

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/153457

Valero Bresó, A.; Candel-Margaix, F.; Suárez-Gracia, D.; Petit Martí, SV.; Sahuquillo Borrás,
J. (2019). An Aging-Aware GPU Register File Design Based on Data Redundancy. IEEE
Transactions on Computers. 68(1):4-20. https://doi.org/10.1109/TC.2018.2849376

https://doi.org/10.1109/TC.2018.2849376

Institute of Electrical and Electronics Engineers

"© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertisíng or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works."

1

An Aging-Aware GPU Register File Design
Based on Data Redundancy

Alejandro Valero, Francisco Candel, Darı́o Suárez-Gracia, Member, IEEE, Salvador Petit, Member, IEEE,
and Julio Sahuquillo, Member, IEEE

Abstract—Nowadays, GPUs sit at the forefront of high-performance computing thanks to their massive computational capabilities.
Internally, thousands of functional units, architected to be fed by large register files, fuel such a performance. At deep nanometer
technologies, the SRAM memory cells that implement GPU register files are very sensitive to the Negative Bias Temperature Instability
(NBTI) effect. NBTI ages cell transistors by degrading their threshold voltage Vth over the lifetime of the GPU. This degradation, which
manifests when a cell keeps the same logic value for a relatively long period of time, compromises the cell read stability and increases the
transistor switching delay, which can lead to wrong read values and eventually exceed the processor cycle time, respectively, so resulting
in faulty operation. This work proposes architectural mechanisms leveraging the redundancy of the data stored in GPU register files to
attack NBTI aging. The proposed mechanisms are based on data compression, power gating, and register address rotation techniques.
All these mechanisms working together balance the distribution of logic values stored in the cells along the execution time, reducing both
the overall Vth degradation and the increase in the transistor switching delays. Experimental results show that a conventional GPU register
file suffers the worst case for NBTI, since a significant fraction of the cells maintain the same logic value during the entire application
execution (i.e., a 100% ‘0’ and ‘1’ duty cycle distributions). On average, the proposal reduces these distributions by 58% and 68%,
respectively, which translates into Vth degradation savings by 54% and 62%, respectively.

Index Terms—Data compression, duty cycle, GPU architectures, NBTI, register files, threshold voltage degradation.

F

1 INTRODUCTION

T HE role GPUs play in high-performance computing is growing
in importance due to their excellent performance per watt

compared to conventional processors [13]. For instance, the
most energy-efficient supercomputers in the world, ranked in the
Green500 list [2], include GPU devices.

GPUs are designed for improving system throughput, and their
design is aimed at exploiting Thread Level Parallelism (TLP) by
supporting the concurrent execution of a vast number of threads.
The number of threads that a GPU can simultaneously execute
exceeds, in several orders of magnitude, the number of hardware
contexts supported by advanced processors like the IBM Power9
[32] or the Intel Knights Landing [33]. This feature is especially
important for the execution of parallel scientific applications that
rely on a high number of threads.

In this regard, GPUs have dramatically evolved during the last
years to support massive numbers of threads, which implies that
they must incorporate huge register files to feed the computation
performed by these threads. For example, the NVIDIA Tesla P100
(Pascal GP100) GPU features a 14MB register file, 3.5 times larger
than its shared L2 cache (4MB) and several orders of magnitude
bigger than typical CPU register files or CPU private L1 and L2
caches.

On the other hand, technology advances are allowing the
semiconductor industry to implement fabrication nodes whose
size is so small that process variations threaten system reliability.

• A. Valero and D. Suárez-Gracia are with the Departmento de Informática
e Ingenierı́a de Sistemas, Instituto Universitario de Ingenierı́a de Aragón,
Universidad de Zaragoza, Spain. E-mails: {alvabre, dario}@unizar.es.

• F. Candel, S. Petit, and J. Sahuquillo are with the Department of
Computer Engineering, Universitat Politècnica de València, Spain. E-mails:
fracanma@inf.upv.es, {spetit, jsahuqui}@disca.upv.es.

Process variations make transistors less reliable in low-power
modes and intensify transistor aging phenomena, which affects
modern computing devices, especially those that implement a large
number of transistors, such as GPUs.

This work focuses on attacking aging in those transistors
implementing the SRAM memory cells of GPU register files. In
particular, the effect that most accelerates aging in SRAM cells
is known as Negative Bias Temperature Instability (NBTI). NBTI
degrades the threshold voltage Vth of the PMOS transistors that
are on (i.e., their gate is connected to a logic ’0’). In an SRAM
cell, this happens when a logic value is stored for a relatively long
period of time, known as duty cycle. In turn, the Vth degradation, or
simply dVth, compromises the cell read stability, which is measured
as Static Noise Margin (SNM), and can lead to wrong read values.
In addition, the dVth slows down the transistor switching delay
Ts, and, since this effect can affect several transistors along the
critical path of a digital circuit, it can cause operation faults if the
critical path delay exceeds the clock cycle. Overall, mitigating the
dVth results in a reduction of the SNM degradation and Ts. In fact,
both SNM and Ts closely follow the trend of the dVth with a near
constant scale factor throughout the whole device lifetime [27],
[37], [17].

To guarantee the cell read stability, designers incorporate
additional transistors to the typical 6T cell, resulting in 7T and 8T
cells with area overheads of 13% and 30%, respectively, compared
to the 6T cell [35]. On the other hand, to avoid the increase of
the critical path delay, designers include guardbands (i.e., lower
operating frequencies) [37], [24]. As a consequence, the maximum
frequency for a given device decreases with time [8]. For instance,
for a 45nm technology node, NBTI can cause a 25% performance
degradation after 3 years [12]. Moreover, as technology scales
down and aging intensifies, NBTI is becoming the principal

2

source of transistor degradation [21], [36], compromising not only
performance, but power consumption and area due to enlarged cell
designs and transistor design margins required to compensate the
NBTI effect [10].

A straightforward strategy for coping with transistor aging is
powering off memory cells. Fortunately, when turned off, transistors
not only stop degrading, but they partially recover from the NBTI
effect [19]. Therefore, some works have attacked NBTI in GPUs
by switching off those memory structures that are not used by
GPU applications (kernels) [27], [12] or have severely aged [21].
Other works propose kernel compilation techniques based on aging
information [24].

On the other hand, data redundancy has been used in the past
to improve performance [7] and to save energy [22]. However, to
the best of our knowledge, this is the first time that it is used in
the GPU register file to mitigate the NBTI effect. This work makes
two main contributions:

• A data compression/decompression mechanism, inspired
by the Base-Delta-Immediate (BDI) algorithm [29], which
identifies redundant data patterns and allows whole com-
pressible registers to be switched off.

• A mechanism that rotates physical register addresses with
the aim of evenly distribute switch-off cycles among all the
registers.

These contributions can be applied to any modern GPU
architecture either from NVIDIA or AMD, since i) both vendors
implement huge register files with a similar organization and ii)
the leveraged data redundancy comes from the single-instruction
multiple-thread programming model provided by CUDA and
OpenCL; thus, it is independent of GPU architectural details.

This paper extends the work in [11] in four main ways:
i) a new data pattern has been identified for 2D kernels, and
the proposed compression and decompression units have been
extensively redesigned accordingly, ii) these units have been
synthesized using Synopsis Design Compiler, which provides
accurate timing, energy, and area numbers, iii) the proposed
mechanisms are quantitatively compared against state-of-the-art
techniques, and iv) the experimental evaluation quantifies the
impact on performance and energy consumption.

Experimental results show that, in a conventional register file,
there are memory cells that keep the same logic value (either
‘0’ or ‘1’) for the entire execution; that is, a 100% maximum
duty cycle distribution, which causes severe Vth degradation. In
contrast, the proposed techniques reduce the maximum ‘0’ and
‘1’ duty cycle distributions of the conventional register file design
by 58% and 68%, respectively. Such duty cycle reductions imply
Vth degradation savings by 54% and 62%, respectively. Further,
compared to a conventional design, powering off registers allows
the proposal to reduce the total energy consumption by 20%.
These benefits come with less than 0.5% and 5.4% performance
degradation and area overhead, respectively.

The rest of the article is organized as follows. Section 2 presents
a background about GPU register file organization, the NBTI effect
on SRAM cells, and the BDI algorithm. Section 3 motivates the use
of data compression strategies. Section 4 defines the compression
scheme implemented in our proposal. Section 5 introduces the
proposed architectural techniques and state-of-the-art mechanisms.
Section 6 discusses experimental results. Section 7 comments on
related work, and finally, Section 8 concludes this paper.

decomp.
unit

SIMD unit

64B

64B

compr.
table

compr.
unit

64BPG

C63C0 C1 C2 ...

...Pr0

Pr1

Pr2

Pr3

Pr4

Pr5

Pr255

...

Lr0

Lr1

Lr2

Lr0

Lr1

Lr2

...

...

WF0

WF1

64B

4.88B
compr.
data

4.88B 4.88B

64KB slice
uncompressed data

...

3 2 1 0
C0-15C48-63

1 064B

subwf

1b

1b

v
v

2b

1b

Fig. 1. GPU slice organization and additional compression/decompres-
sion units (colored gray). Pri, Ci, Lri, and WFi refer to a physical register,
register component, logical register, and wavefront, respectively.

2 BACKGROUND

2.1 GPU Register Files

This section summarizes the register file architecture of modern
GPUs. Since this paper uses the AMD Graphics Core Next (GCN)
family of GPUs as a driving example, AMD terminology is used
throughout this work.

Current GCN GPUs include tens of Compute Units (CUs).
Each CU has a 256 KB register file and 4 SIMD units; and each
SIMD works with a 64 KB slice of the register file, such as the one
depicted in Figure 1.

Each slice has 256 registers (labeled as Pri in the figure) of
256 bytes. In turn, each register is composed of 64 components of
4 bytes (Ci in the figure). To access to these registers, threads or
work-items are organized into groups of up to 64 threads called
wavefronts. All threads belonging to the same wavefront access
the same register but with a component shift based on the thread
id in the wavefront. This way, although each thread works with
a different Ci component of the same register, referring to each
component is avoided in the ISA. Since a SIMD unit consists of
16 lanes, the threads of a wavefront execute a given instruction
in a pipelined fashion, forming 4 bundles of 16 threads called
subwavefronts (i.e., C0-C15, C16-C31, C32-C47, and C48-C63), which
access the involved components of a register in successive cycles.

