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Abstract—Hot Carrier Injection (HCI) and Bias Temperature
Instability (BTI) are two of the main deleterious effects that
increase a transistor’s threshold voltage over the lifetime of a
microprocessor. This voltage degradation causes slower transistor
switching and eventually can result in faulty operation. HCI
manifests itself when transistors switch from logic ‘0’ to ‘1’ and
vice versa, whereas BTI is the result of a transistor maintaining
the same logic value for an extended period of time. These failure
mechanisms are especially acute in those transistors used to
implement the SRAM cells of first-level (L1) caches, which are
frequently accessed, so they are critical for performance, and they
are continuously aging. This paper focuses on microarchitectural
solutions to reduce transistor aging effects induced by both HCI
and BTI in the data array of L1 data caches. First, we show that
the majority of cell flips are concentrated in a small number of
specific bits within each data word. In addition, we also build
upon previous studies showing that logic ‘0’ is the most frequently
written value in a cache by identifying which cells hold a given
logic value for a significant amount of time. Based on these
observations, this work introduces a number of architectural
techniques that spread the number of flips evenly across memory
cells and reduce the amount of time that logic ‘0’ values are stored
in the cells by switching off specific data bytes. Experimental
results show that the threshold voltage degradation savings range
from 21.8% to 44.3% depending on the application.

Index Terms—BTI, cache memories, cell flips, duty cycle
distribution, HCI, threshold voltage degradation.

I. INTRODUCTION

MODERN day computer systems have benefited from
being designed and manufactured using an ever-

increasing budget of transistors on very reliable integrated
circuits. However, as technology moves forward, such a “free
lunch” is over as increasingly smaller technology nodes pose
significant reliability challenges. Not only do variations in the
manufacturing process make the resulting transistors unreliable
at low voltage operation, but they take less and less time to
wear out, decreasing their lifetimes (from tens of years in
current systems to 1-2 years or fewer in the near future [1])
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and making them more prone to failures in the field. Thus,
lifetime reliability must be treated as a major design constraint.
This concern holds for all kinds of computing devices, ranging
from server processors to embedded systems like tablets and
mobiles, where lifetime is an assertive requirement and the
market share strongly depends on their reliability.

The two main phenomena that speed up aging are referred to
as Hot Carrier Injection (HCI) and Bias Temperature Instabil-
ity (BTI). The former effect increases with transistor activity
over the lifetime of the processor; that is, when a transistor
flips from being on to off and vice versa, leading to threshold
voltage (Vth) degradation, which in turn causes an increase in
transistor switching delay and can result in timing violations
and faulty operation when the critical paths become longer
than the processor’s clock period. Overall, HCI is accentuated
in the microprocessor components with frequent switching. On
the other hand, BTI accelerates transistor degradation when a
transistor is kept on for a long time, and takes two forms:
Negative BTI (NBTI), which affects PMOS transistors when
a ‘0’ is applied to the gate; and Positive BTI (PBTI), which
affects NMOS when a ‘1’ is applied.

A significant amount of the transistors in most modern
chip multiprocessors are used to implement SRAM storage
along the cache hierarchy [2]. Therefore, it is important to
target these structures to slow down aging. The first-level (L1)
data cache is a prime candidate since it is regularly written,
yet stores data for significant amounts of time. Besides, its
availability is critical for system performance. The SRAM
cell transistors are stressed by HCI and BTI when the stored
logic value flips and when it is retained for a long period
without flipping (i.e., a duty cycle), respectively. Note that
these situations are strongly related to each other. Thus, a given
technique designed to exclusively attack BTI might exacerbate
HCI as a side effect, and vice versa.

Prior architectural research has analyzed cache degradation
mainly due to BTI effects. There have been some attempts to
diminish BTI aging by periodically inverting the stored logic
values in the cells [3], [4], [5], by implementing redundant
cell regions in the cache [6], and by reducing the cache
supply voltage [7]. In [8], authors propose a tentative approach
to combat BTI and HCI by balancing the cache utilization.
However, the cache contents are flushed from time to time,
which might incur in significant performance degradation.

Unlike previous works, we extensively analyze the data
patterns of the stored contents in L1 data caches in terms of
how they affect BTI and HCI and, based on the results of this
study, we propose microarchitectural mechanisms to extend
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the cache data array lifetime by reducing the Vth degradation,
or simply dVth, caused by both phenomena, without incurring
performance losses.

This paper makes two main contributions. First, we char-
acterize the cell flips and the duty cycle patterns that high-
performance applications cause to each specific memory cell.
We find that most applications exhibit regular flip and duty
cycle patterns, although they are not always uniformly dis-
tributed, which exacerbates the HCI and BTI effects on a
small number of cells within the 512-bit cache lines. Results
also confirm previous work [9], [10] claiming that most
applications write a significant number of near-zero and zero
data values into the cache. This behavior has been exploited
in the past to address static energy consumption [9] and
performance with data compression [10]. Unlike these works,
this paper takes advantage of such a behavior to mitigate aging.

Second, based on the previous characterization study, we
devise microarchitectural techniques that exploit such a behav-
ior to mitigate aging. The proposal provides a homogeneous
degradation of the different cell transistors belonging to the
same cache line. For this purpose, the devised techniques aim
to reduce cell aging from bit flips and duty cycle and pursue
two objectives: i) to spread the bit flips evenly across the
memory cells and ii) to balance the duty cycle distribution
of the cells. To accomplish the former objective, we propose
to progressively shift the bytes of the incoming data lines
according to a given rotation shift value that is regularly
updated. To attain the latter objective, the mechanism is
enhanced to power off those memory cells storing a zero byte
value. The result is a switch-off or sleep state in which all the
cell transistor gate terminals are isolated from electric field
stress, thus allowing a partial recovery from BTI [11].

To quantify the benefits of the devised technique, we
evaluate the dVth in all the transistors implementing the cache
data array, and especially those belonging to the cells with
the highest likelihood of failure, that is, those cells showing
the highest number of flips and longest duty cycle distribution
(either due to logic ‘0’ or ‘1’). Experimental results show that
the savings on the highest number of flips range from 22.4%
to 65.5%, whereas the longest ‘0’ and ‘1’ duty cycles can be
reduced up to 40.2% and 20.5%, respectively. Finally, the dVth
reduction falls in between 21.8% and 44.3%.

The remainder of this paper is organized as follows. Section
II provides a short background about BTI and HCI effects in
SRAM cells. Section III characterizes the cell flip and duty
cycle patterns. Section IV presents the proposed architectural
mechanisms. Section V analyzes the experimental results. Sec-
tion VI summarizes the related work, and finally, conclusions
are drawn in Section VII.

