
Content Polluters Detection on Twitter: A Machine Learning Approach

Trabajo Fin de Grado presentado en la Escuela Técnica
Superior de Ingenieros de Telecomunicación de la
Universitat Politècnica de València, para la obtención del
Título de Graduado en Ingeniería de Tecnologías y
Servicios de Telecomunicación

Curso 2019-20

Valencia, 5 de julio de 2020

Tutor: Rafael Llobet Azpitarte

Ignacio Puche Lara

Resumen

Uno de los principales usos diarios de internet son las redes sociales. En estas plataformas son
comunes las cuentas automatizadas no legítimas o también llamadas: “Contaminadores de Con-
tenido”. La existencia de dichos contaminadores resulta ser un problema tanto para los admin-
istradores de la plataforma (por conseguir ciertos beneficios a costa incumplir las políticas del
servicio) como para los usuarios. Es por ello, que en este proyecto se propone el uso de mode-
los de Aprendizaje Automático para su detección. Durante el desarrollo del mismo, se analiza la
situación actual de Twitter respecto a estos contaminadores. Seguidamente, se evaluan las técnicas
actuales acerca de esta rama de la Inteligencia Artificial así como el estado del arte en este ámbito.
Además, se realizan diversos experimentos haciendo uso de estas técnicas, entrenando modelos de
Aprendizaje Automático con distintos conjuntos de datos de uso público sobre Contaminadores de
Contenido. Concretamente se realizan tres aproximaciónes: detección a nivel de usuario, a nivel
de tweet y por último, una combinación de los mismas. Finalmente, se concluye que estas técnicas
son fructíferas respecto a la detección de estos usuarios no legítimos, destacando el rendimiento
de modelos como los Bosques Aleatorios o las Redes Neuronales.

Resum

Un dels principals usos diaris d’Internet són les xarxes socials. En aquestes plataformes són co-
muns les comptes automatitzades il·legítimes o també anomenades «Contaminadors de Contingut».
La existència de aquests contaminators resulta ser un problema tant per als administradors de la
plataforma (per tal d’obtindre beneficis a costa d’ incomplir les polítiques del servei) com per als
usuaris. És per això, que en aquest projecte es proposa l’ús de models d’aprenentatge automàtic
per a la seua detecció. Durant el desenvolupament del mateix, s’analitza la situació actual de Twit-
ter respecte a aquests contaminadors. Seguidament, s’avaluen les tècniques actuals sobre aquesta
rama de la intel·ligència artificial així com l’estat de l’art en aquest àmbit. A més, es realitzen
diversos models d’aprenentatge automàtic amb diferents conjunts de dades d’ús públic sobre Con-
taminadors de Contingut. Concretament es realitzen tres aproximacions: detecció a nivell d’usuari,
a nivell de tweet i, per últim una combinació d’aquestes. Finalment, es conclou que aquestes tèc-
niques són fructíferes respecte a la detecció d’aquests usuaris il·legítims, destacant el rendiment de
models com els «boscos aleatoris» o les «xarxes neuronals».

Abstract

One of the main daily uses of the internet are social networks. On these platforms, there are com-
monly automated non-legitimate accounts, the so-called ”Content Polluters”. The existence of
these polluters is a problem for both platform administrators (since they acquire benefits by vi-
olating the terms of use) and users. Hence, this project proposes the use of Machine Learning
models in order to detect and identify them. During its development, the current situation of Twit-
ter regarding these polluters is analyzed. Next, both the currently employed techniques of this
branch of Artificial Intelligence and the state of the art in this ambit are examined. Moreover,
some experiments are done with the use of these techniques, training Machine Learning models
with different datasets of public use about Content Polluters. Concretely, three approaches take

place: user level detection, tweet level detection and finally, a combination of both. In the end, the
conclusion is that these methods are appropriate with respect to the detection of this non-legitimate
users, emphasizing the good performance of models such as Random Forests or Neural Networks.

4

Contents

I Project Report

1 Introduction 1
1.1 Motivation . 1

1.1.1 The General Problem . 1
1.1.2 Twitter as the Target of the Study . 2
1.1.3 The Solution . 3
1.1.4 Personal Level Interest . 3

1.2 Objectives . 3
1.2.1 Main Objective . 3
1.2.2 Individual Objectives . 4

1.3 Organization of This Report . 4

2 Twitter Overview and Content Polluters. 5
2.1 Twitter Overview . 5

2.1.1 General Description . 5
2.1.2 Social Impact and Statistics . 6
2.1.3 Twitter API . 6

2.1.3.1 Description . 7
2.1.3.2 Ethics and Responsibility . 7

2.2 Content Polluters . 7
2.2.1 Content Polluter: Definition . 7
2.2.2 State of the Art . 8

3 Machine Learning Fundamentals. 11
3.1 Definition . 11
3.2 Types of Learning . 11

3.2.1 Supervised Learning . 11
3.2.2 Unsupervised Learning . 12

3.3 Classification vs Regression . 12
3.4 Evaluation Techniques . 12

3.4.1 Overfitting . 13
3.4.2 Test and Training Splitting Techniques 13
3.4.3 Metrics for Classification Models . 14

3.4.3.1 Confusion Matrix and Metrics. 14
3.4.3.2 ROC Curve and AUC . 15

4 Machine Learning Classifiers 19

4.1 Introduction . 19
4.2 Two Types of Classifiers . 19
4.3 Lazy Learners . 20

4.3.1 K-Nearest Neighbours . 20
4.4 Eager Learners . 21

4.4.1 Decision Trees . 21
4.4.2 Random Forests . 23
4.4.3 Artificial Neural Networks . 23

4.4.3.1 Individual Neuron (Perceptron) 24
4.4.3.2 Multi Layer Perceptron (Dense Neural Network) 28
4.4.3.3 Recurrent Neural Networks, LSTM and Embedding Layer . . . 29

4.4.4 Naive Bayes . 30

5 Methodology 33
5.1 Utilized Datasets . 33

5.1.1 Caverlee . 33
5.1.2 Gilani . 35
5.1.3 Vendor-Verified Mixed . 36
5.1.4 Split between Train and Test . 37
5.1.5 Discarded Datasets . 37

5.2 Libraries and Tools . 37
5.2.1 Python . 37
5.2.2 Tweepy . 39
5.2.3 Pandas . 39
5.2.4 Scikit-Learn . 39
5.2.5 Keras . 40
5.2.6 Matplotlib . 40

5.3 Experiments . 40

6 Experiments and Results 41
6.1 Introduction . 41
6.2 Study 1: User-Level Features . 41

6.2.1 Feature Extraction . 42
6.2.2 K-Nearest Neighbours . 43
6.2.3 Decision Tree . 45
6.2.4 Random Forest . 46
6.2.5 Multi Layer Perceptron (MLP) . 49
6.2.6 Results Discussion . 50
6.2.7 Dense Neural Network: Keras . 50
6.2.8 Results Discussion . 53

6.3 Study 2: Tweets-Level Features . 53
6.3.1 Word Frequencies Experiment . 53

6.3.1.1 Feature Extraction: Word Frequencies 53
6.3.1.2 Naive Bayes . 54
6.3.1.3 Decision Tree . 55
6.3.1.4 Random Forest . 56
6.3.1.5 Results Discussion . 57

CONTENTS CONTENTS

6.3.2 LSTM Neural Network Experiment . 57
6.3.2.1 Feature Extraction for the LSTM Neural Network 57
6.3.2.2 Architecture Employed and Results 58
6.3.2.3 Results Discussion . 59

6.4 Study 3: Users and Tweets . 59
6.4.1 Methodology and Results . 59
6.4.2 Results Discussion . 59

7 Conclusions and Future Projects 61
7.1 Conclusions . 61
7.2 Future Projects . 62

References 65

7

List of Figures

2.1 Geographical statistics in Twitter. Source: [9] 6
2.2 Ages of Twitter users gathered in groups. Source: [11] 6

3.1 Examples of underfitting, appropriate fitting and overfitting. Altered Figure from:
[21] . 13

3.2 Example of a ROC Curve and AUC. Source: [22] 16
3.3 Ideal cases for the ROC Curve. From left to right, AUC = 1, AUC = 0.5 and AUC

= 0. Source: [22] . 16
3.4 Real ROC case of a proper classifier. AUC close to 1. Source: [22] 17

4.1 K-Nearest Neighbours example with 2 features. 20
4.2 An example of a Decision Tree. Source: [24] 22
4.3 An example of the training process of a Decision Tree. The training dataset is

based on restaurants. Source: [20] . 22
4.4 A comparison between individual Decision Tree and Random Forest with Feature

Randomness. Source: [25] . 24
4.5 Complete Mathematical model of a Simple Neuron. Altered Figure from: [20] . . 24
4.6 Two linearly separable problems. The example on the left-side can be solved by

using a single neuron, whereas the other one needs two neurons. 25
4.7 Not linearly separable problem. Activation Function is required. 25
4.8 Plot of Threshold and Relu Functions. 27
4.9 Plot of Sigmoid and Hyperbolic Functions. 27
4.10 Dense Neural Network (Multi-Layer Perceptron). Source: [27] 29
4.11 Basic design of a RNN and the unfolding in time of its process of predicting.

Source: [28] . 30

5.1 Header of the Caverlee dataset. The features that this Raw dataset contains are
illustrated. 35

5.2 Header of the tweets in the Caverlee dataset. Their features are shown. 35

6.1 New header of the Caverlee dataset with features extracted. 42
6.2 Accuracies vs K for the tests of the three datasets. Manhattan distance has been used. 43
6.3 Accuracies vs K for the tests of the three datasets. Euclidean distance has been used. 43
6.4 ROC Curves for the tests of KNN in Study 1. Manhattan distance has been used. 44
6.5 ROC Curves for the tests of KNN in Study 1. Euclidean distance has been used. . 44
6.6 Accuracies vs maximum depth for the Decision Tree experiment. 46
6.7 ROC Curves for the tests of Decision Tree in Study 1. The maximum depth used

is indicated in each graph. 46

6.8 Accuracies vs maximum depth for the Random Forest experiment. The number of
estimators employed is 100. 47

6.9 ROC Curves for the tests of Random Forest in Study 1. The maximum depth used
is indicated in each graph. 48

6.10 ROC Curves obtained from the Multilayer Perceptron models used with all the
datasets. 49

6.11 Dense Neural Network from Keras library used in Study 1. 51
6.12 ROC Curves obtained from the Dense Neural Network from Keras Library of

Study 1. 51
6.13 Header of the Caverlee tweets dataset with extracted features. The values have

been standardised. 54
6.14 ROC Curves obtained with the model Naive Bayes in Study 2. 55
6.15 ROC Curves obtained with the Decision Tree approach in Study 2. 55
6.16 ROC Curves obtained with the Random Forest approach in Study 2. 56
6.17 Architecture of the LSTM Neural Network used in Study 2. 58
6.18 ROC Curves for the LSTM Neural Network model in Study 2. 58
6.19 ROC Curves for the models in Study 3: Users and Tweets. 60

List of Tables

5.1 Statistics of the different user datasets. 38
5.2 Statistics of the tweet datasets. 38

6.1 Values of optimalK and the metrics obtained with those models in Study 1. . . . 44
6.2 Cross validation for K-Nearest-Neighbours. Euclidean distance has been used. . 45
6.3 Mean values of the results in the cross-validation test for KNN in Study 1. 45
6.4 Results of the Decision Tree experiments in Study 1. 46
6.5 Cross validation for Decision Tree in Study 1. 47
6.6 Mean values of the results in the cross-validation test for Decision Tree in Study 1. 47
6.7 Results of the Random Forest experiments in Study 1. 48
6.8 Mean values of the results in the cross-validation test for Random Forest in Study 1. 48
6.9 Cross validation for Random Forest in Study 1. 48
6.10 Results of the MLP from Scikit-Learn model in Study 1. 49
6.11 Cross validation for Multi Layer Perceptron from Scikit-Learn in Study 1. 49
6.12 Mean values of the results in the cross-validation test for Multi Layer Perceptron

from Scikit-Learn in Study 1. 50
6.13 Results obtained from the Dense Neural Network from Keras Library in Study 1.

The values of Loss and Accuracy in training make reference to the last epoch. . . 51
6.14 Cross validation for Dense Neural Network from Keras Library in Study 1. . . . 52
6.15 Mean values of the results in the cross-validation test for Dense Neural Network

from Keras Library in Study 1. 52
6.16 Results of the Naive Bayes experiments in Study 2. 55
6.17 Results of the Decision Tree experiments in Study 2. 56
6.18 Results of the Random Forest experiments in Study 2. 56
6.19 Results from LSTMNeural Network in Study 2. The values of Loss and Accuracy

in training make reference to the last epoch. 57
6.20 Results obtained from the LSTM Neural Network in Study 3. 60

Part I

Project Report

Chapter 1

Introduction

1.1 Motivation

1.1.1 The General Problem

Nowadays, we can find ourselves in a world where digital technologies play a fundamental role in
our daily lives. This fact can be seen as a really big difference in comparison to a couple of decades
ago. By that time, the internet was a brand new invention and individuals without any relation to
the IT field could find it difficult to understand its use and functionalities. From that point of view,
there is no doubt about how impressive the evolution of both the telecommunications and computer
sciences fields has been.

Technologies have improved so massively that experts have already defined the concept of Digital
Revolution [1]. Within the wide range of effects caused by this new Revolution, we could state
that one of the most notable is the fast flow of information, which is reinforced by the activity of
social media. The popularity of these sites has entailed the appearance of several companies which
provide these services, usually with different format and/or clients such as Facebook, Twitter, In-
stagram, Whatsapp, Youtube etc.

Social media allows people to share any kind of data (from plain text or links to multimedia files
such as images or videos) in a matter of seconds. Moreover, this is even easier when these online
services are accessed by smartphones, which give users the ability to use them anywhere at any-
time. Although people usually connect to this sites for pure entertainment, e.g. to have a simple
conversation with friends about the plans for the next weekend, there is a high percentage of users
which share their opinions publicly, often supported by links to external articles, videos or similar.

Furthermore, these applications make it possible to communicate with new people without any
previous contact in the physical world. Therefore, these published opinions can reach other users
who may accept that opinion or start a discussion. In other words, world citizens with access to
the internet, can use social media to see the opinions of other users, express their own, and discuss
about any subject.

It is reasonable to think that the number of advantages of this flexibility in communications is high,
since it encourages freedom of expression. In addition, it allows the observation of the immediate
reaction of the users about a global event by everybody e.g. a natural catastrophe or a political

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

debate of a country during elections.

However, not all the points concerning this are positive. One of the dangers of this liberty may
result in global misinformation. Social media can be seen as a medium which facilitates the spread
of fake news, alternative facts and hoaxes tomanipulate the rest of the users. Besides, if we consider
that these publications can be done automatically (by the so-called ”bots”), then, this non-real
information can be repeated by thousands of accounts reaching large amounts of people in reduced
time.

The points commented in the previous paragraph are not suppositions, considering that similar
things have already occurred: During the elections of the U.S. in 2016, social bots were discovered
to generate big amounts of content to influence in the U.S. inhabitants opinions and condition the
results [2].

In addition, due to the global pandemic caused by COVID-19 in 2020 the circulation of fake in-
formation has augmented, taking advantage of the fear and confusion caused by the disease in
the world population. Some of the main observed cases of these fake news are: misinformation
around vaccines, appealing to the anti-vaccines movement [3], and movements whose intention is
to make people believe that 5G mobile networks are responsible for transmitting the virus using
pseudo-scientific arguments [4]. To add a final example, we could emphasise the recent set of
fake accounts that has massively interacted with the Spain’s Ministry of Health in relation to some
publications concerning COVID-19 on Facebook [5].

All this set of fake accounts with different malicious aims can be described as the concept of
”Content Polluters”. On the other hand, the rest of profiles with good intentions are considered
”Legitimate Users” [6]. This distinction is necessary because there are bots in these networks
whose objective is to provide entertainment or other purposes accepted by the website policies.
These last mentioned benign accounts usually declare that they are bots in their description so the
rest of consumers can be conscious of it.

1.1.2 Twitter as the Target of the Study

In spite of the fact that the problem may seem to affect a variety of different social media, Twitter
is one of the most vulnerable because of its architecture and design. On this site, the users are able
to share publications of other members by the mechanism of ”Retweeting”. Furthermore, when a
particular subject is popular in the comments of the users, then it is shown in the Trending Topics
list, popularising it even more. Hence, if a large amount of coordinated Content Polluters write
about a particular concept, then their influence may increase in a spectacular way, becoming more
dangerous.

