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Abstract.

Heart sounds have been widely studied and have been demonstrated to have value

for detecting pathologies in clinical applications. Over the last few decades, the

use of heart sound signals has become increasingly uncommon and its practice in

modern medicine somewhat diminished, although research into automated analysis has

continued. Unfortunately, a comparative analyses of algorithms in the literature have

been hindered by the lack of high-quality, rigorously validated, and standardized open

databases of heart sound recordings. The 2016 PhysioNet/Computing in Cardiology

(CinC) Challenge addressed this issue by assembling the largest public heart sound

database, aggregated from eight sources obtained by seven independent research groups

around the world. The database comprises a total of 4,430 recordings collected from

1,072 healthy subjects and patients with a variety of conditions, including heart valve

disease and coronary artery disease.

This editorial reviews the background issues for this Challenge, the design of

the Challenge itself, the key achievements, and the follow-up research generated as

a result of the Challenge, published in the concurrent special issue of Physiological

Measurement. Additionally we make some recommendations for future changes in this

the field of heart sound signal processing as a result of the Challenge.

In the Challenge, participants were asked to classify recordings as normal,

abnormal, or unsure. The overall score for an entry was based on a weighted sensitivity

and specificity score with respect to manual expert annotations. To aid researchers,

we provided a simple baseline classification method and a complex open source code

base for segmenting the heart sounds, based on a hidden semi-Markov model.

During the official phase of the Challenge, a total of 48 teams submitted 348 open

source entries, with a highest score of 0.860 (Se=0.942, Sp=0.778). Subsequently,

for this special issue, researchers reported the new highest score of 0.855 (Se=0.890,

Sp=0.816) in the follow-up phase of the Challenge, indicating that the Challenge
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Editorial: Recent advances in heart sound analysis 2

entrants achieved exceptional results which were extremely dicult to improve (even

when there is a trade-off between Sp and Se) upon in the 4 months available post-

Challenge. We expect that future researchers will be able to use the extensive database

generated for the Challenge to significantly improve on the approaches detailed here.
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Editorial: Recent advances in heart sound analysis 3

1. Introduction

Auscultation of heart sound recordings or the phonocardiogram (PCG) has been shown

to be valuable for the detection of disease and pathologies (Leatham (1975); Raghu et al.

(2015)). The automated classification of pathology in heart sounds has been studied

for over 50 years. Typical methods can be grouped into: artificial neural network-

based approaches (Uguz (2012)), support vector machines (Ari et al. (2010)), hidden

Markov model-based approaches (Saracoglu (2012)) and clustering-based approaches

(Quiceno-Manrique et al. (2010)). However, accurate automated classification still

remains a significant challenge due to the lack of high-quality, rigorously validated,

and standardized open databases of heart sound recordings.

The 2016 PhysioNet/Computing in Cardiology (CinC) Challenge sought to create a

large database to facilitate this, by assembling recordings from multiple research groups

across the world, acquired in different real-world clinical and nonclinical environments

(such as in-home visits), to encourage the development of algorithms to accurately

identify, from a single short recording (10-60s), as normal, abnormal or poor signal

quality, and thus to further identify whether the subject of the recording should be

referred on for an expert diagnosis (Liu et al. (2016)). Until this Challenge, no significant

open-access heart sound database was available for researchers to train and evaluate the

automated diagnostics algorithms upon (Clifford et al. (2016)). Moreover, no open

source heart sound segmentation and classification algorithms were available. The

Challenge changed this situation significantly.

This editorial reviews the follow-up research generated as a result of the Challenge,

published in the concurrent special issue of Physiological Measurement. Additionally we

make some recommendations for promising research avenues in the field of heart sound

signal processing and classification as a result of the Challenge.

2. Challenge data

Data for the Challenge consisted of heart sound recordings from eight independent

databases (labelled alphabetically, a to i, excluding h, which was a fetal PCG database)

sourced from seven contributing research groups. We refer the reader to Liu et al. (2016)

for a detailed description of the data collection, as well as the division of training and

test data sets. We should note that both training and test sets are unbalanced, i.e.,

the number of normal recordings does not equal that of abnormal ones. Challengers

therefore had to consider this when they trained and test their algorithms. Figure 1

details the exact distribution of data across all the constituent databases.
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Figure 1: Unbalanced data distribution for both training and test sets. Please note that

the training and test databases with the same letter are related and are from the same

data contributor, such as training-b and test-b.