II. BACKGROUND

To help microprocessor architects understand how the logic
value (i.e., ‘0’ or ‘1’) distribution among the cache cells as well
as the bit flips caused by write operations affect wearout, this
section summarizes the implementation of a typical SRAM
cell and explains how it suffers from BTI and HCI effects.

As shown in Figure 1, each cached bit is implemented with
an SRAM memory cell consisting of 6 transistors (6T). The

WL

BL

Vdd

BL

TP1

TN1

TP2

TN2

Fig. 1. Implementation of a 6T SRAM cell. The labeled transistors refer to
the inverter loop of the cell.

labeled transistors form an inverter loop that holds the stored
logic value; this paper uses these labels to refer to these
transistors. The remaining pass transistors controlled by the
wordline (WL) signal allow read and write operations to the
cell through the bitline (BL) and its complementary (BL).

When the SRAM cell is under a ‘0’ duty cycle, that is,
when the cell is stable and storing a ‘0’, the PMOS transistor
TP1 and the NMOS transistor TN2 are under stress and they
suffer from NBTI and PBTI, respectively. On the contrary,
under a ‘1’ duty cycle, transistors TP2 and TN1 are affected by
NBTI and PBTI, respectively. The wearout effects induced by
each type of duty cycle are complementary, meaning that, for
a given duty cycle, the pair of transistors not under stress are
partially under recovery from BTI degradation. Thus, if every
cache cell experiences a balanced distribution (i.e., 50%) of ‘0’
and ‘1’ duty cycles, wearout effects due to BTI are minimized
and evenly distributed among the inverter loop transistors.
Moreover, this reduces the probability of the circuit failing
due to Static Noise Margin (SNM) changes.

On the other hand, HCI affects all SRAM cell transistors
on a write operation if the logic value flips, regardless of the
type of transistor. This effect can be mitigated by avoiding bit
flips during write operations. In addition, in order to minimize
the chances of SRAM cell faults due to HCI wearout, those
remaining bit flips must be evenly distributed among the cells.

To sum up, the inverter loop transistors are continuously
aging regardless of whether the cell stores ‘0’ or ‘1’, or
is transitioning. This fact makes such transistors particularly
sensitive to wearout [7]. Note that the NMOS pass transistors
just age when the SRAM cell is being accessed, which
represents a very small fraction of the overall execution time,
making them much less aging-sensitive than the inverter loop
transistors. Thus, this work focuses on wearout mitigation in
the inverter transistors only.

III. CHARACTERIZATION STUDY

To quantify the impact of both HCI and BTI on the cache
memory cells, we have characterized the bit flip and duty
cycle patterns, respectively, across the entire SPEC CPU 2006
benchmark suite [12]. For illustration purposes, we show an
integer (perlbench) and a floating-point (soplex) benchmark,
since applications of these types use data with different
internal representations. Results are shown for the baseline
approach, where neither flip nor duty cycle mitigation is
employed, on a 64B-line 16KB 4-way L1 data cache in little-
endian representation.
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Fig. 2. Number of flips on each bit position of the 64-byte cache lines.
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Fig. 3. Average duty cycle distribution on each bit position of the 64-byte cache lines.

Figure 2 depicts the number of bit flips experienced in each
512-bit cache line. For each bit, the figure plots the sum of the
number of flips across all the cache lines. Perlbench shows a
regular flip pattern across the sixteen 32-bit-word cache lines.
Peaks occur in the bits within the Least Significant Byte (LSB)
of the words, whereas bits in the MSB account for a much
lower number of cell flips. This pattern is common within
all integer applications, the main reason being that processors
store a significant number of near-zero or narrow integer values
to caches [10]. This is mainly due to over-provisioning; that
is, programmers usually define relatively large data types (e.g.,
4-byte integers) for storing a small value, which could actually
be represented with just a few bits. These values are used, for
example, to index arrays and matrices, which are extensively
accessed inside program loops.

In contrast, the soplex floating-point application shows a
non-uniform flip pattern due to the IEEE-754 representation
of data. Nevertheless, for all the benchmarks, peaks can be
also identified in the LSB of some words, resembling the flip
pattern of integer applications. This is mainly because floating-
point benchmarks also use a significant amount of integer data.
For soplex, these LSB peaks can be seen in about half of the
words (e.g. those starting at bits 224 and 352 of the lines).

Another interesting observation is that the MSB of each

word accounts for a much lower number of flips, forming
flip dips across the cache lines. This can be clearly seen in
perlbench, where a large proportion of the stored data are
zero and positive near-zero integer values, implying that bits
in the MSB hold a logic ‘0’ for a long time. Moreover,
the most significant bit of the MSB accounts for a much
lower number of flips compared to the remaining bits of the
MSB. This is because most integer and floating-point data are
positive numbers (sign field set to ‘0’ in the most significant
bit of the word). This pattern is common for all the remaining
SPEC2006 benchmarks.

Figure 3 shows the average duty cycle distribution across
the bit positions of all the cache lines. As observed, logic ‘0’
is the predominant value, thus reinforcing the intuition behind
Figure 2 results. Unlike Figure 2 though, Figure 3 shows the
fraction of time that each logic value is stored. In general,
‘0’ is stored for longer than ‘1’ because memory is usually
initialized to zero when it is allocated. Thus, even if there was
an equal likelihood of an application writing a ‘0’ or ‘1’ in any
bit position, this initialization will always mean ‘0’ is stored
for longer. Other reasons for ‘0’ being stored longer are that
false boolean values and NULL pointers are represented with
zero, as well as most data in dense-form sparse matrices [10].

Notice too that those ‘0’ duty cycle peaks close to 0.9 (i.e.,
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Fig. 4. Time diagram with the execution time divided into phases and the associated shift function transitions for the cache lines A, B, and C.

90% of the time) that are encountered in both benchmarks
correspond to the flip dips displayed in Figure 2. This behavior
is similar for all the remaining benchmarks. In addition, it can
also be seen that perlbench shows a wider zero duty cycle
peak in comparison to soplex, meaning that the former presents
longer execution periods with ‘0’ values stored in the MSB.

IV. PROPOSED ARCHITECTURAL TECHNIQUES

Based on the characterization study, this work proposes to
enhance the L1 data cache design to mitigate both HCI and
BTI wearout. First, the HCI effect is attacked by spreading out
the bit flips across each word’s memory cells. Second, BTI is
minimized by powering off cells when a zero byte is fetched
into them. Finally, both mechanisms are evaluated working
together in a joint cache design in terms of circuitry, area, and
timing overhead.

