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ABSTRACT 23 

Purpose: The development of automatic and reliable algorithms for the detection and 24 

segmentation of the vertebrae are of great importance prior to any diagnostic task. 25 

However, an important problem found to accurately segment the vertebrae is the presence 26 

of the ribs in the thoracic region. To overcome this problem, a probabilistic atlas of the 27 

spine has been developed dealing with the proximity of other structures, with a special 28 

focus on ribs suppression.  29 

Methods: The data sets used consist of Computed Tomography images corresponding to 30 

21 patients suffering from spinal metastases. Two methods have been combined to obtain 31 

the final result: firstly, an initial segmentation is performed using a fully automatic level-set 32 

method; secondly, to refine the initial segmentation, a 3D volume indicating the probability 33 

of each voxel of belonging to the spine has been developed. In this way, a probability map 34 

is generated and deformed to be adapted to each testing case.  35 

Results: To validate the improvement obtained after applying the atlas, the Dice coefficient 36 

(DSC), the Hausdorff distance (HD), and the mean surface-to-surface distance (MSD) were 37 

used. The results showed up an average of 10 mm of improvement accuracy in terms of 38 

HD, obtaining an overall final average of 15.51 ± 2.74 mm. Also, a global value of 91.01 ± 39 

3.18 % in terms of DSC and a MSD of 0.66 ± 0.25 mm were obtained. The major 40 

improvement using the atlas was achieved in the thoracic region, as ribs were almost 41 

perfectly suppressed.  42 

Conclusion: The study demonstrated that the atlas is able to detect and appropriately 43 

eliminate the ribs while improving the segmentation accuracy. 44 



3 
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 47 

1. INTRODUCTION 48 

The spine is an important anatomic structure that provides protection to the spinal cord, 49 

nerves and several organs and gives the body structural support, flexibility and motion. 50 

However, this complex structure is subject to a wide variety of diseases that can damage the 51 

vertebrae or surrounding tissues changing the structure of the spine and causing, in most of 52 

the cases, back pain
1
. Moreover, metastases to the spine represent an important problem in 53 

patients with cancer
2
. For nearly half of all advanced cancer patients there is evidence of 54 

spinal involvement, associating the vertebral bodies with the highest morbidity and 55 

mortality rates
2
. 56 

Nowadays, spinal imaging studies are increasing worldwide
3
, being Computed 57 

Tomography (CT) and Magnetic Resonance imaging (MRI) two of the most common 58 

modalities used for the diagnosis of spinal disease. Whereas MRI provides better contrast 59 

resolution to differentiate soft tissue structures
4
, bony structures are more clearly identified 60 

in CT scans allowing an accurate diagnosis of vertebral lesions
5
. Therefore, CT becomes 61 

the most preferable imaging modality when there is vertebral involvement in the diagnosis 62 

of spinal disorders. Currently, to assist radiologists in the diagnosis task of different 63 

abnormalities, computer-aided diagnosis systems are employed, becoming a part of the 64 

routine clinical work
6
. Hence, its demand over the past years has increased, becoming an 65 

important research topic in medical imaging and also in diagnostic radiology
6,7

. However, 66 

due to the high number of pathologies affecting the spine, the segmentation of this structure 67 

is essential for many research and clinical studies as it is capable of facilitating disease 68 
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diagnosis, follow-up assessment, treatment and statistical analysis. Therefore, prior to any 69 

diagnosis of spinal disorders or in the study of the disorder, a precise detection and 70 

segmentation of the vertebrae are the first crucial steps. 71 

Performing a detailed and robust segmentation is a very challenging task mainly due to 72 

partial volume effect, intensity inhomogeneity, intensity similarity and noise. In addition, 73 

the segmentation becomes even more complicated because of differences in body structures 74 

between individuals, especially in pathological cases. Bone diseases such as metastatic 75 

spine cancer alter bone tissue material and geometric properties. They perturb normal bone 76 

remodelling process and weaken the structure, resulting in vertebral fractures, deformity, 77 

and spinal cord compression, among others. Sometimes, due to increased fragility the 78 

tumor may break the cortical shell of the vertebral body. The consequences of these lesions, 79 

or other spinal disorders, make difficult to clearly identify the boundaries of the vertebrae 80 

and as a consequence to obtain a precise segmentation. Therefore, considerable research 81 

effort has been made aiming at developing methods for the automatic or semiautomatic 82 

segmentation of the spine from CT scans
8
, in both healthy and pathological cases.  83 

The development of methods using prior knowledge of the shape to be segmented is an 84 

active field of research
9
. Therefore, most of the developed methods are based on 85 

deformable models
10–20

, which make use of this information. However, the availability of 86 

this kind of data is not always possible, therefore, other methods that do not require any 87 

form of prior knowledge are used, too. Some of them are approximations based on 88 

thresholding, watershed and direct graph methods
21–23

, or level set methods
24–27

. Level-set 89 

methods are particularly appropriate for dealing with different features such as cavities or 90 

convoluted areas. However, many of these works either do not segment all thoracic and 91 

lumbar vertebrae
10–15, 20, 23–26

, or they are not completely automatic
10–12, 19, 20, 23, 25

, or have 92 
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been only tested in healthy cases
18, 25

. The presence of the ribs is one of the problems for 93 

which different methods show less accuracy in the segmentation of the thoracic region
16, 21, 

94 

27–29
. This is mainly due to the difficulty of discriminating between these structures and the 95 

vertebrae. However, most of the problems leading to back pain are related to lumbar region, 96 

as this area supports the greatest load of the spine. This is the reason why the majority of 97 

studies have only been focused on this region
10–12, 15, 20, 23–25

. Despite that, several studies 98 

found in the literature have made a great effort to segment all thoracic and lumbar 99 

vertebrae
16–19, 21, 22, 27–29

, but in most of the cases, the results obtained were more successful 100 

in segmenting the lumbar region. A possible solution to overcome this problem is to use an 101 

atlas-based segmentation. 102 

The atlas is a way to introduce anatomical information related to the position of an organ. 103 

Two main different types of atlases have been proposed in the medical imaging literature. 104 

