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Resumen  

Con el desarrollo de la tecnología de imágenes médicas, especialmente la tecnología de imágenes de 

resonancia magnética funcional (fMRI), los investigadores han descubierto que la conectividad 

cerebral ha ocurrido como una característica crítica de la esquizofrenia. Este estudio tuvo como 

objetivo implementar la descomposición de wavelet para extraer la serie temporal de datos de fMRI 

para apoyar el diagnóstico de la enfermedad de esquizofrenia. Después de esto, este estudio determinó 

la correlación wavelet de 116 regiones cerebrales para estimar la conectividad de la red cerebral y 

utilizó algoritmos de máquina de vectores de soporte (SVM) y kNN (vecino k-más cercano) para 

clasificar los datos de fMRI de un sujeto para probar si el sujeto está sufriendo de la esquizofrenia. 

Este estudio combinó un enfoque de análisis wavelet con algoritmos avanzados de aprendizaje 

automático: clasificadores de máquina de vectores de soporte (SVM) y kNN (vecino k-más cercano) 

para investigar la red de conectividad cerebral con diez sujetos. La matriz de conectividad fMRI 

determinada por la correlación cruzada de wavelet se construyó mediante el etiquetado anatómico 

automático del Atlas (AAL), que constaba de 116 regiones. Los coeficientes máximos de correlación 

wavelet en bandas de frecuencia específicas se extrajeron como el componente esencial de la 

clasificación, que se aplicó a los clasificadores para identificar a las personas con enfermedades de 

esquizofrenia de los controles saludables. Para mejorar la precisión de los resultados de clasificación, 

diseñamos e implementamos diferentes tipos de núcleos para clasificadores SVM (es decir, núcleos 

lineales, gaussianos y polinómicos) y diferentes tipos de distancias para clasificadores KNN (es decir, 

distancia euclidiana estándar, de Hamming y gaussiana) en este proyecto. Los resultados 

experimentales demuestran que el KNN con distancia euclidiana y gaussiana estándar muestra un 

gran rendimiento de clasificación con un índice de precisión del 90%, lo que significa que el método 

podría usarse eficazmente en el diagnóstico auxiliar de la enfermedad de esquizofrenia. 

Resum 

Amb el desenvolupament de la tecnologia d'imatge mèdica, especialment la tecnologia de ressonància 

magnètica funcional (fMRI), els investigadors han descobert que la connectivitat cerebral ha 

transcorregut com una característica crítica de l'esquizofrènia. Aquest estudi tenia com a objectiu la 

implementació de la descomposició d’ona ondulada per extreure la sèrie temporal de dades de la RMF 

per donar suport al diagnòstic de la malaltia d’esquizofrènia. Després d’aquest fet, aquest estudi va 

determinar la correlació d’ona d’ones de 116 regions cerebrals per estimar la connectivitat de la xarxa 

cerebral i va utilitzar els algorismes de Support Vector Machine (SVM) i kNN (k-Near Neighbor) per 

classificar les dades fMRI d’un subjecte a provar si el subjecte pateix. de l’esquizofrènia. Aquest 

estudi va combinar un enfocament d’anàlisi d’ondeletes amb algoritmes avançats d’aprenentatge 

automàtic: Support Vector Machine (SVM) i kNN (k-Near Neighbor) classificadors per investigar la 

xarxa de connectivitat cerebral amb deu subjectes. La matriu de connectivitat fMRI determinada per 

la correlació de les ondulacions es va construir mitjançant un Etiquetatge Automàtic d'Atlas Anatòmic 

(AAL), format per 116 regions. Els coeficients màxims de correlació d’ona en bandes de freqüència 

específiques es van extreure com a component essencial de la classificació, que es va aplicar als 

classificadors per identificar individus amb malalties d’esquizofrènia a partir dels controls saludables. 

Per millorar la precisió dels resultats de classificació, vam dissenyar i implementar diferents tipus de 

nuclis per als classificadors SVM (és a dir, nuclis lineals, gaussians i polinòmics) i diferents tipus de 

distàncies per als classificadors KNN (és a dir, Distància Euclidiana Estàndard, Hamming i Gaussiana) 

en aquest projecte. Els resultats experimentals demostren que el KNN amb Standard Euclidiana i 

Gaussian Distance mostra un gran rendiment de classificació amb un índex de precisió del 90%, cosa 



                                                                                                                                                              

 

 

que significa que el mètode es podria utilitzar eficaçment en el diagnòstic auxiliar de la malaltia de 

l'esquizofrènia. 



                                                                                                                                                              

 

 

Abstract 

With the development of medical imaging technology, especially functional magnetic resonance 

imaging(fMRI) technology, researchers have discovered that brain connectivity has transpired as a 

critical feature of Schizophrenia. This study aimed to implement wavelet decomposition to extract 

the time series of fMRI data for supporting the diagnosis of schizophrenia disease. After this, this 

study determined the wavelet correlation of 116 brain regions to estimate brain network connectivity 

and used Support Vector Machine (SVM) and kNN (k-Nearest Neighbour) algorithms to classify the 

fMRI data of a subject to test if the subject is suffering from the Schizophrenia. This study combined 

a wavelet analysis approach with advanced machine learning algorithms: Support Vector Machine 

(SVM) and kNN (k-Nearest Neighbour) classifiers to research the brain connectivity network with 

ten subjects. The fMRI connectivity matrix determined by wavelet cross-correlation was constructed 

by automated Anatomical Atlas Labelling (AAL), consisted of 116 regions. The maximum wavelet 

correlation coefficients in specific frequency bands were extracted as the essential component of 

classification, which was applied to the classifiers to identify individuals with Schizophrenia Diseases 

from the Healthy Controls. To improve the accuracy of classification results, we designed and 

implemented different types of kernels for SVM classifiers (i.e., Linear, Gaussian, and Polynomial 

