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Abstract Introduction: The pathophysiological process of Alzheimer’s disease is thought to begin years
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before clinical decline, with evidence suggesting prion-like spreading processes of neurofibrillary
tangles and amyloid plaques.
Methods: Using diffusion magnetic resonance imaging data from the Alzheimer’s Disease
Neuroimaging Initiative database, we first identified relevant features for dementia diagnosis. We
then created dynamic models with the Nathan Kline Institute-Rockland Sample database to estimate
the earliest detectable stage associated with dementia in the simulated disease progression.
Results: A classifier based on centrality measures provides informative predictions. Strength and
closeness centralities are the most discriminative features, which are associated with the medial
temporal lobe and subcortical regions, together with posterior and occipital brain regions. Our model
simulations suggest that changes associatedwith dementia begin tomanifest structurally at early stages.
Discussion: Our analyses suggest that diffusion magnetic resonance imaging–based centrality
measures can offer a tool for early disease detection before clinical dementia onset.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Alzheimer’s disease; Diffusion MRI; Structural brain connectivity; Network centrality; Computational modeling;
Machine learning
1. Introduction

Alzheimer’s disease (AD) is the most common cause of
neurodegeneration in old age. Out of the main risk factors
for developing AD, age is the most influential one [1]. AD is
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characterized by continuous degradation involving a preclini-
cal stage, followed by a phase of mild cognitive impairment,
and ending with dementia in the strict sense [1,2].
Experimental evidence indicates that pathophysiological
alterations take place in the brain more than a decade before
clinical decline [3,4]. Therefore, the search for biomarkers
for early diagnosis and development of disease-modifying
treatments is an ongoing and challenging endeavor [5].

The presence of neurofibrillary tangles and amyloid plaques
is the main pathological hallmark of AD [3,6,7]. One emerging
hypothesis about the progression of AD posits that these toxic
proteins originate in a particular area and propagate
throughout neural fibers in a prion-like manner [8–10].

Network neuroscience has proven useful for under-
standing the impact of psychiatric and neurological
disorders on brain-wide networks ([11,12] and
eimer’s Association. This is an open access article under the CC BY license
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Supplementary Material). In particular, it has been shown
that AD strongly disturbs connections between nodes
[13,14], especially those nodes occupying a central role in
the network (hub nodes) [15,16].

In this work, we investigated whether structural brain
networks, as measured with diffusion magnetic resonance
imaging (MRI), could serve as a tool in the diagnosis of
prodromal dementia [15]. By using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, we first aimed to
implement machine learning techniques to extract features
that are altered in Alzheimer’s dementia. We then
incorporated data from the Nathan Kline Institute-
Rockland Sample (NKI) database and created dynamical
models of normal aging and AD to estimate the earliest
detectable stage associated with dementia in the simulated
disease progression.
2. Methods

Fig. 1 presents a general overview of the proposed
approach, which is described in the following sections.
2.1. Participants and MRI acquisition protocol

We used two publicly available data sets widely used in
neuroimaging research: the ADNI (http://adni.loni.usc.edu/)
[17] and NKI (http://fcon_1000.projects.nitrc.org/indi/pro/
nki.html) [18] databases (see also Supplementary Material).
Here, we used 39 normal controls and 39 age- and
Fig. 1. A basic schematic representation of the proposed approach. (A) In the fir

complex networks to classify between a cohort of patients with dementia and a

signatures enabling diagnosis. (C) In the second part, we applied dynamic model

the one hand and degradation of structural connections caused by Alzheimer’s dis

and brain signatures associated with dementia begin to be evident in the simula

from which classification performance is statistically significant. See section 2

ADNI, Alzheimer’s Disease Neuroimaging Initiative; NKI, Nathan Kline Institute
sex-matched patients with AD and mild dementia, meeting
National Institute of Neurological and Communicative
Diseases and Stroke/Alzheimer’s Disease and Related
Disorders Association criteria for probable AD (http://adni.
loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-
manual.pdf). ADNI participants were then subdivided into
amyloid-positive patients with AD (A1) and amyloid-
negative healthy controls (A2) according to recommended
standard uptake value ratio thresholds for the ADNI database
[19] (Supplementary Material). These cohorts were used to
generate a classifier predicting clinical AD dementia
(Fig. 1A) and identify discriminative centrality metrics and
brain regions allowing for such diagnosis (Fig. 1B). After-
ward, we included 52 adults (26 men and 26 women) with
age ranging from 45 to 81 years (mean6 standard deviation,
60.5 6 10.41) from the NKI data set. These individuals are
healthy with no presumed covert neuropathology
(Supplementary Material).