On one hand those based on shape variations, whose result is a set of binary 3D shapes 105 

representing the prototypical shape (mean) and different modes of variation. On the other 106 

hand, those in which each voxel has a real value representing either the confidence or the 107 

probability of such a voxel of being part of the structure of interest. The first type, normally 108 

known as statistical atlas, is usually constructed by using techniques of Principal 109 

Component Analysis (PCA) using as input data the spatial coordinates of a set of relevant 110 

points (landmarks) chosen either manually or automatically
30, 31

. The second type, 111 

probabilistic atlases, utilizes techniques based on mathematical morphology and 112 

probabilistic models
32–34

. 113 

With both approaches, considerable research effort has been directed towards the 114 

construction of brain atlases
35

. A variety of methods have been also proposed for the 115 

segmentation of other organs or anatomical structures by means of atlases
36–42

. However, 116 
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the number of studies related to the construction of spinal atlases is limited and some of 117 

them are centred on structures like the intervertebral discs
43

 or the spinal canal
44, 45

. 118 

Regarding vertebrae, Hardisty et al.
46

 presented an algorithm to perform the segmentation 119 

of tumor-involved vertebrae using demons deformable image registration and level set 120 

methods. However, the algorithm is not fully automatic, being necessary user interaction to 121 

align the atlas with the scan of interest. In addition, authors did not take into account all 122 

thoracic vertebrae. Forsberg
47

 performed an atlas-based registration for the segmentation of 123 

all thoracic and lumbar vertebrae but they did not include any pathological spine in the data 124 

sets.  125 

In this paper we are particularly interested in probabilistic atlases. However, by using only 126 

atlas-based segmentation methods it is difficult to capture the fine details or localize areas 127 

with high cavities in complex images, mainly due to the anatomical variability. Therefore, 128 

in this study two different methods have been combined; firstly, an initial segmentation of 129 

each vertebra is performed using a level-set based segmentation method
27

. Secondly, a 130 

probabilistic atlas of the spine has been developed, including the last cervical vertebra and 131 

the entire thoracic and lumbar regions, generating a probability map that it is deformed to 132 

be adapted to each patient. To the best of our knowledge, this is the first time that an atlas 133 

has been implemented in order to refine an initial segmentation dealing with the proximity 134 

of other structures, with a special focus on ribs suppression. In addition, the entire process 135 

is fully automatic and it has been tested in pathological spines. A general approach of the 136 

whole method is shown in Fig. 1. 137 
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 138 

FIG. 1. General approach of the presented method. Twenty-one cases have been selected and 139 

manually segmented by an experienced radiologist (ground truth). 21 atlases have been built using 140 

20 cases each and used to segment the remaining case (leave-one-out test). A vertebra with focal 141 

osteoblastic lesions in the left side is shown (see white arrows). (a) Atlas construction by means of 142 

the ground truth data (performed in 3D). (a.1) Curves representing the global length and shape of 143 

the spine. (a.2) Binary shapes of the segmented spines used to construct the atlas. (a.3) Geometric 144 

transformation applied (straight spines) to perform the registration of the binary shapes of the 145 

segmented spines. (a.4) Probability map generated (atlas) that indicates the probability of each 146 

voxel to belong to the spine. Blue color represents a lower probability and red color a higher 147 

probability. (b) Deformation of the atlas to be adapted to each testing case. The atlas has been 148 

thresholded and the outer surface is shown. (c) Initial segmentation performed to each testing case 149 

using level set method (performed in 2D). (d) Refinement of the initial segmentation using the atlas 150 

to obtain the final result. 151 

 152 

 153 

 154 

 155 
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2. MATERIALS AND METHODS 156 

2.A Subjects and Data Sets 157 

In this study, 21 patients suffering from spinal metastases were selected. In total, the 158 

sample included 11 male and 10 female (58.47 ± 13.78 years, mean ± standard deviation) 159 

and the data sets used consisted of CT images acquired on a Siemens Sensation 40 160 

(Siemens, Erlangen, Germany) scanner at Fundación Instituto Valenciano de Oncología.  161 

These scans covered the last cervical and all thoracic and lumbar vertebrae. Images were 162 

reconstructed with a standard filtered back projection algorithm, using a soft kernel (B20). 163 

The in-plane resolution for these images ranged from 0.7031 to 0.9648 mm with a slice 164 

thickness of 2 or 2.5 mm. The matrix size was 512 × 512, with a total number of slices 165 

varying from 291 to 477. 166 

An expert manually segmented the vertebrae of all cases. A total of 6103 slices were 167 

segmented. In addition, several programs were written for atlas construction and geometric 168 

deformation using C++ and the ITK libraries
48

 with calls to routines in the R language, 169 

particularly the locfit library
49

. 170 

 171 

2.B Spinal Atlas Construction 172 

2.B.1  Probabilistic Atlas 173 

Regarding atlases, there are two important aspects to point out. First, the initial raw data are 174 

examples of correctly segmented binary shapes. The procedure of segmentation is of 175 

crucial importance to obtain a good atlas, so manual or assisted segmentation should be 176 

used. This is the reason why manually segmented data performed by an expert has been 177 

used in this work. 178 

Another extremely important point is co-registration of the binary shapes of the sample. 179 
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Several models for registration can be chosen, from the simplest ones (rigid transformations 180 

composed by a translation plus a rotation) to the most complex and flexible models like 181 

local deformations. A point of balance between excessively rigid and widely flexible 182 

registration can be found through the use of anatomical landmarks that guide the 183 

registration. This will be explained in detail in section 2.B.3. 184 

In this study, we focus on the use of a probabilistic atlas, a 3D volume indicating the 185 

probability of each voxel of belonging to a prototype shape, the spine in this case. Some 186 

segmentation algorithms can interpret this as an a-priori probability and use Bayesian 187 

methods to update it using the values of the signal at that voxel or at neighbour ones as new 188 

information
34

. Other algorithms can interpret it as a possibility of belonging to a set of 189 

voxels that constitute the relevant structure and rely on fuzzy techniques
43

 and, finally, 190 

others can use the values as initial function to apply level-set techniques
46

. Section 2.B.2 191 

explains how our probabilistic atlas has been built together with the applied improvement 192 