3. Example algorithms and scoring

3.1. Benchmark classifier algorithm

We provided a benchmark classifier that relied on relatively obvious parameters

extracted from the heart sound segmentation code. For the detailed description of this

benchmark classifier, challengers can refer to Liu et al. (2016); Clifford et al. (2016). Here

we briefly describe how the benchmark classifier is constructed and how it works. First,

a balanced database from training set was selected. Then, Springers segmentation code

(Springer, Tarassenko and Clifford (2016)) was used to segment heart sound recording.

Twenty features were extracted according to the position and waveform amplitude

information of the segmented signals. A forward likelihood ratio selection was used to

train the binary logistic regression (BLR) model. Finally, seven features were identified

as the predictable features, and a derived BLR prediction formula was constructed for

normal/abnormal heart sound recordings classification. In a 10 fold cross validation,

the constructed BLR model provided a sensitivity of 0.66, a specificity of 0.77 and a

Challenge score of 0.71 on the training data. It should be noted that this was not

intended to be a good classifier, or properly trained, but merely an example set of

code to enable a researcher to understand the mechanics of the submission process, and

to provide a simple baseline for Challenge entrants to beat in the early stages of the
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Editorial: Recent advances in heart sound analysis 5

Challenge.

3.2. Voting algorithm

We also implemented a voting approach to combine together varying numbers of the

submitted algorithms (Clifford et al. (2016)). A simple unweighted voting of using the

N best performing final entries from the Challenge, ranked by their score on the training

data (to prevent over-fitting on the test scores), was implemented. N was varied from

1 to 48 with tied, absent or no vote was treated as ‘normal’ type.

3.3. Scoring

A modified accuracy (( MAcc)) with the combination of sensitivity (Se) and specificity

(Sp) for scoring as:

MAcc =
Se + Sp

2

The score on the complete test set determines the ranking of the entries. For details on

the scoring mechanism please see Liu et al. (2016); Clifford et al. (2016).

4. Results of the Challenge

A total of 348 open-source entries were submitted in the Challenge by 48 teams. Table

1 provides a detailed summary for the top official scoring entries published in the CinC

conference proceedings, ranked by the MAcc index. Please note that we did not include

the unofficial entries here. We reported the best Challenge scores (Se, Sp and MAcc)

for each team from the complete hidden test data. We also summarized the methods

the challengers used, mainly focusing on the following:

A total of 348 open-source entries were submitted in the Challenge by 48 teams.

Table 1 provides a detailed summary for the top official scoring entries published in

the CinC conference proceedings, ranked by the MAcc index. We reported the best

Challenge scores (Se, Sp and MAcc) for each team from the complete hidden test data.

We also summarized the methods the challengers used, mainly focusing on the following:

1. The type of segmentation procedure, if any, employed.

2. Types of features used.

3. Number of features used.

4. How features selection was performed, if at all.

5. What and how many features remained after feature selection, if applicable.

6. What classifier was used.

7. For training the classifier, how the training data were split.

8. How the researchers adjusted for class imbalances during training.
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Editorial: Recent advances in heart sound analysis 6

From Table 1, it can be seen that there was very little performance difference

between the top three entries. The highest scoring entry by Potes et al. had a MAcc of

0.8602, with a highest Se (0.9424) and a modest Sp in the list. The second highest Se

was as low as 0.8848, ranking 5th in the Challenge. Rubin et al. produced the highest

Sp (0.9521), but with a relatively low Se of 0.7278 and ranked a 7th place. For an

application which is forwarding subjects for further screening, as long as the resources

can cope with the false positive rate, a higher sensitivity is perhaps best. However, the

2nd, 3rd, 4th and 5th contestants provide a good balance between Se and Sp. A 2%

spread exists between the top six entrants.

The sample entry generated a Se of 0.6545 and a Sp of 0.7569, resulting in a MAcc

of 0.7051. To test if the results could be improved by combining multiple approaches,

we designed a “voting” algorithm as follows. We calculated the performance of each

of the 348 official entries, using a set of 600 records that were selected randomly from

the public training data, but disjoint from the validation subset that competitors used

for self-scoring. We then ranked entries according to their modified accuracy on this

subset, and discarded all but the top entry from each participating team. The “voting”

algorithm VN (for N = 2 . . . 48), is then defined as the output given by a plurality of

the top N entries from that list (or 0, “uncertain”, if no plurality exists.) The voting

algorithm did not show any improvement over the best individual submissions; the best

result was N = 3, with Se = 0.7173, Sp = 0.9309, and MAcc = 0.8241.