Kernels) and different kinds of distances for KNN classifiers (i.e., Standard Euclidean, Hamming, 

and Gaussian Distance) in this project. The experimental results demonstrate that KNN with Standard 

Euclidean and Gaussian Distance shows a great performance of classification with an accuracy index 

of 90%, which means the method could be effectively used in the auxiliary diagnosis of Schizophrenia 

Disease. 
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Capítulo 1. Introduction 

In recent years, with the development of functional magnetic resonance imaging (fMRI) technology, 

researchers have gradually explored the brain from structural analysis to focus on functional 

connections in the brain. A human brain can be considered as a complex network with numerous 

structurally or functionally interconnected brain regions [1]. More and more experiments are also 

exploring some mental diseases such as Alzheimer's disease, depression, and schizophrenia, which 

are suspected to link to functional connections in the brain. Schizophrenia is a severe mental disease 

with extensive cognitive impairment. However, there is still no clear conclusion on its pathological 

mechanism and affected brain regions, and it is generally believed to be caused by the mal-integration 

of brain functions [2][3][4]. Machine recognition technology can be used as a clinical diagnostic 

indicator of brain diseases from the brain function connection matrix obtained from fMRI data [5]. 

Nevertheless, brain function connection matrices are generally high-dimensional data, and existing 

machine recognition technologies cannot be directly used for data processing. Therefore, some 

traditional linear dimensionality reduction methods, such as PCA (Principal Component Analysis) 

and ICA (Independent Component Analysis), are used in the data pre-processing[6]. However, these 

dimensionality reduction methods have various restrictions. Thus, before applying the above methods, 

it must be assumed that the data conform to specific statistical characteristics. In order to solve the 

above problems, H.Shen et al., [7] introduced low-dimensional embedding to fMRI; S.Lee et al., [8] 

constructed a Gaussian process classifier to study abnormal brain functional connections; H.GA et 

al.,[9] researched on multi-scale extraction method of event-related fMRI data. However, these 

methods are limited to regional analysis. The inability to analyse the differences of the brain network 

as a whole leads to the loss of some critical classification information. Therefore, this study focused 

on the overall brain functional network, which transformed the fMRI data of each subject into the 

time series of each brain region. The wavelet decomposition method was chosen to establish the brain 

connection network. Based on the connectivity matrix, machine learning classifiers (SVM and kNN) 

were trained to classify whether the subject suffers from schizophrenia. With accuracy indexes as 

evaluation for classifiers, the study concluded the choice of the classifier to support the diagnosis of 

schizophrenia. Figure 1 shows the experiment process of this study. 

 

Figure 1 Overview of this study 
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Capítulo 2. Background 

2.1 Functional Magnetic Resonance Imaging and Brain Activity 

fMRI (functional Magnetic Resonance Imaging) is one of the most broadly used neuroimaging 

technologies which measures relative variations in deoxygenated haemoglobin for continuous brain 

activity. The most common method of fMRI is blood oxygen level-dependent (BOLD) imaging [10]. 

fMRI relies on the magnetization vector difference between oxyhaemoglobin and deoxygenated 

haemoglobin to generate fMRI signals. When a brain region becomes active, the haemoglobin will 

transport more blood flow with oxygen to the neurons. As a result, it could illustrate various magnetic 

properties during the process from oxygenation to deoxygenation. Figure 2 shows the mechanism of 

the BOLD signal. It is a subordinate indicator of neural events based on blood flow regulated by local 

brain metabolism. 

 

Figure 2 BOLD signal mechanism for fMRI. 

 

The recent fMRI analyses have observed changes in BOLD amplitude by means of external stimulus, 

which determine the specialised function of a specific brain region (functional separation). 

 

The precise amplitude of the BOLD signal cannot be compared across different subjects because 

fMRI is a contrast but not a quantitative imaging technique. Therefore, typically, the process aims to 

determine the relative differences in BOLD signal amplitude across two tasks of one subject. This 

has been designed in a block: a subject performs a certain task for about half a minute before fixed 

time for rest, and the cycle is repeated (Figure 3). At the same time, the corresponding BOLD signals 

are collected. Alternating between task and rest generates the images required for inferring brain 

activity. The voxel time courses are then collected for further analysis. 

Brain Activities ↑ 
Oxygen Consumption ↑ 

Blood flow ↑
Oxyhemoglobin↑ 

Deoxyhemoglobin ↓
MRI Signal Intensity↑
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Figure 3 Example of fMRI design experiment. 

The figure is adapted from [11] 

 

 

2.2 Brain Network Connectivity 

2.2.1 Brain Network based on Graph Theory  

The human brain is one of the most complex systems in nature. It is estimated that there are about 

1011 neuronal cells in the brain of an adult. These huge numbers of neuronal cells are connected 

through about 1015 synapses, forming a highly complex brain structure network. More and more 

evidence shows that this complex and huge network is the physiological basis of the brain for 

information processing and cognitive expression [12].Graph theory, as an important analysis tool in 

the field of complex network analysis, has been widely used in brain network study to detect the 

internal organization pattern of the brain. In graph theory analysis, a complex network can be 

abstracted into a graph G. Graph G is a set of nodes connected by edges [13]. Figure 4 shows an 

example of a network. The black dots with numbers are the nodes and the blue line between the 

vertices is the edge. In the brain network, the brain area or voxel could be regarded as a node, and the 

functional connection or structural connection between the brain area or voxel could be viewed as an 

edge. In this way, the brain network can be abstracted into a graph to represent, and then the graph 

theory analysis method could be used to study the topological properties of brain networks. 
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Figure 4 An example of Graph G 

 

2.2.2  Define Brain Network Nodes 

There are three commonly used methods to define nodes in brain network analysis:  

(1) Each voxel is defined as a node. This method can analyse the brain network at the maximum 

resolution, but the amount of calculation is not conducive to further research.  