to get a more accurate result. 193 

The prevalent idea used up to now for the construction of a probabilistic atlas is simply to 194 

register the binary shapes in the sample and look at each voxel to see how many of the 195 

shapes cover it. This, divided by the number of shapes in the sample, is a crude measure of 196 

the probability of that voxel of belonging to the ideal shape. This is used for example in the 197 

works of Park et al.
34, 50

. In this work, this has been formalized as the coverage function. 198 

Other possibilities for building probabilistic atlases use the distance function and 199 

transformations of it. Intuitively, the distance function associated to a binary shape is a 200 

function from the 3D space to the real numbers and measures how far each point is from 201 

the shape. There are two variants: unsigned distance function, for which points inside the 202 

shape are considered at distance zero and those outside get the distance to the closest point 203 
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of the shape surface; and signed distance function, for which every point gets the distance 204 

to the closest point on the surface of the shape, with negative sign for those points inside 205 

the shape. There are few approaches that use the distance function to build atlases; a 206 

relevant one is the work of Pohl et al.
51

 that, using a logistic link function, transforms a 207 

signed distance map into a log-odds map. 208 

The main idea presented in this paper regarding atlas construction, is the combination of 209 

both approaches, the coverage function and the distance function, using a generalized linear 210 

model (GLM). 211 

 212 

2.B.2  Construction of the Probabilistic Atlas 213 

As stated previously, the most widely used approach of building a probabilistic atlas 214 

consists on aligning all the shapes and seeing how many shapes cover each voxel. The 215 

formalization uses concepts of random sets. Intuitively, a random set is a statistical 216 

distribution whose realizations are n-dimensional sets of points. Let F be a random compact 217 

set whose realizations are binary shapes: compact (but not necessarily convex) sets of 218 

points of 𝑅3 (in general of 𝑅𝑑). Our random set will be a generic spine whose realizations 219 

are the shapes of the spine of each patient. Given any fixed shape S, which is for us each of 220 

the manually segmented shapes (spines), and for any point 𝑥 ∈ 𝑅𝑑, 1𝑆(𝑥) will denote the 221 

set indicator function, i.e.: 222 

1𝑠(𝑥) = {
1   𝑖𝑓   𝑥   ∈ 𝑆
0   𝑖𝑓   𝑥   ∉ 𝑆

          (1) 223 

In any random compact set F, value 1𝑠(𝑥) is a random variable that takes values in the 224 

binary set {0,1}. Now, let us consider a random sample of F, i.e. a collection of 225 

independent and identically distributed (as F) random compact sets Ф1,…,Фn, being 226 
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𝜙1, … , 𝜙𝑛 the corresponding realizations. Having these data an unbiased estimator for the 227 

coverage function 𝑐(𝑥) is: 228 

𝑐(𝑥) = ∑ 1𝜙𝑖
(𝑥)𝑛

𝑖=1           (2) 229 

which has a clear intuitive meaning: the number of shapes in the sample to which point 𝑥 230 

belongs (in real terms: an estimation of for how many cases this point belongs to the spine). 231 

The coverage function offers a way to calculate an unbiased estimator for the probability 232 

𝑝(𝑥): 233 

𝑝1(𝑥) = ∑
1𝜙𝑖

(𝑥)

𝑛

𝑛
𝑖=1           (3) 234 

 𝑝(𝑥) corresponds to the classical probability as number of hits over total number of cases. 235 

Its threshold below 0.5 is related with the concept of mean shape, and indeed it is a 236 

particular case of the so-called Vorob’ev mean
52

. But this definition for 𝑝(𝑥) has some 237 

drawbacks mainly related to the fact of estimating the probability at each point in isolation, 238 

as if the random variable that is the coverage at that point was independent of all other 239 

points. This makes the thresholds below a given value of 𝑝(𝑥)  (which are binary shapes) 240 

rougher than it would be expected of a summary shape. A feasible alternative to solve this 241 

problem consists in using the distance function; concretely, on finding a sensible 242 

relationship between the probability and the value of the distance function at a given point 243 

or at some related points. The formal definitions are as follow: given a binary shape, S, 244 

𝑑𝑠(𝑥) will be the distance function to S:  245 

𝑑𝑠(𝑥) = {

𝑚𝑖𝑛𝑦∈𝜕𝑆𝑑(𝑥, 𝑦)          𝑖𝑓  𝑥 ∉ 𝑆

          0                                  𝑖𝑓  𝑥 ∈ 𝜕𝑆       

−𝑚𝑖𝑛𝑦∈𝜕𝑆𝑑(𝑥, 𝑦)     𝑖𝑓 𝑥 ∈ 𝑖𝑛𝑡(𝑆)
      (4) 246 

where 𝑑(𝑥, 𝑦) is the Euclidean distance between 𝑥 and 𝑦, 𝜕𝑆 the boundary of S and 247 

𝑖𝑛𝑡(𝑆) the interior of the set S. This function is calculated at every point of the digital grid 248 
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for each voxel in every segmented spine. In a similar way, 𝑑𝛷 can be defined not for a fixed 249 

set but for a random set F. In this case, 𝑑𝛷(𝑥) is a random variable. Since 1𝛷(𝑥) = 0 ⟺250 

𝑑𝛷(𝑥) > 0 and 1𝛷(𝑥) = 1 ⟺ 𝑑(𝑥) ≤ 0, 𝑑(𝑥) univocally determines 1𝛷(𝑥). Let 251 

𝑝(𝑥) = 𝐸(1𝛷(𝑥)) = 𝑃(𝑥 ∈ 𝛷)         (5) 252 

where E is the expectation over all sets in F. From here the mean distance function 𝑑Ф
∗ (𝑥) 253 

is defined as 254 

𝑑𝛷
∗ (𝑥) = 𝐸𝑑(𝑥, 𝛷).             (6) 255 

In practice, the mean distance function is estimated for a collection of samples 𝜙1, … , 𝜙𝑛 as 256 

𝑑𝛷
∗ (𝑥) = ∑

𝑑𝜙𝑖
(𝑥)