The 256 registers of the slice are distributed among the
wavefronts running on the corresponding SIMD unit. To do that,
when a wavefront starts executing, it receives the physical address
of its base register (regbase) and the number of registers that
its execution requires (N), which is a constant value for all the
wavefronts of a given kernel. Then, wavefront instructions refer to
logical registers (Lri in the figure) with an index that is added to
regbase. This way, a target physical register address is calculated
as regphys = regbase + index, where 0≤ index < N. We refer to the
set of registers that a wavefront can access as the register window
of the wavefront. Note that each running wavefront receives a
different regbase, so that register windows do not overlap.

Figure 1 also shows an example where wavefronts WF0 and
WF1 are assigned 2 different 3-register windows (N = 3), with
base register Pr0 (regbase = 0) and Pr3 (regbase = 3), respectively.
For those instructions of wavefront WF0, the logical register Lr2
is mapped to the physical register Pr2 (regphys = 0+2), while for
WF1 instructions, Lr2 is mapped to Pr5 (regphys = 3+2).

3

T0

'0' '1'

NBTI

NBTI

Duty cycle

recovery

recoveryT1

switch-off

recovery

recovery

WL

BL

Vdd

BL

T0 T1

Fig. 2. Implementation of a 6T SRAM cell and duty cycle effects on T0
and T1 PMOS transistors.

2.2 SRAM Cell Aging and Power-Gating Circuit

To help understand how the logic value (‘0’ and ‘1’) distribution
affects the lifetime of the cell transistors used to implement GPU
register files, this section shows the implementation of a typical
SRAM cell and how it suffers from the NBTI phenomenon.

Figure 2 presents a typical SRAM cell consisting of 6 transistors
(6T cell). The labeled transistors (T0 and T1) refer to the PMOS
transistors that partially form the inverter loop to store a logic
value, while the remaining 4 transistors are NMOS. Two NMOS
transistors are used to implement the inverter loop together with
the PMOS transistors, whereas the other pair are pass transistors
controlled by the wordline (WL) signal to allow read and write
operations through the bitline (BL) and its complementary (BL).

When a cell is under a ‘0’ duty cycle (i.e., when the cell is
stable and stores a logic ‘0’), the T0 transistor is under stress and
suffers from NBTI. On the contrary, under a ‘1’ duty cycle, T1
is the transistor affected by NBTI. The aging effects induced by
each type of duty cycle are complementary. This means that, for a
given duty cycle, the PMOS transistor that is not under stress can
partially recover from the degradation caused by NBTI. Therefore,
if every bit cell of the register file experiences a balanced duty
cycle distribution (50% for each logic value), even though the
cell still ages, this effect is evenly distributed among the cell
PMOS transistors and minimized compared to other cells with a
more biased duty cycle distribution. However, balanced duty cycle
distributions rarely turn out in a conventional design.

Previous works have attacked the NBTI effect by periodically
inverting the stored values in CPU register files [3], [41]. However,
by storing a given logic value, either T0 or T1 transistors are
continuously under stress. In addition, frequent inversions might
exacerbate the phenomenon referred to as Hot Carrier Injection
(HCI), which also contributes, although in a lesser extent than
NBTI, to transistor aging [40]. An alternative approach addressing
these issues consists in using the power-gating technique [31],
which has been widely adopted to save energy in memory
structures [18]. In particular, a power-gating design focused on
NBTI mitigation should include an NMOS high-Vt sleep transistor
connecting the 6T cell to ground, resulting in the cell ground
terminals tied together to a virtual ground. When the sleep transistor
is on (active state), the cell operates as usual, yet with a ground
voltage equal to the virtual ground, which does not affect the
SNM since by definition it is a DC noise voltage quantity. On the
contrary, when the sleep transistor is off (switch-off state), the cell
is disconnected from the ground and both T0 and T1 transistors
remain in a partial recovery mode at the same time, since their
gates are simultaneously connected to logic ‘1’ [9]. Notice too that
the sleep transistor is NBTI-free since it is NMOS.

The power-gating technique can be applied at different levels

PG

...

Vdd

Pri C0 C1 C2 C3 C4 C5 C6 C63

...

...

Virtual
ground

Fig. 3. Implementation of the NBTI-aware power-gating technique.

0xDA031220 0xDA031265 0xDA031220 0xDA03131E 0xDA03122A 0xDA031248

Uncompressed cache line

word0 word1 word2 word3 word4 word5

0xDA031220

base

4 bytes

0x45 0x00 0xFE 0x0A 0x28

Compressed cache line
∆0 ∆1

1 byte

...

Free space

Fig. 4. Compressed CPU cache line using the BDI algorithm.

of granularity [31]. As depicted in Figure 3, the proposed approach
incorporates a transistor for each 256-byte register to power off
entire registers in the GPU register file. This results in a coarser
granularity and eases the implementation compared to previous
techniques powering off CPU registers [34]. The sleep transistor is
controlled by a PG signal (see Figure 1), which is set to ‘0’ by the
compression unit when a register is found to be compressible. This
way, all the register cells remain in the active or switch-off state
when this signal bit is ‘1’ or ‘0’, respectively.

2.3 BDI Compression Algorithm
Our proposed data compression scheme is inspired by the BDI
algorithm [29]. BDI was designed to compress CPU cache lines by
calculating the arithmetic differences or deltas (∆) between the first
word (referred to as base b) and the rest of the cache line words,
and storing the base and all the obtained deltas (e.g., 15 deltas for
a 64-byte line composed of 4-byte words) in the same line. The
compression factor depends on the sizes of the obtained deltas.
Figure 4 shows an example of how the different deltas are obtained
in a 24-byte cache line. The 4-byte words (excluding word0) are
replaced by 1-byte deltas in the compressed cache line and can be
reconstructed with Equation 1.

wordi = b+∆i−1 (1)

The result is that the system performance can be boosted, since
additional compressed data blocks can be stored in the free space
of the cache line. From a cell aging perspective, this space could
be power gated to mitigate aging in these cells. However, those
cells storing the compressed data would still be exposed to NBTI.

3 GPU REGISTER PATTERN CHARACTERIZATION

Best practices for GPU programming recommend the use of
regular memory access patterns and the avoidance of branch
divergence [28], [16], [5]. Skilled programmers follow these
guidelines and write code that, when executed, stores regular data
patterns in GPU registers. The proposed aging-aware techniques
mainly try to exploit such regular patterns.

Compressing GPU registers requires to find compressible
patterns and a compression scheme. This section characterizes
a set of candidate patterns, and the next section describes the
proposed compression scheme.

3.1 Identification of Compressible Patterns
GPU register data patterns can be classified into 4 categories:
constant, single-∆, double-∆, and other. The first three exhibit

4

 barrier(CLK_LOCAL_MEM_FENCE);
 for(int i = get_local_size(0) >> 1;
 i != 0; i >> 1) {

 if(tid < i)
 localMem[tid] = min(localMem[tid],
 localMem[tid+i]);
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if(tid == 0)
 atomic_min(minVal, localMem[0]);
}

b + 63 eΔ...b +2 eΔb + eΔb
single-Δ

b...bbb

constant
C0 C63C1 C2

(b) Patterns(a) Kernel

__kernel void matrixMinValue(__global int *A
 __global int *minVal,
 __local int *localMem)
{
 int2 pos = (int2)(get_global_id(0), get_global_id(1));
 int tid = get_local_id(0);

b +
7 b+
7 e

Δ

Δ

...
b +

0 b+
2 e

Δ

Δ

b +
0 b+
1 e

Δ

Δ

b

double-Δ

 localMem[tid] = A[pos.x * get_global_size(0) + pos.y];

C0 C63C1 C2

Fig. 5. OpenCL kernel to find the minimum value in a matrix with three
data types: scalar, vector, and matrix, and their corresponding pattern.

regular compressible patterns and correspond to accesses to scalar,
vector, and matrix data types, respectively. Such regularity is
increased by locality optimization programming techniques, such
as tiling, commonly used in GPU programming.

Below, we discuss the identified three common patterns. Next,
we illustrate them through working examples, including locality
optimization programming techniques.

The constant pattern appears when all threads from a wavefront
are accessing the same scalar value, and hence, all Ci register
components are equal to a given base value b. Although the
compiler can avoid this pattern by statically figuring out that it is a
scalar operand and thus storing the value in the scalar register file, in
practice, such patterns are common due to divergence control [42].

The single-∆ pattern occurs when a register stores a sequence of
values where the difference, element delta (∆e), between successive
elements of the sequence is constant; for example, when storing
the addresses of a vector.

Finally, the double-∆ pattern mostly corresponds to linearly
stored matrices in a continuous memory region. Each matrix
element address, and hence, its corresponding component Ci, can
be obtained from the coordinates of the element in the matrix and
two different deltas, element (∆e) and block (∆b), which refer to
the element size and the row (i.e., second dimension) size of the
matrix, respectively. In addition, this pattern appears when using
programming techniques such as tiling or sliding window.

To provide a sound understanding of these patterns, let us
illustrate them through three examples. The first example is a
simple OpenCL 2D kernel that finds the smallest element in a
2D matrix as depicted in Figure 5(a). The highlighted code lines
produce the patterns plotted in Figure 5(b).

The constant pattern appears in several registers like those
storing the initial value of i, get_local_size(0) >> 1,
and the constant 0. Regarding the single-∆ pattern, the register
storing the variable tid contains the thread unique global work-
item id values. At the initial kernel launch, the first thread id is
zero or an integer offset, and, by definition, the difference between
consecutive thread id values in a wavefront equals to 1; therefore,
all the tid values can be reconstructed from the tuple: b = 0
or offset and ∆e = 1. The single-∆ pattern is also present in the
register used for addressing the locally stored array localMem
because all consecutive pairs of components of this register differ
by an offset equal to 4; i.e., the size in bytes of an integer value. In
general, any register referencing a vector in a continuous memory
region can be encoded with a single-∆ pattern, being b and ∆e
the initial array address and the element size, respectively. The
double-∆ pattern appears accessing the matrix A where the address

A

...

...

C0 = A + (16 ⋅ 4) ⋅ 0 + 4 ⋅ 0
C1 = A + (16 ⋅ 4) ⋅ 0 + 4 ⋅ 1
C2 = A + (16 ⋅ 4) ⋅ 0 + 4 ⋅ 2

C7 = A + (16 ⋅ 4) ⋅ 0 + 4 ⋅ 7
C8 = A + (16 ⋅ 4) ⋅ 1 + 4 ⋅ 0

C63 = A + (16 ⋅ 4) ⋅ 7 + 4 ⋅ 7

base Δb Δe

element id
block id

tile 1tile 0

tile 2 tile 3

(a) Tiling. Component address values refer to tile0

B

...