Page 6 of 20AUTHOR SUBMITTED MANUSCRIPT - PMEA-102085

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



E
ditorial:

R
ecen

t
advan

ces
in

heart
sou

n
d

an
alysis

7
Rank Entrant Se Sp MAcc Segment Feature method # features Feature se-

lection
# selected
features

Classifier Training data
division

Balancing
data

1 Potes et al.
(2016)

0.9424 0.7781 0.8602 Yes Time-frequency 124 No 124 AdaBoost & CNN 80%/20%
train/test

No

2 Zabihi and Rad
(2016)

0.8691 0.8490 0.8590 No Time, frequency and
time-frequency

40 Yes (wrap-
per)

18 Ensemble of NNs 20-fold CV Yes

3 Kay and Agarwa
(2016)

0.8743 0.8297 0.8520 Yes Wavelet, MFCC and
complexity

675 Yes (PCA) 70 DropConnected
NN

10-fold CV No

4 Bobillo (2016) 0.8639 0.8269 0.8454 Yes Time-frequency,
MFCCs and wavelets

142×4 ×
172tensor

Yes (fisher
score)

1000:1
reduction

LR, SVM & KNN 10-fold CV No

5 Homsi et al.
(2016)

0.8848 0.8048 0.8448 Yes Time, frequency,
wavelet, statistical

131 No 131 Ensemble of classi-
fiers

10-fold CV No

6 Plesinger et al.
(2016)

0.7696 0.9125 0.8411 Yes Frequency, statistical 315 Yes
(PROBAfind)

51 Probability assess-
ment

No No

7 Rubin et al.
(2016)

0.7278 0.9521 0.8399 Yes MFCC 13 Yes (un-
known)

6 CNN 80%/20%
train/test

No

8 Abdollahpur
et al. (2016)

0.7696 0.8831 0.8263 Yes Time, time-frequency,
perceptual

89 Yes (FDA) unknown NNs voting No No

9 Tang et al.
(2016)

0.8220 0.8149 0.8185 Yes Multi-domain features 324 No 324 BPNN Varied
train/test
division

No

10 Tschannen et al.
(2016)

0.8482 0.7762 0.8122 Yes Deep CNN-based fea-
tures

12,160 Yes (PCA) 400 SVM 5-fold CV No

11 Nilanon et al.
(2016)

0.7696 0.8527 0.8111 Yes Spectrogram, MFCC unknown No unknown LR, SVM, RF and
CNN

5-fold CV No

12 Whitaker and
Anderson (2016)

0.8429 0.7716 0.8073 Yes Frequency, sparse cod-
ing

unknown No unknown SVM 1000/2153
train/test

No

13 Yang and Hsieh
(2016)

0.7749 0.8287 0.8018 No Augmented features unknown No unknown RNN 1/5 data for
CV

No

14 Yazdani et al.
(2016)

0.7487 0.8508 0.7998 Yes Heartbeat, tape-long unknown No unknown Ensemble of classi-
fiers

10-fold CV Yes

15 Banerjee et al.
(2016)

0.8010 0.7901 0.7956 Yes Time-frequency 88 Yes (MIC) 31/88 RF 5-fold CV Yes

16 Singh-Miller
and Singh-Miller
(2016)

0.7382 0.8499 0.7941 No Spectral unknown Yes 25 RF 10-fold CV No

17 Ryu et al. (2016) 0.6663 0.8775 0.7869 Yes CNN-based features unknown No unknown CNN 3126/300
train/test

No

18 Yang et al.
(2016)

0.6649 0.9088 0.7869 Yes Audio signal analysis unknown Yes (RFE) unknown SVM & ELM 10-fold CV No

19 Bouril et al.
(2016)

0.7330 0.8398 0.7864 Yes Time, frequency 74 Yes (un-
known)

unknown SVM No No

20 Ortiz et al.
(2016)

0.7853 0.7855 0.7854 Yes Time, MFCC, DTW unknown No unknown SVM Varied
train/test
division

No

– Sample entry 0.6545 0.7569 0.7051 Yes Time, amplitude 20 Yes (likeli-
hood ratio)

7 LR 10-fold CV Yes

– Voting results
(best)

0.7173 0.9309 0.8241 – – – – – – – –

Table 1: Final scores for the top 20 of 48 official entrants, the example algorithm provided and a simple voting approach. Best

performances of Challenge entrants are underlined. MFCC = mel-frequency cepstral coefficients. DTW = dynamic time warping.