The proposed approaches attack aging in the data array.
Given that the tag array is much smaller than the data array,
resilient technologies could be used to address tag wearout.
For example, resilient 8T cells introduce a 19% area overhead
compared to typical 6T cells [13]. According to CACTI [14],
implementing the tags with 8T cells results in just a 1.95% area
overhead for a 16KB L1 cache. However, further consideration
of tag aging is beyond the scope of this paper.

A. HCI Mitigation: The BW Approach

The previous study showed that the memory cells containing
the LSB of a word experience bit flip peaks across all these
cells in a cache line, especially for integer applications. These
LSB cells age the most from HCI because of the direct
relationship between HCI and flip activity.

To mitigate HCI wearout, our initial scheme implements
a rotation shift mechanism that distributes flips located on
the peaks across several bit positions within the words. In
particular, the proposed technique, named BW (Bytes-within-
Words shifting), periodically shifts the bytes within the words
on a round-robin basis. BW uses 4 x-shift functions for a
4-byte word, where x means the number of bytes to be
shifted. For instance, a 1-shift function performs a rotation
shift from the LSB to the MSB by one byte. Therefore,
after the shift operation, the contents of the LSB are those
that were previously stored in the MSB. Note that other
shift mechanisms like bits-within-words shifting could bring
higher flip peak savings; however, the required hardware to
implement these approaches would have a larger impact on
area and performance (see Section IV-C).

To make hardware simple, all the 16 words in the cache line
follow the same shift function at any given time. Thus, each

cache line simply requires one pair of control bits, namely
CBW0 and CBW1, to keep track of the current shift. When the
line is read, these bits are used to realign the word bytes and
forward them with their correct positions to the processor.

An important design issue is the length of time a shift
function should be maintained before applying the subsequent
shift. Figure 4 shows a working example to illustrate how
the shift functions are updated. The execution time is divided
into phases with a fixed number of processor cycles. Initially,
the cache lines A, B, and C follow a 0-shift function, that
is, the stored words have not experienced any byte shift. A
shift transition occurs the first time that a cache line is written
during a phase. This occurs for line C within the first phase,
where the mentioned write operation induces a transition from
0-shift to 1-shift. The updated shift function remains valid for
all subsequent accesses to line C during the remainder of the
current phase (i.e., the second write operation to C within
the first phase does not modify the shift function). Reads in
any phase do not update the shift function. The current shift
function remains in force until a new write operation occurs
in a later phase (i.e., write to C in the second phase). As in
the first phase, the second phase updates the shift function
of lines A and C upon their first write, while during phase 3
the only line whose shift function is modified is line B. The
shift transitions are managed by adding a single control bit
per cache line, referred to as CpBW , to indicate whether the
line has been ever written in the phase or not. Of course, the
CpBW bit is reset every time a new phase starts. Notice that,
at any given time, different cache lines can follow distinct
shift functions since writes do not act in a synchronized way.
Moreover, usually only a small number of cache lines are
accessed at a given point in time.

Finally, experiments showed that a phase length of 8M
processor cycles noticeably reduces the high flip peaks. Very
large phases result in fewer shifts and longer times using each
shift function, which had only a minor effect on reducing
those high flip peaks. On the contrary, over-shifting with very
short phases significantly increased the overall number of flips,
leading to high peaks. For instance, compared to an 8M phase
length, 4M-cycle and 16M-cycle phases increase the highest
flip peak on average by 4.4% and 3.8%, respectively, for the
studied benchmarks.

B. BTI Mitigation: The SZB Mechanism

The duty cycle distribution (see Section III) confirmed
that current applications keep a high number of cache line
bits as ‘0’, which accelerates BTI wearout in the SRAM
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Fig. 5. L1 data cache byte value distribution split into zero and non-zero for
the studied applications.

cell transistors TP1 and TN2 from Figure 1. For the sake of
completeness, we have obtained the percentage of zero bytes
in the L1 data cache. Figure 5 shows the results for the 8
SPEC2006 applications (4 integer and 4 floating-point) that
most stress the L1 data cache. As observed, all of these
applications keep bytes equal to zero more than 30% of the
time. Moreover, in dealII, astar, and h264ref, this percentage
exceeds 60% of the time. Overall, the percentage of zero bytes
is on average by 51%1.

Based on these results, simply skipping the writing of zero
byte values to the cache and maintaining the previously cached
byte could reduce the amount of time that the memory cells
contain a logic ‘0’ value [15]. However, this may imply storing
‘1’ for longer periods of time, which would speed up BTI in
transistors TP2 and TN1.

To combat the BTI phenomenon in all transistors at the
same time, we introduce the Switch-off Zero Byte (SZB)
mechanism, which switches off those byte cells that store
a zero value. Powering off an SRAM cell implies that all
the SRAM cell transistors are partially under recovery from
BTI [11]. Moreover, notice that by turning off zero bytes,
the temperature in the cache would decrease, which would
also help mitigate the cache aging. Similarly, the overall cache
energy consumption is also reduced (see Section V-E).

The SZB technique works as follows. On a cache miss or a
write hit, each byte to be written to the cache is compared to
zero. If the comparison matches, a control bit per byte, called
CSZB, is set to indicate that the associated byte stores a zero,
and the byte memory cells are powered off. On a cache read
hit, the corresponding CSZB control bits for the target line are
checked, and if any of them is set, a zero byte is forwarded to
the processor since the relevant data array cells are not active.

C. Hardware Implementation and Operation

This section discusses a possible basic hardware implemen-
tation of the proposed joint design. The main focus of the
paper is not to deal with the optimal implementation but on
providing some insights on the design. Further enhancements
could be provided with an optimized design, which is beyond
the scope of this work.

1Compared to the byte granularity, the percentage of zero words over the
total number of words is reduced on average down to 32%, meaning that the
effectiveness of the SZB mechanism diminishes.
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Fig. 6. Write circuit for the BW mechanism.

In addition, this section also evaluates how to deal with the
HCI and BTI effects in the control bits, and how the read and
write operations are performed in the proposed cache design,
including timing issues.