In other words, the chances that a user observes a publication without previously searching for it
are really big. This is different in other similar services e.g. Instagram. Instagram’s mechanism
only shows to each user the content that they follow, which increases the difficulty for content
polluters to reach people.

Although some people may use Twitter to have fun and watch the last viral video, a notable number
of users connect to Twitter in order to watch the news or carry out social activism [7].

Twitter has been chosen in this project because of its API, which allows to collect data for research
purposes. In addition, the availability of several public datasets related to content polluters, which

2

CHAPTER 1. INTRODUCTION 1.2. OBJECTIVES

makes wider the range of possibilities to develop this work.

1.1.3 The Solution

It is clearly obvious that somemethods are necessary to fight against these automated fake accounts,
which violate the Terms of Service stated by social media companies. From their appearance,
several methods have been used in order to restrain the bots, e.g. searching for spam keywords
or similar. However, the advance in Machine Learning techniques in the recent years due to the
improvement in hardware, suggests that it may be a good solution to this problem.

An example of the successes of Machine Learning in terms of classification tasks was the ability
to predict if a person suffered depression regarding their Instagram accounts [8]. By analyzing,
different features of the users, such as colours in each image, number of faces per photography,
number of comments etc., the results were quite impressive. Machine Learning algorithms are
able to find hidden patterns between large amounts of data, which can be difficult to be found by
humans. Thus, as it was declared before, they seem to be an appropriate selection for this problem.

1.1.4 Personal Level Interest

In terms of the personal benefits obtained because of producing this study we can emphasise the
acquired knowledge related to Machine Learning. This goal is really important because, as it was
stated in the above paragraphs, it is a technology that has had a big impact in the recent years and
promises big results and advances. This is reinforced by the fact that companies in general have
large amounts of data to deal with. It is fundamental then, to have Data Science notions and this
project can be seen as a chance to get them.

Moreover, the consciousness about the damages that content polluters can cause to society is an-
other positive point. Once this project is finished, the conclusions obtained may help me in the
future to distinguish between real or fake/spam posts anywhere in the internet. In addition, these
detailed notions can be used to help non-IT experts to deal with this kind of ”online junk”.

At a more technical and practical level, it is expected to improve my programming skills while
handling specific tools designed for Machine Learning tasks e.g. concrete libraries for building
and evaluating classification models.

1.2 Objectives

1.2.1 Main Objective

The target of this project consists in evaluating if Machine Learning models are able to distinguish
between Content Polluters and Legitimate Users on Twitter, given some profile input data and
determine which techniques are more efficient and effective in this kind of problem.

3

1.3. ORGANIZATION OF THIS REPORT CHAPTER 1. INTRODUCTION

1.2.2 Individual Objectives

In order to achieve the main objective of the project, the organization of the corresponding work
has been divided into several subtasks. Each subtask has its own individual objective:

• Doing some research related to Twitter as a social media platform. This involves getting to
know its main features, concepts and possibilities in order to gain a basic overview of what
methodologies can be applied.

• Carrying out one first theoretical study related to the Machine Learning field and its models.
Understanding how they work will allow us to decide which specific techniques are more
adequate for our problem. Of course, choosing the models according to their theoretical
background will help to confirm that the future results are valid, and not produced by a
source of randomness.

• After the different Machine Learning models and Twitter itself have been analysed, then
appropriate Twitter Datasets must be obtained. Therefore, this includes some investigation
of the datasets publicly available or consider if it is necessary to obtain our own dataset.

• Executing some experiments and analysis to the collected datasets using the selected Ma-
chine Learning models. Different parameters and configurations will be tried in order to
explore the particular possibilities of each model.

• Organizing all the results generated by the experiments. The results must be examined so as
to extract relevant information. In other words, this subtask can be seen as post processing
the outcome of our final models.

• Doing a general evaluation and derive concrete and accurate conclusions from the results.
Then, it will be possible to decide if these set of techniques is effective enough or if some
improvements are required.

1.3 Organization of This Report

Once the problem and its motivation have been introduced, in the second chapter the online so-
cial network Twitter is analysed. Moreover, the Content Polluter concept is explained in detail.
Next, in the third chapter there is a theoretical description of Machine Learning basics such as the
difference between supervised and unsupervised learning, the dissimilarity between classification
and regression, and metrics for evaluation. Subsequently, in the fourth chapter, all the relevant
Machine Learning models for this study are described as a theoretical introduction for the project.

The following part of this report includes the chapters which communicate the concrete practi-
cal activities carried out in the project. In the fifth chapter, the overall methodology is described,
presenting the datasets used and the chosen tools. Continuing into the sixth chapter, all the exper-
iments with their respective results are deeply examined. Finally, the seventh chapter contains the
resulting conclusions of this study, and several future projects are proposed.

4

Chapter 2

Twitter Overview and Content
Polluters.

2.1 Twitter Overview

2.1.1 General Description

Twitter is nowadays one of the most popular platforms in terms of social media. Its system for
sharing information is based on the publications of the so-called ”tweets” by its users. These are
simple string characters with a short length which may include:

• Multimedia content which can be a video, an image, a gif, etc.

• Links to external URL sites or to other tweets.

• Mentions of other users names. These are links to other accounts, usually related to the
content of the tweet. They are preceded by an ”@” symbol.

• Hashtags. Specific keywords that make reference to an idea that summarizes or has any
connection to the content of the tweet. Twitter has a mechanism that analyses the most com-
mon hashtags in the last published tweets all over the world in order to find the ”Trending
Topics” and popularise the related tweets. In this way, the users can easily see these Trend-
ing Topics in the site and what the people is posting about them. These keywords start by a
”#” character.

Customers in this social media platform can interact with each other through an architecture based
on ”following”. Users are able to follow other accounts. When one profile sends one tweet, then all
of its followers will immediately see it. Besides, these followers have the possibility of retweeting
a tweet, spreading its content through its network. In addition, there is a section called ”Explore”
where all the tweets related to the Trending Topics of the moment can be found. It is not difficult
to appreciate that these features make it easier to spread information as it was stated in Chapter 1.

5

2.1. TWITTER OVERVIEW CHAPTER 2. TWITTER OVERVIEW AND CONTENT POLLUTERS.

Figure 2.1: Geographical statistics in Twitter. Source: [9]

Figure 2.2: Ages of Twitter users gathered in groups. Source: [11]

2.1.2 Social Impact and Statistics

15 years approximately after its beginning in 2006, Twitter has become widely used around the
world. In terms of geographical statistics, the largest number of members are from the United
States with 64.2 millions, followed by Japan, Russia, United Kingdom and Saudi Arabia with
48.45, 23.55, 17.75 and 15 millions respectively as it is shown in Figure 2.1.

Analyzing the age of the users, the group within the range 25-34 years is dominant according
to Figure 2.2. However, the percentage of users of the contiguous groups do not really differ
significantly. These data reveals that young users are not predominant set of consumers such as in
other social networks.

This variability of the ages of users may be the reason why the number of the topics present in
Twitter’s content is large. Some of these fields are politics, science, business, journalism, relation-
ships and celebrities [10]. This suggests that this network is not used entirely for entertainment.
Moreover, there is a clear diversity regarding Twitter community in terms of interests and inten-
tions.

2.1.3 Twitter API

6

CHAPTER 2. TWITTER OVERVIEW AND CONTENT POLLUTERS. 2.2. CONTENT POLLUTERS

2.1.3.1 Description

One of the advantages of Twitter is its flexible API, which is freely accessible for developers.
It specifically allows to collect data and metadata from users by their ID number or user name,
to retrieve tweets etc. This is a fundamental tool in this work to complete Twitter datasets with
appropriate data.

The API also includes the possibility to make publications in an automated manner and deal with
all the ”write” functions that a Twitter account can carry out. However, these functions are not
going to be used in this study, as it is only needed to collect information by using ”read” functions.

In spite of the fact that the standard API contains download rate limits and 15 minutes windows
for each request, this is enough since the amount of data to be collected is not extremely big (more
details in chapter 5).

2.1.3.2 Ethics and Responsibility

Current Twitter’s Developer Agreement and Policy [12] emphasises that it is forbidden to publicly
share datasets with complete features. Concretely, if a researcher wants to publish one dataset, he
or she can only post a list containing user and/or tweet IDs so that the researcher must complete the
dataset him/herself. However, after this project has concluded, none dataset will be published. The
datasets to be used will be lists of user and tweet IDs complemented using the API and complete
public datasets which where legally published before Twitter added this restriction in the recent
years.

In addition, it is prohibited to use the API in order to monitor and spy users doing several requests
repeatedly about the same profile or similar. Nevertheless, in this activity, only the data concerning
the users listed in our used datasets will be gathered.

Moreover, when the API key has been requested to Twitter Developers section, these points ex-
plained here have been explicitly detailed to ensure the correctness of the API use.

2.2 Content Polluters

2.2.1 Content Polluter: Definition

As it was briefly introduced in chapter 1, Twitter profiles can be separated in two groups: Content
Polluters and Legitimate Users (following the interpretation provided in [6]). Content Polluters
are accounts whose intentions are to fill the social network with fake information or spam, falsely
inflate the number of followers of a concrete user, among others.

Furthermore, it is assumed that Content Polluters actions are automated. In other words, through
this report, Content Polluter can be defined as malicious bots. Since their actions violate Twitter’s
Terms of Use, there is a need of properly detecting and eliminating them.

The rest of profiles, including bots which do not contribute to negatively alter the reality in the
platform will be considered as Legitimate Users.

7

2.2. CONTENT POLLUTERS CHAPTER 2. TWITTER OVERVIEW AND CONTENT POLLUTERS.

2.2.2 State of the Art

In the recent years, there have been previous researches which try to detect Content Polluters in
terms of academic literature. Besides, there is a wide variety of approaches since Content Polluters
are constantly evolving so as not to be caught. Thus, academia researchers must persist in finding
ways to defend social networks from Content Polluters.

Examining some of the most notable papers, we firstly find the work done by K. Lee et. al. in [6],
which collected complete and accurate datasets differentiating between Content Polluters and Le-
gitimate Users. These datasets were obtained using a honeypot strategy: 60 accounts were created
and they only interacted to each other without interfering with Legitimate Users. Posting tweets
gathered from Twitter’s public timeline during seven months, these honeypots tempted 36,043 ac-
counts, which were later analysed to conclude that they were Content Polluters. Given that the
sequence of published tweets by each account had no sense, humans were not supposed to be
tempted. The results obtained in regard to classification by using Machine Learning techniques,
supervised learning in particular (more information in Chapter 3) were outstanding.

Basically, the Machine Learning application with supervised learning has been the most common
solution. Some examples such as [13] by C. Yang et. al., [14] by Subrahmanian et. al. etc. In
addition, Indiana University Bloomington developed an online system called BotOrNot? whose
aim is to scan a Twitter account introduced by the user and predict the label bot or human [15]
using several datasets previously used in these supervised learning approaches.

In 2012, a crowdsourcing system (method which uses contributors, which are external to the
project, to carry out a task) was conducted by Wang et. al. in [16] to verify if humans are able to
distinguish between real accounts and bots. The results were really favourable even though it is not
a scalable solution, since bots can rapidly replicate with no cost while humans cannot accelerate
the classification of a list of accounts.

Continuing with more crowdsourcing techniques, Cresci et. al. in [17] (2017) used a similar
system to encourage the collaborators to differentiate between spambots and genuine accounts.
The difference with the previous paper is that Content Polluters from a new spambot wave called
”social-spambots” were included and mixed with traditional spambots. While the participants in
the crowdsourcing could label traditional spambots correctly, social-spambots were potentially
misclassified. The conclusion reveals that humans are good enough at detecting traditional spam-
bots. Yet, the experience in discriminating between humans and this new wave of social-spambots
is disastrous. This is another evidence which supports that Content Polluters are constantly evolv-
ing.

Lately, in 2018, Kudugunta et. al. in [18] made use of Deep Learning based on a Long Short-Term
Memory (LSTM). This is a special kind of Artificial Neural Network which allows to assess a
sequence of words (tweets) and extract information from its order. In other words, the context of
a text can be approximately obtained.

A quick view over the most modern practices, Cresci et. al. research in [19] suggest unsupervised
learning methods to defeat coordinated bots which post large amounts of human-generated content,
complicating their detection. Their work consists in encoding the sequence of actions of a large
dataset of accounts as character strings, defining it as the ”Digital-DNA” of a Twitter profile. These
character strings are compared to each other in order to find similarities. Basically, when a long
substring matches in different account sequences, then it indicates that these accounts are acting in

8

CHAPTER 2. TWITTER OVERVIEW AND CONTENT POLLUTERS. 2.2. CONTENT POLLUTERS

a coordinated manner, and hence, are not human.

9

2.2. CONTENT POLLUTERS CHAPTER 2. TWITTER OVERVIEW AND CONTENT POLLUTERS.

10

Chapter 3

Machine Learning Fundamentals.

3.1 Definition

Machine Learning can be defined as the branch of Artificial Intelligence (AI) dedicated to build
intelligent models whose ability is to automatically learn how to do a specific task. The main
difference with a normal computer program consists in the fact that when solving a specific task,
a simple program executes an algorithm with some rules designed to solve this specific problem.
However, when a Machine Learning solution is applied, the algorithm must obtain this rules after
making some observations. In other words, the algorithm is learning.

3.2 Types of Learning

Depending on the kind of problem to be solved and how the observations are made by the models
we can identify two main different ways of learning: supervised and unsupervised learning 1.

3.2.1 Supervised Learning

In this paradigm of learning, there is a training set, formed by n input-output pairs, usually called
samples:

(x1, y1), (x2, y2), . . . , (xn, yn) (3.1)

where each yi was generated by an unknown function y = f(x) [20]. The objective is to use
models in order to obtain another function which approximates y so that we will be able to predict
unknown values for certain input xj . In other words, supervised Machine Learning models have
the ability to find hidden patterns between the inputs and the outputs by evaluating a large set of
examples. This process of approximating y is commonly known as ”Training the model”.

Concretely, the output values yi are called target values since they are the labelswhich are needed
to be predicted by the model. On the other hand, the input values, which can be more than one per

1There are also other learning methods such as reinforcement learning or statistical learning. Nevertheless, these are
not considered because of their lack of relevance in this study.

11

3.3. CLASSIFICATION VS REGRESSION CHAPTER 3. MACHINE LEARNING FUNDAMENTALS.

output value, are denominated as features.

It is important to emphasize the reliability of the dataset quality. For acquiring acceptable predic-
tions, a really large number of samples is required. Basically, the more samples are available to
the model, the better result will be reached, which makes sense given that when a dataset is bigger,
more information is contained in it.

3.2.2 Unsupervised Learning

In this other methodology of learning, another training dataset is used in the process of learning.
However, the difference with supervised learning is the absence of output values in the training
dataset. The most common technique employed here is clustering. The task of a clustering model
is to group the inputs according to common patterns shared by certain subsets of input. In other
words, the model learns to distinguish between subclasses in the training dataset without receiving
any feedback during the process. This technique is useful when the target label in a dataset is
unknown. In terms of how this models work, we can state that the similarity between the samples
in each cluster is usually measured by using metrics such as Euclidean or probabilistic distance.

As supervised learning is the paradigm used in this study, from this point all the descriptions will
be focused on its context. In the case that anything is referred to unsupervised learning, it would
be explicitly written.

3.3 Classification vs Regression

With regard to the type of target values, two different tasks can be identified. If the values are
discrete, that implies that the separability of the samples is well-defined in classes, so this problem
consists in classification. Therefore, if the target value is a qualitative feature, similarly to our
problem (Content Polluter or Legitimate User), then the different possible labels can be numbered
so that a classification Machine Learning model can be used.

Otherwise, if the target numbers are continuous and real values, then the problem is denominated
as regression. One example of this kind of problem could be ”linear regression” whose aim is
to approach a linear function to a set of samples in order to later use this function to predict new
values.

Some models can be used for both tasks with small modifications. Moreover, classification models
may generate real values rather than discrete ones. In this case, output values are usually the
probability of a sample belonging to a specific class.

Given that Content Polluters and Legitimate Users are clearly separated labels, this is a classifica-
tion problem. Therefore, all the following explanations will be in terms of classification models.

3.4 Evaluation Techniques

12

CHAPTER 3. MACHINE LEARNING FUNDAMENTALS. 3.4. EVALUATION TECHNIQUES

Figure 3.1: Examples of underfitting, appropriate fitting and overfitting. Altered Figure
from: [21]

3.4.1 Overfitting

Overfitting takes place when some training process has generated a Machine Learning model
which is not able to properly generalize; and therefore, cannot make accurate predictions with
previously unseen examples. In other words, the model is biased and has basically memorized the
training examples or learnt from the noises and inaccuracies in the samples of the dataset. This
may be due to a reduced number of training examples provided to the model. On the other hand,
and underfitted model is the opposite case, when the model excessively generalizes, so it will
have a poor performance even on the training data.

