these devices. To proceed with the
installation run the following commands:

$ sudo apt−get update

After this command it is necessary to install the proper libraries. The command for
the libraries is in the appendix A

At this point, git is needed. Git is a distributed version-control system for
tracking changes in source code during the development of a project. This software is
really used and useful, because it does not only permits an easy coordination among
programmers, it allows the access and download of many different versions that have
been uploaded in the different versions of the software. In addition, Git is also a
free and open-source software. If this software had not been already used, it can be
installed with the following command [8]:

$ sudo apt i n s t a l l g i t

Now for downloading the UHD repository and install it:[9]

$ g i t c l one −−r e c u r s i v e g i t : // github . com/ EttusResearch /uhd . g i t
$ cd host
$ mkdir bu i ld
$ cd bu i ld
$ cmake . . /
$ make
$ make t e s t
$ sudo make i n s t a l l
$ sudo l d c o n f i g

And finally GNU Radio. GNU Radio is a free and open-source software develop-
ment toolkit that provides signal processing blocks to implement software radios. It

13

is commonly used with an external hardware but it also can be used without any
other hardware thanks to the software environment that is already included in the
software of GNU [10]. Again, the following commands will include the software in
the computer:[9]

$ cd ~/ o f f l i n e / s r c / gnuradio
$ g i t checkout v3 . 7 . 1 0 . 2
$ mkdir bu i ld
$ cd bu i ld
$ cmake . .
$ make −j 4
$ sudo make i n s t a l l
$ sudo l d c o n f i g

After completing the installation the command "uhd_find_devices" and
"uhd_usrp_probe" have to be able to find the USRP but only if IP address are
configured correctly.

4.2 srsLTE installation
The next software that must be installed is srsLTE which will simulate the eNode B
part of the network.

srsLTE is an open-source LTE software suite developed by SRS. It includes:

− srsUE : a complete SDR LTE UE a p p l i c a t i o n f e a t u r i n g a l l
l a y e r s from PHY: to IP .
− srsENB : a complete SDR LTE eNodeB a p p l i c a t i o n .
− srsEPC : a l i gh t −weight LTE core network implementation
with MME, HSS and S/P−GW.
− A high ly modular s e t o f common l i b r a r i e s f o r PHY, MAC,
RLC,PDCP, RRC, NAS, S1AP and GW l a y e r s .

The following commands download and install this software[11]:

$ g i t c l one https : // github . com/srsLTE/srsLTE . g i t
$ cd srsLTE
$ mkdir bu i ld
$ cd bu i ld
$ cmake . . /
$ make
$ make t e s t
$ sudo make i n s t a l l
$ s r s l t e _ i n s t a l l _ c o n f i g s . sh user

14

srsLTE was not the first option for this part of the software. In fact, the first
try was the installation of OAI (Open Air Interface) but after two weeks trying to
install the software, it was impossible to achieve. So a change in the software was
preferable and srsLTE was the chosen software. Once it is installed, enb.conf file of
srsLTE must be configured properly , specially MCC, MNC, and the IP addresses
mme_addr, gtp_bind_addr and s1c_bind_addr. Also the dl_earfcn parameter is
really important for the connection with the cell phone. Every configuration file
of the srsLTE program as used in this project are included in appendix B. In the
installation of the program, the enb.conf file includes more parameters which were
not used in this project and have been removed.

At this point, all the installations needed in the Ubuntu laptop are done. Now
the APU box has to be configured following the instructions of the Cumucore manual
for EPC installation.

15

5 SIM configuration
In the configuration of the SIM card the GSIM Writer software is needed. This
program only runs on Windows, so this part of the project was executed in the other
laptop. There are few parameters that are important in the configuration:

1. IMSI number

2. K parameter

3. Op parameter

The other parameters can be assigned randomly with the proper buttons of the
program. But the parameters of the previous list must be assigned properly to
connect with the EPC and the eNode B. The IMSI (International Mobile Subscriber
Identifier) is a unique code for a mobile that enables the identification with GSM
and UMTS. The K and Op parameters are used to get all the codes needed for the
authentication. So it is necessary to ensure that the parameters fits the authentication
of the system and the MCC and MNC numbers.

After initializing the parameters in the SIM card,the parameters in the EPC part
must be checked. The IP addresses of the AMF and SMF part must agree and the
data of the user (cell phone) has to be included in the HSS (Home Subscriber Server)
part that has a MySQL structure, so it has to be included using MySQL parameters.

The HSS is the master user database that supports the IMS (IP Multimedia
Subsystem) network for handling the calls/sessions. Inside the server remains all
the information needed of the users. Although the tables of the HSS include several
parameters, the only important are the ones mentioned in the list above.

With all the parts installed, the first tests of the network can start. Despite
following all the previous steps, several errors can appear in the network depending
on the environment used. So the problems found in the implementation of this
project will be explained in the next section.

16

6 Common errors in the implementation
At the beginning of this project the ASUS laptop used for the Windows part was
also used for the Ubuntu part, producing some errors that will be explained later on
in this section. But the mistakes are going to be explained in the order that they
appeared in this implementation.

6.1 IP addresses
Several problems with concordance of the IP addresses of the laptop used, the EPC
part and the authentication server were faced in this implementation, but these can
be avoided following the tips of the installation of the EPC part. However, these
errors can make that the laptop cannot find the USRP, wrong functioning of the
EPC part and also that the eNode B part cannot find the EPC for the connection.