= B + (2 ⋅ 2) ⋅ 0 + 2 ⋅ 0
= B + (2 ⋅ 2) ⋅ 0 + 2 ⋅ 1
= B + (2 ⋅ 2) ⋅ 0 + 2 ⋅ 2
= B + (2 ⋅ 2) ⋅ 0 + 2 ⋅ 3
= B + (2 ⋅ 2) ⋅ 1 + 2 ⋅ 0
= B + (2 ⋅ 2) ⋅ 1 + 2 ⋅ 1

= B + (2 ⋅ 2) ⋅ 6 + 2 ⋅ 3

s2s1

s1

s3

base Δb Δe

element id
block id

s0

s6

s4 s5s3

s5

si = slide i

C0

C1

C2

C3

C4

C5

C27

(b) Sliding window. Component address values refer
to sequential slide windows

Fig. 6. Examples of double-∆ patterns. A and B refer to the memory
address of the first matrix elements.

difference between elements depends on the element and row sizes.
In this case, b, ∆e, and ∆b contain the values A (address of the first
element), 4, and matrix row size × 4, respectively.

The second and third examples, Figures 6(a) and 6(b), illus-
trate other occurrences of the double-∆ pattern under common
programming techniques: tiling and sliding window. For tiling, we
assume a 16×16 matrix consisting of 4-byte elements. Instead of
accessing the whole matrix at once, programmers usually write
code accessing disjoint tiles of the matrix to maximize locality.
For example, dividing the access to matrix A into four 8× 8
tiles, a register storing the addresses of the tile0 elements can be
compressed using b = A, ∆e = 4 (element size), and ∆b = 64 (row
size = 16 elements × 4 bytes). In the sliding window example,
different sets of accesses intersect among them. The size of a sliding
window is 1×4 elements, so there are 7 sliding windows in the
4×4 matrix B containing 2-byte elements with a 2-element stride.
In this case, a register stores addresses of elements of sequential
slides, being ∆e = 2 and ∆b = 4. The latter refers to the shift of 2
times the element size. Unlike tiling, the sliding window technique
can also be used for accessing single dimensional arrays.

3.2 Register Pattern Characterization in GPU Kernels
To check the potential of our approach, we characterized the de-
scribed data patterns in a representative subset of GPU applications
from the OpenCL SDK 2.5 benchmark suite [1] that highly stress
the register file.

Figure 7 shows the distribution of write operations in the whole
register classified according to the three patterns for the studied
applications. Label other refers to register write operations that do
not follow the identified patterns. The reader is referred to Section 6
for further details about the experimental environment.

The previously identified patterns are frequent in GPGPU
kernels. Those kernels that more benefit from our approach are
MatrixT, QRandS and RadixS, which show a percentage of writes
with such patterns surpassing 70% of the total performed writes.
Moreover, the percentage in MatrixT is over 90%. As opposite,
BlackS is the only kernel where the identified patterns are less than
25% of writes. This is due to this kernel uses a high amount of

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BlackS DCT Histog MatrixM MatrixT QRandS RadixS Reduct ScanArr SimConv Avg

D
a

ta
 p

a
tt

e
rn

 d
is

tr
ib

u
ti
o

n

other

double-∆

single-∆

constant

Fig. 7. Data pattern distribution for the GPU register file.

floating-point and random data. Constant patterns in BlackS mainly
appear due to all threads from a wavefront accessing to the same
memory address.

In summary, the characterization study results show a high
potential of compressing/decompressing registers dynamically at
run-time, since, on average, the identified patterns represent more
than half (i.e., 52%) of the total writes.

4 COMPRESSION/DECOMPRESSION SCHEME

The previous section has defined the intuitive foundations in
which our approach relies. This section formalizes the proposed
compression scheme. To simplify the hardware implementation,
the three patterns are encoded with Equation 2, where j and k are
derived indexes from the i-th work-item id.

Ci = b+ j×∆b + k×∆e (2)

For the double-∆ case with matrices, j and k refer to the row
and column of the i-th element, and can be computed as bi / BSc
and i % BS, respectively, where BS (block size) refers to the row
size, tiling width, or sliding window size. For the single-∆ pattern,
the difference between all the components is ∆e, i.e., ∀i ∈ [0,63] :
Ci = b+ i×∆e, which is obtained when j = bi / BSc, k = i % BS,
and ∆b =BS×∆e in Equation 2. Finally, the constant pattern leaves
both deltas to 0 and only stores the base; i.e., ∀i ∈ [0,63] : Ci = b.

For illustrative purposes, the right side of Figure 6 shows how
Equation 2 is applied to compute the components of the example in
two double-∆ pattern examples (tiling and sliding window). Labels
block id and element id correspond to j and k, respectively. Whilst
block id identifies either tile rows or slides, element id identifies
each element within a tile row or slide.

Note that for 2D kernels, BS is an input parameter specified
by the programmer, which is often a power of two to properly fit
the kernel into the register file and does not change throughout the
kernel execution. Thus, ∆e and ∆b can be computed as the offsets
between two consecutive components within a block and the offsets
between the first component of consecutive blocks, respectively.
For double-∆ patterns, we have observed that benchmarks operate
with a BS set to 8 by default, so this is the value that will be used
for the rest of the paper.

From an implementation perspective, this approach presents an
important advantage over BDI. While BDI requires to store a base
plus n−1 deltas, where n is the number of register components,
our compression scheme only stores a base and two deltas in
a tiny auxiliary table before turning off a complete register for
aging mitigation purposes, which makes feasible to dynamically
compress/decompress registers with a simple hardware module.

5 TECHNIQUES TO MITIGATE NBTI IN REGISTER
FILES

This section presents the proposed architectural mechanisms for
mitigating NBTI in register file cells; namely, Register Compression
and Switch Off (RC) and Register Address Rotation (RAR).
Besides, in order to make the paper self-contained, we describe
two state-of-the-art approaches, namely, Warped-Compression
(WC) [22] and ARGO [27], that have been implemented and
evaluated for comparison purposes.

5.1 RC: Register Compression and Switch Off
As mentioned above, the proposed approach is inspired by the BDI
algorithm [29] for CPU caches. Given that most instructions have
one destination register and two source registers, RC includes one
compression unit and two decompression units for each slice in the
register file (see Figure 1).

5.1.1 Compression Unit
The compression unit sits at the output of the SIMD ALU and
checks whether the register components are compressible. Given
our delta-based compression scheme, it has to compute ∆e and
∆b values. As explained in Section 2.1, the register file and SIMD
ALU widths do not match in an AMD GCN GPU. A register
consists of 64 components, whereas the ALU operates each cycle
with a subwavefront of 16 components from the register. Handling
this mismatch requires to have two modules in the compression
unit, that is, a computing deltas module and a control module
managing the state. On the contrary, for NVIDIA architectures, a
control module would not be necessary since the slice access is not
pipelined.

The computing deltas module has to be fast enough to fit in the
cycle time of the GPU, but small and energy-efficient enough to
pay off for the extra area and energy consumption. A simple yet
efficient approach is plotted in Figure 8. The figure also includes the
control module, which enables different signals for the computing
deltas module depending on the current state.

The control module tracks whether either a new pair of delta
candidates from the first subwavefront (components from C0 to
C15), ∆e and ∆b, are stored when an ALU operation starts, or the
stored pair of deltas are compared with deltas from successive
subwavefronts (either C16 to C31, C32 to C47, or C48 to C63) to
drive the computing deltas module operation. The control module
is implemented as a finite state machine consisting of 5 states as
depicted in Figure 9. Each state in turn enables the signals from
the computing deltas module presented in Table 1. When the ALU
ends computing each subwavefront, the control module checks the
compr signal from the computing deltas module, and either transits
to the next delta state or returns to the idle state, deactivating the
delta computation until the ALU operates with a new destination
register.

The computing deltas module consists of a single level of
subtractors that compute, for the two blocks of a given subwave-
front, the offset between consecutive components, ∆e j =Ci+1−Ci,
and the offset between the first components of consecutive
blocks, ∆bk =Ci×8−Ci×8−8. The subsequent level of comparators
determines if all ∆e j and all ∆bk from the current subwavefront
are equal to ∆e and ∆b, respectively, from the first subwavefront.
For this purpose, ∆e and ∆b are stored in two intermediate buffers
controlled by the Wen ∆ signal, which is only activated in the
deltas C0-C15 state. Similarly, since computing ∆bk requires Ci×8−8

6

ci

ci+1 ci+1 ci+2 ci+6 ci+7

...

∆ej ∆ej+1 ∆ej+6

ci+2 ci+3

∆ej+2

ci+8

ci+9 ci+9 ci+10 ci+14 ci+15

...

∆ej+7 ∆ej+8 ∆ej+13

ci+10 ci+11

∆ej+9

_

c0 log (∆)2 e

Compression table

ci

v
PG

Pr0

Pr255

...

0

...

255

ci+1 ci+2 ci+3 ci+4 ci+5 ci+6 ci+7 ci+8 ... ci+15

=?

∆bk+1

log (∆)2 b

2 14

=? =? =? =? =? =?

_

Block

∆bk

_

ci-8

1

0

Block

Buffers

1

0

=? =?

=?
1

0

=?

c0

Slice

∆e∆b

Wen_cWen_∆Wen_∆

Wen_ct

01

0
compr

Control
module

to log

comp_∆s

comp_∆s comp_∆s

final_st

compr

ALU
starts

Wen_ct
final_st
comp_∆s
Wen_c
Wen_∆

to log

Fig. 8. Computing deltas module from a compression unit. A control module is included in the bottom left.

Fig. 9. Finite state machine from the control module of a compression
unit. The compr signal is active when components can be compressed.

from the previous subwavefront, this component is stored in the
buffer controlled by Wen c. This signal is only activated in those
states referring to a possibly compressible register (i.e., deltas C0-
C15, deltas C16-C31, and deltas C32-C47). The intermediate buffers
are implemented with 1T1C eDRAM cells, which are NBTI-free
by design as they do not include PMOS transistors [14].