To make it more clear, an example is shown in Figure 3.1. In this Figure, we can see three different
approaches for one problem which tries to classify between two different classes: the ”x” points
and the ”o” points. We can see in the first graphic an underfitted model as the linear model cannot
properly classify an appropriate number of the data samples. In the third graphic, even though the
model fits all the data by using a more complex function, it is overfitted since this curve is too
complex and it has fitted the training data in a forced way. Thus, it will likely be overfitted.

Despite it can be remarkably arduous in some cases, the wisest option is to choose a model which
is at some point between underfitting and overfitting. In our example, the graphic in the middle
in Figure 3.1, which uses a quadratic function seems to be the best option. Between the strategies
to reduce overfitting we can emphasize increasing the number of samples in the training process,
reducing the complexity of the model and removing useless input features.

3.4.2 Test and Training Splitting Techniques

Once the model is trained, its performance can be evaluated by predicting output values of samples
whose outputs are already known and comparing those predicted values with the actual values.
However, due to the problem of overfitting, it is never correct to do this assessment with examples
already used in training, so it is necessary to use a new dataset. This new dataset is commonly
called as test set. Normally, only one dataset is accessible, so the training set and test set must
be obtained from splitting it. To ensure a proper analysis, there are different strategies to do this

13

3.4. EVALUATION TECHNIQUES CHAPTER 3. MACHINE LEARNING FUNDAMENTALS.

separation.

The most basic method is known as hold-out. It consists in taking one percentage of the samples
(usually 80%) for the training set, and using the rest (20%) as the test set. Although this separation
may seem really simple, its usage is truly frequent in large datasets, where training is a long process
and computationally expensive. In addition, it is a good practice to randomize the order of the
samples in the original dataset prior to the separation.2

In the cases where it is feasible and efficient to do several train processes for a model, another
widely used technique is K-fold cross-validation (or simply cross-validation). Here, the original
dataset is splitted inK subsets of equal length and the model is trainedK times, using one subset as
test set and the remainingK−1 as training sets. Hence, this allows to check if there are significant
variations between the results acquired from the different splits, which is a good way of ensuring
the robustness of the dataset and the absence of overfitting.

A particular case of K-fold cross validation is leave one out. In this technique K = N , where N
is the number of samples of the dataset. This means that the whole dataset except one sample is
used to train the model, making the training set the biggest possible reducing overfitting and using
all this information to make only one prediction per each training. As the reader may have already
noticed, this is the most expensive one in terms of computation.

3.4.3 Metrics for Classification Models

Once the model has been trained and tested, it is necessary to use some metrics extracted from
the results in order to make it easier to infer conclusions. The testing part provides as outcome
the probability of each sample belonging to one class. Then, an appropriate threshold is chosen
to make the difference between the different classes. In the case of two classes, which is the most
significant for this study, a threshold of 0.5 is commonly used.

3.4.3.1 Confusion Matrix and Metrics.

When the classification of each test sample is available, then the number of correct and incorrect
predictions can be counted. Considering each individual sample and two possible classes, there
are four possible results:

1. True Positives (TP): These are the cases properly classified as positive. In our case, these
are the Content Polluters accounts accurately identified.

2. True Negatives (TN): These are the cases correctly classified as negative. In other words,
Legitimate Users identified without any error.

3. False Positives (FP): If a sample is a False positive, it means that it has been erroneously
classified as positive, whereas it was an actual negative. In our study, this is a Legitimate
User misclassified as a Content Polluter.

4. False Negatives (FN): In this case, a sample has been classified as negative, whereas it was
an actual positive. In our study this is a Content Polluter misclassified as a Legitimate User.

2This helps to avoid conditioning the model, since in the original dataset there may be some spurious correlations
between the samples next to each other.

14

CHAPTER 3. MACHINE LEARNING FUNDAMENTALS. 3.4. EVALUATION TECHNIQUES

The number of each of this four cases above are usually placed in the so-calledConfusionMatrix,
which is defined as:

(
TrueNegatives FalsePositives
FalseNegatives TruePositives

)
(3.2)

Once the predictions are done, some metrics can be calculated from the values in the Confusion
Matrix in order to evaluate the proportions of each case. The most important are:

1. Accuracy: It measures the number of cases correctly classified. Thus, it can be considered
one of the most intuitive metrics.

Accuracy =
CorrectCases

NumberOfPredictions
=

TP + TN

TP + TF + FP + FN
(3.3)

2. Precision: Ratio of Positives correctly predicted to the total number of positive predictions.

Precision =
CorrectPositives

NumberOfPositivePredictions
=

TP

TP + FP
(3.4)

3. True Positive Rate (TPR): Number of positives predicted in the correct manner divided by
the total number of actual positives. This metric is also known as Sensitivity and Recall.

TruePositiveRate =
CorrectPositives

NumberOfActualPositives
=

TP

TP + FN
(3.5)

4. False Positive Rate(FPR): Number of false positives divided by the number of actual false
samples.

FalsePositiveRate =
FalsePositives

NumberOfActualNegatives
=

FP

TN + FP
(3.6)

5. Specificity: It is the ratio of the samples correctly classified as negative to the number of
actual negatives. It is also called True Negative Rate. Moreover, it is the opposite (com-
plement) of False Positive Rate.

Specificity =
TN

TN + FP
= 1− FalsePositiveRate (3.7)

3.4.3.2 ROC Curve and AUC

In the introduction of this section it was stated that, given the probability values of each sample
belonging to one class or other, a threshold of 0.5 is commonly used. However, a remarkably
effective way of performance measuring of a classifier is to vary this threshold and studying the
produced effects. Specifically, this analysis is executed through the use of the Receiver Operating
Characteristics (ROC) Curve.

The ROC Curve is a function ordinarily plotted with FPR and TPR in the axes. If the threshold is
changed, then a new Confusion Matrix is generated since the values of TP, TN, FP and FN vary.

15

3.4. EVALUATION TECHNIQUES CHAPTER 3. MACHINE LEARNING FUNDAMENTALS.

Figure 3.2: Example of a ROC Curve and AUC. Source: [22]

Figure 3.3: Ideal cases for the ROC Curve. From left to right, AUC = 1, AUC = 0.5 and AUC
= 0. Source: [22]

Each point in the ROC Curve is related to one Confusion Matrix, which has been generated by a
threshold. Thus, in order to get the ROCCurve, it is fundamental to do a scanning through different
values of thresholds and record every pair of FPR-TPR values. An example of a ROC Curve can
be appreciated in Figure 3.2

At first sight, the ROC Curve itself does not provide any accurate information regarding the per-
formance of the classifier. What gives performance measurement in terms of separability is the
Area Under the ROC Curve (AUC), which is highlighted in Figure 3.2. If we suppose an ideal
case where the classifier is able to adequately classify all the test samples, then, the ROC Curve
will look similar to the graph on the left side in Figure 3.3 and its AUC will be 1. This is quite
reasonable, since it implies that the TPR reaches the maximum number while the FPR is at its
minimum value.

On the other hand, if a classifier produces an AUC of 0.5, that entails that the model is classifying
the samples randomly. On the contrary, if the AUC is 0, then, the model is confusing the two
classes, classifying the positives as negatives and the negatives as positives, since the FPR gets to
be maximum while the TPR is minimum. Both ideal graphs are shown in Figure 3.3.

16

CHAPTER 3. MACHINE LEARNING FUNDAMENTALS. 3.4. EVALUATION TECHNIQUES

Figure 3.4: Real ROC case of a proper classifier. AUC close to 1. Source: [22]

In terms of a typical real ROC curve of a good classifier, its AUC will be close to 1, but still strictly
minor than 1, due to noises and inaccuracies in the datasets. A curve of this form is represented in
Figure 3.4.

17

3.4. EVALUATION TECHNIQUES CHAPTER 3. MACHINE LEARNING FUNDAMENTALS.

18

Chapter 4

Machine Learning Classifiers

4.1 Introduction

Throughout Machine Learning history, a lot of different proposals have been made to face classi-
fication problems. Within this wide variety of models, it is possible to find mechanisms which are
based on extremely different strategies, some of them more intuitive than others, to differentiate if
one input belongs to one class or to another.

4.2 Two Types of Classifiers

Before coming into the details of the most relevant models, it is important to explain that Machine
Learning classifiers can be differentiated into two types, according to their use of the training data.

1. Lazy Learners: These learners basically only store the training data without carrying out
any training process or similar [23]. By the time a test sample needs to be predicted, these
models check their stored training data to compute an output. Hence, one ”natural” prop-
erty of these classifiers is the large amount of time needed for each prediction, since all the
training dataset (or a significant part) must be evaluated to achieve that output. In contrast,
the training process cost in time is nonexistent or really reduced. Some important examples
are K-Nearest Neighbours or Case-based Reasoning.

2. Eager Learners: Unlike Lazy Learners, these kind of models always execute some process
with the training data prior to making predictions. In other words, they are able to extract
some general abstract information from the training data, which is stored as ”the state” of
the model. This information will be subsequently applied to testing new data without using
the training data one more time. The main advantage is that this abstracted information
allows to predict in a much more efficient way compared to Lazy Learners. Oppositely,
the drawback is that these models imply learning processes which may result expensive in
terms of time and/or resources. Some of the most representative examples of this group are
Decision Trees, Random Forests and Artificial Neural Networks.

19

4.3. LAZY LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

Figure 4.1: K-Nearest Neighbours example with 2 features.

4.3 Lazy Learners

4.3.1 K-Nearest Neighbours

K-Nearest Neighbours (also known as KNN, in its abbreviated form) is considered one of the sim-
plest classifiers in the Machine Learning Field. As we already know, it is a Lazy Learner, therefore
it stores the training data and uses it for new predictions. Particularly, this classifier interprets each
instance of the training dataset as points placed in a n-dimensional space, considering each feature
as one of these dimensions. Consequently, the features for this classifier must be numeric1.

In terms of predicting the class of a new sample, K-Nearest Neighbours classifier, as its name
indicates, searches in the n-dimensional space for theK points whose distance to the new input is
minimum compared to the rest of points. After this, the algorithm checks the classes of those K
neighbours and returns the probability of each class C as

P (C) =
nc

K
(4.1)

where nc is the number of neighbours belonging to class C. In Figure 4.1 an example of KNN
classification can be appreciated. In this example, we can find the training data formed by two
classes represented in a two-dimensional space (since these dataset only has two features). One
sample whose class is unknown is emphasized in green colour. This Figure shows the distances of
the 4 nearest neighbours of this sample. Therefore, according to the explanation above, P (A) will
be 3

4 and P (B) will be 1
4 suggesting that this sample is contained in class A.

One relevant point in terms of KNN that should be added to this description is the fact that different
definitions of distances between two points are used. Naming the n features values for point a as
fa1, fa2, fa3, . . . , fa(n−1), fan and fb1, fb2, fb3, . . . , fb(n−1), fbn for point b the definitions of some

1However, there are methods to convert categorical features into numeric ones, so they can be adapted to be used in
a KNN classifier.

20

CHAPTER 4. MACHINE LEARNING CLASSIFIERS 4.4. EAGER LEARNERS

of them are:

1. Euclidean Distance: This is the most intuitive idea of distance. Basically, it consists in the
length of the segment which joins the two points.

D =
√
(fb1 − fa1)2 + (fb2 − fa2)2 + · · ·+ (fb(n−1) − fa(n−1))2 + (fbn − fan)2 (4.2)

2. Manhattan Distance: It can be defined as the distance between two points along straight-
lines which are parallel to the axes in Cartesian coordinates.

D = |fb1 − fa1|+ |fb2 − fa2|+ · · ·+ |fb(n−1) − fa(n−1)|+ |fbn − fan| (4.3)

3. Minkowski Distance: It is another metric of distance which can be considered as a general-
ization of the two previous distances described above. If the parameter p = 1, then we find
Manhattan distance. Otherwise, if p = 2, then we obtain Euclidean distance.

D =
(
|fb1 − fa1|p + |fb2 − fa2|p + · · ·+ |fb(n−1) − fa(n−1)|p + |fbn − fan|p

) 1
p (4.4)

As the reader may have already noticed, all the features are treated equally for computing distances.
Therefore, if some features are values whose scale is different respect to the rest, that will cause a
problem when making predictions. The best solution for this issue is to normalize or standardize
all the features 2. Normalization consists in subtracting the minimum value all the elements of a
feature and dividing them by the difference of the maximum and minimum value. In this way, all
the instances are within the [0, 1] interval. On the other hand, standardization is based on changing
the scale so that the final result is similar to a Gaussian distribution (mean 0 and standard deviation
1). This technique is preferred, since Normalization may cause outliers, which are features which
present significant deviation from the rest of the features.

4.4 Eager Learners

4.4.1 Decision Trees

Decision Trees operate in an intuitive manner, at least compared to other classifiers. They are based
on a tree architecture which is created during the training process. Each node in the tree corresponds
to one ”question” with a discrete number of possible answers. Each answer is a branch that leads to
other nodes. When a leave node is reached, then the output is provided. An example of a Decision
Tree is shown in the Figure 4.2. In this example, the decision to be made is to do some leisure
activity or to stay at home. As we can see, leave nodes are possible options for the decision and the
intermediate nodes are the appropriate questions such as ”Work to do?”, or ”Weather outlook?”.

In terms of the training process, a Decision Tree is built by automatically analyzing the training
dataset. Normally, algorithms whichmake their best to find the most relevant features in the dataset

2In spite of the fact that this is not necessary for all the classification models, it is a recommended practice to do this
rescaling process in all the datasets.

21

4.4. EAGER LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

Figure 4.2: An example of a Decision Tree. Source: [24]

Figure 4.3: An example of the training process of a Decision Tree. The training dataset is
based on restaurants. Source: [20]

are used. The adjective ”relevant” in this paragraph refers to the separability that can be inferred
by examining this attribute [20]. In other words, the most relevant feature is the one that facilitates
the most to classify a sample. Once the most important attribute has been found, the question
corresponding to the root node is generated in relation to this feature. Afterwards, the algorithm
splits the dataset according to the samples that satisfy each answer.

In this way, the proportions of samples belonging to each class are recorded and related to each
branch (answer) of the root node. The next step consists in evaluating the next attribute in terms of
relevance in each branch, to repeat the entire process and create a new query node on each branch.
The learning algorithm finishes either when all the leave nodes only contain samples of one class
or the parameter of maximum depth is reached.

An example of this process is reflected in Figure 4.3. This illustration uses a specific dataset which
contains several cases to decide if it is worth for a customer to wait in a restaurant for a table or not.
The boxes with the numbers display the positive and negative samples in the training dataset, with
light and dark colours respectively. Moreover, the Figure proposes two possible Decision Trees to
solve this problem. Nonetheless, the one placed on the left side is completely useless since there
are the same samples of the two classes on each leaf. The output would always be 0.5. In contrast,
the Decision Tree on the left side does a good job in terms of splitting. This demonstrates that the
feature ”Patrons” is more relevant than ”Type”, which does not give any information.

In regard to the testing part, the tree is traversed by applying the different question nodes to the
input sample. If a leave node which only contains training samples of one class is reached, the

22

CHAPTER 4. MACHINE LEARNING CLASSIFIERS 4.4. EAGER LEARNERS

output of the model is clear. Otherwise, if it stores samples of multiple classes, then the outcome
is usually the probabilities of belonging to each class, obtained as the fractions of samples of each
group.

This classifier can deal with both categorical and numerical features. In the case of real numeric
values, the discrete answers for a question will be obtained as a result of splitting this feature in
continuous intervals. Furthermore, this tree architecture allows to compute predictions in a fully
efficient manner.

4.4.2 Random Forests

Random Forests are an extension of Decision Tree classifiers. As its name suggests, it is composed
of several individual Decision Trees working in a coordinated way. Hence, this methodology
provides all the benefits from teamwork philosophy, applied to Decision Trees. Although this may
seem to be a simple improvement, not every possible set of trees provides outstanding results. The
key to get a proper predictive Random Forest model relies on the fact that trees are uncorrelated
[25]. If the trees have this property, then individual errors in a tree do not affect the rest of the
forest in a prediction.

