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Abstract

Transcriptomics is one of the most important and relevant areas of bioinforma-
tics. It allows detecting the genes that are expressed at a particular moment in
time to explore the relation between genotype and phenotype. Transcriptomic
analysis has been historically performed using microarrays until 2008 when high-
throughputRNAsequencing (RNA-Seq)was launchedon themarket, replacing the
old technique. However, despite the clear advantages overmicroarrays, it was ne-
cessary to understand factors such as the quality of the data, reproducibility and
replicability of the analyses and potential biases.
The first section of the thesis covers these studies. First, an R package called
NOISeq was developed and published in the public repository "Bioconductor",
which includes a set of tools to better understand the quality of RNA-Seq data,
minimise the impact of noise in any posterior analyses and implements two new
methodologies (NOISeq and NOISeqBio) to overcome the difficulties of compa-
ring two different groups of samples (differential expression). Second, I show our
contribution to the Sequencing Quality Control (SEQC) project, a continuation of
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theMicroarray Quality Control (MAQC) project led by the US Food and Drug Ad-
ministration (FDA, United States) that aims to assess the reproducibility and repli-
cability of any RNA-Seq analysis.
One of the most effective approaches to understand the different factors that in-
fluence the regulation of gene expression, such as the synergic effect of transcrip-
tion factors, methylation events and chromatin accessibility, is the integration of
transcriptomic with other omics data. To this aim, a file that contains the chro-
mosomal position where the events take place is required. For this reason, in the
second chapter, we present a new and easy to customise tool (RGmatch) to asso-
ciate chromosomal positions to the exons, transcripts or genes that could regulate
the events.
Another aspect of great interest is the study of non-coding genes, especially long
non-coding RNAs (lncRNAs). Not long ago, these regionswere thought not to play
a relevant role and were only considered as transcriptional noise. However, they
represent a high percentage of the human genes and it was recently shown that
they actually play an important role in gene regulation. Due to these motivations,
in the last chapter we focus, first, in trying to find a methodology to find out the
generic functions of every lncRNA using publicly available data and, second, we
develop a new tool (spongeScan) to predict the lncRNAs that could be involved in
the sequestration ofmicro-RNAs (miRNAs) and therefore altering their regulation
task.
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Resumen

La transcriptómica es una de las áreas más importantes y destacadas en bioin-
formática, ya que permite ver qué genes están expresados en un momento dado
para poder explorar la relación existente entre genotipo y fenotipo. El análisis
transcriptómico se ha realizado históricamente mediante el uso de microarrays
hasta que, en el año 2008, la secuenciaciónmasiva de ARN (RNA-Seq) fue lanzada
al mercado y comenzó a desplazar poco a poco su uso. Sin embargo, a pesar de las
ventajas evidentes frente a losmicroarrays, resultaba necesario entender factores
como la calidad de los datos, reproducibilidad y replicabilidad de los análisis así
como los potenciales sesgos.
La primera parte de la tesis aborda precisamente estos estudios. En primer lugar,
se desarrolla un paquete deR llamadoNOISeq, publicado en el repositorio público
"Bioconductor", el cual incluye un conjunto de herramientas para entender la cali-
dad de datos de RNA-Seq, herramientas de procesado para minimizar el impacto
del ruido en posteriores análisis y dos nuevas metodologías (NOISeq y NOISeq-
Bio) para abordar la problemática de la comparación entre dos grupos (expresión
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diferencial). Por otro lado, presento nuestra contribución al proyecto Sequencing
Quality Control (SEQC), una continuación del proyecto Microarray Quality Con-
trol (MAQC) liderado por laUSFood andDrugAdministration (FDA) que pretende
evaluar precisamente la reproducibilidad y replicabilidad de los análisis realizados
sobre datos de RNA-Seq.
Una de las estrategias más efectivas para entender los diferentes factores que
influyen en la regulación de la expresión génica, como puede ser el efecto sinér-
gico de los factores de transcripción, eventos de metilación y accesibilidad de
la cromatina, es la integración de la transcriptómica con otros datos ómicos.
Para ello se necesita generar un fichero que indique las posiciones cromosómicas
donde se producen estos eventos. Por este motivo, en el segundo capítulo de la
tesis presentamos una nueva herramienta (RGmatch) altamente customizable que
permite asociar estas posiciones cromosómicas a los posibles genes, transcritos o
exones a los que podría estar regulando cada uno de estos eventos.
Otro de los aspectos de gran interés en este campo es el estudio de los genes no
codificantes, especialmente los ARN largos no codificantes (lncRNAs). Hasta no
hace mucho, se pensaba que estos genes no jugaban ningún papel fundamental y
se consideraban como simple ruido transcripcional. Sin embargo, suponen un alto
porcentaje de los genes del ser humano y se ha demostrado que juegan un papel
crucial en la regulación de otros genes. Por este motivo, en el último capítulo nos
centramos, en un primer lugar, en intentar obtener una metodología que permita
averiguar las funciones generales de cada lncRNA haciendo uso de datos ya pu-
blicados y, en segundo lugar, generamos una nueva herramienta (spongeScan) que
permite predecir qué lncRNAs podrían estar secuestrando determinados micro-
RNAs (miRNAs), alterando así la regulación llevada a cabo por estos últimos.
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Resum

La transcriptòmica és una de les àrees més importants i destacades en bioin-
formàtica, ja que permet veure quins gens s’expressen en un moment donat per
a poder explorar la relació existent entre genotip i fenotip. L’anàlisi transcriptòmic
s’ha fet històricament per mitjà de l’ús de microarrays fins l’any 2008 quan la tèc-
nica de seqüenciació massiva d’ARN (RNA-Seq) es va fer pública i va començar a
desplaçar a poc a poc el seu ús. No obstant això, a pesar dels avantatges evidents
enfront dels microarrays, resultava necessari entendre factors com la qualitat de
les dades, reproducibilitat i replicabilitat dels anàlisis, així com els possibles caires
introduïts.
La primera part de la tesi aborda precisament estos estudis. En primer lloc, es va
programar un paquet deR anomenatNOISeq publicat al repositori públic “Biocon-
ductor”, el qual inclou un conjunt d’eines per a entendre la qualitat de les dades de
RNA-Seq, eines de processat per a minimitzar l’impact del soroll en anàlisis pos-
teriors i dos noves metodologies (NOISeq i NOISeqBio) per a abordar la proble-
màtica de la comparació entre dos grups (expressió diferencial). D’altra banda,
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presente la nostra contribució al projecte Sequencing Quality Control (SEQC),
una continuació del projecteMicroarrayQuality Control (MAQC) liderat per la US
Food and Drug Administration (FDA) que pretén avaluar precisament la reprodu-
cibilitat i replicabilitat dels anàlisis realitzats sobre dades de RNA-Seq.
Una de les estratègies més efectives per a entendre els diferents factors que in-
fluïxen a la regulació de l’expressió gènica, compot ser l’efecte sinèrgic dels factors
de transcripció, esdeveniments de metilació i accessibilitat de la cromatina, és la
integració de la transcriptómica amb altres dades ómiques. Per això es neces-
sita generar un fitxer que indique les posicions cromosòmiques on es produïxen
aquests esdeveniments. Per aquestmotiu, en el segon capítol de la tesi presentem
una nova eina (RGmatch) altament customizable que permet associar aquestes
posicions cromosòmiques als possibles gens, transcrits o exons als que podria es-
tar regulant cada un d’aquests esdeveniments regulatoris.
Altre dels aspectes de gran interés en aquest camp és l’estudi dels genes no co-
dificants, especialment dels ARN llargs no codificants (lncRNAs). Fins no fa molt,
encara es pensava que aquests gens no jugaven cap paper fonamental i es consid-
eraven com a simple soroll transcripcional. No obstant això, suposen un alt per-
centatge dels gens de l’ésser humà i s’ha demostrat que juguen un paper crucial en
la regulació d’altres gens. Per aquest motiu, en l’últim capítol ens centrem, en un
primer lloc, en intentarobtenir unametodologiaquepermetaesbrinar les funcions
generals de cada lncRNA fent ús de dades ja publicades i, en segon lloc, presentem
una nova eina (spongeScan) que permet predeir quins lncRNAs podríen estar se-
grestantdeterminatsmicro-RNAs (miRNAs), alterant així la regulacióduta a terme
per aquests últims.

8



Agradecimientos

Quisiera agradecer a todos los que han posibilitado que esta tesis doctoral se
pueda hoy presentar, los que han continuado creyendo en mí y me han dado su
apoyo y los que de una manera u otra me han ido dando fuerzas para seguir ad-
elante.
En primer lugar, me gustaría agradecer todo el apoyo, tiempo y dedicación a mi
directora Ana. Gracias por aceptarme en el grupo cuando todavía no había ni final-
izado el máster y haberme enseñado durante todo este tiempo la mayor parte de
mis conocimientos actuales en bioinformática. Gracias por haber confiado en mí
incluso en los momentos en que yo mismo he llegado a desconfiar de mí mismo.
Y sobre todo gracias por haber seguido empujando, apoyando y dedicándome
tiempo en los momentos más complicados cuando yo ya me había ido del labor-
atorio y parecía que esto se empezaba a estancar.
A Belén Picó, por aceptar tutorizarme y ser siempre tan atenta a cualquier duda o
necesidad que he podido tener.

9



A todos los bioinfos que he ido conociendo en el CIPF. En particular, a la gente de
mi grupo conquienmás tiempohepasado: AMónica yCristina por esosmomentos
de confidencias cuando salíamos "a fumar"; a Rafa y Patricia por ser sencillamente
la alegría del laboratorio; a Lorena, la terremotoque se agobiaba en seguida yno se
daba cuenta que siempre podía con todo y mucho más; a Eugenia con quien com-
partí un tiempo muy especial en Gainesville y le tengo un cariño muy especial; a
Rodrigo y Miguel Ángel, quienes me ayudaron cuando empecé en el laboratorio.
Y finalmente, gracias muy especiales y con letras mayúsculas a Sonia. La mayor
parte del trabajo aquí descrito cuenta con su excelente colaboración. A todos sen-
cillamente, GRACIAS !
I would like to thank Anton Enright and their group at the European Bioinformatics In-
stitute in Cambridge, for welcomingme at their laboratory and the fruitful and unforget-
table experience I had during my visit in 2014.
A la familia de españoles que hemos formado en Cambridge, porque vivir en el ex-
tranjero se hacemuchísimomás fácil y llevadero con amigos como vosotros.
A mis padres, hermana, cuñado y sobrino, por todo el cariño y apoyo recibido dur-
ante todo este tiempo incluso antes de empezar a realizar la tesis. Por supuesto
también a Leo, porque en estos 15 años juntos nunca ha dejado de creer enmí y no
ha dejado de animarme a seguir adelante.
A Coby, porque aunque ya no estés, me has dado todo sin pedir nada a cambio.
A mi hija Mar, por esa felicidad inocente tan contagiosa. Eres sin duda lo me-
jor que ha pasado por mi vida y espero que nunca pierdas la sonrisa. Y gra-
cias también por contribuir a la escritura de mi tesis: ttęve5ved5v devfu0ui0u
mnh9nnonoo9o95eew5c5wc5dw3w33 ytfbby fvcfydv ydvdy ydbyb dby yyh7
969uj9 kv7fvru7cnvu7fv8. Ya te enseñaré esta contribución cuando crezcas.

10



Todos vosotros me habéis ayudado a crecer personal y profesionalmente. El cam-
ino para la consecución de la tesis ha terminado siendo más largo y tedioso de lo
esperado, pero estoy seguro de que ha merecido la pena. Muchísimas gracias a
todos de corazón.

11





Contents

1 Introduction 1
1.1 Next Generation Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 General pipeline in NGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Applications of NGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Motivation, aims andmain contributions 17
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Specific aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Quality Analysis of RNA-Seq technology 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



Contents

3.3 NOISeq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 SequenceQuality Control (SEQC) project . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Data integration in NGS 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Functional characterisation of long non-coding RNAs 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Functional characterisation of long non-coding RNAs . . . . . . . . . . . . . . . . . . . 84
5.4 spongeScan: A web for detecting microRNA binding elements in lncRNA se-
quences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

6 General discussion and conclusions 115
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
6.2 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
6.3 Reach and relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

ii



List of Figures

1.1 Evolution of whole human genome sequencing cost over the years.
Courtesy: National HumanGenome Research Institute. . . . . . . . . 2

1.2 General bioinformatics pipeline in NGS experiments. . . . . . . . . . 7
1.3 Quality score across all the bases of a sample FastQ file before and

after cleaning low quality reads. The first figure shows a sample
containing reads of very lowquality. The secondfigure corresponds
to the same sample after filtering out those low-quality reads. . . . . 8

1.4 Alignment section example of the SAM format specification. . . . . . 9
1.5 RNA-Seq analysis can benefit from the data integration of other

omics such as ChIP-Seq, Methyl-Seq, etc. Special algorithms are
needed to assign each regulatory region to the corresponding an-
notated genes. For regions such as the one in red might be unclear
which gene it should be associated to. . . . . . . . . . . . . . . . . . . 14

iii

https://www.genome.gov/sequencingcosts/


List of Figures

3.1 Outline of NOISeq package functionalities. . . . . . . . . . . . . . . . 31
3.2 S4 classes used in NOISeq package. . . . . . . . . . . . . . . . . . . . 32
3.3 Biodetection plot fromNOISeq. . . . . . . . . . . . . . . . . . . . . . . 38
3.4 PCA analysis of FastQC output . . . . . . . . . . . . . . . . . . . . . . 42
3.5 PCAof SEQC samples analysed byNOIseq read count quality para-

meters. Lanes and replicates are shown as different entities. Data
are coloured by sample type. . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 PCAof SEQC samples analysed byNOIseq read count quality para-
meters. Lanes and replicates are shown as different entities. Data
are coloured by sample type. Samples E & Fwere excluded. . . . . . . 44

3.7 PCAof SEQC samples analysed byNOIseq read count quality para-
meters. Lanes and replicates are shown as different entities. Data
are coloured by laboratory. Samples E & Fwere excluded. . . . . . . . 45

3.8 PCAof SEQC samples analysed byNOIseq read count quality para-
meters. Lanes and replicates are shown as different entities. Data
are coloured by sequencing depth. Samples E & F were excluded.
Yellow indicates higher sequencing depth than red colours. . . . . . . 46

3.9 Correlation between replicates of sample B in two different labor-
atories. Upper triangularmatrix shows gene correlations and lower
triangular matrix shows transcript correlations. . . . . . . . . . . . . 47

iv



List of Figures

3.10 Correlation of gene expression values for the same samples run at
different laboratories. Mean expression values across 4 replicates
are used to calculate correlations between laboratories. Upper tri-
angularmatrix showsgene correlations and lower triangularmatrix
shows transcript correlations. . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 The effect in the number of differentially expressed genes in
samples A and B in function of the number of lanes being used. . . . . 49

3.12 Thenumberof transcripts detectedbyan increasingnumberof rep-
licates at different transcript expression intervals. Each bar repres-
ents the number of transcripts detected simultaneously by at least
the indicated number of replicates, averaged through all possible
replication sets of that replicates number. Transcripts were identi-
fiedusingCufflinks and expressionmeasured in FPKM.Data for the
AGR site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.13 The number of junctions detected by an increasing number of rep-
licates at different sequencing sites. Stackedbars indicate the relat-
ive frequency of themajor junction in case of annotated alternative
splicing events at the junction. . . . . . . . . . . . . . . . . . . . . . . 53

3.14 The number of junctions detected by Illumina sequencing of sample
A across different sequencing sites at different levels of replication.
Each bar represents the average number of junctions jointly detec-
ted by the indicated number of sites, considering all possible com-
binations of that site number. For each level of replication, one rep-
lication set was randomly selected per site and compared with the
replication sets of all remaining sites. . . . . . . . . . . . . . . . . . . . 54

v



List of Figures

4.1 Definition of the areas of a gene used by the RGmatch algorithm. . . 61
4.2 Examples of two different situations that would result in a region

being associatedwithmore than one gene. aTwooverlapped genes
with different isoforms. b Two different genes with common areas
overlapping the region (quasi-overlapping genes) . . . . . . . . . . . 62

4.3 Flowchart describing the rules used by RGmatch to decide the
gene area to annotate the region-transcript association (default al-
gorithm options) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Venn diagram showing the number of region-gene associations ob-
tainedwith the HOMER, RGmatch, and CisGenomemethods . . . . . 75

5.1 Expression values of two randomprotein-coding and two long non-
coding RNA genes to show that, in general, the expression values
of protein-coding genes are almost two orders ofmagnitude higher
than long non-coding RNAs. . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 PCA of coding and long-non coding RNAs across a wide range of
tissues. Counts were corrected by sequencing depth. . . . . . . . . . 91

5.3 PCAof coding and long-non codingRNAs across awide range of tis-
sues. Datawere batch-corrected and normalised using the quantile
normalisation approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Density plots appliedover the expression values usingquantile nor-
malisation. Red line indicates theminimum threshold used for both
biotypes to consider them as expressed. . . . . . . . . . . . . . . . . . 93

5.5 Number of tissues the lncRNAs are specific in. . . . . . . . . . . . . . 95

vi



List of Figures

5.6 The number of lncRNAs specific per tissue. Tissues that were not
specific of any lncRNAswere discarded from the representation. . . 96

5.7 Biological processes of tissue-specific lncRNAs. . . . . . . . . . . . . 97
5.8 Molecular functions of tissue-specific lncRNAs. . . . . . . . . . . . . . 98
5.9 Biological processes of non-tissue-specific lncRNAs. . . . . . . . . . . 99
5.10 spongeScan architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.11 Flowchart showing the main strategy behind the spongeScan ap-

plication. K-mers of 6, 7 and 8 nucleotides are searched for by using
sliding windows of different sizes. Different k-mer frequencies are
obtained for each pair k-mer – lncRNA. Highly enriched k-mers are
reported and checked for correspondence with a miRNA canonical
seed. Pairwise predictions are then represented in spongeScan. . . . 103

5.12 Main view of the spongeScanweb application. . . . . . . . . . . . . . 109
5.13 Form toperformanewprediction analysiswith thedefault example

options loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vii



List of Figures

5.14 spongeScan output generated for the example data set. (A) Table
showingpairwise enrichments ofmiRNAcanonical seeds in lncRNA
sequences. This viewonly showsa fewof the total possible columns
containing data and scores. (B) Expression data representation
for the first pair CDR1-AS and miR-7-5p. The expression data are
grouped by tissue and, when clicked, it will show the expression of
all the samples in the tissue. (C) Expression levels of mRNA targets
of miR-7 for different tissues as a function of the CDR1-AS expres-
sion. Red box-plots correspond to tissues where the lncRNA is not
significantly expressed, whereas the green colour indicates expres-
sion of the lncRNA in the tissue. . . . . . . . . . . . . . . . . . . . . . . 113

viii



List of Tables

3.1 Sequencing depth of the samples per laboratory and replicate. . . . . 40
3.2 Differentially expressed genes in common between laboratories

for samples A (upper quadrant) & B (lower quadrant). . . . . . . . . . 48

4.1 Table showing the results at the exon level for the example shown
in Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Table showing the results at the transcript level for the example
shown in Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Table showing the results at the gene level for the example shown
in Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Comparison of the functionalities of the different algorithms . . . . . 70
4.5 Equivalences between the gene areas defined by RGmatch and

HOMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



List of Tables

4.6 Annotations for the region location within the gene returned by
RGmatch (columns) andHOMER (rows) . . . . . . . . . . . . . . . . . 77

x



Chapter 1

Introduction

1



Chapter 1. Introduction

1.1 Next Generation Sequencing
Next generation sequencing (NGS) technologies have revolutionised theway gen-
omics andmolecular biology research has been carried out during this last decade.
Theadventof these "new" technologies has allowed researchers to sequence com-
plete genomes much faster and cheaper compared to the old Sanger sequencing,
making themmuchmore affordable for researchers (Figure 1.1).

