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Chapter 1

Introduction

Planning is the art of building control algorithms that synthesize a course of
action taken to achieve a desired set of goals from an initial situation. The
mainstream in practical planning is that of using utility functions, which are
usually called heuristics, to evaluate goals, and choices of action or states on
the basis of their expected utility to the planning agent [GNT04].

Multi-Agent Planning (MAP) generalizes the problem of planning in do-
mains where several agents plan and act together, and have to share re-
sources, activities, and goals. In a cooperative approach, where the agents
are assumed to be cooperative, the emphasis is placed on how planning can
be extended to a distributed environment. The planning agents of a MAP
task exchange information about their plans, which they iteratively refine
and revise until they fit together [dDOW99]. Typically, research in MAP has
been more concerned with the design of distributed planning architectures,
mechanisms for plan coordination, or solutions for merging the resulting local
plans of agents into a global plan [Dur99, CDB05, dWtMW05]. Unlike these
approaches, which emphasize the problem of controlling and coordinating a
posteriori local plans of independent agents, we propose a MAP model that
allows agents to jointly devise a global shared plan and carry out collective
actions. In our proposal, agents are able to plan concurrent actions through
the adoption of the Partial-Order Planning (POP) paradigm [BW94].

We consider that MAP is about the construction of a course of action
(plan) among several heterogeneous agents who have different capabilities
and different views of the world. In this work, we propose a MAP model
whose final objective is to form a competent global plan through the compo-
sition of the individual plans proposed by the participants. Planning agents
will accomplish a MAP problem through the adoption of a refinement plan-
ning approach, whereby agents propose successive refinements to a base plan
until a consistent joint plan that solves the problem goals is obtained. This
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4 CHAPTER 1. INTRODUCTION

is achieved while maintaining a distributed vision of the world, which guar-
antees that the agents keep their private information.

However, the focus of this dissertation is not only to present a novel
MAP model, but also the design and the first functional implementation
of a MAP system based on the aforementioned model, which is devised to
cope with the problem of cooperative planning, i.e. multiple agents working
together towards the construction of a joint plan that meets the global goals
of a planning problem. The model builds upon the concept of refinement
planning whereby agents propose successive refinements to a base plan until
a consistent joint plan that solves the problem goals is obtained. Hence, we
present a description of the the main components of the system along with
implementation details and experimental results.

The present document is organized as follows: chapter 2 presents some
background on the main topics related to this work; chapter 3 outlines the
theoretical model upon which the implemented system is based; chapter 4
summarizes the design of our MAP system, including a description of its
main components and its functionalities; chapter 5 gives some implementa-
tion details about our MAP system and presents the experimental results,
and finally, chapter 6 concludes and summarizes our future lines of research.



Chapter 2

Background

The present chapter introduces a state of the art on the main topics related
to this work: section 2.1 presents an introduction on the topic of classical
planning; section 2.2 summarizes the topic of MAP; section 2.3 introduces
the Partial-Order Planning paradigm, and section 2.4 details the features
and evolution of the most relevant planning description languages.

2.1 Single-Agent Classical Planning
The classical planning problem is defined as follows [Wel99]: given a de-
scription of the initial state of the world (in some formal language, usually
propositional logic) denoted by I, a description of the agent’s goal (i.e.,
what behaviour is desired), denoted by G, and a description of the possible
(atomic) actions that can be performed, denoted by A, and modeled as state
transformation functions, find a plan, i.e., a set of actions that transforms
the initial state into a state in which the agent’s goal holds. Hence, classical
planning can be seen as a search process in which a single agent synthesizes
a set of actions that allows it to reach its objectives. Classical planners face
two important issues: the definition of robust and expressive languages for
the modeling of actions and change, and organizing the search for plans ca-
pable of achieving the goals, i.e. the development of efficient problem-solving
techniques.

Over the years, research on classical planning has been shifting focus be-
tween different problem-solving paradigms. The motivation to introducing a
new planning paradigm is to find better search techniques and representations
of the planning problem. Planning paradigms can be classified according to
the following concepts [Sap05]:

• Node representation: A planner can perform a state-based search,
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6 CHAPTER 2. BACKGROUND

where a node in the search tree represents a particular situation, or a
plan-based search, in which nodes represent plans.

• Chaining type: A forward-chaining planner departs from the initial
state to solve the problem’s goals. Backward-chaining planners per-
form the search process on the opposite direction, which reduces the
branching of the search tree, as the search is guided by the goals.

• Plan representation: Total-order planners build partial solutions as
completely ordered sequences of actions, while partial-order planners
establish partial-order constraints between the actions of each partial
solution.

The early planners performed a state-based search, modeling it in terms
of exploration of the space of world states, with the transitions between states
being effected by the actions. Later, the need of manipulating partial plans
during search became clear, which leaded to the design of plan-space search
algorithms that explore the space of partial plans [PW92, BW94, Wel94].
The Partial-Order Planning (POP) approach proceeds by refining the partial
plans through the addition of actions, causal links and ordering constraints.
Other approaches apply a different type of refinement by replacing abstract
actions by plan fragments that are capable of carrying out those actions. This
is known as Hierarchical Task Planning (HTN) [EHN94], in which a planning
problem is decomposed into an ordered set of abstraction levels and actions
are successively refined such that the remaining actions can be done by a
single agent.

During the last few years, we have seen a number of promising approaches
that significantly increase the efficiency of planning systems. Most prominent
among these are GRAPHPLAN [BF97], SATPLAN [KS96] and heuristic-
search planning [BG01]. GRAPHPLAN and SATPLAN work both in stages
by building suitable structures and then searching them for solutions. In
GRAPHPLAN, the structure is a graph, while in SATPLAN it is a set of
clauses. In the heuristic planning approach, a heuristic function is derived
from the specification of the planning instance and used for guiding the search
through the state space. This approach turned out to be very successful as
demonstrated by the FF planner [HN01].

As a whole, the planning community is still very active on the task of find-
ing efficient search techniques for single-agent classical planning, in particular
in designing domain-independent techniques that allow fully automated plan-
ning systems to improve their performance. While classical planning model
has driven the majority of research in planning, more and more attention is
also being paid on planning in environments that are stochastic, dynamic and
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partially observable (and thus do not satisfy the classical planning assump-
tions). The ultimate goal is to able to tackle real-world planning problems
and hence it becomes necessary to address all these issues as well as others
like handling uncertainty in the domain, monitoring and execution of a plan,
distributed planning, planning in real-time environments, etc.

2.2 Multi-Agent Planning

The term Multi-Agent Planning (MAP) refers to the problem of planning in
domains where several independent entities (agents) plan and act together.
MAP is concerned with planning by multiple agents, i.e. distributed plan-
ning, and planning for multiple agents, i.e. multi-agent execution. It can
involve agents planning for a common goal, an agent coordinating the plans
(plan merging) or planning of others, or agents refining their own plans while
negotiating over tasks or resources [Cle05]. Planning agents may collaborate
in order to reach common goals or they may act selfishly in order to satisfy
their own private goals. Hence, the nature of MAP problems introduces some
challenges that are not present in classical planning, like how the agents in-
teract to develop a distributed plan, how planning information is distributed,
which information about the problem they own, how common goals are dis-
tributed, or how private goals are treated.

MAP problems and solutions for multi-agent environments differ consid-
erably from their single-agent counterparts. Domain knowledge is usually
distributed among agents, so agents typically work with an incompletely
known domain and do not likely have access to all the information about
the initial state of the MAP problem. Some MAP approaches allow the
initial state of a planning problem to be incomplete [BN09], and address
the problem of planning with incomplete information by following a confor-
mant planning approach [HB06]. Other approaches adopt the construction of
complete knowledge bases, which enables plan proposal generation through
planning with complete information [BRR10].