Depending on the current state, the first input of a comparator
comes either from the above subtractor or from the buffers storing
deltas. In particular, the subtractor outputs are only used in the
deltas C0-C15 state, since there is not a valid pair of deltas from
a previous state. Otherwise, the buffer outputs are used. This is
accomplished by enabling the comp ∆s signal. If both deltas are
zero or positive and a power of two, and all comparators output ‘1’,
the register components of the current subwavefront are found as
compressible by enabling the compr signal. Meanwhile, regardless
of this signal is enabled or not, the 16 register components are
stored in the slice.

In the deltas C48-C63 state, f inal st is enabled, meaning that
compr is forwarded to the multiplexer output instead of ‘0’. If the
compr signal is active, the entire destination register is found to
be compressible. In such a case, the register is powered off using
the power-gating technique (PG =‘0’, see Section 2.2), whereas
C0, ∆e, ∆b, and a valid v bit are stored in an auxiliary compression
table by enabling Wen ct . Likewise the intermediate buffers, the
compression table is implemented with NBTI-free eDRAM cells.

The compression table keeps as many entries as registers in
a slice; i.e., 256. For each entry, the v bit indicates whether the
entry contains compressed data. Note that this table does not store
∆e and ∆b, but log2(∆e) and log2(∆b), speeding up decompression
and reducing the table size. For example, on a 2D sliding window

TABLE 1
Signal values for each state of the control module.

State Signals
name Wen ∆ Wen C comp ∆s f inal st Wen ct

idle 0 0 0 0 0
deltas C0-C15 1 1 0 0 0
deltas C16-C31 0 1 1 0 0
deltas C32-C47 0 1 1 0 0
deltas C48-C63 0 0 1 1 1

implementation, a kernel could generate a double-∆ pattern like
2−4−6−8−10−12−14−16−10−12−14−16−18−20...,
in which the destination register would be switched off and the
associated table entry would store C0 = 2, log2(∆e) = 1 (i.e., ∆e =
2), and log2(∆b) = 3 (i.e., ∆b = 8).

A compression table entry comprises the v bit, 4 bytes to
store C0, 3 bits to store log2(∆e), and another 3 bits to store
log2(∆b). Experimental results show that 3 bits for each logarithm
are enough since considering higher values than 64 (26) for ∆e
and ∆b provides minor compression coverage improvement. This
implies that those patterns with either ∆e or ∆b exceeding such a
limit are not compressed. We use the binary value “111” to code the
special case in which ∆e or ∆b are zero, since the binary logarithm
is not defined for this value.

Overall, as a register consists of 64 components operated in
4 subwavefronts of 16 components, a compression unit requires
16 subtractors and 16 comparators (14+2 to compare ∆e and ∆b
values, respectively), whereas the compression table size is 1.22
KB. Two crucial observations enable to simplify the compression
circuitry: i) all valid deltas are one-hot values, that is, single ‘1’ bit
and the rest ‘0’ since valid deltas are power of two values, and ii)
the ‘1’ bit can only be present in bit positions from 0 to 6 because
the largest delta is 64. Therefore, the output bits 7 to 31 from the
subtractors have to be always ‘0’ to compress a register.

Finally, write operations from divergent instructions must act
on uncompressed registers, since they might update only a subset
of their components, leaving the remaining components untouched.
To do so, similarly to as done in [22], we dynamically issue
a special MOV instruction ahead of a divergent write only if
the destination register was compressed. The aim of this special

7

+ + +

+ +

...
+ + +

...
+ +

+

+

+

+

ci ci+1 ci+2 ci+7 ci+8 ci+9 ci+10 ci+15

00

1 0

00

1 0...

...

...

00

1 0

00

1 0

00

1 0...

00

1 0

<<

0

<<

0

cnt0

1 0

012

<<

0

<<

0

cnt1

1 0

...<<<<

1

<<<<

2

<<<<

7

...<<<<

1

<<<<

2

<<<<

7

c0 log2 e(∆)

Compression table

v0

...

255

log2 b(∆)

7 8 9

Block

012

Block

7 8 9

9 9

Fig. 10. Decompression unit.

instruction is to decompress the register contents and store them in
the destination register before the divergent write is performed.
Experimental results show that the overhead caused by these
additional instructions is minimal, since, on average, less than
0.7% of total register writes imply such MOV insertions.

5.1.2 Decompression Unit
The decompression circuit unwinds 16 components on each
subwavefront read access. A possible implementation is shown in
Figure 10. The inputs to this unit are C0, log2(∆e), and log2(∆b)
from the compression table. For subwavefronts from 0 to 3, cnt0
and cnt1 constants are updated to 0 and 1, 2 and 3, 4 and 5, and 6
and 7, respectively, and refer to the block id of the source register.

Given that ∆b is zero or positive and a power of two, calculating
the offset between C0 and the first component of the involved
block is equivalent to binary shift cnti to the left ∆b times; i.e.,
cnti << log2(∆b), which largely simplifies the required logic.
When log2(∆b) is encoded as the binary value “111” (∆b = 0),
the corresponding AND gate controlling the below multiplexer is
active and a zero is forwarded instead of cnti << log2(∆b). Within
a block, seven shift operations are also performed to calculate the
offsets between the first component of the block and Ci. In this
case, constants from 1 to 7 refer to the element id. Likewise the
previous shift, an AND gate and multiplexers are used to either
forward zero or non-zero offsets.

The first level of adders calculate the offset between C0 and
Ci, whereas the second level of adders sum C0 to the first-level
adder output to finally restore each component. For instance, if
C0 = 2, log2(∆b) = 3, and log2(∆e) = 1, the decompression circuit
computes C1 = 2+0 << 3+1 << 1, C2 = 2+0 << 3+2 << 1...
C8 = 2+ 1 << 3+ 0 << 1, C9 = 2+ 1 << 3+ 1 << 1..., which
results in the data pattern 2− 4− 6− 8− 10− 12− 14− 16−
10− 12− 14− 16− 18− 20... Overall, a decompression unit is
composed of 16 shifters, 16 multiplexers, 14 first-level adders, and
16 second-level adders.

5.1.3 Timing, Energy, Power, and Area Estimations
This section quantifies the timing, energy, power, and area esti-
mations of the memory structures and additional logic used to
implement the proposed RC mechanism. The memory structures
have been modeled with CACTI-P [23], whereas the combinational

TABLE 2
Timing, energy, power, and area values for a 32nm technology node and

a 1GHz clock frequency. N/A: Not applicable.

Slice Compr. Compr. Decompr.
table unit unit

Access time (ns) 0.92 0.29 0.70 0.70
Read energy (pJ) 295.86 1.25 N/A 0.96
Write energy (pJ) 365.91 66.49 1.10 N/A

Leak. power (mW) 75.86 0.13 8.46 8.00
Ret. time (cycles) N/A 119K N/A N/A

Area (mm2) 0.889 0.020 0.007 0.007

logic has been synthesized with Synopsis Design Compiler and
simulated with Mentor Graphics Modelsim. The technology library
corresponds to a low-power 32nm technology available to European
universities, featuring eight metal layers. For timing closure, we
set a target of a 1 GHz clock frequency like that of the AMD GCN
HD 7770 GPU considered in the experiments. Table 2 shows the
results for the main design components.

On a conventional GCN GPU, the execution of a subwavefront
from an instruction takes 4 cycles. The first and fourth cycles are
devoted to register read and write operations, whereas the remaining
cycles are for SIMD operation [4]. Once the first subwavefront has
written to the destination register, the remaining 3 subwavefronts
write to the same register in the successive 3 cycles.

Adding a compression unit does not imply any additional cycle
on a slice write operation, since both the slice and the compression
unit are accessed in parallel. Recall that, even though the destination
register can be found as possibly compressible in intermediate
states, the involved components are written to the slice on each
state. On the other hand, updating the tiny compression table in the
deltas C48-C63 state when the destination register is compressible
fits within the cycle time (0.29 ns+0.70 ns < 1 ns).

Regardless of whether the source registers are compressed or
not, adding two decompression units does not impact on the slice
read access time. This is accomplished by accessing in parallel the
source registers and the compression table. Besides, the sum of the
compression table and decompression unit delays does not surpass
the cycle time. However, we conservatively assume the wakeup
delay of a register to be 10 cycles [22], [27], which may impact
on performance since an instruction writing a non-compressible

8

pattern must switch on a powered-off destination register before
writing to it (see Section 6.5). On the other hand, switching off a
register does not impact on performance since this action does not
prevent subsequent instructions from accessing the slice.

Accessing in parallel the slice and the proposed compression
and decompression units might increase the dynamic energy
consumption with respect to a conventional design. Fortunately,
the pipelined slice access helps reduce the overall dynamic con-
sumption, since as soon as a register is found as not compressible
or not decompressible in any state, these units are deactivated for
successive subwavefronts accessing the register. Similarly, on a read
access, if a register is found as compressed in the deltas C0-C15
state, successive subwavefronts accessing the register are canceled.
Besides, the dynamic energy contributions of the decompression
and compression units on read and write operations, respectively,
are minimal compared to those of the slice. Notice too that the
dynamic energy expenses of the compression table are higher than
those of the compression and decompression units, especially for
write operations, but much lower than those of the slice.

Regarding leakage power, one compression and two decom-
pression units represent about 32% of the slice leakage power
consumption. On the other hand, the leakage contribution of the
compression table is almost zero since it is implemented with
eDRAM cells. The reader is referred to Section 6.6 for a deeper
energy analysis.

The eDRAM cells require from periodic refreshes to maintain
their data. This might negatively impact on energy consumption and
performance, since refreshes compete with regular accesses to the
compression table. To minimize the impact on energy and perfor-
mance, the refresh mechanism is implemented as distributed [25]
and eDRAM cells are built with typical 20 fF capacitors, which
translates into a retention time of 119048 cycles [23]. This implies
a large refresh period of 465 cycles for the 256-entry compression
table. On the other hand, the buffers from the compression unit
do not require from additional refresh cycles since their contents
are just retrieved in the successive cycles of a slice write operation.
Notice too that the area overhead of the compression table and
additional logic is by 3.82% of the much larger slice.

Finally, CACTI-P has been also used to model the power-
gating circuit required to shut off registers, including all the sleep
transistors and interconnections. This technique imposes a register
wakeup energy by 232.88 pJ and an area overhead by 0.013 mm2

(1.53%) over the slice, which is akin to other power-gating designs
from the industry reporting area overheads [30].