Figure 1.1: Evolution of whole human genome sequencing cost over the years.
Courtesy: National HumanGenome Research Institute.

The human genome is composed of more than 3 billion base pairs. Current se-
quencing reactions can only cover a fraction of hundreds of base pairs at a time.
This means that in order to cover the whole human genome, thousands of over-
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1.1 Next Generation Sequencing

lapping slices of DNA sequence need to be produced. NGS uses massively parallel
sequencing to generate millions of reads of data simultaneously. Generally, a typ-
ical NGSworkflow includes the following steps: theDNA is randomly fragmented,
the resulting segments are size-selected and adapters are ligated to both 5’ and 3’
ends. The sequence generation step occurs differently depending on the platform
[1]: fragments are attached to a solid surface on Illumina, where sequencing oc-
curs. In the Pacbio platform, sequencing happens in a zero-wavelength chamber
and in SOLiD, inside a droplet. In the case of Nanopore, the protagonists are the
pores, and sequencing happens as the DNA molecules pass through. Data in the
form of nucleotides is obtained after processing the raw signals, which are specific
for each platform. The advantage of these technologies and one of themain differ-
ences compared to the Sanger sequencing is the opportunity to perform the final
sequencing step simultaneously for an entire library of DNA fragments.

1.1.1 Sequencing platforms
The first sequencer, 454, was introduced in 2005 by Roche and it was rapidly fol-
lowed in 2006 by two other platforms: SOLiD (Life Technologies) and Solexa (Illu-
mina). Each platform used a different approach for sequencing, leading to differ-
ent results in regards to throughput (i.e. number of reads, read length), signal to
noise detection, run time and, equally important, final cost. 454 relied on beads
as the solid surface where adaptor-ligated single-stranded fragments were joined
(one fragment per bead) and amplified in an emulsion PCR. Amplified beads were
immobilised in a multi-well plate or a glass slide, where the sequencing reaction
occurred via pyrosequencing. In thismethod, additional beadswith a sulphurylase
and a luciferase were introduced to react with the pyrophosphate released by
the last incorporated base, generating ATP, which reacts with luciferin producing
oxyluciferin and light. This lightwasmonitored and the signals translated into a se-
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Chapter 1. Introduction

quence. This platformwas mostly used to perform de novo sequencing of bacteria
and organisms of low complexity, some exome analysis and 16Smetagenomics [1],
although its use was discontinued in 2016.
SOLiD sequencing, instead, used a different approached called sequencing by liga-
tion. Theworkflow also included an emulsion PCRon beads, however, the sequen-
cing was performed using several ligation rounds where fluorescently labelled di-
base probes competed for ligation to the sequencing primer or the previous probe.
After five rounds, the complete sequence of each fragment was obtained. One of
the main advantages of SOLiD versus the 454 platform was its ability to better
sequence homopolymers and repeat regions as well as having higher throughput.
SOLiD was more often applied to variant discovery through re-sequencing pro-
jects [1].
But, without any doubt, the platform that revolutionised the field was Illumina,
with a sequencing methodology called solid-phase amplification. Briefly, sheared
single-stranded DNA fragments linked to adaptors are hybridised into a solid sur-
face coatedwith forward and reverse primers. The adaptors on the attachedDNA
segments can ligate to nearby complementary attached oligonucleotides forming
a bridge. Fluorescently-labelled nucleotides are added in several rounds, so that
a PCR is performed in each of these bridges, forming a cluster of identical se-
quences. The incorporation of each nucleotide includes the release of a fluores-
cent signal, which is captured by an imaging system. Post-sequencing manage-
ment of these images reveals the complete sequence of each cluster/fragment.
The use of the Illumina platform is still on the rise worldwide, and its applications
have been very broad, i.e., variant discovery, exome sequencing and gene discov-
ery [1]. Comparatively, 454 was able to produce longer reads (400-600 million
bp per run with 400-500 bp read lengths), however, the quality and throughput
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were very low compared to SOLiD and Illumina, and the error rate higher. SOLiD,
on its side, provided high throughput but with very small reads (2.8 billion 50-75
bp paired-end reads). Strikingly, Illumina HiSeq can now produce 5 billion 150 bp
paired-reads per run, and the latest Novaseq, up to 20 billion. A structure that in-
cludes 10 Illumina HiSeq machines (HiSeq X Ten) can yield nearly 3 billion paired-
end 150-bp sequences. This is the sequencer that broke the $1000 barrier to
perform whole-genome sequencing of the human genome. Other platforms were
also commercialised: the Ion Torrent (Life Technologies, 2010) was promising as
a bench-top device with a different sequencing strategy based on monitoring pH
changes caused by the incorporation of a new nucleotide into the growing strand.
However, a new revolution took place in the field by the introduction of the single-
molecule real-time (SMRT) sequencing. No amplification reaction is performed in
these cases, avoiding the inherent bias caused by this process. In 2011, the Pac-
Bio RS system (Pacific Biosciences) was released as the first one capable of per-
forming direct SMRT sequencing using immobilised polymerase enzymes. Three
years later, Oxford Nanopore Technologies (ONT) released the MinION, the first
portable sequencer that identifies DNA bases by measuring changes in the elec-
trical conductivity of a membrane as the DNA passes through a biological pore.
ONT recently released the GridION as a scalable sequencer using the same ap-
proach. These two platforms produce long reads, which in the case of PacBio can
reach an average of 10kb (maximum length 60 kb), while ONT technologies can
surpass the 150kb. The revolution of long-read sequencing has occurred mainly
in the field of microbial genomics and real-time pathogen identification [2, 3]. The
main advantage of long-read sequencing is the ability to deal with complex gen-
omic regions and structural variants, allowing to resolve complex areas of the hu-
man genome as well as lower-complexity organisms [4]. Very recently, the port-
able MinION device was used to sequence the whole human genome with a 30x
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depth, achieving almost 86% coverage of the reference GRCh38 sequence, with
a great improvement in the assembly of the major histocompatibility complex, te-
lomere repeats and closing existing gaps [5].
All these platforms differ in the chemistry and processing steps. Their final output
data (raw data) can have a platform-dependent format, however, all of them cur-
rently provide a conversion to the so-called fastqfile. Thisfile is usually the starting
point for any current bioinformatics pipeline.

1.2 General pipeline in NGS
Figure 1.2 shows a typical NGS pipeline. Fastq files are no more than text files
containing 4 lines per sequenced fragment or read (the read id, the nucleotide se-
quence, an optional id or description and the sequence of encoded qualities for
each nucleotide). This format has become the standard, so NGS platforms either
generate these files directly or generates a different file format that can be con-
verted to .fastq.

@SEQUENCE_ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

Fastq quality scores are ASCII-encoded and are commonly referred to as Phred
Quality Scores, which measure the probability of a base being incorrectly called.
For example, a quality score of 10 would mean that there is a probability of 1 in
10 that the base call is incorrect (90% accuracy), while a value of 50 would mean
there is a probability of 1 in 100000 to be incorrect (99.999% accuracy).
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Figure 1.2: General bioinformatics pipeline in NGS experiments.

1.2.1 Quality Control (QC) of the data
First, quality control of the reads should be performed to discard those reads or
segments of reads with poor qualities. A typical threshold would be to keep all
the reads with Phred Quality Scores over 30 (99.9% accuracy). While programs
such as FastQC [6] can help to get an overview of the quality of the sequences
and discover different types of biases, some tools from the FASTX-Toolkit [http:
//hannonlab.cshl.edu/fastx_toolkit/] or such as cutadapt [7] allow filtering
out or trimming reads based on some quality conditions as well as remove known
adapter sequences from the reads. An example of the results of cleaning can be
seen in Figure 1.3.
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Figure 1.3:Quality score across all the bases of a sample FastQfile before and after cleaning low
quality reads. The first figure shows a sample containing reads of very low quality. The second
figure corresponds to the same sample after filtering out those low-quality reads.

1.2.2 Reference mapping and de novo assembly
Once all the reads pass the quality thresholds, they are ready for subsequent ana-
lyses. Depending on the aim of the project, reads can be assembled to each other
(de novo assembly) or mapped to a reference genome (mapping). A de novo as-
sembly is generally performedwhen the genome being studied has not been char-
acterised yet. This is a hard process that requires high sequencing depth and read
quality. The algorithm (i.e. de Bruijn graph [8]) tries to reconstruct the whole gen-
ome by overlapping reads to each other to form contigs. The main output, in this
case, corresponds to a fasta file containing the sequence of these contigs. On the
other hand, if the reference genome is already known, it can be used as a guide to
overlap the reads. Thismethod allows identifying the chromosomepositionwhere
the read fragmentwas sequenced. Not all the readswill map to the reference gen-
ome because of potential sequencing errors or differences between the sample
and the reference genome sequences. In the sameway, not all the input reads will
be used for the final de novo assembly. In the mapping process, the output file will
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be in SAMor BAM (the binary format of SAM) format. A SAM file is a plain text file
containing the sections from Figure 1.4:

Figure 1.4: Alignment section example of the SAM format specification.

• Read Id: Unique identifier of the read. Corresponds to the @SEQUENCE_ID
from the previous fastq example.
• Flag: Combination of bitwise flags indicating different properties of the
alignment. For instance, 113 means the read is the first of a pair and it has
been paired in the reverse strand. See https://broadinstitute.github.
io/picard/explain-flags.html for a detailedmeaning of the flags.
• Mapping position: Chromosome and 1-based leftmost mapping position of
the read in the reference genome.
• Mapping quality: Probability that the mapping is wrong. It equals to
-10log10P{mapping_position_is_wrong} rounded to thenearest integer.
• CIGAR: String indicating the number of bases matching, mismatching,
skipped, containing deletions or insertions with respect to the reference.
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• Mate position: In paired-end data, the position where the pair of a read is
mapped.
• Inferred insert size: In paired-end data, the inferred size of the insert
between pair reads.
• Read sequence: Sequence of the read (second row from the fastq file).
• Base quality: Base quality of the sequence (fourth row from the fastq file).
• Optional fields: A list of predefined optional fields, usually extended by the
aligners.

It is advisable toperformquality control of themapped reads afterwards. This pro-
cess allows the detection of random errors or other systematic biases that could
not be discovered otherwise. The usage of graphical tools such as Qualimap [9] or
command line tools such as SAMStat [10] makes this process straightforward by
generating a very easy-to-interpret report.

1.2.3 Mapping post-processing
Almost every NGS analysis pipeline follows the steps described above. However,
the post-processing step of the mapped data is particular for each sequencing
technology (Figure 1.2). The aimofRNA-sequencing (RNA-Seq) experiments is the
discovery of differentially expressed genes under certain conditions. Therefore,
the step that follows the mapping process is the gene quantification. Quantifying
the expression of a gene normally involves the estimation of the total number of
readsmapped to each genic region, generating a text file containing the number of
counts per gene. DNA-Seq analyses are focused on the detection of variants com-
pared to a reference genome. These changes are mostly single-nucleotide poly-
morphisms (SNPs), but can also be small insertions or deletions, that accumulate

10



1.3 Applications of NGS

as a result of evolution and, in a limited number of cases, can contribute or be the
sole cause of a particular phenotype or disease. The process to obtain those vari-
ants is called Variant calling. As a result, a VCF file containing the genomic position
of each variant as well as the alternative base or bases to the reference DNA will
be generated. ChIP-Seq experiments measure how proteins interact with DNA to
regulate gene expression, whereas DNase-Seq experiments identify the location
of DNase I hypersensitive regions. In both cases, reads will normally concentrate
on the mentioned areas in the form of peaks. In these cases, peak calling would be
the following step. These results are reported in a basic BED file, a text tabular
format containing the chromosome name, start and end positions and some op-
tional descriptive features of the target areas. Methyl-Seq experiments aim to dis-
cover methylated pattern regions in the DNA that would significantly alter gene
expression and chromatin remodelling. As in ChIP-Seq and DNase-Seq, methyl-
ated areas will also be reported in a BED file.
As indicated above, it is extremely important tomeasure the different sequencing
errors or biases present in the data prior to analysis. In Chapter 3, many of these
biases that can especially arise when trying to analyse data coming from different
laboratories, sequencers or even when using replicates in RNA-Seq data analysis,
will be addressed.

1.3 Applications of NGS
NGS technologies have a wide variety of applications. For instance, they have
simplified the way to make de novo sequencing to reconstruct new genomes or
transcriptomes from scratch, giving new insights into the biology of any organ-
ism, measuring howDNA or RNA sequences interact with proteins (ChIP-Seq[11]
or CLIP-Seq[12]), or even study methylation patterns in genome-wide analysis
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(Methyl-Seq) among others. Our laboratory focuses on the applications regarding
transcriptome sequencing. This includes the discovery and analysis of both coding
mRNA and non-coding RNA.

1.3.1 Functional characterisation of novel genes
There are two basic types of RNA: messenger RNAs (mRNAs), which are trans-
lated into proteins, and non-coding RNAs (ncRNAs), which are not. Despite the
thought that only a small portion of the genome was functional (coding mRNAs),
NGS technologies have revealed that nearly 90% of the human genome is actively
transcribed in the form of non-coding RNAs [13, 14, 15]. These can be found in
intronic and intergenic regions, and also antisense to some protein-coding genes.
The vast majority of these new transcripts are non-coding and, despite earlier be-
liefs, there is growing evidence of their functional roles [16].
Non-coding RNAs can be basically grouped into two main groups depending on
the transcript length: small non-coding RNAs (small ncRNAs) or long non-coding
RNAs (lncRNAs). There are different types of small ncRNAs, such as transfer
RNAs (tRNAs), which are carriers of the amino acids needed for the translation of
mRNAs into proteins; micro RNAs (miRNAs), non-coding RNAs of approximately
22 nucleotides long that act in RNA silencing and post-transcriptional regulation
of gene expression; ribosomal RNAs (rRNAs), which are themajor structural com-
ponents of the ribosome, essential for the protein synthesis; small nucleolar RNAs
(snoRNAs), oneof themost abundant classes of ncRNAs involved in theprocessing
andmodification of rRNAs, etc.
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1.3.2 Long non-coding RNAs (lncRNAs)
Despite lncRNAs being the most abundant type of non-coding RNAs in the gen-
ome, they are still not well characterised. LncRNAs are generally defined as non-
coding transcripts longer than 200 nucleotides [17, 18, 19, 20], known for being
tissue-specific and important gene regulators. That regulation can be performed
throughdifferentmechanisms [21]. For instance, lncRNAs can act as scaffolds that
capture other molecules to target histone-modifying complexes to either activ-
ate or repress the expression of other genes [22]. LncRNAs generated from Alu
SINE elements1 can inhibit the transcription of specific mRNAs by binding to the
RNA polymerase II as a cellular heat shock response [23]. They can also affect
the formation of the transcription pre-initiation complex by creating a lncRNA-
DNA triplex structure [24], as well as act asmiRNA sponges by sequestering them
and therefore, over-expressing genes that should have been repressed otherwise
[25, 26, 27, 28], etc.
Most of the research is now focused on this area where the discovery and better
characterisation of lncRNAs have gained in importance. Chapter 5 presents a new
approach for the characterisation of lncRNAs integrating data from multiple and
diverse tissues and cell lines. Furthermore, a new web prediction tool to detect
lncRNAs acting as putativemiRNA sponges, spongeScan, is also described.

1.3.3 Integrative analysis
Each omic technology has multiple applications. However, the combination of
some of these technologies even increases their applicability. For instance, the
combination of gene expression RNA-Seq with transcription factor (TF) ChIP-Seq
or chromatin accessibility (DNase-Seq) permits the discrimination of direct from

1Primate-specific repeats comprising 11% of the human genome.
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indirect targets of TFs [29] or the inference of transcriptional regulatory networks
[30, 31]. Combining DNAmethylation with RNA-Seq helps to identify global rela-
tionships between epigenetic changes and transcription [32, 33]. The integration
ofmetabolomics and transcriptomics is useful to reveal the transcriptional control
of metabolic fluxes [34], while the joint analysis of proteomics and RNA-Seq data
is useful for the discovery of post-transcriptional control of protein levels [35].

Gene1     1? 2?
Gene2     1? 0?

Figure 1.5: RNA-Seq analysis can benefit from the data integration of other omics such as ChIP-
Seq,Methyl-Seq, etc. Special algorithms are needed to assign each regulatory region to the cor-
responding annotated genes. For regions such as the one in red might be unclear which gene it
should be associated to.

However, while the statistical approaches followed to perform multi-omic ana-
lyses are essential to extract the most relevant information from the data, the al-
gorithms needed to associate different types of data become equally important.
For instance, all the application examples described above require connecting all
positions where a transcription factor binds or a methylated motif to a region of a
gene. This correspondence is normally performed based on its proximity to genes
or transcripts (Figure 1.5) although itmight be based on different criteria. Besides,
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there may be special conditions that require to be carefully managed to perform
a proper connection. In Chapter 4, different algorithms publicly available are dis-
cussed and a new tool, RGmatch, is presented, which can be fully customised to
cover all possible researcher needs.
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Chapter 2

Motivation, aims andmain
contributions

2.1 Motivation
One of the most popular techniques used in computational biology is transcrip-
tomics. Transcriptomics aims to describe the set of expressed transcripts and their
regulation in different tissues, developmental stages or environmental conditions.
Typically, in a quantitative transcriptomic experiment that studies transcriptional
changes, samples at different conditions are sequenced to measure the gene ex-
pression and algorithms to identify gene expression differences are applied.
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At the beginning of this PhD work, RNA-seq technology was starting to become
a popular method to study gene expression. We participated in the SEQC pro-
ject, an FDA initiative to study the quality of the different RNA-seq technologies
available at thatmoment. That evaluation required thedevelopment of scripts and
methods to assess the characteristics of RNA-seq platforms, screen a large num-
ber of samples, and compare technologies. Moreover, established bioinformatics
tools to evaluate the quality of quantified RNA-seq data were not yet available. In
Chapter 3 we describe our contribution to the SEQC project performing a com-
parative evaluation of RNA-seq technologies, and the development of the NOIseq
package, one of the first R packages in providing a set of functions to systematic-
ally evaluate and normalise count data.
Once different sequencing technologies were established, there was an increas-
ing interest in combining them to perform multiomics studies. STATegra is a FP7
project led by our group where several omics data types were generated for the
same set of samples: RNA-seq, MicroRNA sequencing (miRNA-seq), Reduced-
representation bisulfite sequencing (RRBS-Seq), DNase I hypersensitive sites se-
quencing (DNase-seq), Proteomics and Metabolomics. Some of these omics gen-
erate a BED file containing the regions of the genome where different genomics
events happen. One first step to study the potential regulatory function of these
events is to assign these regions to genes. No tools were available at that moment
to associate BED regions to gene annotations in a flexible manner. In Chapter 4, I
address the development of a Python tool to help in linking of genome regions to
neighbouring genes.
One of the most exciting discoveries brought by the NGS technologies was the
realisation that the human genome is not a large, repetitive and functionless nuc-
leic acid sequence with just a small fraction of coding sequences, but that most
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of it is actively transcribed. Most of these new transcriptional players are non-
coding and there was growing evidence of the functional effects of this extense
battery of novel transcripts [17]. LncRNAs are a less characterised class of tran-
scripts compared to small ncRNAs and since the beginning it was observed that
they play an important role in gene regulation through different mechanisms. The
last part of my thesis (Chapter 5) is motivated by these findings. We aimed to de-
velop a guilt-by-association approach to functionally annotate lncRNAs as well as
a web prediction resource to cover one of the regulation mechanisms lncRNAs
might be involved in.

2.2 Specific aims
1. To study the reproducibility and replicability of RNA-Seq by:

• Studying relevant biases that might affect any RNA-Seq analysis.
• Assessing the robustness of this technology in terms of the number of
replicates and sequencing depth .

