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Resum
La bioinformàtica és un camp de recerca actiu, l’objectiu principal de la qual

és el desenvolupament de sistemes intel·ligents per a l’anàlisi en biologia mole-
cular. Al llarg de l’última década s’ha produït un increment significatiu en l’ús de
la teoría del llenguatge formal en aquest camp, donant lloc a diversos mètodes
per a l’anàlisi i caracterització de molècules d’ADN, ARN i proteïnes. Encara així,
en el camp de la proteòmica, la grandària de l’alfabet i la complexitat de les rela-
cions entre aminoàcids han limitat l’aplicació de mètodes d’inferència gramatical
a la producció de gramàtiques que no tenen un poder expressiu major que una
gramática estocástica regular. No obstant això, aquestes gramàtiques regulars són
incapaces de cobrir i detectar les dependències que apareixen en les estructures
secundàries i terciàries de les proteïnes. És per aquest motiu que proposem un
mètode d’estimació discriminatiu usant gramàtiques incontextuals per a l’anàli-
si i detecció de llocs d’unió en proteïnes capaç de produir descripcions per a les
seqüències d’interès.

Paraules clau: bioinformàtica; inferència gramatical ; llenguatge formal; gramà-
tica lliure de context probabilística; estimació descriminativa; aprenentatge auto-
màtic; proteïnes; lectines lleguminoses; interaccions bioquímiques

Resumen
La bioinformática es un campo de investigación activo cuyo objetivo principal

es el desarrollo de sistemas inteligentes para el análisis en biología molecular. A
lo largo de la última decada, se ha producido un incremento significativo en el
uso de la teoría del lenguaje formal en este campo, dando lugar a diversos mé-
todos para el análisis y caracterización de moleculas de ADN, ARN y proteínas.
Aun así, en el campo de la proteómica, el tamaño del alfabeto y la complejidad
de las relaciones entre amino ácidos han limitado la aplicación de métodos de
inferecia gramatical a la producción de gramáticas que no tienen un poder expre-
sivo mayor que una gramática estocástica regular. Sin embargo, estas gramáticas
regulares son incapaces de cubrir y detectar las dependencias que aparecen en
las estructuras secundarias y terciarias de las proteínas. Es por este motivo que
proponemos un método de estimación discriminativo usando gramáticas incon-
textuales para el análisis y detección de lugares de unión en proteínas capaz de
producir descripciones para las secuencias de interés.

Palabras clave: bioinformática; inferencia gramatical; lenguaje formal; gramática
libre de contexto probabilística; estimación descriminitiva; aprendizaje automáti-
co; proteínas; lectinas leguminosas; interacciones bioquímicas

iii



iv

Abstract
Bioinformatics is an active research area in which the objective is to develop

intelligent systems for the analysis of molecular biology. Throughout the last
decade, there has been a significant increase in the use of the formal language
theory in the field of bioinformatics. Many methods based on formal language
theory, statistical theory and learning theory have been developed for the analysis
and characterization of sequences such as DNA, RNA and proteins. However, in
the field of proteomics, the main problems resides in the size of the alphabet and
the high complexity of the relations between amino acids. This parameters have
deeply influenced the application of grammatical inference methods to the pro-
duction of grammars in which the expressive power is not higher than stochastic
regular grammars. Nevertheless, these stochastic regular grammars are unable
to cover and detect any high-order dependencies such as nested and crossing re-
lationships that are common in secondary and tertiary protein structures. For
this reason, we propose a discriminative estimation model for the analysis and
detection of protein binding sites that is capable of producing human readable
descriptors for this sequences of interest.

Key words: bioinformatics; gramatical inference; formal language; stochastic
context free grammars; discriminative estimation; machine learning; proteins;
legume lectins; biochemical interactions
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mation, this codification allows the scientists to transform RNA se-
quences into amino acids that will later combine to form proteins.
In other words it is the translation of RNA molecules to proteins. [1] 4

2.2 Levenshtein matrix by using a cost operation of one. In this ex-
ample we can see how the two DNA strings ( A = CATGACTG
and B = TACTG) are compared. As we can see this process corre-
sponds to a dynamic programming computation where the value
of D[i, j] is calculated by its previous cells D[i, j− 1], D[i− 1, j] and
D[i − 1, j− 1]. Particularly, if i = 0 then D[i, j] = 0, if j = 0 then
D[i, j] = i, if A[j− 1] = B[i− 1] then D[i, j] = D[i− 1, j− 1] other-
wise D[i, j] = 1 + min(D[i− 1, j], D[i, j− 1], D[i− 1, j− 1]). [2] . . . 5

2.3 Markov chain. In this example we can see a Markov process repre-
sented by a Markov chain that corresponds to the dietary habits of
mice. The states of this Markov chain are eat cheese, eat grapes and
eat lettuce. The mice can only eat once a day, so if today the mice
ate cheese tomorrow the probability of eating lettuce or grapes will
be the same. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Chomsky’s hierarchy. As we can see in the figure, the hierarchy
is composed of four levels; The first level corresponds to regular
grammars; the second level corresponds to context-free grammars;
the third level corresponds to context-sensitive grammars; and the
final corresponds to type-0 grammars . [4] . . . . . . . . . . . . . . . 7

2.5 Partial local multiple alignment procedure. The first step in this
process is to acquire a set of proteins that contain a conserved re-
gion (H− (IL)−N− P−A−V). Next, automatons for each string
or protein are modeled. a) The next step is to align the automaton,
centered around the conserved region. b) Now that the conserved
region is aligned, the automaton are merged in that exact posi-
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ments with representative information and non-representative in-
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the leguminous lectin family, the modeling was performed by the
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bonding (dotted lines in green) between the beta chains (in yellow)
is characterized. [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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CHAPTER 1

Introduction

In this study, we are going to characterize a set of known proteins by using meth-
ods of discriminative estimation. In this manner, we will elucidate the main
physicochemical characteristics of said proteins, that allow for a classification by
using Stochastic Context Free Grammars (SCFG), through the structural informa-
tion presented by a labelled set of proteins. For this reason, this study is divided
into two intertwined parts; the biological context and the formal language con-
text. In the former, we will investigate the central properties of proteins and how
we can use these characteristics to acquire information from a proteic family. In
the latter, we will inquire in the main definitions and techniques that allow us to
predict if a given protein pertains to the established proteic family.

1.1 Motivation

In recent years, the demand for a fast and accurate classification of proteins has
increased, as novel biochemical techniques for the analysis and synthesis of bio-
molecules have aroused, thus producing a surge in the number of proteins with-
out classification. Also, the modeling and 3D representation of said proteins has
an interest in the field of biotechnology and biochemistry, as been able to repre-
sent these structures further elucidates the mechanisms by which biomolecules
are able to interact with each other. Meanwhile, in the field of formal languages,
the capacity of regular grammars and context free grammars have not been able
to represent and detect high-complexity relations in a biological context, such as
nested and crossing relations between biomolecules.

Having in consideration these interests and the problematic of establishing
relationships within the structure of biomolecules, we propose a method of iden-
tifying characteristics within a protein family, in order to establish a new method
for the classification of proteins through the use of SCFG and discriminative esti-
mation.

1



2 Introduction

1.2 Objectives

• Understanding of Chomsky’s hierarchy and the expressive power of each
type of grammar.

• Review of the biochemical interactions that govern the protein world.

• Comprehension of the main mechanisms and theories that underlie the method
of discriminative estimation and SCFG.

• Establishing the main characteristics that identify a proteomic family.

• Construction of a corpus that represents crucial structural information for
the classification of proteins.

• Experimentation regarding the process of SCFG estimation.

• Evaluation of the results based on the chosen metrics.

• Determination of a further line of investigation.

1.3 Memory structure

This study is divided into six main chapters:

• Chapter 1 gives a brief summary of the intend and motivation behind this
line of work.

• Chapter 2 introduces an overview of a selected number of articles, that have
a direct relation with the field of bioinformatics by using different types of
grammars or other formal language techniques.

• Chapter 3 establishes the main hierarchy in the proteomic world, alongside
the physicochemical interactions that procure the stabilization of proteins.

• Chapter 4 inquires into the basis of Context Free Grammars (CFG) and
Stochastic Context Free Grammars (SCFG). Also, this chapter explains the
fundamental knowledge required to understand discriminative estimation.

• Chapter 5 presents the metrics and results of the investigation.

• Chapter 6 arrives to the conclusions of this study and establishes further
lines of investigation, that can be drawn from the obtained results.



CHAPTER 2

Related Work

In this chapter we are going to take a look at the beginning of the field of bioinfor-
matics. Mainly, we are going to dive into the initial techniques and goals that this
field has used and achieved, but also to the current methodology and the state of
the art.

Bioinformatics is a field that combines biological information with informa-
tion manipulation techniques and analysis. The information is generated by
"high-throughput data-generating experiments, including genomic sequence de-
terminations and measurements of gene and protein expression patterns"[9]. The
term was coined in the 1970s by Ben Hesper and Pauline Hogeweg, which felt
that "information processing could serve as a useful metaphor for understand-
ing living systems" [10]. In this early stages the work in this field was cen-
tered in understanding how living organisms were able to gather,process and
use the information of their environment, and then utilize this information for
the own advantage and evolution. One of the early success accomplished was
the formation of the genetic code, "the central dogma of the unidirectional flow
of information"[10], that culminated with the sequencing of the complete human
genome (Figure 2.1).

Once the basis were set in stone (genetic code) a number of technologies were
applied to understand the main evolutionary pathways of different living organ-
isms. One of the early technologies or string metrics used in the area of genome
sequencing was the Levenshtein distance. This algorithm falls into the category
of edit distance, "which allows us to delete, insert and substitue simple characters
in string-to-string comparison" [11].

Thanks to this algorithm we can apply different costs to the mentioned oper-
ations and detect possible differences between two given strings. "If we assign
an operation cost of one to all the operations we are referring to a simple edit
distance" [11]. In a biomolecular context, this algorithm is of vital importance as
DNA, RNA and protein sequences can be viewed as long strings with a specific
alphabet, the genetic code. Been able to search specific substrings in this long
strings has been a giant step towards conquering fundamental problems such as
"assembling the DNA chain from the pieces obtained by different experiments,
looking for given features in DNA and protein chains, or determining how dif-
ferent two genetic sequences are" [11]. In a proteomic context this algorithm has
been used to determine possible mutations or changes between proteins in order

3



4 Related Work

Figure 2.1: Genetic code. Referred to as the central dogma of genetic information, this
codification allows the scientists to transform RNA sequences into amino acids that will
later combine to form proteins. In other words it is the translation of RNA molecules to

proteins. [1]

to determine the evolotunioray pathway of different species, in a field known
as protein homology. Homology in DNA, RNA or proteins comes from the un-
derstanding that sequence similarity is a strong evidence that the two sequences
or strings are related by evolutionary changes. With the use of the Levenhstein
distance, we can align the sequences and detect the possible mutations and trace
back each organism to their ancestral sequence (Figure 2.2).

Almost at the same time as the sequencing and alignment of DNA, RNA and
proteins was been accomplished another investigation was been carried out by
Stuart Kaufman using a different type of approach. This investigation involved
the use of random Boolean networks, with the goal of understanding the main
transcription regulation network of genes in living organisms. In this investiga-
tion organisms were understood as "randomly constructed molecular automaton
and were examined by modeling the genes as binary devices" [12]. The results of
this investigation reflected that genes could be affected by other genes and that
the genetic network, which in large part tends to be stable, could undergo be-
havioural cycles under the stimulus of different noise altering methods. Never-
theless, the main achievement of this investigation was the capability of applying
Markov chains into a genetic net to explain metabolic and epigenetic behaviour.

A Markov process is defined as a process whose "main property is that the
probability of any particular behaviour of the process, when the present state is
known exactly, is not altered by additional knowledge concerning its past be-
haviour" [3]. It should be noted that if the knowledge of the present state is not
complete or unclear, then the probability of any possible predicted future will
be influenced by the additional information relating to the past behaviour of the
system. In mathematical terms a Markov process can be expressed as [3]:

Pr(a < Xt ≤ b|Xt1 = x1, Xt2 = x2, ..., Xtn = xn) = Pr(a < Xt ≤ b|Xtn = xn)
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Figure 2.2: Levenshtein matrix by using a cost operation of one. In this example we can
see how the two DNA strings ( A = CATGACTG and B = TACTG) are compared. As
we can see this process corresponds to a dynamic programming computation where the
value of D[i, j] is calculated by its previous cells D[i, j− 1], D[i− 1, j] and D[i− 1, j− 1].
Particularly, if i = 0 then D[i, j] = 0, if j = 0 then D[i, j] = i, if A[j− 1] = B[i− 1] then
D[i, j] = D[i− 1, j− 1] otherwise D[i, j] = 1+min(D[i− 1, j], D[i, j− 1], D[i− 1, j− 1]). [2]

In this context, a Markov chain (Xn) is a Markov stochastic process in which
"the possible states are countable or a finite set" [12]. Regarding the value of Xn it
can also be defined as the "outcome of the nth trial" [3]. The probability of Xn + 1,
being in a state y where we already know that Xn is in the state z (Figure 2.3), is
mathematically defined as [3]:

Prn,n+1
y,z = Pr(Xn+1 = y|Xn = z)

Following this notation we can infer that the transition probabilities are func-
tions of initial and final state, but also of the time of transition as well. "When
one-step transition probabilities are independent of the time variable, We say that
the Markov process has stationary transition probabilities" [3]. In general, most
Markov chains can be defined as stationary transition probabilities.

The use of Markov chains in a biomolecular context has been extensive in
the last years. For example, Chao and Kou applied Markov chains in biophysi-
cal experiments based on enzymatic systems. In this investigation the researchers
were able to use continuous time Markov chains in order to elucidate the "correla-
tion between experimental fluorescence intensity and enzymatic reaction times,
focusing on the role of substrate concentration with enzymatic reactions" [13].
The results demonstrated that the use of Markov chains were able to capture the
change of conformation of the enzymes in a time period of nanoseconds, making
it a promising technology for deeper understanding of biomolecular processes.

Following the footsteps of Chao and Kou, we find the investigation that was
carried by Gupta and Rawlings. The main goal in this research was to apply time
continious Markov chains and Markov chain Monter Carlo techniques to "char-
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Figure 2.3: Markov chain. In this example we can see a Markov process represented by
a Markov chain that corresponds to the dietary habits of mice. The states of this Markov
chain are eat cheese, eat grapes and eat lettuce. The mice can only eat once a day, so if
today the mice ate cheese tomorrow the probability of eating lettuce or grapes will be the

same. [3]

acterize the kinetic behaviour of viral infection on baby hamster kidney cells"
[14]. In order to do this, four phases corresponding to viral infection cycle were
characterized; Activation, the phase in which the virus becomes active and ready
to infect. Once the virus is active, it is able to penetrate the cell or host; Tran-
scription, phase in which the virus blends with the DNA replication system in or-
der to produce more viruses; Replication, exponential growth of the virus within
the cell; and Translation, the final phase in which the virus is able to assemble
into the active formation and the cell undergoes the process of lysis, releasing
the newly produced viruses into the environment. The main conclusions that
were withdrawn from this research were that Markov chains "required numeri-
cal integration in nr dimensions, which is computationally expensive and that the
uniformization technique required for the Markov chain Monte Carlo technique
required enormous computation " [14]. This means that Markov chains have a
limit in a biomolecular context due to the inherent complexity of the systems and
new methods should be explored.