We divided the NKI data set into two different groups:
(1) NKI-I and (2) NKI-II. We then simulated an experiment
over 15 years whereby one group experienced normal aging
(NKI-I group), whereas another group of age- and
sex-matched individuals developed AD over the same period
(NKI-II group) (Fig. 1C). This second analysis allowed us to
investigate how early structural network alterations
associated with dementia take place in the simulated pro-
gression process (Fig. 1D). Table 1 summarizes the subject
characteristics of the four groups considered in this work.
For the ADNI data set, the education variable
st part of the work, we generated a predictive model based on measures of

cohort of matched healthy controls. (B) We then extracted informed brain
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ease on the other hand. (D) We finally explored when the relevant features

ted progression process. Significance level represents the minimum value
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Table 1

Subjects’ information across groups

ADNI NKI

Control (n 5 39) Alzheimer’s disease (mild dementia) (n 5 39) P value NKI-I (n 5 26) NKI-II (n 5 26) P value

Age* 74.19 6 6.29 74.45 6 8.57 .88 60.54 6 11.01 60.46 6 9.98 .979

Sexy 20 M/19 F 20 M/19 F 1 13 M/13 F 13 M/13 F 1

Education* 16.38 6 2.75 15.10 6 2.86 .047 - - -

MMSE* 28.67 6 1.42 22.10 6 4.47 4.042 ! 10213 - - -

SUVR* 1.1 6 0.14 1.38 6 0.19 5.44 ! 10210 - - -

SUVR1/2 81/292 331/42 - - - -

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; MMSE, Mini-Mental State Examination; NKI, Nathan Kline Institute-Rockland Sam-

ple; SD, standard deviation; SUVR, standard uptake value ratio; SUVR1/2, amyloid-positive or amyloid-negative confirmed participants.

NOTE. Education and MMSE variables were not available for NKI data set.

*Values represent mean 6 SD. The group difference was evaluated using a two-sample t-test (two-tailed).
yGroup difference evaluated using a c2 test (two-tailed).
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was marginally different between controls and patients (P5
:047). There was a strong difference between controls
and patients in the Mini-Mental State Examination score
(P5 4:042! 10213). MRI acquisition protocols are
summarized in Supplementary Material.
2.2. Preprocessing of MRI data and estimation of
structural networks

The preprocessing pipeline to extract brain graphs from
the NKI data set has been described elsewhere [20]. For
the ADNI data set, a similar pipeline was applied, as
described in Supplementary Material.
2.3. Mathematical models
w

2.3.1. Alzheimer aging model
We implemented the susceptible-infected model [21,22]

to simulate the propagation of a disease factor as AD
progresses. In this model, nodes can be in two possible
states, infected or susceptible. Infected nodes are brain
regions wherein the probability of the disease factor
burden is greater than zero. By contrast, susceptible nodes
are free of the disease factor but are susceptible to be
infected from other nodes. In a network with N nodes, for
any particular node i, the probability of being susceptible,
si, and the probability of being infected, xi, satisfy such
that si 1 xi 5 1. Thus, it is possible to express the rate of
change of xi in the susceptible-infected model as [21]

dxi
dt

5 að12xiÞ
XN

j51
jsi

aijxj; (1)

where aij is an element of the (binary) adjacency matrix,
whereas the parameter alpha, a.0, controls the infection
rate of the node j over the node i. As we made use of
weighted networks, we replaced equation (1) with
dxi
dt

5 að12xiÞ
XN

j51
jsi

wij

kj
xj (2)