1) Hardware Components and Area Overhead: The BW
mechanism can be implemented with 16 4-to-1 multiplexers;
one for each data word within the incoming line. Figure 6
shows one of the multiplexers and its associated inputs used in
the write circuit. Label Bi refers to the different data bytes from
the word, B0 and B3 being the LSB and MSB, respectively.
Each data input consists of the data bytes ordered according
to one of the 4 possible shift functions. The multiplexer is
controlled by the CBW0 and CBW1 control bits that correspond
to the current shift function. For the read circuit, another 16 4-
to-1 multiplexers can be used for the requested line; however,
the order of the data inputs differs from those of the write
circuit, since in this operation the contents must be realigned
instead of shifted. These multiplexers are only used when
reading and writing a given line, thus, they are shared among
all the lines in the data array.

We have modeled these multiplexers using CACTI, which
reports an area of 9.009µm2 for each of them using a 32nm
technology node. Considering the whole cache data array area,
that is 0.226mm2, the overall area overhead of the 32 BW
multiplexers is just 0.13% of the data array area. Recall that
the BW approach requires 3 bits for each cache line to hold
the control bits, which translates into an overhead of 768 bits
for the studied 16KB L1 data cache. Such a storage overhead
is just 0.59% of the cache data array capacity.

For the proposed SZB mechanism, simple hardware is re-
quired to compute the CSZB bits and to forward zero bytes [9].
Figures 7(a) and 7(b) show the required circuitry for a cache
word. On a write operation, the CSZB bits are set by ORing the
data bits of each byte, thus a control bit set to ‘0’ indicates
that the associated byte is zero. On a read operation, tristate
buffers driven by the control bits are used to forward either
zero byte values, or the actual written byte from the cache.

The switch-off mechanism is implemented using the gated-
Vdd technique [16], which has been widely adopted in cache
designs like Cache Decay [17] for leakage energy mitigation.
In particular, our design includes a PMOS and an NMOS
sleep transistor that connect the SRAM cell to Vdd and ground,
respectively. This power-gating configuration completely iso-
lates both cell nodes, placing them into a switch-off state
when the sleep transistors are disabled, preventing the nodes
from storing a given logic value [11]. Otherwise, disabling
either the Vdd or ground path exclusively results in both nodes
holding a ‘0’ or ‘1’, respectively, which could speed up BTI
aging [18]. Contrary to the cell transistors, the sleep transistors
are implemented using high-Vt devices to make them resilient
against BTI and HCI [19], [20].
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Fig. 7. Read/write and switch-off circuits for the SZB approach.

The gated-Vdd technique can be applied at different levels
of granularity [16]. For simplicity and given that the proposed
SZB technique works at byte granularity, a pair of sleep
transistors (each in the ground and Vdd paths) is enough to
cut off those memory cells storing a data byte as depicted
in Figure 7(c). Both sleep transistors are controlled by the
corresponding CSZB control bit. When the CSZB bit is ‘0’ (i.e.,
the incoming byte is zero), the transistor gates are disabled and
the cells are switched off. Otherwise, the cells are powered
on to store the fetched data. Finally, notice that the simple
SZB circuitry consisting of control bits, sleep transistors,
and remaining read/write hardware has a low area overhead
(11.76% of the 16KB L1 cache) [9].

2) Control Bit Inversion: Both HCI and BTI phenomena
should be evaluated not only in the data array bits but also
in the additional control bits added by our mechanisms and
implemented as SRAM cells. Recall that the CBW0 and CBW1
bits make up a 2-bit counter and they are updated between
regular shift phases of 8M processor cycles, which results in
an implicit balanced (i.e., near-optimal) duty cycle distribution
in such bits. However, the CpBW bit is set to ‘1’ when the
associated line is written for the first time within a phase, and
set to ‘0’ every time a new phase starts. We have evaluated
that such writes normally come soon after the phase begins,
causing a highly-biased ‘1’ duty cycle in these bits, which
exacerbates BTI in transistors TP2-TN1.

To deal with this drawback, we periodically complement
all the CpBW bits between shift phases, which allows us to
achieve a near-optimal duty cycle ratio. Similar to the CpBW
bits, the CSZB bits are also inverted between shift phases, since
some applications store zero (long ‘0’ duty cycle in CSZB)
and non-zero (long ‘1’ duty cycle) bytes in the same location
for an extended period of time. Please refer to Section V-B
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Fig. 8. Block diagram of the L1 data cache access including the proposed
components (grey boxes).

and Section V-C for further details. Note that to recover the
original logic value of the control bit, the implementation only
requires a simple 2-input XOR gate whose inputs are: i) the
value currently stored in the control bit and ii) a bit identifying
if the current phase number is either odd or even (i.e., if the
stored control bit must be inverted or not).

Of course, such an inversion of the control bits between
shift phases brings an increase of the number of flips, which
could speed up the HCI degradation. Nevertheless, as the phase
length is large enough, this increase does not have a significant
impact as evaluated in Section V-A.

3) Read/Write Operations: With the aim to clarify how
both BW and SZB schemes work together, Figure 8 plots a
cache block diagram with both mechanisms represented as
grey boxes. On a cache read hit, after the way multiplexer
selects the target line from the selected set, its contents and the
associated control bits are forwarded to the SZB read circuit.
Once the SZB tristate buffers have forwarded the zero bytes,
the BW multiplexers realign the bytes and serve the original
line to the processor. Note that, on a read operation, there is no
need to restore the power to those memory cells that originally
would hold zero bytes.

On a write hit, the contents stored in the target line are read
and forwarded to the upper-side multiplexers, which compose
the line to be stored jointly with the input data. Meanwhile,
the cells of the target line are powered on (if any). Then, the
BW write circuit multiplexers rotate the bytes of each word in
the line according to the corresponding shift function. After
that, the SZB write circuit computes the SZB control bits,
prevents the zero bytes from being written into the data array,
and switches off the corresponding cells. On a cache miss, the
same circuitry is used to store the incoming data.

The way multiplexer is the only one that muxes the CSZB
and CBW control bits from each line, which are used as control
entry for the proposed SZB read circuit and BW read/write
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TABLE I
ARCHITECTURAL MACHINE PARAMETERS.

Microprocessor core
Processor frequency 3GHz
Issue policy Out of order
Fetch, issue, commit width 4 instructions/cycle
ROB size (entries) 256
# Int/FP ALUs 4/4

Memory hierarchy
L1 data & insn caches 16KB, 4-way, 64B-line, 1-cycle

tag array, 3-cycle data array
L2 unified cache 256KB, 8-way, 64B-line,

6-cycle tag array, 10-cycle
data array

L3 unified cache 4MB, 16-way, 64B-line,
11-cycle tag array, 23-cycle
data array

Main Memory 200-cycle

circuits, respectively. According to CACTI, the area overhead
of muxing these control bits is only 0.09% of the data array.