Finally, the research developed by Pratas et at, involving Markov chains has
had a notable success. In this research Markov chains were utilized to sequence
the chromosomes of chimpanzee and orangutans, which is an alignment tech-
nique that does not involve the edit distance algorithm. The use of Markov chains
allowed the researchers to detect "large-scale and small-scale genomic rearrange-
ments, including balanced translocations and inversions" [15]. This biological
phenomenons can not be detected by fundamental laboratory techniques such as
microscopic visualization, thus the use of Markov chains signified an extension
to the tools used for genomic structure characterization.

Moving forward, the current tendency in bioinformatics has been to try to
apply Chomsky’s hierarchy in order to sequence and correctly predict protein
folding. Chomsky’s hierarchy, mainly context-free grammars, will be further ex-
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plained in chapter four but now we are going to take a look at the first level of
Chomsky’s hierarchy, regular languanges (Figure 2.4 ).

Figure 2.4: Chomsky’s hierarchy. As we can see in the figure, the hierarchy is com-
posed of four levels; The first level corresponds to regular grammars; the second level
corresponds to context-free grammars; the third level corresponds to context-sensitive

grammars; and the final corresponds to type-0 grammars . [4]

The genetic code can be viewed as a language, as DNA ,RNA and proteins
are represented as strings of characters with a meaning. In this context we can
express that the genetic code can also be defined as a regular language defined
by a regular grammar. In this types of grammars, all rules take one of two forms:

A → a
A → aB

where A and B are non-terminal symbols and a is a terminal symbol. In this
definition "the non-terminals can be understood as category symbols and the ar-
row as "consists of" " [4]. Other interpretations regard that regular grammars are a
representation of an automaton, where the non-terminals are the states of the au-
tomaton and the arrow is the transition to next the state, similar to the structure in
Markov chains. In this type of automaton the start symbol usually is represented
with the non-Terminal S and the rules without a non-terminal can be considered
as a final state. Finally, as there is a finite number of non-terminals a regular
grammar can be viewed as a finite state automaton. The power of this types of
grammars resides in the fact that "it is possible to construct an algorithm (finite
state automaton) that reads a string from left to right, and then outputs yes if the
string belongs to a language or no otherwise" [4]. This means that each regular
language corresponds to some finite state automaton, which is a algorithm that
consumes one symbol and changes its state according to the symbol that has been
used, if the last state visited is a final state the string will be accepted, otherwise
the string can not be represented by this finite state automaton.
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One of the most cited investigations regarding the application of automa-
ton for the sequencing of proteins, is the investigation performed by Coste and
Kerbellec. In this investigation the researchers used learning automaton for the
"merging of ordered partial local multiple alignments" [5]. Local multiple align-
ments consist of conserved regions of amino acids that appear in all proteins that
are from the same family or set. The purpose of this research was to find the best
alignment of proteins pertaining to the same family, trying to center the align-
ment were the conserved regions appeared. The main motivation for this investi-
gation was the fact that classical tools tend to have a bias towards the alignment
of said proteins, due to the fact that all proteins tend to be used for the alignment.
In order to eliminate this bias, the researches introduced a new term known as
partial local multiple alignment which does not require the involvement of all
the proteins of the set or family. By merging partial local multiple alignments,
the researchers were able to "build automatons representing complex succession
of local consensus" [5] (Figure 2.5).

Figure 2.5: Partial local multiple alignment procedure. The first step in this process is to
acquire a set of proteins that contain a conserved region (H − (IL) − N − P − A − V).
Next, automatons for each string or protein are modeled. a) The next step is to align
the automaton, centered around the conserved region. b) Now that the conserved region
is aligned, the automaton are merged in that exact position. c) Result of the merging
of all the partial local multiple alignments with representative information and non-
representative information. d) Final automaton returned that identifies the physico-

chemical information of this set of proteins. [5]
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Although the application of regular grammars or automatons have had a con-
siderable success, they are limited in the identification of interactions within pro-
teins (see Chapter 3). For this reason Dyrka has proposed the use of context-free
grammars in order to determine possible interactions and other dependencies
in the secondary structure of proteins. In this investigation, a framework was
developed in order to establish descriptors that " allow the detection of protein
regions that are involved in binding sites of proteins, but also provide insight in
their structure" [6]. To do this, a series of grammars were developed by using
genetic algorithms with the combination of the main properties of the common
amino acids, and the application of a number of constraints. The results of this in-
vestigation demonstrated that the descriptors were able to "highlight meaningful
biological characteristics and achieve a high accuracy in the annotation and de-
tection of this characteristics" [6] (Figure 2.6). For this reason, this investigation
was used as a basis for the development of this research.

Figure 2.6: Example of applying context-free grammar for the modeling and character-
ization of proteins. a) 3D model of a protein belonging to the leguminous lectin family,
the modeling was performed by the Protein Data Bank (PDB). b) Descriptor of the mod-
eled protein, as we can see not only the interactions with the metal ions (calcium in blue
and manganese in red) is represented, also the hydrogen bonding (dotted lines in green)

between the beta chains (in yellow) is characterized. [6]





CHAPTER 3

Analysis of Protein Sequences

3.1 Biomolecular Context

In order to fully comprehend any research first a context has to be set. In this sec-
tion we are going to introduce the reader to the biomolecular context upon which
the investigation is founded. To do this, first we will inquire in what are amino
acids and how do we classify them. Next, we will explain the main characteristics
and nature of proteins. Finally, we will describe the main intra and inter actions
from which different structures arise in the proteomic world.

3.1.1. Amino acids

Amino acids are the main building blocks of proteins. This means that each
amino acid is joined to the subsequent amino acid, by a special type of bond
(known as the peptide bond), to form the protein of interest. For this reason,
"proteins can be deconstructed to their constituent amino acids (hydrolysis) by a
variety of methods" [7] . Twenty different amino acids have a higher frequency
of occurrence in proteins found in living organisms, known as common amino
acids. These common amino acids have been assigned a three-letter code and
one-letter characters, "which are used as a shortcut to indicate the composition
and sequence of amino acids in a given protein" [7].

All twenty of the common amino acids have a carboxyl group (corresponds to
the acidic part) and an amino group (corresponds to the amino part) bonded to
the same atom, the alpha carbon (Figure 3.1). The main difference between these
amino acids resides in the side chain, also known as the R group. "The R group is
responsible for the main characteristics of each amino acid, such as size, electric
charge and solubility of the amino acid in water."[7]

The understanding of the chemical properties of the common amino acids is
a key factor for the comprehension of the biochemistry, which governs the pro-
teomic interactions and therefore their folding capabilities. Upon this knowledge
we can classify the different amino acids into five main classes based on the chem-
ical nature of the R groups. Mainly we consider "their polarity or tendency to in-
teract with water at a neutral pH (7.0) . The polarity of the R groups have a great

11
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Figure 3.1: Structure of an amino acid. As we can see in the figure the carbon in blue
corresponds to the alpha carbon.This carbon is bonded to an amino group (NH3) and a
carboxyl group (COO). We can also find the R group which varies from amino acid to

amino acid. [7]

variability, from nonpolar and hydrophobic (water-insoluble) to highly polar and
hydrophilic (water soluble)" [7]. (Figure 3.2).

Nonpolar amino acids. The main characteristic of this group of amino acids
is a tendency to be non polar, meaning that they do not interact with water
and tend to be allocated in the interior of proteins, and therefore are considered
as hydrophobic. For this reason,"The R groups of alanine, valine, leucine and
isoleucine tend to cluster together within proteins, stabilizing protein structure
by hydrophobic interactions" [7] . Of all the amino acids, glycine has the sim-
plest structure, although it is classified as a nonpolar amino acid, "its unusual
small R group makes no real contribution to hydrophobic interactions" [7]. Me-
thionine, one of the two sulfur containing amino acid tends to have a major con-
tribution to hydrophobic interactions due to "the presence of a thioether group
(CH2 − S− CH3)" [7]. Proline, "has a rigid conformation that reduces the struc-
tural flexibility of polypeptide regions and contributes to hydrophobic interac-
tions" [7], due to the presence of said structural ring (CH2−CH2−CH3−NH3).
Finally, both phenylalanine and tryptophan, with their aromatic side chains are
"relatively nonpolar and therefore classified as hydrophobic". [7]

Polar amino acids. The main characteristic of these amino acids is their ability
to be soluble in water, which is possible thanks to the functional groups present
in their R groups. These functional groups are able to form hydrogen bonds,a
special type of weak bond that we will later discuss, with water. In this class of
amino acids, "we can find serine, cysteine, asparagine and glutamine" [7]. The
polarity of serine and threonine is caused by the "presence of hydroxyl groups
(OH)" [7]; the polarity of cysteine is caused by the "presence of a sulfhydryl
group (SH)"[7]; and that of asparagine and glutamine by their amide groups
(NH2). Finally, we can also include in this group tyrosine due to the "presence of
hydroxyl groups". [7]

Electrically charged amino acids. The amino acids that have the greatest ca-
pability of interaction with water are those in which their R group is either pos-
itively charged or negatively charged. The amino acids in which the R group is
positively charged at neutral pH, are lysine which has an "amino group at the
end of its R chain" [7]; arginine, which has a "positively charged guanidino group
(NH2− C− NH2)" [7]; and histidine which has an "imidazole group (C− NH−
CH−N−CH)" [7]. On the other side we have two amino acids having R groups
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Figure 3.2: The structural formula of the common amino acids. The uncolored portions
are those present in all the amino acids and the colored portions correspond to the R

groups. [7]

with a net negative charge at neutral pH, aspartate and glutamate, each of which
has "a second carboxyl group" [7].

Now that we have explained the main classification of amino acids, we can
begin to understand that depending on the amino acids present in a protein, there
will be a direct effect on the behavior of said protein in different environments.
These characteristics will therefore have an impact not only in the structure of
the protein but also in the main function that the protein will carry in a biological
organism.

3.1.2. Proteins

Now are focus is going to shift towards the polymers of amino acids, peptides
and proteins, and how do they bond with each other. "Biologically occurring
proteins range in size from small to very large, consisting of three to thousands
of linked amino acids chains" [7]. For this reason, first we are going to inquire on
the chemical reactions that give rise to these polymers.

Linking amino acids to form peptides. Two amino acid molecules can be
bonded through a specific linkage, known as peptide bond, to form a dipeptide.
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"Such linkage is formed from the removal of the elements of water (dehydration)
from the alpha carboxyl group of one amino acid and the alpha amino group of
another amino acid" [7]. The peptide bond is a prime example of a condensation
reaction, an usual reaction in all living organisms (Figure 3.3). Three amino acids
can be bonded to give arise to a two-peptide bond and this will form a tripep-
tide, we can continue this process with any number of amino acids to obtain
more complex peptides. Particularly,"When many amino acids bond through the
peptide bond we obtain a polypeptide." [7]. The terms polypeptide and protein
tend to be used at the same time, but is important to note that polypeptides are
prone to have a molecular weight below 10,000 M (S.I. kg/kmol) while proteins
have higher molecular weights, although in literature the smaller polypeptides
are also referred as proteins.

Figure 3.3: Condensation of the peptide bond. The amino group of one amino acid re-
acts with the carboxyl group of the other amino acid forming a peptide bond, colored in
yellow. This process is reversible, when the peptide bond is formed a molecule of water
is removed (dehydration), on the other hand when we want to break a peptide bond we

will have to add a molecule of water to it (hydrolysis). [7]

Peptides can be characterized by their net charge. Proteins contain only one
unbonded amino group and one unbonded carboxyl group, at the begin and end
of their chain. These groups are charged depending on the environment, in an
acidic environment the carboxyl group acquires a hydrogen and the net charge
is positive, in a basic environment the amino group loses a hydrogen promot-
ing a net negative charge. This process is known as "ionization and some R
groups of the amino acids within the proteins can also succumb to ionization"
[7]. Therefore, amino acids tend to contribute to the overall acid-base properties
of the molecule. Thus, "the acid-base behavior of a peptide can be predicted form
its unbonded amino and unbonded carboxyl groups, as well as the nature and
number of its ionizable R groups" [7]. (Figure 3.4)

Proteins and polypeptides found in living organism occur in a vast range
of sizes. No assumptions can be made about the molecular weights and size of
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Figure 3.4: Alanylglutamylglycyllysine. As we can see, this tetrapeptide has one un-
bonded amino group and one unbonded carboxyl group at opposite ends of the chain.
We can also find two ionizable R groups, corresponding to glutamate (Glu) and lysine

(Lys). [7]

biologically active proteins in relation to the function that they acquire in an or-
ganism or their environment. Therefore, we have to consider all types and sizes
of proteins,as even the smallest of proteins can have critical roles in biological
contexts. One common example is oxytocin, "a nine amino acid in length pep-
tide which is secreted by the posterior pituitary and stimulates uterine contrac-
tions" [7]. On the other hand, slightly larger peptides also have critical functions
on organisms such as insulin, which contains two polypeptide chains, "one con-
taining 30 amino acids and the other 21" [7].

Following the example of insulin, we can find proteins that have two or more
polypeptide chains, this are refered as multisubunit proteins. The polypeptide
chains in this type of proteins are able to interact with each other through weaker
chemical interactions, which tend to increase the overall stability and give rise to
the structure of the protein. The individual polypeptide chains in a multisubunit
protein can be identical or different. "If at least two are identical the protein is
known as oligomeric, and the identical units are referred to as protomers" [7].

In order to determine the approximate number of amino acids in a protein,
"we can divide its molecular weight by 110" [7]. To obtain this number, we have
to consider that "the average molecular weight of the 20 common amino acids
is about 138 M" [7], although the smaller amino acids tend to appear more fre-
quently in most proteins. If we take into consideration this tendency "the average
molecular weight decreases to 128 M" [7]. Finally, as we noted before a molecule
of water has to be removed to create a peptide bond (dehydration) (Figure 3.3)
which has a molecular of weight of 18 M, this can be explained by the molecu-
lar weight of hydrogen which is 1 M while the molecular of oxygen is 16 M, as
water has two hydrogen atoms and one oxygen atom we obtain a total molecular
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weight of 18 M. Thus, if we subtract to the average molecular weight of amino
acids (128 M) the molecular weight of water(18 M) we end with 110 M.

Proteins can be characterized through amino acid composition. The decom-
position of polypeptides or proteins through the process of hydrolysis results in
characteristic proportions of the different amino acids. "The common amino acids
almost never appear in equal amounts in a protein" [7]. This means that some
proteins may contain a large number of an amino acid in its sequence, while other
amino acids appear with lower frequency or do not even appear.

The decomposition of proteins through hydrolysis alone may be not be enough
for the analysis and determination of amino acid composition. This is mainly
caused by the fact that some unwanted reactions can occur during the hydrolysis
procedure. For example, the R groups of asparagine and glutamine can react to
form aspartate and glutamate, giving rise to ambiguities in the protein sequenc-
ing. "When a precise amino acid composition is required, biochemists tend to use
additional procedures to try to resolve ambiguities such as ELISA, Electrophore-
sis or High-Performance Liquid Chromatography (HPLC)" [7].

3.1.3. Structure and interactions

To comprehend and determine the structure of large molecules such as proteins,
we have to define several levels of complexity. To do this, we have to arrange
the different structures in the proteomic world in a conceptual hierarchy. For this
reason, "Four levels of protein structure are defined" [7]. The first level recog-
nized as the primary structure, corresponds to the joined amino acids through
the peptide bond. Within this hierarchical level, "the most important element is
the composition of amino acids" [7], that conform the protein. The next hier-
archical level is the secondary structure, which refers to "the stable disposition
of amino acids giving form to well-known structural conformations" [7]. This is
possible thanks to weak interactions that arise between the amino acids of said
secondary structure. Next, we find the tertiary structure "which describes all as-
pects of the three-dimensional folding of a protein" [7]. Finally, "when a protein
has two or more polypeptide subunits, the arrangement in space is known as the
quaternary structure" [7] (Figure 3.5).