In equation (2), kj stands for the strength of node j, and the
influence of the node j over the node i is now proportional to
the weight wij. We incorporated another equation simulating
AD-related degradation in connectivity. Particularly, the rate
of change of wij is given by

dwij

dt
5 2bADwij

�
xi1xj

�
1 bN

ij ; (3)

where the parameter beta, bAD.0, controls the influence of
the aggregated disease factor present in both node i and
node j on the number of streamlines connecting them.
The term bNij represents the normal aging process
(subsection 2.3.2) to reflect the fact that patients also age.
Therefore, the Alzheimer aging model (equations (2) and
(3)) relies on three unknown parameters: a, bAD, and
the seed region origin of the disease factor. By varying
these parameters, one can simulate different disease
trajectories.

2.3.2. Normal aging model
We developed a mathematical model reflecting the

process through which structural connections change due
to normal aging. Connectome organization develops across
the lifespan, with age and sex being two critical factors
during this process [20,23]. We created link-specific
regression models to predict the number of streamlines
from age- and gender-related effects. Inspired by Lim
et al. [20], the number of streamlines between region i and
region j, wij, can be expressed as a combination of P 5 4
variables or predictors (age, gender, age gender, age2):

ij 5 b
ij
0 1 b

ij
1age1 b

ij
2gender1 b

ij
3age gender1 b

ij
4age

2 (4)

where gender5 1 for males and gender521 for females. In
equation (4), we included an intercept term (bij0), the linear
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effect of both age (bij1) and gender (bij2), the interaction
between age and gender (bij3), and the quadratic effect of
age (bij4). The coefficients from equation (4) were only
estimated for those connections that all NKI participants
had in common (126 connections), generating a minimum
grid mask [24]. Thus, we had 52 data points over the age
range of 45 to 81 years for each of the 126 common
connections.

Upon deriving equation (4) with respect to the age effect,
we obtained the following differential equation attempting
to mimic the process for aging:

dwij

dt
5 bN

ij 5 b
ij
1 1 b

ij
3gender1 2bij

4age (5)

It has been shown that brain connectivity evolves in such
a manner that core properties of structural networks (e.g.,
modular organization) remain stable during brain maturation
and adulthood [20,23,25], suggesting that rules governing
neural fiber changes over time are dependent on
connections. In mathematical terms, it means that some
predictors from equation (4) can be irrelevant to predict
the number of streamlines. We, therefore, applied the
model-selection algorithm named subset selection (see
[26] and Supplementary Material) to exclude variables not
related to the response wij. The outcome of this procedure
was a set of link-specific regression models (equation (4))
and their corresponding differential equations (equation
(5)), varying in complexity according to the number of
included predictors. Details for the parameter fitting within
the aging model can be found in the study by Lim et al. [20].
2.3.3. Dynamical simulations
We applied the aforementioned normal aging model to

the NKI-I group to create a cohort of simulated healthy
controls evolving over 15 years. Similarly, we applied the
Alzheimer aging model to the NKI-II group to reproduce
the process of propagation of misfolded proteins and
disruption of neural pathways throughout the same time
window, creating a cohort of simulated patients with AD
(see Fig. 1C and Supplementary Material).

We recorded the resulting simulated matrices in discrete
points of a year and defined a set of 16 simulated stages
for further analysis (Fig. 1D). From this point on, we will
be using the term “stage” rather than “years” to account
for the fact that patients can develop AD at different rates.
Thus, stage 15 represents the initial stage in which both
groups of individuals (i.e., NKI-I and NKI-II groups) are
in a healthy condition. By contrast, stage 0 represents the
disease stage in which neural degeneration compromises
cognitive functions enough to meet criteria for dementia.
To assess the extent to which stage 0 reflects this criterion,
we compared the differences in node strength obtained at
stage 0 between simulated controls and simulated patients,
with the counterpart differences measured between ADNI
A2 controls and ADNI A1 patients. Specifically, we
selected the parameter set ðseed; a; bADÞ, minimizing the
cost function defined by the Euclidean distance between
k0NKI and kADNI . The term k0NKI represents the size 82 vector
incorporating differences in node strength measured
between simulated controls and simulated patients at stage 0,
and the term kADNI stands for the size 82 vector containing
the differences in node strength measured between ADNI
A2 controls and ADNI A1 patients.
2.4. Feature extraction and machine learning analysis