4) Timing: To study the impact on the cache access time,
we have considered the delays involved. The write operation
constitutes the largest path, since the target line is first read
and then written to the cache. CACTI reports a 0.765ns access
time for such a write operation. The delay of each 4-to-1
multiplexer used to implement the shift functions is 0.088ns,
whereas muxing the control bits adds a delay of 0.044ns. The
delay of the SZB OR gates and tristate buffers can be assumed
to be negligible [9].

Overall, the write access time becomes 0.985ns taking
into account the additional circuitry. For the assumed 3GHz
processor, therefore, the difference (in ns) over the original
delay is masked when the access time is quantified in processor
cycles. That is, the additional circuitry has no impact on the
data array access time (in cycles), although it could impact
on other processor designs (e.g., those working at a higher
frequency). In this case, an optimized or alternative design for
the additional circuitry would be required. Notice too that this
additional delay will be amortized over time compared to the
perpetual delay caused by the studied wearout effects.

Finally, note that in the write operation, the delay of turning
an SRAM cell on or off just involves the switching delay of
the sleep transistors (which is only 4.2ps according to HSpice
using 32nm PTM models [21] and ITRS 2011 documents [22])
and the delay to stabilize the cell when powering on. This mi-
nor delay is entirely masked while the read data are traversing
the BW+SZB circuits and the input data multiplexers. Further,
the power on/off mechanism is not used in the read operation,
which actually corresponds to the critical path of the cache
access, thus the read access time is not negatively impacted.

V. EXPERIMENTAL RESULTS

We extended the Multi2Sim simulation framework [23] to
implement both BW and SZB approaches. Experiments were
performed for the 32-bit x86 ISA with the ref input set,
while results were collected simulating 500M instructions after
skipping the initial 500M instructions. Table I summarizes the
main architectural parameters. All the cache access times were
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Fig. 9. Highest cache flip peak across all the studied applications.

obtained from CACTI for a 3GHz processor clock and a 32nm
technology node.

A. Cell Flip Analysis

With the aim to provide insights about the HCI wearout
reduction brought by our proposed mechanisms, this section
identifies the maximum cache flip peak across all the analyzed
benchmarks, classifies applications according to their flip peak
behavior, and quantifies the number of flips the mechanisms
save. Figure 9 plots the raw number of flips for the cache
memory cell that holds the highest flip peak for the baseline
scheme, SZB and BW working alone, and both schemes
working together (BW+SZB).

For all the studied benchmarks, the HCI-aware BW mech-
anism substantially reduces the number of flips with respect
to the baseline scheme by shifting the incoming data. On the
other hand, the benefits brought by SZB are less remarkable. In
fact, SZB slightly increases the number of flips on the highest
peak in soplex and astar. This is due to a write operation on
a decayed byte triggering the switch on of the memory cells,
which in turn implies the appearance of a random logic value
before writing the input values. Transitioning from a random
value instead of from the data actually stored (i.e., a zero byte
in the baseline scheme) can induce a higher number of flips in
a given cell. These transitions actually save flips in the highest
peak compared to the baseline for the remaining benchmarks.
Moreover, by combining both mechanisms (BW+SZB), the
overall effect is to save more flips than BW in all the studied
applications apart from astar.

The figure also shows the highest flip peak in the additional
control bits used by BW+SZB, represented with a cross
symbol, and accounts for CSZB, CpBW , CBW0 and CBW1 as
introduced in Section IV. For both CSZB and CpBW bits, results
include the flip overhead due to inverting them between shift
phases. For all the studied benchmarks, the maximum flip peak
rises in the CSZB bits since their flip activity is much higher
than in those of the BW mechanism, which can only flip once
in a large phase of 8M processor cycles (see Section IV-A).
Nevertheless, for most applications (5 out of 8) the BW+SZB
data array has a higher flip peak than the CSZB bits. This is
because flips in such control bits only occur due to byte write
sequences in the same byte location with a non-zero value
followed by a zero value and vice versa, whereas all sequences
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Fig. 10. Highest flip peak per cache set for a subset of the analyzed benchmarks.

with a non-zero value followed by a distinct non-zero value
induce cell flips in the data array. In h264ref, the CSZB peak is
relatively high because this application writes a large number
of zero bytes (see Figure 5) and most sequences are those
affecting the CSZB bits. Still, the CSZB peak is always much
lower than that of the baseline data array for all the studied
applications. Overall, the BW+SZB flip savings range from
22.4% (h264ref ) to 65.5% (astar).

Figure 10 depicts the raw number of flips for the memory
cell within each cache set that holds the highest flip peak for
soplex, which is a representative benchmark for those appli-
cations with a higher data array flip peak in SZB than in the
baseline (see Figure 9), and h264ref, which is representative
for those that reduce the SZB flip peak over the baseline.

The highest peak value widely varies across the cache sets
due to the non-uniform distribution of accesses across them.
For soplex, the highest cache flip peaks are always located in
the set with index 48 regardless of the studied mechanism.
Like in this set, the baseline and SZB schemes have a similar
flip peak in sets 5, 10, 39, and 42, whereas BW+SZB largely
reduces the amount of flips in all of them. For h264ref, the
cache set 7 contains the highest peaks for all the analyzed
mechanisms. In this case, it can be appreciated that BW+SZB
is the scheme that most saves the highest flip peak in all the
cache sets, followed by BW, SZB, and the baseline.

B. ‘0’ Duty Cycle Analysis

This section provides insights about the BTI wearout sav-
ings brought by the proposed techniques by quantifying the
maximum duty cycle distribution when storing a logic ‘0’
value. Figure 11 plots the longest ‘0’ duty cycle distribution for
the whole cache across the studied benchmarks. The duty cycle
is split into ‘0’ and ‘1’ duty cycle for the baseline and BW
approaches, while SZB and BW+SZB incorporate the switch-
off state, which refers to the amount of time that cells spend
powered off.

The maximum ‘0’ duty cycle for the baseline scheme is
nearly 100% in all the analyzed benchmarks, meaning that
at least one memory cell within the cache contains a ‘0’ for
the majority of the execution time. In contrast, by rotating
the bytes of the fetched words, not only flips are distributed
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Fig. 11. Maximum ‘0’ duty cycle distribution on the entire cache across all
the studied applications. The cross symbol refers to the longest ‘0’ duty cycle
in the control bits.

across the memory cells but also the logic ‘1’ values. This
helps obtain a modest ‘0’ duty cycle saving compared to
the baseline. Larger savings come when using the BTI-aware
SZB approach, which reduces the ‘0’ duty cycle according
to the amount of zero bytes that account for the switch-
off state. Finally, by combining both proposed techniques,
results are enhanced for a much lowered ‘0’ duty cycle, even
mitigating the ‘0’ duty cycle beyond the balanced 50% ratio
in applications like dealII and astar.