Primary structure of proteins produce weak interactions of critical impor-
tance. "The spatial arrangement of atoms in a protein is called its conforma-
tion" [7]. All possible conformations of a given protein comprehend any struc-
ture that can be adopted without breaking the linkage between amino acids. A
structure can change its conformation by rotation of the peptides bonds under
certain biological conditions, such as a change in the pH of the environment or
interactions with other proteins. "In the context of protein structure, the term
stability can be defined as the tendency to maintain a native conformation" [7] .
Native proteins are only partially stable, meaning that a protein theoretically can
assume countless different conformations, and as a result "the unfolded state of
the protein is characterized by a high degree of conformational entropy" [7], this
means that in order for a native protein to unfold a certain amount of energy will
be required, as the native formation tends to be more stable. This entropy and
the hydrogen bonds that arise between the amino acids R groups are responsible
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Figure 3.5: The four levels of hierarchy in proteins. The primary structure is composed
by a sequence of amino acids joined together. The resulting polypeptide arranges itself
into a secondary structure through amino acid interaction. This secondary structure is
one of the many structures that appear in the tertiary structure of a protein. Finally, this
tertiary structure can be one of the subunits that give rise to the quaternary structure,

which turns out to be the protein hemoglobin. [7]

of the stability that prevents the unfolding of the protein (Figure 3.6). Going back
to the common amino acids, the polar amino acids have the greatest capacity to
form this type of bonds.

It is of critical importance to comprehend the role of these "weak interactions
for us to understand how polypeptides chains fold into secondary and tertiary
structures, and how they interact with other protein subunits, to form quater-
nary structures" [7]. We have to take into account that individual bonds (peptide
bond) that contribute to the native conformations of proteins are much stronger,
meaning that they require more energy for them to be broken, than weak interac-
tions. Nevertheless, "the number of weak bonds or interactions are significantly
higher and predominate as a stabilizing force in protein structure" [7]. The pro-
tein structure that gives rise to the conformation with the lowest entropy "is the
one with maximum number of weak interactions" [7] and tends to be the native
conformation for this reason.

Besides hydrogen bonding, hydrophobic interactions also play an important
role in protein conformation; "the interior of a protein is generally a core of hy-
drophobic amino acids" [7]. Therefore, proteins will tend to protect the nonpolar
amino acids in the interior while exposing the polar amino acids to interact with
the environment. The combination of these two factors,hydrogen bonds and hy-
drophobic interactions, are key to the stabilization of protein folding.
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Figure 3.6: Hydrogen bond between two molecules of water. The hydrogen bond is one
of the most important weak bonds in nature, as it stabilizes proteins and other macro-
molecules. As we can see in this example, two molecules of water form a hydrogen bond
(represented by the lines parallel to each other) due to the fact that oxygen tends to be
more electronegative than hydrogen, meaning that its affinity toward electrons is higher
and thus electrons in the bond tend to be closer to oxygen. This creates what is known as
a dipole moment (colored red) that polarizes the net charge of the molecule. Finally, as
the oxygen now presents a negative dipole and the hydrogen presents a positive dipole,

they are able to form a weaker bond known as hydrogen bond. [7]

Secondary structure of proteins tend to be alpha helix or beta strands. "The
term secondary structure refers to the local conformation of some segments of the
protein" [7]. There are a many secondary structures that can appear in nature and
also be produced artificially, but we will focus only on the secondary structures
that appear in nature and are the most stable. Of this proteins the most frequent
and stable are the alpha helix and the beta strand conformations

The alpha helix conformation depends on the amino acid composition. "The
simplest arrangement a polypeptide chain can assume is a helical structure known
as the alpha helix" [7]. In this helical conformation the polypeptide chain travels
around an imaginary axis drawn longitudinally and the R groups of the amino
acids are expelled outward so that they end up exposed to the environment. "The
repeating unit is a single turn of the helix, which extends around 5.4 angstroms
(1 angstrom = 0.1 nanometer) along the long axis" [7] (Figure 3.7). This means
that each turn that appears in this helical conformation includes an average of 3.6
amino acids. The stability of this turn is again a product of the hydrogen bonds
that arise through the interaction of the nitrogen atoms present in the alpha amino
group.

"The twist of an alpha helix ensures that critical interactions occur between
amino acids" [7]. Not only the twist with the consequent formation of hydrogen
bonds through the alpha amino group are responsible of the stability of the al-
pha helix, also the positioning or appearance of positively charged amino acids
three amino acids away from negatively charge amino acids need to be taken
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Figure 3.7: Models of alpha helices, representing different aspects of its structure. a)
Model of alpha helix that travels around a longitudinal axis. b) Representation of the
hydrogen bonds produced by the nitrogen in the alpha amino group(parallel lines to
each other) that help stabilize this secondary structure. Also we can see, that each turn in
the helical conformation comprehends an average of 3.6 amino acids. c) The alpha helix
as viewed from the amino terminus. As we can see the R groups, colored purple, are
protruded towards the outer side of the secondary structure. d) In this last model we can
see how the atoms in the center of the alpha helix tend to form a cluster with few spaces

in between. [7]

into consideration. This positioning results in the formation of opposite charged
pairs, which in turn adds a new force that increases the overall stability of this
secondary structure. Thus, the identity of the amino acid present near the ends of
the turns in the alpha helix will favor and stabilize this type of structure. Another
factor that needs to be taken into account is the size of the R groups. As we men-
tioned before around 3.6 amino acids are involved in a turn, but not all amino
acids can be allocated in this turns as the amino acids with a large R group, such
as tryptophan, will interact with the other R groups of the subsequent amino
acids, thus acting as a destabilizing force. Mainly, three different type of con-
straints affect the conformation of an alpha helix, "first the electrostatic repulsion
or attraction between successive amino acids R groups, second the size of adja-
cent R groups and third the interactions between R groups spaced three amino
acids apart" [7].

The beta strand structure favors the interaction of peptide chains that result
in structural sheets. This secondary structure is usually a larger conformation
compared to the alpha helix, as a higher number of polypeptide chains are in-
volved. Also the polypeptide chains tend to have a higher molecular weight and
therefore have more amino acids in length (as we already noted, to obtain the
average length of amino acids we have to divide the total molecular weight by
110). The main characteristic of the beta strand, is that "the backbone is arranged
into a zig zag rather than a helical structure" [7]. This zig zag conformation aligns
itself side by side to another zig zag conformation, to form a structure similar
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to a series of folds known as a beta sheet. This arrangement favors the forma-
tion of hydrogen bonds between the alpha amino and alpha carboxyl groups of
the adjacent amino acids which significantly increases the overall stability of this
structure.

Another difference between the alpha helix and the beta sheet, is that the in-
dividual segments that form a beta sheet can appear nearby or far away in the
linear sequence of amino acids, for this reason more polypeptides are involved
in the formation of this structure. On the other hand, a similarity that both sec-
ondary structures share is the fact that the R groups of adjacent amino acids tend
to protude from the polypeptide backbone, therefore increasing the interaction
with the environment. Nevertheless, due to the zig zag nature of the beta strand
the R groups appear in opposite directions, creating an alternating pattern.

"The adjacent polypeptide chains in a beta sheet can be either parallel or an-
tiparallel, having the same or opposite amino-to-carbonyl orientations respec-
tively" [7]. Both conformations of the beta sheet have more or less the same na-
ture, although the main difference between them is that the distance between two
amino acids that appear in the zig zag tends to be shorter in the parallel confor-
mation, "6.5 angstroms for the parallel sheets and 7 angstroms for the antiparallel"
[7]. This difference in the distance between amino acids affects directly to the hy-
drogen bonding pattern. In the antiparallel conformation the alpha amino group
and the alpha carboxyl group face each other while in the parallel conformation
both are faced in a 45 angle.(Figure 3.8).

Figure 3.8: The beta sheet conformation. As we can see the the R groups protrude from
the beta sheet and emphasize the zig zag formation. We can also see that between the beta
strands a hydrogen bond is produced in order to stabilize this type of conformation. a)
Antiparallel beta sheet, the black symbolize the direction from the last unbonded amino
group to the last unbonded carboxyl group, we can also note that the hydrogen bond
formed between adjacent amino acids is a straight line. b) Parallel beta sheet with the
same amino-terminal to carboxyl-terminal orientation. If we take a look at the hydrogen

orientation we can see that the it has a 45 angle tilt. [7]



3.1 Biomolecular Context 21

Figure 3.9: Relative probabilities that a given amino acid will occur in the two common
types of secondary structure. [7]

Protein tertiary and quaternary structures. "The overall three-dimensional
arrangement of all atoms in a protein is referred to as the protein’s tertiary struc-
ture" [7]. In the secondary structure we were exploring how the relatively close
positioning of the amino acids affects to the spatial configuration that they adopt
based on their identity, whereas in the tertiary structure the interactions between
the secondary structures is the topic at hand. This means that the range of inter-
actions in the tertiary tends to be higher than in the secondary structure.

"Amino acids that are far apart in the polypeptide sequence and that reside in
different types of secondary structure may interact within the completely folded
structure of a protein through hydrogen bond or hydrophobic interactions" [7].This
means that the amino acids in the different secondary structures will interact with
each other and form weak interactions that will create the basis of the stability of
the tertiary structures. It is important to note, that as we increase in the level of hi-
erarchy the stability of the conformations tends to decreases as it largely depends
on the formation of weak interactions. For this reason, a subtle change in the pH
could result in the destabilization of this tertiary structures, a process known as
protein denaturation.

As we already explained some proteins are formed by a series of polypeptide
chains, or subunits. "The arrangement of these protein subunits in the three-
dimensional complexes constitutes the quaternary structure" [7]. We can classify
the proteins that have a quaternary structure into two classes: fibrous proteins,
which tend to be displayed in sheets and composed in its majority by beta sheets,
and globular proteins, which tend to appear in spherical shapes. One of the two
main differences between the two classes is their structural behaviour. On one
hand fibrous proteins are usually composed of a single type of secondary struc-
ture, the beta sheet. On the other hand, globular proteins are composed by a
mixture of secondary structures. The second difference between the two classes
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is the role that the play in living organisms. Fibrous proteins tend to "provide
support, shape and external protection to organisms" [7]. Globular proteins tend
to be involved in processes of hormonal regulation and metabolism, as most of
the enzymes that partake in such activities are globular proteins.

Now that we have inquired in the biomolecular context, we can continue with
the problem at hand, protein characterization and the understanding of the dif-
ferent patterns found in protein families.

3.2 Protein Characterization of Legume Lectins.

Now that we have explained the fundamental biochemical principles, we are go-
ing to elucidate the main characteristics and patterns found among the protein
family that we are going to work with; Legume lectins. For this reason, in this
section we will go into more depth of the physicochemical properties that make
this set of proteins an interesting case of study.

Lectins are a class of proteins abundant in nature. Mainly these proteins
can be found in animals, insects, plants and microorganisms. The main role of
these proteins is the processing of sugars or carbohydrates in the main routes of
metabolism and for this reason they have attracted interest over the last several
decades. Also, "lectins are are excellent models for examining the molecular ba-
sis of specific reactions that occur between proteins and other types of molecules"
[16].

Of all the lectins that have been analyzed and sequenced the legume lectins
are the largest and best characterized family. Pertaining to this family, researchers
have found highly conserved amino acid structures within taxonomically distant
species of plants, making this set of proteins a homologous family. This allows
for the demonstration that "these proteins have been conserved throughout evo-
lution and a strong point can be made that they must have an important function
(or functions) in nature" [16].

The family of legume lectins, including those from taxonomically distant species,
share molecular characteristics in common (Figure 3.10) on which we are going
to inquire in the following paragraphs. Among this characteristics we are going
to rely on three fundamental properties that allow for the characterization of said
proteins; beta sheet composition, metal ion presence and hydrophobic conserved
areas.

Legume lectins are largely beta strand proteins, hence their quaternary
and tertiary structure heavily rely on the formation of beta sheets. [17] The
main structure of these proteins is generally a single or two polypeptide chain
that share similar amino acid sequences with some variations in the length of
the strands. This structure is characterized by what is known as the jelly roll
motif, "present in many proteins and often related with carbohydrate-binding
activity" [17]. This jelly roll is formed usually by two or three sets of antipar-
allel beta sheets, which are connected by several loops and single chain amino
acids of varying lengths (Figure 3.11). As already noted in the previous section,
beta strands are formed by only a select group of amino acids, due to their bio-
chemichal properties (Figure 3.9). For this reason, in the beta strands present
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Figure 3.10: Main characteristics of legume lectins. The main properties used for this
study were amino acid composition and beta-sheet formation, which is strictly related to
the hydrophobic properties of the proteins. On the other hand, to classify proteins in this
family researchers use the presence of metal ions that are directly related to the binding
and interacting capacities of proteins and also the sequence homology that studies the

evolutionary properties within a set of proteins.

in the legume lectins we can find highly conserved patterns of amino acids (ho-
mologous) that are expressed throughout the whole family. In this study, we
will focus our efforts in this highly conserved patterns that give arise to the
beta strands and therefore the beta sheets in order to detect and classify a set
of proteins pertaining to the legume lectin family. The most prolific conserved
pattern within this family corresponds to a beta strand that follows the pattern
[LIV]− [STAG]−V − [DEQV]− [FLI]−D− [ST] (i.e. the sequence V-A-V-E-F-
D-T corresponds to this pattern) and for this reason it is used as a consensus for
the classification of proteins in this family. Nevertheless, other patterns exist that
are less conserved but still viable for classification purposes and therefore used
in this study .

Legume lectins require the presence of metal ions in their structure in or-
der to engage in metabolic reactions. [17] In the analysis and sequencing of this
proteins, two metal ions are commonly found: Mn2+ and Ca2+. This ions are
responsible for the binding of carbohydrates which allow for the proper chemical
reactions to ensure. Although this chemical property was not used for our study,
its importance resides in the previous classification done by the researchers to
build a corpus of proteins that contained this two metal ions and were part of the
legume lectin family (Prosite: PS00307, available at https://prosite.expasy.
org/). This corpus was the main source of proteins for this investigation.

Pairing of beta strands to form beta sheets allow for the appearance of con-
served hydrophobic areas in legume lectins. As already stated in the previous
section, the pairing of beta strands give rise to beta sheets and depending on the
overall composition of amino acids in this structure we can find different physic-
ochemical properties. In the case of the legume lectins, the amino acids that are

https://prosite.expasy.org/
https://prosite.expasy.org/
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Figure 3.11: General structure of legume lectins. As we can see, there are two polypeptide
chains present in this specific protein (green and blue) that are composed in their majority
by beta strand structures (arrows) that interact with each other to form a beta sheet. These
antiparallel beta strands are connected to each other through the presence of loops, which
allow for the turning, and single chain amino acids that contribute to the overall length

of the tertiary structure.

conserved throughout the family tend to be hydrophobic amino acids and there-
fore when paired to form beta sheets the resulting structure maintains this hy-
drophobicity. As this amino acids are well conserved, we can find repeated areas
of hydrophobic interactions throughout the legume lectin family. This property
allows us to detect and note the patterns that are replicated for the classification
of proteins belonging to this family as we will see in the section 4.3.