2. To create an R package to perform exploratory and differential expression
analyses
Migrate theNOISeq algorithm into anR package following theBioconductor
guidelines and develop new exploratory tools.

3. To create a tool tomatch genomic regions to features (genes, transcripts or
exons)
There are some tools that are able to perform this task. However, none of
themmeets all the features we consider relevant for this purpose. As so, we
will focus on creating a tool that:
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• is easy to add in any analysis pipeline;
• is easily customised to report associations at any possible resolution
(gene, transcript or exon);
• reports the annotated area of the gene involved;
• allows users to customise how these associations should be made (spe-
cify a maximum distance to a gene, prioritise different areas of a gene
over others...);
• works for all the species;
• reports the distance to the associated feature;
• reports all overlapping genes.

4. Create amethodology to functionally characterise lncRNAs
The functions of a small fraction of lncRNAs have been already studied in
depth. We aim at creating a new methodology to functionally characterise
lncRNAs tobetter understand theprocesses inwhich theymight be involved.
To do so, wewill:
• download and use public data from different tissues and cell lines;
• use a guilt-by-association approach to annotate lncRNAs with the func-
tions of the protein-coding genes theymight correlate with.

5. Develop a new tool to predict miRNA binding elements in lncRNA se-
quences
One of the mechanisms by which lncRNAs might act as regulators is by se-
questeringmiRNAs. In this particular case, wewill focus on:
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• creating an algorithm to predict thesemiRNA sequestration events;
• developing a newweb tool to easily calculate and visualise these predic-
tions in a user-friendly way.

2.3 Main contributions

2.3.1 Journal papers
1. SEQC/MAQC-III Consortium.
A Comprehensive Assessment of RNA-Seq Accuracy, Reproducibility and Informa-
tion Content by the Sequencing Quality Control Consortium.
Nature Biotechnology 32 (9): 903-14. 2014 Sep
388 cites when checked on the 2nd ofMarch 2020.

2. Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, NuedaMJ, Ferrer A, Conesa A.
Data Quality Aware Analysis of Differential Expression in RNA-Seq with NOISeq
R/Bioc Package.
Nucleic Acids Research 43 (21). 2015Dec
142 cites when checked on the 2nd ofMarch 2020.

3. Furió-Tarí P, Tarazona S, Gabaldón T, Enright AJ, Conesa A.
spongeScan: A web for detecting microRNA binding elements in lncRNA se-
quences.
NucleicAcidsRes. 44(W1):W176-80. doi: 10.1093/nar/gkw443. Epub2016
May 19. 2016 Jul
24 cites and 115 accesses a month on average when checked on the 2nd of
March 2020.
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4. De Panis DN, Padró J, Furió-Tarí P, Tarazona S, Milla Carmona PS, Soto IM,
Dopazo H, Conesa A, Hasson E.
Transcriptome modulation during host shift is driven by secondary metabolites in
desert Drosophila.
MolEcol. 25(18):4534-50. doi: 10.1111/mec.13785. Epub2016Sep6. 2016
Sep
17 cites when checked on the 2nd ofMarch 2020.

5. Furió-Tarí P, Conesa A, Tarazona S.
RGmatch: matching genomic regions to proximal genes in omics data integration.
BMC Bioinformatics. 17(Suppl 15):427. doi: 10.1186/s12859-016-1293-1.
2016Nov
3 cites when checked on the 2nd ofMarch 2020.

6. García-MolineroV,García-Martínez J, RejaR, Furió-Tarí P, AntúnezO,Vinay-
achandran V, Conesa A, Pugh BF, Pérez-Ortín JE, Rodríguez-Navarro S.
The SAGA/TREX-2 subunit Sus1 binds widely to transcribed genes and affects
mRNA turnover globally.
Epigenetics Chromatin. 11(1):13. doi: 10.1186/s13072-018-0184-2. 2018
Mar
3 cites when checked on the 2nd ofMarch 2020.

7. Hernández-de-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L,
Furió-Tarí P, Pappas GJ Jr, Conesa A.
PaintOmics 3: a web resource for the pathway analysis and visualization of multi-
omics data.
Nucleic Acids Res. 46(W1):W503-W509. doi: 10.1093/nar/gky466 2018
Jul
12 cites when checked on the 2nd ofMarch 2020.
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2.3.2 Conferences
• HiTSeq 2013Berlin, Germany. July, 2013. Tarazona S, Furió-Tarí Pedro, Turrà
D, Di Pietro A, Ferrer A, and Conesa A. Quality-control, experimental design
and FDR controlled differential expression of RNA-seq with the NOISeq R
package.
• Congreso Argentino de Bioinformática y Biología ComputacionalRosario, Argen-
tina. October, 2013. De Panis, D, Furió-Tarí P, Padró J, Tarazona S, DopazoH,
Conesa A, Hasson E. Transcriptomics of host adaption, early results: Gene
expression patterns of the cactophilic fly Drosophila buzzatii in its natural
breeding and feeding resources.
• SMODIA 2015 Valencia, Spain. September 2015. Furió-Tarí P, Tarazona S,
Conesa A. RGmatch: Matching genomic regions to proximal genes in omics
data integration.
• SMODIA 2015 Valencia, Spain. September 2015. Hernández-De-Diego R,
Furió-Tarí P, Tarazona S, Conesa A. Paintomics 3.0: Integrated visualization
of multi omics data on KEGG pathways.
• JBI 2016 - XIII Symposium on Bioinformatics Valencia, Spain. May, 2016.
Tarazona S, Furió-Tarí P, Turrà D, Di Pietro A, Nueda MJ, Ferrer A, Conesa
A. Data quality aware analysis of differential expression in RNA-seq with
NOISeq R/Bioc package.
• JBI 2016 - XIII Symposium on Bioinformatics Valencia, Spain. May, 2016.
Hernández-De-Diego R, Furió-Tarí P, Tarazona S, Conesa A. Integrative visu-
alization of multi-omics data: The PaintOmics 3 platform.
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• JBI 2016 - XIII Symposium on Bioinformatics Valencia, Spain. May, 2016.
Tarazona S,MartínezC, Furió-Tarí P, GómezD,ConesaA. Tools for the design
and analysis of multi-omic experiments.
• RegGen SIG 2017 Prague, Czech Republic. July 2017. Hernández-De-Diego
R, Furió-Tarí P, Tarazona S, Conesa A. Integrative visualization ofmulti-omics
data: The PaintOmics 3 platform.
• RegGen SIG 2017 Prague, Czech Republic. July 2017. Tarazona S, Clemente
M, Hernández-De-Diego R, Gómez D, Furió-Tarí P, Martínez C, Conesa A.
The challenge of integrating multi-omic multi-factorial data to infer regulat-
ory networks.
• JBI 2018 - XIV Symposium on BioinformaticsGranada, Spain. November, 2018.
Hernández-de-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L,
Furió-Tarí P, PappasG, Conesa A. PaintOmics 3: aweb resource for the path-
way analysis and visualization of multi-omics data.

2.3.3 Software
• Furió-Tarí P, Conesa A, Tarazona S.
RGmatch, Python tool.
https://bitbucket.org/pfurio/rgmatch

• Furió-Tarí P, Tarazona S, Gabaldón T, Enright AJ, Conesa A.
SpongeScan, web resource.
http://spongescan.rc.ufl.edu/

• Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, NuedaMJ, Ferrer A, Conesa A
NOISeq, Bioconductor R package.
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https://bioconductor.org/packages/release/bioc/html/NOISeq.

html

Hernández-de-Diego R, Tarazona S, Martínez-Mira C, Balzano-Nogueira L,
Furió-Tarí P, Pappas GJ Jr, Conesa A.
PaintOmics 3, web resource.
http://www.paintomics.org/

2.3.4 Courses
I have been teaching to the scientific community in these courses:
• International Course of Massive Data Analysis (Centro de Investigación
Príncipe Felipe, Valencia). Year 2013 and 2014 in IX and X editions. Lectures
about the RNA-Seq pipeline analysis (Quality control, mapping, counting...).
• TheGenomics of Gene Expression RNA-Seq course (Centro de Investigación
Príncipe Felipe, Valencia). Year 2014 and 2015 in 1st and 2nd edition. Lec-
tures about the RNA-Seq pipeline analysis (Quality control, mapping, count-
ing...).

2.3.5 Scientific visits
Fellowship at the Functional genomics and analysis of small RNA function group
(Dr. Anton Enright group), The European Bioinformatics Institute (EMBL-EBI) in
Hinxton, UK.
April - June 2014
Development of amiRNA sponge prediction tool in lncRNAs

Scientific visit at the Computational Biology Lab - High Performance Computing Ser-
vice (IgnacioMedina group), University of Cambridge, UK.
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August - October 2015
Development of a web tool for massive NGS analysis

Fellowship at theDepartment of Molecular Genetics and Microbiology, Genetics Insti-
tute (Dr. LaurenMcIntyre group), University of Florida, Gainesville (USA).
November - December 2015
Development of amiRNA sponge prediction tool in lncRNAs
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Quality Analysis of RNA-Seq
technology

Thework performed of this chapter led to the following publications:
SEQC/MAQC-III Consortium.
A Comprehensive Assessment of RNA-Seq Accuracy, Reproducibility and Information
Content by the Sequencing Quality Control Consortium.
Nature Biotechnology 32 (9): 903-14. 2014
Tarazona, Sonia, Pedro Furió-Tarí, David Turrà, Antonio Di Pietro, María José
Nueda, Alberto Ferrer, and Ana Conesa.
Data Quality Aware Analysis of Differential Expression in RNA-Seq with NOISeq R/Bioc
Package.
Nucleic Acids Research 43 (21). 2015
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Chapter 3. Quality Analysis of RNA-Seq technology

3.1 Introduction
The transcriptome is the complete set of transcripts in a cell, aswell as their abund-
ance for a specific developmental stage or physiological condition. Understanding
the transcriptome is vital to functionally characterize the elements of which it is
composed and so, understand development and disease.
RNA sequencing (RNA-Seq) is an approach based on high-throughput sequen-
cing for bothmapping and quantifying transcriptomeswithmany advantages over
other existing approaches [36]. The first one is the ability to sequence genome-
wide, making it attractive for non-model organisms in which genomic sequences
are yet unknown. Secondly, it is suitable to study complex transcriptomes because
the reads reveal the connectivity between exons at single-nucleotide resolution.
Moreover, this technology is more sensitive for genes expressed at high or low
levels, having a much bigger dynamic range than other approaches depending on
the sequencing depth.
However, different aspectsmust be checked and considered beforehand to assess
the reliability of the results obtained during the analysis. For example, it is really
important to evaluate the quality of the samples sequenced, whether there were
any artefacts introduced by the sequencing process or not, the sequencing depth
(total number of reads present in the file), read length, etc. Another important
aspect, unknown at the time this research was done, was the study of replicability
of the technology.
Many of the RNA-Seq analyses are made using the object-oriented programming
language called R [37], as they require some powerful statistical computation. R is
a free software environment for statistical computing and graphics. It compiles
and runs on almost all the recent UNIX, Windows and MacOS platforms. One
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of the most important characteristics of R is its easiness of use and the ability
to import other packages containing the tools to address specific analyses. The
most important R package repository for the analysis and comprehension of high-
throughput genomic data is Bioconductor [38, 39], which is open source.
At the time of this research, there was no freely available software to study the
most important quality parameters of an RNA-Seq experiment. One of the contri-
butions made to this chapter is the development of a Bioconductor package that
could be used by the scientific community to assess the quality of the samples se-
quenced in RNA-Seq experiments including an already existing differentially ex-
pression algorithm developed in our group called NOISeq.
Another aspect not previously evaluated, was the study of the reproducibility of
next-generation sequencing platforms such as RNA-Seq. In this chapter, we also
present our contribution to the SEQC project studying this feature. The SEQC
project is a continuation of the MAQC project, an initiative that the FDA began
in 2005 to evaluate the reproducibility of microarray platforms.

3.2 Objectives
• Creation of a Bioconductor package for the quality assessment of RNA-Seq
data.
• Evaluation of the reproducibility and replicability of RNA-Seq technology as
part of the SEQC project.
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3.3 NOISeq
Despite all the advantages of RNA-Seq technology, sequencing artefacts present
in the final datasets could potentially lead to biased andmisleading conclusions in
the analysis. Therefore, early detection of these biases is of huge importance to
correct or discard noisy datasets. Apart from the ability to run differential expres-
sion analysis, NOISeq provides the necessary tools to assess the quality control of
the samples, allowing to check for the possible biases that could be present in the
samples and the tools to correct and normalise these data.
NOISeq is an open access R package, currently published in Bioconductor. R is
an object oriented programming (OOP) language containing classes, methods and
attributes.
The NOISeq algorithm was mainly developed by Dr Tarazona and was part of her
PhD thesis [40]. The NOISeq statistical method and the biological meaning of the
quality control tools can be found explained in detail there. My contribution to
this package was the design of a logical workflow and the development of proper
datamodels thatmake itmore user-friendly andwould suit Bioconductor require-
ments.

3.3.0.1 The package
NOISeq contains a set of tools to perform the three following different tasks rep-
resented in Figure 3.1:

• quality control of the samples by doing different exploratory plots;
• normalisation and filtering of the data by applying different statistical meth-
ods;
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• differential expression analysis.

Filtering & 
normalisation

Figure 3.1:Outline of NOISeq package functionalities.

Base R provides different OOP systems: S3 and S4. S4 classes represent a more
formal and rigorous design compared to S3. This is because S3 classes lack any
validation, allowing any object to be easily converted to an S3 object by running
one single line even if the original object has nothing to do with this type of class.
However, S4 objects have to be specifically created using the constructor func-
tion, so programmers canwrite code to validate the parameters supplied to create
the new object, preventing possible errors. For these reasons, different S4 classes
(Figure 3.2) were implemented to store the relevant information needed to per-
form each of these tasks.
In order to work with NOISeq, the user needs to have at least a matrix of counts
with one row per gene or transcript and one column per condition and a matrix
of factors used to perform the differential expression analysis. Additionally, users
can also provide a matrix of genomic positions used to perform Manhattan plots
where the expression of up and down regulated genes is highlighted across chro-
mosomal positions, an array of biotypes to perform other meaningful exploratory
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S4 classes

Figure 3.2: S4 classes used in NOISeq package.

plots per biotype as well as an array containing the lengths of the genes or tran-
scripts introduced in the matrix of counts to be able to apply normalisation meth-
ods. All this information will be incorporated in NOISeq using one of the methods
called readData as can be seen in the example below.

# Install Bioconductor repository manager
> if (!requireNamespace("BiocManager", quietly = TRUE))
+ install.packages("BiocManager")

# Install NOISeq
> BiocManager::install("NOISeq")

# Load NOISeq
> library(NOISeq)

# Load default example NOISeq dataset
> data(Marioni)

# Explore data from the dataset
> head(mycounts)

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver R1L6Liver R1L7Kidney
ENSG00000177757 2 1 0 0 1 2
ENSG00000187634 49 27 43 34 23 41
ENSG00000188976 73 34 77 56 45 68
ENSG00000187961 15 8 15 13 11 13
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> head(myfactors)
Tissue TissueRun

R1L1Kidney Kidney Kidney_1
R1L2Liver Liver Liver_1
R1L3Kidney Kidney Kidney_1

> head(mychroms)
Chr GeneStart GeneEnd

ENSG00000177757 1 742614 745077
ENSG00000187634 1 850393 869824
ENSG00000188976 1 869459 884494
ENSG00000187961 1 885830 890958

> head(mybiotypes)
ENSG00000177757 ENSG00000187634 ENSG00000188976 ENSG00000187961

"lincRNA" "protein_coding" "protein_coding" "protein_coding"

> head(mylength)
ENSG00000177757 ENSG00000187634 ENSG00000188976 ENSG00000187961

2464.0 4985.0 3870.5 4964.0

# Load dataset data into main ExpressionSet S4 class
> mydata <- readData(data=mycounts, biotype=mybiotypes, chromosome=mychroms,

factors=myfactors, length = mylength)

In order to store all this information, the S4 ExpressionSet object was used [39].
This object was originally created to load and manipulate microarray data in R,
but it can be also used to store NGS data for the same purposes. As so, this ob-
ject contains different slots, which are prepared to store all the relevant inform-
ation. NOISeq uses three of these slots: assayData to store the expression data
from NGS experiments (counts), phenoData to store the ’metadata’ describing the
samples in the experiment (factors) and featureData to store the annotations and
metadata about the features introduced (length, GC content, chromosome in-
formation and/or biotypes). Below there is an example of the ExpressionSet object
with the three slots used by NOISeq underlined.

> mydata
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ExpressionSet (storageMode: lockedEnvironment)
assayData: 5088 features, 10 samples

element names: exprs
protocolData: none
phenoData

sampleNames: R1L1Kidney R1L2Liver ... R2L6Kidney (10 total)
varLabels: Tissue TissueRun
varMetadata: labelDescription

featureData
featureNames: ENSG00000177757 ENSG00000187634 ... ENSG00000201145 (5088 total)
fvarLabels: Length Biotype ... GeneEnd (5 total)
fvarMetadata: labelDescription

experimentData: use ’experimentData(object)’
Annotation:

The normalisation and filtering of data takes the ExpressionSet object as the main
input and returns a new object of the same class with transformed data.
The ExpressionSet object will also be taken as input for the 10 diagnostic and visu-
alisation plots available in the package. However, this object is used as an inter-
mediate object only. Each of the plots requires a different transformation of the
main data, which is performed by calling to the dat() function. This function takes
as anadditional parameter theplot typeand, dependingon the choice, thedatawill
be transformed and filtered accordingly. The type of plots accepted will be one of
biodetection, cd, countsbio,GCbias, lengthbias, saturation or PCA [40], corresponding
to the ones in Figure 3.2. Taking advantage of S4 classes available in R [37], differ-
ent classes were defined for the different plots. This way, the researcher is able to
use the same functions independently of the plot to be performed. When calling
the dat() function and specifying the plot of choice as an argument, the function
will return the corresponding class object. show(), which prints a nice summary of
the object, explo.plot(), which plots the desiredfigure, and dat2save(), which returns
anobject containing themost relevant information regarding theplot to be stored,
methods have been implemented for the 7 S4 classes. This is useful from the user
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perspective as these methods will always work with any of those objects without
the user having to deal with different functions.
The plots are performed in 2 steps because of the following reasons:

• transforming the ExpressionSet object sometimes requires a few seconds and
the transformed object can be usedmultiple times to generate plots that are
made instantly based on some additional parameters/filters;
• the transformed object can be stored in a binary object after applying the
method dat2save() implemented for the 7 S4 classes. This method will trans-
form each of the objects into a more user-friendly R object containing the
most relevant information.

Finally, once the researcher is confidentwith thequality of thedata, it is possible to
apply thenoiseq() function toperform thedifferential expression analysis step. The
two approaches, NOISeq, for technical replicates or no replicates, andNOISeqBio,
for biological replicates, take the sameExpressionSetobject as input, but a different
type of object was needed to store NOISeq results. As mentioned above, all the
NOISeq parameters are stored in different slots, as well as the results obtained
by the algorithm, which are stored in a data.frame. The NOISeq output class also
has the show()method implemented that allows the researcher to see a summary
of the content of the output object. Furthermore, a degenes() function was also
developed that uses theNOISeq S4 output object to easily gather the differentially
expressed genes ononeor both conditions depending on theprobability threshold
introduced. Below there is an example of how to calculate differentially expressed
genes using the NOISeq function.

> mynoiseq = noiseq(mydata, k = 0.5, norm = "rpkm", replicates = "technical",
factor="Tissue", pnr = 0.2, nss = 5, v = 0.02, lc = 1)
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[1] "Computing (M,D) values..."
[1] "Computing probability of differential expression..."