The cross symbol in the graph indicates the longest ‘0’ duty
cycle distribution in the control bits of the BW+SZB approach.
Similarly to the cell flip analysis, the maximum ‘0’ duty cycle
in these bits is given by those of the SZB approach. This is
due to the CpBW control bits holding a logic ‘1’ during most
of the program execution time (see Section IV-C2), and by
periodically inverting these bits between shift phases, their
maximum duty cycle becomes balanced (between 40% and
50% in most benchmarks). In contrast, for the CSZB bits, even
with the bit inversion, the duty cycle does not approach the
optimal balance as much as the CpBW bits do because of
the existing variability of the stored logic values in the CSZB
bits across the different shift phases. Nevertheless, the CSZB
longest ‘0’ duty cycle is relatively close to 50% with the only
exception being h264ref. In addition, the CSZB duty cycle is
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Fig. 12. Longest ‘0’ duty cycle distribution per cache set for the studied
mechanisms in sphinx3.
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Fig. 13. Longest ‘0’ duty cycle distribution per cache set for the studied
mechanisms in dealII.

always lower than that of the baseline data array. Overall, the
BW+SZB ‘0’ duty cycle reduction falls in between 11.8%
(h264ref ) and 40.2% (tonto).

Figure 12 and Figure 13 illustrate the longest ‘0’ duty
cycle distribution per cache set in the sphinx3 and dealII
applications, which are those benchmarks that experience the
least and most reductions in the ‘0’ duty cycle in the data
array, respectively, for the BW+SZB approach. Results show
that the baseline obtains a near 100% ‘0’ duty cycle in all the
cache sets for both applications. Note that, for BW, shifting
the incoming bytes does not benefit any set for sphinx3, while
the ‘0’ duty cycle reduction for dealII is quite low. On the
other hand, SZB brings larger savings with the inclusion of
the switch-off state. However, this is not enough for sphinx3,
where a long ‘0’ duty cycle is still present in most cache
sets. In contrast, dealII substantially saves the ‘0’ duty cycle
thanks to its high number of zero bytes (see Figure 5) and the
large amount of time that they are cached. Finally, BW+SZB
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Fig. 14. Maximum ‘1’ duty cycle distribution on the entire cache across all
the studied applications. The cross symbol refers to the longest ‘1’ duty cycle
in the control bits.

achieves larger ‘0’ duty cycle reductions not only from the
switch-off state but also from spreading such a state across
the memory cells for both benchmarks.

C. ‘1’ Duty Cycle Analysis

The proposed SZB and BW+SZB techniques mitigate the
BTI effect in the pair of SRAM cell transistors TP1-TN2 by
switching off those cells holding a zero byte. However, for a
complete evaluation of the BTI phenomenon, the longest ‘1’
duty cycle distribution should be analyzed to provide insights
about the BTI reduction in transistors TP2-TN1.

Figure 14 illustrates the maximum ‘1’ duty cycle for the
entire cache across the studied benchmarks. As expected,
the ‘1’ duty cycle is not as critical as its counterpart ‘0’
duty cycle since most stored data bits are ‘0’. Similar to the
previous analysis, the BW technique enhances the duty cycle
distribution with respect to the baseline by shifting logic ‘1’
values across the memory cells of the lines. The SZB approach
by itself is not able to mitigate the longest ‘1’ duty cycle with
respect to the baseline approach. This is because SZB attacks
the ‘0’ duty cycle by switching off zero bytes; however, the
amount of time that a ‘1’ is stored in a given cell remains
unchanged. The same reasoning can be made when comparing
the maximum ‘1’ duty cycle of BW and BW+SZB.

As above, the cross symbols refer to the longest ‘1’ duty
cycle for the BW+SZB control bits, which is given by the
CSZB bits. Compared to the baseline longest ‘1’ duty cycle
in the data array, only 2 out of 8 applications (dealII and
astar) present a slightly higher CSZB ‘1’ duty cycle distribution.
Taking into account the control bits, the BW+SZB ‘1’ duty
cycle distribution savings are up to 20.5% (mcf ).

Figure 15 and Figure 16 show the maximum ‘1’ duty
cycle distribution per cache set for the studied mechanisms
in sphinx3 and dealII applications, respectively. As can be
seen, the baseline approach shows a highly-biased ‘1’ duty
cycle in sphinx3, especially in those sets with a low index.
On the contrary, this approach obtains a balanced duty cycle
distribution in dealII, confirming the high amount of zero data
values on this benchmark. Compared to the baseline, BW
reduces the ‘1’ duty cycle ratio in all the sets of the analyzed
benchmarks. Results also show the ‘1’ duty cycle similarity in
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Fig. 15. Longest ‘1’ duty cycle distribution per cache set for the studied
mechanisms in sphinx3.
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Fig. 16. Longest ‘1’ duty cycle distribution per cache set for the studied
mechanisms in dealII.

all the sets when comparing the baseline with SZB and BW
with BW+SZB, which corroborates the results presented in the
preceding analysis.

Finally, comparing the maximum ‘1’ duty cycle results with
those of the ‘0’ duty cycle (see Figure 11), we can conclude
that, for most benchmarks and mechanisms, the ‘0’ duty cycle
will induce a higher BTI wearout in the corresponding SRAM
cells since its maximum distributions are larger than those of
the ‘1’ duty cycle. Such SRAM cells will fail sooner than the
others, and will have much more NBTI and PBTI degradation
in transistors TP1 and TN2, respectively.

D. Comparison Against the Colt Mechanism

Among the state-of-the-art approaches that attack cache
aging, we compare BW+SZB to the Colt mechanism [8] since,
to the best of our knowledge, it is the only one that addresses
both HCI and BTI effects at the same time.

Colt proposes two different techniques. First, the duty cycle
is balanced by splitting the execution time into epochs of
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BW+SZB mechanisms across all the studied applications.

1ms and alternatively writing the incoming data from L2
as normal or complemented within each epoch. The second
technique minimizes flip peaks by uniformly spreading the
cache accesses across sets. To do so, the cache index function
is altered with an LFSR, which is updated on every change of
epoch. However, the cache contents must be flushed when a
given epoch finishes, which incurs in performance degradation
and energy overhead with respect to the baseline cache design.