The problem of distributed planning has been addressed from different
perspectives: one approach has begun with a focus on planning and how
it can be extended into a distributed environment, and the other approach
has begun with an emphasis on the problem of controlling and coordinating
the actions of multiple agents in a shared environment [dDOW99]. The first
approach is more related to the problem of planning by multiple agents, and
it is the view usually adopted by the planning community, whilst the sec-
ond approach is more concerned about the problem of planning for multiple
agents (acting), and it is closely related to research in multi-agent systems.



8 CHAPTER 2. BACKGROUND

Nevertheless, a number of works share characteristics from both approaches,
particularly systems with self-motivated agents that must cooperate at some
points towards a common objective. Therefore, a MAP problem can be ap-
proached from different directions depending on whether the plan can be
distributed among a variety of execution systems and whether the planning
process should be distributed. This gives rises to a centralized/distributed
planning for centralized/distributed plans [Dur99].

The two keys aspects in a MAP problem are the planning activity by
which the participating entities should develop a course of action to attain
the problem goals, and a coordination process that will combine the partial
solutions into a single competent plan that solves the problem. In general, the
following steps can be distinguished in the process of solving a MAP problem
[Dur99]: 1) global goal refinement, 2) task allocation, 3) coordination before
planning, 4) individual planning, 5) coordination after planning, and 6) plan
execution. Not all the steps need to be included. For instance, steps 1 and 2
are not needed if there are no common goals. Also, some approaches combine
different phases. For example, agents can already coordinate their plans
while constructing their plans (combination of phase 4 and 5), or postpone
coordination until the execution phase (combination of phase 5 and 6), as in
the case of continuous planning, an ongoing and dynamic process in which
planning and execution are interleaved [Mye99].

The next subsection presents some of the most relevant coordination
mechanisms in multi-agent planning.

2.2.1 Coordination in MAP

As outlined in the previous section, one of the basic steps in the process of
solving a MAP task focuses on coordinating the agents’ activity in order to
find a solution plan. This task can be carried out at different stages of the
MAP process [dWtMW05]. Some approaches perform the coordination prior
to the actual planning process, while others allow the agents to perform an
individual planning and focus on merging the resulting plans on a joint solu-
tion. Finally, some works combine the planning and coordination activities
by interleaving them.

Most approaches to MAP emphasize the problem of distributing the plan-
ning process among several planning agents and merging the resulting local
plans to come up with a joint plan that meets the global goals. Some works
address this problem under the continual planning approach [dDOW99], in
which planning and execution are interleaved and coordination of local plans
is achieved via synchronization of agents at execution time [BN09, CB03].
Other approaches assume the existence of self-interested agents, and define
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MAP as the problem of finding a plan for each agent that achieves its private
goals, such that these plans together are coordinated and the global goals
are met as well [dWtMW05]. Under this perspective, the emphasis is on
how to manage the interdependencies between the agents’ plans and choose
the mechanisms to solve the coordination problem. Some frameworks use,
however, a pre-planning coordination approach, which establishes a set of
coordination constraints prior to the planning process, in order to guarantee
that the resulting plans will be conflict-free.

There is a large body of research focused on plan merging methods aimed
at the construction of a joint plan. One of the most well-known approaches
to coordination of plans is the Partial Global Planning (PGP) framework
[DL91]. In PGP, agents communicate their local plans to the rest of agents,
which in turn merge this information into their own partial global plan and
try to improve it. Such an improved plan is shown to the other agents,
who might accept, reject, or modify it. In [CDB05] authors propose an
extension of the Partial-Order Planning (POP) paradigm to the multi-agent
case such that agents can mutually benefit by coordinating their plans and
avoiding duplicating effort. Some approaches even propose algorithms to deal
with insincere agents and to interleave planning, coordination, and execution
[ER96].

Some MAP frameworks, however, follow a pre-planning coordination ap-
proach, by which they establish a set of coordination constraints prior to
the planning process, in order to guarantee that the resulting plans will be
conflict-free. Some of these approaches introduce a set of constraints called
social laws [ST95, YNH92], that must be followed by the agents. These
restrictions make the plan merging process easier, and guarantee that the re-
sulting plans will be conflict-free. Other pre-planning approaches try to figure
out the interactions among the planning agents’ tasks beforehand [TPW03].

Since a MAP problem can be viewed as the problem of having individually-
motivated agents cooperating for a common objective (typically the construc-
tion of a competent overall plan), negotiation underpins attempts to cooper-
ate and coordinate, and is required both when the agents are self-interested
and when they are cooperative [JFL+01]. We can also find several works in
the literature on negotiation as a tool for coordinating cooperative agents in
distributed planning [LL92, MLB92].

Another recent research trend focuses on the use of argumentation for
coordination in MAP. The TRAINS system [ASF+95], a research platform
that considers the problem of representing plans for mixed-initiative plan-
ning, was the first framework on introducing this approach. The work in
[BRR09, BRR10] proposes an argumentation-based approach for coordinat-
ing several agents, aimed at discussing the validity of the plan proposals.
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Other approaches take into account the communication needs that arise when
plans are being executed [TNP09].

2.3 Partial-Order Planning

In Total-Order Planning approaches, the plan’s actions are obtained in the
same order in which they are executed. This way, if a planner chooses a
wrong action, it will have to introduce another action to undo the effects of
the first one. As opposite to these models, the POCL (Partial Order Causal
Link) Partial-Order Planning (POP) paradigm [BW94] introduces a more
flexible approach, establishing partial order relations between the actions
in the plan instead of enforcing a concrete order among them. POP-based
planners work over all the planning goals simultaneously, maintaining partial
order relations between actions without compromising a precise order among
them, until the plan’s own structure determines it. This strategy based on
deferring decisions during the planning search is known as least commitment
strategy [Wel94].

Instead of performing a state-based search, POP models adopt a plan-
based search approach. Hence, a POP addresses the process of building a
search tree in which each node represents a different partial plan, without
maintaining the notion of planning state. POP is also classified into the
backward-chaining search approaches, since it begins the search by satisfying
the problem goals, and builds the plan backwards. In conclusion, POP can
be considered a plan-based, backward-chaining search process.

Partial plans contain a set of steps [Wel94], which are the representations
of planning actions within the partial plan. Hence, each step is composed
by a set of preconditions and effects, except for two fictitious steps, included
in every partial plan, that represent the initial state and the goals. Steps
are partially ordered through a set of ordering constraints. A partial-order
constraint indicates only a precedence relationship between two steps. Hence,
partial-order constraints allow other steps to be ordered between the steps
that form the constraint.

An open goal is a precondition which is not supported by a causal link. A
causal link indicates that a step supports a precondition of another step, by
having an effect that matches with the involved precondition. The introduc-
tion of causal links in a partial plan may trigger the appearance of threats
as a side effect. A threat occurs when there is a step that can be ordered
between both steps of the causal link, and it has an effect that is complemen-
tary to the precondition enforced by the causal link. Both open goals and
threats are referred to as the plan’s flaws. Hence, the POP process focuses
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on solving all the flaws of a partial-order plan through the introduction of
causal links and ordering constraints

POP became the focus of the planning research in the 1990s. However,
it faces an important challenge that has caused planning research to put the
emphasis on state-based approaches. This issue is related to the lack of scal-
ability of the POP algorithms. The problem of defining a high quality heuris-
tic to guide the POP plan-space search process remains unsolved. Currently,
there is not a single POP heuristic that can make this process competitive
against the latest state-based planning frameworks; even the latest efforts,
although improving the POP performance [NK01], are not efficient enough
to be competitive against state-based approaches. For this reason, POP has
been discontinued by the vast majority of the planning community, in favor
to more recent state-based approaches. However, the growing interest on
MAP frameworks has made POP gaining relevance again, since its flexibility
makes it a good alternative to tackle multi-agent planning problems.