We used the Brain Connectivity Toolbox v2017-15-01
(https://sites.google.com/site/bctnet/) [27] and computed
centrality measures of strength, betweenness, closeness,
eigenvector, and PageRank, producing 410 elements. Before
computing the foregoing topological properties, the fraction
of streamlines connecting each pair of regions was
calculated [28]:

w0
ij5

wijP
k;l

wkl

; (6)

where wkl represents the streamline counts connecting
region k and region l.

Centrality metrics were scaled within subjects having
zero mean and unit variance. Then, we applied machine
learning techniques, as implemented in the Scikit-Learn
Package v0.19.0 [29], to produce relevant features and brain
patterns or signatures, classifying between clinically
diagnosed ADNI controls and ADNI patients with dementia
(Fig. 1A and B).

We used the random forest (RF) technique [26] with 1000
trees for feature selection [30,31], with the ultimate goal of
reducing model complexity and improving interpretability.
This method returned a set of scores (feature importance)
that were used to rank features for subsequent
classification. The classification was performed using the
support vector machine (SVM) technique [32]. We trained
SVMs with a radial basis function kernel with g 5 1/nfeat
(where nfeat denotes the number of features). The parameter
C of radial SVMs was selected within the set (1,10,100) to
maximize model performance. To estimate model
performance, we incorporated RF and SVM methods in a
cross-validation scheme, which is explained in
Supplementary Material. We applied this cross-validation
scheme for each parameter C and selected the combination
of parameter C and number of features providing the max
area under the curve (AUC). Using such number of features,
we performed a receiver operating characteristic analysis.

2.4.1. Predictions in the simulated disease progression
As we were also interested in estimating when alterations

associated with dementia begin to be significantly apparent
in the simulated progression process, a final SVM based
on the identified features was fitted using all ADNI samples,
and the resulting predictive model was independently tested

https://sites.google.com/site/bctnet/


Fig. 2. Machine learning analysis to predict dementia based on centrality

metrics using the ADNI data set. (A) The mean performance profile

computed as a function of the number of features included in the training

process of radial SVMs (with the parameter C5 100 controlling the

complexity of the decision boundary). The most relevant features are

identified at smaller values of the x-axis, so features were added

progressively according to their relative importance. The max AUC, black

diamond, was achieved with the first 86 most important features.

Supplementary Fig. 1 shows the histogram of the AUC index at this point.

(B) The mean ROC curve generated from the features identified in (A).

Sensitivity, specificity, and accuracy indices were computed at the optimal

point (red circle). Such a point was identified as the closest point (in terms of

Euclidean distance) on the ROC curve to the point defined by a true positive

rate of 1 and a false positive rate of 0. Abbreviations: ADNI, Alzheimer’s

Disease Neuroimaging Initiative; AUC, area under the curve; ROC, receiver

operating characteristic; SVM, support vector machine.
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on each NKI simulated stage (Fig. 1D). We then computed
performance measures of AUC, sensitivity, specificity, and
accuracy produced throughout the modeled progression
span and evaluated the significance of these values. We
used one-tailed binomial tests to evaluate the significance
of sensitivity, specificity, and accuracy [33] and the
nonparametric Wilcoxon rank-sum test to evaluate the
significance of AUC values [34]. We declared results as
significant at P, :05. We further used false discovery
rate–adjustment procedures [35] with q50:05 to control
for multiple comparisons across stages within each perfor-
mance measure. In all cases, we reported values of sensi-
tivity, specificity, and accuracy at the threshold for
classification, providing the best tradeoff between sensitivity
and specificity.