𝑛

𝑛
𝑖=1  .           (7) 257 

The intuitive meaning of this function of the special location x is the average distance from 258 

point x to the border of the mean shape for any shape of the sample. Similarly to the mean 259 

coverage, the threshold below some value of the mean distance function gives a binary 260 

shape that can also be considered as a mean shape, being this time 0 the natural threshold (a 261 

definition derived from the so-called Baddeley-Molchanov mean
53

). The mean distance 262 

function is smooth and therefore its thresholded versions are smoother than those of the 263 

mean coverage function. This is why the function 𝑝(𝑥) will be estimated using information 264 

about the mean distance function. 265 

Our hypothesis assumes that 𝑝(𝑥) = 𝑓(𝑑∗(𝑥)) (i.e.: the probability is directly linked to the 266 

mean distance function) and the link between them must be found. Since 𝑑∗(𝑥) can be 267 

positive or negative the natural link in the context of General Linear Models consists in 268 

using a cumulative distribution function (c.d.f.), which is a non-decreasing function 269 

𝐹: 𝑅 ⟶ [0,1]. The value 𝑑∗(𝑥) is commonly transformed using a basis of functions 270 
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denoted as 𝑣(𝑥) = (1, 𝑣1(𝑑
∗(𝑥)), … , 𝑣𝑝−1(𝑑

∗(𝑥)))
′
, being 𝑡′ the transpose of the vector 𝑡. 271 

The model to be assumed is: 272 

𝑝(𝑥) = 𝐹(𝛽′𝑣(𝑥))           (8) 273 

being 𝛽′ = (𝛽0, 𝛽1, … , 𝛽𝑝−1) a vector of coefficients to be determined. In GLM the 274 

common choices for the link function F are the c.d.f. of either the standard logistic 275 

distribution or of the standard normal distribution. The first one will be used, i.e.: 276 

𝑝(𝑥) =
𝑒𝛽′𝑣(𝑥)

1+𝑒𝛽′𝑣(𝑥)
 .            (9) 277 

For any given point 𝑥0, it is expected 𝑝(𝑥) be a smooth function so it can be assumed that 278 

𝑝(𝑥) takes a constant value in a ball centred at 𝑥, 𝐵(𝑥0, ℎ) with radius ℎ > 0. Let 279 

(𝑥𝑗 , 1𝜙𝑖(𝑥𝑗)) with 𝑗 = 1,… , 𝐽 be the points within 𝐵(𝑥0, ℎ). In this way the local pseudo-280 

likelihood function for the i-th realization 𝜙𝑖 is given by 281 

∏ 𝑤(𝑥𝑗 , 𝑥0)
𝐽
𝑗=1 𝑝(𝑥𝑗)

1𝜙𝑖(𝑥𝑗)
(1 − 𝑝(𝑥𝑗))

1−1𝜙𝑖(𝑥𝑗)
     (10) 282 

using a w-function 𝑤(𝑥, 𝑥0) = 𝐾(‖𝑥 − 𝑥0‖ ℎ⁄ ) with K a kernel function modulated by a 283 

bandwidth h. Accordingly, the whole likelihood function for a complete random sample of 284 

F will be: 285 

𝑙(𝛽) = ∏ ∏ 𝑤(𝑥𝑗 , 𝑥0)𝑝(𝑥𝑗)
1Ф𝑖(𝑥𝑗)

(1 − 𝑝(𝑥𝑗))
1−1Ф𝑖(𝑥𝑗)𝐽

𝑗=1
𝑛
𝑖=1     (11) 286 

and its log-likelihood will be: 287 

              𝑙(𝛽) = 𝑙𝑜𝑔𝐿(𝛽) =  ∑ ∑ (𝑙𝑜𝑔 (𝑤(𝑥𝑗 , 𝑥0)) + 1Ф𝑖(𝑥𝑗) 𝑙𝑜𝑔(𝑝(𝑥𝑖)) +𝐽
𝑗=1

𝑛
𝑖=1288 

                                                    (1 − 1Ф𝑖(𝑥𝑗)) 𝑙𝑜𝑔 (1 − 𝑝(𝑥𝑗)))         (12) 289 

This global likelihood will be maximized by a vector of parameters, that will be denoted by 290 

𝛽(𝑥0), i.e.: 291 
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𝛽(𝑥0) = 𝑎𝑟𝑔𝑚𝑎𝑥𝛽𝑙(𝛽).          (13) 292 

Determination of 𝛽 is done by the optimization methods provided by the R locfit package
49

. 293 

The final estimator proposed for the probability function 𝑝(𝑥) is:  294 

𝑝(𝑥0) =
𝑒𝛽̂(𝑥0)′𝑣(𝑥)

1+𝑒𝛽̂(𝑥0)′𝑣(𝑥)
            (14) 295 

Its value at location 𝑥0 is our probabilistic atlas. The estimation procedure can also provide 296 

as an output simultaneous confidence bands, i.e. an estimation of the 95% confidence 297 

interval around the value at 𝑥0. This possibility will not be used in this work. 298 

2.B.3  Anatomically-Guided Registration for Spine 299 

The process of co-registration is a key point with substantial influence on the final results. 300 

A too rigid registration (a method with few free parameters which allows only limited 301 

changes, like rigid transformations) preserves well the variability (shape changes present in 302 

the sample) but gives a poor shape representation, not similar to the typical shape expected 303 

for the organ or structure. On the other hand, a too flexible registration (a method with 304 

many free parameters which allows global and local deformations) makes the shapes fit 305 

almost perfectly to one of them or to a predefined model, but annihilates the variability. In 306 

this way, the probabilistic atlas is not a probability any more but a set with only two 307 

possible values, 0 and 1, like a binary shape. 308 

An appropriate balance between flexibility and variability is a complex issue that cannot be 309 

deeply treated here. However, a suitable solution is to use a relatively flexible method 310 

guided by anatomical knowledge, i.e.: driven by a set of known anatomical landmarks that 311 

limit the free deformation, otherwise introduced by local deformation methods. 312 