2.4 Planning languages

One of the main issues that have been addressed by the planning community
is the representation problem. The use of a good planning language is one of
the key aspects of an efficient planning process. Since the 1970s, most of the
planning works have been widely influenced by the STRIPS language [FN71]
as it effectively solves the frame problem [MH69], and it supports divide-and-
conquer strategies [Gef00]. This section describes briefly this language and
its most relevant extensions: ADL [Ped89] and PDDL [McD00].

2.4.1 STRIPS

The STRIPS (STanford Research Institute Problem Solver [FN71]) language
was developed on the earlier 1970s, as a planning system for the robot Shakey.
STRIPS proposes a compact and simple model to specify planning domains.

The STRIPS representation includes various restrictions that limit its
expressivity, making it difficult to describe some real problems [RN03]. As
a result, many extensions to STRIPS have been developed over the past
years, enriching its expressiveness and simplifying the definition of planning
domains. The main restrictions introduced by STRIPS can be summarized
as follows:

• Only positive literals: It is not possible to negate literals explicitly in
the preconditions of the actions or in the initial state. The unmentioned
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literals are assumed to be false. Further extensions of the STRIPS
language will introduce the possibility of using negated literals, and
will assume the unmentioned literals to be unknown.

• Delete effects meaning: A negated effect ¬P implies the deletion of
P . Further STRIPS ’ extensions consider that an effect ¬P means the
deletion of P and the addition of ¬P .

• Only conjunctions in preconditions, effects and goals: Unlike its
extensions, STRIPS does not allow the use of disjunctive preconditions,
effects and goals. The states of the problem are described by using only
conjunctions of positive literals.

• Only grounded literals in goals: STRIPS only allows the use of
grounded literals in the description of the goals, while its successors
consider the possibility of using ungrounded facts.

• Lack of types support: The possibility of defining a type hierarchy
is one of the main additions of the STRIPS ’ extensions, simplifying
and making more readable the description of planning domains.

• Lack of equality support: As opposite to its extensions, STRIPS
does not allow the definition of equality restrictions (a = b).

Apart from addressing these restrictions, the STRIPS ’ extensions aug-
ment the language model by introducing features like numerical expressions
and time management, as shown in the following sections.

2.4.2 ADL

Although the STRIPS language is quite restrictive, it can be easily extended
to satisfy the requirements of complex domains. One of the main exten-
sions developed is the (Action Description Language (ADL) [Ped89]). ADL
uses an algebraic model to define the states of the world, which makes it
more expressive than STRIPS. ADL improves STRIPS by incorporating the
following features:

• Types: ADL allows to set a type to the objects of the problem and the
parameters of the preconditions, which improves the comprehension of
the problems and simplifies the planning domains.

• Negated goals and preconditions: The preconditions of an ADL
operator can include negated atomic formulas. Moreover, it is possible
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to specify goals as negated literals to represent facts that are not desired
in an objective state.

• Disjunctive preconditions: An ADL precondition can be a disjunc-
tion of atomic formulas.

• Quantified formulas: The preconditions in ADL can include both
existentially and universally quantified formulas.

• Equality restrictions: ADL introduces a new type of atomic formula
in the preconditions, that is satisfied when its two arguments are equal.
This predicate, named Equality allows the comparison of variable sym-
bols within an operator.

• Conditional effects: These effects are only effective if the specified
condition is satisfied in the state in which the action is applied. Con-
ditional effects are usually placed on the quantified formulas.

The extensions introduced by ADL improve considerably the expressivity
of STRIPS, allowing the designer to represent a larger number of situations.
It is possible to take advantage of these new features to improve the efficiency
of many planning systems [KNHD97].

2.4.3 PDDL

Although ADL is one of the most popular STRIPS extensions, many other
have been developed. For instance, FStrips (Functional STRIPS [Gef00] is
a first order language (without quantification), that uses constants, func-
tions and relational symbols (although it does not use variable symbols),
improving the language’s expressivity. However, the most successful exten-
sion of STRIPS has been PDDL (the Planning Domain Definition Language
[GHK+98]). PDDL was developed for the 1998 International Planning Com-
petition [McD00], aiming to provide a common notation for modeling plan-
ning problems and evaluating the planners’ results. Ever since PDDL was
introduced, it has become the reference modeling language for the vast ma-
jority of planners.

Along with STRIPS and ADL, PDDL has been influenced by many other
formalisms: SIPE-2 [Wil88], Prodigy 4.0 [BEG+92], UCMP [EHN94], Unpop
[McD96] and UCPOP [BCF+95]. The goal pursued by PDDL is to express
the domain’s physics, i. e., which predicates are present, which actions can
be applied, and which their effects are, without providing any additional
knowledge about it. PDDL offers a wide set of features, from which the
following ones stand out:
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• STRIPS -based action modeling.

• Conditional effects and universal quantification.

• Hierarchical actions: actions can be decomposed in subactions and
subgoals, which allows the designer to deal with more complex prob-
lems.

• Domain axioms: axioms are logical formulas that establish relations
between the facts that are satisfied in a state (as opposite to actions,
which define relations between successive states).

• Security restrictions: these constraints allow for the definition of
a set of objectives that must be accomplished over all the planning
process.

Most of the existing planners do not handle the full set of features intro-
duced by PDDL. For simplicity, PDDL’s features are gathered into sets of
requirements. In this way, planners can easily check if they are capable to
handle a certain domain.

2.4.4 PDDL extensions

The International Planning Competition (IPC ) [DKS+00] has become an
important conductor for planning research. One of the most important out-
comes of the first edition of the IPC was the adoption of PDDL as a common
planning definition language [MGH+98]. Furthermore, the following editions
of the event have improved the language by the introduction of new exten-
sions. This section discusses the most relevant PDDL existing extensions and
the main features introduced by each extension.

PDDL2.1 One of the most relevant contributions of the 2002 IPC (IPC-
3 ) was the introduction of the first PDDL revision: PDDL2.1 [FL03]. This
extension is completely backwards compatible with PDDL, and improves its
expressivity by adding time management and numeric capabilities. The most
relevant improvements introduced by PDDL2.1 are the following ones:

• Numeric fluents: PDDL2.1 proposes a definitive syntax for the ex-
pression of numeric expressions, conditions and effects. Conditions on
numeric expressions are always comparisons between pairs of numeric
expressions. Numeric effects can be direct or relative assignments.
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• Durative actions: PDDL2.1 allows to specify discrete and continuous
durative actions. The differences between both forms refer to how
numeric values change over the interval of the action. The occurrence of
an effect on a discrete durative action can be modeled at the beginning,
at the end or over all its execution. Continuous durative actions, in
turn, allow the specification of continuous effects.

• Plan metrics: PDDL2.1 allows for the definition of an objective func-
tion or metric, which specifies the basis on which a plan will be eval-
uated for a particular problem. Plan metrics can be defined by using
a primitive numeric expression specified in the domain, or through the
special variable total-time, which refers to the temporal span of the
entire plan.

For the ease of reference, the features of PDDL2.1 have been grouped
in four different levels of increasing expressive power. Level 1 encloses the
propositional and ADL levels of the previous PDDL version; level 2 estab-
lishes a syntax to handle numeric expressions (fluents); level 3 manages the
discrete durative actions, and level 4 allows the durative actions to have
continuous effects.

Finally fifth level has been added by a more recent extension called
PDDL+. It allows to model efficiently the appearance of events and pro-
cesses (activities that cause continuous changes on the values of the numer-
ical expressions while they last). Although this classification includes five
levels, only the first three levels have been used by current state-of-the-art
planners, since the planning technology is not sufficiently advanced to handle
the additional complexities introduced by the last two levels.