6.2 EPC and eNB connection
Once IP addresses errors were solved, EPC and eNode B could connect. But the
connectivity was really bad. When the eNode B part of the srsLTE command was run,
it appeared an error message “Error, timed out while receiving samples from UHD”.
The reason of this error was that the adapter of the Ethernet cables was connected
to the regular USB port. Notice that the Ethernet cables must be connected to the
Ethernet port or to the USB 3.0 port if the adapter is being used. Otherwise, the
connection would not have the proper speed causing this error. After solving this
error, the connection between EPC and eNode B worked properly. If this connection
is working, eNode B and its data will appear in EPC logs.

6.3 Frequency band allocation
After the previous connection, the only one missing is the UE connection. So the
customized SIM card must be inserted into the cell phone. The best part to achieve
this connection is setting the cell phone to plane mode and disconnecting plane mode
when EPC and eNode B are connected. At this point the next error appeared. When
plane mode was disconnected the phone signals did not appear in the logs of the
network. In fact, the cell phone was not able to find the network (the network name
is the junction of the MNC and MCC). This error was caused because the network
was not working in the same frequency bands as the cell phone. Notice that some
cell phones are working in several frequency bands while others only work in few
frequencies. Frequency bands where your phone works can be found in Google.

To change the frequency which the network is working in the dl_earfcn parameter
of the enb.conf file is needed. It is really important to change this parameter instead
of the downlink and uplink ones. An earfcn calculator can be used to check the
proper earfcn for the band needed.

After solving this problem, the signals from the cell phone appeared in the logs
of both the EPC and the eNode B but the link with the did not work properly.

17

6.4 Cell phone connection
At this point, the PRACH messages appeared in the logs of the eNode B. In fact,
it even achieved the connection in some tests but it lasted only few seconds and
the strength of the connection was really low. The cause of this problem was that
the ASUS laptop’s CPU was not good enough to process the signals from the UE
resulting in a bad connectivity.

To get this problem it was necessary to ask in the srsLTE mailing list. It is really
useful because errors can be checked by the creators of the software and also previous
emails with questions can be found in the web page of the mailing list. UHD also
has its own mailing list for problems with the USRP and its connection.

That was the reason of the change of laptop in this project. The new laptop had
enough CPU to process all the petitions. This made all the network work properly
and the connection of the cell phone is excellent for an SDR based network.

18

7 Working instructions

7.1 EPC instructions
In this project three command windows are used to run the network. One window is
used to run the AMF and SMF part of the EPC, another one is used for running the
UPF part of the EPC and the third one is used to run the srsLTE software. Firstly,
the UPF part is going to be run. It is important to run this first for the proper
functioning of the data plane. After this, the AMF and SMF part need to be run to
complete the EPC part. At this point something similar to this will be shown in the
logs of each part

Figure 4: AMF logs without UE connected.

Figure 5: UPF logs without UE connected.

7.2 eNB instructions
Next, eNode B part must be run. So, in the third and last window in the srsenb folder
the command that has to be run is "sudo srsenb enb.conf". This command is recom-
mended otherwise the parameters of the enb.conf are not used in the configuration
and the values have to be included in the command adding complexity.

19

If all problems explained before are solved the eNode B will connect to the EPC
and these will be the logs of both parts:

Figure 6: eNode B data in AMF logs.

So the last part is the UE connection as explained before. So after disconnecting
plane mode in the phone the logs of the EPC and eNB must be like this:

Figure 7: eNode B logs with UE connected.

20

Figure 8: AMF logs with UE connected.

At this point the cell phone has Internet connection that can be use for whatever
we need.

21

8 Results
With all the parts of the network connected it was time to check the results of the
tests. One important improvement was the time that the network lasted to connect.
Before changing the laptop, it took some unsuccessful connection attempts before
the correct connection but after the change it only took one try. Additional tests
like disconnecting eNode B with the UE connected and then binding it again were
made and all of them succeeded.

After that, the speed of the connection was checked but that could not be tested
without Internet connection. So the ping application was used to check whether the
Internet connection was truly active. This application works as the ping command in
the command line, so the IP direction 8.8.8.8 was used to check it and the response
verified the connection . After making sure that the connection worked, the next
and more advanced test used the "Speed test" application. Both application were
downloaded from Google Play for free.

As a first step, the app needs to find the server and this can lasts few seconds even
with a good connection. After this, the environment is ready the app can make the
test. In this project several test have been made in the network. Taking into account
the test it is visible that the network works better after some time of connection.
However, the difference is not really significant. Here there are two examples of the
tests:

Figure 9: Test when the phone just connected.

22

Figure 10: Test after some minutes of connection.

In addition, in this project the network has been tested with several common
applications. Some of the most important test have been web searching, use of email
sending messages as well as receiving emails and watching YouTube videos with good
quality and good speed charging the video.

23

9 GTP tunnel modification

9.1 Modification Statement
Once the 4G network is working, the next steps focus in the modification of the
GTP tunnel, in order to be able to manage it by the use of SDN. The main idea
of the modification is the implementation of a module to switch between GTP and
VLAN encapsulation. This new transport method will create different VLANs with
different priorities. The packets will use the proper VLAN according to their QoS
requirements.

The new module will have to perform all the authentication and routing processes
that were performed by the old module. The TEID values coming from the GTP
headers from the packets are now replaced by other authentication methods.

Once a new UE is registered in the system, the AMF from the EPC will send
a UDP message to the MBO controller, which will forward the information to the
proper module of the srsLTE software to process it. This UDP message will include
the information of the user. This parameters are: IP address of the UE, TEID assign
by the SMF and the VLAN ID that the UE will use.