In order to properly generate uncorrelated trees, the main technique available is known asBagging.
This technique is based on the principle of making a different training dataset calledBootstrapped
Dataset, which is used to train the Random Forest. To create this alternative dataset, a subset of
samples is taken from the original dataset. However, the aim is to ensure that the bootstrapped
dataset shares the same length with the original dataset. Therefore, the resulting dataset contains
some repeated samples from the original dataset.

In addition, during the training process, the method of random sampling with replacement is
also employed. It consists in extracting random features from the dataset, with replacement (there-
fore, it is possible to choose a feature previously selected). Concretely, for the creation of each
different individual Decision Tree, only a few features of the Bootstrapped Dataset are used. This
is illustrated in Figure 4.4. By using this method, different trees and uncorrelated trees will result
since the searches for the most relevant feature will provide different outcomes for each tree.

With regard to the testing part, the output of the model for an input is the proportion of individ-
ual predictions for each class provided by all the individual Decision Trees. In a practical sense,
this model has a wider range of possibilities, since different approaches can be tried varying the
maximum depth parameter and the number of estimators.

One of the Random Forest advantages is the stability of the model. In individual Decision Trees,
a few new examples in the training dataset may alter the different splits in the tree, generating a
different model. However, Random Forests are more strong against changes in the dataset, due to
the variability in the trees.

4.4.3 Artificial Neural Networks

Artificial Neural Networks are nowadays one of the most widely used Machine Learning models.
In spite of the fact that this concept was created by the end of the 1950s with the birth of the
Perceptron, their powerful capacity has not been exploited until the recent years due to hardware
limitations. There are currently hundreds of different researches in this field, concretely known as

23

4.4. EAGER LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

Figure 4.4: A comparison between individual Decision Tree andRandomForest with Feature
Randomness. Source: [25]

Figure 4.5: Complete Mathematical model of a Simple Neuron. Altered Figure from: [20]

Deep Learning.

4.4.3.1 Individual Neuron (Perceptron)

The mathematical model of an Artificial Neuron is quite simple: denoting the inputs as ini for
i input links, the Perceptron abstracts information from the training dataset by processing them
linearly, as shown in equation 4.5.

L(ini) =
∑

wi · ini = w0 · in0 + w1 · in1 + · · ·+ wi · ini + b (4.5)

where wi denotes the weights for each input link of the model. Moreover, there is one more added
term b, usually called bias. The weights and the bias are the characteristic parameters of each
neuron.

24

CHAPTER 4. MACHINE LEARNING CLASSIFIERS 4.4. EAGER LEARNERS

Figure 4.6: Two linearly separable problems. The example on the left-side can be solved by
using a single neuron, whereas the other one needs two neurons.

Figure 4.7: Not linearly separable problem. Activation Function is required.

During the learning process of a neuron, this will vary its weights and bias until it is able to distin-
guish between the different classes of the training dataset. As it is noticeable, this method operates
likewise a Linear Regression model. Thus, this mathematical model works effectively in classifi-
cation models where the classes are linearly separable. One example of linearly separable problem
can be appreciated in the left graphic in Figure 4.6.

The matter gets a bit more complicated when it is not possible to do this separation by using a
straight line. One example is the second graph in Figure 4.6, where there is no possible single
straight line able to split the two groups of samples. The solution proposed in the Figure is to use
two lines (and therefore, two neurons in parallel) instead.

For those cases where the classes cannot be trivially split by using several lines, such as the dis-
tribution in Figure 4.7, it is necessary to look for a different approach. Concatenating different
neurons will not provide a better solution, given that applying several linear transformations se-
quentially is equivalent to do a single linear function. Hence, one new element is required in the
neuron: the Activation Function.

25

4.4. EAGER LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

An Activation Function a(L), is a non-linear function whose aim is to allow the neuron to solve
non-linear problems. Intuitively, the output of the Linear Processing L(ini) is the input of the
Activation Function. The complete model of a simple neuron is shown in Figure 4.5. Some of the
most common Activation Functions are:

1. Threshold Function: It is also called Step Function. This is the simplest case of Activation
Function, due to the fact that it returns one value if the input is greater than a threshold
(usually 0) or a different value instead. Equation 4.6 and Figure 4.8 represent the case when
the threshold is 0.

T (z) =

0 if z ≤ 0

1 if z ≥ 0
(4.6)

2. Relu Function: This function does not alter the input only if it is positive. Otherwise, it is
truncated to zero. It can be observed in Equation 4.7 and in the Figure 4.8.

R(z) = max(0, z) (4.7)

3. Sigmoid Function: It is also known as Logistic Function. As appreciated in Figure 4.9 , it
is S-shaped and within the [0, 1] interval. When the input contains large values, the output
gets closer to 1, whereas if the input is reduced, the output tends to 0. This is ideal to obtain
probability values as the output of a neuron.

S(z) =
1

1 + e−z
(4.8)

4. Hyperbolic Tangent: Similar to Sigmoid Function but its values arewithin the range [−1, 1].
Its representation is in Figure 4.9.

Tanh(z) =
sinh(z)

cosh(z)
=

ez − e−z

ez + e−z
(4.9)

During the training process, the Neuron will be initialised with random parameters (weights and
bias) and will start making predictions and comparing them to the known target values in the train-
ing dataset. Then, its weights and bias will be gradually fitted until an optimal model is reached.
In order to properly achieve that goal, the performance of the model must be somehow measured.
Concretely, with the use of an error function. Some of these Loss Functions are:

1. Mean Absolute Error(MAE): It is the absolute value of the difference between the pre-
dicted target value ypi and the actual value yi.

MAE =

∑
|yi − ypi |
n

(4.10)

2. Mean Squared Error Loss(MSE): It is the mean of the squared difference between the
predicted target value and the actual value. It is usually used for regression problems. The

26

CHAPTER 4. MACHINE LEARNING CLASSIFIERS 4.4. EAGER LEARNERS

Figure 4.8: Plot of Threshold and Relu Functions.

Figure 4.9: Plot of Sigmoid and Hyperbolic Functions.

27

4.4. EAGER LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

advantage regarding MAE is that large errors result in greater losses compared to MAE due
to the quadratic effect.

MSE =

∑
(yi − ypi)

2

n
(4.11)

3. Log-Cosh Loss: This loss function computes the logarithm of the hyperbolic cosine of the
prediction error. This function can be approximated as log(cosh(x)) ≈ x2

2 for small x and
log(cosh(x)) ≈ |x| − log(2) for big x. This implies that this function works mostly like
MSE, without being so strongly affected by high error predictions [26].

L =
∑

log(cosh(ypi − yi)) (4.12)

The objective is to minimize the Loss function used in each case. To do this minimisation, the
Gradient Descent Algorithm is employed. This mechanism computes the partial derivatives of
the Loss Function with respect to the parameters of the neuron in order to obtain the gradient.
The gradient represents the ”direction” of maximum positive variation in an n-dimensional space.
Hence, once the gradient has been obtained, it is possible to know how the neuron parameters must
be changed to get closer to the minimum of the Loss Function.

4.4.3.2 Multi Layer Perceptron (Dense Neural Network)

After analyzing the concept of an individual Artificial Neuron, we can now discuss some of the
configurations of Neural Networks which combine the power of multiple single neurons3. Artifi-
cial Neural Networks are formed by several layers serially connected. Moreover, each layer can
be different configurations of neurons. There are 3 types of layers:

1. Input Layers: The set of neurons that receive the input data during both training and testing
processes.

2. Hidden Layers: Intermediate layers which are invisible for the user of the network.

3. Output Layers: This layer will provide the output of the model.

The simplest Neural Network architecture is publicly known as Dense Neural Network because
it is composed by Dense Layers. This is a formal way of saying that its layers contain several
Neurons working in parallel, whose outputs are fully connected to the inputs of the adjacent layer.
Furthermore, the output layer is a single neuron. This architecture is illustrated in Figure 4.10.

This architecture could be trained similarly to one individual neuron by the use of the Gradient
Descent Algorithm. However, calculating the gradient in its pure form is quite exhaustive in this
type of Neural Network, given that the variation of one weight of the first layers affects all the
neurons in the subsequent layers. The solution for this is the Back-propagation Algorithm.

The intuition of how the Back-propagation Algorithm proceeds is to evaluate the Neural Network
backwards when an error comes out. This means to first assess the last layer and analyze the

3Only those networks which are relevant for this study will be explained in detail. Nevertheless, there are other
widely-used architectures in other contexts such as Convolutional Networks.

28

CHAPTER 4. MACHINE LEARNING CLASSIFIERS 4.4. EAGER LEARNERS

Figure 4.10: Dense Neural Network (Multi-Layer Perceptron). Source: [27]

responsibility of each parameter of the layer in the final result to deduce which parameters to alter.
If the result has not properly improved, the error is ”back-propagated” to the previous hidden layer
and the process is repeated. To satisfactorily do these analyses, several recursive derivatives are
computed4.

4.4.3.3 Recurrent Neural Networks, LSTM and Embedding Layer

In the field of Natural Language Processing (NLP) there have been several advances in the recent
years. It is necessary to have them into account in this study since analyzing datasets which contain
tweets involve the employment of some text processing technique.

Recurrent Neural Networks (RNN) are a special architecture for Neural Networks whose aim
is to deal with problems that involve sequential inputs, such as language, where the order of the
words contains high significance. These networks process one input element of a sequence at a
time, storing in their hidden units a State Vector which has some abstract information about the
history of the previous elements of the network [28]. That is the main difference with respect to
regular Dense Neural Networks, which can process a similar input sequence without learning any
pattern from the neighbours of each element.

In other words, that State Vector stores the context learnt from previous inputs causing that two
outputs may be different for the same input if the context in the hidden units differs in the two
cases. Hence, as proposed in [28], these models are suitable for predicting the next character in a
word or the next word in a sentence.

The general design of this class of Neural Networks can be observed on the left-side in Figure 4.11.
In this Figure, the inputs are denoted as x and the outputs as o. The node s makes reference to the
set of hidden neurons that form the internal State Vector, which receives information from previous
states, pointed out in the Figure as the small black box next to the s node. Moreover the matrices
U, V andW represent the weights of the neurons.

Once explained the elements in the left side of the Figure, we can focus on the unfolding part. In
4This is only a really brief and intuitive way of how the Back-propagation Algorithm operates. However, it is much

more complex in terms of precise mathematical details, which are not explained here because it is not the intention of
the study. If the reader is interested in acquiring a deeper knowledge, the complete theoretical approach can be checked
in [20].

29

4.4. EAGER LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

Figure 4.11: Basic design of a RNN and the unfolding in time of its process of predicting.
Source: [28]

this particular illustration, the black box constitutes a delay of one time step; so, as it is observed,
the previous state st−1 influences the current state st, implying that somehow the output ot depends
on the previous inputs (not only on xt−1). Furthermore, in terms of learning process, the Back-
propagation Algorithm can be applied to the unfolding scheme, training the network similarly to a
Dense Neural Network.

In practice, storing the abstract context for so long is not possible with this architecture. Thus, one
new component should be introduced: Long Short-Term Memory (LSTM) network. This type
of network is quite similar to basic RNN, but which makes use of special hidden units prepared to
store the extracted dependencies for a long time [28]. Moreover, these special hidden units contain
sub-neural-networks which control which knowledge must be cleared from the memory and which
should stay. More technical details about it can be found in [29].

The inputs of the LSTM Neural Networks are usually previously processed by an Embedding
Layer. This layer represents its input tokens (which can be words, characters or sub-words) as
dense vectors. These vectors are projections of the words in a continuous space. This characteristic
provides advantages such as the possibility of representing two words whose meanings are similar
but not equal as vectors whose distance is small, and otherwise, as vectors with a greater distance
instead. These representations as vectors are learned during the training process.

4.4.4 Naive Bayes

Unlike the rest of the models already explained in this chapter, this classifier is based on Probabil-
ity Theory. Denoting the output asY and the vector ofK inputs (features) asX = (X1, X2, . . . XK)
this model considers X and Y as random variables with values x and y respectively. In terms of
probability equations, the target is detailed in Equation 4.13. In other words, the objective is to
find a value y that maximizes the probability of y being the actual value of the output, given that
all the input features.

Prediction = argmaxyP (Y = y|X = (x1, x2, . . . xK)) (4.13)

In addition, this model utilizes the Bayes Theorem (Equation 4.14) in order to solve the target
probability equation. This is due to the facility to calculate the probability with inverse causality
P (X|Y) instead of directly computing the target P (Y |X). Later, P (Y |X) can be obtained by

30

CHAPTER 4. MACHINE LEARNING CLASSIFIERS 4.4. EAGER LEARNERS

using the Bayes Theorem.

P (Y |X) =
P (X|Y) · P (Y)

P (X)
(4.14)

Therefore, the prior probabilitiesP (X) andP (Y) togetherwith the conditional probabilityP (X|Y)
must be directly computed from the training dataset. The necessary details for doing this computa-
tion are reflected in Equations: 4.15 and 4.16. The notation used in those equations is: nx and ny

for the number of samples in the dataset that correspond to a fixed value ofX and Y respectively;
m refers to the total number of samples in the dataset.

P (X = x) =
nx

m
P (Y = y) =

ny

m
(4.15)

P (X|Y) =
P (X ∧ Y)

P (Y)
(4.16)

Nevertheless, there is a practical issue, if the quantity of samples in the dataset is numerous, then it
may be infeasible to do these computations. However, this obstacle can be overcome by accepting
a usually-called naive assumption[30] . If we suppose that all the features (X1, X2, . . . XK) are
conditionally independent with each other, given Y = y, we obtain the result in Equation 4.17 5. It
is said to be ”naive” in the bibliography because this premise is not true in most of the cases, since
independence is a rare characteristic between the features in a dataset.

P (X1, X2, . . . , XK |Y) = P (X1|Y) · P (X2|Y) . . . P (XK |Y) (4.17)

Despite its contemptuous name, this assumption significantly reduces the computational cost,
transforming it from exponential to linear in terms of the size of the dataset. An advantage caused
by that is the efficiency of this model when facing high dimensional datasets. Moreover, this model
has empirically demonstrated that it can work competently.

5The term of conditionally independence is different from the concept of pure independence. Two variables are
conditionally independent if, given some value for a third variable, the probability of one of the variables is not affected
by the other, even though this is not true without the given information by the third variable.

31

4.4. EAGER LEARNERS CHAPTER 4. MACHINE LEARNING CLASSIFIERS

32

Chapter 5

Methodology

Once the context of the problem caused by Content Polluters has been introduced, and the theoret-
ical background in terms of Machine Learning has been properly analyzed, it is time to get started
with the concrete methodology used in the project.

5.1 Utilized Datasets

One of the crucial parts of the study is to choose which datasets will take part. It is strictly necessary
to use proper datasets in order to train the models in an adequate manner and therefore, obtain
trustworthy results. Obviously, if a dataset, which does not reflect the reality, is employed, then
the Machine Learning models will not be able to classify decently. Given that collecting data may
be complicated and may take enormous amounts of time, it is convenient to do some research about
different public datasets.

5.1.1 Caverlee

One of the most important researches in the state of the art analysis in Chapter 2 was the deep
research carried out by Caverlee et. al. in [6]. This team was able to obtain a really complete
dataset with an abundant number of samples with both Content Polluters and Legitimate Users.

The methodology used was based on tempting the Content Polluters by the use of honeypot ac-
counts. The researchers created 60 social automated Twitter accounts whose activity consisted
on posting random tweets previously acquired from the Twitter public timeline. As they were
tweets with no relation between each other, theoretically no Legitimate User would follow those
honeypots.

Moreover, those Content Polluter hunters were carefully designed to avoid interfering with Legit-
imate Users as it is detailed in [6]. Concretely, these profiles only followed each other and only
interacted with each other (posting tweets with mentions to other honeypots). This choice would
reduce the chance of getting a Legitimate User as a follower. To reinforce the confidence in the
hypothesis of collecting Content Polluters, a clustering study was applied to the collected users.
The clusters obtained were subsequently analyzed by the researcher, concluding that the clustering
model had identified several type of spammers and malicious promoters.

33

5.1. UTILIZED DATASETS CHAPTER 5. METHODOLOGY

After 7 months, the honeypots had gained 36,043 Content Polluters as followers. After removing
the fake users who followed more than one honeypot account and those who were rapidly detected
and removed by Twitter, the final dataset resulted in 22,223 Content Polluters. This last action was
done because the objective in the study was to create Machine Learning models which were able
to improve Twitter techniques for detecting and eradicating this type of bots.