PCA = principal component analysis. FDA = fisher discriminant analysis. NN = neural network. LR = logistic regression. SVM

= support vector machine. RF = random forest. ELM = extreme learning machine. CNN = convolutional NN. RNN = recurrent

NN. BPNN = back propagation NN. KNN = K-mean nearest neighbors. CV = cross-validation. MIC = maximal information

coefficients. RFE = recursive feature elimination.
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Figure 2: Performance of voting algorithms as a function of number of algorithms.

Algorithms were chosen by ranking them in descending order of score on the randomly

selected 600 training recordings, and the test data score was reported (to prevent over-

estimation of the score).

5. Review of Articles in the Special Issue

A total of 8 articles were reviewed and revised in time to be accepted for this special issue.

Most authors had originally entered the Challenge, and submitted updated versions of

their algorithms, which should be made available by the authors through open source

licenses. Each algorithm published in this issue is reviewed below according to the eight

aspects summarized in section Results of the Challenge. The purpose of this summary

is to allow the reader to quickly identify both the commonalities and the originality of

all the approaches. Finally, the last article in this special issue and review (Liu et al.

(2017)) involves the systematic evaluation for the open source code for heart sound

segmentation proposed in Springer, Tarassenko and Clifford (2016), which was also the

heart sound segmentation method made available for the Challenge.

5.1. Abdollahpur et al. (2017)

The algorithm proposed by Abdollahpur et al. (2017) used a novel cycle quality

assessment (CQA) method for assessing the signal quality of the segmented cardiac

cycle. Features were extracted only on the cycles which higher signal quality and

superior segmentation. The method achieved a MAcc of 0.8263 in the last phase of
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Editorial: Recent advances in heart sound analysis 9

the Challenge (Abdollahpur et al. (2016)).

The authors note that the recordings were down sampled to 1 kHz and filtered by

the fourth order Butterworth high pass (25 Hz) and low pass (600 Hz) filters. Spikes

were removed using the algorithm proposed by Schmidt et al. (2010). Then, after

the heart sound segmentation with Springer’s HSMM model (Springer, Tarassenko and

Clifford (2016)), correctly segmented heart cycles without excessive noise or spikes were

selected for further feature extraction process using a novel CQA method detailed in

Abdollahpur et al. (2016). Frequency and amplitude criteria were applied for detecting

correctly segmented heart sound cycles. A total of 90 features were calculated from the

time domain, time-frequency, perceptual and mel-frequency cepstral coefficient (MFCC)

analysis. Before starting the main classification process, the derived 90 dimensional

feature vector was mapped to a new feature space by applying a Fishers discriminant

analysis. The main classification procedure was then performed using three feed-forward

NNs and a voting system among classifiers. A final MAcc score of 0.826 was achieved

on the hidden test data.

5.2. Homsi and Warrick (2017)

The algorithm proposed by Homsi and Warrick (2017) used an ensemble based

classification with a special consideration for outliers and achieved a MAcc score of

0.801 for the hidden test data in the Challenge.

In this paper, a total of 131 features in time, frequency, wavelet and statistical

domains were extracted from the heart sound signals. Outlier signals were detected and

separated from those with a standard range using an interquartile range threshold.

Then, feature extreme values were given special consideration, and finally features

were reduced to the most significant ones using a feature reduction technique. In the

classification stage, the selected features either for standard or outlier signals were fed

separately into an ensemble of 20 two-step classifiers. The first step of the classifier

included a nested set of ensemble algorithms which was cross validated on the training

data, while the second step used a voting rule of the class label. The results showed

that the proposed method achieved an overall score of 0.9630 for standard signals and

0.9018 for outlier signals on a cross-validated experiment using the training data. This

method achieved an overall score of 0.801 on the hidden test set (0.796 sensitivity and

0.806 specificity).

5.3. Kay and Agarwal (2017)

Kay and Agarwal (2017) proposed an algorithm that employed DropConnected neural

networks trained on time-frequency and inter-beat features for heart sound classification.