CHAPTER 4

Protein Characterization based on
Context Free Grammars

In this chapter we are going to set the formal language context that has been used
to carry out the experimentation. First we will inquire in what are grammars and
languages, followed by a specific type of these types of grammars, the context free
grammars. Next, we will introduce a type of context of free grammars known as
probabilistic context free grammars and finally we will explain the application of
these types of grammars through their estimation.

4.1 Formal Language Context

4.1.1. Context Free Grammars

In this section we are going to introduce some definitions and concepts related
to languages and grammars in the context of formal language theory. This no-
tions will be required to relate both the genetic code and probabilistic context
free grammars for the characterization of a given family of proteins.

In order to define a grammar first we have to understand what is an alphabet.
An alphabet, ∑, is a finite set of symbols. These symbols are the "basic units or
primitives that form the language and when they are group together they become
strings or chains" [8], in a proteomic context these symbols would correspond to
the amino acids and the string to the protein. The length of this string x is the
number of symbols that it has and can be written as |x|. The empty string is the
chain of symbols that has no elements and can be denoted as ε. We can now write
the set of all the string which is higher or equal to zero and can be formed with
the symbols of Σ as Σ∗. Likewise Σ+ will denote the set of all strings with a length
higher or equal to 1 that can be formed with element of Σ, thus Σ+ = Σ∗ − ε.

Now we can define a language, L, on Σ as a subset of the set Σ∗. Thus a
language can be understood as a "formal automaton that has a string accepting
character or with a formal grammar that has a string generating character" [8].
For this particular investigation we are going to use formal grammars as a mech-
anism of specification of the formal language.

25
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A formal grammar is defined as a tuple (N, Σ, S, P). In this tuple we find four
elements; N is a finite set of symbols known as non terminals; Σ is a finite set
of symbols known as terminals that meet the constraint N ∩ Σ = ∅; P is a finite
set of rules or productions, where each rule is a pair (α, β) and is represented
as α → β where α, β ∈ (N ∪ Σ)∗, in this context α is known as antecedent and
β as consequent; finally S ∈ N is the initial symbol or axiom of the grammar.
As an example if we have a rule r = (α → β) that pertains to P and µ, ω ∈
(N ∪ Σ)∗, then there is a direct derivation that is expressed as µαω ⇒r µβω [8].
A derivation therefore exists when we can transform α1 to α2, where α1, α2 ∈
(N ∪Σ)∗, using a set of rules and steps that have the form α1 = µ0, µ1, ..., µm = α2
with µ0, µ1, ..., µm−1 ∈ (N ∪ Σ)∗ following the set of rules (r1, r2, ..., rm) ∈ P thus
[8]:

α1 = µ0
r1⇒ µ1

r2⇒ ... rm⇒ µm = α2

The generated language defined by a grammar (G) can be written as L(G) =
{x ∈ Σ∗|S ⇒∗ x}. Depending on the nature of the rules we can classify the
grammars into four main classes [8] :

• The first class of grammars corresponds to regular grammars. The rules of
regular grammars follow the form A→ aB where A, B ∈ N and a ∈ Σ.

• The second class of grammars are referred to as context free grammars
where every rule follows the form A→ α where A ∈ N and α ∈ (N ∪ Σ)∗.

• The third class of grammar correspond to context sensitive grammars where
every rule follows the constraint α→ β such that |α| ≤ |β|.

• The fourth class of grammars are unrestricted grammars which do not use
any type of constraints.

The hierarchy between these grammars is naturally extended to the formal
languages. By means of this we say that a formal language is regular if it is gen-
erated by a regular grammar, it is context free if it is generated by a context free
grammar and that is sensitive to context if it is generated by a sensitive grammar
or unrestricted grammar.

The complexity of the problems that can be tackled by each class increases
in accordance with the hierarchy. In this regard, regular grammars are used to
solve simple problems, while unrestricted grammars are used for more complex
problems. Parallel to this principle the algorithms that allow the manipulation
of the grammars also grow with its expressive capacity. For this reason, "some
problems that can be resolved by using regular grammars can not be approached
by unrestricted grammars" [8] .

Context free grammars and languages suppose a reasonable compromise be-
tween the complexity of the problems that can be approached and the cost of
the algorithms that allow for an adequate manipulation. In one hand, context
free grammars have the sufficient expressive capacity to establish long term re-
lations between the primitives of the language, making them a convenient tool
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for the representation of complex problems. On the other hand, robust and effi-
cient algorithms exist that allow for a suitable manipulation [8]. For this reason
we decided to work with context free grammars (CFG) for the characterization of
family proteins.

Now that we have established the framework of CFG, we are going to explain
some of the properties related with these grammars. Given a context free lan-
guage, this can be represented by more than one CFG. In this regard two CFG, G1
and G2, are equivalent if L(G1) = L(G2). We also say that a CFG is in Chomsky
Normal Form (CNF) if all the rules follow the form A → BC or A → a, where
A, B, C ∈ N and a ∈ Σ. Other normal forms of CFG exist, although throughout
this work we are going to work with CFG in CNF. This framework does not im-
ply a loss in generality, as given a CFG G1, there is a CFG G2 in CNF such that
L(G1) = L(G2). This means that any context free grammar can be defined as a
CFG in CNF [8].

A leftmost derivation of a string x ∈ L(G), dx, is a derivation such that µ0 =
S, µm = x and ri, 1 ≤ i ≤ m, rewrites the non terminal which is leftmost to µi−1.
In this manner the leftmost derivation is defined by the sequence of rules that has
been used. Analogously we can also define the rightmost derivation, in which
the element that is rewritten is the non terminal rightmost to µi−1.

A related concept to the derivation is the derivation or analysis tree. An or-
dered and labeled tree is a derivation tree if a CFG G [8]:

• Each node of the tree has a label, that is a symbol of (N ∪ Σ).

• The root of the tree has the label S.

• If a node that has an A label has a direct descendant that is different from
itself, then A ∈ N.

• If the nodes n1, n2, ..., nm are direct descendants of the node n (which label is
A) and the order is from left to right with labels A1, A2, ..., Am respectively,
then A→ A1A2...Am is a rule from P.

An analysis tree can be associated with one only derivation, by this manner
the sequence of rules used is the one obtained doing a path in preorder of the
tree and using the last characteristic of the previous definition (Figure 4.1). Given
a string x and a CFG G such that x ∈ L(G), it is possible that more than one
tree of analysis that allows for the derivation of x starting from the initial symbol
exists. In this regard the CFG defined in Figure 4.1 and the string 1010 can be
generated with the derivation used in the figure or with the derivation (S →
SS, S→ AS, A→ 1, S→ 0, S→ AS, A→ 1, S→ 0).

A CFG is said to be non ambiguous if for each x ∈ L(G) exists a unique
derivation that allows the generation of x; otherwise we say that the CFG is am-
biguous. Given a string x ∈ L(G) we will denote Dx as the set of all the different
derivations that has the string x and |Dx| the representation of its length [8].

Now that we have introduced the main properties and definitions of CFG, we
will consider an essential issue: how can we identify that a string pertains to the
language generated by a grammar. This problems consists on the evaluation of
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the relation x ∈ L(G), given a string x and a CFG G. The syntactic analysis of a
string consists in the determination of this relation. The solution to this problem
consists in the search of a sequence of derivations that allows the derivation of x
from the initial symbol of G using the rules of the grammar [8].

Figure 4.1: Derivation tree. Given the CFG G = ({S, A}, {0, 1}, S, {S→ SS, S→ AS, S→
0, S→ 1, A→ 1}) and the derivation tree t, the associate derivation is d = (S→ SS, S→

SS, S→ 1, S→ 0, S→ AS, A→ 1, S→ 0). [8]

The problem can be solved with a linear cost with the length of the string,
but to do so we have to restrict severely the type of grammars and thus the ex-
pressive capacity of these grammars. Another solution is with a cubic cost with
the length of the string using grammars without restrictions. These grammars,
"allow the adequate representation of phenomenons of noise and variability, that
are common in the problems we approach" [8].

An efficient solution to tackle the syntactic analysis consists in the use of tab-
ular methods based on dynamic programming. These methods are are based on
the construction of an analysis table, in which each cell represents the solution of
a specific subproblem. The most known tabular method is the Cocke-Younger-
Kasami algorithm, "that operates with a CFG in CNF, and the Earley algorithm,
that allows the use of a CFG without any particular form" [8]. In their essence,
both algorithms are similar, but for this work we are going to use the Cocke-
Younger-Kasami algorithm.

The Cocke-Younger-Kasami algorithm is based on the construction of an
analysis table V whose dimension is |x| × |x|, such that if A ∈ Vi,j, then A ⇒∗
xi...xj. In this regard, x ∈ L(G) if S pertains to V1,|x| (Figure 4.2). The algo-
rithm operates analyzing parts of the string of bigger length each time until the
whole string is analyzed. This type of analysis is known as bottom up analy-
sis as it considers analysis subtrees from the leafs towards the root. "The time
cost pf the Cocke-Younger -Kasami algorithm is O(|x|3|P| while the spatial cost
is O(|x|2|N|)" [8].
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Figure 4.2: Cocke-Younger-Kasami algorithm for the computation of the analysis ta-
ble [8].

4.1.2. Probabilistic Context Free Grammars

In the different applications of syntactic form recognition (SFR) there is an usual
presence of noise and variability, together with certain phenomenons of uncer-
tainty that require a more sophisticated treatment. This considerations introduce
the necessity of a generalization of the already explained models (CFG) to ad-
just to the phenomenons mentioned. In the Theory of Formal Languages, "we
can approach this problem by associating a measure of probability to some of the
concepts already explained" [8]. Probabilistic context free grammars (PCFG) are
appropriate models that introduce this notion to the formal languages, they are
simple tools that have already existing efficient algorithms that allow their ad-
equate use; they permit a compact and straightforward representation of noise
and variability; and they have the advantage that robust algorithm exist for their
machine learning. This characteristics make PCFG a potent tool to tackle complex
problems such as protein characterization.

For this reason we are now going to introduce a series of definitions that will
allow for a more in depth understanding of what are PCFG. In this manner, as we
already explained CFG, we will follow a similar order than the already presented,
but extending them in a stochastic framework.

A probabilistic language of an alphabet Σ can be defined as a pair (L, Φ),
where L is a formal language and Φ : Σ∗ → IR is a real function of the strings
from Σ∗. The probability function Φ satisfies the following conditions [8]:

• x /∈ L⇒ Φ(x) = 0 for all x ∈ Σ∗.

• x ∈ L⇒ 0 < Φ(x) ≤ 1 for all x ∈ Σ∗.

• ∑x∈L Φ(x) = 1.
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Previously we have seen how formal grammars are adequate tools for the
definition of formal languages. In the same regard we can extend the mentioned
concepts to introduce new methods that allow us to treat probabilistic grammars.
In this work we are mainly focused on context free models, so the definitions that
we are going to explain can be applied to the other classes of grammars.

A probabilistic context free grammar (PCFG), Gp is defined as a pair (G, p)
such that G is a CFG, denoted as a characteristic grammar and p is a function
p : P→]0, 1], that presents the property [8]:

∀A ∈ N, ∑
(A→α)∈ΓA

p(A→ α) = 1. (4.1)

Where ΓA represents the set of rules of the grammar whose antecedent is A.

We define the derivation probability dx of the string x as: [8]:

Pr(x, dx|Gp) = ∏
(A→α)∈PA

p(A→ α)N(A→α,dx). (4.2)

Where N(A → α, dx) represents the number of times that the rule A → α has
appeared in the derivation dx.

In this manner we define the probability of a string x as: [8]

Pr(x|Gp) = ∑
dx∈Dx

Pr(x, dX|Gp). (4.3)

Where Dx denotes the set of all the different derivations of the string x.

Given a PCFG Gp = (G, p), we can define a PCFG G
′
p whose characteristic

grammar is in CNF and for all x ∈ L(G) and Pr(x|Gp) = Pr(x|G′p) is fulfilled [8].

We will denote the probability of the best derivation of the string x as [8]:

P̂r(x|Gp) = maxdx∈Dx Pr(x, dx|Gp). (4.4)

And the most probable derivation or the best derivation as [8]:

d̂x = argmaxdx∈Dx Pr(x, dx|Gp). (4.5)

In this regard we can also express the best best possible derivation as Pr(x, d̂x|Gp).
The definitions 4.3 and 4.4 can be extended to an arbitrary number of derivations
following the next definition.

Given the string x and a set of derivations of this string ∆x ⊆ Dx, we define
the probability of the string as: [8]

Pr(x, ∆x|Gp) = ∑
dx∈∆x

Pr(x, dx|Gp). (4.6)
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We can observe that this expression is equal to the expression 4.3 when the
set of derivations is equal to the maximum. This expression is also equal to the
equation 4.4 when the derivation is the one with maximum probability of all the
possible derivations.

We define the language generated by PCFG Gp as, L(Gp) = {x ∈ L(G)|Pr(x|Gp) >
0}. [8]

Given a probabilistic language (L, Φ), where L is the context free grammar,
it is reasonable to think that is possible to find a CFG Gp = (G, p) such that
L = L(G) and Φ is computed in terms of the expression 4.3. Nevertheless, no all
probabilistic languages in which L is a context free grammar can be represented
by a PCFG as the following theorem establishes: [8]

Given a context free language L = {anbn|n ≥ 0} and the function Φ(anbn) = 1
en!

and Φ(x) = 0 if x /∈ L, then there is no PCFG Gp that represents the probabilistic
language (L, Φ).

We can observe that (L, Φ) meets the conditions of the definition of a prob-
abilistic language. We can demonstrate this theorem in a simple manner, if we
examine the expression 4.3 we can observe that it grows inversely to a polyno-
mial function depending on the length of the string. While the function Φ of the
last theorem grows inversely to a exponential function depending on the length
of the string. As no polynomial can approximate a function that grows exponen-
tially, Φ can not be computed by any PCFG.

A PCFG is consistent if and only if:

∑
x∈L(G)

Pr(x|Gp) = 1 (4.7)

In any other case the grammar is not consistent.

Given a consistent PCFG Gp, the pair (L(G),P) is a probabilistic context free
language, where P is a function of probability computed in terms of the expres-
sion 4.3. [8]

The problem of consistency in a PCFG is of vital importance in order to use
this formalism as a method of representing context free probabilistic languages.

For this reason, we are going to inquire in a series of concepts that will allow
us to study the problem of consistency in a PCFG. When a PCFG is consistent, we
can acquire a series of important characteristics of the language that it generates.
The first of these properties is: [8]

Given a PCFG Gp, we define the expected values of non terminals matrix
E = (ei,j, 1 ≤ i, j ≤ |N| as:

ei,j = ∑
(A→α)∈ΓAi

p(A→ α)N(Aj, α). (4.8)

Where the value of N(Aj, α) represents the number of times that the non ter-
minal Aj appears in the consequent α. In this expression the value of ei,j is the
expected number of non terminals that Aj can generate directly from Ai.
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In this regard, we define the expected values of terminals matrix Z = (zi,j), 1 ≤
u ≤ |N|, i ≤ j ≤ |Σ| as: [8]

zi,j = ∑
(A→α)∈ΓAi

p(A→ α)N(aj, α) (4.9)

Where the value N(aj, α) represents the number of times that the terminal aj
appears in the consequent α. As the previous definition, the value zi,j represents
the expected value of terminals aj that can be generated directly from Ai.

We can now establish a new theorem based on the previous definitions to
determine which conditions have to be met for a PCFG to be consistent: [8]

A PCFG is consistent if ρ(E) < 1, where ρ(E) or spectral radius is the absolute
value of the greatest eigenvalue of the matrix E.