(2) Each independent component as a node. According to the spatial independence between voxels, 

the whole brain is divided into several independent components using the ICA algorithm. This method 

does not require any prior knowledge and is a purely data-driven method. However, the independent 

components of the segmentation lack physiological interpretation, and it is challenging to apply the 

experimental results to clinical treatment.  

(3) The physiological anatomy templates are used to segment the brain area. The method could take 

advantage of numerous templates. Also, the experimental method is simple and reproducible, which 

is used by most researchers now. Therefore, in this study, the AAL (Anatomical Automatic Labelling) 

template is used to divide the whole brain into 116 brain regions previously validated and reported 

by Tzourio-Mazoyer et al. [14]. Each brain region represents an independent node in the brain 

network, and the average voxel time series of each node is extracted to define the node time.  

 

2.2.3  Define the Brain Network Connectivity 

The edge in the brain network often consists of the anatomical connection, functional connection, or 

effective connection of the brain. Among the different types of connections, functional connection 

represents the cross-correlation degree of signal changes of the BOLD level in brain regions, and 

effective connection represents a causal connection in the brain region. Traditionally, the Pearson 

correlation is used for estimating the cross-correlation degree:   

 

(2) 

 

However, the traditional Pearson correlation cannot reflect the time series details. In order to 

overcome this problem, the wavelet correlation coefficient between nodes is selected as the edge 

weight of the functional connection. The specific algorithm for calculating wavelet correlation will 

be discussed in Part 3.3.   
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2.3 Classification 

In general, there are four basic approaches to machine learning: supervised, unsupervised, semi-

supervised, and reinforcement learning. Classification is a form of supervised learning.[15] At the 

first stage of training, the decision function (i.e., “classifier”) learns from the values of features in a 

set of independent sample inputs and corresponding outputs. For a neuroimaging case, the “features” 

could be voxels’ information and the “class label” could be the physical condition of subjects (Figure 

5). 

 

Figure 5 Example of the distribution of voxels and datasets 

 

We will denote a sample with the row vector 𝒙 =  [𝑥1 ,𝑥2 ,  … ,  𝑥𝑣] and its class label as 𝑦. Then the 

classifier is used to generate category assignments (i.e. "labels") with a given precision. The learned 

classifier shows the relationship between the features and the class labels in the training dataset. We 

can use the formula “�̂�  =  𝑓(𝒙) .” to signifies the relationship, where �̂�   the represents predicted 

labels.  

 

Once the classifier has been trained based on the features, the relationship should be tested by different 

datasets. In other words, if the classifier truly “learned” the relationship between features and classes, 

it can automatically predict and assign the classification labels to the new classes of examples. When 

we compare the predicted labels with classifier with true labels, we will find an estimate of its 

performance. To be specific, we will represent the training and testing datasets with 𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑋𝑡𝑒𝑠𝑡 

and label matrices as the column vectors 𝑦𝑡𝑟𝑎𝑖𝑛  and 𝑦𝑡𝑒𝑠𝑡  respectively. Its accuracy could be measured 

to evaluate how well the classifier manifests (Figure 6). 

 

 

Figure 6 The sketch map of training and testing process 
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Capítulo 3. Design and Implementation 

3.1 Dataset 

The fMRI dataset is from OpenNEURO, a free and open platform for sharing MRI, MEG, EEG, iEEG, 

and ECoG data. The specific dataset used in this study is “Working memory in healthy and 

schizophrenic individuals” uploaded by Chris Gorgolewski on 2016-10-2. The participants for this 

dataset were recruited through the Conte Centre for the Neuroscience of Mental Disorders(CCNMD) 

at Washington University School of Medicine in St. Louis included: (1) individuals with DSM-IV 

Schizophrenia; (2) the non-psychotic siblings of individuals with schizophrenia; (3) healthy controls; 

and (4) the siblings of healthy controls. Siblings were full siblings, based on self-report. All 

participants gave written informed consent for participation and all participants had been included in 

a previous report on resting-state functional connectivity changes in schizophrenia[16]. For this study, 

ten subjects were chosen for implementation. Table 1 shows the specific information of 10 subjects.  

 

Participant_id Condition Gender Age 

sub-01 SCZ MALE 28.961 

sub-02 SCZ-SIB MALE 26.8419 

sub-03 SCZ-SIB FEMALE 29.4648 

sub-04 SCZ-SIB MALE 25.8344 

sub-05 SCZ FEMALE 25.6454 

sub-06 CON-SIB FEMALE 24.5941 

sub-07 CON MALE 27.5838 

sub-08 CON FEMALE 18.768 

sub-09 CON-SIB FEMALE 21.2594 

sub-10 CON-SIB FEMALE 21.3005 

Table 1 The subjects' basic information in this study 

Note: SCZ represents the subjects with Schizophrenia, CON represents the subject is healthy. SCZ-

SIB represents the siblings of subject affected Schizophrenia and CON-SIB represents the siblings of 

subject who are unaffected (i.e., healthy). 

3.2 Pre-Processing 

The goals of pre-processing are to remove uninteresting variability from the data, improving 

functional signal-to-noise ratio (SNR) as much as possible. So the data after pre-processing could be 

efficiently used for further statistical analysis.  