3. Results

3.1. Diagnosis of Alzheimer’s dementia

We first analyzed the ADNI data set with machine
learning tools to explore whether structural networks
inferred from diffusion MRI predict Alzheimer’s dementia.
Using the cross-validation approach, we achieved the best
mean classification performance when using radial
SVMs with C5100 and the first 86 most relevant features
according to the ranking generated with RF algorithm
(max AUC 5 0.78 6 0.16, mean 6 standard deviation)
(Fig. 2A), so the remaining 324 network features did not
provide further information for diagnosis. We then analyzed
the mean receiver operating characteristic curve generated
with the selected features.With the 86more relevant features
selected, we further evaluated their classification value with
a 10-fold cross-validated SVM (with optimal parameters).
At the optimal threshold for classification, the mean
sensitivity was 79.16% (P 5 .147 ! 1023), mean
specificity 98.9% (P 5 1.81 ! 10212), and mean accuracy
89.07% (P 5 6.9 ! 10213), substantially higher than the
empirical distribution (50%) (Fig. 2B).

Then, we identified the most discriminative centrality
measures and brain regions providing such performance.
Strength and closeness centrality together account for almost
half of the relevant features (23.25% and 24.42%,
respectively). Measures of eigenvector and pagerank
centrality have a lesser influence for classification but still
represent a considerable proportion of the retained features
(19.77% in both cases). Betweenness centrality is the least
representative measure in the final set of selected features,
accounting for the remaining 12.79% (Fig. 3A; see also
Supplementary Table 2 for a detailed listing of the selected
features). To identify the most characteristic areas of
dementia, we summed the feature importance scores of the
network features referring to the same area, obtaining the
relative importance of individual areas (Fig. 3B; see also
Supplementary Material).

The applied cross-validation scheme allows computing
the classification performance while controlling for
overfitting but does not provide a single predictive model.
We, therefore, fitted a final SVM based on the 86 selected
features using all ADNI samples, and this model was tested
on the NKI simulated data set.

3.2. Predictions in the simulated disease progression

We incorporated the NKI data set to simulate 16 disease
stages and their corresponding age-matched normal phases,
relative to individuals following an AD-related pathological
(NKI-II group) and healthy (NKI-I group) pathway. For the
pathological pathway, different trajectories were simulated
to identify the model parameters resembling dementia
brain patterns at simulated stage 0 compared with the



Fig. 3. Identification of relevant centrality measures and brain regions. (A) A bar chart representing the proportion of each centrality measure that was included

in the final set of selected features. (B) Brain map representing the most predictive regions to classify between dementia and healthy control. Lateral and medial

views are shown on the top and bottom rows, respectively. The node size is proportional to its relative importance, which was computed from the feature ranking.

Node color encodes the number of centrality measures included in the final set of features referring to that specific region. Abbreviations are shown for those

regions having a relative importance above the median, and their definitions are given in Supplementary Table 1.
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ADNI A2 control and A1 Alzheimer’s patient data set.
Upon parameter optimization, the hippocampus was
identified as the most likely site of origin of AD (with
a5 0:4 and bAD 5 0:025). Other regions, especially the
amygdala and entorhinal cortex, are plausible seed
candidates where AD first originates (Fig. 4).

Using the hippocampus as the seed region, we produced
connectivity matrices either representing individuals
normally aging or individuals developing AD, and the
ADNI classifier, which was only based on the relevant
features associated with dementia (Fig. 3A), was evaluated
on these structural networks (Fig. 5A). To estimate the cutoff
stage from which network alterations associated with
dementia begin to manifest structurally, we calculated the
significance of the classification performance measures
throughout the simulated progression span. Interestingly,
we observed that the selected centrality metrics still capture
significant dementia alterations at the simulated stage 7
(Fig. 5B). The classification performance progressively
improved as AD progressed (Fig. 5A), achieving more
accurate predictions as the effect of the disease becomes
more prominent. Note that this improvement comes from
the rise in the sensitivity index, whereas specificity remains
relatively stable across simulated stages until stages 1 and 0,
at which specificity decreases. At very early stages, both
simulated controls (NKI-I subjects) and simulated patients
(NKI-II subjects) are generally classified as controls,
when the impact of dementia on brain connectivity is yet
subtle.