On the other hand, to find Legitimate Users, Caverlee et. al. randomly harvested 19,297 accounts
from Twitter. To ensure that those accounts were more likely to be legitimate rather than malicious,
they were monitored during three months. Once this period ended, the 19,276 accounts which were
still active (and not eliminated by Twitter) were labeled as Legitimate Users. In addition, the final
reason given to support this hypothesis was the fact that a big error in Legitimate Users sampling
would be reflected in the metrics used in the study, and they resulted to be outstanding.

The main advantages of this dataset is the great number of samples that includes and its complete-
ness in terms of the features. Given that this project was done before Twitter limited the publication
of complete datasets, this one contains the entire collected data. This is the main reason why this
dataset is the basis of our project and will set the features that we use for our experiments.

With regard to the original dataset features that this dataset incorporate, they are shown in Fig-
ure 5.1. Their descriptions are:

1. UserID: This is not strictly a feature since its only purpose is to identify the users in the
dataset.

2. CreatedAt: Date and time when the account in question was created.

3. CollectedAt: Date and time when the creators of this dataset founded the user.

4. NumberOfFollowers: This is the quantity of other profiles which follow the account in the
sample.

5. NumberOfFollowings: It is the number of accounts that the user voluntarily follows.

6. NumberOfTweets: Total number of tweets which the user has published, without taking
into account those previously removed by the user.

7. LengthOfScreenName: This is the length of the users’ name. This name is unique for each
user in Twitter and it is chosen by the owner of the account.

8. LengthOfDescription: This is the size of the description of the header of the profile. This
is also written by the holder of the profile.

9. ContentPolluter: This is the target value of our project. If the user is a Content Polluter,
this value will be ”1” and otherwise it will be ”0”.

Fortunately, this dataset not only contains features related to users but also to specific tweets.
Specifically, all the past tweets from each account were gathered. Furthermore, during the seven
months of research, their system checked for new tweets. Similarly, the tweets had their own
features, represented in the Figure 5.2. Their definitions are:

1. UserID: Identifier of the user who created the tweet. It is the same parameter as in the users
dataset.

34

CHAPTER 5. METHODOLOGY 5.1. UTILIZED DATASETS

Figure 5.1: Header of the Caverlee dataset. The features that this Raw dataset contains are
illustrated.

Figure 5.2: Header of the tweets in the Caverlee dataset. Their features are shown.

2. TweetID: Unique identification of the tweet. It is therefore not used as an input feature to
our models.

3. tweet: Text content of the tweet in question. Thus, it is the most relevant feature.

4. CreatedAt: Date and time when the tweet was published.

5. ContentPolluter: Target value of the tweet. Moreover, it uses the same values as the case
of the users dataset.

For the tweets analysis, it has been supposed for our whole project that all the tweets posted by a
Content Polluter are characteristic of a malicious account. This may not be entirely true, since a
spammer could alternate between legal and illegal tweets to hide in a better way from Twitter spam
hunters. However, this choice is quite reasonable due to our lack of deeper knowledge. Moreover,
in the case of a spammer as Content Polluter, an important fraction of its tweets must be polluting
in order to accomplish its objective.

The concrete statistics of this dataset, accompanied by the data of the other datasets are represented
in the Table 5.1. As it can be observed in that table, this dataset is practically balanced regarding
the number of samples in each class. In other words, the percentages of each classes are nearly
50%. This is an important consideration to ensure that our models are not misclassifying one class
more than the other.

5.1.2 Gilani

Another public dataset acquired is the one generated by Gilani et. al. in [31] and it is in the Bot
Repository of Indiana University [32]. This Bot Repository contains all the datasets used to train

35

5.1. UTILIZED DATASETS CHAPTER 5. METHODOLOGY

an online tool, created by this university, whose purpose is to examine a Twitter account introduced
by the client and return the probability of being a Content Polluter. The advantage is that all the
datasets included in this repository are completely public.

This dataset has been created by manually labeling accounts collected from the streaming Twitter
API as bot or human. This concrete streaming Twitter API allows the developer to contemplate
tweets that are being published in real time. Therefore, all the samples in this dataset belong to
accounts which were constantly active in 2017 which is a recent year as opposed to Caverlee
dataset.

One of the advantages of this dataset is its approximately balanced number of samples for each
class as shown in Table 5.1.

5.1.3 Vendor-Verified Mixed

This dataset is formed by two public independent datasets. Both of them are part of the Bot Repos-
itory of Indiana University [32] and logically mentioned in [2]. In this paper, Yang et. al. properly
analyse the online tool created by this university and mention all the datasets used in it.

The first dataset is called Vendor Purchased 2019. This dataset consists of several bot accounts
with no other intention than simulate that legitimately follow some other account. In other words,
they are fake followers. Specifically, these bot accounts have been created by several companies
with the objective to sell them to entities which want to inflate their number of followers. In
contrast to Caverlee, this dataset was created approximately at the beginning of 2019, whereas
Caverlee was published in 2011. It is important to consider current datasets given that bots are
constantly in evolution.

The main issue of this dataset is that it only contains examples of Content Polluter profiles. Thus,
it is imperative to mix it with one dataset of Legitimate Users. Our choice has been the dataset
Verified 2019, which only holds Legitimate Users which are accounts whose identity has been ver-
ified by Twitter. Therefore, we can be sure that these profiles belong to humans and are Legitimate
according to our definition.

Considering that the attribute ”verified” is not a feature in our dataset, our models will not be
explicitly affected by the fact that these accounts are verified. Although there may be a bit of bias
with respect to the classification in this dataset, it is still a good option. There are a wide range of
different profiles which are verified, since the only condition is that the intention of the account
in question must be of public interest [33]. Moreover, this dataset has been chosen because of its
year of publication, so that the two datasets of this mixture make reference to the same epoch.

Finally, it is necessary to take into account the reduced number of public datasets of Legitimate
Users obtained without being manually labeled by humans. Hence, by using this dataset we are
trying a different approach and we will be able to contrast the results with Gilani dataset.

As it can be seen in Table 5.1, this dataset is quite unbalanced in terms of number of Content
Polluters versus number of Legitimate Users. To avoid that our dataset introduces bias in the
model, this dataset has been balanced so that exactly the same number of samples of each class
takes place.

36

CHAPTER 5. METHODOLOGY 5.2. LIBRARIES AND TOOLS

5.1.4 Split between Train and Test

As we already know, Machine Learning models need to be trained before being able to make
predictions and we must never use the same samples in the training part and testing part. Thus, we
need to split all the dataset into train datasets and test datasets.

In this project, each dataset has been split in the same way. First, to ensure the variability in both
datasets, the samples of the original dataset has been shuffled. After this, it has been separated
using the first 80% of the samples for training and the remaining 20% for testing, which is known
as Hold-out technique. With these proportions, the models will learn properly and there will be
enough samples for testing.

In addition to this, for the experiments carried out at the user level, other evaluations have been
done by the use of cross validation with 5 groups. In other words, the dataset have been split in 5
groups and 5 tests have been completed by using 4 groups for training and the remaining one for
testing.

5.1.5 Discarded Datasets

There are also other datasets publicly available which have not been considered for this project
due to different reasons. Namely, the datasets: Botwiki, cresci rtbust 2019, political bots 2019,
botometer feedback 2019 are other datasets from the Bot Repository [32] which have been dis-
carded due to their reduced number of samples (some of them within the order of a few tens, and
the rest of a few hundreds). If these datasets had been used, there would not have been enough
information to train the models, likely causing underfitting.

Besides, there was an alternative public dataset with only Legitimate Users to be mixed with Ven-
dor Purchased 2019: Celebrity 2019, which was formed by almost 6,000 accounts belonging to
celebrities. In spite of the fact that this dataset may seem to be better due to the number of samples,
it has not been chosen because the aspect that all of these accounts are celebrities introduces more
bias in the model than verified accounts in Verified 2019. This is because the feature ”verified”
implies a wider range of different accounts than the case ”verified and celebrity”. Moreover, it
would have been mixed with Vendor Purchased 2019, resulting in a really unbalanced dataset.

Another dataset was found from Kaggle, the popular website which lead competitions and share
datasets related toMachine Learning and Data Science [34]. Concretely, the dataset name is Popu-
lar Twitter bots Data [35]. Nevertheless, this dataset contains mostly creative non-spammy bots,
and according to our definition of Content Polluter in Chapter 2, this dataset is not suitable for this
study. Furthermore, the number of samples is quite reduced.

5.2 Libraries and Tools

5.2.1 Python

The core tool of the project has been the Python programming language due to its broad possibilities
in terms of Machine Learning tools. Moreover, one of its advantages is its legibility and ease for
creating code. This makes it an efficient solution for this kind of projects.

37

5.2. LIBRARIES AND TOOLS CHAPTER 5. METHODOLOGY

Content Polluter Legitimate Users Total Samples

Caverlee 2011 (Train) 53.549% 46.45% 33,199

Caverlee 2011 (Test) 53.56% 46.44% 8,299

Vendor Purchased 100% 0% 1,087

Verified 2019 0% 100% 2,000

Vendor Verified Mixed
(Train)

50% 50% 1,180

Vendor Verified Mixed
(Test)

50% 50% 294

Gilani 2017 (Train) 42.06% 57.94% 1,990

Gilani 2017 (Test) 42.34% 57.66% 496

Table 5.1: Statistics of the different user datasets.

Content Polluter Legitimate Users Total Samples

Caverlee 2011 (Train) 42.07% 57.93% 4,493,538

Caverlee 2011 (Test) 41.35% 58.65% 1,119,621

Vendor Purchased 100% 0% 18,515

Verified 2019 0% 100% 24,059

Vendor Verified Mixed
(Train)

46.47% 53.53% 21,819

Vendor Verified Mixed
(Test)

46.34% 53.65% 5,442

Gilani 2017 (Train) 43.38% 56.62% 34,048

Gilani 2017 (Test) 43.94% 56.06% 8,526

Table 5.2: Statistics of the tweet datasets.

38

CHAPTER 5. METHODOLOGY 5.2. LIBRARIES AND TOOLS

5.2.2 Tweepy

The datasets previously described: Vendor-Verified mixed andGilani 2017, due to the new Twit-
ter restrictions, only include user IDs and the labels for each ID as bot or human. Hence, those
datasets must be completed by using Twitter API in order to obtain the adequate features for each
sample. Specifically, an open source version of Twitter API for Python called Tweepy was used.
This set of code functions allows to interact with Twitter data in a more simple and efficient way
than using the usual API.

The features downloaded for each sample are the same contained in Caverlee dataset. In this way,
we will be able to compare between the different experiments with the different datasets, observing
if using the same features for each dataset provide the same results. In regard to the tweets, from
each user in those datasets, 20 tweets were collected. The final number of tweets collected from
each user is reflected in Table 5.2.

The free version of Twitter API has been used for this project. Therefore, this limits the possibilities
regarding the datasets which did not previously contain the features of each users, especially for the
tweet datasets. However, these datasets are still useful to get a first approach of the performance
of the classifiers on them, obtaining more results than only using Caverlee dataset which already
included the features.

5.2.3 Pandas

This is a Python library which allows the developer to perform several operations with datasets
such as, splitting them by columns or rows, shuffling their samples, filter samples which fit some
condition, among others, in an efficient way. It is also really popular in terms of Machine Learning
tools. Its documentation can be found in [36].

5.2.4 Scikit-Learn

Scikit-Learn is a quite complete library for Python aimed to help developers to carry out a proper
feature extraction from the datasets, implement Machine Learning models (both of regression and
classification, and of course, unsupervised learning), and evaluate metrics during testing, without
thinking about its implementation. Moreover, it contains example datasets to help beginners learn
faster. The whole Scikit-learn project is detailed by its creators in [37] and its documentation can
be found in [38].

This library works at the model level. This means that you can create a model, vary its main
parameters, train it, evaluate it and make predictions. This simplicity is the main positive point
of using this library for models such as Decision Trees, Random Forests etc. Nonetheless, one
limitation is that this ease of creating models without implementing them reduces the possibilities
for some models, for instance, Artificial Neural Networks. It is possible to implement Neural
Networks with this library but it is not the best option if it is required to try non-usual Deep Learning
architectures.

39

5.3. EXPERIMENTS CHAPTER 5. METHODOLOGY

5.2.5 Keras

Keras is another Machine Learning Python library dedicated to the Deep Learning field, in other
words, Artificial Neural Networks. By using this Library, the user must implement these networks
specifying their parameters at the layer level, rather than at the model level like with Scikit-Learn.
This makes a bit more complex the implementations of the models but allows the developer much
more flexibility. One concrete example of this flexibility is the possibility to combine different
types of layers in a network. The documentation of this Library can be revised in [39].

Specifically, Keras has been used in this project over the TensorflowBackendwith Graphic Process
Unit (GPU) support. This means that, during the training process, the GPU has been used instead
of the Central Process Unit (CPU). This is a common practice, since the exhaustive number of
linear operations that must be done to train a Neural Network can be carried out more efficiently
if the GPU is employed.

5.2.6 Matplotlib

Once the models have been trained and tested, it is usual to plot the results in graphs in order to
facilitate the analysis and understanding of them. The chosen option to do it, has been the Python
library Matplotlib. With this library, the developer is able to generate all kind of personalised
graphs of data contained in arrays. Its documentation can be found in [40] and the project details
are in [41].

5.3 Experiments

Once we have detailed the dataset research and the tools to be used, it is possible to briefly explain
what the experiments are based on. First of all, an approach at the user-level classification has been
done, using differentMachine Learningmodels. Subsequently, a different method has been applied
to the tweet-level classification, by using Natural Language Processing (NLP) techniques. Finally,
a combination of both has been implemented in order to improve the tweet-level classification by
joining the information provided by the user features and the tweet features.

On each experiment several metrics have been evaluated such as accuracy or AUC (described
in Chapter 3). Moreover, the hold-out separation and cross-validation have been applied in the
experiments. The complete details about this can be found in Chapter 6.

40

Chapter 6

Experiments and Results

6.1 Introduction

In this project, several and variate experiments have been carried out. First of all, an approach at
the user level has been done. In other words, the models have been trained and tested with the user
datasets, i. e. using only user-level features, without taking into account the tweet datasets. This is
due to the fact that for each user, there are several tweets, so they cannot be analyzed by the same
model.

Next, a different method has been applied at the tweet level. For this, all the tweets belonging to
a Content Polluter have been assumed to be ”polluting” and similarly with the Legitimate Users
tweets. With these models, we are able to predict if a specific tweet has been written by a Content
Polluter or a Legitimate User.

For these two first strategies, metrics such as accuracy and Receiver Operating Characteristic/ Area
Under the Curve (ROC/AUC) have been used. With these values, we will be able to compare the
results of each model and conclude if the selected techniques are adequate or not.

Finally, these two approaches have been mixed in order to form a single classifier, in order to
improve the tweet level classifier with the user features. Basically, with this final experiment, the
optimal classifier will be build.

Concretely, the process explained above is structured in three Studies. The Study 1 corresponds to
the user-level approach, based on the use of user-level features. Subsequently, the Study 2 com-
prises the tweet-level strategy and finally, the Study 3 contains the combination of both methods.

6.2 Study 1: User-Level Features

On this first Study, different classifiers from the library Scikit-Learn have been programmed to
obtain different results from the different datasets. However, before training the models, it is nec-
essary to adapt some of the features and create new ones which may help the classifier. In other
words, we have to execute what it is commonly known in the Machine Learning field as feature
extraction.

41

6.2. STUDY 1: USER-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.1: New header of the Caverlee dataset with features extracted.

6.2.1 Feature Extraction

The features which are present in Caverlee dataset were shown in Figure 5.1, and those are also
the ones obtained from Twitter API for the other datasets. Therefore, all the new features obtained
must be from these basic ones.

The first step consisted in converting the features CreatedAt and CollectedAt from date and time
format to a number of seconds following the Coordinated Universal Time (UTC) format. In this
way, it is possible to handle these features, for instance, to do some operations.

Once those two features were numerical values representing certain numbers of seconds, then it
was possible to compute new features. These, together with other computed features, the features
that form the final dataset are:

1. DailyTweetsNumber: This value represents on average the number of tweets per day pub-
lished by the user in question.

DailyTweetsNumber =
NumberOfTweets
CollectedAt−CreatedAt

24·3600
(6.1)

2. DailyNameFollowers: This feature expresses the number of followers acquired on average
per day by the user.

DailyNumberFollowers =
NumberOfFollowers
CollectedAt−CreatedAt

24·3600
(6.2)

3. DailyNameFollowings:

DailyNumberFollowings =
NumberOfFollowings

CollectedAt−CreatedAt
24·3600

(6.3)

4. LengthOfScreenName: This is the length of the screen name.

5. LengthOfDescription: This is the length of the description of the profile written by the user.

Once the new features have been created, all the columns have been standardized so that each one
is a Gaussian distribution. In other words, these distributions have mean 0 and standard deviation
1. This is an important step for some models as it was stated in Chapter 4. From this point, the
datasets are ready to train the different classifiers used in this Study.