3.2.1 Brain Skull Removal (Using FSL FEAT’s Brain Extraction Technique)  

Since fMRI studies are centred on brain tissue, our first step is to remove the skull and non-brain 

areas from the image. FEAT is a software tool for high quality model-based fMRI data analysis, with 

an easy-to-use graphical user interface (GUI). FEAT is part of FSL (FMRIB's Software Library)[17]. 
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Firstly, the tool creates the intensity histogram to find the stable minimum and maximum intensity 

values and determines a coarse brain outline. At the same time, the centre of the head image was 

generated, as well as the approximate size of the head of the image. Next, the image goes through 

initialisation of tessellated surface, and gradually be warped by one vertex for one time. When the 

process goes on moving towards the brain’s edge, it keeps the surface well-spaced and smooth all the 

time. If a properly clean solution is not acquired, then we should re-run with a higher smoothness 

constraint for the iterative process [18]. Figure 7 illustrates the comparison of the brain image before 

and after the brain extraction process.  

  

 

Figure 7 The comparison between the image before (left) and after (right) brain skull removal 

 

 

3.2.2 Slice Time Correction (SPM) 

Due to the order of slices that can be acquired in different ways, the BOLD signal in time series could 

be thus totally different. For example, the part of the Figure 8 (A) marked in red shows one brain 

region is consistently active after the boost of a stimulus. Figure 8 (B). shows the interleaved fifteenth 

to seventeenth slices sequence in the brain region. The BOLD signals for these three slices very 

different because they are not obtained at the same time. Figure 8 (C) shows the correct and real 

BOLD signal of the slices. However, Figure 8 (D) illustrates the BOLD signal in time series could 

be not coincident for each repeat time because of the slices acquired at different times, which will 

interfere with subsequent analysis. 
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Figure 8 Effects of slice acquisition time upon the hemodynamic response 

 

Slice Time Correction was achieved by adjusting specific parameters in the Statistical Parametric 

Mapping Software (SPM12, available at https://www.fil.ion.ucl.ac.uk/spm) to guarantee slices are 

coincident the same time. During the slice time correction process, all slices of one volume are 

interpolated with one specific slice as a reference which is considered as the foremost accurate slice 

without any interpolation. In contrast, other slices are generated by interpolation according to the 

reference [19]. 

 

3.2.3 Motion Correction (SPM)  

Even small head movements can be a major problem: an increase in residual variance and fMRI data 

may get completely lost if sudden movements occur during a single volume. Therefore, motion 

correction process is to guarantee the identical brain of all fMRI images is at the same position. A 

function called Motion Correction in SPM software is used to solve the motion problem.  In the first 

step, the motion parameter matrix is estimated between each image and the reference image. Then 

the parameters gained from each image are used to re-slice the image that best matches the reference 

image[20]. Figure 9 shows an example of the motion correction process and the effect on the original 

image after motion correction.  
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Figure 9 An example of Motion Correction process 

 

3.2.4 Spatial Smoothing (SPM) Using a Gaussian Filter 

Spatial smoothing in neuroimaging is to make the image seem smoother, which applies a blurring 

filter across the image to calculate the mean value of the part of the intensities from neighbouring 

voxels together. The effect is to blur the sharp edges and to increase SNR of fMRI images. In addition, 

spatial smoothing can offer assistance compensation for mistakes in the inter-subject alignment 

process. Therefore, adjusting the parameter of a Gaussian filter in the SPM software and making its 

diameter to be equal to 8 voxels had been done in this project for spatial smoothing. Figure 10 shows 

the results before and after spatial smoothing process.  

 

 

 

Figure 10 The brain image comparison before smoothing (left) and after smoothing (right) 

 

3.3 Network Estimation 

In Part 2.2, we have discussed some basics of brain network connectivity. Nodes and edges define 

the brain network, and the brain can be separated into 116 regions using the AAL template. Thus, 



                                                                                                                                                              

 

12 

 

 

after pre-processing fMRI data with four steps above, the fMRI data could be expressed as a 4-D 

matrix with the size of 64*64*36*137. The first step for network estimation is to match each voxel 

with its corresponding brain region. Then the BOLD signal in time series for each region is generated 

to estimate every mean signal for each of the regions. Figure 11 illustrates BOLD mean signal in 

time series of subject 1 as an example. Every coloured line represents each brain region, plotted by 

time on the horizontal axis and signal intensity on the vertical. At last, this study had implemented 

wavelet cross-correlation as the element of the brain network connectivity matrix.   

 

Figure 11  BOLD mean signal in time series for 116 regions of subject 1 

 

The specific wavelet cross-correlation provide more information of time series in details than 

traditional Pearson correlation. Suppose the time series 𝑿 =  {𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑁} is the average voxel 

time series for brain region 𝑖.  According to the Maximal Overlap Discrete Wavelet Transform 

(MODWT), we can suppose {ℎ𝑗,𝑙;  𝑙 =  0,1, … , 𝐿𝑗 − 1}  and {𝑔𝑗,𝑙;  𝑙 =  0,1, … , 𝐿𝑗 − 1}  as the 

wavelet filter and scale filter respectively at the scale of 𝑗 , where 𝐿𝑗 = (2𝑗 − 1)  ∗  (𝐿 − 1) +  1 and 

𝐿  represents the length of initial filter. Assume the wavelet and scale coefficients are 𝑊𝑗   and 𝑉𝑗   

respectively1 at the scale of 𝑗 and satisfy the equations: 

 

(3) 

 

(4) 

 

where                         and                          .               

 

Then the time series {𝑿𝒕}  =  {𝑥𝑖,1, 𝑥𝑖,2, … 𝑥𝑖,𝑁  } and {𝒀𝒕}  =  {𝑥𝑗,1, 𝑥𝑗,2, … 𝑥𝑗,𝑁  }  represents the 

average voxel time series for brain region 𝑖 and 𝑗 respectively, where 𝑁 is the number of available 

time slices satisfying 𝑁 ≥ 𝐿𝑗 , 𝑡 = 0,1, … , 𝑁 − 1, which are gaussian processes with steady 
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increments. And the scale dependent covariance could be defined as:  

 

(5) 

 

The unbiased estimate is 

(6) 

 

where {𝑾𝒋,𝒍
(𝑿)

 } and {𝑾𝒋,𝒍
(𝒀)

 }  are the MODWT coefficients at the 𝜆𝑗  =  2𝑗−1 for {𝑿𝒕} and {𝒀𝒕}.  