This information is stored by the srsLTE. Then the program filters the incoming
packets regarding the IP destination address. Using the previously received infor-
mation, the software can map the value of the destination IP address to the proper
TEID value of the connection. Therefore, the TEID value is still used in the software,
but is only used internally for the authentication methods.

Separately, srsLTE will perform the creation of the VLANs itself. This is the
reason why it needs to have the information about the VLAN ID, this parameters
are key for the creation of the Ethernet header.

The following sections will explain in a more detailed form this modification.

9.2 Programming of the adjustments
The modification of the program code is a crucial part in this project. The completely
understanding of the functioning of the code has huge importance. In this case, the
code of the srsLTE software is programmed with C ++ but there are also some C
files. For the purpose of the modification there are some key files in the software
code:

s r senb /hdr/ s tack /upper/gtpu . h
sr senb / s r c / s tack /upper/gtpu . cc

The most difficult part of this implementation will be the combination of these
modules with the new adjustments for the perfect functioning and coordination
between them.

24

9.2.1 Sockets

A socket is one endpoint of a communication with two ways between two programs
running in the network [12]. There are three types of sockets, one is for the TCP
protocol. In this sockets, it is not possible to send data until the connection is
established successfully. These are used when the information send is important.
This way the correct reception of the data is guaranteed. And the second one is
for the UDP protocol. Any socket can send data anytime. This protocol does not
guarantee that the data arrives or the correct order of the packets, but it guarantees
that the received data is correct. So due to the requisites of this project, the second
type of socket is the one used. The last ones are the raw sockets that allows sending
and receiving of IP packets without any protocol-specific transport layer formatting.
The huge inconvenient of these sockets is the need to create every header. The
user will need to implement every header with the proper parameters and formats.
This project use mainly raw socket. Raw sockets give freedom to customize the
Ethernet headers in uplink, providing the possibility to create the VLAN header
before sending the packets. In addition, it also allows the reception of the Ethernet
header in downlink, making possible the parse of the destination IP header with the
users in the system. One UDP socket is also used for receiving the JSON messages
from the MBO. Of course, the program uses additional sockets for its payload but
they are out of the scope of this project.

9.2.2 Management of the incoming data

As the previous reception focused in the GTP header, it was necessary a whole new
reception module for this project. Previously, the software used a UDP socket for
the GTP messages. From the packets, it parsed the value of the TEID and checked
the existence of the user in the system. After that, the PDU was forwarded to the
proper functions so the information could be sent to the UE.

As it has been explained before, the software is no longer receiving the GTP
information in the packages. Therefore, it was necessary to think about a different
approach for recognizing which of the UEs in the system was the target of each
incoming message. For that reason the UDP socket has been substituted by a raw
socket in reception. This change makes more difficult the packet filtering but allows
the reception of packets destined to multiple IP addresses and the mapping of the
proper TEID so the packets are forwarded to the proper UE.

9.2.3 Forwarding of the packets to the Gateway

The forwarding of the packets through the proper VLAN is a key part for achieving
the desired QoS in each flux. The creation of every VLAN and the forwarding of the
messages in the proper one will be performed by the srsLTE itself. It is crucial to use
a raw socket in this function due to the need of creating customize header for each
transmitted message. The sender socket receives the proper PDU to be forwarded,
which includes the proper IP header. But the Ethernet header of the packet needs
to be completely created by the socket.

25

The main parameters needed in the Ethernet header are the source MAC address,
the destination MAC address and the protocol.

Figure 11: Ethernet header [13].

As the software does not use regular transmissions, it is necessary to create the
VLAN version of the Ethernet header. In this version, the Ethernet header is 4
bytes longer. This 4 bytes, which store the information about the VLAN tag, will be
placed between the source MAC address and the Ethernet type.

Figure 12: Ethernet header with VLAN Tag [14].

Nevertheless, the implementation of the Ethernet header is not an easy task.
The obtaining of the destination MAC address requires an ARP request (Address
Resolution Protocol). It is a protocol used to discover the link address, such as MAC
address in this situation, associated to a given internet layer address (IP address)
[15].

This project uses an ARP program which has as input parameter the interface
used to send the ARP request and the IP address from which the MAC address is
needed. As the destination IP address will be fixed, being the address of the Serving

26

Gateway, it does not imply any bigger difficulty than the integration of the ARP
request program in the code for the Ethernet header creation. Furthermore, the code
uses another program for extracting the Source MAC address of the own laptop and
will use a fixed value of 0x0800 for the Ethernet protocol.

Finally, the only information left in the header is the VLAN tag. The value
for the VLAN type will remain constant and equal to 0x8100 as only one tag is
needed. The remaining information will have proper functions which, using the users
database, will extract the values for the VLAN ID and thus priority through which
each packet needs to be forwarded.

9.2.4 Users database

The user database provides the system with the tools to perform the end-to-end
connections without the GTP tunnel. The database is an array with the information
of the users in the system. Each user in the array have 3 fields of information. IP
address of the UE, TEID assigned by the eNB and VLAN ID to forward the packet.

The information about the users is sent to the MBO controller, which after
getting the proper information for the routing rules and the creation of the VLAN
in downlink, will forward the message to the srsLTE module. The software will
use a packet handler to process the messages once they are received. The module
uses a mutex to block the use of the database while the new data is being included.
Once the information is successfully added in the database the system will unblock
the database to be used by other functions in the program and resume the proper
functioning of the system.

In the reception the software will use the database to extract the TEID of the
matching user regarding the destination IP of the packet. If the IP is not in the
array the system will drop the packet. This is usual in the process due to the use of
a raw socket for reception which can lead to the reception of undesired packets that
were not intended to be received by srsLTE. For this reason, the connections in the
reception interface have been limited as much as possible.