This algorithm achieved a MAcc of 0.8520 on the test data, and ranked third

in the Challenge (Kay and Agarwa (2016)). This paper provides an extensive

analysis concerning the profile differences of the open training data, including the
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Editorial: Recent advances in heart sound analysis 10

recording numbers, recording sensors, unbalanced data and the specific pathology of

the recordings.

In this paper, first, the heart sounds were segmented using Springer’s the

open-source segmentation algorithm based on a hidden semi-Markov model (HSMM)

(Springer, Tarassenko and Clifford (2016)). Then, a total of 675 features were extracted

from the analysis of continuous wavelet transform (220), MFCC (400), inter-beat

behaviour (20 and complexity measures (35). Then, the extracted features were

normalized and the dimensionality was reduced to 50 using principal component analysis

(PCA). Subsequently, the features were used as the input to a fully-connected, two-

hidden-layer neural network, trained by error backpropagation, and regularized with

DropConnect. When the algorithm was submitted to be evaluated on the test data,

a number of different networks were trained with a range of hyper-parameters and

different training sets. The networks are then ensembled based on their scores. The

best result obtained by the ensemble of networks, on the test data, was 0.8520, which is

the third best performance in the Challenge. The authors also updated their algorithm

by excluding the training-e set for training since the recording sensor type for training-e

set is different from others. However, a significantly worse score of 0.580 was obtained

because 69% of recordings in the test set are from dataset-e indicating that the algorithm

is sensitive to the recording type and struggles to generalize from one dataset to another.

5.4. Langley and Murray (2017)

Most algorithms for automated analysis of heart sound require segmentation of the signal

into the characteristic heart sounds. Langley and Murray (2017) aimed to assess the

feasibility for accurate classification of heart sounds on short, unsegmented recordings.

At the first step, initially the 5 second segment (seg 1) at the start of each heart

sound recording was analyzed. For some recordings with considerable noise at the start

of the recordings, so a repeated 5 s segments (seg 2) with lowest noise was extracted

for each recording. Segments were zero-mean but otherwise had no prepossessing

or segmentation. Then normalized spectral amplitude was determined by FFT and

wavelet entropy was calculated by wavelet analysis (‘Gaus4’ mother wavelet). For

each of these a simple single feature threshold based classifier was implemented and

the frequency/scale and thresholds for optimum classification accuracy determined.

The analysis was then repeated using relatively noise free 5 s segments (seg 2) of

each recording by applying a Wavelet entropy measure for signal noise assessment.

Spectral amplitude and wavelet entropy features were then combined in a classification

tree (Langley and Murray (2016)). Detailed results were reported as follows. There

were significant differences between normal and abnormal recordings for both wavelet

entropy and spectral amplitude across scales and frequency. In the wavelet domain the

differences between groups were greatest at highest frequencies whereas in the frequency

domain the differences were greatest at low frequencies (12 Hz). Abnormal recordings

had significantly reduced high frequency wavelet entropy, suggesting the presence of
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Editorial: Recent advances in heart sound analysis 11

discrete high frequency components in these recordings. Abnormal recordings exhibited

significantly greater low frequency (12 Hz) spectral. Classification accuracy was greatest

for wavelet entropy and was further improved by selecting the lowest noise segment (seg

2). Classification tree with the combined features gave an accuracy (not MAcc) of 0.79

(Sp = 0.80, Se = 0.77). The study demonstrated the feasibility of accurate classification

without segmentation of the characteristic heart sounds.

5.5. Maknickas and Maknickas (2017)

Maknickas and Maknickas (2017) describe the use of mel-frequency spectral coefficients

(MFSC) fed to a CNN, and which achieved a MAcc of 0.8415 in the last phase of the

Challenge, ranked sixth overall with an unofficial entry. There are existing studies which

leverage MFCC analysis for heart sound classification Chauhan et al. (2008). However,

the authors claimed that MFSC analysis could outperform MFCC since during the

calculation of the MFCC, the discrete cosine transform (DCT) projects the spectral

energies into a new basis that may not maintain locality. However, MFSC uses the

log-energy computed directly and can avoid this situation.