Figure 17 plots the highest flip peak and longest ‘0’ and ‘1’
duty cycles for Colt and the proposed BW+SZB technique.
Compared to BW+SZB, Colt will mitigate HCI wearout by
reducing the highest flip peaks. Like BW+SZB, the ‘0’ duty
cycle is much more remarkable than its counterpart ‘1’ duty
cycle, with differences by 0.3 in applications like tonto and
h264ref. More importantly for total aging (see Section V-F3),
the ‘0’ duty cycle exceeds the longest duty cycle obtained
by BW+SZB in all the studied applications, meaning that
Colt will induce a higher BTI degradation than BW+SZB.
This is mainly due to Colt just complements the written data
coming from the L2 cache, whereas L1 write hits store the
data non-complemented. Thus, those write hits occurring right
after a cache miss nullify the complemented effect, leading to
memory cells storing logic ‘0’ for a large amount of time.

E. Energy Savings

The proposed SZB mechanism saves energy thanks to
powering off zero bytes for aging purposes. This section
analyzes the data array energy consumption of the baseline
and BW+SZB approaches. The energy overhead of the ad-
ditional BW+SZB circuitry has been taken into account by
modelling these components with CACTI, which calculates
cache leakage and dynamic energy expenses. These expenses
were combined with the processor statistics from Multi2Sim
to obtain the overall consumption.

Figure 18 depicts the normalized results. Regardless of the
analyzed approach, leakage and dynamic expenses signifi-
cantly differ among benchmarks since they mainly depend on
the execution time and number of cache accesses, respectively.
Thus, applications enlarging the execution time (e.g., mcf ) or
increasing the number of accesses (e.g., h264ref ) present a
larger contribution of each type of energy. Compared to the
baseline, the BW+SZB scheme saves leakage by switching
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Fig. 18. Normalized consumption for the baseline and BW+SZB mechanisms.
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Fig. 19. Normalized highest dVth caused by the HCI effect on the entire
cache. The cross symbol refers to the normalized highest dVth HCI in the
control bits.

off zero bytes. These savings largely compensate the leakage
incurred by the additional BW+SZB circuitry. On the other
hand, BW+SZB slightly increases the dynamic energy with
respect to the baseline due to the additional logic. Neverthe-
less, the overall effect is to mitigate the total consumption in
all the studied benchmarks, with savings ranging from 7.1%
(sphinx3) to 20.6% (h264ref ).

F. Estimation of the dVth Savings
This section analyzes the Vth degradation caused by the

analyzed aging effects. Results are shown for the SRAM
cell transistor with the highest dVth (not necessarily the same
transistor across the studied approaches), which is the one that
suffers the highest wearout.

The dVth has been obtained assuming a 3-year lifetime for
our 32nm technology node [24]. To complete this execution
period, we assumed that the benchmark execution is repeated
over and over until the established lifetime is reached [25].
First, we focus on the dVth caused separately by the HCI
(dVth HCI) and BTI (dVth BT I) effects. Then both phenom-
ena are evaluated jointly.

1) Vth Degradation from HCI: The dVth HCI results
were calculated using the standard dVth formula presented in
Equation 1 [25]. All the parameters are constant values apart
from t, which refers to the amount of time (in seconds) that
the memory cells flip their contents. The reader is referred
to [25] for further information about the constant parameters.

∆Vth HCI = AHCI×α× f × e
Vdd−Vt

tox×EHCI ×
√

t (1)

Figure 19 plots the normalized highest dVth HCI with
respect to the baseline technique. Remember that HCI affects
uniformly all the SRAM cell transistors. Thus, the presented
results are those from the memory cell with the highest
HCI wearout. As expected from Equation 1, the dVth HCI
is highly related to the number of flips shown in Figure 9,
confirming that the proposed BW+SZB mechanism effectively
mitigates the HCI degradation. Results also corroborate that
the dVth HCI in the additional control bits is always lower
than that of the baseline data array.

2) Vth Degradation from BTI: The dVth BT I results were
computed from the standard formula shown in Equation 2 [21].
All the parameters are constant values except t stress and
t rec, which refer to the amount of time (in seconds) that
the cell transistors are under stress and recovery modes,
respectively. Please refer to prior work [21] for further details.

∆Vth BTI = ABTI× tox×
√

Cox× (Vdd−Vt)×

(1− Vds

α× (Vdd−Vt)
)× e

Vdd
tox×EBTI

− Ea
k×T ×

t stress0.25× (1−
√

etha× t rec
t stress+ t rec

)

(2)

Figure 20 shows the normalized highest dVth BT I with
respect to the theoretical maximum BTI voltage degradation
that transistors can suffer after the 3-year lifetime. Such a
voltage degradation comes from the NBTI effect (i.e., applying
‘0’ to the gate of PMOS transistors), which has more weight
than PBTI (i.e., applying ‘1’ to the gate of NMOS transistors)
in the parameter ABT I from Equation 2. Results have been split
according to the different types of transistors in the inverter
loop of the SRAM cells.

As observed, the BTI degradation is much more noticeable
in the PMOS transistors due to the aforementioned reason. Fo-
cusing on them, most TP1 transistors show a higher dVth BT I
than TP2 for a given mechanism. This is due to the stress time
in transistors TP1 and TP2 is given by ‘0’ and ‘1’ cell duty
cycles, respectively, and, as analyzed above, the former are
normally longer than the latter.

As expected from the ‘0’ duty cycle analysis, the highest
BTI degradation in TP1 belongs to the baseline approach,
followed by BW, SZB, and BW+SZB. In contrast, for tran-
sistors TP2, the baseline and SZB obtain very similar results.
This is also the case of BW and BW+SZB, which can also
be seen in the ‘1’ duty cycle results. Notice too that the
degradation on the BW+SZB control bits is also consistent
with the previous analysis. Another interesting observation
is that the dVth BT I for the TP1 under the baseline scheme
(almost) reaches the theoretical maximum degradation in all
the studied benchmarks. As mentioned above, this is due to
the ‘0’ duty cycle being near 100% in this scheme.

Given the symmetry of the SRAM cell, a similar reasoning
as that for the PMOS transistors can also be made for the
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Fig. 20. Normalized highest dVth caused by the BTI effect on the entire cache for each type of transistor. The cross symbol refers to the normalized highest
dVth BT I in the control bits.
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NMOS. In this case, TN1 and TN2 are affected by the ‘1’ and
‘0’ cell duty cycles, respectively.