42

CHAPTER 6. EXPERIMENTS AND RESULTS 6.2. STUDY 1: USER-LEVEL FEATURES

Figure 6.2: Accuracies vs K for the tests of the three datasets. Manhattan distance has been
used.

Figure 6.3: Accuracies vs K for the tests of the three datasets. Euclidean distance has been
used.

6.2.2 K-Nearest Neighbours

The first model to be used is K-Nearest Neighbours since it is one of the simplest available within
the Machine Learning field. In order to find the parameters that make this classifier optimal, be-
fore doing a deeper test with several metrics, several attempts have been carried out varying the
parameterK and computing the accuracy obtained in each test dataset with a threshold of 0.5. This
threshold is used to convert the output probabilities of being Content Polluter, the so-called a pos-
teriori probability into pure predictions (Boolean values). Furthermore, this has been repeated
for both Manhattan and Euclidean distances. The results for each case are shown in Figures 6.2
and 6.3.

The metric accuracy has been chosen to do this first parameter analysis due to the results of the
survey carried out in [2]. This survey was done to the users of the bot detector created by Indiana
University and one of its conclusions is that its users (people and/or entities which need to identify
Content Polluters) were approximately equally worried about Content Polluters misclassified as
Legitimate Users and vice versa (False Negatives and False Positives).

The accuracy metric measures the accounts erroneously classified without taking into account if it
is a False Positive or a False Negative, so it is the perfect metric. Moreover, it is the most intuitive.
This will give as an idea of which is the optimal model before carrying out the ROC - AUC study
on it.

In both Figures 6.2 and 6.3 the reader can observe different behaviours in each dataset when the
parameter K (number of neighbours) is varied. From this analysis, the K which produces the
maximum accuracy has been registered in Table 6.1. Next, those values have been used to generate
optimal models. The ROC curve for each case has been obtained and represented in Figures 6.4 and

43

6.2. STUDY 1: USER-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.4: ROC Curves for the tests of KNN in Study 1. Manhattan distance has been used.

Figure 6.5: ROC Curves for the tests of KNN in Study 1. Euclidean distance has been used.

6.5 . This evaluation curve allows us to have a deeper and more robust idea about the performance
of each model during the test process as it is not conditioned by the threshold selected. Logically,
the AUC values have also been computed and are shown in Table 6.1.

As observed in the Figures 6.4 and 6.5, the ROC curves obtained forCaverlee andVendorVerified
datasets are quite similar to the expected aspect, stated in Figure 3.4. Moreover, both AUCs are
around 0.90, which is outstanding. Given that AUC is not conditioned by the selected threshold,
obtaining good values for the AUC ensures that the classifier is robust and that it is able to classify
the 90% of the samples that it receives as input.

In terms of the results provided by Gilani, they are not as excellent as the rest. However, they
are considerably acceptable as this classifier can classify the 70% of the samples. Furthermore,
in all the cases, the accuracy values obtained are correlated with AUC values. In regard to the
differences between the results obtained with the different distance functions utilized, there is no
noticeable distinction. In most of the cases the best K parameter is the same.

Manhattan Distance Euclidean Distance

BestK Accuracy AUC BestK Accuracy AUC

Caverlee 2011 7 0.876 0.935 7 0.873 0.931

Vendor Verified
Mixed

3 0.864 0.913 7 0.847 0.903

Gilani 2017 11 0.709 0.703 11 0.704 0.697

Table 6.1: Values of optimalK and the metrics obtained with those models in Study 1.

44

CHAPTER 6. EXPERIMENTS AND RESULTS 6.2. STUDY 1: USER-LEVEL FEATURES

Test Accuracy AUC

Caverlee
2011

0.883 0.8835 0.886 0.883 0.873 0.8817 0.942 0.938 0.937 0.933

Vendor
Verified
Mixed

0.847 0.807 0.834 0.814 0.847 0.883 0.881 0.925 0.883 0.903

Gilani 2017 0.707 0.689 0.675 0.680 0.704 0.725 0.696 0.708 0.695 0.699

Table 6.2: Cross validation for K-Nearest-Neighbours. Euclidean distance has been used.

Datasets Test Accuracy Average AUC Average

Caverlee 2011 0.881 0.9364

Vendor Verified Mixed 0.8298 0.8950

Gilani 2017 0.691 0.7046

Table 6.3: Mean values of the results in the cross-validation test for KNN in Study 1.

After this first approach, to ensure the fidelity of these results, another experiment over the optimal
model has been done by using cross validation splitting the dataset in 5 subsets. In this way, the
proportions used for training and testing are similar to the hold-out experiment (80% for training
and 20% for testing). For each test, the accuracies and AUC have been computed and are repre-
sented in Table 6.2. As we can observe, the results are similar for each test. Thus, these results
are a sign of stability in the model, which suggests that the previous results were not caused by
overfitting. The average values are illustrated in Table 6.3.

6.2.3 Decision Tree

Once finished with K-Nearest Neighbours, we can continue with the next model. In the case of
Decision Tree, the most relevant parameter is themaximum depth. As explained in the theoretical
part of this report, a change in this parameter may make the difference between underfitting and
overfitting. Thus, it is worth to analyze the accuracy obtained with respect the variation of it, as it
was done with parameter K in the KNN classifier. The results for the three datasets are shown in
Figure 6.6.

In comparison to the graphs generated with the KNN model in Figures 6.2 and 6.3, with the De-
cision Tree model, the accuracies seem to variate within ranges of the same size as with KNN.
However, in this case, the accuracy ends up stabilizing in a concrete value.

Identically to the previous experiment, the maximum depths that cause the maximum value of the
accuracies has been used to generate Decision Tree models and evaluate their ROC curves. These
curves are illustrated in Figure 6.7 and their respective AUC values, together with the accuracies
obtained are in Table 6.4.

ForCaverlee andVendor-verified, the obtained ROC curves are even better than the ones obtained
with KNN, getting AUC values around 0.95. However, in respect of Gilani, the results are quite

45

6.2. STUDY 1: USER-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.6: Accuracies vs maximum depth for the Decision Tree experiment.

Figure 6.7: ROC Curves for the tests of Decision Tree in Study 1. The maximum depth used
is indicated in each graph.

similar in terms of accuracy, causing a slightly greater AUC.

Similarly to the KNN experiment, the final action with this model has consisted of an evaluation
based in cross validationwith 5 folds. The results are shown in Table 6.5. As observed, the values
obtained are approximately constant for each test, which demonstrates the stability of the model.
In terms of the average values, these can be appreciated in Table 6.6.

6.2.4 Random Forest

As we already know, Random Forest consists of several uncorrelated Decision Trees working as
one. Hence, the same analysis of the accuracy with respect the maximum depth allowed can be
performed. Concretely, for this experiment, 100 estimators (trees) have been chosen, and the ”cre-
ate bootstrap dataset” option enabled, technique which is explained in Chapter 4, section 4.4.2.
The results for this are presented in Figure 6.8.

Repeating the same methodology once more, the ROC curves for each dataset have been obtained

Best Maximum Depth Accuracy AUC

Caverlee 2011 8 0.896 0.952

Vendor Verified Mixed 5 0.946 0.948

Gilani 2017 4 0.702 0.721

Table 6.4: Results of the Decision Tree experiments in Study 1.

46

CHAPTER 6. EXPERIMENTS AND RESULTS 6.2. STUDY 1: USER-LEVEL FEATURES

Test Accuracy AUC

Caverlee
2011

0.896 0.913 0.916 0.914 0.896 0.958 0.962 0.961 0.956 0.952

Vendor
Verified
Mixed

0.946 0.959 0.936 0.939 0.946 0.943 0.966 0.941 0.972 0.948

Gilani 2017 0.757 0.728 0.754 0.732 0.702 0.771 0.744 0.743 0.739 0.721

Table 6.5: Cross validation for Decision Tree in Study 1.

Datasets Test Accuracy Average AUC Average

Caverlee 2011 0.9070 0.9578

Vendor Verified Mixed 0.9452 0.9540

Gilani 2017 0.7342 0.7436

Table 6.6: Mean values of the results in the cross-validation test for Decision Tree in Study 1.

by using the optimal maximum depth in each case. The results are collected in Figure 6.9 and
Table 6.7.

So far, the best results have been proportioned by the Random Forest approach. We can emphasise
the fact that for the Vendor Verified dataset, the AUC obtained is almost equal to 1. Moreover, in
the case of Gilani, the AUC has also increased until a value close to 0.8, with a slightly greater ac-
curacy than with the use of the other models already described. ConcerningCaverlee, the outcome
is almost identical to the Decision Tree modeling.

Ultimately, cross validation has been carried out similarly to the other experiments, obtaining the
results in Table 6.9. By observing them, it can be stated that each test produced a similar outcome,
which shows that the model is stable. The average values are shown in Table 6.12.

Figure 6.8: Accuracies vs maximum depth for the Random Forest experiment. The number
of estimators employed is 100.

47

6.2. STUDY 1: USER-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.9: ROC Curves for the tests of Random Forest in Study 1. The maximum depth
used is indicated in each graph.

Best Maximum Depth Accuracy AUC

Caverlee 2011 18 0.91 0.966

Vendor Verified Mixed 11 0.956 0.992

Gilani 2017 8 0.729 0.773

Table 6.7: Results of the Random Forest experiments in Study 1.

Datasets Test Accuracy Average AUC Average

Caverlee 2011 0.9264 0.9744

Vendor Verified Mixed 0.9494 0.9854

Gilani 2017 0.7386 0.7820

Table 6.8: Mean values of the results in the cross-validation test for Random Forest in Study
1.

Test Accuracy AUC

Caverlee
2011

0.925 0.928 0.928 0.926 0.925 0.976 0.973 0.975 0.974 0.974

Vendor
Verified
Mixed

0.9561 0.946 0.946 0.949 0.956 0.978 0.987 0.983 0.987 0.992

Gilani 2017 0.741 0.743 0.757 0.732 0.729 0.793 0.779 0.797 0.764 0.777

Table 6.9: Cross validation for Random Forest in Study 1.

48

CHAPTER 6. EXPERIMENTS AND RESULTS 6.2. STUDY 1: USER-LEVEL FEATURES

Figure 6.10: ROC Curves obtained from the Multilayer Perceptron models used with all the
datasets.

Datasets AUC

Caverlee 2011 0.953

Vendor Verified Mixed 0.926

Gilani 2017 0.751

Table 6.10: Results of the MLP from Scikit-Learn model in Study 1.

6.2.5 Multi Layer Perceptron (MLP)

This is the last model to be evaluated at the user level in this Study. It consists of a standard Dense
Neural Network (referenced in Scikit-Learn library as Multi Layer Perceptron). Concretely, the
sizes of the hidden layers is 100 with adaptive learning rate and maximum number of iterations
(usually known as number of epochs) equal to 200.

Besides, the Activation Function used is the Sigmoid so as to obtain output values within the [0, 1]
interval, which can be understood as probabilities. In this way, the ROC Curves can be calculated
as it was done with the rest of the models. Once the model has been trained, the acquired ROC
curves in the testing process are shown in Figure 6.10, and the respective AUC values in Table 6.10.

In general, the results obtainedwith theMLP in this Study are notable. For theCaverlee dataset, the
AUC value is similar to the obtained with Decision Tree and Random Forest. Regarding Vendor
Verified Mixed, the AUC is somewhat less than the one computed with the Decision Tree and
minor than the case in Random Forest. In reference to Gilani, is one of the best performances but

Test Accuracy AUC

Caverlee
2011

0.909 0.909 0.910 0.906 0.905 0.966 0.964 0.965 0.962 0.962

Vendor
Verified
Mixed

0.844 0.847 0.871 0.820 0.847 0.922 0.914 0.938 0.918 0.925

Gilani 2017 0.75 0.721 0.730 0.706 0.728 0.788 0.740 0.773 0.751 0.753

Table 6.11: Cross validation for Multi Layer Perceptron from Scikit-Learn in Study 1.

49

6.2. STUDY 1: USER-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Datasets Test Accuracy Average AUC Average

Caverlee 2011 0.9078 0.9638

Vendor Verified Mixed 0.8458 0.9234

Gilani 2017 0.7270 0.7610

Table 6.12: Mean values of the results in the cross-validation test for Multi Layer Perceptron
from Scikit-Learn in Study 1.

still slightly under the Random Forest AUC.

As a final step, cross validation has been applied to this model too. The results provided by these
test can be checked in Table 6.11. Once more, the similarity in the values obtained in each test
ensures the absence of bias in the model due to the dataset train and test splitting. Hence, the
model is stable. The final average results can be observed in Table 6.12.

6.2.6 Results Discussion

To sum up, all the models in this set of experiments using Scikit-Learn models have produced
acceptable results, and some of them extraordinary. Generally, Caverlee and Vendor Verified
Mixed have produced the best values in their tests, reaching in some cases values of 0.95 AUC.
However, Gilani has not provoked such fantastic results but are still acceptable, since its AUC
oscillates within the interval [0.70− 0.75] in most of the cases, reaching greater values than 0.75
in Random Forest experiment.

This was expected since Caverlee is the dataset with more training examples, so it should be the
dataset which better trains the models. In regard toVendor VerifiedMixed, it is logic that it is easy
to distinguish between Content Polluters and verified Legitimate Users, since the verified accounts
are usually more active, may have a greater number of followers on average, etc. Thus, the most
difficult case, in comparison, isGilani given that these are Content Polluters and Legitimate Users
randomly selected and it contains a limited number of samples in contrast to Caverlee.

6.2.7 Dense Neural Network: Keras

This new experiment consists in the analysis of the same user datasets, with a Deep Learning ap-
proach, similarly to the Multi Layer Perceptron but using a different Neural Network architecture.
Therefore, in this experiment, the library Keras will be used since it is more powerful in terms of
performance and possibilities in Artificial Neural Networks. Furthermore, thanks to the fact that
this library includes GPU support, the training/testing process is faster.

The concrete network employed is detailed in Figure 6.11. As it is observed, it is composed by
3 Dense layers (formed by neurons which are fully connected to the neurons in both the previous
and subsequent layer). The three layers contain 8, 64 and 1 neurons respectively. Moreover, the
Sigmoid Activation Function is used in the output of the first layer and in the output (necessary in
the output to obtain probabilities).

The training process is formed by several iterations over the training data. Each of these iterations

50

CHAPTER 6. EXPERIMENTS AND RESULTS 6.2. STUDY 1: USER-LEVEL FEATURES

Figure 6.11: Dense Neural Network from Keras library used in Study 1.

Figure 6.12: ROC Curves obtained from the Dense Neural Network from Keras Library of
Study 1.

Training Testing

Number of Epochs Loss Accuracy Loss Accuracy AUC

Caverlee 2011 90 0.0485 0.87 0.0479 0.873 0.923

Vendor Veri-
fied Mixed

90 0.0886 0.766 0.0902 0.762 0.846

Gilani 2017 90 0.1026 0.675 0.1040 0.66 0.722

Table 6.13: Results obtained from the Dense Neural Network from Keras Library in Study
1. The values of Loss and Accuracy in training make reference to the last epoch.

51

6.2. STUDY 1: USER-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Test Accuracy AUC

Caverlee
2011

0.866 0.873 0.873 0.862 0.872 0.921 0.925 0.925 0.918 0.926

Vendor
Verified
Mixed

0.759 0.793 0.756 0.725 0.735 0.824 0.863 0.841 0.798 0.826

Gilani 2017 0.711 0.693 0.634 0.651 0.675 0.769 0.738 0.653 0.743 0.719

Table 6.14: Cross validation for Dense Neural Network from Keras Library in Study 1.

Datasets Test Accuracy Average AUC Average

Caverlee 2011 0.8692 0.9230

Vendor Verified Mixed 0.7536 0.8304

Gilani 2017 0.6718 0.7244

Table 6.15: Mean values of the results in the cross-validation test for Dense Neural Network
from Keras Library in Study 1.

are called ”Epochs” in the common nomenclature. During this training process, the parameters
Loss and Accuracy have been monitored on each Epoch, and the values from the last epoch have
been registered. This is important to compare these values with the Accuracy of the test evaluation.
Moreover, getting an Accuracy of 1 in the training process could be a sign of Overfitting. Hence,
registering these values is important.