PDDL2.2 The fourth IPC (IPC-4 ), run in 2004, introduced a new revision
to PDDL, PDDL2.2 [Ede03]. As the extensions introduced in PDDL2.1
still provide major challenges to the planning community, the number of
changes added by PDDL2.2 is relatively moderate. Since the first three levels
of PDDL2.1 are considered an agreed fundament, PDDL2.2 inherits that
structure, adding a set of new features on top of it. The main improvements
added by PDDL2.2 are the following ones:

• Derived axioms: PDDL2.2 offers the possibility to define predicates
that are not affected by any of the actions defined in the domain. In-
stead, the truth values of predicates are derived by a set of rules of the
form iff(x)thenP (x). Derived predicates are included into the three
levels of the language.
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• Timed initial literals: The language includes the possibility to de-
fine literals that will become true or false at established time points,
independently of the actions selected by the planner to execute. Timed
initial literals are thus a simple way of expressing deterministic uncon-
ditional exogenous events. These literals can be used at the level 3 of
the language.

PDDL3.0 PDDL3.0 [GL05] was developed for the 2006 IPC (IPC-6 ).
Unlike the previous versions, PDDL3.0 emphasizes the importance of plan
quality. The previous versions allowed the user to express some criteria on
plan quality, and relatively complex plan metrics. In order to improve the
language power to express conditions on the plan quality, PDDL3.0 has in-
troduced a whole set of new features, that can be synthesized as follows:

• State trajectory constraints: These constraints assert conditions
that must be met by the entire sequence of states visited during the
execution of a plan. They are expressed through temporal modal op-
erators over predicates.

• Soft constraints, preferences and plan quality: PDDL3.0 allows
to express conditions that are preferred to see satisfied on the trajectory
generated by a plan, even though these preferred constraints do not
have to be necessarily satisfied. If the domain includes multiple soft
constraints, it is possible to establish which of them should take priority
in case of conflict. PDDL3.0 provides also constructs to describe how
the satisfaction of these constraints (or lack of it) affects the quality of
a plan.

PDDL3.1 The latest PDDL version, PDDL3.1 [Kov11], was introduced in
the context of the 2008 IPC. The main purpose of this extension was to en-
rich the language with SAS+-like [BN95] problem representations. However,
SAS+ only allows using functional fluents in very limited ways since it does
not allow nesting and only allow comparisons and assignment to constants.
Hence, PDDL3.1 introduces object fluents, which are state variables which
are neither binary (true/false) nor numeric (real-valued), but instead map
to a finite domain, a more flexible solution inspired by the Functional Strips
formalism [Gef00]. In addition, PDDL3.1 allows to specify numeric action
costs in language fragments that don’t normally permit numerical features.
The main additions provided by the language can be summarized as follows:

• Object fluents: These state variables map to a finite domain of ob-
jects, defined by an object type. Only one object of the domain can
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be assigned to the variable at each planning state. Since they can be
employed in the preconditions and effects of the actions, object fluents
can be used in conjunction with traditional predicates or even replace
them in the planning models.

• Action costs: This feature allows the user to assign a numeric, non-
negative cost to the actions in the domain. This way, action costs play
an important part in determining plan quality.
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Chapter 3

Multi-Agent Planning theoretical
framework

This chapter presents the Multi-Agent Planning (MAP) framework in which
our MAP system implementation is based. It also describes the procedure
followed by the agents for building and exchanging plans among them. The
first section of the chapter models the main components of a MAP task,
while the second one outlines the refinement planning process.

We consider that MAP refers to multiple agents planning and acting col-
laboratively. More specifically, agents interact to design a plan that none
of them could have generated individually in most cases. During the plan
construction, agents keep in mind that the devised plan will be jointly exe-
cuted by themselves such that they collectively achieve their individual and
common goals.

As outlined in section 2.2, the domain information in MAP is usually
distributed among planning agents, so they are not likely to have access
to all the information about the problem’s initial state. In our model, the
incomplete information of an agent only concerns its partial view of the
domain and as well as the ignorance about the knowledge possessed by the
rest of participants, but the initial state of the problem is known among
all of the agents. Thus, the initial state may not be fully known to each
agent as well as the capabilities or specialized expertise of an agent may be
also unknown to the rest of agents. On the other hand, we define a set of
common goals, known by all of the agents, and, possibly, a set of individual
goals specified as soft constraints [GL06]. Individual goals are only known to
each particular agent and, unlike common goals, the agent is not committed
to satisfy them.

In our approach, the planning model of an agent extends the classical
STRIPS-like planning model, allowing agents to represent their partial view

19



20 CHAPTER 3. MAP THEORETICAL FRAMEWORK

of the world and adopting the open world assumption [Rei87] as opposite to
STRIPS-like models. In practice, each agent uses the classical single-agent
planning language PDDL [MGH+98], more precisely the features included in
PDDL3.1 [Kov11] plus some additions to deal with specific MAP require-
ments.

Informally speaking, we define a MAP problem as follows: given a de-
scription of the initial state, a set of global goals, a set of (at least two) agents,
and for each agent a set of its capabilities (the actions they can perform) and
(probably) its private goals, find a plan for each agent, such that these plans
together are coordinated and the problem’s global goals are met [dWtMW05].
In our approach, by MAP we denote a planning process distributed across
several planning/executing agents who devise a joint, non-linear plan which
will be later executed by the same agents. We assume that agents are specif-
ically designed to be cooperative but can also have their own private goals.
In our view of MAP, agent’s decisions must not only be derivative from the
collective goals but also from the other agents’ decisions.

3.1 Specification of a MAP task

Definition 1. (MAP task) AMAP task is a tuple T = 〈AG,O,V ,A, I,G,F〉:

• AG is a finite non-empty set of planning agents.

• O is a finite set of objects, that model the elements of the planning
domain over which the planning actions can act.

• V is a finite set of state variables that model the states of the world.
Each state variable v ∈ V is mapped to a finite domain of mutually ex-
clusive values Dv. Each value in a state variables’s domain corresponds
to an object of the planning domain i.e. ∀v ∈ V, Dv ⊆ O.

• A is the set of deterministic actions of the agents’ models.

• I is a set of assigned state variables that models the initial state of the
MAP task T .

• G is is a set of state variables that represent the problem’s common or
global goals that must be achieved by the agents in order to fulfill the
MAP task.

• F is a global utility function used by the agents to select a plan when
several choices are available.
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When assigned to a certain value of their domain, the state variables act
as propositions in propositional planning. We regard assigned state variables
and actions as atomic, just as in propositional planning. Despite the fact
that not every state variable is known to all the agents, they must share
a common language to allow communication between them. To denote the
actions, goals, etc. of an agent i ∈ AG we will use the superscript notation
xi for any such aspect x.

Definition 2. (Agent’s bases) An agent i ∈ AG is equipped with three
bases 〈I i,Ai,PGi〉:
• I i a set of literals which models the agent’s knowledge about the prob-
lem’s initial state.

• Ai, a base of planning rules or actions which represents the agent’s
capabilities.

• PGi, a (possibly empty) set of private goals.

The information on the initial state I is distributed among agents, which
have a partial knowledge about I. We also assume that agents’ knowledge
about I is fully consistent i.e. there is not contradictory information among
agents. Consequently, the initial state of a planning task I can be defined
as I =

⋃
∀i∈AG I i.

Definition 3. (Literal) A literal (v = d), where v ∈ V and d ∈ Dv, is a
state variable v assigned to a certain object d, which is part of the variable’s
domain Dv. A literal can also be a negated assigned state variable ∼ (v = d),
where ∼ represents the strong negation.

The initial state of an agent, I i, is modeled through a set of literals.
As stated in the previous definition, a literal is a state variable assigned
to a concrete value of its domain. Since values of a variable’s domain are
mutually exclusive, the assignment of a variable to a value discards the rest
of values of its domain. Literals are either assigned state variables or negated
assigned state variables, which allows agents to represent explicitly both the
true and false information, rather than applying negation by failure, as the
STRIPS-like models. Hence, our model adopts the open world assumption,
considering ignorance by failure, i.e. the information which is not represented
in the initial state is unknown to the agents.