5.2 RAR: Register Address Rotation

As explained in Section 2.1, during its execution, a wavefront
is assigned an N-register window. When the wavefront ends its
execution, it releases its register window, which is ready to be
assigned to a new incoming wavefront. Taking into account that
wavefronts from the same kernel usually show a similar behavior,
it is very likely that RC will end up powering off the same registers
when a window is reassigned. This behavior impacts on the register
file lifetime as some registers will not be switched off at all (see
Section 6.2). To address this problem, this section presents a simple
yet effective register address rotation mechanism, RAR, aimed at
distributing switch-off cycles among registers.

RAR modifies the address of the base register regbase at window
assignment. This way, the N registers are evenly powered off.
When a window is reassigned, RAR defines a new base register as

≥?

MUX 2:1
0 1

index limit regbase0 index indexregbase1

regphys

+ +

Fig. 11. RAR circuit.
TABLE 3

Timing, energy, power, and area values for the WC compression and
decompression units. N/A: Not applicable.

Compression Decompression
unit unit

Access time (ns) 0.70 0.65
Read energy (pJ) N/A 0.79
Write energy (pJ) 0.76 N/A

Leakage power (mW) 7.01 8.03
Area (mm2) 0.006 0.008

regbase + s, where s is a value falling in between 0 and N−1 that is
incremented by 1 modulo N on each window re-assignation. Note
that in order to avoid accesses to registers from other windows,
the address of the target physical register must be computed as
regphys = regbase +(s+ index)% N.

For instance, assuming N = 10, s = 0, and the execution of
a wavefront with regbase = 50; if the data stored into the logical
register Lr9 are compressed, then, the physical register Pr59 (50+
(0+9)% 10 = 59) will be powered off. Then, when the window
is reassigned s is incremented (s = 1), thus Lr9 will map to Pr50
(50+(1+9)% 10 = 50), which will be powered off instead.

Figure 11 plots a possible implementation of the logic to
calculate regphys. To avoid the use of adders supporting any
possible modulo N on a window reassignment, two different
base register addresses are calculated, namely regbase0 = regbase+s
and regbase1 = regbase + s−N. Note that regbase1 is used instead
of regbase0 on overflow situations, that is, when s+ index > N.
The comparator in the circuit is used to determine which base
register address will be used by checking if index > limit, where
limit = N− s. Notice too that the hardware overhead of RAR is
minimal as it just includes an additional comparator, a 2-input
multiplexer, and an adder with respect to the original logic required
to calculate the target physical register. Furthermore, the impact on
the critical path is minimal as the 2-input multiplexer delay is just
13 ps as synthesized with Synopsis.

5.3 State-of-the-Art: WC and ARGO
The recently proposed WC and ARGO mechanisms use the power-
gating technique on GPU register files for energy and aging savings,
respectively. For the sake of fairness, all the studied approaches
apply this technique at the same granularity of register.

WC uses the BDI algorithm to compress GPU registers storing
data patterns; thus, WC calculates a base value and as many deltas
as components within a register minus one, that is, 63 deltas in
our modeled GPU architecture. The base value is always stored
in the first component of a compressible register, the subsequent
cells store the 63 deltas, and the remaining cells are switched off.
The percentage of powered off cells within a compressible register
depends on the size of the obtained deltas. If they are all zero,
just the base is stored. In case that each delta can be represented
with one byte, the subsequent 63 bytes after the base store the

9

TABLE 4
GPU configuration and memory hierarchy.

AMD GCN HD 7770 GPU
Clock frequency 1 GHz
Compute Units (CUs) 10
Vector memory unit 32 entries, 1 per CU
LDS unit 64 KB, 1 per CU, 1 cycle
Scalar unit 2 KB, 1 per CU

1 cycle per instruction
Slice 64 KB, 4 per CU

4-1-1-1 cycles per instruction
Max. wavefronts per slice 16
Work-items per wavefront 64
All caches LRU, 64 B-line
Scalar L1 caches 16 KB, 4-way, 1 per CU

1 cycle
Texture L1 caches 16 KB, 4-way, 1 per CU

1 cycle
L2 caches 128 KB, 16-way per module

2 modules, 10 cycles
Main Memory 2 channels per L2 module

100 cycles

deltas. If any delta cannot be represented with one byte but two
bytes are enough to represent each of them, then 126 bytes after
the base store the deltas. Otherwise, the entire register remains
on and uncompressed. Table 3 shows the timing, energy, power,
and area requirements of the WC compression and decompression
units, which have been also synthesized with Synopsis Design
Compiler. Compared to those of the proposed RC approach (see
Table 2), they mostly present slightly lower numbers since their
implementation is simpler. However, the decompression unit shows
marginally higher leakage and area since the wiring is increased by
42%. Please, refer to [22] for further implementation details.

The ARGO approach is based on the observation that GPU
kernels do not usually occupy all the available registers in a slice.
The slice utilization mainly depends on its number of physical
registers, the maximum number of concurrent wavefronts allocated
to a slice, and the register window size [6]. The two former depend
on the GPU architecture, whereas the latter is determined at kernel
compilation time. For instance, on a 256-register slice with a
maximum of 16 concurrent wavefronts and a kernel with 4-register
windows, the slice utilization is 25%. ARGO takes advantage of
this fact by powering off entire unused register windows and by
modifying the wavefront register allocation so that wavefronts
eventually occupy all the register windows on a round-robin basis.
The result is to evenly distribute unused windows along a register
slice. The reader is referred to [27] for further details.

6 EXPERIMENTAL EVALUATION

This section quantifies the duty cycle savings, Vth degradation,
impact on performance, and energy consumption of the studied
architectural mechanisms. To do so, the Multi2Sim simulation
framework [38] has been extended to implement the proposed RC
and RAR mechanisms, including the additional MOV instructions
(see Section 5.1.1). The WC and ARGO approaches have been
also modeled for comparison purposes. The Vth degradation has
been quantified by using a standard formula [37], whereas energy
results were calculated by combining processor statistics from
Multi2Sim with energy numbers from CACTI-P and Synopsis.
Table 4 summarizes the GPU configuration and memory hierarchy,
which closely resembles the AMD GCN HD 7770 GPU.

0

0.2

0.4

0.6

0.8

1

0

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
1

5
2

1
2

8
0

1
4

0
8

1
5

3
6

1
6

6
4

1
7

9
2

1
9

2
0

Bit position

A
v
e

ra
g

e
d

u
ty

c
y
c
le

'1'
'0'

(a) Baseline and RAR

0

0.2

0.4

0.6

0.8

1

0

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
1

5
2

1
2

8
0

1
4

0
8

1
5

3
6

1
6

6
4

1
7

9
2

1
9

2
0

Bit position

A
v
e

ra
g

e
d

u
ty

c
y
c
le

switch-off
'1'
'0'

(b) WC

0

0.2

0.4

0.6

0.8

1

0

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
1

5
2

1
2

8
0

1
4

0
8

1
5

3
6

1
6

6
4

1
7

9
2

1
9

2
0

Bit position
A

v
e

ra
g

e
d

u
ty

c
y
c
le

switch-off
'1'
'0'

(c) ARGO

0

0.2

0.4

0.6

0.8

1

0

1
2

8

2
5

6

3
8

4

5
1

2

6
4

0

7
6

8

8
9

6

1
0

2
4

1
1

5
2

1
2

8
0

1
4

0
8

1
5

3
6

1
6

6
4

1
7

9
2

1
9

2
0

Bit position

A
v
e

ra
g

e
d

u
ty

c
y
c
le

switch-off
'1'
'0'

(d) RC and RC+RAR
Fig. 12. Average duty cycle distribution on each bit position of the registers
of all the studied applications.

6.1 Average Duty Cycle Distribution

The ‘0’ and ‘1’ duty cycles stress T0 and T1 SRAM cell transistors,
respectively, used to implement the register file (see Figure 2).
This section provides insights on how the different duty cycles are
distributed within the registers of a slice.

Figure 12 depicts, for each register bit position, the average
duty cycle distribution across all the registers for all the analyzed
approaches. Results are averaged for all the studied kernels. The
‘0’ and ‘1’ categories represent the amount of time that a given bit
position stores logic ‘0’ and ‘1’, respectively, whereas switch-off
refers to the amount of time that such a bit remains powered off.

The baseline approach refers to a conventional GPU register
file design. Notice that this approach and RAR show the same
duty cycle distribution as they do not switch off specific cells, and
rotating register addresses in RAR does not change the plotted
average distribution with respect to the baseline. Similarly to what
occurs in CPU applications [15], [39], GPU memory structures
usually store zero and narrow integer values, which implies that
those cells storing the most significant bits within a register
component hold logic ‘0’ most of the time. This is the case for
the baseline and RAR, where all components (32-bit each) present
longer ‘0’ duty cycles (e.g., 70-80%) as we approach to the most
significant bit. In fact, for the most significant bit, which refers
to the sign bit of the stored component data, the average duty

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e

lin
e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e

lin
e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e

lin
e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e

lin
e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e

lin
e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e

lin
e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a

s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

BlackS DCT Histog MatrixM MatrixT QRandS RadixS Reduct ScanArr SimConv Avg

L
o
n

g
e
s
t

'0
' d

u
ty

 c
y
c
le

switch-off
'1'
'0'

Fig. 13. Longest ‘0’ duty cycle among the cells of the entire slice for the studied mechanisms.

cycle almost reaches 100%, confirming that most data are positive
or zero. Results also highlight that logic ‘0’ is more often stored
than its counterpart logic ‘1’, thus a usually larger degradation in
transistors T0 is expected.

The remaining mechanisms include the switch-off category as
they power off memory cells. WC shows an uneven distribution of
switch-off cycles across the register bits. Four different segments
can be distinguished. Bit positions from 0 to 31 (first component)
always remain on as they store a base value or uncompressed data.
Bits from 32 to 535 experience switch-off cycles when a constant
pattern is detected (i.e., just the base value is stored in the first
component while the remaining register bits are powered off) or
they are storing either deltas (63 1-byte or 63/2 2-byte deltas) or
uncompressed data. Bits from 536 to 1039 can be also powered off
when each of the 63 deltas occupies 1 byte. Otherwise, they store
either 2-byte deltas or uncompressed data. Finally, bits from 1040
to 2047 are powered off or they just store uncompressed data.