3) Overall dVth: The overall amount of dVth is calculated
as the sum of dVth HCI and dVth BT I. Figure 21 depicts the
highest raw Vth degradation (in mV) across the whole cache
for the studied approaches, including the Colt mechanism. As
expected, the baseline mechanism is the one with the highest
dVth, which ranges from 60 to 70mV. The proposed schemes
substantially reduce the dVth with respect to the baseline, espe-
cially when combining both BW and SZB jointly. Despite Colt
reducing the flip peaks compared to BW+SZB (see Figure 17),
its dVth HCI savings do not compensate for the increase in
the dVth BT I caused by longer duty cycles in applications
like tonto, dealII, and h264ref. Moreover, when taking into
account the BW+SZB control bits, Colt only saves dVth in the
astar benchmark. Overall, the proposed BW+SZB guarantees
a significant dVth reduction ranging from 21.8% (h264ref ) to
44.3% (mcf ) with respect to the baseline approach.

Figure 22 shows the raw dVth results for all the cache cells
as a box-and-whisker plot, where the upper and lower bars
refer to the maximum and minimum dVth values, respectively.
The upper and lower box edges specify the 25th and 75th
percentiles of the distribution, whereas the dashed line within
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Fig. 22. dVth of all the memory cells for the baseline and BW+SZB
mechanisms.

the box represents the median of the entire data set.
For all the studied benchmarks, the BW+SZB boxes are

located way down below those of the baseline. This shows
that the proposed BW+SZB mechanism is effective not only
for reducing the dVth in the memory cell with the highest
degradation but also for most of the remaining cells imple-
menting the cache (at least for 50% of the cache cells included
in the box). On average, BW+SZB saves the dVth from 32.8%
(perlbench) to 68.3% (h264ref ).

Notice too that, apart from h264ref where the box height
for BW+SZB is scarcely larger than that of the baseline, all
the benchmarks show a much shorter box height for BW+SZB.
This fact denotes a much more homogeneous voltage degrada-
tion across half of the cache memory cells. Moreover, taking
into account the height of the boxes plus the limits, that is, all
the cells used to implement the cache, BW+SZB shrinks such
a height in all applications except sphinx3 compared to the
baseline. This homogeneous degradation also ensures a more
balanced SNM of the SRAM cells that otherwise can lead to
wrong read/write values.

VI. RELATED WORK

Cache degradation has been mainly attacked in the past from
the perspective of BTI, by balancing the amount of time that
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logic ‘0’ and ‘1’ values are stored in the cells with the aim to
provide a BTI-optimal duty cycle distribution [3], [4], [5], [8],
by including redundant cell regions into the cache design [6],
and by lowering the supply voltage of idle memory cells [7].

Abella et al. [3] invalidate the stored contents and comple-
ments their logic values in specific sets and ways. The target
sets and ways are selected using a round-robin policy at coarse
time periods to mitigate the impact on performance.

Gebregiorgis et al. [4] introduce a bit flipping technique
that identifies a bit position within the input data with a BTI-
optimal signal probability, and uses its logic value as a flag
to determine whether to invert the contents of the remaining
input bit positions.

Ganapathy et al. [5] equalize the duty cycle ratio in read-
modify-write cache schemes. Their approach invert the stored
contents on writebacks after read operations, whereas regular
write accesses do not complement the original stored data.

The Proactive Recovery [6] mechanism includes virtual Vdd
rails in the SRAM cell design to move from normal operation
mode to a suspended NBTI wearout mode in which the stored
cell logic value depends on which PMOS device is more
stressed by the NBTI effect.

Calimera et al. [7] partition the cache into multiple banks
and uniformly distribute the idle time of the cache lines across
them by using a dynamic indexing scheme. The Vdd of the idle
memory cells is reduced, which mitigates NBTI.

Other approaches have addressed BTI wearout in other
microprocessor structures. For example, Wang et al. [26]
divide the integer register file into two halves and balance the
duty cycle distribution in the upper half where most entries
hold ‘0’. Gong et al. [13] include robust 8T cells in the
register file design, which store the most NBTI-vulnerable
bits, while the remaining data bits are stored in typical 6T
cells. Kothawade et al. [27] equalize the NBTI stress across
the register file by altering the register decoding scheme. Li
et al. [28] exploit the idle time of entries from the register
file, the reorder buffer, and reservation stations to perform
Proactive Recovery [6] during inactive cycles. The Recovery
Boosting [19] technique modifies the SRAM cells used in the
issue queue and the register file to enable both PMOS devices
within the cell to recover at the same time from NBTI. The
GNOMO [29] approach mitigates BTI in the computational
units by first completing the execution of a given task faster
with a higher voltage/frequency pair, and then powering off
such units for the remaining elapsed time.

Other works have taken into account additional parameters
that speed up BTI wearout like the temperature [25], [30], the
effects of process variation [31], and the proposal of job-to-
core mapping techniques [32].

Finally, the Colt approach [8] combats BTI and HCI in L1
caches by periodically inverting the incoming data and uni-
formly distributing the cache accesses across sets, respectively.

VII. CONCLUSIONS

Lifetime reliability is a major design concern in current
microprocessors. Two of the main effects that speed up
microprocessor wearout are the Hot Carrier Injection (HCI)
and the Bias Temperature Instability (BTI). These phenomena

progressively degrade the transistor’s threshold voltage, which
causes slower transistor switching and eventually can result
in faulty operation. HCI is accentuated when transistors flip
from logic ‘0’ to ‘1’ and vice versa, whereas BTI exacerbates
when transistors maintain the same logic value (i.e., logic duty
cycle) for an extended period of time. These failure effects are
especially critical in those transistors used to implement the
SRAM cells of first-level (L1) caches, which are critical for
performance and are continuously aging.

This work has identified which memory cell transistors of
the L1 data cache age the most from the perspective of both
HCI and BTI effects. Based on this information, this paper has
presented a pair of microarchitectural mechanisms that spread
the number of cell flips evenly across memory cells and reduce
the amount of time that logic ‘0’ values are stored in the cells
by switching off specific data bytes.

Experimental results have shown that the proposed mech-
anisms reduce the highest cell flip of the entire cache from
22.4% to 65.5% depending on the application, whereas the
longest ‘0’ and ‘1’ duty cycle distributions in the cells can be
reduced up to 40.2% and 20.5%, respectively. This translates
into threshold voltage degradation savings ranging from 21.8%
to 44.3% depending on the application.
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