Each agent i ∈ AG is associated with a set Ai of possible actions such
that the set of actions of a planning task is defined as A =

⋃
∀i∈AG Ai. An

action α ∈ Ai denotes that agent i has the capability expressed in the action
α (i is the owner of α). If α is planned to form part of the final plan then i
is also the agent responsible of executing α.
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Definition 4. (Planning rule or action) A planning rule or action
α ∈ A is a tuple 〈PRE,EFF 〉. PRE is a set of literals representing the
preconditions of α, and EFF is a consistent set of literals representing
the consequences of executing α. We will denote an action α as follows:
(p1, p2, . . . , pn ⇒ e1, e2, . . . , em), where {p1, . . . , pn} denote the preconditions
and {e1, . . . , em} the effects of α, respectively.

An action α may belong to the set of possible actions of different agents.
Thus, it can be the case that α ∈ Ai and α ∈ Aj, being i 6= j. We will use
PRE and EFF as the precondition function and effect function, respectively,
for an action α: PRE(α) = {p1, . . . , pn}, EFF (α) = {e1, . . . , em}. The set
PRE mentions the literals that must hold in a world state S for that the
action α is applicable in this state. The result of executing α in S is a new
world state S ′ as the revision of S by EFF (α), i.e. updating the literals in
S according to the effects of α. Revision entails modifying the values of the
literals in S according to EFF (α) in order to obtain the resulting state S ′.

Additionally, actions have an associated cost. cost(α) ∈ R+
0 is the cost of

α in terms of the global utility function F .
Finally, the private goals of an agent i, PGi ⊂ V , are positive assigned

state variables (literals) that the agent is interested in attaining. Unlike the
global problem goals G, agents are not forced to achieve their private goals,
so they are encoded as soft constraints [GL06].

3.2 Refinement Planning

Our MAP model can be regarded as a multi-agent refinement planning frame-
work, a general method based on the refinement of the set of all possible plans
[Kam97]. An agent proposes a plan Π that typically enforces some open goals;
then, the rest of agents collaborate on the refinement of Π by offering help
in solving some open goals in Π. This way, agents cooperatively solve the
MAP task by consecutively refining an initially empty partial plan.

In this context, the Partial-Order Planning (POP) paradigm [BW94]
arises as a suitable approach to address refinement planning, as it is focused
on solving open goals progressively, as opposite to state-based frameworks.
Consequently, agents in our MAP approach plan concurrent actions through
the adoption of the POP paradigm. Hence, under an idealized and static
environment, the distributed plan devised among the agents would be fully
executable. The notion of partial plan is at the core of our planning model.
In the following, we provide some basic definitions concerning single-agent
POP and its adaptation to a Multi-Agent Planning (MAP) context.
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3.2.1 Single-agent Partial-Order Planning

Definition 5. (Partial plan) A partial plan is a tuple Π = 〈∆,OR, CL〉,
where:

• ∆ ⊆ A is the set of planning actions in Π.

• OR is a set of ordering constraints (≺) on ∆.

• CL is a set of causal links over ∆. A causal link is of the form α
v=d→ β,

where α ∈ Ai, β ∈ Aj are two steps of ∆, likely from different agents
(i 6= j), and (v = d) is a literal such that v ∈ V, d ∈ Dv, (v = d) ∈
EFF (α) and (v = d) ∈ PRE(β).

This structural definition of partial plan actually represents the mapping
of a plan into a directed acyclic graph, where ∆ represents the nodes of
the graph (actions) and OR and CL are sets of directed edges representing
the required precedences of these actions and the causal links among them,
respectively. Note that ∆ =

⋃n
i=1 ∆i, where each ∆i denotes the (possibly

empty) set of actions contributed by agent i to the plan Π.
An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where ∆0

contains two fictitious actions, the initial action α0 and the final action αf .
α0 and αf are not real actions and hence they belong to A but not to the
action set of any particular agent. OR0 contains the constraint a0 ≺ af
and CL0 is an empty set. This way, a plan Π for any given MAP task T
will always contain the two fictitious actions such that PRE(α0) = ∅ and
EFF (α0) = I, PRE(αf ) = G, and EFF (αf ) = ∅; i.e. α0 represents the
initial situation of T , and αf represents the global goals of T .

Assuming that G 6= ∅, an empty plan is said to be non-complete because
the preconditions of αf are not yet supported by any action. Hence, the
POP search process is aimed at solving the unsupported preconditions of the
plans, also called open goals.

Definition 6. (Open goal) An open goal in a partial plan Π = 〈∆, OR,
CL〉 is defined as a literal (v = d) such that v ∈ V, d ∈ Dv, (v = d) ∈
PRE(β), β ∈ ∆, and @α ∈ ∆/α

v=d→ β ∈ CL. openGoals(Π) denotes the set
of open goals in Π. A partial plan is said to be incomplete if it has open
goals. Otherwise, it is said to be complete.

As the POP search process progresses, some of the causal links introduced
in the partial plan can become unsafe as a result of the introduction of a new
step which is not ordered with respect to the causal link. These conflicts are
called threats.
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Definition 7. (Threat) A threat in a partial plan Π = 〈∆, OR, CL〉
represents a conflict between a step of the plan and a causal link. A step γ
causes a threat over a causal link α v=d1→ β if (v = d2) ∈ EFF (γ), where
v ∈ V, d1 ∈ Dv, d2 ∈ Dv and d1 6= d2, and there is not an ordering constraint
γ ≺ α nor β ≺ γ. Threats(Π) denotes the set of threats in Π.

A threat t ∈ Threats(Π) can be solved by promoting or demoting the
threatening step γ with respect to the causal link α v=d1→ β i.e. introducing
an ordering constraint γ ≺ α or β ≺ γ. Threats and open goals are also
known as the flaws of a partial-order plan. Therefore, the POP process is
directed at solving the pending flaws of an initially empty partial plan, in
order to reach a solution for the planning task.

3.2.2 Multi-agent Partial-Order Planning

In our MAP approach, partial plans that agents build are concurrent multi-
agent plans as two different actions can now be executed concurrently by
the two proposer agents. Some approaches adopt the well-known notion of
concurrency as established by distributed systems and non-linear planning;
that is, two actions can happen concurrently if none of them changes a pre-
condition or effect of the other [BN09]. More sophisticated methods of action
concurrency are introduced in [CDB05], in which the assumption that actions
are instantaneous is relaxed. In [BB01], authors extend the POP algorithm
to represent concurrent actions with interacting effects. Our notion of con-
currency follows the one in [BB01] that considers three types of conflicting
interactions among actions, which are also adopted by GraphPlan to define
the mutual exclusion relations in a planning graph [BF97]. These mutual ex-
clusion relations among actions or mutex can be interpreted as an adaptation
of the concept of threat to a MAP context.

Definition 8. (Mutex actions) Two actions α ∈ Ai and β ∈ Aj are
mutually exclusive (or mutex) if one of the following conditions holds:

• If a literal (v = d1) ∈ EFF (α) and (v = d2) ∈ PRE(β), where v ∈ V,
d1 ∈ Dv, d2 ∈ Dv and d1 6= d2, or vice versa; i.e., if the effects of an
action change the value of a state variable that the other action relies
on.

• If a literal (v = d1) ∈ EFF (α) and (v = d2) ∈ EFF (β), where v ∈ V,
d1 ∈ Dv, d2 ∈ Dv and d1 6= d2, or vice versa; i.e., if the effects of an
action threaten the effects of the other action.
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• If a literal (v = d1) ∈ PRE(α) and (v = d2) ∈ PRE(β), where v ∈ V,
d1 ∈ Dv, d2 ∈ Dv and d1 6= d2, or vice versa; i.e., if the precondition
list of an action is not logically consistent with the precondition list of
the other action.

According to definition 8, two concurrent actions are logically consistent
if none of the above three conditions are met in a plan. Definition 8 is
straightforwardly extended to a joint action 〈α1, α2, . . . , αn〉.