> mynoiseq

You are comparing Kidney - Liver from Tissue

Kidney_mean Liver_mean M D prob ranking
ENSG00000163399 1289.54326 41.57492 4.955003 1247.9683 1 1247.9782
ENSG00000132703 91.67521 5083.56952 -5.793166 4991.8943 1 -4991.8977
ENSG00000132693 44.67117 4058.28607 -6.505383 4013.6149 1 -4013.6202
ENSG00000158874 89.12252 7626.56264 -6.419099 7537.4401 1 -7537.4429
ENSG00000172482 11.80019 925.76684 -6.293767 913.9667 1 -913.9883
ENSG00000055957 14.52202 1092.84712 -6.233706 1078.3251 1 -1078.3431

Length Chrom GeneStart GeneEnd Biotype
ENSG00000163399 12876.0 1 116717359 116748917 protein_coding
ENSG00000132703 1041.0 1 157824240 157825284 protein_coding
ENSG00000132693 2056.5 1 157948704 157951003 protein_coding
ENSG00000158874 1311.0 1 159458707 159460042 protein_coding
ENSG00000172482 4724.0 2 241456835 241467210 protein_coding
ENSG00000055957 3163.0 3 52786648 52801117 protein_coding

Normalisation
method: rpkm
k: 0.5
lc: 1

You are working with technical replicates

3.3.0.2 The functions
As explained in the above section, different S4 classes were implemented to per-
form the exploratory plots. Considering the ExpressionSet as the main input and
the plot as the final output, the whole process could last from a couple of seconds
to half a minute depending on the chosen exploratory plot. Many times, the res-
ult obtained the first time might not be as desired (maybe the user wants a bigger
font size, different range limits, even plotting a different sample. . . ), but the flexib-
ility of the function allows the user to tweak the options until the expected plot is
obtained.
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The most time-consuming process in the algorithm is the transformation of the
relevant data from the ExpressionSet to a format that is easy to work with in or-
der to plot according to other user’s parameters. For this reason, the two-step ap-
proach mentioned above was implemented to compute the different exploratory
plots. Firstly, data is transformed to the needed format depending on the explorat-
oryplot tobedisplayedand, secondly, this transformeddata is usedas the input for
the plotting function. This way, the user can re-run the plot from the transformed
datamultiple times in a second. A simple change of parameters will be required to
improve the graphical display.
To simplify the usage of different methods to calculate each plot, an object-
oriented S4 system approach was used. For example, to do the Biodetection plot,
users need to first call biodetection.dat() followed by biodetection.plot(), or cd.dat()
and cd.plot() respectively tomakeaCDplot. For this reason, a genericdat() function
was implemented. Depending on the main parameter given (a string containing
oneof biodetection, cd, countsbio,GCbias , lengthbias, saturationorPCA), thismethod
internally calls oneof biodetection.dat(), cd.dat(), countsbio.dat(),GCbias.dat(), length-
bias.dat(), saturation.dat(), or PCA.dat() respectively, and return an instance of the
corresponding S4 class. Generic show(), dat2save() and explo.plot() methods were
created to manipulate the transformed data. The different S4 classes override
these three methods and implement them differently. Users will need to know
only two methods, which are dat() and explo.plot(). The first one will return an in-
stance of the S4 class depending on the plot of choice, and the second one will
consume that object and automatically generate the requested plot.
An example of this implementation is shown below:

> mydata2plot = dat(mydata, type = "biodetection", k = 0)
[1] "Biotypes detection is to be computed for:"
[1] "R1L1Kidney" "R1L2Liver" "R1L3Kidney" "R1L4Liver" "R1L6Liver"
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[6] "R1L7Kidney" "R1L8Liver" "R2L2Kidney""R2L3Liver" "R2L6Kidney"

> explo.plot(mydata2plot, samples=1)
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Figure 3.3: Biodetection plot fromNOISeq.

3.4 SequenceQuality Control (SEQC) project

3.4.1 Dataset
The SEQC project, led by the Food and Drug Administration (FDA, United States)
aimed to assess the reproducibility and replicability of RNA-Seq analyses. In this
study, six different samples (A-F)were sequenced. SamplesAandBcontainedUni-
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versal Human Reference RNA (UHRR) and Human Brain Reference RNA (HBRR),
respectively, plus spike-ins of synthetic RNA from the External RNAControl Con-
sortium (ERCC). Samples A and Bweremixed in known ratios, 3:1 and 1:3, to con-
struct samples C and D, respectively. Spike-ins were also sequenced separately
to assess dynamic range (samples E and F). All the samples were distributed to
several independent sites for RNA-Seq library construction and profiling by Illu-
mina’s Hiseq 2000 and Life Technologies’ SOLiD 5500. Vendors created their own
cDNA libraries, which were distributed to each test site to examine ’site effects’
independent of the library preparation. A total of 108 libraries were sequenced
onHiseq 2000 for samples A to D and 68 on SOLiD.
Our analysis was focused on the Illumina samples. These were sequenced by six
different laboratories:
• AGR: Australian Genome Research Facility
• BGI: Beijing Genomics Institute
• CNL: Cognitive Neuroscience Laboratory (Cornell University)
• COH: Beckman Research Institute of City of Hope
• MAY:Mayo Clinic Florida
• NVS:Novartis

Every library had a unique barcode sequence at each site, and was pooled before
sequencing, so each lane was sequencing the same material, allowing a study of
lane-specific effects. Besides, four replicate libraries were used for each sample
A to D per site. In addition, a fifth replicate was also used by BGI, CNL and MAY
laboratories. The samples followed the following name convention:
• Project (SEQC for all the libraries)
• Platform (ILM in our case)
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• Site
• RNA Sample Type (A, B, C, D, E or F)
• Replicate Number
• Lane/Sector Number
• Index Barcode
• Flow-cell Barcode
• ReadDirection (R1 or R2 for pair-end data)

The sequencing depth of samples A and B in all the laboratories can be found in
Table 3.1. The numbers show the total number of reads per replicate (all reads
from different lanes are added) and per laboratory.
Lab Sequencing depth (million reads per replicate)

A1 A2 A3 A4 A5 Total A B1 B2 B3 B4 B5 Total B
AGR 346 363 307 451 - 1467 361 394 356 334 - 1445
BGI 211 174 205 236 209 1035 235 232 245 181 137 1030
CNL 207 191 127 254 148 927 208 218 217 183 118 944
COH 212 214 213 208 - 847 198 203 201 193 - 795
MAY 137 264 196 448 116 1161 240 211 242 249 88 1030
NVS 345 400 370 378 - 1493 335 343 358 365 - 1401

Table 3.1: Sequencing depth of the samples per laboratory and replicate.

3.4.2 Methods
Raw reads contain not only the sequence but also the quality of each base, which
represents the likelihood of the base having been properly called by the sequen-
cer. FastQC [6] is a popular tool to analyse data quality and extract other relevant
statistics such as themeanGCcontent, read length distribution, duplication levels,
adapter content, etc. This tool was was used to get an overview of the quality of
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the data and the results were used as input to perform Principal Component Ana-
lyses (PCA) to check for biases. The reads were mapped using TopHat v1.4.1 [41]
usingHomo SapiensGRCh37.66 as the reference genome. TopHat was chosen be-
cause it was themostwidely used by the scientific community that could deal with
splice events. Cufflinks v2.0.0 [19] was used to build new unannotated transcripts
and quantify the expression of transcripts and genes in Fragments Per KilobaseOf
Exon PerMillion FragmentsMapped (FPKM). Finally, theNOISeq package [42, 40]
was used to perform quality analysis of the data. All the analysis were performed
developing either Bash, Python or R scripts.

3.4.3 Results

3.4.3.1 Quality control of raw data
First of all, the quality of all the different samples was checked separately using
FastQC. Taking into account all the different laboratories, replicates and lanes per
sample, a total of 3664 fastq files were managed. Taking advantage of the sum-
mary reports that FastQC generates for every analysis, a PCA was built. Basic-
ally, a 0, 1 or 2 was assigned to passed, warning and failed tests resulting in a final
matrix of 3664 x 11 dimensions. Figure 3.4 shows the results of the QC. The PCA
was coloured by laboratory (Figure 3.4a) showing a scattered plot that pointed to
laboratory biasese. The most important factor that explained the 40% variance in
the first component was the sequence quality per base. This same PCA was also
coloured by sample (Figure 3.4b) showing a clear distinction between samples A-
D and E-F (spike-in samples), as expected. This fact was explained by the second
principal component, in which the most important factor was the GC content and
the sequenceduplication levels. SamplesA toDwere foundgrouped together sug-
gesting that there was not a sample bias.
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Figure 3.4: PCA analysis of FastQC output

The NOISeq package was used to extract relevant information to perform the
quality analysis aftermapping the reads. Parameters, such as saturation dynamics
(number of genes detected according to the sequencing depth levels), new detec-
tion levels (number of new genes detected per additional million reads), biotype
relative detection (percentage of biotypes detected in sample) and a summary of
the number of reads per biotype (1st quartile, median and 3rd quartile) were ex-
tracted. All this data was used to build a big matrix with as many rows as the
number of mapped samples and as many columns as the amount of information
extracted from NOISeq. This matrix was used to build the PCA in Figure 3.5. As
shown, therewas anevident separationbetween thedifferent samples. In fact, the
first component, explaining 67.5%of the variance, was distinguishing between the
spike-in samples (E-F) and the actual samples (A-D). This component was mainly
influenced by the total number of reads mapping to pseudogenes, as well as the
percentage of ribosomal RNA (rRNA) detectedwithin the annotated human refer-
ence genome. The second component, which was actually separating the samples
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A-D and explaining 6.5% of the variance, was influenced by the quartiles of rRNA
content present in themitochondria.

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

● ●
●
●

●●

●
●

●●

●●
●

●

●
●

● ●

● ●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●
●

●

●

●

●

● ●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●
●●
●●●

● ●

●

●

●
●
●●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●●
●
●●●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●●
●

●

●●

●

●
●

●

●

●●●

●
● ●

●
●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●

●
●● ●●

●
● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●

●●
●● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●
● ●

●

●● ●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

● ●
●●

●

●
● ●

●

●
●

●
●

●

●●●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●
●●

●● ●

●●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●
●

● ●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●●
●●

●●
●

●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●●

●

●

●

●●
●

●

●●●●

●

●●

●

●●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

−10 0 10 20 30

−
6

−
4

−
2

0
2

4
6

8

First PC: 67.5% explain variance

S
ec

on
d 

P
C

: 6
.5

%
 e

xp
la

in
 v

ar
ia

nc
e

A
B
C
D
E
F

Figure3.5: PCAof SEQCsamples analysedbyNOIseq read count quality parameters. Lanes and
replicates are shown as different entities. Data are coloured by sample type.

3.4.3.2 Quality analysis frommapped reads
Due to the good separation between the samples and controls in Figure 3.5,
samples E-F were filtered out and the PCA analysis re-run. The new PCA was
coloured by sample (Figure 3.6) showing a clear separation of samples, with no
bias detected. On the contrary, when the same PCA was coloured by laboratory
(Figure 3.7), a clear separation was evident considering both components, indic-
ating a laboratory associated bias in the data. Data appeared clustered into two
groups. One groupwas composed byAGR, COHandNVS samples, and the second
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contained BGI, CNL and MAY samples. Interestingly, the first group of laborat-
ories had a greater sequencing depth than those of the second. Taking this into
account, the PCA was coloured again, but this time by sequencing depth using a
colour gradient (Figure 3.8), confirming that the separation made by the PCA was
due to the different sequencing depth obtained from the different laboratories.
This confirmed previous work from our laboratory where we showed that the se-
quencing depth is an important factor to be taken into account when analysing
RNA-Seq samples [42].
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Figure 3.6: PCA of SEQC samples analysed by NOIseq read count quality parameters. Lanes
and replicates are shown as different entities. Data are coloured by sample type. Samples E & F
were excluded.

Besides analysing thebiases, correlationanalysesof theexpression levels inFPKM
were also performed (Figure 3.9). The upper triangular matrix shows the correl-
ation of gene expression levels and the lower triangular matrix the correlation of
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3.4 Sequence Quality Control (SEQC) project
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Figure3.7: PCAof SEQCsamples analysedbyNOIseq read count quality parameters. Lanes and
replicates are shown as different entities. Data are coloured by laboratory. Samples E & F were
excluded.

transcript expression levels between replicates of the same laboratory for samples
A and B (only sample B is shown in Figure 3.9 but results are comparable).
Results from Figure 3.9 showed a strong correlation between replicates. How-
ever, there was one laboratory, MAY, which correlated worst in general. In fact,
replicate 5 of sample B had a correlation value of around 0.5. The replicate had
the lowest sequencing depth, which could explain the differences in correlation.
Therefore, this replicate was treated as an outlier and removed from further ana-
lyses.
After that, correlation between themean expression levels obtained by the differ-
ent laboratories was also performed (Figure 3.10).
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Chapter 3. Quality Analysis of RNA-Seq technology
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Figure3.8: PCAof SEQCsamples analysedbyNOIseq read count quality parameters. Lanes and
replicates are shown as different entities. Data are coloured by sequencing depth. Samples E &
Fwere excluded. Yellow indicates higher sequencing depth than red colours.

The results obtained, shown in Figure 3.10, supported, evenmore, the importance
of the sequencing depth. Samples with better correlation valueswere actually the
ones with the highest sequencing depth levels. Therefore, although normalisation
steps were applied, sequencing depth bias was still present, showing the strong
impact it has on data analysis.

3.4.3.3 Differential expression analysis
One of the objectives of the current study was to evaluate the robustness of the
analysis of differentially expressed genes between samples A and B as a function
of the sequencing technology and laboratory, as well as detecting any associated
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Figure 3.9: Correlation between replicates of sample B in two different laboratories. Upper
triangular matrix shows gene correlations and lower triangular matrix shows transcript correl-
ations.

biases. The NOISeq package, explained in section 3.3 was used for this purpose.
Table 3.2 shows differentially expressed genes in common between laboratories.
A larger amount of overexpressed genes was found in sample A over B. This could
have a biological explanation because of the fact that sample A was composed by
a mix of tissues, whereas sample B only contained brain tissue. Another conclu-
sion that could be also extracted from the table, is that laboratories with higher
sequencing depths detect more differentially expressed genes, highlighting, once
again, the importance of the sequencing depth. For example, the higher number of
overexpressed genes in sampleA for theAGR laboratory (7950) compared toMAY
(6097) can be explained by the sequencing depth differences. In fact, the percent-
age of commonly overexpressed genes detected inMAY that was also detected in
AGR is 97% for sample A and 96.3% for sample B, indicating great robustness and
reproducibility of the RNA-Seq technology.
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Figure 3.10: Correlation of gene expression values for the same samples run at different labor-
atories. Mean expression values across 4 replicates are used to calculate correlations between
laboratories. Upper triangular matrix shows gene correlations and lower triangular matrix
shows transcript correlations.

AGR BGI CNL COH MAY NVS Total A
AGR - 6228 5965 7240 5901 6984 7950
BGI 3929 - 5681 6115 5493 6167 6330
CNL 3892 3690 - 5923 5388 5902 6188
COH 4745 3906 3886 - 5902 6868 7875
MAY 4032 3653 3637 4046 - 5839 6097
NVS 4507 3899 3857 4473 3982 - 7298
Total B 5070 4016 4026 5336 4187 4770

Table 3.2: Differentially expressed genes in commonbetween laboratories for samples A (upper
quadrant) & B (lower quadrant).

To study more in detail the sequencing depth effect, differential expression was
measured again taking more lanes into account progressively. From 1 to 8 avail-
able lanes were selected randomly resampling 5 times.
Figure 3.11 showed that the amount of differentially expressed genes depended
directly on the sequencing depth of the sample. The higher the sequencing depth,
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Figure 3.11: The effect in the number of differentially expressed genes in samples A and B in
function of the number of lanes being used.

the more differentially expressed genes were detected. Three main groups could
be distinguished from the figure. The COH laboratory, which is the one with the
largest sequencing depth per replicate, formed the first group, reaching the higher
number of differentially expressed genes. However, they sequenced the samples
in just one plate. The second group is composed by the AGR andNVS laboratories,
which have nearly identical sequencing depth per replicates and number of replic-
ates. Lastly, we find the BGI, CNL and MAY laboratories, which are the ones with
the lowest sequencing depths. One thingwe found surprising from the resultswas
the lack of a saturation point where the number of DE genes would remain stable
despite an increment of the sequencing depth.
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3.4.3.4 Transcripts detection
The reproducibility of transcript detection by the RNA-Seq technology was as-
sessed by obtaining the number of transcripts detected with increasing numbers
of replicates. The analysis was broken down by expression level intervals to ana-
lyse the relationship between consistent detection and expression level as a func-
tion of the number of replicates. At each number of replicates and for any given
site, all possible combinations of replicates were computed and results were aver-
aged. For example, to compute the number of detected transcripts with 2 replic-
ates in the AGR site (total number of replicates is 4) at the expression range 1-5
fpkm, all combinations of 2 elements out of 4were generated (6 different combin-
ations). For each combination, the number of transcripts detected simultaneously
by the two replicates with expression level within the range 1-5 was computed
and values were averaged across all 6 combinations. The analysis was performed
for samples A and B, considering both Cufflinks-computed fpkm values and read
counts as transcript expressionmeasures.
The average transcript detection values at each cardinality of the replication set
were very precise (coefficient of variance typically below 0.01%) and detection
patterns were highly consistent across sites provided that uniformity in sequen-
cing depth of replicates was maintained. At low expression values, however, im-
portant differences in thenumberof detected transcripts as a functionof thenum-
ber of replicates were observed (Figure 3.12). For example, at the 0.2-0.5 fpkm
range, the number of detected transcripts was reduced on average by a 47%when
presence in at least two replicatewas required, and 32%and24%when increasing
to three and four replicates. At higher transcript expression values, the robustness
of detection was muchmore stable and in the range 5-10 fpkm, the number of de-
tected transcripts decreased on average by a 17%, 9% and 6%when upgrading to
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two, three and four replicates, respectively. For all transcript detection ranges, a
significant reduction in thenumberof detected transcriptswasobservedwhen the
second replicate was introduced. Similar trends could be concluded when consid-
ering counts as the measure of transcript expression and trends were also similar
for samples A and B across different sites.
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Figure 3.12: The number of transcripts detected by an increasing number of replicates at dif-
ferent transcript expression intervals. Each bar represents the number of transcripts detected
simultaneously by at least the indicated number of replicates, averaged through all possible rep-
lication sets of that replicates number. Transcripts were identified using Cufflinks and expres-
sionmeasured in FPKM. Data for the AGR site.

These results indicate that transcript detection at low expression levels is strongly
noisy and that replication is needed to obtain consistently detected transcripts.
At high expression, transcript detection becomes more stable but still, replication
helps to control accuracy.
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3.4.3.5 Junctions detection
The identification and quantification of transcripts from eukaryote genomes
based on short read sequencing technologies are coupled to the use of algorithms
for transcript inference and expression level estimates. Therefore, the correct
prediction of transcript expression is subjected to the accuracy of the algorithm
of choice. In order to have a more direct assessment of the ability of RNA-Seq to
profile complex transcriptomes consistently, we recorded the detection of reads
at exon junctions across replicates and sequencing sites. Junction countswere ob-
tained by extracting from the alignment files those reads that mapped at known
exon-exon junctionpositions. Toaccount for consistency in thedetectionof altern-
ative splicing events, at each donor site the number of reads mapping at different
acceptor sites was obtained, and the percentage of the major alternative junction
was calculated as the highest fraction of reads at the acceptor side divided by the
total number of reads at the donor side. Only junctions present in the Ensembl
annotation were considered. For each sequencing site, we counted the number of
junctions detected by at least one to four or five replicates.
Similarly to the transcript detection analysis, a significant reduction of detec-
ted junctions was evident as the number of replicates increased. However, only
between 10% and 5% of the junctions dropped as the number of replicates raised
from 1 to 2, and less than 5% of the remaining junctions were discarded as more
replicates were considered (Figure 3.13). It is important to note that the great
majority of the detected junctions had no annotated alternative splicing event or
these were not found within the mapping data (grey and red colours in stacked
bars). However, reads supporting alternative splicing events were in most cases a
minority in comparison to the number of reads that supported themost abundant
junction (yellow and green stacked bars). This pattern of junction detection was
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similar for sample A and B, and it was also maintained when looking at junctions
detected across different sites, with nearly identical replication yields (i.e. only 1%
fewer junctions are detected when inter-site replicates rather than intra-site rep-
licates are considered; Figure 3.14).
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−−− −−−−Figure3.13: Thenumberof junctionsdetectedbyan increasingnumberof replicates at different
sequencing sites. Stacked bars indicate the relative frequency of the major junction in case of
annotated alternative splicing events at the junction.