This theorem provides a simple and direct way to prove the consistency of a
PCFG by only studying the characteristics of E. There are different methods to
calculate the eigenvalues of a matrix. Nevertheless, we are only interested in the
greatest absolute value of them all. The next theorem allows the resolution of this
problem.

For any squared matrix M of dimension m, ρ < 1 if and only if there exists a n ≥ 1
for every i, 1 ≤ i ≤ m: [8]

m

∑
j=1
|(Mn)ij| < 1 (4.10)

One method to determine if the spectral value of the matrix is less than one
consists in the evaluation of the expression 4.10. If the result of the operation is
not less than one, we multiply the matrix by itself and we apply the expression
again. This process is repeated until we can check that the initial condition is true
or the process is carried out a sufficient number of times [8].

The syntactic probabilistic analysis of PCFG consists in the determination of
Pr(x|Gp) > 0. To solve this problem we have to find at least one derivation whose
probability is greater than zero and allows the derivation of the string from the
initial symbol of the grammar.

To solve this problem we can use three different algorithms. The first algo-
rithm, known as Inside, calculates the probability of the string from all the pos-
sible derivations. The Inside algorithm is based on a dynamic programming
scheme analogous to the Cocke-Younger-Kasami algorithm (Figure 4.2). This
algorithm is based on the definition e(A < i, j >= Pr(A ∗⇒ xi...xj|GP) as the
probability that the substring xi...xj is generated from A. This probability can be
evaluated efficiently, for all A ∈ N, as [8] :

e(A < i, i >) = p(A→ xi) 1 ≤ i ≤ |x|, (4.11)

e(A < i, j >) = ∑
B,C∈N

p(A→ BC)
j−1

∑
k=i

e(B < i, k >)e(C < k+ 1, j >) 1 ≤ i ≤ j ≤ |x|.

(4.12)
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In this manner, Pr(x|Gp) = e(S < 1, |x|). The time cost of this algorithm is
O(|x|3|P|) and the space cost is O(|x|2|N|).

Another solution to the syntactic analysis is the Outside algorithm. This algo-
rithm is analogous to the Inside algorithm as it allows to determine if a string x
can be generated by a PCFG, by calculating the probability of said string from all
possible derivations. In the Outside algorithm we define f (A(< i, j >= Pr(S

∗⇒
x1...xi−1Axj+1...x|x||Gp) as the probability of generating the substring x1...xi−1
from the initial axiom, then the generation of the non terminal A and then the
generation of the substring xj+1...x|x|. In this regard, the non terminal A is in
charge of generating the substring xi...xj. This expression can be calculated fol-
lowing the next scheme. For all A ∈ N [8]:

f (A < 1, |x| >) =

{
1 if A = S
0 if A 6= S

(4.13)

And, for 1 ≤ i ≤ j ≤ |x|,

f (A < i, j >) = ∑
B,C∈N

(
p(B→ CA)

i−1

∑
k=1

f (B < k, j >) e(C < k, i− 1 >)

+ p(B→ AC)
|x|

∑
k=j+1

f (B < i, k >) e(C < j + 1, k >)

)
(4.14)

In this manner Pr(x|Gp) = ∑A∈N f (A < i, i >)p(A → xi), 1 ≤ i ≤ |x|. As the
Outside algorithm has a similar behaviour to the Inside algorithm, the time cost
and space cost is analogous and therefore O(|x|3|P|) and O(|x|2|N|) respectively.

The last solution is the Viterbi algorithm. With this solution we are able to
determine if Pr(x|Gp) > 0 by finding at least one derivation whose probability is
bigger than zero. With the Viterbi algorithm we are able to calculate the deriva-
tion of the string whose probability is the maximum. The basis of this calculation
is based upon the definition ê(A < i, j >) = P̂r(A ∗⇒ xi...xj|Gp) as the probability
of the best derivation that generates the substring xi...xj starting from A. For all
A ∈ N [8]:

ê(A < i, i >) = p(A→ xi), (4.15)

ê(A < i, j >) = max
B,C∈N

p(A→ BC) max
k=i,...,j−1

ê(B < i, k >)ê(C < k + 1, j >) (4.16)

1 ≤ i < j ≤ |x|. (4.17)

Therefore, P̂r(x|Gp) = ê(S < 1, |x| >).
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Similar to the algorithms already presented the time cost is O(|x|3|P|, while
the space cost is O(|x|2|P|.

The best derivation of the string x, d̂x, can be obtained easily from the Viterbi
algorithm if we store the arguments that maximize each of the subproblems. This
information is of vital importance if we want to establish the most probable rela-
tions between the different parts of a given string.

4.2 Estimation of Probabilistic Context Free Gram-
mars

4.2.1. Discriminative Estimation

Discriminative training is a method that is applied for the improvement of recog-
nition accuracy in the field of Natural Language Processing (NLP) problems. This
method of recognition used for the estimation of parameters relies on three main
requirements; "A set of features obtained from the structure that represents the
object of study; an objective function that needs to be optimized such as Max-
imum Likelihood Estimation (MLE), Conditional Maximum Likelihood Estima-
tion (CMLE) or Maximum Mutual Information (MMI); and an established opti-
mization method" [18].

The first requirement is satisfied by the labeling of samples through parenting
of known characteristics of a set of proteins (Legume lectins). This parenting will
be discussed in the section 4.3.

For the satisfaction of the second requirement, we know that discriminative
training methods can be used as estimation models for PCFG by using what is
known as the H-criteria, "a common framework for the representation of MLE,
MMI and CMLE learning criteria" [18]. In this study, we propose a discrimi-
native method for training parsers based in the generalization of the H-criteria.
With this new framework we can consider multiple reference trees simultane-
ously and therefore we can acquire a compact PCFG obtained from several gen-
erative models.

Given a PCFG Gs in CNF, a training sample Ω and a set of derivations ∆x
for each x ∈ Ω. The estimation of Gs is obtained by maximizing the following
objective function [18]:

F̃h(Θ) =
1
|Ω| ∑

x∈Ω
log

PGs(x, dx)

(∑dx∈∆x PGs(x, dx))h (4.18)

This function can be simplified as follows:

F̃h(Θ) =
1
|Ω| ∏

x∈Ω
log

PGs(x, dx)

(PGs , ∆x(x))h′ (4.19)

Where 0 ≤ h ≤ 1, and dx is the derivation of a correct parsing. The sum in
the denominator of equation 4.18 is the probability of x in regards of ∆x, where
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∆x defines a set of competing derivations. Finally, the h parameter establishes
the degree that the competing derivations (denominator) discriminate against the
derivation of reference (numerator). In this manner, an optimization of the H-
criteria tries to simultaneously maximize the numerator PGs(x, dx) and minimize
the denominator PGs(x, dx))h for each string x in the training sample.

It is important to point out that in the equation 4.19 we consider that each
sample string has only one possible reference parsing (numerator), although it is
possible that some strings have more than one reference parsing. For this reason
we modify the H-criterion to consider all the possibilities as follows [18]:

Fh(Θ) = ∏
x∈Ω

Pη
Gs

, ∆r
x(x)

Pη
Gs

, ∆c
x(x)h

(4.20)

This formula can be rewritten as:

Fh(Θ) =
∏x∈Ω Pη

Gs
, ∆r

x(x)

∏x∈Ω Pη
Gs

, ∆c
x(x)h′

(4.21)

Where 0 < η, 0 ≤ h ≤ 1 and ∆r
x ⊆ ∆c

x. The set ∆r
x must contain only deriva-

tions of the correct parsing of the sentence x, while the set ∆c
x contains competing

derivations of any parsing of the string x. On the other hand, the values cho-
sen for the parameters η and h determine which criteria is represented. If the
parameters are η = 1 and h = 0 then the MLE criteria is obtained, and if the
parameters have a fixed value of η = h = 1 then the CMLE criteria is obtained.
For this reason, if h > 0 the H-criteria can be viewed as a discriminative training
method.

Now that we have explained the objective function, we are going to inquire
in the method of optimization. In this study, the growth transformation was
used as a method for the optimization of H-criteria. The growth transformation
framework is a maximization framework where a set of parameters Θ is itera-
tively transformed into a new set of paremeters Θ

′
such that Fh(Θ

′
) > Fh(Θ) [18].

"This process is carried in two steps on the initial SCFG until a local maximum
is achieved" [19]. For each iteration, the set ∆x is computed for each x ∈ Ω, in
regards to the selected criterion and then the transformation 4.22 is applied and
a new SCFG is obtained. In order to asses the adequate election of ∆x we need a
merit function that has to increase from iteration to iteration. The transformation
method and merit function are presented below [19]:

Transformation method

p̃(A→ α) =
∑x∈Ω

1
PrGs (x,∆x) ∑∀dx∈∆x N(A→ α, dx)PrGs(x, dx)

∑x∈Ω
1

PrGs (x,∆x) ∑∀dx∈∆x N(A, dx)PrGs(x, dx)
(4.22)

Merit function

PrGs(Ω, ∆Ω) = ∏
x∈Ω

PrGs(x, ∆x) (4.23)



36 Protein Characterization based on Context Free Grammars

It is important to note that the merit function defines a family of functions that
depend on the ∆x. "This expression coincides with the likelihood of the best parse
of the sample when ∆x has only the best derivation of each string" [19]. Referring
to the growth transformation, as this method is a gradient-ascent technique, the
initial probabilities greatly influence the maximum that is achieved. For this rea-
son, several strategies for obtaining initial grammars have been proposed but for
this study we will use a "heuristic initialization based on an exhaustive ergodic
model with probabilites randomly generated" [19].

Finally, this type of transformation allows for the use of different estimation al-
gorithms depending on the set of ∆x. In this regard, the transformation coincides
with IO algorithm when ∆x has all the derivations of each x, while it coincides
with VS (Viterbi Score) algorithm when ∆x has only the best derivation over all
possible derivations [19].

4.3 Novel Method Proposal For Protein Character-
ization

In this section, we are going to present the methodology that was carried out in
order to characterize the family of legume lectins. To do so, we will present the
patterns that tend to appear in this family and that were chosen for said char-
acterization. Also, we will establish the parenting method that allows for the
recognition of compostion and structural information.

Protein homology, is the understanding that sequence similarity between two
given proteins is a strong evidence that the sequences have a shared evolutionary
tree. In this regard, proteins tend to have structures that are highly conserved and
shared in a protein family.

In the case of legume lectins, we already established in section 3.2, that the
proteins pertaining to this family tend to have a higher concentration of beta
strands that interact to form beta sheets. In this manner, we found that this beta
strands were highly conserved throughout the family, but also that some of this
beta strands formed pairs with each other throughout the set. For this reason, it
was of crucial importance identifying this conserved beta strands, as we could
obtain relevant structural information and produce a model that was useful for a
correct classification of this proteins. The patterns that represent this beta strands
(using regex) are the following:

• [LIV]− [STAG]−V − [DEQV]− [FLI]− D− [ST]

• [FL]− I − L−Q− [SG]

• L− [QE]− L− T

• G− R− A− L− [FY]− [YASP]
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• K−V − G− T − A− H − I − [IS]−Y− N

• [PRQ]− H − I − G− I − [DN]− [IV]− [NK]− [ST]− [VIL]− [KIR]

• [DS]− S− A− T −V − S−Y− D

• G− [LI]− [ATV]− [FW]− F− [FIA]− [LAS]

• R− L− S− A− [VI]−V − S−Y

• [DTN]− [VI]− L− S−W − S− F− [FTESAD]− [AS]− [SNK]− [NLFP]

− [FKDSIPN]

In these patterns, each of the letters that appear represents one amino acid. In
the case of the amino acids that appear between the square brackets, only one of
them can be chosen at a time. On the other hand, the amino acids that appear
without square brackets were found to always be in that given position. An ex-
ample chain that could match with one of the suggested patterns is the following:

[FL]− I − L−Q− [SG]⇒ FILQS (4.24)

Of all the patterns that were used, there is one that is present in all of the pro-
teins that are classified in the legume lectin family, the pattern [LIV]− [STAG]−
V − [DEQV] − [FLI] − D − [ST]. For this reason, this pattern is used by sites
like Prosite (https://prosite.expasy.org/), as a consesus pattern which deter-
mines if a given protein is classified as a legume lectin. This type of approach
presents a severe problematic, as a mutation or change in any of the amino acids
that appear in the pattern will prevent a protein from been classified correctly.
For this reason, we decided to use not only the consensus pattern, but also the
rest of the patterns that have been presented, in order to estimate the probability
for a given protein to belong to the legume lectin family based on the appearance
of these patterns. These patterns were introduced in the initial grammar, as can
be seen in the Appendix A.

Once the patterns were determined, the next step was to label the proteins
pertaining to the legume lectin family. In this manner, each of the proteins was
investigated and labelled using a parenting method. With this method, we es-
tablished not only the presence of the beta strands that are represented in the
pattern, but also the interaction that this beta strands had between them (Figure
4.3 ). Following the example of Figure 4.3 the parenting of the this protein would
be as follows:

[ [ V A V V F D T ]...[ G L A F F A L ] ] (4.25)

https://prosite.expasy.org/)
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Figure 4.3: Interaction between two beta strands. As we can see by the blue dotted
lines, there is an interaction between these two strands. The left strand is composed
by the following chain VAVVFDT, that matches with the pattern [LIV]− [STAG]−V −
[DEQV]− [FLI]− D− [ST]. The right strand is composed by the chain GLAFFAL, that

matches with the pattern G− [LI]− [ATV]− [FW]− F− [FIA]− [LAS].

In this manner, the appearance of a beta strand that matches the pattern is
represented by the use of square brackets ([ V A V V F D T ]). Meanwhile, the
second set of square brackets represents that there is an interaction between these
two beta strands. Thanks to this method of parenting we obtain the composition
and structural information of the protein, that we can then use to classify it.



CHAPTER 5

Experimental Evaluation

In this chapter we will give a major insight of the corpus composition. Also, we
will present the metrics used to evaluate the classification process and the main
processes of operation that were used in the corpus.

5.1 The PS00307 Corpus

The PS00307 corpus (legume lectins) is a collection of proteins that have been
classified by different groups of researchers and published by Prosite (https:
//prosite.expasy.org/PS00307#TP). It is composed by a total of 312 proteins,
that pertain to one of the following three groups:

• True positives : This group contains 105 entries of proteins. This set repre-
sents those proteins that contain the pattern [LIV]− [STAG]−V− [DEQV]−
[FLI]− D− [ST] and have been correctly classified as legume lectins.

• False negatives: This group contains 38 entries of proteins. This set repre-
sents those proteins that do not contain the pattern [LIV]− [STAG]− V −
[DEQV] − [FLI] − D − [ST], but are considered to be part of the legume
lectins family.

• False positives: This group contains 168 entries of proteins. This set repre-
sents those proteins that contain the pattern [LIV]− [STAG]−V− [DEQV]−
[FLI]− D− [ST] and are incorrectly classified as legume lectins.

As already mentioned in section 4.3, the use of a consensus pattern gives rise
to a problem of classification, as a simple mutation or change in the amino acid
pattern produces an incorrect labelling of the proteins. Nevertheless, Prosite also
presents different metrics that allow for a more clear comprehension of the effec-
tiveness of their classification (Figure 5.1).

In this study, we only used the true positives and false negatives as these
two groups represent the positive samples required for the training process. In
Chapter 6, we will discuss the possibility of extending this line of investigation to
also include the use of false positive, that will represent the negative samples.
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Figure 5.1: Metrics used in Prosite. As we can see the Precision is substantially low, which
makes the finding of a new method of classification an interesting case of study. On the
other hand, the Recall value is significantly high, although is partially due to the fact that

the number of proteins that pertain to the false negative group is considerably low.