The MBO send a JSON message every time that the program is going to receive
a message. Because of that reason, it was necessary to include a module to check if
the information of the JSON message was already in the array. Notice the possibility
that the TEID was already in the array but the information about the destination
IP address or the VLAN ID has changed. In that case, the array must be updated.
This possibility is very feasible since the QoS of the connections will be dynamically
managed, changed then the VLAN ID of a connection when the quality is changed.

9.2.5 Open vSwitch

Open vSwitch is a switch platform that supports standard management interfaces and
opens the forwarding functions to programmatic extension and control. The code is
written in platform-independent C and is easily ported to other environments[16]. In
combination with the OpenFlow orders or commands it allows to create an interface
environment which can be dynamically managed according to the content of each
packet using SDN.

27

OpenFlow is a communications protocol that gives access to the forwarding
plane of a network switch or router over the network. OpenFlow enables to manage
the traffic that is passing through the network. The controllers are different from
the switches. This separation of the control from the user plane allows for more
sophisticated traffic management than is feasible using access control lists (ACLs)
and routing protocols [17]. Along the functions that this combination can perform
there are:

• Creation of customized VLAN tags.

• Untag VLAN packets.

• Dynamic forwarding rules according to the destination IP.

• Dynamic forwarding rules according to the VLAN ID.

All these actions have a huge importance for the goal of this project.
In addition, in this project the Ryu controller will be used. Ryu Controller is

an open, SDN Controller designed to increase the agility of the network by making
it adapt how traffic is handled [18]. The code of this controller is programmed in
Python and has been tested with OVS. The use of Ryu controller will allow the
management of the OVS from the AMF.

The new transport method will use two different modules of OVS. One is placed
after the srsLTE and the second one is placed with the Service Gateway. The OVS
node will performed the actions that cannot be managed by the srsLTE software. Of
course the nodes are continuously under the MBO management.

In uplink, the OVS node of the srsLTE part will only forward the packets that are
passing through, as the sender raw socket has created the proper VLAN type Ethernet
header. However, the OVS node of the SGW part will have a huge importance in
the uplink process. This module will be in charge of popping the VLAN header, in
other words, it will replace the VLAN type Ethernet header with a regular Ethernet
header. Otherwise, after the forwarding of the packets performed by the gateway,
the destination host will drop the packets.

In parallel the downlink process will be also running. Once the Internet host has
sent the response to the UE it will first arrive to the gateway. The gateway will
forward it to its OVS node, which taking into account the value of the destination
IP will forward it through the proper VLAN. Once the packets are received in the
srsLTE part, it is the MBO agent who pops the VLAN and forward it to the srsLTE
program for the proper reception and following processes.

28

10 Final results
Once the new transport has been completely integrated with the old GTP transport,
being able to the customer to choose between each of them, it is time to perform the
final tests and get the final results.

The final test will consist in the comparison between the performance of the
transports. In other words, the test will measure what is the difference between the
throughput and the quality of the signal for each transport. For this reason, it is really
important to know what is the basis of this test. This new transport will remove the
GTP header, allowing a smaller packet size and then reducing the message overhead.
But furthermore, the tagging of the different tunnels in the transport allows different
routing and quality managing not only between VLANs and GTP tunnels but also
between different VLANs. This last possibility is going to be tested.

The set up will include two cell phones, acting as User Equipment here. Each of
the phones will use one of the transports used in this project. Thus one cell phone
will be using a regular GTP connection, implemented already in srsLTE. And the
other phone will be using the new method, then, the information of this transport
will use VLANs. As the Software will only receive the JSON message for the second
phone, this information will be the only in the user array previously explained. Thus,
when the program starts running both of the phones will face the same criteria.
Firstly, both phones will use the GTP transport method but after receiving the
proper JSON message, the destination IP of the phones will be compared with the
newly added information in the array. As the first phone does not coincide with the
IP in the array, it will continue using the old GTP transport, but when the second
phone IP is checked, it will coincide with the information in the array. At this point,
the transport method for this UE will change to the new method.

The second phone will follow a different reception process. As the GTP reception
process will fail it will use the new process. The raw socket extracts the destination
IP of the messages, with this information the software can get the TEID from the
users array. Dealing with the problem of not being able to extract the TEID from the
GTP header. After this, the Ethernet header will be deleted from the message and
the IP packet will be forwarded to the PDCP interface for its following transmission
to the proper UE.

However, the most important part of this process and the main objective of the
main objective of the project comes with the transmission of the packets received
from the UE. After the proper VLAN encapsulation, it is possible to route the
different transports according to different routing rules. Notice that this was not
possible when it only existed one unique GTP tunnel. With different routing rules,
different QoS can be achieved in each connection. Those are the causes of the results
that are going to be shown in this section.

10.1 Connection of two UE with different transports
Firstly it is necessary to make sure that the connection is working with both of the
cell phones. Once the srsenb is running, the phone using GTP was the one attached

29

and tested that it had a good connection quality. This test is performed with a
simple Ping with the "Ping" app for cell phones, available in "Play Store" and also
with the "Speed Test" app.

Once the connection is established, we disconnect the plane mode of the second
device. This is the best practice for establishing the connection, as the phone will
immediately try to connect to a network. When the connection is achieved the phone
will start transmitting and receiving information and when the system receive the
proper JSON message the transport will be switch to the new one.

This process is difficult to understand with images. However, since it is impossible
to show a video of the process, some captures will be shown bellow.

Figure 13: Wireshark capture with flows for both phones .