Unfortunately, this is not always possible due to the difficulty of performing a reliable 313 

detection and consistent matching of a sufficient number of landmarks. But in the case of 314 
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the spine, the spinal canal can be reliably detected. The location of its centers at all the 315 

different heights make a 3D curve that represents the global length and shape of the spine. 316 

For this purpose, an algorithm that combines 2D and 3D information was used
54

. Briefly, 317 

this algorithm is composed of three main stages and it is based on the fact that the spinal 318 

canal is surrounded by cortical bone. Firstly, a thresholding and a set of morphological 319 

operations were applied to set a high contrast between spinal canal and cortical bone. 320 

Secondly, only 3D connected objects forming part of the spinal canal were extracted. 321 

Finally, a centroid extraction for each slice of the spinal canal object was computed. Further 322 

details on this algorithm can be found in Ref. 54. Therefore, using this method the centre 323 

points of the spinal canal at each slice were extracted, obtaining a set of 3D points that were 324 

used to create the 3D curve previously mentioned. 325 

The main idea proposed in this work is that a good co-registration of two different spines 326 

can be attained by deforming one of them so that these curves coincide. Nevertheless, in the 327 

case of the atlas construction we want to co-register not only two spines but all the cases in 328 

the sample. At this point arises the typical problem of to which of the available cases 329 

should the others be registered. Instead of choosing one of them, the registration will be 330 

done so that all the 3D curves, obtained from the 3D points previously detected in the 331 

spinal canal, coincide with a straight segment of unitary length, creating effectively an 332 

abstract model space in which the atlas will be constructed
16, 55

. The concrete procedure to 333 

get these geometrical transformations relies on curve fitting, the Frenet trihedron and a 334 

chain of rigid transformations that will be explained next.  335 

Let us call 𝑉 = {𝑣0,𝑣1, … , 𝑣𝑇} a succession of points of 𝑅3 with 𝑣𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) obtained as 336 

the centres of the vertebral canal at each slice of the CT data set. Considering the z-axis in 337 

the direction of the image axis (slices perpendicular to it) and pointing upwards, it is always 338 
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true that 𝑧𝑖 > 𝑧𝑖−1. The first step is to get a fit of these points to a set of B-splines 339 

(polynomials that generate the smooth 3D curve that best fits to all the points and which 340 

has also smooth derivatives). The curve is a function: 341 

𝑓: [𝑎. . 𝑏] ⟶ 𝑅3𝑖. 𝑒. : 𝑓(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))        (15) 342 

It depends on an scalar parameter, t, which will be normalized in [0..1] so that 𝑓(0) = 𝑣0 =343 

(𝑥0, 𝑦0, 𝑧0) and 𝑓(1) = 𝑣𝑇 = (𝑥𝑇 , 𝑦𝑇, 𝑧𝑇). The value of the curve parameter corresponding 344 

to point 𝑣𝑖 will be called 𝑡𝑖 so that 𝑓(𝑡𝑖) = 𝑣𝑖. Fitting the curve to a set of B-splines allows 345 

an analytic representation of it, whose derivatives can be explicitly calculated and evaluated 346 

at any point. Specifically, f will be used to calculate the tangent vector at each point of the 347 

curve, which is simply: 348 

𝑇⃗ (𝑡) = (
𝑑𝑥(𝑡)

𝑑𝑡
,
𝑑𝑦(𝑡)

𝑑𝑡
,
𝑑𝑧(𝑡)

𝑑𝑡
)           (16) 349 

It is also possible to calculate the normal and binormal vectors. However, because of noise 350 

they were not used in the registration process. Instead, it will be assumed that the spinal 351 

canal lays on a vertical plane so that the normal vector is approximately the same for all the 352 

points, and will be taken as the vector normal to the plane at minimal perpendicular 353 

distance of all points. This vector will be called 𝑛⃗ . The tangent vector, on the contrary, is 354 

different at each point. 355 

The geometrical global transformation proposed is a succession of rigid transformations 356 

(translation plus rotation), each of them applied to a different slice. Let SL be the set of 357 

slices, 𝑆𝐿 = {𝑠𝑙0, … , 𝑠𝑙𝑇} where sli is the intersection of the whole volume with a plane that 358 

contains the point 𝑣𝑖 and whose normal vector is 𝑇⃗ 𝑖. The local coordinate system of this 359 

slice has its z-axis coincident with 𝑇⃗ 𝑖 and its y-axis coincident with vector 𝑛⃗ . See Fig. 2. 360 

Finally, slice 𝑠𝑙𝑖 will be transformed so that its origin goes to point (0,0, 𝑡𝑖), its z-axis 361 
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𝑇 ⃗⃗  ⃗(𝑡𝑖) becomes 𝑍 = (0,0,1) and its y-axis 𝑛⃗  becomes 𝑌⃗ = (0,1,0). This means that the 362 

slanted plane 𝑠𝑙𝑖 becomes a horizontal plane and the whole spine resembles a straight spine 363 

after the transformation. Notice that with this approach the size gets normalized, since the 364 

length along the curve (parameter t) is normalized in [0…1] and the small variations in 365 

orientation (tilt) are unified because of the use of a common normal vector, 𝑛⃗ . 366 

The registration obtained with this specific approach is, at least visually, very good but 367 

results will have to be demonstrated by the usefulness of the atlas built when applied to the 368 

segmentation task.  369 

 370 

FIG. 2. Schema of the geometric transformation applied to each slanted slice. 371 

 372 

2.C Segmentation 373 

2.C.1  Initial Segmentation 374 

To perform the initial segmentation of the vertebrae, a level-set based segmentation 375 

method
27

 was used. Concisely, four main steps were carried out per slice (see Fig. 3). 376 
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Firstly, the detection of a seed point is a necessary step to automate the whole process. For 377 

this purpose, the same algorithm used for the spinal canal detection in the atlas construction 378 

was applied
54

. In this way, the centre points of the spinal canal extracted at each slice were 379 

used as seed points to generate the initial contours. Secondly, to improve image quality a 380 

processing step was performed. This step included the generation of a region of interest 381 

from the seed points previously detected, the application of a soft tissue window to obtain a 382 

high contrast between bone and soft tissues, and the application of a gamma correction to 383 

improve brightness and contrast of the images. Third step was to perform the segmentation 384 

using the Selective Binary Gaussian Filtering Regularized Level Set method
56

. In the last 385 

step two morphological operations were applied: extraction of the 3D object with the 386 

highest number of voxels and a hole filling technique. 387 

This method was used to segment all the vertebrae corresponding to all patients used in this 388 

study (Fig. 1(c)). 389 

 390 

FIG. 3. Flowchart of the level-set -based segmentation method. 391 
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2.C.2  Atlas-Based Segmentation 392 