5.2 Evaluation Metrics

The main metric that was used for the evaluation of the classification process
was the Classification Accuracy. "This metric is a straightforward paradigm that
represents the ratios of samples that a classifier correctly recognizes" [20]. The
formula for the calculation of the Classifier Accuracy is quite simple [20]:

CR =
C
A
× 100 (5.1)

Where CR represents the correct rate, C is the number of samples recognized
correctly and A is the number of samples.

Although, we could also had calculated the Recall obtained after classifying
the proteins, we will discuss the main problematic that did not allow for this
calculation in the following section.

5.3 Experimental Results with the PS00307 Corpus

The corpus used for this study was composed exclusively of positive samples
from the Prosite web page.

In this manner, the corpus was formed by 135 proteins that were subsequently
distributed into nine different partitions. The main reason behind this approach
was that we decide to train the models with the use of the k-fold cross-validation.
This technique uses different subsets of limited data to estimate the skill of a
machine learning model on unseen data.
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In this manner, the nine partitions were created by the random shuffle of all
the positive samples and then distributed evenly.

Once the random partition was carried out, the next step was the training of
the SCFG. In order to do so we carried out the following steps:

• Select a fraction of the partition as a test set.

• Use the remaining proteins of the partition as a training set.

• Fit the SCFG model on the training set and evaluate it on the test set.

For each of the partitions, a total of 15 iterations were carried out in the PRHLT
cluster ( Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz) and evaluated by using the
classifier accuracy. The results can be seen here:

Table 5.1: Evaluation based on the classification accuracy (%) of the partitions.

it. P1 P2 P3 P4 P5 P6 P7 P8 P9 Average
1 53.3 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 51.1
2 53.3 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 51.1
3 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
4 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
4 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
5 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
6 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
7 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
8 46.67 66.7 53.3 33.3 53.3 53.3 53.3 53.3 40 50.4
9 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1
10 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1
11 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1
12 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1
13 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1
14 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1
15 46.67 66.7 53.3 33.3 60 53.3 53.3 53.3 40 51.1

As we can see by the results, the number of iterations is not significant to the
classification accuracy or more iterations should be carried out in order to see an
increase in the number of proteins correctly classified. If we compare the best
result of the best average classification accuracy (51.1 %) to the the accuracy of
Prosite (67.0 %) [6], we can see that there is room for improvement. Also, we can
calculate the best classification for each of the partitions and we obtain an average
classifier accuracy of 51.8 %, but still falls short when compared to the Prosite
results. Nevertheless, it is important to note that although the accuracy does
not increase in each iteration, the value of the objective function (equation 4.18
through 4.21) is optimized in each iteration, as demonstrated by the fluctuations
in the accuracy.

For this reason, in the next chapter we will propose a series of experiments
that should be performed to see if we can increase the capability of classification
and acquire more valuable results.





CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

In this this study, we have introduced a new method for the analysis and char-
acterization of proteins. This was possible through the understanding of Chom-
sky’s hierarchy and comprehending that SCFG are able to detect the composition
and structural information of a set of proteins.

In order to acquire this information, a biological context where the interactions
between the different structures of proteins are explained had to be introduced, to
understand the nuances that govern the proteomic world. Again, through the bi-
ological landscape that was introduced, we were able to select a group of proteins,
the legume lectins, by establishing their unique physicochemical characteristics
that make them an interesting case of study.

Once the object of study was chosen, a corpus of 135 proteins representing the
structural information was constructed to perform a series of discriminative esti-
mation processes and obtain different SCFG models. With the estimated models,
we calculated the classifier accuracy and discovered that new experiments, that
could not be carried out due to a lack of time caused by initial problems with the
software, had to be performed in order to increase the classification score.

6.2 Future Work

As already stated, the results of the classification were underwhelming. For this
reason the line of work should be expanded by adding new experiments such as:

• Experiments changing the learning criteria, by the modification of the h pa-
rameter.

• Experimentation including negative samples.

• Comparison with the classifiers of W. Dyrka and Prosite [6].

• Increase in the number of iterations in the training process.
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Finally, we should perform a modification centered in the patterns that were
used. The main problematic with the patterns is that some of them were too strict
and more variability should be introduced . In this regard, we present a new set
of patterns that increase the variability:

• [FLI]− [IKTL]− [LFT]− [QF]− [SGRKE]

• L− [QETVLRAK]− L− [TN]

• [GKS]−R− [AVTY]− [LTF]− [FYS]− [YASRTVQP]− [AKTPLSMYDQN]

• K− [IVT]− [AG]− T − [VA]− H − I[ISN]−Y− N

• H− [IVML]−G− [FVI]− [DN]− [IVTALEN]− [NKDS]− [STGRCGN]−
[VILPAM]

• [DS]− S− [AT]− T −V − S−Y− D

• [GEA]− [LIFM]− [ATIVLC]− [FWRA][VFAYITL][FIALVM][LASPVFGC]

• R− L− [TS]− [AV]− [VI]−V − S−Y

• [QEDPK]− [WRKSYD]−V − [RISD]− [VIFP]G[FL][TS][TSAGP]

• [DTNEGLRYFK]− [VIL]− [FLEYHQRM]− [ASYNDG]−W− [STYHN]−
F− [FTESADHLKQRNG]− [ASTKILRNM]− [SNKTEVG]− [NLFPISMREGFRK]
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APPENDIX A

Initial Grammar

A.1 Initial grammar

• P0 is the axiom and defines the start of the molecule, P1 defines the end, P2
and P3 allow for some recursivity.

• N0-N1 and M0-M4 are non terminals and are used to describe the patterns,
beta strands and variable segments.

• F0-F2 define the end of the molecule.

• X0-X1 define variable segments

• B0-B1 define the beta strands

• R0-R9 define the patterns that were found in the samples.

# PCFG handmade from positive samples
#
NonTerminals 130
P0
P1
P2
P3
N0
N1
M0
M1
M2
M3
M4
F0
F1
F2
X0
X1
B0
B1
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R0
R0A
R0B
R0C
R0D
R0E
R1
R1A
R1B
R1C
R2
R2A
R2B
R3
R3A
R3B
R3C
R3D
R4
R4A
R4B
R4C
R4D
R4E
R4F
R4G
R4H
R5
R5A
R5B
R5C
R5D
R5E
R5F
R5G
R5H
R5I
R6
R6A
R6B
R6C
R6D
R6E
R6F
R7
R7A
R7B
R7C
R7D
R7E
R8
R8A
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R8B
R8C
R8D
R8E
R8F
R9
R9A
R9B
R9C
R9D
R9E
R9F
R9G
R9H
R9I
R9J
RA
RD
RF
RG
RH
RI
RK
RL
RN
RQ
RR
RS
RT
RV
RW
RY
RAS
RDN
RDS
RFL
RFW
RFY
RIS
RIV
RLI
RNK
RQE
RSG
RST
RATV
RDTN
RFIA
RFLI
RKIR
RLAS
RLIV
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RPRQ
RSNK
RDEQV
RNLFP
RSTAG
RYASP
RFTE6
RFKD7