Unlike WC, the ARGO approach completely power gates those
register entries from register windows that are not being used by
the kernel, and periodically rotates register addresses to spread
switch-off cycles across all registers. The result is all bit positions
experiencing the same amount of switch-off cycles.

Finally, likewise the baseline and RAR techniques, RC and
RC+RAR show the same duty cycle distribution. The proposed
approaches also show a uniform switch-off cycle distribution across
the register bits by completely power gating entire register entries
once a data pattern is detected. Nevertheless, the switch-off duty
cycle is significantly larger than that of ARGO, meaning that
exploiting data redundancy is more effective than switching off
unused registers.

6.2 Longest ‘0’ Duty Cycle Analysis
To quantify transistor aging savings brought by the proposed
mechanisms in a memory structure, it is important to analyze
the longest ‘0’ and ‘1’ duty cycle distributions, as they will cause
the strongest transistor degradation within the memory. This section
quantifies the longest ‘0’ duty cycle among the cells of a whole
slice across the analyzed benchmarks.

Figure 13 depicts the results for the studied approaches. For
each bar, the ‘0’ category represents the maximum percentage of
time a cell is keeping a logic ‘0’ value. The remaining categories
represent, for the cell with this maximum percentage, the time it
spent with a logic ‘1’ value or switched off.

As expected, the longest ‘0’ duty cycle for the baseline reaches
100% for all the kernels, meaning that at least one cell within
the slice contains a ‘0’ during all the kernel execution. The same

TABLE 5
Slice utilization and number of unused register windows for each kernel.

Kernel Slice utilization # of unused reg. windows
BlackS 97% 0
DCT 69% 7

Histog 81% 1
MatrixM 80% 0
MatrixT 25% 48
QRandS 58% 2
RadixS 60% 5
Reduct 81% 3

ScanLArr 19% 69
SimConv 94% 1

results can be seen for the WC approach. This is due to, as shown
in Figure 12(b), WC stores the base value in the first component
of a register. Thus, these cells cannot be powered off and remain
exposed to long ‘0’ duty cycles.

In contrast, ARGO reduces the longest ‘0’ duty cycle by evenly
distributing and switching off unused register windows along the
slice. However, there are some applications like BlackS, MatrixM,
and SimConv where ARGO is ineffective, leading to 100% ‘0’ duty
cycles. This is because, as shown in Table 5, those kernels with
a high slice utilization have a very limited number of available
unused register windows (if any), thus powering off opportunities
are scarce or nonexistent.

Note that just rotating register addresses using the RAR-only
approach does not reduce the longest ‘0’ duty cycle. This is because
RAR alone does not switch off registers, thus it cannot place both
T0 and T1 transistors in partial recovery mode at the same time.

The RC-only scheme mitigates the ‘0’ duty cycle by completely
powering off the compressed register entries. However, RC is
limited by those registers that do not store data patterns, and
consequently, cannot be switched off. This leads to memory cells
with long ‘0’ duty cycles in kernels like Histog. In contrast,
enhancing RC with RAR overcomes this problem, since rotating
the register addresses distributes switch-off cycles among cells
from different registers. This is especially effective in some kernels
such as QRandS and SimConv. Overall, RC+RAR reduces the
longest ‘0’ duty cycle on average by 58%, followed by ARGO and
RC with 34% and 24%, respectively.

To provide a deeper understanding on how the different
techniques impact on the length of ‘0’ duty cycles, figures 14
and 15 plot the longest ‘0’ duty cycle per register in BlackS
and DCT, which show low and medium duty cycle reductions,
respectively. For both kernels, the baseline and WC approaches
experience a highly biased ‘0’ duty cycle in every register, which

11

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

'1'

'0'

(a) Baseline

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(b) WC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(c) ARGO

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

'1'

'0'

(d) RAR

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(e) RC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(f) RC+RAR

Fig. 14. Longest ‘0’ duty cycle distribution per register in BlackS.

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

'1'

'0'

(a) Baseline

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(b) WC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(c) ARGO

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

'1'

'0'

(d) RAR

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(e) RC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'0
'
d
u
ty

c
y
c
le

switch-off
'1'
'0'

(f) RC+RAR

Fig. 15. Longest ‘0’ duty cycle distribution per register in DCT.

confirms the presence of multiple memory cells storing a logic
‘0’ for long periods of time. ARGO does not introduce switch-off
cycles in BlackS due to its high slice utilization; therefore, the
presented results are identical to those of the baseline. In contrast,
switch-off cycles do appear in DCT, where according to Table 5,
there are up to 7 unused register windows comprising registers
from 176 to 255. Note that, in the x-axis of DCT, the number of
used registers is reduced to 176 across all the remaining techniques.
For them, including the baseline scheme, we assume that those
registers not used by a given kernel are switched off during the
entire kernel execution. The 100% switch-off duty cycles of such
registers are not shown in the figures.

As expected, RAR-only marginally reduces the longest ‘0’
duty cycle, since memory cells storing the most significant bits of

a component keep holding logic ‘0’ in spite of rotating register
addresses. On the other hand, RC-only shows an uneven distribution
of switch-off cycles among registers in both applications. For
instance, RC compresses registers 37, 99, 161, and 223 for a long
period of time in BlackS, but fails to do so in some other registers
like 0-1, 62-63, and so on, leading to ‘0’ duty cycle peaks near
100%. A similar reasoning can be made for DCT. In comparison,
RC+RAR steals switch-off cycles from those registers that most
benefit from compression and allows powering off more often those
registers that, otherwise, would remain on for most of the time,
resulting in a more uniform longest duty cycle across all registers.
The duty cycle reduction is much more appreciable in DCT since it
offers higher compression opportunities than BlackS (see Figure 7).

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

BlackS DCT Histog MatrixM MatrixT QRandS RadixS Reduct ScanArr SimConv Avg

L
o
n
g
e
s
t

'1
' d

u
ty

 c
y
c
le

switch-off
'0'
'1'

Fig. 16. Longest ‘1’ duty cycle among the cells of the entire slice for the studied mechanisms.

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

'0'

'1'

(a) Baseline

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(b) WC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(c) ARGO

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

'0'

'1'

(d) RAR

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(e) RC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(f) RC+RAR

Fig. 17. Longest ‘1’ duty cycle distribution per register in BlackS.

6.3 Longest ‘1’ Duty Cycle Analysis

This section evaluates the contribution of logic ‘1’ to the transistor
aging. Figure 16 plots the longest ‘1’ duty cycle for the entire
slice across the studied benchmarks. In spite of logic ‘0’ being
dominant over logic ‘1’ in memory structures, there exist memory
cells in which the ‘1’ duty cycle is also highly biased for the
baseline and WC schemes in all the studied applications. ARGO
also presents such ‘1’ duty cycles in those kernels without unused
register windows.

The benefits of RAR-only and RC-only are also modest in
applications like BlackS or MatrixM. However, it is interesting to
point out that, unlike the results presented in Figure 13, which show
that applying these techniques scarcely introduce ‘1’ duty cycles
in those cells with the longest ‘0’ duty cycles, Figure 16 shows
that both RAR and RC generate substantial ‘0’ duty cycles in some
applications like MatrixT and Reduct. This is because applying the
proposed mechanisms causes another cell to become the one with
the longest ‘1’ duty cycle and this cell presents ‘0’ duty cycles.
These results also highlight that ‘0’ values are stored more often
than ‘1’ values.

RC+RAR largely reduces the longest ‘1’ duty cycles across all
applications. These reductions are even larger than in the previous
analysis thanks to the introduction of ‘0’ duty cycles. Overall,

RC+RAR mitigates the ‘1’ duty cycle on average by 68%. This
percentage is by 36% and 30% for ARGO and RC, respectively.

Figures 17 and 18 depict the longest ‘1’ duty cycle per register
in BlackS and DCT. Results confirm that ‘1’ duty cycles are not as
critical as ‘0’ duty cycles for NBTI degradation since the presence
of logic ‘0’ values is remarkable even for the baseline and WC
approaches, which show some dips down to 30% in BlackS. Such
dips are evenly distributed across the registers when using the RAR
technique, and combined with the switch-off state brought by RC
lead to significant ‘1’ duty cycle reductions. Finally, notice too that,
in this analysis, WC introduces switch-off cycles in some registers.
This is due to, at least a memory cell that can be powered off in
these registers has a longer ‘1’ duty cycle than those cells always
maintaining their state.

6.4 Vth Degradation Analysis

This section quantifies the Vth degradation (dVth) caused by the
analyzed duty cycles. The presented dVth refers to the T0 and T1
SRAM cell transistors with the highest dVth within the entire slice,
that is, those transistors suffering the highest dVth. This degradation
was calculated assuming a 3-year lifetime [26]. Such an execution
period is obtained by repeating the kernel execution over and over
until the established lifetime is reached [37].

13

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

'0'

'1'

(a) Baseline

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(b) WC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

1
9
2

2
2
4

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(c) ARGO

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

'0'

'1'

(d) RAR

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(e) RC

0

0.2

0.4

0.6

0.8

1

0

3
2

6
4

9
6

1
2
8

1
6
0

Register id

L
o
n
g
e
s
t

'1
'
d
u
ty

c
y
c
le

switch-off
'0'
'1'

(f) RC+RAR

Fig. 18. Longest ‘1’ duty cycle distribution per register in DCT.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
A

R

R
C

R
C

+
R

A
R

BlackS DCT Histog MatrixM MatrixT QRandS RadixS Reduct ScanArr SimConv Avg

N
o
rm

a
liz

e
d
 h

ig
h
e
s
t
d
V

th

T0

T1

Fig. 19. Normalized highest dVth considering the T0 and T1 SRAM cell transistors of the entire slice.

dVth = A× tox×
√

Cox× (Vdd−Vt0)× (1− Vds

α× (Vdd−Vt0)
)×

e
Vdd

tox×E−
Ea

k×T × tstress
0.25× (1−

√
etha× trec

tstress + trec
)

(3)

The dVth was computed using the standard Equation 3 [37]. All
the parameters from the equation are constant values, apart from
tstress and trec, which refer to the amount of time that transistors
are under stress and recovery modes, respectively. The reader is
referred to [37] for further details.

Figure 19 plots the normalized highest dVth with respect to the
theoretical maximum voltage degradation that PMOS transistors
can suffer from the NBTI effect after the 3-year lifetime. Results
are divided into dVth and Ts coming from ‘0’ and ‘1’ duty cycles,
which refer to the stress time in transistors T0 and T1, respectively.