In order to extract the data about the performance of both of the methods, only
one phone has been used to perform the final speed tests. This way the environment
in which both transport is the same and away from tiny differences that the routes
used might have, one can conclude that the differences seen are entirely cause of the
new transport method.

In this test the phone will be connected normally to the network and once the
connection is achieved the speed has been measured to know the base state of the
system. Bellow, a screenshot of this situation is shown.

30

Figure 14: Speed test of the phone with GTP transport with no traffic.

After making sure what is the initial point of this test, some additional traffic
was injected in the same interface or route. This simulates the situation when some
congestion is found in the network. Taking into account the following capture, it can
be clearly seen how the traffic has affected the speed of the connection.

Figure 15: Speed test of the phone with GTP transport with added traffic.

31

This reduction in the throughput is the main reason why this project is necessary.
After finishing this test the switch transport protocol process started. Once the
traffic for this user was encapsulated in a VLAN, with its respective VLAN ID, the
OVS was able to perform the differentiated routing. Thus, the traffic of the VLAN
with VLAN ID equal to 2, is redirected to another route with less traffic. In this
case, with no additional traffic at all. Then, the connection can use a higher bit rate.
This is the final speed test of the phone using the alternative route.

Figure 16: Speed test of the phone with VLAN transport in an additional route.

The change of route not only has recovered the quality of the connection, moreover
it has improve it. This improvement is caused due to the reduction of the header
size of each packet as it has been explained. The reduction of the overhead allows
this increase in the downlink bit rate comparing with the initial test. Although, as
the link condition are not fixed when connecting to the Internet, it is possible that
this test shows a too optimistic result, the benefits of this system are clear.

32

11 Summary
In conclusion, building an SDR 4G network is a long and hard task that might have
a lot of problems in the process, but taking into account the test done before the
addition of the new code and the speed of the connection with the initial software,
one can say that it was a success.

The software modification was also a big difficulty in this project, as the project
was faced with no knowledge in neither C++ or C programming. The understanding
of the existing code and the creation and combination of the new code with the
existing one was the biggest challenge of this project.

Since the initial idea of this project was the completely substitution of the GTP
tunnel for the new one. At some point the VLAN tunnel was the only transport
method of the system. The speed test was also performed with that code and the
system achieved a good link quality. However, before the reception of the JSON
message in the system, the user is connected to the network but the exchange of
messages or information is not available. This problem have been solved with the
initial and default GTP connection in the code.

Regarding the final testing, with the data extracted from the final results and
the performance of both phones connected at the same time, one can say that all
the tests have been passed. This project has shown what can be the consequences
derived from the addition of this new method to the existing mobile backhaul of the
incoming 5G systems.

Apart from the obvious benefits in the bit rate of the connection, the main
benefit of this new transport resides in the addition of an SDN manager. This
attribute provides to the system enough tools and capabilities to perform a centralized
management of the system leading to an optimized transport in the 5G networks
where, as it has been explained in the introduction, the resource use and managements
of each user is really important. The addition of the benefits will reduce the impact
of the massive increase of users in the networks and the resource allocation for each
user, which is one of the biggest concerns of the industry about the incoming system.
The new transport, as it has been proved in this project can be first implemented is
4G eNB, thus the implementation will be added before all the changes that this new
era of the technology will bring.

33

12 Future research
This project has only been a first contact with the new transport implementation
and benefits. As it happens in all the parts of the industry, the implementation can
be improved and thus achieve a better performance with the addition of systems and
modules that increase the performance.

One of the big benefits that are not tested in this project is the influence of the
assignment of different priorities in the "VLAN priority tag". This attribute can
give additional tools for the management of the system and consequently to achieve
the respective quality of service that must be ensured for each user. The user can
have a bigger distinction from the other user regarding the quality of their link.
Therefore, apart from the redirection of the users through a different route, some
users might have priority over other users with a higher priority value in the VLAN
tag. Regarding, the code that is already implemented, it would not be too difficult to
include this function in the existing code. Since the creation of the packets use raw
sockets, it will be enough with passing the desired value of the VLAN priority to the
existing module. Previously, the AMF would have sent the priority value included in
the JSON message and will be included in the user array, for the following extraction
of information depending on the IP address.

Finally, as it has been explained many times in this document, the hardware
used in this project can be improved if bigger funding is available for the project.
The enhancements can come from the use of a laptop with higher capabilities, which
has been without doubts, the limiting part of the implementation and testing of the
system of the project. The increasing performance that would be achieve with the
use of a computer with bigger CPU will bring a huge increment in the stability of
the system and allowing the use of high performance cell phones and thus a huge
increment in the bit rate of the connection in both downlink and uplink.

34

References
[1] Number of smartphone users worldwide from 2016 to

2021 Statista https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/

[2] Software Defined Networking Wikipedia https://en.wikipedia.org/wiki/
Software-defined_networking

[3] Network Function Virtualization Wikipedia https://en.wikipedia.org/wiki/
Network_function_virtualization

[4] Network Slicing Wikipedia https://en.wikipedia.org/wiki/5G_network_
slicing#/media/File:Generic_5G_network_slicing_framework.svg

[5] What is Non Orthogonal Multiple Access Research gate https:
//www.researchgate.net/post/What_is_Non_Orthogonal_Multiple_
Access_NOMA_for_wireless_communications

[6] The difference between OMA and NOMA https://www.researchgate.net/
figure/The-difference-between-orthogonal-multiple-access-OMA-and-non-orthogonal-multiple_
fig2_320680888