Our notion of multi-agent concurrent plan is an extension to the concept
of a single-agent, partial plan free of threats [BW94]. Hence, a multi-agent
concurrent plan can be defined as follows:

Definition 9. (Multi-agent concurrent plan) Given a partial plan Π =
〈∆,OR, CL〉, we say Π is a multi-agent concurrent plan or a consistent
multi-agent plan if for every pair of unequal actions α ∈ Ai, β ∈ Aj, i 6= j,
that are unordered (α ⊀ β), then α and β are not mutex.

A partial-order plan can be interpreted as a linear sequence of states.
Given a plan Π = 〈∆,OR, CL〉 for a MAP task T = 〈AG,O,V ,A, I,G,F〉,
Π can also be regarded as a chronologically ordered sequence of world states
Π = {S0, S1, . . . Sn}, where each Si is a fully-instantiated state that results
from the effects of the concurrent actions at the execution step i − 1. Thus
S0 = I = EFF (α0) is the initial state, and G ⊆ Sn, which means that the
common goals of T are enforced in the last state Sn of the plan.

Assuming that G 6= ∅, an empty plan is said to be non-complete because
the preconditions of αf are not yet supported by any action. Hence, agents
in our MAP approach focus on devising refinement plans that solve the open
goals of the partial plans. In our framework, the refinements proposed by
the planning agents must be threat and mutex free. However, they can
contain open goals if the proposing agent is not able to solve them or if it
considers that they would be solved more efficiently by other agents. This
issue underpins the agent attempts to cooperate and collaborate towards a
solution plan.

Definition 10. (Refinement plan) A partial plan Πj = 〈∆j, ORj, CLj〉
is a refinement of another partial plan Πi = 〈∆i, ORi, CLi〉 if and only
if ∆i ⊆ ∆j, ORi ⊆ ORj, CLi ⊆ CLj and ∃p ∈ openGoals(Πi)/p 6∈
openGoals(Πj).

Therefore, a refinement can be seen as a partial plan built upon a base
plan and aimed at solving at least one of its open goals.

A refinement plan Πj actually results from the composition of Πi, the base
plan, and a refinement step Π′, where Π′ = 〈∆′, OR′, CL′〉 and ∆j = ∆i∪∆′,
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ORj = ORi∪OR′ and CLj = CLi∪CL′. We will denote the composite plan
as Πj = Πi ◦ Π′.

As previously mentioned, in our multi-agent POP model, the refinement
plans proposed by the agents are always mutex and threat free but can con-
tain open goals. This means that if the refinement step contributed by an
agent brings about a mutex or a threat on the composite plan, the agent is
responsible for solving it and thus suggesting a refinement that addresses the
flaw. Consequently, if an agent is not capable to come up with a consistent
refinement plan, then the agent refrains from suggesting such a refinement.
In case of no refinements for an incomplete partial plan, we say the plan is a
dead-end.

Definition 11. (Dead-end plan) A plan Πi is called a dead-end plan
if ∃p ∈ openGoals(Πi) and there is no refinement step Π′ such that p 6∈
openGoals(Πi ◦ Π′); that is, no refinement step solves the open goal p.

Finally, we define a solution plan.

Definition 12. (Solution plan) A multi-agent concurrent plan Π is a so-
lution plan for a planning task T if Π is a consistent and complete plan,
i.e. it has no threats nor mutex and openGoals(Π) = ∅.

Note that we require Π to be a complete plan so it cannot have pending
open goals. Consequently, the preconditions of the fictitious final action αf

will also hold thus guaranteeing that Π solves the planning task T .



Chapter 4

Multi-Agent Planning system
design

The Multi-Agent Planning (MAP) theoretical framework shown in the pre-
vious chapter has been taken as a basis to the design and implementation of
our MAP system. The present chapter summarizes the design of the MAP
system, analyzing its structure and its main components.

This chapter is structured as follows: next section presents the MAP sys-
tem overview, showing the main components of the system and describing
their functionality; section 4.2 introduces the language to describe MAP do-
mains and problems; section 4.3 describes the MAP algorithm that planning
agents execute in order to obtain a solution to the MAP task, and section 4.4
presents the Partial-Order Planner algorithm and the extensions undertaken
to adapt it to a MAP context.

4.1 System overview

Our MAP system follows the theoretical model presented in chapter 3. Hence,
it is oriented to a refinement planning approach, in which the refinement
plans are obtained through a Partial-Order Planning search process. Figure
4.1 shows the organization of our MAP system, whose main components are
listed as follows:

1. Input files: Prior to the actual MAP process, the planning agents
receive a set of description files, which model the information on the
MAP task. Since MAP introduces new requirements that classical plan-
ning description languages cannot support, we have designed a MAP
language that deals with them.
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2. Partial-Order Planner: The Partial-Order Planner (POP) is the key
element of our refinement planning approach, because there is a POP
embedded in each agent of the system. Once a planning agent receives
the current base plan, it uses the POP component to generate several
refinement plans, which are candidates to be chosen as the next base
plan. Each planning agent is provided with this component at the start
of the process in order to enable its planning capabilities.

3. Multi-Agent System: This component of the system allows the plan-
ning agents to communicate and collaborate with others, exchanging
partial solutions and selecting the next base plan in order to build a
joint solution plan.

Partial-Order 
Planner

Planning task
definition files

Partial-Order 
Planner

Planning task
definition files

Partial-Order 
Planner

Planning task
definition files

...

Multi-Agent System

ag
1

ag
2
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n

Figure 4.1: Overview of the MAP system design

Planning agents start by receiving and processing the planning task def-
inition files, which configure their internal POP systems. Then, they carry
out the MAP algorithm, which consists of two different stages:

• An initial information exchange, which is carried out once, before ini-
tiating the planning process. In this stage, agents build a distributed
relaxed planning graph (dis-RPG), which will be useful to the MAP
process.
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• The actual MAP process, by which they exchange and refine partial so-
lutions until reaching a joint solution plan. This stage interleaves two
different processes, a coordination phase that allows agents to exchange
refinement proposals and select the next base plan, and an individual
POP process by which the agents build new refinements over the cur-
rent base plan.

4.2 Planning language

An important requirement to reach agreements in Multi-Agent Systems is to
provide agents with planning capabilities that allow them taking the most
appropriate course of action (plan) in order to achieve a specific set of goals.
To acquire such capabilities, a planning specification language is required to
represent the different elements of a planning task.

Traditionally, planning has been regarded as a single-agent problem, where
only one centralized planning entity is required. Hence, MAP presents new
requirements and challenges that were not present in classical, centralized
planning:

• Shareable information: In our approach, planning agents may want
to withhold their private information, and decide which information
will be shared with the rest of agents. Our planning language includes
a shared-data section in order to specify which literals will be shared
with other agents.

• Global and private goals: As opposite to single-agent planning
tasks, agents can have individual objectives besides the system’s com-
mon goals. Hence, our language introduces the global-goal and
private-goal sections to define this information.

As described in section 4.1, all the planning agents in our MAP system
receive a set of input files which describe the agent’s planning task. Infor-
mation on a planning task is divided into a domain and a problem file. The
domain file represents the planning actions, the types of objects and the state
variables of the task, while the problem file details the actual objects of the
task, the initial state i.e. the initial values of the state variables and the
task’s goals.

As outlined in section 2.4, planning languages have experienced a contin-
uous evolution over the last years, increasing their expressivity continuously
by the addition of new features. We have chosen PDDL3.1 [Kov11], the
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most recent version of PDDL [GHK+98], as the base of our planning lan-
guage. However, we have introduced a set of new constructs to the language
in order to deal with the additional challenges brought by MAP.

Consequently, this section describes our MAP language approach, speci-
fying in detail its main features. In particular, we analyze the constructs that
cover the particular requirements of MAP domains, i.e. modeling the data
shared among agents, and the local and global goals. Finally, we present a
brief example that shows the modeling of a simple planning task through our
MAP language.