The highest dVth comes from the baseline and WC approaches,
which reach the theoretical maximum dVth in all the applications
according to the discussed 100% ‘0’ and ‘1’ duty cycle distributions.
The ARGO technique largely reduces the dVth in kernels like DCT
and MatrixT, but fails to do so in those applications occupying a
large portion of the slice.

In contrast, the proposed RC+RAR mechanism attacks dVth by
ensuring that the long duty cycles are reduced across all the SRAM

cells. The degradation savings are consistent with the presented
duty cycle analysis, obtaining larger dVth savings than ARGO
in almost all kernels. Notice too that the T0 degradation is more
remarkable than that of T1 in most applications, confirming that ‘0’
duty cycles are usually longer than ‘1’ duty cycles. On average, the
dVth caused by ‘0’ and ‘1’ duty cycles is saved by RC+RAR by
54% and 62%, respectively, whereas these percentages drop down
to 35% and 36%, respectively, for ARGO.

Recall that both the SNM degradation and the increase of the
transistor switching delay (Ts) strongly depend on the dVth, showing
a very similar trend with a near constant scale factor throughout
the whole device lifetime [27], [37], [17]. For instance, we have
measured that the increase of the Ts is on average by 13.9%, 8.7%,
and 6.0% for the baseline, ARGO, and RC+RAR, respectively,
compared to a register file design with ideal NBTI-free transistors.

6.5 Impact on Performance

Compared to a conventional register file design, the proposed
RC+RAR technique may negatively impact on performance due
to three main design issues: i) additional MOV instructions are
inserted to deal with branch divergence, ii) a power-gated register
needs 10 cycles to be woken up, and iii) the eDRAM compression
table requires from refresh cycles.

14

0.9

0.92

0.94

0.96

0.98

1

1.02

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

BlackS DCT Histog MatrixM MatrixT QRandS RadixS Reduct ScanLArr SimConv Avg

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

Fig. 20. Normalized performance with respect to the baseline.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

B
a
s
e
lin

e

W
C

A
R

G
O

R
C

+
R

A
R

BlackS DCT Histog MatrixM MatrixT QRandS RadixS Reduct ScanLArr SimConv Avg

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Wakeup
Com/Dec dyn.
Slice dyn.
Com/Dec leak.
Slice leak.

Fig. 21. Normalized energy consumption over a baseline approach without register switch off.

Figure 20 shows the normalized performance of WC, ARGO,
and RC+RAR over the baseline. The ARGO approach is not
affected by any of the mentioned design issues since just unused
registers are switched off and register windows are just rotated
during the wavefront register allocation. Thus, the execution
time remains unaffected compared to the baseline scheme. In
contrast, minimal performance losses can be appreciated for WC
and RC+RAR. For both approaches, most of the performance
degradation comes from the power-gating technique, since the
number of additional MOV instructions is also negligible for
WC (see Section 5.1.1), and even though WC does not require a
compression table, the number of refresh operations performed by
RC+RAR is rather low thanks to the distributed refresh mechanism
and the relatively large eDRAM capacitors (see Section 5.1.3).

Overall, the performance differences between WC and
RC+RAR mainly depend on the number of woken up registers.
Compared to the conventional design, the performance degradation
of WC and RC+RAR is only by 0.43% and 0.48% on average,
respectively.

6.6 Energy Estimation
This section quantifies the slice energy consumption of the studied
approaches. For this analysis, we assume that the baseline scheme
does not switch off unused registers. Figure 21 plots the results,
which correspond to a whole execution of each kernel. The
consumption has been split into leakage and dynamic expenses.
For WC and RC+RAR, these expenses are in turn divided into
energy consumption coming from the slice and from the additional
logic, that is, mainly two decompression units and one compression
unit. In addition, the expenses of the compression table fall into
these categories in the case of RC+RAR. The last category, namely
wakeup, refers to the energy required to power on registers.

Compared to the baseline, the slice leakage savings of the
other techniques are due to powering off unused registers. Despite
obtaining a slightly higher execution time than the baseline and
ARGO, the WC and RC+RAR approaches show larger slice leakage
reductions since these schemes not only switch off unused registers
but also power gate compressible ones. Since WC does not entirely
power off registers (see Figure 12), there are some kernels like
MatrixM and Reduct where RC+RAR consumes less slice leakage.
In a few other kernels such as Histog, WC obtains better results
because it compresses more registers than RC+RAR. On the other
hand, the leakage consumed by the additional circuitry may nullify
the overall leakage savings compared to the baseline. This is only
seen in BlackS, which shows a high slice utilization and relatively
low register compression opportunities as discussed above.

Regarding dynamic energy, WC and RC+RAR reduce this
consumption with respect to the baseline and ARGO. This is
mainly due to, on a read access of the first subwavefront, if the
source register is compressed, the successive read accesses to
the register are deactivated. The rest of dynamic expenses of the
additional logic are found to be minimal with respect to the slice
dynamic consumption. The same can be said for the wakeup energy,
since the number of register power-on operations is on average
two orders of magnitude lower than the number of slice accesses.
Overall, WC, ARGO, and RC+RAR save around 20.2%, 13.1%,
and 19.9% of the total slice energy consumption with respect to
the baseline approach.

7 RELATED WORK

Previous research works have attacked the NBTI effect in GPUs
by dynamically powering off unused resources at runtime; e.g.,
the ARGO approach switches off unused register windows and

15

modifies the wavefront register allocation to evenly distribute
the unused windows along a register slice [27]. However, this
approach strongly depends on the GPU architecture and the slice
utilization. Those kernels with a high slice utilization have very
limited power-off opportunities and aging mitigation as discussed
in Sections 5.3 and 6. At a higher granularity level, there are some
proposals that dynamically power off whole compute units [12],
[21]. In contrast, our fine-grain proposals only depend on register
compression capabilities, which allow powering off registers in
spite of being actually used by the kernel.

Lofti et al. [24] propose software techniques to recompile
kernels from the point of view of the aging impact of each
instruction type and the process variation characteristics of each
hardware structure. This way, the most stressful instructions are
distributed among those compute units less sensitive to degradation.
Tan et al. [36] classify register banks into fast and slow according
to their access time. Based on this observation, they propose a
technique that estimates at runtime the register latencies taking into
account the additional delay induced by NBTI, and consequently
rename register banks to extend their lifetime.

NBTI has been also attacked in CPU register files. Wang et
al. [41] split the integer register file in half and periodically flip
the contents of the half where cells store the most significant bits
stuck-at ‘0’, whereas Gong et al. [15] implement such cells with
NBTI-resilient 8T SRAM technology. Kothawade et al. [20] modify
the register decoding scheme to distribute the NBTI stress across
the register file. The Penelope processor [3] inverts the register
file contents during idle times to mitigate NBTI. However, this
technique cannot be directly applied to GPU register files since the
register management is performed by the compiler and assigned
registers are live during all the kernel execution time.

The BDI compression algorithm has been recently used in GPU
register files to save energy [22]. The compressed data are stored
in the slice, resulting in memory cells that remain on throughout
the kernel execution, and consequently, they are strongly affected
by the NBTI phenomenon as discussed in Sections 5.3 and 6. In
contrast, our proposed design makes use of an additional NBTI-
free auxiliary table to store the compressed data, which allows
to power off entire compressed registers. In addition, to reduce
the size of such a table, our proposed compression algorithm just
calculates two different deltas at most thanks to the presence of
regular memory access patterns in GPU workloads, resulting in a
higher compression factor than BDI.

8 CONCLUSIONS

Negative Bias Temperature Instability (NBTI) is the main deleteri-
ous effect that accelerates transistor aging over the lifetime of GPU
memory structures. NBTI manifests when memory cells store a
given logic value for an extended period of time, degrading the cell
transistor threshold voltage Vth and increasing the switching delays,
which could eventually result in faulty operation. This work has
enhanced the GPU register file design to reduce transistor aging
caused by NBTI.

Data patterns showing similarities among the register compo-
nents have been analyzed. According to these observations, a data
compression mechanism has been proposed to enable switching
off entire registers, which induces a partial recovery from NBTI.
In order to ensure an even aging across all the registers in the huge
register file, a second mechanism that periodically rotates register

addresses has been proposed, which distributes switch-off cycles
across all the registers.

Experimental results have shown that a conventional imple-
mentation of the register file maintains memory cells storing a
given logic value during the entire execution of the kernels, which
implies 100% ‘0’ and ‘1’ duty cycle distributions, causing severe
Vth degradation. In contrast, the proposed mechanisms are able to
reduce the longest ‘0’ and ‘1’ duty cycle distributions by 58% and
68%, respectively, which translates into Vth degradation savings
by more than half. Moreover, switching off registers allows the
proposed mechanisms to reduce the total energy consumption by
20% with respect to the conventional design, and with minimal
performance degradation (0.5% on average) and area overhead
(5.4%).

ACKNOWLEDGMENTS

This work was supported by the Gobierno de Aragón and the Euro-
pean ESF (gaZ: T58 17R research group), and by the Ministerio
de Economı́a y Competitividad (MINECO) and AEI/FEDER (EU)
funds under Grants TIN2016-76635-C2-1-R and TIN2015-66972-
C5-1-R.

REFERENCES

[1] AMD Accelerated Parallel Processing (APP) Software Development Kit
(SDK).

[2] TOP500 Supercomputer Sites, available online at http://www.top500.org/.
[3] J. Abella, X. Vera, and A. González. Penelope: The NBTI-Aware

Processor. In Proc. 40th Annu. IEEE/ACM Int. Symp. Microarch., pages
85–96, 2007.

[4] Advanced Micro Devices, Inc. AMD Graphics Cores Next (GCN)
Architecture, 2012.

[5] Advanced Micro Devices, Inc. OpenCL Optimization Guide, 2013.
[6] Advanced Micro Devices, Inc. AMD Graphics Core Next Architecture,

Generation 3, Reference Guide, 2016.
[7] E. Atoofian. Compressed L1 Data Cache and L2 Cache in GPGPUs. In

Proc. IEEE 27th Int’l Conf. Appl.-Spec. Syst. Arch. Processors, pages 1–8,
2016.

[8] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R.
Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer. High-performance
CMOS Variability in the 65-nm Regime and Beyond. IBM J. Res. Dev.,
50(4/5):433–449, 2006.