Terminals 20
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y

Rules
0.8000 P0 --> X0 P1
0.2000 P0 --> X0 P2
0.5000 P2 --> B0 P3
0.4991 P2 --> R3 P3
0.0001 P2 --> R0 P3
0.0001 P2 --> R1 P3
0.0001 P2 --> R2 P3
0.0001 P2 --> R4 P3
0.0001 P2 --> R5 P3
0.0001 P2 --> R6 P3
0.0001 P2 --> R7 P3
0.0001 P2 --> R8 P3
0.0001 P2 --> R9 P3
0.6000 P3 --> X0 P1
0.4000 P3 --> X0 P2
0.4000 P1 --> N0 F0
0.6000 P1 --> N0 X0
#-----------------------
0.4000 N0 --> B0 N1
0.3000 N0 --> M0 N1
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0.0300 N0 --> R0 N1
0.0300 N0 --> R1 N1
0.0300 N0 --> R2 N1
0.0300 N0 --> R3 N1
0.0300 N0 --> R4 N1
0.0300 N0 --> R5 N1
0.0300 N0 --> R6 N1
0.0300 N0 --> R7 N1
0.0300 N0 --> R8 N1
0.0300 N0 --> R9 N1
0.3992 N1 --> X0 N0
0.1200 N1 --> X0 B0
0.1200 N1 --> X0 M0
0.1500 N1 --> X0 R7
0.2100 N1 --> X0 R9
0.0001 N1 --> X0 R0
0.0001 N1 --> X0 R1
0.0001 N1 --> X0 R2
0.0001 N1 --> X0 R3
0.0001 N1 --> X0 R4
0.0001 N1 --> X0 R5
0.0001 N1 --> X0 R6
0.0001 N1 --> X0 R8
#-----------------------
0.5101 M0 --> B0 M1
0.0204 M0 --> R0 M1
0.0612 M0 --> R1 M1
0.0204 M0 --> R2 M1
0.0001 M0 --> R3 M1
0.0001 M0 --> R4 M1
0.1632 M0 --> R5 M1
0.0001 M0 --> R6 M1
0.0816 M0 --> R7 M1
0.0816 M0 --> R8 M1
0.0612 M0 --> R9 M1
0.4000 M1 --> X0 M2
0.3930 M1 --> X0 B0
0.1003 M1 --> X0 R0
0.0001 M1 --> X0 R1
0.0020 M1 --> X0 R2
0.0020 M1 --> X0 R3
0.0001 M1 --> X0 R4
0.0001 M1 --> X0 R5
0.1002 M1 --> X0 R6
0.0020 M1 --> X0 R7
0.0001 M1 --> X0 R8
0.0001 M1 --> X0 R9
0.5829 M2 --> B0 M3
0.0001 M2 --> R0 M3
0.1665 M2 --> R1 M3
0.2498 M2 --> R2 M3
0.0001 M2 --> R3 M3
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0.0001 M2 --> R4 M3
0.0001 M2 --> R5 M3
0.0001 M2 --> R6 M3
0.0001 M2 --> R7 M3
0.0001 M2 --> R8 M3
0.0001 M2 --> R9 M3
0.3000 M3 --> X0 M4
0.2000 M3 --> X0 B0
0.0500 M3 --> X0 R0
0.0500 M3 --> X0 R1
0.0500 M3 --> X0 R2
0.0500 M3 --> X0 R3
0.0500 M3 --> X0 R4
0.0500 M3 --> X0 R5
0.0500 M3 --> X0 R6
0.0500 M3 --> X0 R7
0.0500 M3 --> X0 R8
0.0500 M3 --> X0 R9
0.1000 M4 --> B0 M3
0.0900 M4 --> R0 M3
0.0900 M4 --> R1 M3
0.0900 M4 --> R2 M3
0.0900 M4 --> R3 M3
0.0900 M4 --> R4 M3
0.0900 M4 --> R5 M3
0.0900 M4 --> R6 M3
0.0900 M4 --> R7 M3
0.0900 M4 --> R8 M3
0.0900 M4 --> R9 M3
#-----------------------
1.0000 F0 --> X0 F1
0.1000 F1 --> B0 F2
0.2500 F1 --> B0 X0
0.1984 F1 --> R9 F2
0.4500 F1 --> R9 X0
0.0001 F1 --> R0 F2
0.0001 F1 --> R1 F2
0.0001 F1 --> R2 F2
0.0001 F1 --> R3 F2
0.0001 F1 --> R4 F2
0.0001 F1 --> R5 F2
0.0001 F1 --> R6 F2
0.0001 F1 --> R7 F2
0.0001 F1 --> R8 F2
0.0001 F1 --> R0 X0
0.0001 F1 --> R1 X0
0.0001 F1 --> R2 X0
0.0001 F1 --> R3 X0
0.0001 F1 --> R4 X0
0.0001 F1 --> R5 X0
0.0001 F1 --> R6 X0
0.0001 F1 --> R7 X0
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0.0001 F1 --> R8 X0
1.0000 F2 --> X0 F1
#-----------------------
0.6000 X0 --> X0 X1
0.0200 X0 --> A
0.0200 X0 --> C
0.0200 X0 --> D
0.0200 X0 --> E
0.0200 X0 --> F
0.0200 X0 --> G
0.0200 X0 --> H
0.0200 X0 --> I
0.0200 X0 --> K
0.0200 X0 --> L
0.0200 X0 --> M
0.0200 X0 --> N
0.0200 X0 --> P
0.0200 X0 --> Q
0.0200 X0 --> R
0.0200 X0 --> S
0.0200 X0 --> T
0.0200 X0 --> V
0.0200 X0 --> W
0.0200 X0 --> Y
0.0500 X1 --> A
0.0500 X1 --> C
0.0500 X1 --> D
0.0500 X1 --> E
0.0500 X1 --> F
0.0500 X1 --> G
0.0500 X1 --> H
0.0500 X1 --> I
0.0500 X1 --> K
0.0500 X1 --> L
0.0500 X1 --> M
0.0500 X1 --> N
0.0500 X1 --> P
0.0500 X1 --> Q
0.0500 X1 --> R
0.0500 X1 --> S
0.0500 X1 --> T
0.0500 X1 --> V
0.0500 X1 --> W
0.0500 X1 --> Y
#-----------------------
0.6000 B0 --> B0 B1
0.0200 B0 --> A
0.0200 B0 --> C
0.0200 B0 --> D
0.0200 B0 --> E
0.0200 B0 --> F
0.0200 B0 --> G
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0.0200 B0 --> H
0.0200 B0 --> I
0.0200 B0 --> K
0.0200 B0 --> L
0.0200 B0 --> M
0.0200 B0 --> N
0.0200 B0 --> P
0.0200 B0 --> Q
0.0200 B0 --> R
0.0200 B0 --> S
0.0200 B0 --> T
0.0200 B0 --> V
0.0200 B0 --> W
0.0200 B0 --> Y
0.0500 B1 --> A
0.0500 B1 --> C
0.0500 B1 --> D
0.0500 B1 --> E
0.0500 B1 --> F
0.0500 B1 --> G
0.0500 B1 --> H
0.0500 B1 --> I
0.0500 B1 --> K
0.0500 B1 --> L
0.0500 B1 --> M
0.0500 B1 --> N
0.0500 B1 --> P
0.0500 B1 --> Q
0.0500 B1 --> R
0.0500 B1 --> S
0.0500 B1 --> T
0.0500 B1 --> V
0.0500 B1 --> W
0.0500 B1 --> Y
#
# EXPRESIONES REGULARES DE PATR0NES
#----------------------------------
# R0 = [LIV][STAG]V[DEQV][FLI]D[ST]
1.0000 R0 --> RLIV R0A
1.0000 R0A --> RSTAG R0B
1.0000 R0B --> RV R0C
1.0000 R0C --> RDEQV R0D
1.0000 R0D --> RFLI R0E
1.0000 R0E --> RD RST
#---------------------------
# R1 = [FL]ILQ[SG]
1.0000 R1 --> RFL R1A
1.0000 R1A --> RI R1B
1.0000 R1B --> RL R1C
1.0000 R1C --> RQ RSG
#---------------------------
# R2 = L[QE]LT
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1.0000 R2 --> RL R2A
1.0000 R2A --> RQE R2B
1.0000 R2B --> RL RT
#---------------------------
# R3 = GRAL[FY][YASP]
1.0000 R3 --> RG R3A
1.0000 R3A --> RR R3B
1.0000 R3B --> RA R3C
1.0000 R3C --> RL R3D
1.0000 R3D --> RFY RYASP
#---------------------------
# R4 = KVGTAHI[IS]YN
1.0000 R4 --> RK R4A
1.0000 R4A --> RV R4B
1.0000 R4B --> RG R4C
1.0000 R4C --> RT R4D
1.0000 R4D --> RA R4E
1.0000 R4E --> RH R4F
1.0000 R4F --> RI R4G
1.0000 R4G --> RIS R4H
1.0000 R4H --> RY RN
#---------------------------
# R5 = [PRQ]HIGI[DN][IV][NK][ST][VIL][KIR]
1.0000 R5 --> RPRQ R5A
1.0000 R5A --> RH R5B
1.0000 R5B --> RI R5C
1.0000 R5C --> RG R5D
1.0000 R5D --> RI R5E
1.0000 R5E --> RDN R5F
1.0000 R5F --> RIV R5G
1.0000 R5G --> RNK R5H
1.0000 R5H --> RST R5I
1.0000 R5I --> RLIV RKIR
#---------------------------
# R6 = [DS]SATVSYD
1.0000 R6 --> RDS R6A
1.0000 R6A --> RS R6B
1.0000 R6B --> RA R6C
1.0000 R6C --> RT R6D
1.0000 R6D --> RV R6E
1.0000 R6E --> RS R6F
1.0000 R6F --> RY RD
#---------------------------
# R7 = G[LI][ATV][FW]F[FIA][LAS]
1.0000 R7 --> RG R7A
1.0000 R7A --> RLI R7B
1.0000 R7B --> RATV R7C
1.0000 R7C --> RFW R7D
1.0000 R7D --> RF R7E
1.0000 R7E --> RFIA RLAS
#---------------------------
# R8 = RLSA[VI]VSY
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1.0000 R8 --> RR R8A
1.0000 R8A --> RL R8B
1.0000 R8B --> RS R8C
1.0000 R8C --> RA R8D
1.0000 R8D --> RIV R8E
1.0000 R8E --> RV R5F
1.0000 R8F --> RS RY
#---------------------------
# R9 = [DTN][VI]LSWSF[FTESAD][AS][SNK][NLFP][FKDSIPN]
1.0000 R9 --> RDTN R9A
1.0000 R9A --> RIV R9B
1.0000 R9B --> RL R9C
1.0000 R9C --> RS R9D
1.0000 R9D --> RW R9E
1.0000 R9E --> RS R9F
1.0000 R9F --> RF R9G
1.0000 R9G --> RFTE6 R9H
1.0000 R9H --> RAS R9I
1.0000 R9I --> RSNK R9J
1.0000 R9J --> RNLFP RFKD7
#-------------------------------------------------
# RA A 1
0.9981 RA --> A
0.0001 RA --> C
0.0001 RA --> D
0.0001 RA --> E
0.0001 RA --> F
0.0001 RA --> G
0.0001 RA --> H
0.0001 RA --> I
0.0001 RA --> K
0.0001 RA --> L
0.0001 RA --> M
0.0001 RA --> N
0.0001 RA --> P
0.0001 RA --> Q
0.0001 RA --> R
0.0001 RA --> S
0.0001 RA --> T
0.0001 RA --> V
0.0001 RA --> W
0.0001 RA --> Y
#-----------------------
# RD D 1
0.0001 RD --> A
0.0001 RD --> C
0.9981 RD --> D
0.0001 RD --> E
0.0001 RD --> F
0.0001 RD --> G
0.0001 RD --> H
0.0001 RD --> I
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0.0001 RD --> K
0.0001 RD --> L
0.0001 RD --> M
0.0001 RD --> N
0.0001 RD --> P
0.0001 RD --> Q
0.0001 RD --> R
0.0001 RD --> S
0.0001 RD --> T
0.0001 RD --> V
0.0001 RD --> W
0.0001 RD --> Y
#-----------------------
# RF F 1
0.0001 RF --> A
0.0001 RF --> C
0.0001 RF --> D
0.0001 RF --> E
0.9981 RF --> F
0.0001 RF --> G
0.0001 RF --> H
0.0001 RF --> I
0.0001 RF --> K
0.0001 RF --> L
0.0001 RF --> M
0.0001 RF --> N
0.0001 RF --> P
0.0001 RF --> Q
0.0001 RF --> R
0.0001 RF --> S
0.0001 RF --> T
0.0001 RF --> V
0.0001 RF --> W
0.0001 RF --> Y
#-----------------------
# RG G 1
0.0001 RG --> A
0.0001 RG --> C
0.0001 RG --> D
0.0001 RG --> E
0.0001 RG --> F
0.9981 RG --> G
0.0001 RG --> H
0.0001 RG --> I
0.0001 RG --> K
0.0001 RG --> L
0.0001 RG --> M
0.0001 RG --> N
0.0001 RG --> P
0.0001 RG --> Q
0.0001 RG --> R
0.0001 RG --> S
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0.0001 RG --> T
0.0001 RG --> V
0.0001 RG --> W
0.0001 RG --> Y
#-----------------------
# RH H 1
0.0001 RH --> A
0.0001 RH --> C
0.0001 RH --> D
0.0001 RH --> E
0.0001 RH --> F
0.0001 RH --> G
0.9981 RH --> H
0.0001 RH --> I
0.0001 RH --> K
0.0001 RH --> L
0.0001 RH --> M
0.0001 RH --> N
0.0001 RH --> P
0.0001 RH --> Q
0.0001 RH --> R
0.0001 RH --> S
0.0001 RH --> T
0.0001 RH --> V
0.0001 RH --> W
0.0001 RH --> Y
#-----------------------
# RI I 1
0.0001 RI --> A
0.0001 RI --> C
0.0001 RI --> D
0.0001 RI --> E
0.0001 RI --> F
0.0001 RI --> G
0.0001 RI --> H
0.9981 RI --> I
0.0001 RI --> K
0.0001 RI --> L
0.0001 RI --> M
0.0001 RI --> N
0.0001 RI --> P
0.0001 RI --> Q
0.0001 RI --> R
0.0001 RI --> S
0.0001 RI --> T
0.0001 RI --> V
0.0001 RI --> W
0.0001 RI --> Y
#-----------------------
# RK K 1
0.0001 RK --> A
0.0001 RK --> C
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0.0001 RK --> D
0.0001 RK --> E
0.0001 RK --> F
0.0001 RK --> G
0.0001 RK --> H
0.0001 RK --> I
0.9981 RK --> K
0.0001 RK --> L
0.0001 RK --> M
0.0001 RK --> N
0.0001 RK --> P
0.0001 RK --> Q
0.0001 RK --> R
0.0001 RK --> S
0.0001 RK --> T
0.0001 RK --> V
0.0001 RK --> W
0.0001 RK --> Y
#-----------------------
# RL L 1
0.0001 RL --> A
0.0001 RL --> C
0.0001 RL --> D
0.0001 RL --> E
0.0001 RL --> F
0.0001 RL --> G
0.0001 RL --> H
0.0001 RL --> I
0.0001 RL --> K
0.9981 RL --> L
0.0001 RL --> M
0.0001 RL --> N
0.0001 RL --> P
0.0001 RL --> Q
0.0001 RL --> R
0.0001 RL --> S
0.0001 RL --> T
0.0001 RL --> V
0.0001 RL --> W
0.0001 RL --> Y
#-----------------------
# RN N 1
0.0001 RN --> A
0.0001 RN --> C
0.0001 RN --> D
0.0001 RN --> E
0.0001 RN --> F
0.0001 RN --> G
0.0001 RN --> H
0.0001 RN --> I
0.0001 RN --> K
0.0001 RN --> L
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0.0001 RN --> M
0.9981 RN --> N
0.0001 RN --> P
0.0001 RN --> Q
0.0001 RN --> R
0.0001 RN --> S
0.0001 RN --> T
0.0001 RN --> V
0.0001 RN --> W
0.0001 RN --> Y
#-----------------------
# RQ Q 1
0.0001 RQ --> A
0.0001 RQ --> C
0.0001 RQ --> D
0.0001 RQ --> E
0.0001 RQ --> F
0.0001 RQ --> G
0.0001 RQ --> H
0.0001 RQ --> I
0.0001 RQ --> K
0.0001 RQ --> L
0.0001 RQ --> M
0.0001 RQ --> N
0.0001 RQ --> P
0.9981 RQ --> Q
0.0001 RQ --> R
0.0001 RQ --> S
0.0001 RQ --> T
0.0001 RQ --> V
0.0001 RQ --> W
0.0001 RQ --> Y
#-----------------------
# RR R 1
0.0001 RR --> A
0.0001 RR --> C
0.0001 RR --> D
0.0001 RR --> E
0.0001 RR --> F
0.0001 RR --> G
0.0001 RR --> H
0.0001 RR --> I
0.0001 RR --> K
0.0001 RR --> L
0.0001 RR --> M
0.0001 RR --> N
0.0001 RR --> P
0.0001 RR --> Q
0.9981 RR --> R
0.0001 RR --> S
0.0001 RR --> T
0.0001 RR --> V
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0.0001 RR --> W
0.0001 RR --> Y
#-----------------------
# RS S 1
0.0001 RS --> A
0.0001 RS --> C
0.0001 RS --> D
0.0001 RS --> E
0.0001 RS --> F
0.0001 RS --> G
0.0001 RS --> H
0.0001 RS --> I
0.0001 RS --> K
0.0001 RS --> L
0.0001 RS --> M
0.0001 RS --> N
0.0001 RS --> P
0.0001 RS --> Q
0.0001 RS --> R
0.9981 RS --> S
0.0001 RS --> T
0.0001 RS --> V
0.0001 RS --> W
0.0001 RS --> Y
#-----------------------
# RT T 1
0.0001 RT --> A
0.0001 RT --> C
0.0001 RT --> D
0.0001 RT --> E
0.0001 RT --> F
0.0001 RT --> G
0.0001 RT --> H
0.0001 RT --> I
0.0001 RT --> K
0.0001 RT --> L
0.0001 RT --> M
0.0001 RT --> N
0.0001 RT --> P
0.0001 RT --> Q
0.0001 RT --> R
0.0001 RT --> S
0.9981 RT --> T
0.0001 RT --> V
0.0001 RT --> W
0.0001 RT --> Y
#-----------------------
# RV V 1
0.0001 RV --> A
0.0001 RV --> C
0.0001 RV --> D
0.0001 RV --> E
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0.0001 RV --> F
0.0001 RV --> G
0.0001 RV --> H
0.0001 RV --> I
0.0001 RV --> K
0.0001 RV --> L
0.0001 RV --> M
0.0001 RV --> N
0.0001 RV --> P
0.0001 RV --> Q
0.0001 RV --> R
0.0001 RV --> S
0.0001 RV --> T
0.9981 RV --> V
0.0001 RV --> W
0.0001 RV --> Y
#-----------------------
# RW W 1
0.0001 RW --> A
0.0001 RW --> C
0.0001 RW --> D
0.0001 RW --> E
0.0001 RW --> F
0.0001 RW --> G
0.0001 RW --> H
0.0001 RW --> I
0.0001 RW --> K
0.0001 RW --> L
0.0001 RW --> M
0.0001 RW --> N
0.0001 RW --> P
0.0001 RW --> Q
0.0001 RW --> R
0.0001 RW --> S
0.0001 RW --> T
0.0001 RW --> V
0.9981 RW --> W
0.0001 RW --> Y
#-----------------------
# RY Y 1
0.0001 RY --> A
0.0001 RY --> C
0.0001 RY --> D
0.0001 RY --> E
0.0001 RY --> F
0.0001 RY --> G
0.0001 RY --> H
0.0001 RY --> I
0.0001 RY --> K
0.0001 RY --> L
0.0001 RY --> M
0.0001 RY --> N
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0.0001 RY --> P
0.0001 RY --> Q
0.0001 RY --> R
0.0001 RY --> S
0.0001 RY --> T
0.0001 RY --> V
0.0001 RY --> W
0.9981 RY --> Y
#-------------------------------------------------
# RAS [AS] 2
0.4491 RAS --> A
0.0001 RAS --> C
0.0001 RAS --> D
0.0001 RAS --> E
0.0001 RAS --> F
0.0001 RAS --> G
0.0001 RAS --> H
0.0001 RAS --> I
0.0001 RAS --> K
0.0001 RAS --> L
0.0001 RAS --> M
0.0001 RAS --> N
0.0001 RAS --> P
0.0001 RAS --> Q
0.0001 RAS --> R
0.4491 RAS --> S
0.0001 RAS --> T
0.0001 RAS --> V
0.0001 RAS --> W
0.0001 RAS --> Y
#-----------------------
# RDN [DN] 2
0.0001 RDN --> A
0.0001 RDN --> C
0.4491 RDN --> D
0.0001 RDN --> E
0.0001 RDN --> F
0.0001 RDN --> G
0.0001 RDN --> H
0.0001 RDN --> I
0.0001 RDN --> K
0.0001 RDN --> L
0.0001 RDN --> M
0.4491 RDN --> N
0.0001 RDN --> P
0.0001 RDN --> Q
0.0001 RDN --> R
0.0001 RDN --> S
0.0001 RDN --> T
0.0001 RDN --> V
0.0001 RDN --> W
0.0001 RDN --> Y
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#-----------------------
# RDS [DS] 2
0.0001 RDS --> A
0.0001 RDS --> C
0.4491 RDS --> D
0.0001 RDS --> E
0.0001 RDS --> F
0.0001 RDS --> G
0.0001 RDS --> H
0.0001 RDS --> I
0.0001 RDS --> K
0.0001 RDS --> L
0.0001 RDS --> M
0.0001 RDS --> N
0.0001 RDS --> P
0.0001 RDS --> Q
0.0001 RDS --> R
0.4491 RDS --> S
0.0001 RDS --> T
0.0001 RDS --> V
0.0001 RDS --> W
0.0001 RDS --> Y
#-----------------------
# RFL [FL] 2
0.0001 RFL --> A
0.0001 RFL --> C
0.0001 RFL --> D
0.0001 RFL --> E
0.4491 RFL --> F
0.0001 RFL --> G
0.0001 RFL --> H
0.0001 RFL --> I
0.0001 RFL --> K
0.4491 RFL --> L
0.0001 RFL --> M
0.0001 RFL --> N
0.0001 RFL --> P
0.0001 RFL --> Q
0.0001 RFL --> R
0.0001 RFL --> S
0.0001 RFL --> T
0.0001 RFL --> V
0.0001 RFL --> W
0.0001 RFL --> Y
#-----------------------
# RFW [FW] 2
0.0001 RFW --> A
0.0001 RFW --> C
0.0001 RFW --> D
0.0001 RFW --> E
0.4491 RFW --> F
0.0001 RFW --> G
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0.0001 RFW --> H
0.0001 RFW --> I
0.0001 RFW --> K
0.0001 RFW --> L
0.0001 RFW --> M
0.0001 RFW --> N
0.0001 RFW --> P
0.0001 RFW --> Q
0.0001 RFW --> R
0.0001 RFW --> S
0.0001 RFW --> T
0.0001 RFW --> V
0.4491 RFW --> W
0.0001 RFW --> Y
#-----------------------
# RFY [FY] 2
0.0001 RFY --> A
0.0001 RFY --> C
0.0001 RFY --> D
0.0001 RFY --> E
0.4491 RFY --> F
0.0001 RFY --> G
0.0001 RFY --> H
0.0001 RFY --> I
0.0001 RFY --> K
0.0001 RFY --> L
0.0001 RFY --> M
0.0001 RFY --> N
0.0001 RFY --> P
0.0001 RFY --> Q
0.0001 RFY --> R
0.0001 RFY --> S
0.0001 RFY --> T
0.0001 RFY --> V
0.0001 RFY --> W
0.4491 RFY --> Y
#-----------------------
# RIS [IS] 2
0.0001 RIS --> A
0.0001 RIS --> C
0.0001 RIS --> D
0.0001 RIS --> E
0.0001 RIS --> F
0.0001 RIS --> G
0.0001 RIS --> H
0.4491 RIS --> I
0.0001 RIS --> K
0.0001 RIS --> L
0.0001 RIS --> M
0.0001 RIS --> N
0.0001 RIS --> P
0.0001 RIS --> Q
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0.0001 RIS --> R
0.4491 RIS --> S
0.0001 RIS --> T
0.0001 RIS --> V
0.0001 RIS --> W
0.0001 RIS --> Y
#-----------------------
# RIV [IV] 2
0.0001 RIV --> A
0.0001 RIV --> C
0.0001 RIV --> D
0.0001 RIV --> E
0.0001 RIV --> F
0.0001 RIV --> G
0.0001 RIV --> H
0.4491 RIV --> I
0.0001 RIV --> K
0.0001 RIV --> L
0.0001 RIV --> M
0.0001 RIV --> N
0.0001 RIV --> P
0.0001 RIV --> Q
0.0001 RIV --> R
0.0001 RIV --> S
0.0001 RIV --> T
0.4491 RIV --> V
0.0001 RIV --> W
0.0001 RIV --> Y
#-----------------------
# RLI [LI] 2
0.0001 RLI --> A
0.0001 RLI --> C
0.0001 RLI --> D
0.0001 RLI --> E
0.0001 RLI --> F
0.0001 RLI --> G
0.0001 RLI --> H
0.4491 RLI --> I
0.0001 RLI --> K
0.4491 RLI --> L
0.0001 RLI --> M
0.0001 RLI --> N
0.0001 RLI --> P
0.0001 RLI --> Q
0.0001 RLI --> R
0.0001 RLI --> S
0.0001 RLI --> T
0.0001 RLI --> V
0.0001 RLI --> W
0.0001 RLI --> Y
#-----------------------
# RNK [NK] 2