Once the initial segmentation was performed, next step was to refine the segmentation 393 

process in order to eliminate the ribs or even other structures that initial segmentation was 394 

not able to appropriately eliminate. To achieve this goal, an atlas-based segmentation of 395 

each case, using the atlas that has been constructed using the remaining patients (Fig. 1(b)), 396 

was performed and combined with the initial segmentation obtaining the final result (Fig. 397 

1(d)). 398 

First of all, the use of the atlas in segmentation requires its registration with the testing 399 

case; this involves the detection of the vertebral canal in the new case and the adaptation of 400 

the unitary length segment of the atlas to it. To this end, the geometric transformations used 401 

for the initial co-registration were conversely applied to the atlas. 402 

Next, to perform the atlas-based segmentation a threshold was applied to it so that points 403 

with probability below the threshold were ruled out. Threshold determination is a delicate 404 

point, which needs special methods. 21 different atlases were built using for each atlas 20 405 

cases and leaving out one case (leave-one-out method). Each manually segmented slice of 406 

the case not used to build each atlas was compared in terms of Hausdorff distance with the 407 

corresponding atlas slice, thresholded at every possible level; the optimal values were 408 

selected, obtaining in this way the optimal threshold for each case and slice. The average 409 

per slice of the thresholds obtained for all cases was plotted as a function of the normalized 410 

slice height and adjusted to an analytical function. Given the shape of the raw data, a 411 

sigmoidal function seemed a suitable choice. This is shown in Fig. 4, which shows the raw 412 

data and the adjusted function for each slice depending on its normalized height (height 413 

values in 0..1 along the spinal canal). 414 
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 415 

FIG. 4. Optimal threshold to be applied to each slice of the atlas as a function of the normalized 416 

height along the spinal canal. Blue line corresponds to the raw data and red line to the adjusted 417 

function. 418 

 419 

2.C.3  Evaluation of Segmentation 420 

To evaluate the segmentation results and the improvement obtained after applying the atlas 421 

to the initial segmentation, the Dice similarity coefficient (DSC)
57

, the Hausdorff distance 422 

(HD)
58

 and the mean surface-to-surface distance (MSD)
59

 were used. 423 

The DSC is defined as: 424 

DSC(𝛺𝐺𝑇, 𝛺𝑆) =
2∗|𝛺𝐺𝑇∩𝛺𝑆|

|𝛺𝐺𝑇 |+|𝛺𝑆 |
         (17) 425 

where |𝛺𝑆| and |𝛺𝐺𝑇| represent the volumes in voxels of the segmented object (𝛺𝑆) and the 426 

ground truth (𝛺𝐺𝑇). The value of DSC denotes the similarity between two volumes and 427 

ranges from 0 to 1, being 0 the worst match and 1 the best match.  428 
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On the other hand, the HD is defined as: 429 

HD(𝐴, 𝐵) = 𝑚𝑎𝑥(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴))       (18) 430 

where 431 

ℎ(𝐴, 𝐵) = 𝑚𝑎𝑥𝑎𝜖𝐴𝑚𝑖𝑛𝑏𝜖𝐵‖𝑎 − 𝑏‖        (19) 432 

A and B are the boundaries of the segmented object and of the ground truth respectively, 433 

and ℎ(𝐴, 𝐵) is called the direct HD from set A to set B. The value of HD indicates the 434 

difference between two surfaces.  If the value is 0 means that both volumes share the same 435 

boundary, a larger value of HD means a larger distance between boundaries. 436 

Finally, the MSD is defined from its symmetrized version.  The formulae are 437 

𝑆𝑆𝐷(𝑆, 𝑆′) =√
1

|𝑆|
∑ 𝑑(𝑝𝑖 , 𝑆

′)2|𝑆|
𝑖=1         (20) 438 

𝑀𝑆𝐷(𝑆𝑟 , 𝑆𝑠) =𝑚𝑎𝑥[𝑆𝑆𝐷(𝑆𝑟 , 𝑆𝑠), 𝑆𝑆𝐷(𝑆𝑠, 𝑆𝑟)]     (21) 439 

being 𝑆 and 𝑆′ two surfaces, |𝑆| the number of points in a surface 𝑆 and 𝑑(𝑝𝑖, 𝑆
′) the 440 

minimum distance between point 𝑝𝑖 ∈ 𝑆 and surface 𝑆′. See the work described by Aspert 441 

et al.
59

. 442 

In summary, a good segmentation will be obtained for high values of DSC and low values 443 

of HD and MSD. 444 

 445 

3. RESULTS 446 

3.A Segmentation Results 447 

The effectiveness of the method was evaluated by applying it to every case with a leave-448 

one-out test. An atlas was built using 20 cases which is then employed to segment the 449 

remaining one. 450 

Numerical results are provided in Tables I, II and III, whose columns compare the 451 
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segmentations obtained with and without the atlas, both for the whole spine (thoracic and 452 

lumbar regions) and for each region separately, with the manual segmentation (ground 453 

truth). This comparison is shown in terms of DSC in Table I, in terms of HD in table II and 454 

in terms of MSD in table III.  455 

 456 

TABLE I. Comparison between automatic segmentation (without and with atlas) and ground truth 457 

in terms of DSC. 458 

 Dice coefficient [%] 

 Global  Thoracic spine  Lumbar spine 

 without 
atlas 

with 
atlas  without 

atlas 
with 
atlas 

 without 
atlas 

with 
atlas 

Minimum value 86.79 82.61  83.94 75.60  90.99 90.80 

Maximum value 92.76 94.21  90.20 92.48  97.17 97.17 

Mean value 90.48 91.01  87.53 88.22  95.26 95.23 

Standard deviation 1.61 3.18  1.51 4.41  1.88 1.94 

 459 

TABLE II. Comparison between automatic segmentation (without and with atlas) and ground truth 460 

in terms of HD. 461 

 Hausdorff distance [mm] 