In this paper the authors describe a process which first splits the training heart

sound files into equal numbers of normal and abnormal data files. Then MFSC (i.e.,

MFCC with no DCT) was calculated for each file, and was cut into frames with width

and height of both 128 samples. The difference and second-order difference of the

MFSC were also calculated as second and third dimensions of the frame. All frames

were normalised. Then CNN was trained to predict the normal/abnormal label for

each frame in the file, and used the average of all predicted frame labels as the final

label of the file. Finally, the model with best performance was selected during the

training phase. Testing on the separate validation set achieved the highest score when

using 256 hidden layers for the deep CNN, although the score slightly improved on the

selected training data when increasing the number of hidden layers from 128 to 2048.

Therefore, the Challenge results were achieved by weights and topology of 256 hidden

layers and the final score was 0.842, just 0.018 below the highest score of 0.860. This

impressive result indicates the potential of CNNs for future use, but also illustrates how

enormous volumes of data are likely to be required to out-perform well chosen features

and standard classification approaches.

5.6. Plesinger et al. (2017)

Plesinger et al. (2017) proposed an algorithm based on fuzzy logic which they termed

‘probability assessment’ for normal/abnormal heart sound classification, which achieved

a MAcc of 0.8411 in the last phase of the challenge, and was ranked 7th highest (Plesinger

et al. (2016)). The presented solution produced different results in specific databases.

For database-c, it gave 100% sensitivity and specificity in both training and testing.

Database-e also provided an extremely high score. However, the method failed to

accurately classify database-g and database-i (not present in the training set), where
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it reported nearly all records as normal. This poor performance with these completely

hidden databases indicates the method also struggles to generalize to unseen data.

In their methods, they first derived amplitude envelopes in five frequency bands low

frequency (LF, 15-90 Hz), middle frequency (MF, 15-90 Hz), high frequency (HF, 100-

250 Hz), super frequency (SF, 200-450 Hz) and ultra frequency (UF, 400-800 Hz) were

computed using an FFT band-pass filter and Hilbert transformation. Then invalid time

segments were checked for each 1 s window. Then heart sounds S1 and S2 were detected

using amplitude envelopes in the LF band. The averaged shapes of the S1/S2 pair were

computed from amplitude envelopes in all five bands (15-90 Hz; 55-150 Hz; 100-250 Hz;

200-450 Hz; 400-800 Hz). A total of 228 features were extracted from the statistical

properties and the symmetry of the averaged shapes, and the independent of S1 and S2

detection. Then the features are processed using logical rules and probability assessment

based on histograms, and a fuzzy logic like approach, which they termed ‘PROBAfind’.

This software contains a function suggesting a feature with the best impact on the sum

of final sensitivity and specificity, and can be used as a semi-automatic feature selection

method. The authors found 53 features were selected as the normal/abnormal/unsure

classification. A final score MAcc of 0.8411 achieved on the hidden test data (7th place in

the Challenge), indicating that the performance of probability assessment is comparable

to other machine-learning approaches. However, it the human oversight required and

long training time required for this approach is a significant limitation and may have

led to the lack of generalization.

5.7. Whitaker et al. (2017)

Whitaker et al. (2017) proposed an algorithm combining sparse coding and time domain

features for normal/abnormal heart sound classification, which achieved a MAcc of 0.807

in the Challenge (Whitaker and Anderson (2016)). This study introduced sparse coding

as a tool for unsupervised feature extraction in heart sound classification, and was also

the first to use matrix norm sparse coding in a practical classification setting for Heart

Sounds. Previous work by Da Poian et al. (2017) has demonstrated the utility of this

technique, using on compressed sensing for Atrial Fibrillation detection in the ECG.

As the first step, Whitaker et al. used Springer’s HSMM segmentation code (Springer,

Tarassenko and Clifford (2016)) to separate each audio file into five arrays of smaller

audio segments. The first four arrays contained a list of all S1, systole, S2 and diastole

sounds respectively. The fifth array contained copies of the full heart cycles, starting at

the start of the S1 state and ending at the last sample in diastole. Each state or sound

segment was converted to the frequency domain with an N-point FFT and sparse coding

was applied on the aforementioned five data matrices as a form of unsupervised feature

extraction. In sparse coding, frequency-domain data is decomposed into a dictionary

matrix and a sparse coefficient matrix. The dictionary matrix represents statistically

important features of the audio segments and becomes fixed after training. In effect it

represents the basis functions. The sparse coefficient matrix is a mapping that represents
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which features are useful in each segment. Working in the sparse domain, the authors

trained SVMs for each audio segment, as well as the full cardiac cycle. Then a sixth SVM

was trained to combine the results from the preliminary SVMs into a single binary label

for the entire heart sound recording. Compared with the CinC paper in Whitaker and