[7] UHD Documentation Ettus Research https://github.com/EttusResearch/
uhd

[8] Git Wikipedia https://en.wikipedia.org/wiki/Git

[9] Building and Installing the USRP Open-Source Toolchain (UHD and GNU Radio)
on Linux Ettus Research https://kb.ettus.com/Building_and_Installing_
the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux

[10] About GNU Radio GNU Radio https://www.gnuradio.org/about/

[11] srsLTE Documentation, 2019 https://docs.srslte.com/en/latest/

[12] Network Sockets Wikipedia https://en.wikipedia.org/wiki/Network_
socket

[13] Ethernet header picture Bit forest info https://www.bitforestinfo.com/
2018/01/code-ethernet-ii-raw-packet-in-python.html

[14] VLAN header picture Huawei https://support.huawei.com/enterprise/en/
doc/EDOC1100088104

[15] Address Resolution Protocol Wikipedia https://en.wikipedia.org/wiki/
Address_Resolution_Protocol

[16] What Is Open vSwitch? Open vSwitch http://docs.openvswitch.org/en/
latest/intro/what-is-ovs/

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Network_function_virtualization
https://en.wikipedia.org/wiki/Network_function_virtualization
https://en.wikipedia.org/wiki/5G_network_slicing#/media/File:Generic_5G_network_slicing_framework.svg
https://en.wikipedia.org/wiki/5G_network_slicing#/media/File:Generic_5G_network_slicing_framework.svg
https://www.researchgate.net/post/What_is_Non_Orthogonal_Multiple_Access_NOMA_for_wireless_communications
https://www.researchgate.net/post/What_is_Non_Orthogonal_Multiple_Access_NOMA_for_wireless_communications
https://www.researchgate.net/post/What_is_Non_Orthogonal_Multiple_Access_NOMA_for_wireless_communications
https://www.researchgate.net/figure/The-difference-between-orthogonal-multiple-access-OMA-and-non-orthogonal-multiple_fig2_320680888
https://www.researchgate.net/figure/The-difference-between-orthogonal-multiple-access-OMA-and-non-orthogonal-multiple_fig2_320680888
https://www.researchgate.net/figure/The-difference-between-orthogonal-multiple-access-OMA-and-non-orthogonal-multiple_fig2_320680888
https://github.com/EttusResearch/uhd
https://github.com/EttusResearch/uhd
https://en.wikipedia.org/wiki/Git
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux
https://www.gnuradio.org/about/
https://docs.srslte.com/en/latest/
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Network_socket
https://www.bitforestinfo.com/2018/01/code-ethernet-ii-raw-packet-in-python.html
https://www.bitforestinfo.com/2018/01/code-ethernet-ii-raw-packet-in-python.html
https://support.huawei.com/enterprise/en/doc/EDOC1100088104
https://support.huawei.com/enterprise/en/doc/EDOC1100088104
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
https://en.wikipedia.org/wiki/Address_Resolution_Protocol
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/

35

[17] OpenFlow Wikipedia https://en.wikipedia.org/wiki/OpenFlow

[18] What Is Ryu Controller? SDX central https://www.sdxcentral.com/
networking/sdn/definitions/what-is-ryu-controller/

https://en.wikipedia.org/wiki/OpenFlow
https://www.sdxcentral.com/networking/sdn/definitions/what-is-ryu-controller/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-ryu-controller/

36

A Appendix: Additional commands

$ sudo apt−get −−download−only i n s t a l l g i t swig cmake
doxygen bui ld− e s s e n t i a l l i bboo s t −a l l −dev l i b t o o l
l ibusb −1.0−0 l ibusb −1.0−0−dev l ibudev− dev l i bncu r s e s 5 −dev
l i b f f t w 3 −bin l i b f f t w 3 −dev l i b f f t w 3 −doc l ibcppun i t − 1.14−0
l ibcppun i t −dev l ibcppun i t −doc ncurses−bin c p u f r e q u t i l s
python−numpy python−numpy−doc python−numpy−dbg python−s c ipy
python−d o c u t i l s qt4−bin−dbg qt4−d e f a u l t qt4−doc l i bq t4 −dev
l ibq t4 −dev−bin python−qt4 python−qt4−dbg python−qt4−dev
python−qt4−doc python−qt4−doc l ibqwt6ab i1 l i b f f t w 3 −bin
l i b f f t w 3 −dev l i b f f t w 3 −doc ncurses−bin l i b n c u r s e s 5
l i bncu r s e s 5 −dev l i bncu r s e s 5 −dbg l i b f o n t c o n f i g 1 −dev
l ibx rende r −dev l i b p u l s e −dev swig g++ automake autoconf
l i b t o o l python−dev l i b f f t w 3 −dev l ibcppun i t −dev
l i bboo s t −a l l −dev l ibusb −dev l ibusb −1.0−0−dev f o r t 7 7
l i b s d l 1 .2−dev python−wxgtk3 . 0 g i t l i bq t4 −dev python−numpy
ccache python−opengl l i b g s l −dev python−cheetah python−mako
python−lxml doxygen qt4−d e f a u l t qt4−dev−t o o l s
l ibusb −1.0−0−dev l ibqwtplot3d−qt5−dev pyqt4−dev−t o o l s
python−qwt5−qt4 cmake g i t wget l i b x i −dev
gtk2−engines−pixbuf r−base−dev python−tk l i b o r c −0.4−0
l i b o r c −0.4−dev l ibasound2−dev python−gtk2 libzmq3−dev
libzmq5 python−r eque s t s python−sphinx l ibcomedi−dev
python−zmq libqwt−dev l ibqwt6ab i1 python−s i x l ibgps −dev
l i bgp s23 gpsd gpsd−c l i e n t s python−gps python−s e t u p t o o l s
s c r e en s s h f s