Then wavelet correlation coefficients of time series can be defined as: 

 

(7) 

 

where                                         [21]. 

 

This study decomposed the average voxel time series as four levels. The cross-correlation coefficients 

could be high at some level(s) and be low at other level(s). That is to say, the signals could be 

correlated in some frequency band(s) and could be not correlated in other frequency band(s). Two 

signals are highly correlated if a high correlation coefficient is obtained in any of the frequency bands 

they were decomposed. Therefore, the maximum correlation was chosen to establish the brain 

network. The brain connectivity matrix then could be defined by cross-correlation coefficients 

computed between each pair of these regions as: 

  

(8) 

 

 

The brain connectivity network matrix and distribution results will be shown in the Part 4.1.  

3.4 Classification 

After we built the brain network and obtained the network connectivity, we use some popular machine 

learning classifiers to distinguish if the subjects suffer from schizophrenia. We have defined 116 brain 

regions, i.e., 116 nodes as parameters to train the specific classifiers. In this study, Support Vector 

Machine (SVM) and K-Nearest Neighbour (kNN) were performed as classifiers to classify the fMRI 

data.   

3.4.1  Support Vector Machine (SVM) 

Support Vector Machine (SVM) could be a data processing technique supported by applied 

mathematics learning theory, which belongs to belongs to supervised learning model with relevance 



                                                                                                                                                              

 

14 

 

 

learning algorithm. The analytical data are used for classification and regression analysis. The 

mechanism of SVM is to find an optimal dividing hyperplane to separate datasets while making the 

blank area (i.e., margin) on both sides of the hyperplane as wide as possible for maximum separation 

of datasets. 

 

Given a training sample set (𝑥𝑖, 𝑦𝑖), where 𝑖 =  1,2, … , 𝑙, 𝒙 ∈ 𝑅𝑛, 𝑦 ∈ ±1, and hyperplane is written 

as (𝒘 · 𝒙) + b = 0. For the sake of classifying all samples accurately and correctly and guarantee the 

classification interval, the following constraints need to be met: 𝑦𝑖[(𝒘 · 𝒙)  +  b] ≥ 1, where 𝑖 =

 1,2, … , 𝑙. Therefore, we can estimate the classification interval as 2/ ||𝒘||. Thus, the problem of 

generating a hyperplane is translated into a constraint to be calculated: 

 

(9) 

 

To solve this constrained optimization equation, the Lagrange function should be introduced: 

 

(10) 

 

where Lagrange multiplier 𝑎𝑖  > 0 . The solution of the constrained optimization problem is 

determined by the saddle point of the Lagrange function, meeting the condition of the partial 

derivatives of 𝑤 and 𝑏 at the saddle point to be zero. This quadratic programming problem could be 

converted into the dual problem: 

 

 

(11) 

 

Therefore, the optimal solution: 𝒂∗ =  (𝑎1
∗ , 𝑎2

∗ , . . . , 𝑎𝑙
∗)

𝑇
 𝑐𝑎𝑛 𝑏𝑒 𝑢𝑠𝑒𝑑 𝑡𝑜 calculate the superior weight 

vector 𝒘∗ and optimal bias 𝑏∗
 as: 

 

(12) 

 

 

(13) 

 

Where 𝑗 ∈ {𝑗 | 𝑎𝑗
∗  > 0}. Therefore, optimal classification hyperplane (𝒘 · 𝒙) + b = 0 and optimal 

classification function is obtained:  
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(15) 

 

For the case of linear inseparability, the main idea of SVM is to map the input vector to a high-

dimensional eigenvector space and construct an optimal classification surface in the feature space. 

Let apply Φ to x, which transforms x from input space Rn to characteristic space H as follows: 

(16) 

 

By replacing the input vector x with the characteristic vector Φ (x), the optimal classification function 

can be obtained as [22]: 

 

(17) 

 

In the dual problem above, the target function and the decision function only contain the inner product 

operation between training samples. However, the calculation of the inner product in a high-

dimensional space also has a problem of a large amount of calculation. So the next step is to find a 

function from origin space 𝐾( 𝑥𝑖, 𝑥𝑗 )  = < 𝛷(𝑥𝑖), 𝛷(𝑥𝑗) > . In this way, we can simplify the 

calculation of the inner product after the mapping process. This simplification is called the kernel 

technique and the function K is called the kernel function. In this project, I designed and implemented 

three kinds of kernel: Linear, Gaussian and Polynomial. 

 

(1) Linear Kernel: 𝐾( 𝑥𝑖, 𝑥𝑗  )  = < 𝑥𝑖 , 𝑥𝑗 >        

The linear kernel function is the most common and lowest-level kernel function. SVMs with linear 

kernel have been used in many applications and are still in use today because of the increased 

robustness and computational speed with respect to other kernels. When the samples are separable in 

the low-dimensional space, the linear kernel function can be used to classify the samples without 

converting to the high-dimensional space. 

 

(2) Polynomial Kernel: 𝐾( 𝑥𝑖, 𝑥𝑗  )  =  (< 𝑥𝑖, 𝑥𝑗 > +1)𝑑      

The polynomial kernel function belongs to the global kernel function, its locality is poor, and the 

sample points that are far away can also affect the classifier. The parameter 𝒅  represents the 

dimensionality of the kernel function. The larger d, the higher the dimensionality of the mapping 

function. At this time, it is easier to classify the samples, but the computational complexity also 

increases. Although the complex classifier can have a good classification effect and the training 

sample achieves a high recognition rate, the classification performance is weak for new samples, that 

is, the phenomenon of "overfitting" has occurred. 