 Global  Thoracic spine  Lumbar spine 

 without 
atlas 

with 
atlas  without 

atlas 
with 
atlas 

 without 
atlas 

with 
atlas 

Minimum value 21.51 11.76  21.51 11.09  4.27 4.27 

Maximum value 32.30 23.41  32.30 23.41  20.78 17.59 

Mean value 25.39 15.51  25.39 14.93  10.42 10.24 

Standard deviation 3.19 2.74  3.19 3.05  4.61 4.18 

 462 

 463 

 464 



23 

 

 

 465 

TABLE III. MSD from the automatic segmentation (without and with atlas) to the ground truth 466 

 Mean surface-to-surface distance [mm] 

 Global  Thoracic spine  Lumbar spine 

 without 
atlas 

with 
atlas  without 

atlas 
with 
atlas 

 without 
atlas 

with 
atlas 

Minimum value 0.74 0.41  1.00 0.57  0.15 0.15 

Maximum value 1.16 1.38  1.45 1.96  0.67 0.67 

Mean value 0.90 0.66  1.24 0.87  0.33 0.33 

Standard deviation 0.12 0.25  0.14 0.35  0.14 0.15 

 467 

As Table I shows, the variation in terms of DSC at the global level, after applying the atlas, 468 

is quite modest (about 0.53 % better). In this case, the differences between the 469 

segmentation obtained without the atlas and using the atlas are not statistically significant 470 

(t-test, p=0.2875). Nevertheless, the difference in HD (Table II) highlights the main 471 

improvement: the elimination of the ribs in the thoracic region, which cannot be suppressed 472 

unless anatomical knowledge about their location is used. These ribs account for less than 473 

2 % of the total spine volume (hence, the minimal DCS variation) but HD decreases about 474 

10 mm on average (from about 25 mm to 15 mm). Results show a statistically significant 475 

improvement in segmentation (t-test, p<10-8). In addition, Table III shows the precision of 476 

the method by obtaining a final MSD of 0.66 ± 0.25 mm for the whole spine. In this 477 

instance, the differences between segmentations are also statistically significant (t-test, 478 

p=7.3641e-05). Besides, all the improvement of using the atlas is concentrated at the 479 

thoracic region, since results were already very good (DSC=95 %, HD=10 mm and 480 

MSD=0.33 mm) in the lumbar region. 481 
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The graphical result in Fig. 5, that corresponds to a typical case, clearly confirms this 482 

improvement in the thoracic region. This figure shows, from left to right, the manual 483 

segmentation, the segmentation using the level-set method (initial segmentation), the final 484 

segmentation (refinement with atlas), the difference between initial and final segmentations 485 

and the difference between manual and final segmentations, after morphological opening 486 

with a ball of radius 1 to highlight the differences. 487 

 488 

FIG. 5. (a) Manual segmentation (ground truth data). (b) Initial segmentation (without the atlas). (c) 489 

Refinement of the initial segmentation using the atlas. (d) Difference between (b) and (c). (e) 490 

Difference between (a) and (c). Thoracic regions are outlined by the dotted black lines. 491 

 492 

To observe in more detail the segmentation result and its improvement, 2D images 493 

corresponding to the segmentation process in one slice for each of the two regions are 494 

shown in Fig. 6.  495 

 496 
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 497 

 498 

 499 

FIG. 6. Segmentation process of two slices. (a) Initial segmentation (without atlas). (b) Probability 500 

map. Colors indicate probability of each voxel to belong to the spine (blue as lower and red as 501 

higher probability). (c) Final segmentation (with atlas). Red lines correspond to the automatic 502 

segmentation and green lines to the ground truth. 503 

 504 

3.B Computational Workload 505 

The computational cost of the method is mainly related with the step of atlas construction. 506 

The need to calculate the distance functions and the application of the linear model 507 

consume most of the time. Using a computer with an Intel Xeon at 2.67 GHz and with 24 508 

GB of RAM, distance function took about 2 minutes per case and atlas construction about 7 509 

minutes. The calculations of the distance functions could be done separately and therefore 510 

in parallel for each case, reducing in this way the time needed. Nevertheless, atlas is built 511 

only once and used later to segment every new case, so the time spent in atlas construction 512 

is not as relevant as the time needed for segmentation. In the proposed method, the whole 513 

process of segmentation including spinal canal detection (50 seconds), initial segmentation 514 
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(1 minute), atlas deformation and refinement of the first-step segmentation (2 minutes) took 515 

only 4 minutes per case.  516 
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4. DISCUSSION 517 

Considerable research effort has been directed towards the segmentation of a specific 518 

region of the spine, specially the lumbar region. Our method achieved in this region an 519 

average of 95.23 ± 1.94 % in terms of DSC and an average of 10.24 ± 4.18 mm in terms of 520 

HD, better values than those obtained in previous works
15, 25, 26

. The method proposed by 521 

Huang et al.
24

 achieved a little better HD but the DSC was less accurate. An accuracy of 522 

0.98 was obtained combining deformable models with the geometrical shape of the 523 

vertebral body
11

. However, in this work the authors only segmented three lumbar vertebrae 524 

and the algorithm required user interaction. The method used by Rasoulian et al.
12

 obtained 525 

a better HD (8.91 ± 2.42 mm) than ours, but the MSD (1.38 ± 0.56 mm) was considerably 526 

higher compared to the proposed method applied in the lumbar region (0.33 ± 0.15 mm). 527 

The method introduced by Pereañez et al.
20

 achieved also a higher MSD, with a value of 528 

1.15 ± 0.10 mm. 529 

However, many errors in vertebral segmentation are obtained in the thoracic region because 530 

of the presence of the ribs. Considering both regions, the described method obtained an 531 

average of 91.01 ± 3.18 % in terms of DSC and an average of 15.51 ± 2.74 mm in terms of 532 