4.2.1 General structure

As in PDDL3.1 classical tasks, each agent on a MAP system has two associ-
ated description files that model the agent’s planning task. Each domain and
problem file has a similar structure to their PDDL counterparts, although a
few new constructs are introduced, making these files slightly different.

The domain and problem files model the agent’s information as a clas-
sical PDDL domain, defining the objects, predicates, fluents and operators.
However, the MAP problems present some distinctive features that have to
be reflected in the model.

Firstly, the model should include the information that is shared among
the different agents. The shared-data construct, defined in the problem file,
indicates which object fluents are shared by each agent and with whom. Sec-
ondly, unlike classical planning entities, agents in MAP have to fulfill global
and local goals. Global goals are the common objectives that a set of agents
have to achieve, while local goals refer to an agent’s private objectives. Hence,
planning agents will propose plans that solve the common goals and satisfy
at the same time their own, private interests. The constructs global-goal
and private-goal, defined in the problem files, establish the agent’s local
and global goals. Finally, a multi-functions construct has been included
in order to simplify the specification of object fluents in the initial state of
an agent.

4.2.2 Shared data

The shared-data section, located on the agent’s problem file, establishes
which data can be shared and with which agent or agents. The information
to be shared is defined through object fluents or predicates. The defined
construct has the following BNF syntax:
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<shared -data -def > ::= (:shared -data <share -def >+)
<share -def > ::= (<atom -formula -def >+ [- <agent >])
<agent > ::= <name >
<atom -formula -def > ::= (<predicate > <typed -list(element)>)
<atom -formula -def > ::= (= <object -fluent > <object >)
<predicate > ::= <name >
<object -fluent > ::= (<name > <object >*)
<object > ::= <name >
<element > ::= <variable > | <constant >
<variable > ::= ?<name >
<constant > ::= <name >
<typed -list(x)> ::= x*

As the BNF syntax shows, it is possible to define sets of predicates within
the section and associate them to one, some or all the agents in the system
(if agent is not specified, the predicates are shared with all the agents).
Again, the predicates act as patterns, since we consider literals to be the
only information shared among agents.

4.2.3 Private and global goals

One of the particularities of MAP when compared to traditional planning is
the fact that agents have private and global goals. To reflect this information
in the model, the constructs private-goal and global-goal have been
included into the problem files. Similarly to the goal section in PDDL3.1,
the goals can be modeled through predicates or object fluents. The defined
constructs use the following BNF syntax:
<private -goal -def > ::= (:private -goal <predicates -def >)
<global -goal -def > ::= (:global -goal <predicates -def >)
<predicates -def > ::= <atom -formula -def >
<predicates -def > ::= (and <atom -form -def > <atom -form -def >+)
<predicates -def > ::= (or <atom -form -def > <atom -form -def >+)
<atom -form -def > ::= (<predicate > <typed -list(element)>)
<atom -form -def > ::= (= <object -fluent -def > <object >)
<predicate > ::= <name >
<object -fluent -def > ::= (<name > <object >*)
<object > ::= <name >
<element > ::= <variable > | <constant >
<variable > ::= ?<name >
<constant > ::= <name >
<typed -list(x)> ::= x*

As shown in the BNF syntax description, both sets of global and local
goals are described with a conjunction or a disjunction of predicates, or a
single one.
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4.2.4 Multi-functions

As seen in section 3, our framework considers the explicit representation of
true and false information. This makes the encoding process difficult, since it
is necessary to encode a much larger volume of data in the initial state of each
agent than in a classical planning task. To simplify this encoding process, the
multi-functions construct has been introduced. This new element of the
language is used to describe the planning model’s static data (information
that does not change throughout the planning process, that is, information
that is not modified by the actions’ effects).

The multi-functions are defined in the same way as the regular fluents, by
declaring them in the domain file. The only difference is that these special
functions are declared within their own :multi-functions section. The
BNF syntax of the construct remains as follows:

<multi -func -sec -def > ::= (:multi -functions <multi -func -def >)
<multi -func -def > ::= (<name > <typed -list(typed -v)>) <type >
<typed -v> ::= <variable > - <type >
<type > ::= <name >
<type > ::= (either <name > <name >+)
<variable > ::= ?<name >
<typed -list(x)> ::= x*

In the :init section of the problem file, the multi-functions are used to
actually model the initial state data. The specification of a multi-function
within the :init section uses the following BNF syntax:

<multi -func -def > ::= (= <multi -func > <value -def >)
<multi -func > ::= (<name > <typed -list(inst -v)>*) <inst -v>+
<inst -v> ::= <name >
<variable > ::= ?<name >
<typed -list(x)> ::= x*

4.2.5 Language example

In order to illustrate our language specification, this section presents a simple
planning task example. The example models a transport example, in which
agents act as transport agencies that use their trucks to deliver their packages
to a certain city. Agents work in a certain geographic area, which means that
they can only deliver packages in cities within their work area. To deliver
packages outside their area successfully, they will have to work jointly with
the rest of agents in the system.

Agents know accurately the situation of their trucks and the position of
the packages they have to collect and deliver. They also know the different
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geographical areas, the situation of the cities within their work area, and
the distance between each pair of cities connected by a road. However, they
do not have a precise knowledge about the geographical situation of the
cities outside their influence area, since it is not relevant for their planning
models. In the following, we present the modeling of this planning task,
putting emphasis on the encoding of the new constructs introduced in our
MAP language.

The present section describes the most relevant information included in
the domain and problem files. In this case, the domain file is shared by
the three agents present in the system, as they have the same capabilities.
The first section of the code specifies the types of objects included in the
formalization:
(:types truck package agent city - object)

The truck objects are in charge of carrying the packages to their desti-
nations. Each truck belongs to a certain agent, and can only be employed by
its owner. The Package objects have to be picked up and delivered by the
trucks. Agents are also modeled as objects, since each one knows the rest of
agents present in the system. Finally, agents know the location of each city
within their geographical area.

Once the types have been defined, the code specifies the domain’s object
fluents as follows:
(: fluents (at ?t - truck) - city

(in ?p - package) - (either truck city)
)

The at fluent indicates that a truck is placed on a certain city, while
the in fluent indicates that a package is located in a certain truck or city.

The domain file includes also a multi-function, which is described as fol-
lows:
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(:multi -functions
(link ?c1 - city) - city

)

Finally, the domain file describes the actions that the agents can perform.
In this example, agents can carry out three different actions:
(: action Load

:parameters (?p - package ?t - truck ?c - city)
:precondition (and (= (in ?p) ?c)

(= (at ?t) ?c))
:effect (assign (in ?p) ?t)

)
(: action Unload

:parameters (?p - package ?t - truck ?c - city)
:precondition (and (= (in ?p) ?t)

(= (at ?t) ?c))
:effect (assign (in ?p) ?c)

)
(:durative -action Drive

:parameters (?t - truck ?c1 ?c2 - city)
:precondition (and (= (at ?t) ?c1)

(member (link ?c1) ?c2))
:effect (assign (at ?t) ?c2)

)

The Load(?p ?t ?c) action indicates that the package ?p is loaded onto
the truck ?t; both package and truck are located at the city ?c. Unload(?p
?t ?c) causes the package ?p to be unloaded from the truck ?t; both package
and truck are located at the city ?c. Lastly, Drive(?t ?c1 ?c2) indicates
that the truck ?t goes from the city ?c1 to the city ?c2.

Notice that the object fluents are introduced in the actions’ preconditions
by using the = operator, while the multi-functions use the member operator.
This operator indicates that the value is part of the multi-function’s domain.