 

(3) Gaussian Kernel: 𝐾( 𝑥𝑖, 𝑥𝑗  )  = 𝑒𝑥𝑝 (−γ ‖𝒙𝑖 − 𝒙𝑗‖
2

)      
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γ is the scope of the kernel function. The Gaussian kernel has a good classification effect on relatively 

close sample points, and the local performance is quite good. However, as γ increases, its 

generalization ability weakens so the global performance is poor. 

3.4.2 K- Nearest Neighbour (kNN) Classifier 

kNN is also a supervised learning algorithm at first proposed by Cover and Hart and has been broadly 

utilized in different areas like pattern recognition and data processing. The classification idea is to 

calculate the distance between the data points x to be classified, and all the data points in the existing 

data set X. Then Take the first K points with the smallest distance, and divide this data point into the 

category with the highest number of occurrences. 

 

The kNN algorithm could be described as the following steps: 

(1) Pre-set a training dataset X. 

(2) Set the initial value of K. There is no uniform method for determining the K value (the K value 

selected according to the specific problem may be quite different). The general approach determine 

K value is to assign a rough initial value, and then continuously debug according to the experimental 

results, and finally reach the optimal. In this study, K was chosen to be 3 after debugging.  

(3) Select three samples closest to the sample data to be tested from the training data. It is supposed 

that the sample point 𝑥 in dataset X exists in n-dimensional space 𝑅𝑛, and the “nearest neighbors” 

between samples are measured by different types of distances 𝑑(𝑥𝑖 , 𝑥𝑗 ). Suppose the i-th sample 𝑥𝑖 =

 (𝑥1
𝑖 , 𝑥2

𝑖 , . . . , 𝑥𝑛
𝑖 ) ∈ 𝑅𝑛, where 𝑥𝑙

𝑖  represents the l-th feature attribute value of the i-th sample. [23] 

Then three kinds of distance in this project could be defined as: 

i. Standard Euclidean Distance: 𝑑( 𝑥𝑖, 𝑥𝑗 ) =  √∑
(𝑥𝑖−𝑥𝑗)2

𝑠𝑖

𝑛
𝑙=1  , where 𝑠𝑖  is the standard 

deviation of  𝑥𝑖 

ii. Hamming Distance: Given two vectors 𝑥𝑖, 𝑥𝑗  ∈  𝐹𝑛  , we define the hamming distance 

between 𝑥𝑖 and 𝑥𝑗, 𝑑( 𝑥𝑖, 𝑥𝑗  ), to be the number of places where 𝑥𝑖 and 𝑥𝑗 differ. 

iii. Gaussian Distance: In this study, we choose γ =
1

2
  so the Gaussian Distance could be 

defined as : 𝑑( 𝑥𝑖, 𝑥𝑗 ) = 1 − exp (−
1

2
‖𝑥𝑖 − 𝑥𝑗‖

2
)  

(4) Given a sample to be classified 𝐱𝑞 , 𝐱1, 𝐱2, . . . , 𝐱𝑘  represents K samples nearest to 𝐱𝑞. Let the 

discrete objective function (classification problem) be 𝑓: 𝑅𝑛  →  𝑣𝑖 ,where 𝑣𝑖 is the label of i-th 

class and label set could be defined as 𝑉 =  {𝑣1, 𝑣2, . . . , 𝑣𝑠}. Then we can express the prediction 

function as: 

 

(18) 

 

where 𝑓(𝐱𝑞) is the estimated 𝑓(𝐱𝑞) and 𝛿(𝑣, 𝑓(𝐱𝑞)) is Dirac delta function. 

(5) 𝑓(𝐱𝑞) is the class of the sample 𝐱𝑞 to be classified.  

3.5 Evaluation 

3.5.1 Confusion Matrix 

 

The confusion matrix is a situation analysis table that summarises classification result in the method 

of matrix. Take the binary classification problem as an example: there are two types of records in the 
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dataset: positive and negative categories. The classifier may make two types of judgments based on 

the categories in the dataset: positive or negative judgment. 

The confusion matrix is a 2 × 2 situation analysis table displaying the quantity of the four types of 

records: positive records with correct judgments (True Positives, TP), positive records with incorrect 

judgments (False Negatives, FN), negative records with correct judgments (True Negative, TN) and 

negative records with false judgments(False Positives, TN). The structure of the confusion matrix 

could be defined as [24]： 

[
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑁 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑁

]                                                 (20) 

 

 

3.5.2 Accuracy Index 

 

Based on the above confusion matrix, the following information can be derived: 

(1) Total number of records in the data set = TP + FP + FN + TN 

(2) Number of positive records in the data set = TP + FN 

(3) Number of negative records in the data set = FP + TN 

(4) Number of records for which the classification model made a positive judgment = TP + FP 

(5) Number of negative judgments made by the classification model = FN + TN 

(6) Number of records that the classification model correctly classified = TP + TN 

(7) Number of records misclassified by the classification model = FP + FN 

The classification accuracy index can be calculated by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
         (21) 

In order to make more precise comparisons among the classifiers with the same accuracy index, the 

accuracy with confidence weight could be determined as: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
∑ 𝑇𝑃 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ∗ 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 +∑ 𝑇𝑁 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ∗𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
      (22) 
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Capítulo 4. Results and Discussion 

4.1 Network Estimation Results 

As discussed in Part 5.3, the brain network estimation can be defined as a matrix with a size of 