Anderson (2016), this paper presented two novel modifications. The first modification

involved a matrix norm in the dictionary update step of sparse coding to encourage the

dictionary to learn discriminating features from the abnormal heart recordings. The

second combined the sparse coding features with twenty time domain features described

in Liu et al. (2016) in the final SVM classification stage. The authors demonstrated

an improved cross-validated MAcc of 0.893 (Se = 0.901 and Sp = 0.885). However,

improved version did not generate a higher score on the hidden test data than their

challenge’s score. A new score MAcc of 0.803 (0.801 sensitivity and 0.806 specificity)

in this follow-up phase was achieved.

This study showed that sparse coding is an effective way to define spectral features

of the cardiac cycle and its sub-cycles for the purpose of classification. In addition, it

demonstrated that sparse coding can be combined with additional feature extraction

methods to improve classification accuracy. Further work may incorporate additional

features to improve the classification accuracy or robustness to novel data and noise.

5.8. Liu et al. (2017)

A Hidden Markov model (HMM)-based approach has received increased interest

for heart sound segmentation due to its robustness on processing noisy recordings,

particularly when incorporating physiological models. The focus of this article was on

evaluating the performance of the recently published logistic regression based HSMM

heart sound segmentation method Springer, Tarassenko and Clifford (2016), which was

open sourced for the Challenge. By using a wider variety of heart sound data in the

PhysioNet/CinC Challenge 2016. The HSMM-based model was trained on the training-

a dataset only (per the original work) and was tested on all other separate test datasets,

which comprised 102,306 heart sounds. The results confirm the high accuracy of the

HSMM-based algorithm with an average F1 score of 98.5% for segmenting S1 and

systole intervals and 97.2% for segmenting S2 and diastole intervals. The described

evaluation framework, combined with the largest collection of open access heart sound

data, provides essential resources for researchers who need to test their algorithms with

realistic data and share reproducible results.
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Se Sp MAcc Segment Feature method # features Feature se-
lection

# selected
features

Classifier Training data
division

Balancing
data

Abdollahpur
et al. (2017)

0.7696 0.8831 0.8263 * Yes Time, time-frequency,
perceptual

90 Yes (FDA) unknown NNs voting train/test di-
vision

No

Homsi and War-
rick (2017)

0.7960 0.8060 0.8010 Yes Time, frequency,
wavelet, statistical

131 Yes 19/17 Ensemble of classi-
fiers

10-fold CV No

Kay and Agar-
wal (2017)

– – 0.5810 Yes Wavelet, MFCC, inter-
beat and complexity

675 Yes (PCA) 50 DropConnected
NN

10-fold CV Yes

Langley and
Murray (2017)

0.5589 0.9633 0.7611 * No Spectral amplitude and
wavelet entropy

unknown No unknown Decision tree CV No

Maknickas
and Maknickas
(2017)

0.8063 0.8766 0.8415# No MFSC N/A No N/A Deep CNN train/test di-
vision

Yes

Plesinger et al.
(2017)

0.8900 0.8160 0.8550 Yes Frequency, statistical 228 Yes
(PROBAfind)

53 Probability assess-
ment

No No

Whitaker et al.
(2017)

0.8010 0.8060 0.8030 Yes Time, frequency,
sparse coding

unknown No unknown SVM 1000/2153
train/test

No

Table 2: Summary of the papers included in this special issue. MFCC = mel-frequency cepstral coefficients. MFSC = mel-frequency

spectral coefficients. PCA = principal component analysis. FDA = fisher discriminant analysis. NN = neural network. SVM =

support vector machine. CNN = convolutional NN. CV = cross-validation. ∗ indicates the paper presents the same results from

the Challenge official entries, # indicates the paper presents the same results from the Challenge unofficial entries, indicates the

paper presents new results in this follow-up phase.
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6. Discussion and Conclusions

In summary, the PhysioNet/Computing in Cardiology Challenge 2016 provided several

key additions to the field of normal/abnormal heart sound classification.

First, the public release of the large, open assess and free heart sound database

gives potential benefits to a wide range of users, especially for those who lack access to

well-characterized real clinical signals.