We finally explored the evolution of predictions when the
remaining 40 brain areas served as the seed region to initiate
the propagation of the disease factor (Supplementary Fig. 3).
Those regions are most likely the site of origin of the disease
(Fig. 4) and offer a gradual increase in classification
performance throughout simulated stages. When AD
simulation originated from the amygdala and the entorhinal
cortex, performance measures were similar to the optimal
seed (the hippocampus).
4. Discussion

In this study, we propose an approach grounded on
network neuroscience to assess the potential of structural
brain networks as measured with diffusion MRI in
prodromal dementia. The main findings uncovered in this
work suggest that centrality measures of diffusion MRI
networks are informative for Alzheimer’s dementia
diagnosis; the most discriminative network features are
largely associated with medial temporal and subcortical
brain regions, as well as posterior structures of the default
mode network (DMN) and occipital areas; the hippocampus
is the likely origin of AD; and pathophysiological alterations
associated with dementia become significantly apparent at
the simulated stage 7, presumably before meeting diagnostic
criteria for clinical dementia.
4.1. Prediction of AD using real-world data

It has been suggested that the pathophysiological
processes in AD largely disturb hub regions [15,16]. Here,
we have used sophisticated multivariate techniques to
predict dementia based on 86 features quantifying the



Fig. 4. Parameter optimization of the disease progression model. Upon applying dynamical simulations using the NKI data set, this figure assesses which seed

region is most likely to reproduce the differences in node strength measured between ADNI control and ADNI patients. For each region, we explored the

parameter space given by a and bAD to find the minimum cost function (see subsection 2.3.3). The hippocampus (HIPP) turned out to be the very first region

affected by Alzheimer’s disease. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; NKI, Nathan Kline Institute-Rockland Sample. Expan-

sions for the seed region abbreviations are given in Supplementary Table 1.
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centrality of individual nodes, obtaining significant
classification performance: (1) 79.16% mean sensitivity;
(2) 98.9% mean specificity; and (3) 89.07% mean accuracy.

Earlier investigations have developed classifiers to
distinguish patients with AD in different phases or stages
from healthy controls, as reviewed in Supplementary
Material. A comparison between classifiers across studies
is not straightforward due to variations in predictors, data
sets, or patient’s disease stage. Importantly, to the best of
our knowledge, our work is the first to mechanistically
model brain network degeneration for early Alzheimer’s
dementia diagnosis.
4.2. Discriminative brain signatures of dementia

There is literature supporting a stereotypical pattern of
neurodegeneration in AD which is associated with tau
pathology of Braak staging [36,37]. At early stages,
atrophy largely occurs in the entorhinal cortex,
hippocampus, and posterior structures of the DMN
[36,38,39]. From these regions, atrophy then extends to the
lateral temporal cortex, dorsal parietal, and frontal cortex.
Finally, sensorimotor and visual cortices are affected at
late stages [40,41]. In this work, the relevant features
extracted using the ADNI data set uncovered a set of
brain regions, such as the entorhinal cortex, hippocampus,
and other subcortical structures, as well as posterior
structures of the DMN and the occipital lobe, that
are highly predictive of dementia. Our results are in line
with previous literature, with the entorhinal and
subcortical structures having a greater weight for
classification.
4.3. Spreading processes and AD

We modeled the degradation of structural connectivity
based on the disconnection hypothesis [13,14]. The most
plausible scenario was when the disease is initiated in the
hippocampus, as well as in the entorhinal cortex and
amygdala. Numerous studies have shown levels of atrophy
and functional disruption in the hippocampus and the
entorhinal cortex at very early stages of the disease
[13,38,42]. The initial Braak stages are also characterized
by the presence of tau proteins in these areas, which in
turn extend to the amygdala [37]. Interestingly, atrophy
and amyloid-b (Ab) patterns in AD can be explained using



Fig. 5. Classification across simulated stages using the hippocampus as the

seed region. (A) A final SVM based on the most discriminative features of

dementia (Fig. 3A) was fitted using all ADNI subjects. This predictive

model was then used to classify between simulated patients and simulated

controls across the progression span produced with the NKI data set. Perfor-

mance measures of AUC, sensitivity, specificity, and accuracy were

computed at each stage. (B) Based on the AUC and accuracy indices,

network alterations associated with dementia begin to manifest structurally

at the simulated stage 7. Abbreviations: ADNI, Alzheimer’s Disease

Neuroimaging Initiative; NKI, Nathan Kline Institute-Rockland Sample;