Once each model is trained, two metrics have computed in this Study: the computation of the
Accuracy for the whole testing dataset, and the calculation of the ROC Curve and the AUC. These
results are displayed in Figure 6.12 and Table 6.13. With respect to the numerical values,Caverlee
has obtained similar results to the previous experiments, with an AUC of 0.92 and an accuracy in
testing of 0.873.

However, Vendor Verified Mixed acquired worse results than in the other experiments. The Ac-
curacy in testing is similar to the one obtained with KNN, but its AUC is still lower (0.846 versus
0.9). Moreover, the rest of values which are outcome of the rest of classifiers in Study 1 are more
favourable. On the other hand, the results for Gilani are quite similar to the metrics in the general
Study 1, as the AUC obtained is 0.722. In contrast, the test accuracy is 0.66, which is slightly lower
than all the accuracies present in the rest of this Study, where the minimum accuracy is 0.7 even
though the AUC parameter is a more robust evaluation parameter than the Accuracy with fixed
threshold of 0.5. In any case, the biggest AUC is still provided by the Random Forest model in
Study 1.

Moreover, cross validation has been applied identically to the other experiments in Study 1 and the
results can be examined in Table 6.14. The numerical values obtained of both accuracy and AUC
are approximately similar for all the testes, which ensures the stability, except for Gilani, which
presents more variability. However, these variations are not alarming, since themaximum variation
is of 0.1 in terms of AUC. The average results from the cross-validation test are represented in

52

CHAPTER 6. EXPERIMENTS AND RESULTS 6.3. STUDY 2: TWEETS-LEVEL FEATURES

Table 6.15.

6.2.8 Results Discussion

In conclusion, the performance and results produced by this Deep Learning approach are quite
acceptable and could be a proper classifier. However, in comparison to the rest of the models of
Study 1, this technique is not the optimal option, given that Decision Tree and Random Forest
present a better behaviour in two of the three datasets (Caverlee and Vendor Verified Mixed).

This may be due to the fact that we are not using the optimal architecture for carrying out this task.
In contrast to Neural Networks, it is easier to find the optimal parameters that define the models
when working with KNN, Decision Tree and Random Forest. In order to do a proper comparison,
a deeper study on the architecture of the Neural Network would be required, and this is out of the
ambit of this project.

6.3 Study 2: Tweets-Level Features

This new Study is focused on the tweet level. Thematter is that the features in the originalCaverlee
dataset are reduced. Therefore, some knowledge must be extracted from the tweet content, which
makes the Feature Extraction process quite different from the user level approach. In other words,
some techniques from the Natural Language Processing (NLP) field must be taken into account.

6.3.1 Word Frequencies Experiment

6.3.1.1 Feature Extraction: Word Frequencies

For this concrete analysis, the frequency of appearance of each word is going to be used. However,
each tweet must be cleaned before counting them, since it contains mentions, links and hashtags. If
these ”special words” were not removed, they would be considered as different words, since each
single mention is different from the others (this also happens with each link and each hashtag).
However, if we count them and consider their repetitions as features, they will contribute positively
in the study.

Moreover, if a tweet is a retweet (a repetition from a tweet published by other account), then the
characters ”RT” appear at the beginning of each tweet. These references have been cleaned too
and added as new feature. Otherwise, the model would not be able to distinguish a retweet from
a retweet request written by the user. These, together with other new features are shown in the
Figure 6.13. If we examine them we have:

1. URLNum: Number of links in the tweet.

2. MentionNum: Number of mentions in the tweet.

3. HashtagNum: Number of hashtags in the tweet.

4. IsRetweet: This feature indicates if the tweet in question is a retweet or has been directly
published by the user from it was collected.

53

6.3. STUDY 2: TWEETS-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.13: Header of the Caverlee tweets dataset with extracted features. The values have
been standardised.

5. TweetLength: Length of the tweet before removing the links, mentions, hashtags and retweet
indicators.

Once the tweets have been cleaned, the word count has been done. Considering each word as
a token, using the adequate functions provided by the Scikit-Learn library, the tweets have been
”vectorized”. The result is a matrix whose columns are the hashes of each token and its rows are
the number of repetitions of each token in the tweet (each row is a tweet).

Given that there are a lot of tokens which only appear in a few tweets, the outcome matrix contains
a vast number of zeroes. Thus, the Sparse Matrix format is used. With this format, which only
stores the positions of the non zero elements, it is possible to store information about thousands of
tweets, due to its efficiency in memory.

Moreover, a usual Stop Words list has been used in order to reduce the computational cost. This
is a common practice in the NLP field, which consists in deleting meaningless words such as
prepositions. Given that we only work with the frequencies of the words in this experiments,
without taking into account the order, the appearance of suchwords in a tweet does not give relevant
information.

Given that the tweets dataset are much bigger than the user datasets, performing cross validation
has been avoided due to the high computational cost. Instead, only hold-out has been applied.

6.3.1.2 Naive Bayes

The first model to be employed in this Study is the Naive Bayes classifier. Due to its naive assump-
tion, this model has a great performance with huge datasets. This is perfect for this case, where
the word frequencies are vast datasets.

Likewise in the other experiments already described, the respective ROC curves and AUC have
been computed. The results obtained with this model can be appreciated in Figure 6.14 and in
Table 6.16.

Analyzing the results, we find that this technique performed well in terms of the Caverlee and
Vendor Verified with AUCs of 0.85. However, Gilani obtained an AUC of 0.63, which is not the
best result considering that an AUC of 0.5 implies that the model is classifying randomly.

54

CHAPTER 6. EXPERIMENTS AND RESULTS 6.3. STUDY 2: TWEETS-LEVEL FEATURES

Figure 6.14: ROC Curves obtained with the model Naive Bayes in Study 2.

Datasets AUC

Caverlee 2011 0.84

Vendor Verified Mixed 0.851

Gilani 2017 0.633

Table 6.16: Results of the Naive Bayes experiments in Study 2.

6.3.1.3 Decision Tree

The next approach is based in a Decision Tree classifier. Considering that the size of the datasets
is big (especially Caverlee), the study of the optimal maximum depth has not been done in this
approach. The chosen values for this parameter has been 15 for Caverlee and 20 for the remaining
datasets.

The final results are shown in Figure 6.15 and in Table 6.17. In the case of Caverlee the AUC is
slightly less than the value obtained with Naive Bayes. The differences are more remarkable in the
other classifiers, obtaining a significantly worse AUC in the case of Vendor Verified, which has
decreased from 0.85 to 0.72. Moreover, the AUC forGilani is even lower (0.588), which is not an
acceptable result.

Figure 6.15: ROC Curves obtained with the Decision Tree approach in Study 2.

55

6.3. STUDY 2: TWEETS-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Datasets AUC

Caverlee 2011 0.82

Vendor Verified Mixed 0.721

Gilani 2017 0.588

Table 6.17: Results of the Decision Tree experiments in Study 2.

Figure 6.16: ROC Curves obtained with the Random Forest approach in Study 2.

6.3.1.4 Random Forest

Finally, this is the last model used with the word frequencies approach. 1. Identically to the Deci-
sion Tree case, examining the accuracy versus the maximum depth parameter is costly regarding
time consuming. Namely, the employed parameters for these experiments have been 65 estima-
tors and maximum depth of 15 for Caverlee, and Vendor Verified. For Gilani, the model used is
composed by 100 estimators and maximum depth of 20.

As the reader may have been expected, the results produced by this model are generally better than
the Decision Tree outcome. This is clearly appreciated sinceVendor Verified andGilani obtained
AUCs of 0.827 and 0.64 respectively. The only exception is Caverlee, which obtained a slightly
minor AUC (0.791). However, this is a minimum difference to the value obtained in the previous
experiment, so it seems fair to state that the performance on this dataset has been similar to the
Decision Tree. All these values and their respective ROC Curves are displayed in Figure 6.16 and
Table 6.18.

1KNN has not been used due to its inefficiency in making predictions for large dataset such as Caverlee. Further-
more, MLP from Scikit-Learn has also been discarded because this library does not include GPU support, so training
Neural Networks with enormous datasets is computationally exhausting.

Datasets AUC

Caverlee 2011 0.791

Vendor Verified Mixed 0.827

Gilani 2017 0.64

Table 6.18: Results of the Random Forest experiments in Study 2.

56

CHAPTER 6. EXPERIMENTS AND RESULTS 6.3. STUDY 2: TWEETS-LEVEL FEATURES

Training Testing

Number of Epochs Loss Accuracy Loss Accuracy AUC

Caverlee 2011 5 0.0637 0.8138 0.0658 0.8052 0.869

Vendor Veri-
fied Mixed

120 0.0522 0.8484 0.0738 0.7736 0.8515

Gilani 2017 120 0.0987 0.6792 0.1077 0.6316 0.667

Table 6.19: Results fromLSTMNeural Network in Study 2. The values of Loss andAccuracy
in training make reference to the last epoch.

6.3.1.5 Results Discussion

Comparing the overall set of metric values obtained so far from this Study, we find that the model
with best performance has been Naive Bayes. Nevertheless, Random Forest has obtained approx-
imately similar results and considering that Naive Bayes is based on the ”naive assumption”, then
Random Forest seems to be the best model that would be chosen in order to make predictions.

As it was similarly observed in Study 1, Gilani has been the dataset with more difficulties to
classify not only its users, but also its tweets.

6.3.2 LSTM Neural Network Experiment

This part of the Study consists of an approach to classify at the tweet level using Deep Learning.
Moreover, it is totally different from the solution proposed so far in Study 2. In this experiment,
the NLP technique which is employed is the use of Long Short-Term Memory (LSTM) Neural
Networks. As it is explained in Chapter 4, subsection 4.4.3, this is a type of Recurrent Neural
Network (RNN).

RNN are based on the fact that they own feedback connections, which allow the model to memo-
rize the context where some features appear. The advantage of this strategy over the hashing and
counting method previously carried out, is that the order of the words in the tweet is considered,
and therefore, the context in which every word appear is known, whereas with word frequencies
there is no way of evaluating it.

6.3.2.1 Feature Extraction for the LSTM Neural Network

By using this technique, the feature extraction process is also different. Each tweet must be tok-
enized in order to be able to be the input of the neural network. This means that each word must
be encoded with an integer value, unique in the whole dataset. Moreover, once the tweets are to-
kenized, they must be padded with zeroes so as to ensure that all the tweets have the same length;
and therefore, the encoded tweets can be introduced to the network.

The same problem regarding the links, hashtags and mentions is present here, as it was in the word
frequencies approach. If they are tokenized together with the rest of the tweet, all the mentions
will receive different integers (similar to the links and hashtags). One solution could be removing

57

6.3. STUDY 2: TWEETS-LEVEL FEATURES CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.17: Architecture of the LSTM Neural Network used in Study 2.

Figure 6.18: ROC Curves for the LSTM Neural Network model in Study 2.

and counting them as it was done in the previous methodology.

However, we can take advantage of the capacity of this model to analyze the order of words by
encoding every mention as the same token (and the links and hashtags). Hence, the mentions, links
and hashtags have been encodedwith thewords ”COD_MENTION_COD”, ”COD_HASHTAG_COD”,
”COD_URL_COD”. In this way, these ”special words” will be encoded with the same value. As
a final step, the ”IsRetweet” feature has been added similarly to chapter 1 simultaneously to the
computation of the length of the tweet.

6.3.2.2 Architecture Employed and Results

In this experiment we have to combine both usual features from the dataset (”TweetLength and
IsRetweet), and the tokenized tweets as the input of the Neural Network. Therefore, the architec-
ture in Figure 6.17 has been implemented. As it can be observed, the features are introduced to a
Dense Layer of 2 neurons and the encoded tweets will enter the Embedding Layer. The Embedding
layer processes the inputs as Dense Vectors which represent the projection of each word in a con-
tinuous space. Then, the LSTM layer processes the outputs of the Embedding Layer. Finally, the
last Dense Layer evaluates both outputs from the Dense Layer for features and the LSTM Layer,
producing the outputs of the model.

58

CHAPTER 6. EXPERIMENTS AND RESULTS 6.4. STUDY 3: USERS AND TWEETS

The final results are observed in Table 6.19 and the respective ROC Curves in Figures 6.18. We
can observe that Caverlee acquired an AUC of 0.87 with a testing accuracy of 0.8. All this using
only 5 epochs (the number of epochs is more reduced for this dataset due to its enormous size).

Similarly, Vendor Verified generated an AUC of 0.85, with a testing accuracy of 0.77. These two
results are exceptional, considering the assumption of labeling all the tweets by a Content Polluter
as ”polluting”. Similarly to the rest of the tests, Gilani acquired a lower AUC (0.66) and a lower
accuracy.

6.3.2.3 Results Discussion

According to our suppositions, this model has provided a better performance in comparison to the
techniques employed in the word frequencies experiment. Thus, this means that the LSTM Neural
Network has taken advantages of extracting knowledge from the order of the sentences.

Although all the AUC values are greater than the overall results obtained in the other approach,
these are still quite similar to the outcome obtained from Naive Bayes. As stated in the word
frequencies approach, other models are preferred when facing similar results due to the fact that
this model relies on a naive assumption.

6.4 Study 3: Users and Tweets

6.4.1 Methodology and Results

The final method to be used in this project consists of a final study combining the techniques of
both approaches: the user level and the tweet level. Concretely, it has been decided to use the
tweet level in this final approach, since our tweet level approaches generated worse results than
the user level approach which were outstanding.

In order to carry out this experiment, new datasets have been created by adding the features of
each user to their respective tweets. In this way, the user features will add information to the tweet
content, hopefully improving the classification.

The model selected to this experiment has been the LSTMNeural Network used in Study 2, whose
architecture is illustrated in Figure 6.17. The only modification has been the increase in the number
of neurons of the Dense Layer corresponding to the features input from 2 to 8, in order to improve
the capacity of the model since the number of input features has grown.

This model has been chosen due to its performance in the previous experiments, since its results
were rated as the best regarding the tweet level. In terms of evaluation, it has been carried out iden-
tically to the Study 2. Hold-out has been used, discarding the possibility of using cross validation
due to the computational costs.

6.4.2 Results Discussion

The ROC curves are shown in Figure 6.19 and the accuracies and AUC values can be appreciated
in Table 6.20. As we can notice, the results for each dataset have improved with respect to the

59

6.4. STUDY 3: USERS AND TWEETS CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.19: ROC Curves for the models in Study 3: Users and Tweets.

Training Testing

Number of Epochs Loss Accuracy Loss Accuracy AUC

Caverlee 2011 5 0.0366 0.9005 0.0364 0.8992 0.949

Vendor Veri-
fied Mixed

150 0.0374 0.9007 0.0486 0.8546 0.932

Gilani 2017 180 0.0744 0.7759 0.0858 0.7279 0.796

Table 6.20: Results obtained from the LSTM Neural Network in Study 3.

values in Study 2: LSTM approach. The AUCs for Caverlee and Vendor Verified have improved
from 0.85 to 0.95. Moreover, the AUC of Gilani has also risen from 0.66 to 0.796. Ultimately,
this model has exceeded all the models regarding the tweet level approach.

In comparison to the user level approach, these results surpass the values obtained by all the mod-
els, excluding only the Random Forest at the user level in Study 1, which has similar values for
Caverlee and Gilani and greater values for Vendor Verified.

In conclusion, the combination of both approaches has resulted in an ameliorated model in terms
of the tweet level classification. This suggests that the user features when analyzing individual
tweets are quite relevant.

60

Chapter 7

Conclusions and Future Projects

7.1 Conclusions

In this project, different Machine Learning models have been evaluated to discriminate between
Content Polluters and Legitimate Users. To do this, firstly a social analysis of Twitter as a social
network platform has been done, this includes an study of its functioning and its context. Next,
a proper examination of the Machine Learning field at a theoretical level has been carried out, in
order to identify which techniques are available. The following step has consisted in doing some
research to find public datasets related to Content Polluters on the web. Given that it was possible
to find appropriate datasets, it was decided not to obtain our own datasets. Subsequently, different
experiments have been executed in order to test the possibilities of Machine Learning classifiers
in the context of the task defined for this project. Moreover, all the results have been processed,
obtaining different metrics which allow us to perform a critical evaluation of them. Finally, the
conclusions of the project have been acquired according to the results obtained. Basically, it seems
fair to state that all the objectives suggested in the introduction of this project have been properly
achieved.

Once finished all the experiments and obtained all the results, it is possible to extract the conclu-
sions of this project in a critical way: Thus, it is feasible to declare that:

1. It has been possible to differentiate Content Polluters fromLegitimate Users at the user
level by using Supervised Learning approaches in this project: This has been demon-
strated by the outstanding results obtained in Study 1, since the values of the metrics for
Caverlee and Vendor Verified were spectacular. At the same time, the results for Gilani
were acceptable.