Taken together, this analysis suggests that transcript detection fluctuates more
than the identification of (alternative) junction sites, especially at the low expres-
sion range, and points again to the importance of replication to control the level of
false calls.
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−−− −−−−Figure 3.14: Thenumber of junctions detected by Illumina sequencing of sampleA across differ-
ent sequencing sites at different levels of replication. Each bar represents the average number
of junctions jointly detected by the indicated number of sites, considering all possible combina-
tions of that site number. For each level of replication, one replication setwas randomly selected
per site and comparedwith the replication sets of all remaining sites.

3.5 Discussion
RNA-Seq technology quantifies the number of RNA fragments expressed in a bio-
logical sample at a given moment in time. This technology has become the choice
of genome-wide transcriptome analysis. However, it is still far from being perfect
and researchers are well conscious of the need to perform quality controls over
raw and processed data through all the different steps of the processing pipeline
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to detect and, to some extent, remove any potential technology biases that might
arise.
In this chapter, we have presented our efforts to create a Bioconductor R pack-
age using the NOISeq algorithm. This package contains a whole set of graphical
and diagnostic tools to perform good quality controls over the data. This pack-
agewas created following the Bioconductor package guidelines. Among those, we
were able to reuse the preexisting ExpressionSet S4 class to store all the user data
and carefully design new S4 classes such as storing the results of the NOISeq al-
gorithm. Additionally, the codewas properly structured and user-friendly to run.
Despite performing quality controls is essential for the proper interpretation of
downstream analysis, other systemic artefacts might still be present in the data
and should be considered before moving forward. One of the most important bi-
ases is the sequencing depth effect of the experiment, as we have shown in this
chapter. Samples with different sequencing depths cannot be truly comparable
and should be corrected prior to analysis. Normalisationmethods such as the pop-
ular RPKM (Reads Per Kilobase of exonmodel perMillionmapped reads)[36] that
normalises the counts by the RNA length applying a division factor of 1 million
has been shown to be useful but does not completely remove this bias. In fact,
statistical distributions and further analysis might still be affected by the initial
coverage difference as we were able to show and as is supported by other work
[43, 44]. Notwithstanding, our work was able to show that RNA-Seq technology is
extremely robust. The same biological sampleswere sequenced in different labor-
atories using the same equipment and the detected bias was always explained by
the coverage differences across laboratories. Though this bias can be somehow
mitigated, aswe have shownduring the analyses, it is advisable to avoid this factor
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from happening to assure all samples have a similar sequencing depth from the
first steps.
In the last part of our work, we highlight the importance of working with sample
replicates. In our differential expression (DE) analyses, we show how the se-
quencing depth of a sample vastly affects the detection of differentially expressed
genes. Generally, the higher the sequencing depth the more differentially ex-
pressed genes will be detected. We also observe how the more replicates we add
to the DE analysis, the more DE genes are detected. This is an expected result as
the total sequencing depth will increase as we addmore replicates to the analysis.
We also study the robustness of transcript and junction detection as the number
of replicates increases. In particular, for the transcript study, we check the replica-
bility at different RPKM range values. As it might be expected, this analysis can be
noisy in lowly covered transcripts (< 1RPKM), so the usage of replicates becomes
relevant to obtain consistent results. This detection becomes much more stable
in higher expression levels (> 5RPMK) where replicates would not be strictly ne-
cessary though they could still be beneficial for better accuracy. These results are
supported in [42], where authors show that the higher the sequencing depth, the
bigger the diversity and number of detected off-target transcripts. For the junc-
tion robustness we took into account for each donor site, which was the acceptor
sharing themost readswith this donor as a fraction of the number of reads divided
by the total number of reads falling in the donor site. In this case, we found that
most of the junctions had no annotated splicing event or these were not found in
the mapping data. Besides, the number of junctions detected decreased as rep-
licates were added into the analysis, suggesting we should always have replicates
to perform any junction detection analysis to avoid noise and get more accurate
results.
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4.1 Introduction
Theflourishing of sequencing functional genomics assays has popularised the ana-
lysis of different chromatin features to elucidate their role on gene expression.
These assays measure, for example, the binding of transcription factors or his-
tone modifications at chromosomal locations (chromatin immune precipitation
sequencing; ChIP-seq), DNA methylation events (different types of Methyl-seq),
or chromatin accessibility (DNase I hypersensitive sites sequencing or Assay for
Transposase-Accessible Chromatin with high-throughput sequencing; DNase-seq
or ATAC-seq). In all cases, the analysis of this data returns potentially functional
regions, defined by genomic coordinates, which must then be related to proximal
genes in order to gain any biological meaning. The type of information that can be
obtained on the regions regulating nearby genes depends on the type of experi-
ment performed. For example, the transcription factor binding sites predicted us-
ing ChIP-seq experimentsmay be expected to be located in the transcription start
site (TSS) and promoter regions of the gene being regulated or in distal enhan-
cers depending whether they are cell-type specific or not, and users might want
to have control of what association is relevant in their experiment. In the case
of open chromatin sites obtained fromDNase-seq experiments, the functional in-
terpretation may differ depending on whether they are in a promoter, intronic, or
downstream gene regions. Therefore, it is not only important to associate gen-
omic regions to the closest gene, but also to identify the specific area of the gene
where the region is located (the promoter, first exon, an intron, downstream, etc.)
[45, 46, 47, 48, 49]. The solution to this problem is not straightforward because
it depends on the isoform of the gene being considered. In addition, regions may
span multiple areas of the same gene (i.e. the TSS and first exon) or fall at over-
lapping genes. Moreover, regions at intergenic locations can be associated with
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upstream or downstream areas of different genes, and therefore a set of rules has
to be established to decide which association should be kept.
Because current sequencing technologies predict thousands or even millions of
genomic regions that must be mapped to other genomic locations such as genes
or transcripts in order to perform integration studies, a computational algorithm
is required to match these genomic regions to proximal features (e.g. genes).
Moreover, it must take the considerations listed above into account, provide users
with flexibility to set the association criteria and be easily integratedwith broader
analysis pipelines.
Although there is an increasing need for such algorithms, as far as we know, there
are very few publicly-available tools which can perform this task. One such tool is
part of the HOMER suite [50], which matches each genomic region to the closest
transcript and returns the area of the transcript overlapped by themidpoint of the
region. This tool can be used with custom annotations, but other information like
the overlapping of CpG islands, repeat elements, etc., is only returned for suppor-
ted species. GREAT [51] is a web tool for predicting cis-regulatory regions which
takes into account not only nearby genes, but also distal binding events. However,
the main drawback of GREAT is its lack of support for species other than human,
mouse, and zebrafish. CisGenome [52] is one of the first tools that appeared to
deal with ChIP-seq data. Among other utilities, it associates regions to proximal
genes but does not provide the location of the region within the gene. This tool
can either be used via a graphical interface in Windows operating systems or by
command line in OSX and Linux. Seq2pathway [53] and ChIPseeker [54] are two
different R packages that also contain functions for associating genomic regions
with genes and annotate the location of the region within the gene. Seq2pathway
follows a similar approach to GREAT but its main limitation is, again, that it only
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supports two species (human and mouse). In contrast, ChIPseeker is a more com-
plete tool that supports any species, andwhich associates regionswith the closest
gene in a similar way to HOMER.
In this thesis’s section we review the main characteristics and drawbacks of some
of these tools and present a novel algorithm, RGmatch, to associate genomic re-
gions with proximal features whilst maintaining the flexibility for researchers to
set specific match criteria. RGmatch is implemented in Python so it can either be
used as a standalone application or incorporated into any omics analysis pipeline.
One advantage of RGmatch is its ability to return associations at the gene, tran-
script, or exon level. The user can deal with the problem of genomic regions over-
lapping more than one area of a gene (e.g. both the TSS and first exon), by in-
structing the algorithm to report all the overlapped gene areas (by choosing the
exon aggregation level) or by reporting only one association per transcript or per
gene, based on a pre-established set of rules. Importantly, these rules, as well as
the width of the TSS, promoter, transcription termination site (TTS), or upstream
areas, can bemodified tomeet the researcher’s needs.
This work has been developed under the perspective of the STATegra project, an
FP7 funded project granted to our group aiming to develop new statistical meth-
ods and tools for the integrative analysis of diverse NGS omics data.

4.2 Methods
RGmatch is a rule-based Python software designed to associate genomic regions
to genes, transcripts, or exons that also reports the area of the gene where the
region overlaps. It requires two essential input files: the genome annotation in
GTF format (http://www.ensembl.org/info/website/upload/gff.html) and
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the chromatin locations of the genomic regions in BED format (https://genome.
ucsc.edu/FAQ/FAQformat.html#format1). RGmatch associates each genomic
regionwith the closest gene (or genes in case of ties resulting from the set of rules
used). The distance is computed as the number of bases from the region mid-
point to the transcript TSS or TTS. To annotate the area of the transcript where
the region falls, we defined eight default disjoint areas (Figure 4.1): TSS, TTS, 1st
EXON, PROMOTER, INTRON, GENE BODY, UPSTREAM, and DOWNSTREAM.
These areas are defined as follows:

Figure 4.1: Definition of the areas of a gene used by the RGmatch algorithm.

• TSS: Intergenic area adjacent to the TSS point of the gene with a length of t
(200 bp by default).
• Promoter: Intergenic area upstream of the TSS with a length of p (1300 bp
by default).
• Upstream: Intergenic area upstream of the promoter area, hencemore than
t+p bp from the TSS point of the gene. This length is limited by themaximum
distance, q, allowed by the user, to associate a region with a gene (10 kbp by
default).
• 1st_Exon: First exon of the gene.
• Intron: The area between two consecutive exons of a gene.
• Gene_body: The total area of any exon other than the first exon of the gene.
• TTS: Intergenic area adjacent to the TTS point of the gene with a length of s
(0 bp by default).
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• Downstream: The intergenic area downstream of the TTS area, hence more
than s bp from the TTS point of the gene. The length of this area is limited
by themaximumdistance, q, allowed by the user, between the region and the
gene (10 kbp by default).

There are twodifferent cases inwhich a region could be associatedwithmore than
one gene: when two or more genes overlap (Figure 4.2a) or when two (or more)
genes are so close ("quasi-overlapping" genes) that the region falls in the overlap-
ping areas of the two genes (Figure 4.2b).

Figure 4.2: Examples of two different situations that would result in a region being associated
withmore thanonegene. aTwooverlappedgeneswithdifferent isoforms. bTwodifferent genes
with common areas overlapping the region (quasi-overlapping genes)

When the region overlaps several areas of a gene but the user needs to choose a
single area per gene or transcript to annotate the association, a set of rules has
to be defined in order to select the most appropriate one. The rules defined by
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RGmatch are based on the percentage of the region overlapping each area of the
gene ("PercRegion"), the percentage of each gene area that is overlapped by the
region ("PercArea"), and a rank of priorities for the areas to be used in the case of
any ties (by default: TSS, 1st EXON, PROMOTER, TTS, INTRON,GENEBODY, UP-
STREAM, DOWNSTREAM). As summarised in Figure 4.3, if there is an area for
which PercRegion ≥ w (50 % by default), this area will be the annotation for that
region-transcript association. Otherwise, the algorithm uses the area with Per-
cArea≥ v (90% by default).

max(%Region) ≥	50%

%Area ≥	90%

More than 1 result

Report result
Report annotation with

max(%Region) from
selection

Yes

Yes

YesNo

No

No

Figure 4.3: Flowchart describing the rules used byRGmatch to decide the gene area to annotate
the region-transcript association (default algorithm options)

When several areas meet this condition, the one with highest PercRegion is selec-
ted. In the case of ties, the selected area is determined according to the list of pri-
orities. The default percentages to apply the rules (v and w) and the default area
priorities can be easily modified by the user.
One of the main advantages of RGmatch is its ability to report the associations
at different aggregation levels (exon, transcript, or gene). By default, it reports
all possible associations to the different areas of the exons. When choosing
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the report at the ’transcript aggregation level’, the algorithm applies the set of
previously-defined rules in order to return a single area per region and transcript.
The same rules apply when reporting at the ’gene aggregation level’, but in this
case, if the region is located in different areas for each transcript of a given gene,
the rank of priorities will be used to annotate the association to only one of them.
RGmatch generates a tabular text output file with the following columns:

• Region: Identifier (ID) of the region being associated. This ID is generated
by RGmatch and consists of the chromosome, start and end positions, separ-
ated by an underscore (chr_start_end).
• Midpoint: Midpoint of the region being associated.
• Gene: Gene ID for the gene that has been associated to the region.
• Transcript: Transcript ID for the transcript that has been associated to the
region. When reporting at the gene aggregation level the algorithm will re-
port all the possible transcripts in the case of internal ties.
• Exon: Exon number associated to the region. In the case of transcript ties,
when reporting at gene aggregation level, the value reported will be -1.
• Area: Area of the gene (or transcript) where the region falls.
• Distance: Distance from the TSS or TTS to themidpoint of the region. When
the region overlaps a gene, the distance reported is 0.
• PercRegion: Percentage of the region that overlaps the area of the gene re-
ported.
• PercArea: Percentage of the reported area overlapped by the region.
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• If the input BED file hasmore columns than the threemandatory ones, these
columns are attached in the output file after the PercArea column.

The associations rendered by RGmatch at the three different aggregation levels
for the two examples shown in Figure 4.2, according to the rules described and
using the default parameters, are shown in Tables 4.1, 4.2 and 4.3, and to illustrate
how the algorithmworks some of them are also described below.
Region Midpoint Gene Transcript Exon Area Distance PercRegion PercArea
1_3400_3700 3550 Gene2 Tr1_Gene2 2 INTRON 0 66.45 -1
1_3400_3700 3550 Gene2 Tr1_Gene2 2 GENE_BODY 0 33.55 6.73
1_3400_3700 3550 Gene1 Tr1_Gene1 1 TSS 0 66.45 100.0
1_3400_3700 3550 Gene1 Tr1_Gene1 1 1st_EXON 0 33.55 5.94
1_3400_3700 3550 Gene1 Tr2_Gene1 1 TSS 0 66.45 100.0
1_3400_3700 3550 Gene1 Tr2_Gene1 1 1st_EXON 0 33.55 5.94
1_5900_6250 6075 Gene2 Tr1_Gene2 1 1st_EXON 0 100 29.23
1_5900_6250 6075 Gene1 Tr2_Gene1 2 INTRON 0 56.98 -1
1_5900_6250 6075 Gene1 Tr2_Gene1 2 GENE_BODY 0 43.02 37.66
2_2102_2702 2402 Gene4 Tr1_Gene4 1 TSS 0 33.28 100.0
2_2102_2702 2402 Gene4 Tr1_Gene4 1 PROMOTER 0 48.42 22.38
2_2102_2702 2402 Gene4 Tr1_Gene4 1 1st_EXON 0 18.30 80.88
2_2102_2702 2402 Gene3 Tr1_Gene3 1 TSS 0 33.28 100.0
2_2102_2702 2402 Gene3 Tr1_Gene3 1 PROMOTER 0 33.61 15.54
2_2102_2702 2402 Gene3 Tr1_Gene3 1 1st_EXON 0 11.65 100
2_2102_2702 2402 Gene3 Tr1_Gene3 1 INTRON 0 21.46 -1

Table 4.1: Table showing the results at the exon level for the example shown in Figure 4.2

Region 1 (1_3400_3700) from Figure 4.2a overlaps Gene 1 and Gene 2. Gene 1
has two different transcripts. If we report at the exon level, RGmatch returns all
the areas of the different genes overlapped by the region. In this example, Re-
gion 1 overlaps the entire ’TSS’ (100 %) and part of the ’1st_exon’ (5.94 %) of both
transcripts of Gene 1, and part of the ’gene_body’ and ’intron’ areas of Gene 2.
RGmatch reports the different overlap percentages, except for introns (for which
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Region Midpoint Gene Transcript Exon Area Distance PercRegion PercArea
1_3400_3700 3550 Gene1 Tr2_Gene1 1 TSS 0 66.45 100.0
1_3400_3700 3550 Gene2 Tr1_Gene2 1 INTRON 0 66.45 -1
1_3400_3700 3550 Gene1 Tr1_Gene1 1 TSS 0 66.45 100.0
1_5900_6250 6075 Gene1 Tr2_Gene1 1 INTRON 0 56.98 -1
1_5900_6250 6075 Gene2 Tr1_Gene2 1 1st_EXON 0 100 29.23
2_2102_2702 2402 Gene4 Tr1_Gene4 1 TSS 0 33.28 100.0
2_2102_2702 2402 Gene3 Tr1_Gene3 1 TSS 0 33.28 100.0

Table 4.2: Table showing the results at the transcript level for the example shown in Figure 4.2
Region Midpoint Gene Transcript Exon Area Distance PercRegion PercArea
1_3400_3700 3550 Gene1 Tr2_Gene1_Tr1_Gene1 -1 TSS -1 -1 -1
1_3400_3700 3550 Gene2 Tr1_Gene2 1 INTRON 0 66.45 -1
1_5900_6250 6075 Gene1 Tr2_Gene1 1 INTRON 0 56.98 1
1_5900_6250 6075 Gene2 Tr1_Gene2 1 1st_EXON 0 100 29.23
2_2102_2702 2402 Gene3 Tr1_Gene3 1 TSS 0 33.28 100.0
2_2102_2702 2402 Gene4 Tr1_Gene4 1 TSS 0 33.28 100.0

Table 4.3: Table showing the results at the gene level for the example shown in Figure 4.2

it returns a -1 result). Of the total length of Region 1, 66 % overlaps the ’TSS’ of
Gene 1 (for both transcripts) and the ’intron’ of Gene 2. According to the pre-
viously described rules, given that this percentage is higher than the 50 % set
as threshold, these areas will be returned when reporting at the transcript level
(Table 4.2). In the gene-level report, both Gene1 and Gene2 are associated with
Region 1 (overlapping genes). For Gene1, the association is annotated to ’TSS’
since both transcripts had the same annotation.
Region 3 from Figure 4.2b overlaps Gene 3 and Gene 4, and has a percentage of
overlap of 33.28, 33.61, 11.65, and 21.46 % with the ’TSS’, ’promoter’, ’1st_exon’,
and ’intron’ regions of Gene 3, respectively. When reporting at the transcript or
gene aggregation levels, since these overlap percentages do not exceed 50 % in
any case, we have to look at the percentage of each gene area overlapped by the
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region. Two different areas (’TSS’ and ’1st_exon’) are completely overlapped with
a percentage higher than 90 %, and so they are tied. In this case, the algorithm
returns the area with the highest percentage of the region overlapping it, which
corresponds to the TSS (33.28 %). The same procedure also has to be applied to
Gene 4, this process results in the same TSS annotation. Therefore, Region 3 will
have two associated genes reported with the ’TSS’ annotation (quasi-overlapping
genes).
RGmatch provides many configuration options and the user can modify the pri-
orities and rules followed to associate a region with a gene area. The following
arguments can be optionally set by the user:

• Report: Argument to select the aggregation level for the report. By default,
it is set to ’exon’ and all possible associations to all the different areas of a
gene or genes where the region overlaps will be reported. When it is set to
’transcript’ or ’gene’ the rules explained above are applied.
• Distance: By default, a region will be associated to a gene if it is closer than
10 kbp.
• TSS: Area starting at the transcription start site of a gene and finishing t bp
upstream from that point. By default, t = 200.
• TTS: Intergenic area starting at the transcription termination site of a gene
with a length of s bp. By default, s = 0, so this area is not considered unless
this parameter is modified by the user.
• Promoter: Area starting one nucleotide after the predefined TSS area and
extending up to p bp upstream from that point. By default, p = 1300.
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• PercArea: Threshold for the percentage of the gene area overlapped by the
region, used in the selection rules (see flowchart in Figure 4.3). By default,
this is set at 90%.
• PercRegion: Threshold for the percentage of the region overlapping the
gene area, used in the selection rules (see flowchart in Figure 4.3). By de-
fault, this is set at 50%.
• Rules: In case of ties after following the rules shown in Figure 4.3, the al-
gorithm will decide the area to annotate the association to according to a
rank of priorities. By default, this is: TSS, 1st_EXON, PROMOTER, TTS, IN-
TRON,GENE_BODY,UPSTREAM, andDOWNSTREAM.Tomodify thesepri-
orities, a string containing the eight disjoint areas must be introduced.
• Gene: Tag indicating which gene identifier from the GTF annotation file is to
be reported. By default ’gene_id’ is used.
• Transcript: Tag indicating which transcript identifier from the GTF annota-
tion file is to be reported. By default ’transcript_id’ is used.
• GTF: Mandatory input. GTF annotation file. Files compressed with gzip are
also accepted.
• BED: Mandatory input. BED file with the set of genomic regions to be
matched. Files compressedwith gzip are also accepted.
• Output: Mandatory input. Full path and name of the file where the output
will be written.
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4.3 Results and discussion
In order to show the functionalities and main advantages of RGmatch, we
compared it to the other methods available: HOMER, GREAT, CisGenome,
Seq2pathway, and ChIPseeker. Comparisons are difficult because, on the one
hand, there is no gold-standard data set of true associations between the genomic
regions and the genes and, on the other hand, the goal of the different methods is
not always exactly the same. For instance, GREAT and Seq2pathway do not only
return the closest gene but also other distal genes by following an approach that
is completely different from the other methods. GREAT assigns a ’regulatory do-
main’ for each gene, so if any region lieswithin the regulatory domain, it is assumed
to regulate the gene. There are three options to define this regulatory domain.
The default option (the one we compared RGmatch to), called the ’basal plus ex-
tension’, assigns a ’basal regulatory region’ that extends 5 kbp upstream and 1 kbp
downstream of the TSS, irrespective of the presence of any neighbouring genes.
Based on a similar approach, Seq2pathway takes the functional impact of coding
and non-coding genes into account tomake associations. In the following sections,
weprovide both qualitative andquantitative comparisons basedon the results ob-
tainedwith a publicly available set of genomic regions.