A.1 Initial grammar 69

0.0001 RNK --> A
0.0001 RNK --> C
0.0001 RNK --> D
0.0001 RNK --> E
0.0001 RNK --> F
0.0001 RNK --> G
0.0001 RNK --> H
0.0001 RNK --> I
0.4491 RNK --> K
0.0001 RNK --> L
0.0001 RNK --> M
0.4491 RNK --> N
0.0001 RNK --> P
0.0001 RNK --> Q
0.0001 RNK --> R
0.0001 RNK --> S
0.0001 RNK --> T
0.0001 RNK --> V
0.0001 RNK --> W
0.0001 RNK --> Y
#-----------------------
# RQE [QE] 2
0.0001 RQE --> A
0.0001 RQE --> C
0.0001 RQE --> D
0.4991 RQE --> E
0.0001 RQE --> F
0.0001 RQE --> G
0.0001 RQE --> H
0.0001 RQE --> I
0.0001 RQE --> K
0.0001 RQE --> L
0.0001 RQE --> M
0.0001 RQE --> N
0.0001 RQE --> P
0.4991 RQE --> Q
0.0001 RQE --> R
0.0001 RQE --> S
0.0001 RQE --> T
0.0001 RQE --> V
0.0001 RQE --> W
0.0001 RQE --> Y
#-----------------------
# RSG [SG] 2
0.0001 RSG --> A
0.0001 RSG --> C
0.0001 RSG --> D
0.0001 RSG --> E
0.0001 RSG --> F
0.4491 RSG --> G
0.0001 RSG --> H
0.0001 RSG --> I
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0.0001 RSG --> K
0.0001 RSG --> L
0.0001 RSG --> M
0.0001 RSG --> N
0.0001 RSG --> P
0.0001 RSG --> Q
0.0001 RSG --> R
0.4491 RSG --> S
0.0001 RSG --> T
0.0001 RSG --> V
0.0001 RSG --> W
0.0001 RSG --> Y
#-----------------------
# RST [ST] 2
0.0001 RST --> A
0.0001 RST --> C
0.0001 RST --> D
0.0001 RST --> E
0.0001 RST --> F
0.0001 RST --> G
0.0001 RST --> H
0.0001 RST --> I
0.0001 RST --> K
0.0001 RST --> L
0.0001 RST --> M
0.0001 RST --> N
0.0001 RST --> P
0.0001 RST --> Q
0.0001 RST --> R
0.4491 RST --> S
0.4491 RST --> T
0.0001 RST --> V
0.0001 RST --> W
0.0001 RST --> Y
#-------------------------------------------------
# ATV [ATV] 3
0.3328 RATV --> A
0.0001 RATV --> C
0.0001 RATV --> D
0.0001 RATV --> E
0.0001 RATV --> F
0.0001 RATV --> G
0.0001 RATV --> H
0.0001 RATV --> I
0.0001 RATV --> K
0.0001 RATV --> L
0.0001 RATV --> M
0.0001 RATV --> N
0.0001 RATV --> P
0.0001 RATV --> Q
0.0001 RATV --> R
0.0001 RATV --> S
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0.3327 RATV --> T
0.3328 RATV --> V
0.0001 RATV --> W
0.0001 RATV --> Y
#-----------------------
# RDTN [DTN] 3
0.0001 RDTN --> A
0.0001 RDTN --> C
0.3328 RDTN --> D
0.0001 RDTN --> E
0.0001 RDTN --> F
0.0001 RDTN --> G
0.0001 RDTN --> H
0.0001 RDTN --> I
0.0001 RDTN --> K
0.0001 RDTN --> L
0.0001 RDTN --> M
0.3327 RDTN --> N
0.0001 RDTN --> P
0.0001 RDTN --> Q
0.0001 RDTN --> R
0.0001 RDTN --> S
0.3328 RDTN --> T
0.0001 RDTN --> V
0.0001 RDTN --> W
0.0001 RDTN --> Y
#-----------------------
# RFIA [FIA] 3
0.3328 RFIA --> A
0.0001 RFIA --> C
0.0001 RFIA --> D
0.0001 RFIA --> E
0.3327 RFIA --> F
0.0001 RFIA --> G
0.0001 RFIA --> H
0.3328 RFIA --> I
0.0001 RFIA --> K
0.0001 RFIA --> L
0.0001 RFIA --> M
0.0001 RFIA --> N
0.0001 RFIA --> P
0.0001 RFIA --> Q
0.0001 RFIA --> R
0.0001 RFIA --> S
0.0001 RFIA --> T
0.0001 RFIA --> V
0.0001 RFIA --> W
0.0001 RFIA --> Y
#-----------------------
# RFLI [FLI] 3
0.0001 RFLI --> A
0.0001 RFLI --> C
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0.0001 RFLI --> D
0.0001 RFLI --> E
0.3328 RFLI --> F
0.0001 RFLI --> G
0.0001 RFLI --> H
0.3327 RFLI --> I
0.0001 RFLI --> K
0.3328 RFLI --> L
0.0001 RFLI --> M
0.0001 RFLI --> N
0.0001 RFLI --> P
0.0001 RFLI --> Q
0.0001 RFLI --> R
0.0001 RFLI --> S
0.0001 RFLI --> T
0.0001 RFLI --> V
0.0001 RFLI --> W
0.0001 RFLI --> Y
#-----------------------
# RKIR [KIR] 3
0.0001 RKIR --> A
0.0001 RKIR --> C
0.0001 RKIR --> D
0.0001 RKIR --> E
0.0001 RKIR --> F
0.0001 RKIR --> G
0.0001 RKIR --> H
0.3328 RKIR --> I
0.3327 RKIR --> K
0.0001 RKIR --> L
0.0001 RKIR --> M
0.0001 RKIR --> N
0.0001 RKIR --> P
0.0001 RKIR --> Q
0.3328 RKIR --> R
0.0001 RKIR --> S
0.0001 RKIR --> T
0.0001 RKIR --> V
0.0001 RKIR --> W
0.0001 RKIR --> Y
#-----------------------
# RLAS [LAS] 3
0.3328 RLAS --> A
0.0001 RLAS --> C
0.0001 RLAS --> D
0.0001 RLAS --> E
0.0001 RLAS --> F
0.0001 RLAS --> G
0.0001 RLAS --> H
0.0001 RLAS --> I
0.0001 RLAS --> K
0.3327 RLAS --> L
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0.0001 RLAS --> M
0.0001 RLAS --> N
0.0001 RLAS --> P
0.0001 RLAS --> Q
0.0001 RLAS --> R
0.3328 RLAS --> S
0.0001 RLAS --> T
0.0001 RLAS --> V
0.0001 RLAS --> W
0.0001 RLAS --> Y
#-----------------------
# RLIV [LIV] 3
0.0001 RLIV --> A
0.0001 RLIV --> C
0.0001 RLIV --> D
0.0001 RLIV --> E
0.0001 RLIV --> F
0.0001 RLIV --> G
0.0001 RLIV --> H
0.3327 RLIV --> I
0.0001 RLIV --> K
0.3328 RLIV --> L
0.0001 RLIV --> M
0.0001 RLIV --> N
0.0001 RLIV --> P
0.0001 RLIV --> Q
0.0001 RLIV --> R
0.0001 RLIV --> S
0.0001 RLIV --> T
0.3328 RLIV --> V
0.0001 RLIV --> W
0.0001 RLIV --> Y
#-----------------------
# RPRQ [PRQ] 3
0.0001 RPRQ --> A
0.0001 RPRQ --> C
0.0001 RPRQ --> D
0.0001 RPRQ --> E
0.0001 RPRQ --> F
0.0001 RPRQ --> G
0.0001 RPRQ --> H
0.0001 RPRQ --> I
0.0001 RPRQ --> K
0.0001 RPRQ --> L
0.0001 RPRQ --> M
0.0001 RPRQ --> N
0.3328 RPRQ --> P
0.3327 RPRQ --> Q
0.3328 RPRQ --> R
0.0001 RPRQ --> S
0.0001 RPRQ --> T
0.0001 RPRQ --> V
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0.0001 RPRQ --> W
0.0001 RPRQ --> Y
#-----------------------
# RSNK [SNK] 3
0.3328 RSNK --> A
0.0001 RSNK --> C
0.0001 RSNK --> D
0.0001 RSNK --> E
0.3327 RSNK --> F
0.0001 RSNK --> G
0.0001 RSNK --> H
0.3328 RSNK --> I
0.0001 RSNK --> K
0.0001 RSNK --> L
0.0001 RSNK --> M
0.0001 RSNK --> N
0.0001 RSNK --> P
0.0001 RSNK --> Q
0.0001 RSNK --> R
0.0001 RSNK --> S
0.0001 RSNK --> T
0.0001 RSNK --> V
0.0001 RSNK --> W
0.0001 RSNK --> Y
#-------------------------------------------------
# RDEQV [DEQV] 4
0.0001 RDEQV --> A
0.0001 RDEQV --> C
0.2496 RDEQV --> D
0.2496 RDEQV --> E
0.0001 RDEQV --> F
0.0001 RDEQV --> G
0.0001 RDEQV --> H
0.0001 RDEQV --> I
0.0001 RDEQV --> K
0.0001 RDEQV --> L
0.0001 RDEQV --> M
0.0001 RDEQV --> N
0.0001 RDEQV --> P
0.2496 RDEQV --> Q
0.0001 RDEQV --> R
0.0001 RDEQV --> S
0.0001 RDEQV --> T
0.2496 RDEQV --> V
0.0001 RDEQV --> W
0.0001 RDEQV --> Y
#-----------------------
# RNLFP [NLFP] 4
0.0001 RNLFP --> A
0.0001 RNLFP --> C
0.0001 RNLFP --> D
0.0001 RNLFP --> E
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0.2496 RNLFP --> F
0.0001 RNLFP --> G
0.0001 RNLFP --> H
0.0001 RNLFP --> I
0.0001 RNLFP --> K
0.2496 RNLFP --> L
0.0001 RNLFP --> M
0.2496 RNLFP --> N
0.2496 RNLFP --> P
0.0001 RNLFP --> Q
0.0001 RNLFP --> R
0.0001 RNLFP --> S
0.0001 RNLFP --> T
0.0001 RNLFP --> V
0.0001 RNLFP --> W
0.0001 RNLFP --> Y
#-----------------------
# RSTAG [STAG] 4
0.2496 RSTAG --> A
0.0001 RSTAG --> C
0.0001 RSTAG --> D
0.0001 RSTAG --> E
0.0001 RSTAG --> F
0.2496 RSTAG --> G
0.0001 RSTAG --> H
0.0001 RSTAG --> I
0.0001 RSTAG --> K
0.0001 RSTAG --> L
0.0001 RSTAG --> M
0.0001 RSTAG --> N
0.0001 RSTAG --> P
0.0001 RSTAG --> Q
0.0001 RSTAG --> R
0.2496 RSTAG --> S
0.2496 RSTAG --> T
0.0001 RSTAG --> V
0.0001 RSTAG --> W
0.0001 RSTAG --> Y
#-----------------------
# RYASP [YASP] 4
0.2496 RYASP --> A
0.0001 RYASP --> C
0.0001 RYASP --> D
0.0001 RYASP --> E
0.0001 RYASP --> F
0.0001 RYASP --> G
0.0001 RYASP --> H
0.0001 RYASP --> I
0.0001 RYASP --> K
0.0001 RYASP --> L
0.0001 RYASP --> M
0.0001 RYASP --> N
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0.2496 RYASP --> P
0.0001 RYASP --> Q
0.0001 RYASP --> R
0.2496 RYASP --> S
0.0001 RYASP --> T
0.0001 RYASP --> V
0.0001 RYASP --> W
0.2496 RYASP --> Y
#-------------------------------------------------
# RFTE6 [FTESAD] 6
0.1665 RFTE6 --> A
0.0001 RFTE6 --> C
0.1664 RFTE6 --> D
0.1664 RFTE6 --> E
0.1664 RFTE6 --> F
0.0001 RFTE6 --> G
0.0001 RFTE6 --> H
0.0001 RFTE6 --> I
0.0001 RFTE6 --> K
0.0001 RFTE6 --> L
0.0001 RFTE6 --> M
0.0001 RFTE6 --> N
0.0001 RFTE6 --> P
0.0001 RFTE6 --> Q
0.0001 RFTE6 --> R
0.1664 RFTE6 --> S
0.1665 RFTE6 --> T
0.0001 RFTE6 --> V
0.0001 RFTE6 --> W
0.0001 RFTE6 --> Y
#-------------------------------------------------
# RFKD7 [FKDSIPN] 7
0.0001 RFKD7 --> A
0.0001 RFKD7 --> C
0.1426 RFKD7 --> D
0.0001 RFKD7 --> E
0.1427 RFKD7 --> F
0.0001 RFKD7 --> G
0.0001 RFKD7 --> H
0.1427 RFKD7 --> I
0.1427 RFKD7 --> K
0.0001 RFKD7 --> L
0.0001 RFKD7 --> M
0.1427 RFKD7 --> N
0.1427 RFKD7 --> P
0.0001 RFKD7 --> Q
0.0001 RFKD7 --> R
0.1426 RFKD7 --> S
0.0001 RFKD7 --> T
0.0001 RFKD7 --> V
0.0001 RFKD7 --> W
0.0001 RFKD7 --> Y
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