2. The best model found in this project for classifying Content Polluters at the user level is
the Random Forest: According to the results, the performance of Random Forest surpasses
themetric values corresponding toKNN,Decision Tree andDenseNeural Networks in Study
1 in terms of user level classification.

3. It has been possible to classify Content Polluters tweets by only using its content and
relative features to it: The experiments at the tweet level have shown that most of the
Machine Learning models produced more than acceptable results.

61

7.2. FUTURE PROJECTS CHAPTER 7. CONCLUSIONS AND FUTURE PROJECTS

4. LSTMNeural Networks generated, in this study, slightly better results than usual Ma-
chine Learning models using only word frequencies: The results acquired by the LSTM
Neural Network used in Study 2 got better values than the word frequencies approach. How-
ever, the difference is not as big as expected, so the word frequencies technique should not
be underrated.

5. It has been easier to classify at the user level than at the tweet level in this project:
Generally, the classifiers used in the user level approach provided better results than the
models trained at tweet level. This may be caused by either the difficulty of evaluating the
contents of the tweets by NLP techniques or the high relevance of the user level features. Of
course, it could also be due to undetected bias in the datasets or similar reasons.

6. Distinguishing Content Polluters from Legitimate Users verified by Twitter has been
easier when facing reduced number of samples in the dataset. The experiments have
demonstrated that, according to our initial thoughts, the results have been better forVendor-
verified than for Gilani dataset. However, when dealing with a large enough dataset, such
asCaverlee, it is perfectly possible to carry out the classification. This is applied to both the
user and tweet level classification.

7. Combining the user level and tweet level approaches, the tweet level detection notice-
ably improves: The results from Study 3 obtained a better outcome than the rest of the tweet
level approaches. That is the optimal solution for the tweet level classification.

8. It is possible to classify current Content Polluters by Supervised Learning methods if
training datasets are available: It has been feasible to carry out the classification in all
the three datasets used in this project, some with better results than others. Given that the
datasets belong to the years 2011, 2017 and 2019, it seems fair to state that it is possible
to detect them by using Supervised learning approaches, even though they are constantly
evolving. However, the difficulty may be to get datasets of evolved Content Polluters.

7.2 Future Projects

This project has been focused in a pure Supervised Learning approach. However, in the recent
years, some unsupervised approaches have been proposed. For instance, Cresci et. al. evaluated
this possibility by means of clustering in [19]. This approach is totally different that the one carried
out on this project because it needs distinct datasets, which contain sequences of actions done
by each account rather than numerical features such as the number of followers. Thus, it would
be interesting in a future project to try both approaches on the same set of accounts and do a
comparison.

Another project could be focused on studying the concrete relevance of the features used in this
analysis in terms of classifying Content Polluters. Moreover, the possibility of adding new features
and collecting new datasets can be also explored.

A similar project based on the same basic idea of identifying Content Polluters could be carried out
with other social networks such as Facebook, Instagram, etc. A comparison could be done so as
to find out in which sites Content Polluters have a greater impact or where they are more difficult
to be detected.

62

CHAPTER 7. CONCLUSIONS AND FUTURE PROJECTS 7.2. FUTURE PROJECTS

Another option could be the development of an application which uses the conclusions of this
project to implement an optimal model, dedicated to analyze the chances of a Twitter account,
introduced by the user being, Content Polluter. In other words, something similar to the Indiana
University Project, but oriented to smartphones.

Similarly to the smartphone application suggestion, a Content Polluter classification system could
be integrated in a plug-in/extension for some web browser. In this case, this extension could extract
the required information from an account in Twitter and classify it by using the models studied in
this project.

63

7.2. FUTURE PROJECTS CHAPTER 7. CONCLUSIONS AND FUTURE PROJECTS

64

References

[1] Digital revolution - Nature. https://www.nature.com/articles/d41586- 018-
07500-z. Accessed: 2020-05-18.

[2] Kai-Cheng Yang et al. “Arming the public with artificial intelligence to counter social bots”.
In: Human Behavior and Emerging Technologies 1.1 (2019), pp. 48–61.

[3] Social media is failing miserably at battling the spread of coronavirus misinformation -
Independent UK. https : / / www . independent . co . uk / voices / social - media -
coronavirus-fake-news-misinformation-5g-conspiracy-theories-a9497926.
html. Accessed: 2020-05-19.

[4] 5G Virus Conspiracy Theory Fueled by Coordinated Effort - Bloomberg. https://www.
bloomberg.com/news/articles/2020-04-09/covid-19-link-to-5g-technology-
fueled-by-coordinated-effort. Accessed: 2020-05-19.

[5] Facebook investigates army of bots giving massive ”likes” to Spain’s health ministry - El
Nacional. https://www.elnacional.cat/en/news/coronavirus-facebook-bots-
likes-spain-health-ministry_494676_102.html. Accessed: 2020-05-19.

[6] Kyumin Lee, Brian David Eoff, and James Caverlee. “Seven months with the devils: A
long-term study of content polluters on twitter”. In: Fifth international AAAI conference on
weblogs and social media. 2011.

[7] 12 ways Twitter changed our lives. https://www.theguardian.com/technology/
2016/mar/21/12-ways-twitter-changed-our-lives-10th-birthday. Accessed:
2020-06-01.

[8] Andrew G Reece and Christopher MDanforth. “Instagram photos reveal predictive markers
of depression”. In: EPJ Data Science 6.1 (2017), pp. 1–12.

[9] Leading countries based on number of Twitter users as of April 2020. https://www.
statista.com/statistics/242606/number- of- active- twitter- users- in-
selected-countries/. Accessed: 2020-06-01.

[10] Six ways Twitter has changed the world. https://theconversation.com/six-ways-
twitter-has-changed-the-world-56234#:~:text=Twitter%20has%20changed%
20celebrity%20culture,strict%20control%20from%20their%20management..
Accessed: 2020-06-02.

[11] Distribution of Twitter users worldwide as of April 2020, by age group. https://www.
statista.com/statistics/283119/age-distribution-of-global-twitter-
users/. Accessed: 2020-06-01.

65

https://www.nature.com/articles/d41586-018-07500-z
https://www.nature.com/articles/d41586-018-07500-z
https://www.independent.co.uk/voices/social-media-coronavirus-fake-news-misinformation-5g-conspiracy-theories-a9497926.html
https://www.independent.co.uk/voices/social-media-coronavirus-fake-news-misinformation-5g-conspiracy-theories-a9497926.html
https://www.independent.co.uk/voices/social-media-coronavirus-fake-news-misinformation-5g-conspiracy-theories-a9497926.html
https://www.bloomberg.com/news/articles/2020-04-09/covid-19-link-to-5g-technology-fueled-by-coordinated-effort
https://www.bloomberg.com/news/articles/2020-04-09/covid-19-link-to-5g-technology-fueled-by-coordinated-effort
https://www.bloomberg.com/news/articles/2020-04-09/covid-19-link-to-5g-technology-fueled-by-coordinated-effort
https://www.elnacional.cat/en/news/coronavirus-facebook-bots-likes-spain-health-ministry_494676_102.html
https://www.elnacional.cat/en/news/coronavirus-facebook-bots-likes-spain-health-ministry_494676_102.html
https://www.theguardian.com/technology/2016/mar/21/12-ways-twitter-changed-our-lives-10th-birthday
https://www.theguardian.com/technology/2016/mar/21/12-ways-twitter-changed-our-lives-10th-birthday
https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
https://www.statista.com/statistics/242606/number-of-active-twitter-users-in-selected-countries/
https://theconversation.com/six-ways-twitter-has-changed-the-world-56234#:~:text=Twitter%20has%20changed%20celebrity%20culture,strict%20control%20from%20their%20management.
https://theconversation.com/six-ways-twitter-has-changed-the-world-56234#:~:text=Twitter%20has%20changed%20celebrity%20culture,strict%20control%20from%20their%20management.
https://theconversation.com/six-ways-twitter-has-changed-the-world-56234#:~:text=Twitter%20has%20changed%20celebrity%20culture,strict%20control%20from%20their%20management.
https://www.statista.com/statistics/283119/age-distribution-of-global-twitter-users/
https://www.statista.com/statistics/283119/age-distribution-of-global-twitter-users/
https://www.statista.com/statistics/283119/age-distribution-of-global-twitter-users/

7.2. FUTURE PROJECTS CHAPTER 7. CONCLUSIONS AND FUTURE PROJECTS

[12] Developer Agreement and Policy. https://developer.twitter.com/en/developer-
terms/agreement-and-policy. Accessed: 2020-06-02.

[13] Chao Yang, Robert Harkreader, and Guofei Gu. “Empirical evaluation and new design for
fighting evolving twitter spammers”. In: IEEE Transactions on Information Forensics and
Security 8.8 (2013), pp. 1280–1293.

[14] VS Subrahmanian et al. “The DARPA Twitter bot challenge”. In: Computer 49.6 (2016),
pp. 38–46.

[15] Clayton Allen Davis et al. “Botornot: A system to evaluate social bots”. In: Proceedings of
the 25th international conference companion on world wide web. 2016, pp. 273–274.

[16] Gang Wang et al. “Social turing tests: Crowdsourcing sybil detection”. In: arXiv preprint
arXiv:1205.3856 (2012).

[17] Stefano Cresci et al. “The paradigm-shift of social spambots: Evidence, theories, and tools
for the arms race”. In: Proceedings of the 26th international conference on world wide web
companion. 2017, pp. 963–972.

[18] Sneha Kudugunta and Emilio Ferrara. “Deep neural networks for bot detection”. In: Infor-
mation Sciences 467 (2018), pp. 312–322.

[19] Stefano Cresci et al. “DNA-inspired online behavioral modeling and its application to spam-
bot detection”. In: IEEE Intelligent Systems 31.5 (2016), pp. 58–64.

[20] Stuart J. Russell and Peter Norvig. Artificial Intelligence. A Modern Approach - Third Edi-
tion. California Technical Pub, 1995, p. 1132. ISBN: 0-13-604259-7.

[21] Underfitting and Overfitting in Machine Learning. https://www.geeksforgeeks.org/
underfitting-and-overfitting-in-machine-learning/. Accessed: 2020-06-16.

[22] Understanding AUC - ROCCurve. https://towardsdatascience.com/understanding-
auc-roc-curve-68b2303cc9c5/. Accessed: 2020-06-16.

[23] Machine LearningClassifiers. https://towardsdatascience.com/machine-learning-
classifiers-a5cc4e1b0623. Accessed: 2020-06-19.

[24] Classification and Regression Analysis withDecision Trees. https://towardsdatascience.
com/https-medium-com-lorrli-classification-and-regression-analysis-
with-decision-trees-c43cdbc58054. Accessed: 2020-06-20.

[25] Understanding RandomForest. https://towardsdatascience.com/understanding-
random-forest-58381e0602d2. Accessed: 2020-06-22.

[26] 5 Regression Loss Functions All Machine Learners Should Know. https://heartbeat.
fritz.ai/5- regression- loss- functions- all- machine- learners- should-
know-4fb140e9d4b0. Accessed: 2020-06-23.

[27] Building A Deep Learning Model using Keras. https://towardsdatascience.com/
building-a-deep-learning-model-using-keras-1548ca149d37. Accessed: 2020-
06-23.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), pp. 436–444.

[29] Understanding LSTM Networks. http : / / colah . github . io / posts / 2015 - 08 -
Understanding-LSTMs/. Accessed: 2020-06-24.

66

https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5/
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5/
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/machine-learning-classifiers-a5cc4e1b0623
https://towardsdatascience.com/https-medium-com-lorrli-classification-and-regression-analysis-with-decision-trees-c43cdbc58054
https://towardsdatascience.com/https-medium-com-lorrli-classification-and-regression-analysis-with-decision-trees-c43cdbc58054
https://towardsdatascience.com/https-medium-com-lorrli-classification-and-regression-analysis-with-decision-trees-c43cdbc58054
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0
https://towardsdatascience.com/building-a-deep-learning-model-using-keras-1548ca149d37
https://towardsdatascience.com/building-a-deep-learning-model-using-keras-1548ca149d37
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CHAPTER 7. CONCLUSIONS AND FUTURE PROJECTS 7.2. FUTURE PROJECTS

[30] Naive Bayes Explained. https://towardsdatascience.com/naive-bayes-explained-
9d2b96f4a9c0. Accessed: 2020-06-24.

[31] Zafar Gilani et al. “Of bots and humans (on twitter)”. In:Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017. 2017,
pp. 349–354.

[32] Bot Respository - Indiana University. https : / / botometer . iuni . iu . edu / bot -
repository/index.html. Accessed: 2020-06-26.

[33] About Verified Accounts. https://help.twitter.com/en/managing-your-account/
about-twitter-verified-accounts. Accessed: 2020-06-29.

[34] Kaggle. https://www.kaggle.com/. Accessed: 2020-06-29.
[35] Popular Twitter bots. https://www.kaggle.com/fourtonfish/popular-twitter-

bots/data. Accessed: 2020-06-29.
[36] Pandas Documentation. https://pandas.pydata.org/docs/. Accessed: 2020-06-29.
[37] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal of ma-

chine Learning research 12 (2011), pp. 2825–2830.
[38] Scikit-Learn Documentation. https://scikit-learn.org/stable/. Accessed: 2020-

06-29.

[39] Keras Documentation. https://keras.io/. Accessed: 2020-06-29.
[40] Matplotlib Documentation. https : / / matplotlib . org / 3 . 2 . 1 / contents . html.

Accessed: 2020-06-29.

[41] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in science & en-
gineering 9.3 (2007), pp. 90–95.

67

https://towardsdatascience.com/naive-bayes-explained-9d2b96f4a9c0
https://towardsdatascience.com/naive-bayes-explained-9d2b96f4a9c0
https://botometer.iuni.iu.edu/bot-repository/index.html
https://botometer.iuni.iu.edu/bot-repository/index.html
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
https://www.kaggle.com/
https://www.kaggle.com/fourtonfish/popular-twitter-bots/data
https://www.kaggle.com/fourtonfish/popular-twitter-bots/data
https://pandas.pydata.org/docs/
https://scikit-learn.org/stable/
https://keras.io/
https://matplotlib.org/3.2.1/contents.html

	I Project Report
	Introduction
	Motivation
	The General Problem
	Twitter as the Target of the Study
	The Solution
	Personal Level Interest

	Objectives
	Main Objective
	Individual Objectives

	Organization of This Report

	Twitter Overview and Content Polluters.
	Twitter Overview
	General Description
	Social Impact and Statistics
	Twitter API
	Description
	Ethics and Responsibility

	Content Polluters
	Content Polluter: Definition
	State of the Art

	Machine Learning Fundamentals.
	Definition
	Types of Learning
	Supervised Learning
	Unsupervised Learning

	Classification vs Regression
	Evaluation Techniques
	Overfitting
	Test and Training Splitting Techniques
	Metrics for Classification Models
	Confusion Matrix and Metrics.
	ROC Curve and AUC

	Machine Learning Classifiers
	Introduction
	Two Types of Classifiers
	Lazy Learners
	K-Nearest Neighbours

	Eager Learners
	Decision Trees
	Random Forests
	Artificial Neural Networks
	Individual Neuron (Perceptron)
	Multi Layer Perceptron (Dense Neural Network)
	Recurrent Neural Networks, LSTM and Embedding Layer

	Naive Bayes

	Methodology
	Utilized Datasets
	Caverlee
	Gilani
	Vendor-Verified Mixed
	Split between Train and Test
	Discarded Datasets

	Libraries and Tools
	Python
	Tweepy
	Pandas
	Scikit-Learn
	Keras
	Matplotlib

	Experiments

	Experiments and Results
	Introduction
	Study 1: User-Level Features
	Feature Extraction
	K-Nearest Neighbours
	Decision Tree
	Random Forest
	Multi Layer Perceptron (MLP)
	Results Discussion
	Dense Neural Network: Keras
	Results Discussion

	Study 2: Tweets-Level Features
	Word Frequencies Experiment
	Feature Extraction: Word Frequencies
	Naive Bayes
	Decision Tree
	Random Forest
	Results Discussion

	LSTM Neural Network Experiment
	Feature Extraction for the LSTM Neural Network
	Architecture Employed and Results
	Results Discussion

	Study 3: Users and Tweets
	Methodology and Results
	Results Discussion

	Conclusions and Future Projects
	Conclusions
	Future Projects

	References