HD, values a slightly better than those obtained previously
27

. The method proposed by 533 

Castro-Mateos et al.
19

 achieved a marginally smaller HD for pathological subjects, but the 534 

DSC was not as accurate. Stern et al.
17

 and Korez et al.
18

 achieved slightly better values for 535 

their algorithms. However, Korez et al.
18

 did not tested the algorithm in patients with spinal 536 

deformities. On the other hand, Stern et al.
17

 segmented each vertebra separately,  the same 537 

as other authors
11, 13–15

, which might lead to missegmentation because of the ambiguous 538 

boundaries between vertebrae. Klinder et al.
16

 tried to avoid this problem proposing a 539 

simultaneous segmentation of all vertebrae. However, their algorithm for the identification 540 
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of the vertebral bodies was very computationally expensive (20-30 minutes per case). 541 

Regarding the MSD, in Table III can be appreciated that this measure was clearly improved 542 

after applying the atlas. A mean value of 0.66 ± 0.25 was obtained for the whole spine, 543 

better value than the obtained in previous works
14, 16, 28

. The results reported by Korez et 544 

al.
18

 and Castro-Mateos et al.
19

 were more accurate in the thoracic region but, to evaluate 545 

this region, they only included healthy patients. In addition, the development of completely 546 

automatic algorithms is still an open problem, being necessary in many cases some degree 547 

of user interaction
10–12, 19, 20, 23, 25, 46

. This has been accomplished with the current method, 548 

which is fully automatic. 549 

Recently, it has been also conducted a comparative study for vertebra segmentation 550 

methods
29

. Five teams entered the study and tested their algorithms on five healthy cases 551 

and on five osteoporotic cases with several compression fractures. All methods performed 552 

better on the healthy cases. Regarding pathological cases, the performance varied 553 

considerably among methods, ranging from 53.8 % to 89.8 % in terms of DSC for the 554 

whole spine, lower values than the obtained with the proposed method. The top performers 555 

achieved a DSC of 88 % in the upper thoracic region, 89 % in the lower thoracic region and 556 

92 % in the lumbar region; similar performance than the obtained using our method in the 557 

thoracic region (88.22 ± 4.41 %) but less accurate in the lumbar region (95.23 ± 1.94%). 558 

Also, for most of these methods higher values of MSD were obtained, ranging from 0.64 559 

mm to 5.36 mm. 560 

Regarding atlas-based segmentation methods, the studies related to the construction of 561 

spinal atlases are scarcer
46, 47

. The method developed by Hardisty et al.
46

 was able to 562 

successfully segment tumor-involved vertebrae, but the method required user interaction 563 

and they did not consider all thoracic vertebrae. Our yield was similar to the method 564 
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developed by Forsberg
47

. He achieved a DSC ≥ 95 % for the lumbar and the lower thoracic 565 

vertebrae, but he obtained notably worse results in some thoracic vertebrae. They achieved 566 

also a higher MSD, with a value of 1.05 ± 0.65 mm. To our knowledge, we have 567 

implemented the first probabilistic atlas of the whole spine (last cervical, thoracic and 568 

lumbar regions) to refine an initial segmentation with a special focus on ribs suppression. 569 

When applying the atlas constructed, it was possible to differentiate between vertebrae and 570 

ribs, which in turn allows appropriate removal of these structures while improving the 571 

segmentation accuracy on an average of 10 mm in terms of HD. However, when applying 572 

the atlas it is necessary to take into account that the initial segmentation is not equally 573 

accurate along the spine, so it is necessary to refine more the initial segmentation in some 574 

regions than in others. This is the reason why, for the atlas-based segmentation, an adaptive 575 

threshold has been used (Fig. 4).  576 

Many anatomical organs and structures have already good segmentation methods based 577 

exclusively on the values of the signal provided by the used sensor. The knowledge about 578 

anatomical location is mostly provided by neighbourhood relationships between 579 

pixels/voxels, which indeed guide the region growing or level-set methods habitually used. 580 

Nevertheless, sometimes this knowledge is insufficient because there is no other reason to 581 

discard a point than its location with respect to other anatomical structures or the 582 

discrepancy with the average or expected resulting shape. These are the cases where using a 583 

probabilistic atlas is a sensible choice, and one of them has been shown here. To be useful 584 

the atlas must be built to capture the essence of the shape at hand, a goal we have attempted 585 

to reach by using the GLM on the values of the distance function. Also, a good registration 586 

of the binary shapes used to construct the atlas and a good geometrical adaptation of the 587 

atlas to the new case to be segmented is essential. In these cases the anatomical guidance 588 
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provided by the spinal canal detection has been crucial. The selection of a straight segment 589 

of unitary length to perform the registration is a way to avoid the problem of the selection 590 

of the reference case, which may influence the results. Besides, it is a way to deal with the 591 

problem of having different spinal curvatures and heights. 592 

A drawback of the method is the need to have an enough number of cases manually 593 

segmented, a time-consuming and tedious work.  594 

Finally, a marginal consideration must be done about the choice of the metrics for 595 

measuring segmentation accuracy; DSC is the most widely accepted but, as this case has 596 

shown, it may fail when parts of comparatively small volume are important. Other 597 

measures like HD, more related with shape than with volume, are probably more 598 

appropriate. 599 

 600 

5. CONCLUSIONS 601 

This study presents a new algorithm for the automatic segmentation of the vertebrae from 602 

CT images by combining two different segmentation methods. The first uses a level-set 603 

method to perform an initial segmentation of the vertebrae, detecting firstly the spinal canal 604 

in order to automate the whole process. The second method uses a probabilistic atlas, to 605 

both refine the initial segmentation and specifically suppress the ribs or surrounding 606 

structures. The algorithm was tested in pathological spines.  607 

In all, the presented method shows accurate and promising results. An accurate spinal 608 

segmentation is important due to the high number of pathologies spine-related. 609 

Consequently, it can be used to build models for quantification and follow-up of 610 

pathologies as well as for surgical planning or treatment planning for radiation therapy, 611 

among others. 612 
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It remains as an issue for future research how this method can be generalized to other 613 

structures for which clear anatomical feature points are of less reliable detection. 614 

 615 
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