4.3.1 Qualitative comparison to the state-of-the-art methods
In this section, we highlight the characteristics of RGmatch that make it different
from any of the other approaches (see a summary in Table 4.4), and which there-
fore support the need tomake this novel tool available to the research community.
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RGmatch HOMER GREAT CisGenome Seq2pathway ChIPseeker
User-friendly Command line Command line Web tool Command

line/GI (only in
Windows)

R/Bioc R/Bioc

Adaptable to
pipelines

Yes Yesa No Yesa Yesa Yesa

Input format BED (also gzip-
compressed BED
file)

BED BED (only 3
columns)

BED -> COD BED -> GRanges BED

Association res-
olution

Gene, transcript,
exon

Gene, transcript Gene Gene Gene Gene, transcript

Area annotation Yes Yes No No Yes Yes
Flexibility Distance, Areas,

Rules, Area pri-
orities

No Distance Distance Search radius Area priorities,
TSS distance

Supported spe-
cies

All All 3 12 2 Allb

Output: Gene
IDs?

Any in the GTF Gene and tran-
script IDs

Gene names Gene IDs Gene IDs and
gene names

Gene and tran-
script IDs

Output: Dis-
tance?

Yes Yes Yes No Yes Yes

Output: Over-
lapping genes?

Yes No No No Yes No
a HOMER and CisGenome can be integrated in analysis pipelines, although the process to obtain the annotations and parse these results is not
as straightforward as with RGmatch. Seq2pathway and ChIPseeker can also be integrated with additional scripting.
b It supports all species, provided the input format is a TxDbRobject. This format canbeobtained fromaGTFfile by using themakeTxDbFromGFF
function in the GenomicFeatures package.

Table 4.4: Comparison of the functionalities of the different algorithms

4.3.1.1 User-friendly
RGmatch and HOMER are easy-to-use command line algorithms that can be run
locally onanycomputer and inanyoperating systemprovidedPythonorPerl inter-
preters are installed. GREAT is accessible via their website, which makes it user-
friendly on any operating system, but it cannot be used locally. CisGenome can
also be used in any operating system via command line and has a graphical inter-
face, but only for Windows. On the contrary, ChIPseeker and Seq2pathway are
both R packages that can be easily used if the R interpreter is installed. However,
we had problems using Seq2pathway on the Linux platform because the associ-
ation function did not work.
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4.3.1.2 Adaptable to pipelines
All methods except GREAT, which is a web tool, can be easily integrated into any
analysis pipeline. HOMER is a suite of tools, and thewhole suite has to be installed
for the method to work. As for all R packages, ChIPSeeker and Seq2pathway, can
also be integrated into any analysis pipeline, although some additional scripting is
required. In contrast, RGmatch can be directly used in any pipeline and does not
require additional steps or modules to work.

4.3.1.3 Input format
RGmatch, GREAT, HOMER, andChIPSeeker take a BED file containing the regions
to be associated as input. CisGenome and Seq2pathway require the BED file to be
converted into their own formats. GREAT accepts a 3-column BED file. The other
methods accept BED files containing information other than genome coordinates,
but onlyRGmatch andChIPSeeker return the additional columns in theoutputfile.

4.3.1.4 Association resolution
A unique feature of RGmatch is its ability to report associations at the exon, tran-
script, or gene level. GREAT, CisGenome, and Seq2pathway only report associ-
ations at the gene level, whereasHOMER andChIPSeeker can report associations
at the gene or transcript level.
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4.3.1.5 Location of the region
RGmatch, HOMER, Seq2pathway, and ChIPSeeker report the area of the gene
where the region overlaps for each association. Neither GREAT nor CisGenome
return this information.

4.3.1.6 Flexibility
RGmatch, CisGenome, Seq2pathway, and GREAT let users modify the basic para-
meters (related to the maximum distance) used to associate a region to a gene.
HOMER, on the contrary, always associates the region to a gene no matter how
far it is. RGmatch and ChIPSeeker also allow the user to modify the length of
some gene areas, as well as the priorities for annotating the association with the
gene area. In addition, RGmatch offers aflexible definition of the association rules,
while this is not possible in HOMER or Seq2pathway.

4.3.1.7 Supported species
RGmatch, HOMER, and ChIPseeker work with any organism as long as the user
provides the GTF annotation file. However, ChIPseeker requires the annotations
to be converted to TxDb1 R objects beforehand. GREAT, Seq2pathway, and Cis-
Genome only work with the species list they provide; at the moment, GREAT and
Seq2pathway both support 4 species, whereas CisGenome supports 12.

1The TxDb class is an R container for storing transcript annotations.
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4.3.1.8 Output
All of the algorithms compared return a tabulated file containing the region-gene
associations and some additional information. Only RGmatch and ChIPSeeker
preserve the original columns in the BED file when more than the three mandat-
ory columns containing the genomic positions are provided (e.g. coverage, quality,
p-values, etc. may also be included in the region BED file). RGmatch also allows
the user to choose the gene identifier to be reported among all the identifiers in
the GTF file. In HOMER and ChIPseeker, the user can choose between gene and
transcript IDs, CisGenome reports the gene ID, and GREAT returns gene names.
All the methods except CisGenome report the distance between the gene and the
region. RGmatch, HOMER, ChIPseeker, and Seq2pathway return the area of the
gene overlapped by the region. The gene area definitions are similar for HOMER,
ChIPseeker, and RGmatch, or at least they can be made almost equivalent by tun-
ing the RGmatch parameters. However, the column containing the gene area in
the HOMER and ChIPseeker outputs also contains additional information so this
column cannot be directly used in further analyses where a categorical classifica-
tion of the gene areas is needed unless it is properly parsed first. Another unique
featureofRGmatch andSeq2pathway is that if a region canbeassociatedwith two
ormore overlapping genes, all of themare reported as different rows in the output
file, while the other methods only provide one associated gene in these cases.

4.3.1.9 Quantitative comparison
To quantitatively assess the functionality of our approach, we compared RGmatch
to HOMER and CisGenome using a public set of genomic regions. We discarded
GREAT and Seq2pathway from the comparison because they follow a completely
different approach to associate chromatin regions, meaning that the results are
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not directly comparable. We also decided not to include ChIPseeker because it is
very similar to HOMER. The public set of genomic regions used in the comparison
contained2638 regions fromahumanChIP-Seq experiment, andwas downloaded
from the Sequence Read Archive (SRA) with accession number GSE55727. The
annotation (GTF file) was downloaded from Ensembl GRCh37.75.
In order to make the outputs comparable between the methods, the RGmatch re-
port was performed at the gene aggregation level, the maximum distance for re-
porting associations was set to 1000 kbp to allow at least one association per re-
gion, the promoter length was set to 0, and the TSS area was set to 1kbp. The
rest of the parameters were left at their default values. We used the default para-
meters for HOMER. To run CisGenome, first the GTF was converted to refFlat
format using the gtfToGenePred tool from the University of California Santa Cruz
Genomics Institute, and then the BED file was converted to COD format using the
file_bed2cod tool provided by CisGenome. CisGenome was then run setting the
distance limits to 1000 kbp and leaving the rest of the parameters at their default
values. Regions corresponding to chromosomes X and Y were removed from the
BEDfile used for all of the algorithms becauseCisGenomedoes not take them into
account, which left a total of 2592 regions.
Each of the final 2592 regions was associated with a single gene by HOMER and
CisGenome. RGmatch returned 3406 associations due to overlapping and quasi-
overlapping genes. The percentage of common associations reported by the three
methods was high (Figure 4.4). Over 85% of the associations called by RGmatch
were also reported by HOMER and/or CisGenome. However, RGmatch reported
739 associations that were not called by the other two methods. Most of them
(731) were due to the fact that RGmatch can associate regions to two different
genes, so one of the two genes is reported by the other two methods, but the
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second gene is only reported by RGmatch. The reason for the remaining 8 asso-
ciations, that were exclusively detected by RGmatch, was because RGmatch as-
sociated the region to the closest gene (which was downstream), while HOMER
associated it to a more distal gene in an upstream area. There is no clear reason
whyCisGenome returned a different association for these cases. The associations
that were common to RGmatch and only one of the other twomethods were gen-
erally also due to RGmatch associating the region to two overlapping (or quasi-
overlapping) genes whereas HOMER reported one of the two associations and
CisGenome reported the other.

Figure 4.4: Venn diagram showing the number of region-gene associations obtained with the
HOMER, RGmatch, and CisGenomemethods

We also observed that, in some cases where the methods returned different res-
ults, the associated region was far away from the genes. RGmatch associated the
region to the closest gene, even if the region was downstream from the gene. In
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these cases, CisGenome tends to associate the region to a gene with an upstream
annotation (even if it is not the closest gene), while HOMER either does the same
or chooses a downstream annotation but to the second closest gene.
RGmatch andHOMER also report the area of the genewhere the region overlaps.
However, the definition of the gene areas reported by these two methods is not
exactly the same. HOMER defines their ’promoter-TSS’ as the region comprising
-1 kbp to +100 bp from the start of the gene and the ’TTS’ as the region comprising
from -100 bp to +1 kbp from the end of the gene. In order to cover the same areas,
we defined our ’TSS’ area as -1 kbp to -1 bp and removed the ’promoter’ area. This
way, HOMER’s TSS area was equivalent to ours plus the first 100 bps from our
’1st_exon’ area, and our ’Downstream’ area was equivalent to Homer’s TTS and
Intergenic area, etc. (see all the equivalences in Table 4.5).

RGmatch HOMER
INTRON Intron
UPSTREAM Intergenic
DOWNSTREAM TTS; Intergenic
GENE_BODY exon; 3’ UTR; 5’ UTR
TSS promoter-TSS
1st_EXON exon; promoter-TSS; 5’ UTR; 3’ UTR

Table 4.5: Equivalences between the gene areas defined by RGmatch andHOMER

Table 4.6 shows the number of associations reported by HOMER and RGmatch
with equivalent annotations for the region location (in green), accounting for the
vast majority (more than 95% of the reported associations). Associations, where
the gene area did not agree, are indicated in red. Discrepancies are due to regions
overlapping several areas of the gene. In such cases, the true location of the region
in the gene is unclear. While HOMER chooses the area overlapping the midpoint
of the region, the RGmatch annotation is based on the overlap percentage and on
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the priorities chosenby theuser, allowing them tofine-tune the association results
depending on their analysis goals.

RGmatch

UPSTREAM INTRON DOWNSTREAM TSS TTS 1st_Exon GENE_BODY

HOMER

intron 1246 1

Intergenic 440 341

exon 14 24 20

promoter-TSS 1 171 1 23

TTS 104 3 6

5’ UTR 1 4

3’ UTR 12

Associations with equal or equivalent annotations in bothmethods are shown in green, and associations with different annotations are shown in red

Table 4.6: Annotations for the region location within the gene returned by RGmatch (columns)
andHOMER (rows)

In summary, the association results from RGmatch are comparable to the results
providedbyothermethods. Nevertheless, RGmatch ismoreflexible thanother ap-
proaches because it allows to define the rules to compute the associations and an-
notate them with the region location within the gene. Moreover, it returns all the
possible associations when the region overlaps more than one gene (overlapping
or quasioverlapping genes), and the output is easier for the user to understand and
re-use.
To check the efficiency of the algorithms, we compared the computation time and
memory used when running the algorithms on the full human ChIP-seq example
(2638 regions, including theXandYchromosomes)with thehuman referencegen-
ome annotation GTF file. RGmatch took 32 seconds to obtain the results and re-
quired 1 GB of RAMmemory. In contrast, HOMER took 1 minute and 30 seconds
and requiredup to3GBofRAM.CisGenomewas almost instantaneous, since it re-
quires a prior transformation of the inputfiles. These calculationswere performed
on an Intel(R) Xeon(R) CPU E3-1225 V2@3.20GHzmachine.
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RGmatch was designed to check only the proximal annotations for each region.
This implies that it is highly scalable despite having a large number of regions. In
our tests, RGmatch obtained results in 15 s using a file with 25,000 regions, 50 s
with 200,000 regions and 122 s with 600,000 regions in a 2.4 GHz Intel Core i5.
The slowest step is the internal ordering of the regions and annotations, but the
association step is straightforward.

4.4 Conclusions
As sequencing technologies evolve and studies that integrate gene expression
with chromatin features become more common, the need to associate genomic
regions to genes in order to understand regulatorymechanisms has increased. Al-
though there are a number of publicly available tools to perform this task, most of
them have limitations in terms of flexibility or usability.
In this work, we present RGmatch, a user-friendly tool for matching genomic re-
gions and genes, transcripts or exons, which reports the area of the gene where
the region overlaps. RGmatch supports all species as long as the user provides the
GTF file with the reference genome annotation. The tool is a freely accessible Py-
thon script, which promotes integration into broader analysis pipelines. RGmatch
is a valuable resource for facilitating analysis inmulti-omics experiments involving
gene expression and different types of chromatin features.
The main advantages of RGmatch, when compared to the state-of-the-art meth-
ods, are the flexibility for the user to define its association rules, gene areas, gene
identifiers to be reported, and priorities for the gene area annotation when the
region overlaps different areas of the gene, as well as its ability to report associ-
ations at different aggregation levels. In addition, when a genomic region overlaps
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several genes, all the associations are returned. Therefore, RGmatch provides a
biologically meaningful set of rules and parameters that can be tuned by users to
adapt the associations to their preferences or needs.
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Chapter 5

Functional characterisation of
long non-coding RNAs

Part of this chapter has been published as:
Furió-Tarí, Pedro, Sonia Tarazona, Toni Gabaldón, Anton J. Enright, and Ana Con-
esa.
spongeScan: AWeb for DetectingMicroRNA Binding Elements in LncRNA Sequences.
Nucleic Acids Research (Oxford University Press) 44 (W1): W176–80. 2016
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Chapter 5. Functional characterisation of long non-coding RNAs

5.1 Introduction
NextGeneration Sequencing technologies and in particularRNA-Seqbrought new
information on genome organisation. One of themost exciting discoveries of NGS
is that a large proportion of the genome is transcribed into RNAswith an apparent
lack of coding potential [13, 14, 15]. Long non-coding RNAs (lncRNAs) are defined
as non-coding RNA transcripts longer than 200 nucleotides [17, 18, 19, 20]. They
are particularly known for being expressed in a few specific tissues only acting as
important gene regulators through different mechanisms [21]. They have been
shown to regulate transcription modulating the chromatin by binding histone-
modifying complexes [55], binding the RNA Polymerase II directly to inhibit tran-
scription [23] by forming lncRNA-DNA triplex structures that inhibit the forma-
tion of the preinitiation complex [24] or even by folding into structures that mimic
other DNA-binding sites or inhibit or enhance the activity of other specific tran-
scription factors [56, 57], among others.
At the time this work was performed, few publications had studied the impact of
some lncRNAs in different kind of cancer types such as HOTAIR in breast [58],
MALAT1 in lung [59] or HULC in liver [60]. However, genome-wide analyses in-
tegrating data from different tissues and conditions with the goal of predicting
lncRNA functions were missing. The guilty by association approach is widely used
to infer functions of genes which remain unknown. This relies on the idea that any
non-described genes associated or interacting with any described genes are very
likely to share functions or pathways. In this chapter, we will use this approach to
look for co-expressionpatterns between lncRNAsandprotein-coding genes. Todo
so, we will use the Gene Ontology (GO) knowledgebase as the main source of in-
formation of the protein-coding gene functions. GO terms explain how individual
genes contribute to the biology of an organism at the molecular, cellular and or-
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ganism levels. Therefore, GO annotations should be a good resource to function-
ally annotate lncRNAs.
Other ways of inferring functions of lncRNAs are more related to the sequence
structure and the molecular interaction prediction. LncRNAs are also known to
sequester miRNAs inhibiting their functions. In this chapter, we will also present
the application of this strategy in the way of a web application to help find non-
coding transcripts harbouring miRNA response elements (MREs) where miRNAs
bind.

5.2 Objectives
Theworkdescribed in this chapter aims to create amethodology for the functional
annotation of long non-coding RNAs as well as a web resource to predict lncRNAs
harbouringMREs.
For the first development, High-Performance Computing approaches developed
for NGS analysis in our department were used to conduct a large-scale computa-
tional analysis of RNA-Seq datasets present in public repositories. The strategy
was to analyse co-expression patterns of lncRNAs with annotated protein-coding
genes among a wide number of experimental conditions to find strong correlation
patterns between the coding and non-coding genes and use these, through appro-
priate algorithms, to identify functional categorieswhich can be assigned to the so
far uncharacterised lncRNAs (guilty-by-association).
For the second part, we sought to develop a novel, sequence-based, algorithm de-
signed for the detection of MREs in non-coding transcripts that have the poten-
tial to act as competing endogenous RNAs (ceRNAs) of miRNAs. This algorithm
would be potentially applicable to any organism where sequence data is avail-
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able. We will also describe a new web resource, spongeScan, which provides a
user-friendly interface for applying this sponge search algorithm to any set of se-
quences provided by the user. spongeScan also includes options to analyse gene
expression data of both candidate ceRNAs and miRNAs. It is important to men-
tion that spongeScan does not give a definitive prediction value, but rather ranks
putative ceRNA–miRNAs pairs on the basis of several parameters that are indic-
ative of sponge function [27]. Our algorithm particularly identifies lncRNAs that
havemultiple and spreadMREs.