Second, we note that even for the top performing entrants, the classification results

differ significantly between each of the eight databases. The test sets g and i are

two new databases and did not appear in the training data. For those two hidden

databases, the challenger results are not as good as other databases, indicating that

the algorithm generalization ability is sensitive to the recording source and requires

improvement, or should always be retrained for specific recording scenarios and/or

recording modalities/devices.

Third, there is very little performance difference between the top three entries, and

only a 2% spread exists between the top six entrants, although these Challenge entrants

used different classifier methods. This shows that there is not a ”best” classifier for

this special normal/abnormal heart sound classification task. However, the ensemble

method, i.e., combining two or more of the common classification methods, such as

SVM, CNN, LR, RF and others, can create improved classification performances. We

note however, that a naive approach of simple weighted voting between the top N

algorithms ranked by training performance does not improve the modified accuracy and

a more intelligent voting approach is needed - see below. Notably, the feature extraction

stage in any classification related work can be the most crucial and important part.

Although there are no widely accepted optimal features in heart sound classification,

from this Challenge we can identify the MFCC, wavelet and time-frequency features as

likely candidates.

Fourth, we note that voting method can produce superior results to even the best

algorithm. Such an approach can also lead to a more robust implementation, although

it may be significantly more computationally intensive. It is also important to note that

too many naive voters can reduce the classification accuracy, as we have observed in

earlier challenges, although not in this one. This may be due to the common use of a

strong feature extractor provided for all entrants. In Zhu et al. (2014) and Zhu et al.

(2015) a voting system for algorithms (and human) annotations of physiological data

was described, which incorporates both the physiology and the individual annotator’s

accuracy as a function of objective features (such as signal quality) to produce a weighted

voting scheme to guarantee that all voters added extra information. Such approaches

may become ever more important as computational power becomes increasingly less

expensive. We also note that this means that all competitors in the Challenge added

something to the final answer!

Fifth, the current approach in this Challenge classifies any input signal as normal

or abnormal although “unsure” class was permitted. However, an efficient algorithm
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is needed for recognizing a good quality recording from a poor quality one. Due to

the audio processing capabilities, mobile phones have the potential to facilitate the

diagnosis of heart disease through automated auscultation. However, such a platform is

likely to be used by non-experts, and hence, it is essential that such a device is able to

automatically differentiate poor quality from diagnostically useful recordings since non-

experts are more likely to make poor-quality recordings. In Springer, Brennan, Ntusi,

Abdelrahman, Zuhlke, Mayosi, Tarassenko and Clifford (2016), an automated signal

quality assessment of heart sound recordings was developed, which includes the first

systematic evaluation of a heart sound signal quality classification algorithm (using a

separate test dataset) and assessment of the quality of heart sound recordings captured

by non-experts. This approach indicates a promising use case for low resource cardiac

screening.

Sixth, we provided a state-of-the-art open source heart sound segmentation

algorithm for this Challenge. This was utilized by the top entrants and indicates

that it was fundamental to high performing classification algorithms. We note however

that no researcher attempted to improve on the algorithm in either the Challenge or

the subsequent special issue. The marginal increase in performance in this special

issue indicates that improving the segmentation approach may be the best point of

entry for any future researchers attempting to improve classification performance. The

inability of more complex classifiers (such as CNNs) to beat carefully chosen features

and standard classifiers, indicates that it is more important to focus on the labelling

and preprocessing than on the classifier. That is not to say that a superior classifier

can provide an increase in performance, but that the feature extraction step provides

more marginal improvement. We also note that despite our databases representing the

largest public dataset of heart sound by many orders of magnitude, the databases may

require a significant increase in size before deep learning is able to show any significant

performance gains.

Finally we note some limitations of the Challenge. Although we have collated

and provided all collected information from the data contributors, more detailed

pathological information is needed for the heart sound recordings. Detection and

properly identification of mitral stenosis, aortic stenosis and mitral insufficiency among

others is still a challenge. We intend to work with industry and researchers alike

to enhance the Challenge database in all these areas and would be grateful for

continued contributions of data and source code, which we will post together with all

the open source algorithms and annotated data from the 2016 PhysioNet/Computing

in Cardiology Challenge. The latter can be found on PhysioNet’s website at http:

//physionet.org/challenge/2016.
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