116*116. Figure 12 - Figure 21 illustrate the visualised estimated matrix of all ten subjects. Figure 

22 - Figure 31 shows the wavelet correlation distribution of subject 1 to 10, plotted by wavelet 

correlation coefficient on the horizontal axis and the number of regions correlated in specific range 

on the vertical. Note that it has been optimised to make the distribution of cross-correlation 

coefficients more distributed in the range [0, 1]. 
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Figure 12 The visualised matrix of Subject 1 

 

Figure 13 The visualised matrix of Subject 2 

 

 
Figure 14 The visualised matrix of Subject 3 

 
Figure 15 The visualised matrix of Subject 4 

 
Figure 16 The visualised matrix of Subject 5 

 

 

Figure 17 The visualised matrix of Subject 6 
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Figure 18 The visualised matrix of Subject 7 

 

 
Figure 19 The visualised matrix of Subject 8 

 
Figure 20 The visualised matrix of Subject 9 

 

 
Figure 21 The visualised matrix of Subject 10 

 

These figures show the correlation between two regions for corresponding subjects: yellow parts 

represent the regions are high-correlated, and blue parts represent they are low-correlated. This 

correlation information is used for subsequent classification.  
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Figure 22 Subject 1 wavelet correlation distribution 

 
Figure 23 Subject 2 wavelet correlation distribution 

 
Figure 24 Subject 3 wavelet correlation distribution 

 
Figure 25 Subject 4 wavelet correlation distribution 

 
Figure 26 Subject 6 wavelet correlation distribution 

 

Figure 27 Subject 7 wavelet correlation distribution 
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Figure 28 Subject 7 wavelet correlation distribution 

 
Figure 29 Subject 8 wavelet correlation distribution 

 
Figure 30 Subject 9 wavelet correlation distribution 

 
Figure 31 Subject 10 wavelet correlation distribution 

 

4.2 Classification Results  

Classification is based on the network estimation results. The leave-one-out (LOO) method was used 

to train and test the classifier. Suppose the data set contains N samples (𝑥1, 𝑥2, . . . , 𝑥𝑛), and divide this 

sample into two parts: the first part with 𝑁 − 1 samples is used to train the classifier, and the other 

part with 1 sample is used to test. Iterating N times from 𝑁1  to 𝑁𝑛  in this way, all samples have 

undergone testing and training. The results of the classifiers can be evaluated as Table 2 shows: 

 Real Condition 
Predicted Results 

True Positive (TP) Schizophrenia Schizophrenia 

False Positive (FP) Healthy Schizophrenia 

True Negative (TN) Healthy Healthy 

False Negative (FN) Schizophrenia Healthy 

Table 2 Classifier evaluation table 

In this study, the classification for each subject is based on 116 brain regions correlation coefficients. 

So if over 50% of regions’ classification results (i.e., more than 58 regions) belong to a specific 

condition, the classification result for this subject is determined as a predicted condition. Additionally, 
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the confidence degree could be defined as:   

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 𝑡𝑜 𝑏𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
∗ 100%                     (19) 

4.2.1 Classification Results Based on Support Vector Machine  

4.2.1.1 Support Vector Machine with Linear Kernel 

  

 

4.2.1.2 Support Vector Machine with Gaussian Kernel 

Participant_id 
Predicted Results 

(Confidence) 
Real Condition Evaluation 

sub-01 SCZ (83.6%) SCZ True Positive 

sub-02 SCZ (100%) SCZ-SIB True Positive 

sub-03 SCZ (100%) SCZ-SIB True Positive 

sub-04 SCZ (53.4%) SCZ-SIB True Positive 

sub-05 SCZ (95.7%) SCZ True Positive 

sub-06 Healthy (100%) CON True Negative 

sub-07 Healthy (84.5%) CON True Negative 

sub-08 Healthy (100%) CON-SIB True Negative 

sub-09 Healthy (90.6%) CON-SIB True Negative 

sub-10 SCZ (95.7%) CON-SIB False Positive 
Table 4 Table 3 SVM with Gaussian Kernel classification results 

 

Participant_id 
Predicted Results 

(Confidence) 
Real Condition Evaluation 

sub-01 SCZ (81.9%) SCZ True Positive 

sub-02 SCZ (97.4%) SCZ-SIB True Positive 

sub-03 SCZ (97.4%) SCZ-SIB True Positive 

sub-04 SCZ (51.7%) SCZ-SIB True Positive 

sub-05 SCZ (88.0%) SCZ True Positive 

sub-06 Healthy (98.2%) CON True Negative 

sub-07 Healthy (68.1%) CON True Negative 

sub-08 Healthy (98.3%) CON-SIB True Negative 

sub-09 SCZ (75.0%) CON-SIB False Positive 

sub-10 SCZ (99.1%) CON-SIB False Positive 

Table 3 SVM with Linear Kernel classification results 
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4.2.1.3 Support Vector Machine with Polynomial Kernel 

 

Participant_id 
Predicted Results 

(Confidence) 
Real Condition Evaluation 

sub-01 SCZ (87.1%) SCZ True Positive 

sub-02 SCZ (100%) SCZ-SIB True Positive 

sub-03 SCZ (100%) SCZ-SIB True Positive 

sub-04 SCZ (88.8%) SCZ-SIB True Positive 

sub-05 SCZ (97.4%) SCZ True Positive 

sub-06 Healthy (99.1%) CON True Negative 

sub-07 Healthy (64.7%) CON True Negative 

sub-08 Healthy (99.1%) CON-SIB True Negative 

sub-09 SCZ (76.8%) CON-SIB False Positive 

sub-10 SCZ (99.1%) CON-SIB False Positive 
Table 5 SVM with Polynomial Kernel classification results 

 