5.3 Functional characterisation of long non-coding RNAs

5.3.1 Methods

Data retrieval
In order to develop the newmethodology for lncRNA functional annotation, data
were downloaded from public repositories. These data had to meet the following
criteria:

1. be annotated asHomo sapiens species.
2. sequencing depth between 50 and 80 million reads. Samples with lower se-
quencing depths were also considered as long as there were replicates that
could be joined to achieve aminimum sequencing depth.

3. data has to be sequenced on Illumina platforms.
4. cover as many tissues and cell lines as possible trying to achieve a balance
among them.
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5.3 Functional characterisation of long non-coding RNAs

5. preference for paired-end data. However, single-end data with high quality
was also acceptable.

Datawere retrieved from the ENCODEproject aswell as from the SequenceRead
Archive (SRA). Samples obtained from ENCODE were taken from the "RNA-Seq
from ENCODE/Caltech" and "Long RNA-Seq from ENCODE/Cold Spring Harbor
Lab" studies.
A total of 206 samples were downloaded (54 samples from the SRA, 34 samples
from ENCODE/Caltech and 118 samples from ENCODE/Cold Spring Harbor).

Preprocessing
Quality control of the fastqfiles of the sampleswas performedusing theFastQC[6]
software. Four different groups of samples were found based on their qualities:
1. samples with an overall good quality were kept for following analyses;
2. samples with extremely bad qualities were discarded from our final dataset;
3. samples with low quality in the last nucleotides were trimmed as long as the
resulting length would be higher than 30bps, otherwise discarded;

4. sampleswith quality drops across thewhole length of the readswere treated
differently.

A quality threshold was applied using a minimum Phred Score of 20, which stands
for a base accuracy of 99%. This was performed using the filtering tool FastX
toolkit[61], which checks the readsbackwards starting trimming from the last nuc-
leotide of each read. Whenever it finds a nucleotide with a Phred Score over the
indicated threshold, it stops trimming. However, this approach leads to additional
problems when applied to paired-end data. This is because some reads might be
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completely discarded while the pair might still be valid leaving this last one as an
"orphan" read. In order to rescue these "orphan" reads and have the biggest cover-
age possible, a customPython scriptwas developed to remove them from the pair-
end fastq file and to pull them into a different single-end fastq file. From this point
on, paired-end data as well as single-end orphan reads, were treated in a different
way. Sequencing depth was checked again after the read correction and samples
with less than 50million readswere filtered out, unless therewas a biological rep-
licate with also a low number of reads. In those cases, samples were merged to
reach the targeted sequencing depth requirements.
Reads were mapped using TopHat[41] v2.0.8 against the University of California
Santa Cruz (UCSC) hg19 assembly reference genome. Single-end data, as well as
paired-end data with no filtering issues were mapped as usual. Samples contain-
ing paired-end reads as well as orphan reads, were mapped using the following
strategy: TopHat builds a junctions file every time the mapping process is per-
formed, containing all the junctions that have been foundduring themapping step.
Because the number of orphan reads was much lower than the number of paired-
end reads, and the single-end approach is noisier, paired-end reads were mapped
as usual first, and the junctions file built during the previous mapping step was
used to help the mapping process of the orphan reads. In the end, two different
BAM files were obtained for every filtered paired-end sample. Samples with an
extremely low proportion of mapped reads were filtered out at this point.
Two different approaches were evaluated for quantifying gene expression from
BAM files: HTSeq andQualimap. HTSeq 0.5.3p3[62] only takes into account reads
mapping to only one location in the genome. Reads mapping to different features
(multihits) were not considered. However, there were other tools that could take
multihits into account. Qualimap[9], for example, had two different approaches
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implemented for these cases: (i) count each read as if it was uniquely mapped;
or (ii) count reads mapping to different locations in a proportional way. However,
Qualimapwas limited at themoment of this analysis because it considered paired-
end reads as if theywere single-end, so the number of counts would be duplicated
for some reads, and therefore, not really trustworthy. In an attempt to get the best
of both approaches, a Python script was developed to implement the proportional
approach using HTSeq. This script performed the following steps:

1. split each BAM file into several BAM files, each one containing only reads
mapping to 1 feature, 2 features, etc.;

2. modify the FLAG1 for each read to make HTSeq to recode the read as single
hit;

3. run in parallel as manyHTSeq processes as BAM files were generated;
4. counts obtained after running HTSeq with the BAM file containing reads
mapping to 2 different features were divided by 2, the ones obtained after
running it with the BAM file with readsmapping to 3 different features were
divided by 3, etc.;

5. generate one single count file adding up the counts of the different files.

The counting step was performed for all the samples using that script. This was
performed twice for the filtered paired-end samples, one with the BAM file ob-
tained aftermapping the paired-end reads and otherwith the BAMobtained after
mapping the orphan reads. The counts obtained with each of the files were finally
added up. In the end, a total of 161 samples were used for further analysis.

1Combination of bitwise flags that describe different properties of themapped read.
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Due to the heterogeneity of the data, counts were normalised by the effect-
ive sequencing depth. Additional metadata information was added to the
count matrix such as the laboratory or tissue where each sample came or was
taken from. Additionally, genes were categorised as protein-coding or long
non-coding genes. Data was checked for any possible bias and corrected us-
ing ASCA-genes, an R package developed in our group that is an adaptation
of the ASCA method (ANOVA Simultaneous Component Analysis) to the ana-
lysis of multifactorial experiments in transcriptomics (http://conesalab.org/wp-
content/uploads/2013/11/ASCA-genes.1.2.1.zip).

Functional annotation
A guilty-by-association approach was considered to functionally annotate
lncRNAs. To do so, lncRNAs were grouped into two different groups: tissue
and non-tissue-specific lncRNAs. To group lncRNAs, the following tau formula
[5.1][63] was used:

τ =

∑N

i=1(1− xi)

N − 1
(5.1)

In this formula, theN was considered as the number of tissues, xi the expression
level of the lncRNA in tissue i normalised by themaximal expression level in theN
tissues. The described formula returns a value between0 and1 for each gene. Val-
ues closer to1wouldbe returned for genes expressed in just a fewsamples (tissue-
specific) and closer to 0when expressed in almost all the samples (non-specific).
However, this formula could not be applied this way directly as it considers only
one expression value per tissue. On the contrary, the dataset contained several
samples per tissue and significant differences were present between the number
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5.3 Functional characterisation of long non-coding RNAs

of samples available for each tissue. Therefore, the formula was applied for every
lncRNA but consideringN as the total number of samples (161). The expression
values of every lncRNAwere scaled and centred prior to applying the formula. Fi-
nally, lncRNAswith tau values above 0.7 were considered to be tissue-specific.
A Spearman correlation analysis was performed for every lncRNA versus the ex-
pression of all the protein-coding genes. A protein-coding gene was considered
significantly correlated if a correlation value over 0.8 was obtained. GOSeq R
package was used to perform the functional enrichment for each lncRNA using
a built-in matrix based on correlated and non-correlated protein-coding genes.
P-values were adjusted using the Benjamini & Hochberg method and only p-
values under 0.05 were considered significant. Blast2GO [64] was used to create
some combined graphs to highlight the functions most widely shared across the
lncRNAs. The described approach was followed for both tissue-specific and non-
tissue-specific lncRNAs.

5.3.2 Results

Bias detection and count normalisation
Different density plots were made to measure the expression ranges of both
protein-coding genes and long non-coding RNAs. As previously reported, both
transcript types have very different expression ranges. A scatter plot (Figure 5.1)
was created to explore the differences between two random protein-coding and
two long non-coding RNA genes. Expression values of protein-coding genes are
almost two orders of magnitude higher than long non-coding RNAs.
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Long non−coding RNA VS protein coding expression 
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Figure 5.1: Expression values of two random protein-coding and two long non-coding RNA
genes to show that, in general, the expression values of protein-coding genes are almost two
orders of magnitude higher than long non-coding RNAs.

Principal Component Analysis (PCA) was performed for the protein-coding genes
and long non-coding genes using the log10 of the counts from the previous step to
measure any possible bias (Figure 5.2).
As a strong laboratory bias was detected in the data that required correction, we
usedASCA-genes to correct andnormalise thedata. Moreover, due to theneed for
comparing the expression of genes regardless of the sequencing depths, the count
matrix was further normalised using the quantile normalisation method (Figure
5.3).
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Figure 5.2: PCA of coding and long-non coding RNAs across a wide range of tissues. Counts
were corrected by sequencing depth.

Functional annotation
As seen in Figure 5.1, the expression of lncRNAs is in general low, being some or-
ders of magnitude lower than protein-coding genes. This is one of the ncRNA fea-
tures that makes this kind of transcripts especially difficult to characterise.
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Figure 5.3: PCA of coding and long-non coding RNAs across a wide range of tissues. Data were
batch-corrected and normalised using the quantile normalisation approach.

A guilty-by-association approach was followed to perform the functional annota-
tion of lncRNAs. Following this approach, a lncRNA will be annotated with the
GeneOntology (GO) terms the correlated protein-coding genes are enrichedwith.
Although the guilty-by-association approach has often been used to characterise
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novel genes, in this case, we face a data analysis challenge due to the different or-
der of magnitude in the expression of coding and non-coding genes, and also the
fact thatmost lncRNAs are expressed only in a few tissues, while coding genes are
more prevalent across tissues. This fact required specific correlation strategies.
First, different density plotsweremade for both lncRNAs andprotein-coding gene
expression values to define a point at which they could be considered expressed
(Figure 5.4). The threshold value used was 1, so all protein-coding genes and
lncRNAswith a lower expression across all the sampleswerefiltered out. Thisfirst
filter was passed by 4552 out of the 13047 lncRNAs and 17907 out of the 20203
protein-coding genes.
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(b) lncRNA density plot.
Figure 5.4: Density plots applied over the expression values using quantile normalisation. Red
line indicates theminimum threshold used for both biotypes to consider them as expressed.

Correlation calculations are usually a good approach when working with many
data with values over 0. However, lncRNA expression tend to be really low due
to being expressed only in some specific tissues, so using a correlation approach
was not the best decision in this case. To address this issue, we used the tau for-
mula [5.1][63] to create two different groups of lncRNAs, that is, tissue-specific
and non-tissue-specific lncRNAs.
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After applying the formula, lncRNAswith tau values above 0.7were considered to
be tissue-specific (3542 out of 4552).
Just as important as knowing whether they are tissue-specific or not is know-
ing the tissues in which they are overexpressed. For this reason, those tissues
with an expression 3 times above the interquartile range were considered for all
the tissue-specific genes. For the cases in which replicates were available, only
the tissues in which at least 75% of the replicates fulfilled the previous threshold
were considered. However, there were a few lncRNAs that, using these criteria,
were not associated to any overexpressed tissue despite having a tau over the
0.7 threshold. These lncRNAs were finally considered as non-specific. Figure 5.5
shows the number of tissues in which the tissue-specific lncRNAs were specific
after applying the latest constraint. 15% of the lncRNAs (pale blue) considered
tissue-specific in the first instance were discarded because it was not possible to
find a single tissue inwhich they could be considered overexpressed. However, the
vastmajority of the tissue-specific lncRNAswere considered specific inmore than
1 tissue. A ranking containing the most over-expressed tissues within the tissue-
specific lncRNAs was also performed, showing Hmncpb, Lymphoma, White blood
cells, Skeletal muscle and Lymphoblastoid - 79 year in the top 5. LncRNAs were
found specific in 95 out of the 162 different samples as shown in Figure 5.6.
A Spearman correlation analysis was performed for every lncRNAs versus the ex-
pression of all the protein-coding genes. Functional enrichment was performed
using GOSeq R package and their p-values were adjusted using the Benjamini &
Hochberg method. Only 374 GO terms in total were obtained for the non-tissue-
specific lncRNAs whereas a total of 202818 were obtained for the tissue-specific
lncRNAs.
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Figure 5.5: Number of tissues the lncRNAs are specific in.

Blast2GO [64] was used to create some combined graphs highlighting the most
widely functions shared across the lncRNAs. Figures 5.7 and 5.8 show the biolo-
gical processes and molecular functions of the tissue-specific lncRNAs and figure
5.9 shows the biological process from the extracted GO terms of the non-tissue-
specific lncRNAs. The darker the colour themore significant the functions are.
Tissue-specific lncRNAs seem to be relatedwith RNAandDNAbinding processes,
signalling, immune system response and basic cellular processes among others.
Non-tissue-specific lncRNAs seem to have less generic functions, mainly focus-
ing on cellular processes such as G-protein coupled receptor signalling pathway
and the detection of chemical stimulus involved in sensory perception of bitter
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Figure 5.6: The number of lncRNAs specific per tissue. Tissues that were not specific of any
lncRNAswere discarded from the representation.

taste. However, differences in how specific the functions between tissue-specific
and non-tissue-specific lncRNAs aremainly due to the important difference in the
number of GO terms obtained for each, so the functions of non-tissue-specific
lncRNAs should be takenwith caution.
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Figure 5.9: Biological processes of non-tissue-specific lncRNAs.

5.3.3 Conclusion
LncRNAs are known to act as important regulators. However, little is still known
regarding their functions. Here we present a new approach for the functional
characterisation of lncRNAs where we analysed RNA-Seq data extracted from
public repositories gathering samples from very different tissues. A guilty-by-
association approach was used to obtain a final list of GO terms for each possible
lncRNA. Finally, tissue-specific and non-tissue-specific lncRNAs generic functions
were extracted.
Though data was cleaned and normalised as much as possible, final data was still
far from perfect. Besides, most of the known statistical approaches do not be-
have well when little or no expression is found in genes, a common condition of
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lncRNAs. Given those facts and despite trying other statistical methods before
the one finally exposed, we can conclude the results obtained through the analysis
were not completely satisfactory.

5.4 spongeScan: Aweb for detectingmicroRNA binding elements in
lncRNA sequences

Non-coding RNAs such as microRNAs (miRNAs) are now well established as im-
portant biological regulators. In particular, miRNAs act both to destabilise the
transcripts they bind to or to inhibit their translation. Under certain conditions,
miRNAs can also activate translation or regulate the transcription. The interac-
tion with their target genes depends on many factors such as the abundance of
both miRNAs and target mRNAs, the affinity of the interactions, etc. This binding
event is mediated by a protein complex that recruits the mature miRNA to its tar-
get transcript and guide its binding through base-pair complementarity, between
the miRNA "seed sequence" (6-8 nucleotides long) in its 5’-end and its target site
in the 3’UTR of the transcript sequence. While many features have been asso-
ciated with active miRNA binding sites, it is clear that complementarity is most
important at the ’seed’ region of the miRNA, i.e. nucleotides 2–8 of the mature
miRNA [65]. Complementarity between the rest of the miRNA and the target se-
quence is usually high. Once bound, miRNAs can negatively influence their trans-
lation or stimulate the active deadenylation and decapping of the target transcript
with other factors, causing the degradation of the mRNA. Many methods have
been published to detect possible miRNA target sites (e.g. TargetScan, miRanda
and PicTar [66, 67, 68]), usually searching for high-complementarity, seed com-
plementarity, conservation and other features in the 3’UTRs of mRNA sequences.
More recently, it has been demonstrated that the activity of somemiRNAsmay be
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regulated through so-called competitive endogenous RNAs (ceRNAs) [27]. These
are non-coding transcripts that harbourmiRNA response elements (MREs) where
miRNAs bind. If these ceRNAs possess many MREs and are expressed at high
enough levels they can sequester circulating miRNAs, thus reducing their number
and activity on target mRNAs.
Identification of ceRNAs and their target miRNAs is a challenge. Given that
ceRNAs are usually ncRNAs and that they are likely to possess an abundance of
putative binding sites for miRNAs, regular prediction tools that seek for single
miRNA binding site are not optimised to detect ceRNAs candidates. AGO CLIP-
seq, as well as RNA-Seq, has been used to propose thousands of lncRNA–miRNA
interactions [69, 70] but these methods are restricted by the availability of such
data for specific organisms and cell types. We sought to address these limitations
by developing a novel, sequence-based, algorithm designed for the detection of
MREs in non-coding transcripts that would be potentially applicable to any organ-
ismwhere sequence data exist.

5.4.1 Architecture
spongeScan has been designed using a client-server architecture and can be di-
vided into three different modules: 1) the prediction algorithm, written in C++; 2)
the client, a web application interface built using the Sencha framework and de-
veloped to launch new predictions and to allow the dynamic visualisation of the
results; and 3) the server side, containing a full set of web services to allow all pos-
sible interactions with the client part built using the Flask library from Python, as
well as a NoSQL database to store and query the prediction results using Mon-
goDB.
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Figure 5.10: spongeScan architecture.

5.4.2 The algorithm
spongeScan is a web resource to find highly enriched MRE binding sites in
lncRNAs. Users must provide the lncRNA transcript sequences in a FASTA file.
These sequences can be automatically retrieved by spongeScan from any release
and species available at Ensembl [71] or be directly uploaded by the user. Addi-
tionally, an annotation GTF file is necessary. This file is used to obtain the biotype
of the transcripts to filter out those that are not lncRNAs, if any.
spongeScan looks for sequence complementarity between any possible k-mer of
6, 7 or 8 nucleotides in each lncRNA and identifies if any of these enriched k-mers
corresponds to a known miRNAs seed sequence. To do this, the user has to in-
dicate the species being analysed and spongeScan will look for the correspond-
ing miRNAs in the miRBase database [72] automatically at runtime. Retrieved
miRNAs are then filtered to keep the canonical seeds of 6, 7 and 8 nucleotides of
only experimentally validatedmiRNAs (Figure 5.11).
For each possible k-mer, spongeScan scans for matches using sliding windows of
varying sizes ranging from 50 bps to 1 kb in steps of 50 bps allowing up to oneG:U
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Figure 5.11: Flowchart showing the main strategy behind the spongeScan application. K-mers
of 6, 7 and 8 nucleotides are searched for by using sliding windows of different sizes. Different
k-mer frequencies are obtained for each pair k-mer – lncRNA. Highly enriched k-mers are re-
ported and checked for correspondence with a miRNA canonical seed. Pairwise predictions are
then represented in spongeScan.
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wobble (Figure 5.11). This varying sliding window approach allows selecting the
windowsize that returns thehighest numberofmatches, therebyallowing forflex-
ibility in the k-mer distribution. From k-mer frequencies, we compute a Log-Odds
score (LOD, 5.2) to identify and report highly enriched k-mers for each lncRNA.
The formula below is used to obtain the maximum number of matches for which
significant pairing between a k-mer and lncRNA are found across all the sliding
windows. This is compared to the maximum number of occurrences of that same
k-mer in all other lncRNA sequences. This is calculated for all the possible window
sizes and reports the onewith the highest LOD.

LODkmer,transcript = log

(
max(occurkmer,transcript)∑N

i=0max(occurkmer,i)
×N

)
(5.2)

A dispersion score 5.3 is also calculated for every pair to evaluate the clustering
of binding sites. As we are trying different window sizes, the maximum number of
matches should change accordingly. For instance, if two matches of a k-mer in a
window size of 50 are detected and these are approximately equally distributed,
we should expect fourmatches tobe foundusing awindowsizeof 100, etc. For this
reason, we build a vector containing the maximum number of occurrences norm-
alised by the window size used and calculate the standard deviation. This value is
what we called dispersion score. The lower this value is, the most equally distrib-
uted the miRNA seed matches are. This parameter allows to make hypothesis on
the distribution pattern onMREs along the ceRNAs. Known ceRNAs tend to have
equally spacedMREs that would facilitatemultiple miRNA binding [27], which im-
plies a low dispersion score.
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xi = ∀100050:50

w_size
maxoccur

DSkmer,transcript =

√∑
(xi − x̄)

N − 1

(5.3)

Finally, a complexity score5.4 is calculated for all thek-mersnotmatchingwith any
knownmiRNA canonical seed, and k-mers with low complexity scores are filtered
out. The formula measures the number of single nucleotides and di-nucleotides,
i.e. a k-mer containing AAAAAAwould be (6− 6)× 0.5 + 1× 0.5 = 0.5, whereas
ATGCTAwould be (6− 2)× 0.5 + 5× 0.5 = 4.5. This score is used to filter out low
complexity k-mers that may return unspecific binding.