37

B Appendix: Configuration files

B.1 enb.conf file

−−−
− srsENB c o n f i g u r a t i o n f i l e
−−−

−−−
− eNB c o n f i g u r a t i o n
−
− enb_id : 20− b i t eNB i d e n t i f i e r .
− c e l l _ i d : 8−b i t c e l l i d e n t i f i e r .
− tac : 16− b i t Tracking Area Code .
− mcc : Mobile Country Code
− mnc : Mobile Network Code
− mme_addr : IP address o f MME f o r S1
connect ion
− gtp_bind_addr : Local IP address to bind f o r GTP
connect ion
− s1c_bind_addr : Local IP address to bind f o r S1AP
connect ion
− n_prb : Number o f Phys i ca l Resource Blocks
(6 ,15 ,25 ,50 ,75 ,100)
− tm : Transmiss ion mode 1−4 (TM1 d e f a u l t)
− nof_ports : Number o f Tx por t s
(1 port de fau l t , s e t to 2 f o r TM2/3/4)
−
−−−
[enb]
enb_id = 0x19B
c e l l _ i d = 0x01
phy_cell_id = 1
tac = 12594
mcc = 244
mnc = 52
mme_addr = 1 7 2 . 1 6 . 0 . 1 0
gtp_bind_addr = 172 . 16 . 210 . 200
s1c_bind_addr = 172 . 16 . 210 . 200
n_prb = 25
−tm = 4
−nof_ports = 2

−−−
− eNB c o n f i g u r a t i o n f i l e s

38

−
− s ib_con f i g : SIB1 , SIB2 and SIB3 c o n f i g u r a t i o n f i l e
− note : when enab l ing mbms, use the s i b . conf . mbsfn
c o n f i g u r a t i o n f i l e which i n c l u d e s SIB13
− r r_con f i g : Radio Resources c o n f i g u r a t i o n f i l e
− drb_conf ig : DRB c o n f i g u r a t i o n f i l e
−−−
[e nb_f i l e s]
s ib_con f i g = s i b . conf
r r_con f i g = r r . conf
drb_conf ig = drb . conf

−−−
[r f]
d l_ear fcn = 1200
tx_gain = 80
rx_gain = 40

−device_name = auto

−device_args = auto
−time_adv_nsamples = auto
−burst_preamble_us = auto

−−−
[pcap]
enable = f a l s e
f i l ename = /tmp/enb . pcap

[l og]
a l l _ l e v e l = warning
a l l_hex_l imit = 32
f i l ename = /tmp/enb . l og
f i l e_max_size = −1

[gui]
enable = f a l s e

−−−
− Scheduler c o n f i g u r a t i o n opt ions
−
− pdsch_mcs : Optional f i x e d PDSCH MCS
(i gno r e s repor ted CQIs i f s p e c i f i e d)

39

− pdsch_max_mcs : Optional PDSCH MCS l i m i t
− pusch_mcs : Optional f i x e d PUSCH MCS
(i gno r e s repor ted CQIs i f s p e c i f i e d)
− pusch_max_mcs : Optional PUSCH MCS l i m i t
− −nof_ctrl_symbols : Number o f c on t r o l symbols
−
−−−
[s chedu l e r]

−pdsch_mcs = −1
−pdsch_max_mcs = −1
−pusch_mcs = −1
pusch_max_mcs = 16
nof_ctrl_symbols = 3

40

B.2 rr.conf file

mac_cnfg =
{

phr_cnfg =
{

dl_pathloss_change = "dB3 " ; // Val id :
1 , 3 , 6 or INFINITY
periodic_phr_timer = 50 ;
prohibit_phr_timer = 0 ;

} ;
ulsch_cnfg =
{

max_harq_tx = 4 ;
per iodic_bsr_t imer = 20 ; // in ms
retx_bsr_timer = 320 ; // in ms

} ;

time_alignment_timer = −1; // −1 i s i n f i n i t y
} ;

phy_cnfg =
{

phich_cnfg =
{

durat ion = " Normal " ;
r e s o u r c e s = " 1 / 6 " ;

} ;

pusch_cnfg_ded =
{

beta_offset_ack_idx = 6 ;
beta_of f se t_r i_idx = 6 ;
beta_of f set_cqi_idx = 6 ;

} ;

// PUCCH−SR r e s o u r c e s are scheduled on time−f requeny
domain f i r s t , then mult ip l exed in the same r e sou r c e .
sched_request_cnfg =
{

dsr_trans_max = 64 ;
per iod = 20 ; // in ms
subframe = [1] ; // vec to r o f subframe i n d i c e s
a l lowed f o r SR t ran sm i s s i on s
nof_prb = 2 ; // number o f PRBs on each extreme

41

used f o r SR (t o t a l prb i s twice t h i s number)
} ;
cqi_report_cnfg =
{

mode = " p e r i o d i c " ;
simultaneousAckCQI = true ;
per iod = 40 ; // in ms
subframe = [0] ;
nof_prb = 2 ;
m_ri = 8 ; // RI per iod in CQI per iod

} ;
} ;

42

B.3 sib.conf file

s i b1 =
{

i n t r a _ f r e q _ r e s e l e c t i o n = " Allowed " ;
q_rx_lev_min = −65;
//p_max = 3 ;
ce l l_bar r ed = " NotBarred "
si_window_length = 20 ;
sched_info =
(