[9] A. Calimera, E. Macii, and M. Poncino. Analysis of NBTI-Induced SNM
Degradation in Power-Gated SRAM Cells. In Proc. IEEE Int’l Symp.
Circuits Syst., pages 785–788, 2010.

[10] B. J. Campbell, G. M. Hess, and H. Huang. Leakage and NBTI Reduction
Technique for Memory. US Patent No. 8395954 B2, 2013.

[11] F. Candel, A. Valero, S. Petit, D. Suárez-Gracia, and J. Sahuquillo.
Exploiting Data Compression to Mitigate Aging in GPU Register Files.
In Proc. 29th Int’l Symp. Comp. Arch. High Perf. Comp., pages 57–64,
2017.

[12] X. Chen, Y. Wang, Y. Liang, Y. Xie, and H. Yang. Run-Time Technique
for Simultaneous Aging and Power Optimization in GPGPUs. In Proc.
51st ACM/EDAC/IEEE Design Automat. Conf., pages 1–6, 2014.

[13] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra. A
Step towards Energy Efficient Computing: Redesigning A Hydrodynamic
Application on CPU-GPU. In Proc. IEEE 28th Int’l Paral. and Distr.
Processing Symp., pages 972–981, 2014.

[14] S. Ganapathy, R. Canal, A. González, and A. Rubio. iRMW: A Low-Cost
Technique to Reduce NBTI-Dependent Parametric Failures in L1 Data
Caches. In Proc. IEEE 32nd Int’l Conf. Comput. Design, pages 68–74,
2014.

[15] N. Gong, S. Jiang, J. Wang, B. Aravamudhan, K. Sekar, and R. Sridhar.
Hybrid-Cell Register Files Design for Improving NBTI Reliability.
Elsevier Microelec. Reliab., 52(9–10):1865–1869, 2012.

[16] Intel Corporation. Intel R© FPGA SDK for OpenCL. Best Practices Guide,
2017.

[17] K. Kang, H. Kufluoglu, K. Roy, and M. A. Alam. Impact of Negative-
Bias Temperature Instability in Nanoscale SRAM Array: Modeling and
Analysis. IEEE Trans. Comput.-Aided Design Integr. Circuits and Syst.,
26(10):1770–1781, 2007.

16

[18] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power. In Proc. 28th
Annu. Int’l Symp. Comp. Arch., pages 240–251, 2001.

[19] N. Khoshavi, R. A. Ashraf, and R. F. DeMara. Applicability of Power-
Gating Strategies for Aging Mitigation of CMOS Logic Paths. In IEEE
57th Int’l Midwest Symp. Circuits Syst., pages 929–932, 2014.

[20] S. Kothawade, K. Chakraborty, and S. Roy. Analysis and Mitigation of
NBTI Aging in Register File: An End-To-End Approach. In Proc. 12th
Int’l Symp. Quality Electron. Design, pages 1–7, 2011.

[21] H. Lee, M. Shafique, and M. A. Al Faruque. Low-overhead Aging-
aware Resource Management on Embedded GPUs. In Proc. 54th
ACM/EDAC/IEEE Design Automat. Conf., pages 1–6, 2017.

[22] S. Lee, K. Kim, G. Koo, H. Jeon, M. Annavaram, and W. W. Ro.
Improving Energy Efficiency of GPUs Through Data Compression and
Compressed Execution. IEEE Trans. Comput., 66(5):834–847, 2017.

[23] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P:
Architecture-level Modeling for SRAM-based Structures with Advanced
Leakage Reduction Techniques. In Proc. Int’l Conf. Comput.-Aided
Design, pages 694–701, 2011.

[24] A. Lotfi, A. Rahimi, L. Benini, and R. K. Gupta. Aging-Aware
Compilation for GP-GPUs. ACM Trans. Archit. Code Optim., 12(2):24:1–
24:20, 2015.

[25] Micron Technology, Inc. Various Methods of DRAM Refresh, 1999.
[26] E. Mintarno, V. Chandra, D. Pietromonaco, R. Aitken, and R. W.

Dutton. Workload-Dependent NBTI and PBTI Analysis for a sub-45nm
Commercial Microprocessor. In Proc. IEEE Int’l Reliab. Physics Symp.,
pages 1–6, 2013.

[27] M. Namaki-Shoushtari, A. Rahimi, N. Dutt, P. Gupta, and R. K. Gupta.
ARGO: Aging-aware GPGPU Register File Allocation. In Proc. Int’l
Conf. Hard/Soft. Codesign Syst. Synthesis, pages 1–9, 2013.

[28] Nvidia Corporation. NVIDIA OpenCL Best Practices Guide, 2009.
[29] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,

and T. C. Mowry. Base-delta-immediate Compression: Practical Data
Compression for On-chip Caches. In Proc. 21st Int’l Conf. Paral. Arch.
Compil. Tech., pages 377–388, 2012.

[30] H. Pilo, C. A. Adams, I. Arsovski, R. M. Houle, S. M. Lamphier, M. M.
Lee, F. M. Pavlik, S. N. Sambatur, A. Seferagic, R. Wu, and M. I. Younus.
A 64Mb SRAM in 22nm SOI Technology Featuring Fine-Granularity
Power Gating and Low-Energy Power-Supply-Partition Techniques for
37% Leakage Reduction. In Proc. IEEE Int’l Solid-State Circuits Conf.
Digest Tech. Papers, pages 322–323, 2013.

[31] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-
Vdd: A Circuit Technique to Reduce Leakage in Deep-submicron Cache
Memories. In Proc. Int’l Symp. Low Power Electron. Design, pages 90–95,
2000.

[32] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke. IBM Power9
Processor Architecture. IEEE Micro, 37(2):40–51, 2017.

[33] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu. Knights Landing: Second-
Generation Intel Xeon Phi Product. IEEE Micro, 36(2):34–46, 2016.

[34] H. Tabkhi and G. Schirner. Application-Guided Power Gating Reducing
Register File Static Power. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., 22(12):2513–2526, 2014.

[35] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii,
and H. Kobatake. A Read-Static-Noise-Margin-Free SRAM Cell for
Low-VDD and High-Speed Applications. IEEE J. Solid-State Circuits,
41(1):113–121, 2006.

[36] J. Tan, M. Chen, Y. Yi, and X. Fu. Mitigating the Impact of Hardware
Variability for GPGPUs Register File. IEEE Trans. Paral. Dist. Syst.,
27(11):3283–3297, 2016.

[37] A. Tiwari and J. Torrellas. Facelift: Hiding and Slowing Down Aging in
Multicores. In Proc. 41st Annu. IEEE/ACM Int’l Symp. Microarch., pages
129–140, 2008.

[38] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A
Simulation Framework for CPU-GPU Computing. In Proc. 21st Int’l
Conf. Paral. Arch. Compil. Tech., pages 335–344, 2012.

[39] A. Valero, N. Miralaei, S. Petit, J. Sahuquillo, and T. M. Jones. On
Microarchitectural Mechanisms for Cache Wearout Reduction. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., 25(3):857–871, 2017.

[40] R. Vattikonda, W. Wang, and Y. Cao. Modeling and Minimization
of PMOS NBTI Effect for Robust Nanometer Design. In Proc. 43rd
ACM/IEEE Design Automat. Conf., pages 1047–1052, 2006.

[41] S. Wang, T. Jin, C. Zheng, and G. Duan. Low Power Aging-Aware
Register File Design by Duty Cycle Balancing. In Proc. Design, Automat.
Test Europe Conf. Exhibit., pages 546–549, 2012.

[42] P. Xiang, Y. Yang, M. Mantor, N. Rubin, L. R. Hsu, and H. Zhou.
Exploiting Uniform Vector Instructions for GPGPU Performance, Energy

Efficiency, and Opportunistic Reliability Enhancement. In Proc. 27th Int’l
ACM Conf. Supercomp., pages 433–442, 2013.

Alejandro Valero received the PhD degree
in Computer Engineering from the Universitat
Politècnica de València, Spain, in 2013. From
2013 to 2015, he was a Visiting Researcher with
Northeastern University, Boston, MA, USA, and
the University of Cambridge, UK. Since 2016, he
has been an Assistant Professor with the Depart-
ment of Computer and Systems Engineering at
the Universidad de Zaragoza, Spain. His current
research interests include GPU architectures,
memory hierarchy design, energy efficiency, and

reliability. He is a member of the Aragon Institute of Engineering Research
(I3A) and the HiPEAC European NoE.

Francisco Candel received the BS and MS
degrees in Computer Engineering from the Uni-
versitat Politècnica de València (UPV), Spain,
in 2012 and 2014, respectively. He is currently
working towards a PhD degree at the Department
of Computer Engineering (DISCA) of the same
university. His PhD research focuses on GPU
modeling and efficient memory hierarchies for
future GPUs.

Darı́o Suárez-Gracia (S08,M12) received the
PhD degree in Computer Engineering from the
Universidad de Zaragoza, Spain, in 2011. From
2012 to 2015, he was at Qualcomm Research
Silicon Valley. Since 2015, he has been an In-
terim Associate Professor at the Universidad de
Zaragoza. His research interests include parallel
programming, heterogeneous computing, mem-
ory hierarchy design, and energy-efficient proces-
sor and network-on-chip microarchitectures. Dr.
Suárez Gracia is a member of the IEEE, the IEEE

Computer Society, the ACM, and the HiPEAC European NoE.

Salvador Petit (M’07) received the PhD de-
gree in Computer Engineering for the Universitat
Politècnica de València (UPV), Spain. Since 2009,
he has been an Associate Professor with the
Computer Engineering Department, UPV, where
ha has been teaching several courses on com-
puter organization. He has authored over 100
refereed conference and journal papers. His cur-
rent research interests include multithreaded and
multicore processors, memory hierarchy design,
task scheduling, and real-time systems. Dr. Petit

is a member of the IEEE Computer Society. In 2013, he received the Intel
Early Career Faculty Honor Program Award.

Julio Sahuquillo (M’04) received the BS, MS,
and PhD degrees from the Universitat Politècnica
de València, Spain, all in Computer Engineer-
ing. He is a Full Professor with the Depart-
ment of Computer Engineering at the Universitat
Politècnica de València. He has taught several
courses on computer organization and architec-
ture. He has authored over 120 refereed confer-
ence and journal papers. His current research
interests include multi- and manycore proces-
sors, memory hierarchy design, cache coherence,

GPU architecture, and architecture-aware scheduling. Dr. Sahuquillo is a
member of the IEEE Computer Society.