CSkmer = (kmer_length−max(A|C|T |G))×0.5+different_dinucleotides×0.5

(5.4)
The default thresholds for the Log-Odd score, dispersion and complexity scores
are 1, 10 and 4, respectively. However, these values can be modified in the web
application. For example, a higher LOD score and lower dispersion score would
select lncRNAs with a higher number of MREs and more evenly distributed sites.
Other additional and adjustable arguments are the total number of binding sites
detected for a pair lncRNA:k-mer. By default, the application will only report
pairs where more than 20 putative binding sites have been found for a k-mer in
a lncRNA sequence. In contrast to other algorithms such as DIANA-microT [69],
that use PAR-CLIP2 data to identify putative MREs, spongeScan exclusively relies
on sequence data and bases its scoring system in the number ofmatched sites and
their distribution along the lncRNA sequence. This favours, on one hand, the de-

2Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) is a bio-
chemical method for identifying the binding sites of cellular RNA-binding proteins (RBPs) and microRNA-
containing ribonucleoprotein complexes (miRNPs).
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tection of ceRNAswheremiRNA sequestration can occur at multiple sites, and on
the other hand, allows application of the algorithm to any organism.
Once computations are completed, spongeScan displays identified lncRNA:k-mer
pairs in a tabular format, where each row represents a different match. Results
for k-mers of 6, 7 or 8 nucleotides are kept separately and the user can switch
between them. Additionally, the results distinguish between k-mers matching
known miRNAs or unknown k-mers. The results table has up to 22 different
columns containing different information or statistics regarding the pairing. This
table can be sorted and filtered by any of the available fields. A graphical repres-
entation of the lncRNA sequence showing the positions where the k-mer is found
is also included. Matched locations can be clicked to open an integrated genome
viewer [73] for closer examination of the binding sites. Additionally, if expression
data havebeenprovided, a bar plot showing the expressionof the selected lncRNA
and miRNA(s) will be displayed. The complete manual of the web application can
be found online: http://spongescan.readthedocs.org/en/latest/Home/.

5.4.3 Web services
The core of the application is on the server side. The communication between the
client side (web application) and the server is made via RESTful web services 3.
For this purpose, nine different web services have been implemented. These web
services could be divided as follows:
Job submission

3Representational State Transfer (REST) is a software architectural style that defines a set of constraints
to be used for creating Web services. Web services that conform to the REST architectural style (RESTful
Web services) provide interoperability between computer systems on the Internet using UniformResource
Identifiers (URIs), typically links on theWeb.
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/submit(POST)
This is the web service used to perform new predictions. The different argu-
ments, as well as the fasta, GTF and expression files are sent using the POST
HTTPmethod.

Job information retrieval
/getArguments/<job_id>(GET)

This web service is used to retrieve the different arguments that were used
to perform the prediction of the job id job_id.

/getJob/<job_id>/<kmer_size>/<known> (GET)
This web service is called to obtain the prediction results and to be able to
load the grid table form the web application. Basically, it will need to get the
job id, the size of the kmers (kmer_size) andwhether the resultsmust be from
kmers with miRNA canonical seed matches or not (known). Besides, addi-
tional arguments are given for table navigation purposes.

/jobStatus/<job_id> (GET)
This web service is called every time a user asks for the retrieval of a job.
Basically, this will inform the web application whether the job with the given
job id has been finished and the results can be checked or not.

/getKmers/<job_id>/<positions>/<kmer_size> (GET)
Called to obtain the different k-mers of a concrete kmer sizewithin the given
genomic positions. These positions are given in positions with the follow-
ing format: chr1:1-100,chr1:101-200 for example. This is used to represent
these k-mers in the genomic viewer.

/getExpression/<job_id>/<gene_ids> (GET)
The web service is used to obtain the expression values of the genes given
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in gene_ids of a concrete job. This will be used to represent those expression
values using bar plots.

/download/<job_id>/<kmer_size>/<known> (GET)
This web service is called to obtain a CSV file containing all the predictions
of a given job, with the k-mers of 6, 7 or 8 nucleotides and with miRNA seed
matches or not.

Auxiliar web services

/getEnsemblCDNAs (GET)
Thisweb service is used to load thencRNA fastafiles available fromEnsembl.
The release and species can be supplied to obtain the final results using the
GETHTTPmethod.

/getEnsemblGTFs (GET)
The same way as the previous web service, this one will be checking for the
possible GTF files available in Ensembl for a given species and release.

All the web services, except the one that returns the CSV file with the results, re-
turn a JSON file format that will be parsed and interpreted properly by the web
application.

5.4.4 Web application
The web application has been developed using the version 5.1.1 of the Sencha Ext
JS framework. The look of the web application is shown in Figure 5.12. The menu
is located on the left side of the application.
spongeScan could be divided into two different sections: 1) new job submission
section where the researchers will upload or select the species they would like to
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Figure 5.12:Main view of the spongeScanweb application.

explore; and 2) the representation of the results obtained after running the pre-
diction algorithm under the user requirements.

5.4.4.1 New analysis
Performing new predictions are really straightforward using spongeScan. To do
so, the user will have to click the Perform analysis link from the left bar of themenu
and the form from Figure 5.13will be displayed.
The user will have to choose the GTF annotation file as well as the correspond-
ing lncRNA transcript fasta file to run the computations. To do so, spongeScan
shows all the availableGTFand transcriptfiles for any species available in Ensembl
since release 50. Moreover, as the usermight also be interested in using their own
custom annotation and transcript files, an option to upload their own custom files
have been added. This is done in points 1 and 2 of Figure 5.13.
spongeScan will look for putative miRNA binding sites across the lncRNA se-
quences. Therefore, miRNA sequences must also be obtained for computational
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Figure5.13: Form toperformanewprediction analysiswith thedefault exampleoptions loaded.

purposes. In point 3, all available species with miRNA information in miRBase
database are loaded. The user will have to select the species where the canonical
seed sequences will be obtained from.
The user might also have expression data that would like to upload in the applica-
tion (point 4). This expression data has to be uploaded using a predefined format
as it will be represented using two different levels, per tissue and per replicate.
The first three lines of the file must contain the tagsDescription, Tissue and Sample
followed by the format of the expression values, the tissues and the samples or
replicates used respectively. The following lines will contain the expression value
in a tabular mode, one per gene. A basic representation of the format is shown
below:

110



5.4 spongeScan: A web for detecting microRNA binding elements in lncRNA sequences

#Description FPKM values

#Tissue Epithelium Epithelium Adipose Adrenal

#Sample A549_Rp1-2 A549_Rp3 Adipose Ag04450

ENSG00000242268 0.39 0.41 0.41 0.43

ENSG00000249023 0.43 0.43 0.44 0.46

...

Once a new prediction has been run by the user using the send job button, a ran-
dom and unique job id will be associated. This job id will be shown automatically
to the user once the job has been requested and will be necessary to recover and
check the results of the prediction. Additionally, the user might want to insert its
e-mail address. This way, an e-mail will be sent at the beginning of the job with the
job information, at the end of the job notifying the user the possibility of checking
the results and another one in case of failure at any point of the prediction.
Finally, the parameters that will be used when performing the predictions can be
also modified by the user. This allowsmore flexibility to change the prediction cri-
teria.

5.4.4.2 Results visualisation
To recover the results of any prediction, the userwill have to click theRetrieve ana-
lysis link at the left bar of the application and input the corresponding job id.

5.4.5 Example data set
spongeScan contains an example data set consisting of precomputed results for
the MRE search algorithm in human lncRNAs together with gene expression in-
formation for these andmiRNAs across several tissues obtained bymetanalysis of
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publicly availableRNA-Seqdata. ThehumanMREsearchwasdoneusing theHomo
sapiens ncRNA fasta file from Ensembl release 82 and the corresponding GTF an-
notation file. Algorithm parameters were set to k-mer complexity scores > 4, LOD
> 1, standard deviation < 30, minimum number of predicted = 2 and allowing for
one G:Uwobble.
To obtain gene expression values for ncRNAs and miRNAs, 206 human RNA-Seq
data sets were downloaded from SRA and ENCODE [13] corresponding to several
healthy tissues and cell lines, while 12 miRNA-Seq data sets were found for the
same tissues. RNA-Seq data were analyzed with standard procedures [74], using
Tophat [75] as mapper and htseq-count [76] as quantification tool. Quantification
wasobtained for a total of 13,047 lncRNAsand1,548microRNAs, andvalueswere
uploaded into spongeScan.
When ranking results byLODtheknownspongeCDR1-ASactingonmir-7wasone
of the top 50 hits and the absolute top hit when ranked by dispersion score (Fig-
ure 5.14A). Visualisation of gene expression data reveals that CDR1-AS is prefer-
entially expressed in brain tissue (Figure 5.14B), as previously described [27]. To
further evaluate whether a sequestration effect was happening, we analysed the
potential effect of predicted lncRNAs with multiple MREs in sequestering to ex-
plain the down-regulatory effect of boundmiRNAs over their target genes, as pre-
viously described [27]. We obtained target genes for miRNAs in predicted pairs
from TargetScan and compared their expression levels in tissues with or without
the expression of the putative sponge, using a paired t-test. Once more, this ana-
lysis indicated that in all tissue comparisons (100%) expression of mir-7 targets
wasupregulatedwhenCDR1-ASwasexpressed (Figure5.14C).Unfortunately, not
enough matching tissue data were available for similar analyses in other putative
sponges.
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Figure 5.14: spongeScan output generated for the example data set. (A) Table showing pairwise
enrichments of miRNA canonical seeds in lncRNA sequences. This view only shows a few of the
total possible columns containing data and scores. (B) Expression data representation for the
first pair CDR1-AS andmiR-7-5p. The expression data are grouped by tissue and, when clicked,
it will show the expression of all the samples in the tissue. (C) Expression levels of mRNA tar-
gets of miR-7 for different tissues as a function of the CDR1-AS expression. Red box-plots cor-
respond to tissues where the lncRNA is not significantly expressed, whereas the green colour
indicates expression of the lncRNA in the tissue.

Finally, we compared our results with the list of lncRNA–miRNA interactions
available at lncBase [69]. lncBase provides a prediction score for human
lncRNA–miRNA interactions based on different evidence sources. We have
observed that validated lncRNA–microRNA pairs in this database usually have
scores from 0.4 to 1.0. We searched the top 100 results on our human example
data and found that most (81%) of our predictions were in the lncBase, having an
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average score of 0.84 in this database [77], what supports our prediction results
with an independent resource.

5.4.6 Conclusions
We describe spongeScan, a novel web application and algorithm able to identify
putative miRNA binding patterns across lncRNA sequences. The algorithm is
based on sequence complementarity and allows flexibility for the user to custom-
ise the choice of parameters. The possibility of adding expression data to the pre-
diction representation in the web tool greatly facilitates downstream functional
analysis. spongeScan differs from other lncRNA–miRNA interactions prediction
sites that utilize CLIP-seq data [69, 70] in allowing massive searches on user-
provided data and in being available for any organismwith sequence information.
To our knowledge, this is the first web resource that provides a universal search-
able engine for the identification of putative lncRNAs with multiple MREs. Over-
all, we believe spongeScan will be extremely useful for the discovery of crosstalk
between lncRNAs andmiRNAs.
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6.1 Overview
This thesis focuses on the analysis of gene expression data provided by current
high throughput sequencing approaches. Specifically, the aim was to develop new
bioinformatic tools that would cover existing gaps acknowledged by the scientific
community regarding data analysis and integration of omics data, specifically in
the area of transcriptomics. In particular, I have studied the role of good quality
controls on the analysis of RNA-seq count data and collaborated in the implement-
ation of an R package called NOISeq that contains a full suite of diagnostic plots
and a broad range of different functions to assess quality and normalise data. I
have also contributed to the SEQC project through the study of the reproducibil-
ity of RNA-Seq technology under different conditions. Motivated by the need to
perform integrative analysis inmultiomics projects, I implemented a Python script
named RGmatch for matching genomic regions to the nearest exons, transcripts
and/or genes that can be highly customised to meet user needs. Finally, I stud-
ied the importance of lncRNAs and created an algorithm to functionally charac-
terise them on a global scale. Within this area, we created a new web tool called
spongeScan to specifically detect lncRNAs that could be acting asmiRNA sponges,
therefore inhibiting their functions.

6.2 Discussion and conclusions
In chapter 3, I contributed to the quality control of RNA-seq count data by col-
laborating in the implementation of an R package called NOISeq, designed for the
exploratory analysis and differential expression of genes for RNA-Seq, which was
later published in Bioconductor. The tool supports up to six different exploratory
plots to analyse different aspects of the quality of the data and implements a non-
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parametric approach for the differential expression analysis. The development of
the R package was guided by two different principles:
• reusability: NOISeq uses the ExpressionSet S4 class to store all the relevant
information to be used by the different metric tools and implements new S4
classes where specific needs not covered by other available classes are re-
quired;
• modularity: NOISeq code is decomposed intodifferent separatedpieces that
could perform different analysis while reusing the samemain input object.

Reproducibility of RNA-Seq technology was also assessed in collaboration with
the SEQC study. Bias effects were detected when comparing results of the ana-
lysis across different laboratories. In this case, we demonstrated that a major
factor responsible for these biases is sequencing depth. Indeed,we clearly showed
that the higher the sequencing depth the highest the number of detected differ-
entially expressed geneswithout a clear trend towards a saturation point. Despite
normalisation by sequencing depth is strongly necessary, this correction did not
still completely mitigate the biases introduced by the fact of having samples with
large sequencing depth differences. These observations have two practical implic-
ations: firstly, in terms of experimental design, all samples included in a compar-
ison should be sequenced at the same depth to avoid confounding experimental
factors. Secondly, reporting of DE analysis findings should always indicate the
level of sequencing at which they were found, as differential expression calls are
not absolute but dependent on sequencing depth.
Another aspect studied was the usage of replicates in an RNA-Seq analysis. Rep-
lica sets are strongly recommended for new transcript detection, especially for
the detection of transcripts with a low expression level. Approaches that filter out
these transcripts are also recommended as they reduce the noise and spare stat-
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istical power. Highly-expressed transcripts, on the contrary, seemed to be fairly
consistent across replicates. Replicates can also be beneficial for junction detec-
tion analysis. Given our results, we strongly support that a minimum of 2-3 rep-
licates should be enough for the detection of highly expressed genes. However,
we would suggest using at least 5 replicates for the detection of genes with low
expression.
In chapter 4, a new tool for matching genomic regions and genes is presented,
RGmatch. Despite the tool covering only a small part of the integration process
pipeline, this step is essential to assist the integrative analysis of multiomics data
as genome localisation data needs to be linked to expressed genes. Therefore,
RGmatch can be used to integrate very different assays, such as ChIP-seq, DNase-
seq, ATAC-seq, all different types ofDNAmethylation studies, and evenHi-C data,
with each other and also with gene expression. The main benefits of the tool de-
veloped in comparison to others available are:

• user-friendly command-line tool;
• easy integration into any analysis pipeline;
• the user chooses the association resolution level (gene, transcript or exon);
• fully customisable tool in which the user can define the conflict resolution
rules as well as custom lengths for TSS, TTS and PROMOTER regions;
• no species limitation. The tool can be run over any species as long as an an-
notation GTF is present;
• the script has an insignificant memory and time execution footprint.
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These benefits have already been exploited. We easily integrated RGmatch into
the PaintOmics 3 tool to allow mapping of chromatin data into KEGG pathways
defined by their participating genes [78]. Specifically, RGmatch is used to link any
type of BED data to genes and subsequently to the pathways they are involved in.
Finally, in chapter 5 we focused on the functional characterisation of lncRNAs.
To do so, RNA-Seq data from public repositories was downloaded and analysed.
As described previously in many publications, we observed that lncRNAs are ex-
tremely tissue-specific. Our analyses re-confirmed that the expression of lncRNAs
is several orders of magnitude lower than protein-coding genes. These two facts
make the functional characterisationof lncRNAsadifficult task because theydon’t
fulfil the basic criteria needed to use many known statistical methods. During this
analysis we evidenced the huge challenge in the harmonisation of public hetero-
geneous data, mainly because of the data quality, laboratory batch effects and se-
quencing depth differences. Given the large heterogeneous dataset, we opted for
performing a guilty-by-association study in which we searched for protein-coding
genes co-expressed with lncRNA genes, and assumed the lncRNAs are implicated
in the regulation of the related protein-coding gene functions. We made a dis-
tinction between tissue and non-tissue-specific lncRNAs although not many GO
terms could be extracted for the latter, possibly due to the difficulty in establish-
ing meaningful correlations with only a few tissues. The results showed that most
of the tissue-specific lncRNAs were related to RNA and DNA binding processes,
signalling, immune system response and basic cellular processes among others,
whereas non-tissue-specific lncRNAs were related to less generic functions, such
as chromatin organisation or DNA conformation change. We acknowledge that
these results should be taken cautiously. After completion of thiswork other stud-
ies have attempted a similar approach using thousands of samples and created a
database containing all this information. However, given the complexity of the
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problem, their goal is to store the results ofmanyof theseanalysesperformedover
different RNA-Seq datasets tomake a proper validation.
In the last part of the chapter, we also show the development of a newweb applic-
ation and algorithm for the identification of lncRNAs acting as miRNA sponges.
Many publications have shown the significance of the detection of these lncRNAs
as they play an important role in different forms of cancer. Given the relevance,
we implemented a user-friendly web application to help identify putative miRNA
binding elements in lncRNA sequences. A sequence complementarity algorithm is
run and several scores are calculated (LOD score, complexity score and dispersity
score) for every possiblemiRNA - lncRNApair. The higher the LODscore themore
likely the miRNA can be exclusively sequestered by that lncRNA. The higher the
complexity score the more complex the miRNA sequence is (less repetitive nucle-
otides) and the lower the dispersity score, the more homogeneously distributed
the binding locations are. User-defined thresholds for the three scores are used to
create the final report of putative miRNA sponges. Additionally, expression data
can be also inputted and automatically plotted for each reported pair to help re-
searchers decidewhich of themcan be trusted candidates. The benefits of the tool
in comparison to others available are:

• inclusion of expression data to better identify candidates;
• massive searches on user-provided data;
• availability of the tool for any annotated organism.
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6.3 Reach and relevance
The relevance of this thesis is justified in the following points:

• The tools and methods presented in this thesis were developed under the
framework of four international research projects: TRANSPAT (Develop-
ment of transcriptional networks regulating virulence in filamentous fungi
from RNA-seq data), PIB2010AR (Genomics and transcriptomics of dexo-
tification pathways in Drosophila and Development of Computational Ap-
proaches for the characterization), STATegra (User-driven development of
statistical methods for experimental planning, data gathering, and integrat-
ive analysis of Next Generation Sequencing, proteomics and metabolomics
data) and Annot-lincRNA (functional annotation of long-non-coding RNAs).
• The tools developed, NOISeq Bioconductor R package, RGmatch and
spongeScan, are all freely available to the scientific community. Further-
more, RGmatch has been integrated as the main "region to gene matcher"
in the PaintOmics 3 [78] web tool.
• This work was developed with the main goal of having an impact and being
useful for the scientific community. This fact is reflected by the publications
of most of these results in highly impact and relevant to the field journals.
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