AUC, area under the curve; SVM, support vector machine.
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brain models and disease agents that propagate in a
prion-like manner (see [9] and Supplementary Material).
4.4. Network alterations in the simulated disease
progression

We found that a classifier based on centrality features
using the ADNI data set provides significant predictions in
the simulated progression process. In particular, AUC and
accuracy indices become significant at simulated stages 4
and 7, respectively. At this stage, clinical symptoms may
not yet be detectable: assuming that AD progresses
continuously at a constant rate, our model suggests that
alterations associated with dementia could be detected up
to 7 years before the diagnosis established in the ADNI
database. Hence, our model simulations suggest a valuable
opportunity for risk assessment and early diagnosis.
Moreover, our simulations highlight the possibility that a
neural structure may be significantly compromised before
cognitive deficits become evident enough for a clinical
diagnosis, possibly due to compensatory plasticity [40].
Nevertheless, AD progresses at different rates in actual
subjects and a direct link between simulated stages and years
of progression might be subject to large intersubject
variation.
4.5. Limitations

The final set of discriminative brain signatures included
medial temporal and subcortical structures, which are
thought to be disrupted at early stages [43]. However, it is
important to acknowledge that the relevant features were
extracted from ADNI patients with dementia, which is not
a prodromal phase. Thus, future research could incorporate
data from patients at earlier stages (e.g., before or during
the mild cognitive impairment phase and prodromal
dementia) for a definitive validation. For instance, our model
could be tested retrospectively for patients who were
scanned within the UK Biobank project [44] before the
disease onset. Importantly, one should include individuals
with an age range in agreement with the simulated period
because AD is an age-dependent disorder.

On the technical side, NKI and ADNI structural
connectivity was reconstructed using deterministic tracking.
Although probabilistic tracking could lead to a more
accurate reconstruction, we used deterministic tracking
in line with earlier studies in the NKI data set [20].
Also, owing to the FMRIB Software Library version that
was used at the time of analysis, the old eddy_correct tool
rather than the new more accurate eddy tool was used for
eddy current and movement correction that could influence
the reconstruction.

As patients might be affected by cerebrovascular diseases
[45] and other copathologies such as alpha-synuclein [46],
the diagnosis could be enhanced by accounting for these
comorbidities. Furthermore, as new information about the
selective neural vulnerability in AD is gathered [47], and
more complex models could be implemented to mimic
mechanisms of degeneracy and reserve [11]. This would
also enable a more mechanistic modeling of aging, as the
aggregation of misfolded proteins in the brain is part of
the normal aging process [48].
4.6. Conclusion

Computational models of disease progression based on
the connectome are an approach to discover risk factors
and biomarkers of brain network diseases [49]. We have
used such a model to study the progression from networks
of healthy controls to networks showing features of patients
with AD. This highlighted centrality as an early risk factor of
developing dementia. Overall, our work identifies potential
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anatomical origins of AD and suggests a diffusion
MRI-based biomarker for early diagnosis.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature using
PubMed and Google search engine. Nodes with high
centrality are disrupted in Alzheimer’s disease (AD).
Computational models of spreading processes based
on the structural connectome have been capable of
explaining the macroscopic atrophy and Ab aggrega-
tion in AD.

2. Interpretation: We have proposed a mechanistic
computational model that simulates progressive
structural connectivity degradation caused by AD
to assess the extent to which network alterations
associated with dementia begin to manifest structur-
ally. Our model simulations suggest that centrality is
not only disrupted in AD but also at early stages.

3. Future directions: This article proposes centrality as
a potential biomarker before the onset of symptoms
and further research to assess the ability of the model
to explain connectivity degradation in real-world
patients with prodromal dementia; the influence of
copathologies for AD prediction; and the importance
of accounting for mechanism of degeneracy and
reserve.
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