{
s i _ p e r i o d i c i t y = 16 ;
si_mapping_info = [] ; // comma−separated
array o f SIB−indexes (from 3 to 1 3) .
// Leave empty or commented to j u s t
s chedu l e r s ib2

}
) ;
system_info_value_tag = 0 ;

} ;

s i b2 =
{

rr_config_common_sib =
{

rach_cnfg =
{

num_ra_preambles = 52 ;
preamble_init_rx_target_pwr = −104;
pwr_ramping_step = 6 ; // in dB
preamble_trans_max = 10 ;
ra_resp_win_size = 10 ; // in ms
mac_con_res_timer = 64 ; // in ms
max_harq_msg3_tx = 4 ;

} ;
bcch_cnfg =
{

mod i f i ca t i on_per iod_coe f f = 16 ; // in ms
} ;
pcch_cnfg =
{

default_paging_cyc le = 32 ; // in r f
nB = " 1 " ;

} ;

43

prach_cnfg =
{

root_sequence_index = 128 ;
prach_cnfg_info =
{

high_speed_flag = f a l s e ;
prach_config_index = 3 ;
prach_freq_of f s e t = 2 ;
zero_corre la t ion_zone_conf ig = 5 ;

} ;
} ;
pdsch_cnfg =
{

/∗ Warning : Current ly d i s ab l ed and fo r c ed to
p_b=1 f o r TM2/3/4 and p_b=0 f o r TM1

∗/
p_b = 1 ;
rs_power = 0 ;

} ;

pusch_cnfg =
{

n_sb = 1 ;
hopping_mode = " in t e r −subframe " ;
pusch_hopping_offset = 2 ;
enable_64_qam = f a l s e ; // 64QAM PUSCH i s not
cu r r en t l y enabled
ul_rs =
{

c y c l i c _ s h i f t = 0 ;
group_assignment_pusch = 0 ;
group_hopping_enabled = f a l s e ;
sequence_hopping_enabled = f a l s e ;

} ;
} ;

pucch_cnfg =
{

delta_pucch_shi f t = 2 ;
n_rb_cqi = 2 ;
n_cs_an = 0 ;
n1_pucch_an = 12 ;

} ;
ul_pwr_ctrl =
{

44

p0_nominal_pusch = −85;
alpha = 0 . 7 ;
p0_nominal_pucch = −107;
de l ta_f l i s t_pucch =
{

format_1 = 0 ;
format_1b = 3 ;
format_2 = 1 ;
format_2a = 2 ;
format_2b = 2 ;

} ;
delta_preamble_msg3 = 6 ;

} ;
ul_cp_length = " len1 " ;

} ;

ue_timers_and_constants =
{

t300 = 2000 ; // in ms
t301 = 100 ; // in ms
t310 = 1000 ; // in ms
n310 = 1 ;
t311 = 1000 ; // in ms
n311 = 1 ;

} ;

f r e q I n f o =
{

u l_car r i e r_f req_present = true ;
ul_bw_present = true ;
addit ional_spectrum_emiss ion = 1 ;

} ;

time_alignment_timer = "INFINITY " ; // use " s f 500 " ,
" s f 750 " , e t c .

} ;

45

B.4 drb.conf file

// Al l t imes are in ms . Use −1 f o r i n f i n i t y , where a v a i l a b l e

qc i_con f i g = (

{
qc i =7;
pdcp_config = {

discard_timer = 100 ;
pdcp_sn_size = 12 ;

}
r l c_con f i g = {

ul_um = {
sn_f ie ld_length = 10 ;

} ;
dl_um = {

sn_f ie ld_length = 10 ;
t_reorder ing = 45 ;

} ;
} ;
l og i ca l_channe l_con f i g = {

p r i o r i t y = 13 ;
p r i o r i t i z e d _ b i t _ r a t e = −1;
bucket_size_durat ion = 100 ;
log_chan_group = 2 ;

} ;
} ,
{

qc i =9;
pdcp_config = {

discard_timer = −1;
s tatus_report_requ i red = true ;

}
r l c_con f i g = {

ul_am = {
t_pol l_retx = 120 ;
poll_pdu = 64 ;
pol l_byte = 750 ;
max_retx_thresh = 16 ;

} ;
dl_am = {

t_reorder ing = 50 ;
t_status_proh ib i t = 50 ;

46

} ;
} ;
l og i ca l_channe l_con f i g = {

p r i o r i t y = 11 ;
p r i o r i t i z e d _ b i t _ r a t e = −1;
bucket_size_durat ion = 100 ;
log_chan_group = 3 ;

} ;
}

) ;

	Abstract
	Contents
	Abbreviations
	1 Introduction
	2 Previous solutions for this project
	3 Proposed solution
	4 Installation
	4.1 UHD and GNU installation
	4.2 srsLTE installation

	5 SIM configuration
	6 Common errors in the implementation
	6.1 IP addresses
	6.2 EPC and eNB connection
	6.3 Frequency band allocation
	6.4 Cell phone connection

	7 Working instructions
	7.1 EPC instructions
	7.2 eNB instructions

	8 Results
	9 GTP tunnel modification
	9.1 Modification Statement
	9.2 Programming of the adjustments
	9.2.1 Sockets
	9.2.2 Management of the incoming data
	9.2.3 Forwarding of the packets to the Gateway
	9.2.4 Users database
	9.2.5 Open vSwitch

	10 Final results
	10.1 Connection of two UE with different transports

	11 Summary
	12 Future research
	References
	A Appendix: Additional commands
	B Appendix: Configuration files
	B.1 enb.conf file
	B.2 rr.conf file
	B.3 sib.conf file
	B.4 drb.conf file