4.2.2 Classification Results Based on K-Nearest Neighbour  

4.2.2.1 k-Nearest Neighbour with Standard Euclidean Distance 

Participant_id 
Predicted Results 

(Confidence) 
Real Condition Evaluation 

sub-01 SCZ (70.7%) SCZ True Positive 

sub-02 SCZ (100%) SCZ-SIB True Positive 

sub-03 SCZ (100%) SCZ-SIB True Positive 

sub-04 SCZ (97.4%) SCZ-SIB True Positive 

sub-05 SCZ (97.4%) SCZ True Positive 

sub-06 Healthy (99.1%) CON True Negative 

sub-07 Healthy (88.8%) CON True Negative 

sub-08 Healthy (99.1%) CON-SIB True Negative 

sub-09 Healthy (97.4%) CON-SIB True Negative 

sub-10 SCZ (84.4%) CON-SIB False Positive 
Table 6 kNN with Standard Euclidean Distance classification results 

 

4.2.2.2 k-Nearest Neighbour with Hamming Distance 
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Participant_id 
Predicted Results 

(Confidence) 
Real Condition Evaluation 

sub-01 SCZ (100%) SCZ True Positive 

sub-02 SCZ (100%) SCZ-SIB True Positive 

sub-03 SCZ (100%) SCZ-SIB True Positive 

sub-04 SCZ (100%) SCZ-SIB True Positive 

sub-05 SCZ (100%) SCZ True Positive 

sub-06 SCZ (100%) CON False Positive 

sub-07 SCZ (100%) CON False Positive 

sub-08 SCZ (100%) CON-SIB False Positive 

sub-09 SCZ (100%) CON-SIB False Positive 

sub-10 SCZ (100%) CON-SIB False Positive 
Table 7 KNN with Hamming Distance classification results 

 

4.2.2.3 k-Nearest Neighbour with Gaussian Distance 

Participant_id 
Predicted Results 

(Confidence) 
Real Condition Evaluation 

sub-01 SCZ (67.2%) SCZ True Positive 

sub-02 SCZ (100%) SCZ-SIB True Positive 

sub-03 SCZ (100%) SCZ-SIB True Positive 

sub-04 SCZ (97.4%) SCZ-SIB True Positive 

sub-05 SCZ (97.4%) SCZ True Positive 

sub-06 Healthy (99.1%) CON True Negative 

sub-07 Healthy (90.5%) CON True Negative 

sub-08 Healthy (99.1%) CON-SIB True Negative 

sub-09 Healthy (97.4%) CON-SIB True Negative 

sub-10 SCZ (86.2%) CON-SIB False Positive 
Table 8 KNN with Gaussian Distance classification results 

 

4.3 Confusion Matrix 

 

According to the classification results, the confusion matrices were obtained as Table 9-Table 14 

show: 

Support Vector Machine with 

Linear Kernel 
Schizophrenia Healthy 
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Schizophrenia 4(TP) 2(FP) 

Healthy 1(FN) 3(TN) 

Table 9 SVM with Linear Kernel confusion matrix 

 

Support Vector Machine with 

Gaussian Kernel 
Schizophrenia Healthy 

Schizophrenia 4(TP) 1(FP) 

Healthy 1(FN) 4(TN) 

Table 10 SVM with Gaussian Kernel confusion matrix 

 

 

k-Nearest Neighbour with 

Euclidean Distance 
Schizophrenia Healthy 

Schizophrenia 5(TP) 1(FP) 

Healthy 0(FN) 4(TN) 

Table 12 kNN with Euclidean Distance confusion matrix 

k-Nearest Neighbour with 

Hamming Distance 
Schizophrenia Healthy 

Schizophrenia 5(TP) 5(FP) 

Healthy 0(FN) 0(TN) 

Table 13 kNN with Hamming Distance confusion matrix 

k-Nearest Neighbour with 

Gaussian Distance 
Schizophrenia Healthy 

Schizophrenia 5(TP) 1(FP) 

Healthy 0(FN) 4(TN) 

Table 14 kNN with Gaussian Distance confusion matrix 

 

Support Vector Machine with 

Polynomial Kernel 
Schizophrenia Healthy 

Schizophrenia 5(TP) 2(FP) 

Healthy 0(FN) 3(TN) 

Table 11 SVM with Polynomial Kernel confusion matrix 
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4.4 Classification Accuracy     

Table 15 gives the figures of merit (classification accuracy). The trivial result is 50% accuracy index, 

which means accuracy index over 50% shows effectiveness in supporting diagnosis of schizophrenia.  

 

Table 15 Figures of merit 

Based on the figures of merit, classifier performance sorting results could be expressed as follows: 

KNN with Euclidean Distance > KNN with Gaussian Distance > SVM with Gaussian Kernel > SVM 

with Polynomial Kernel > SVM with Linear Kernel > KNN with Hamming Distance.  
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Capítulo 5. Conclusion and Further Work 

This study presented a wavelet decomposition method on fMRI to support the diagnosis of 

Schizophrenia based on the machine learning algorithm: SVM and KNN classifiers. The proposed 

multilevel decomposition on fMRI not only focused on the whole brain regions, but also exploited 

the frequency information for classification process. After classification, there was a problem that 

categorizing directly using the default SVM and kNN classifier might not yield desirable results in 

some cases. Therefore, SVM classifiers with various kernels and kNN with different distances were 

test to deal with the problem. Based on the evaluation results with the criteria of accuracy index, kNN 

with Standard Euclidean and Gaussian Distance demonstrated good performance on identifying 

whether subjects have schizophrenia disease. The next step is to train more fMRI data of subjects 

with Schizophrenia and Healthy Controls (after pre-processing) on the classifiers so that the results 

could be more general if more time can be provided. 
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