Unlike in the case of the domain file, each agent has its own problem file.
Each of them includes the problem objects, goals, initial state, shared data
and mapping information. The following fragment of code includes the whole
problem file defined for agent 1:
(define (problem Ag1)
(: domain Transport)
(: objects

t1 t2 - truck
Madrid Toledo Cuenca
Ademuz Valencia Sagunto - city
p1 p2 - package

)
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(:init
(= (link Madrid) {Toledo })
(= (link Toledo) {Madrid Cuenca })
(= (link Cuenca) {Madrid Ademuz Valencia })
(= (link Ademuz) {Cuenca Valencia })
(= (link Valencia) {Cuenca Sagunto Ademuz })
(= (link Sagunto) {Valencia })
(not (= (link Madrid) {Cuenca Ademuz Valencia Sagunto }))
(not (= (link Toledo) {Ademuz Valencia Sagunto }))
(not (= (link Cuenca) {Toledo Sagunto }))
(not (= (link Ademuz) {Madrid Toledo Sagunto }))
(not (= (link Valencia) {Madrid Toledo Cuenca }))
(not (= (link Sagunto) {Madrid Toledo Cuenca Ademuz }))
(= (in p1) Toledo) (= (in p2) Cuenca)
(= (at t1) Madrid) (= (at t2) Sagunto)

)

(:global -goal (in p1 Valencia ))
(:private -goal (in p2 Sagunto ))

(:shared -data
(in ?p - package Ademuz) - ag2
(at ?t - truck) - ag3

)
)

As the code indicates, the problem file defines the situation of the cities
and the connections and distances between them, the location of the trucks
and packages, the global goals and the local objectives of the agent. The
:shared-data section defines which information is shared with agents 2 and
3.

4.3 Multi-Agent Planning algorithm
This section details the MAP algorithm followed by the agents to devise,
exchange and select partial-order plans, in order to come up with a solution
for the MAP problem. In the current version of the MAP system, the co-
ordination of agents is performed through a planning protocol in which one
agent leads the process of gathering the new refinements and selecting the
next base plan. However, our final goal is to perform coordination through
an argumentation process. This argumentation framework is currently at
a theoretical stage; its further development and integration with the MAP
system constitutes one of our lines of future work (see section 6.2 for detailed
information).
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Our MAP algorithm is divided in several stages, that can be outlined as
follows:

• Initial information exchange: The MAP algorithm starts with an
initial communication stage by which the agents exchange some in-
formation on the planning domain, in order to generate some data
structures that will be useful in the subsequent planning process.

• Problem-solving algorithm: The actual planning process is carried
out at this stage. It comprises two different stages that are interleaved,
a Multi-agent System (MAS) coordination process that allows agents
to exchange the generated refinement plans and to select the next base
plan, and an internal planning process by which the agents refine the
current base plan:

– Refinement planning process: Agents try to refine the cur-
rent base plan of the MAP system individually. In order to per-
form this task, each planning agent is provided with an internal
Partial-Order Planning (POP) system. We have carried out some
adaptations to the classical POP algorithm to extend it to a MAP
context (see section 4.4).

– MAS coordination process: This stage allows the agents to
communicate and exchange the refinements over the current base
plan they have individually generated. Once the agents are in-
formed about the available refinements, they choose the following
base plan.

The following sections detail the preliminary information exchanging stage
performed by the agents and the actual problem-solving algorithm, includ-
ing the MAS coordination process and the construction of the refinements
carried out by the Partial-Order Planner embedded in each planning agent.

4.3.1 Initial information exchange

Prior to the actual MAP process, agents perform a preliminary stage which
allows them to share planning information effectively. This initial stage fo-
cuses on the construction of a distributed Relaxed Planning Graph (dis-
RPG), based on the approach in [ZNK07]. The dis-RPG provides the agents
with valuable planning information that will be used throughout the problem-
solving process:
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Figure 4.2: Dis-RPG construction algorithm

• It allows agents to effectively exchange the literals defined as share-
able in the MAP domain definition files, through the :shared-data
construct (see section 4.2.2). After this stage, each literal is labeled
with a list of agents that can achieve it (and have shared this informa-
tion), which gives agents a more accurate view of the planning domain.
As section 4.3.2 outlines, this information will be useful to compute
refinement plans.

• It computes an estimate of the best cost to achieve each literal, a handy
information to devise heuristics to guide the problem-solving process.

Despite this process performs the distributed construction of a planning
graph, none of the agents handle a complete representation of the dis-RPG.
In contrast, each agent maintains its own Relaxed Planning Graph (RPG) in-
ternally, keeping this way the private data occluded to the rest of participant
agents.

Figure 4.2 depicts the dis-RPG building process. Firstly, each agent com-
putes an initial RPG taking into account only its own actions and literals.
For the construction of this initial planning graph we follow the algorithm
presented in [HN01]. Once each agent has computed an initial RPG, the dis-
RPG composition begins. This construction process consists of the following
stages:

• Literals exchange. Agents share the literals included in their RPGs,
according to the shared-data section of their planning domain def-
inition files. This way, if a literal in the agent’s RPG matches with



38 CHAPTER 4. MAP SYSTEM DESIGN

a predicate in the shared-data section, it will be sent to the agents
specified in this section.

• RPG expansion. After sending and receiving the new literals, each
agent updates its RPG as follows:

– If a literal is not yet in the agent’s RPG, it is stored according to
the literal’s cost.

– If the literal is already in the RPG, the agent checks the cost of
the received literal; if this cost is lower than the cost the agent
has registered in the RPG, then the agent updates the cost. This
way, the agent stores only the best estimated cost to reach each
literal.

Once the RPG is updated the agent performs an expansion process,
checking if the new literals trigger the appearance of new actions in the
RPG. The effects of these new actions will be shared in the following
literals exchange stage.

The process finishes when there are no new literals in the system. After
exchanging planning data, agents start the MAP process to devise a solution
plan jointly.

4.3.2 Problem-solving algorithm

After the initial information exchange, agents initiate the problem-solving
protocol (see figure 4.3). The algorithm comprises two interleaved stages:
the refinement planning stage and the coordination stage. Once completed
the interaction of one stage, agents carry out an interaction of the other
stage. On the one hand, agents build individual refinements over the current
base plan by using a Partial-Order Planner. On the one hand, agents follow
a coordination process to gradually build a joint solution plan for the MAP
task, exchanging and evaluating the refinements generated individually and
selecting the most promising one in order to reach a solution.

4.3.2.1 Refinement planning via POP

Each agent in the system executes an individual Partial-Order Planning
(POP) process in order to refine the current base plan. The current base
plan is taken by each agent’s planner as the initial plan, and it obtains a set
of valid refinements of the current base plan.
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Figure 4.3: Sequence diagram of the problem-solving algorithm

The POP process applies a heuristic function in order to guide the search.
Currently, we use a heuristic function (the SUM heuristic) based on the sum
of the costs of the open goals in the Relaxed Planning Graph (see section
4.4.3 for more information on POP heuristics). This heuristic is also used to
evaluate the refinement plans in the coordination stage.

The planning process solves the selected subgoal, and all the subgoals
that arise from this initial resolution in a cascading fashion, leaving the rest
of preconditions unsolved. This way, the valid refinements obtained by the
agents in the POP process are evaluated in the next step of the coordination
process, in order to select the next base plan among them.

We have designed a customized version of the classical POP algorithm in
order to satisfy the requirements introduced by the MAP approach. Section
4.4 discusses the POP design and describes in detail the most relevant changes
brought into the POP algorithm in order to cope with MAP domains.

4.3.2.2 Multi-Agent System coordination protocol

The coordination protocol is based on a democratic leadership, in which a
leadership baton is scheduled among the agents following a round-robin strat-
egy. The algorithm undertakes several iterations of the coordination stage,
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Figure 4.4: Stages of problem-solving algorithm

leaded by the agent which has the baton (baton agent). Once a coordina-
tion stage is completed, the baton is handed over to the following agent.
A coordination stage starts once the agents have performed the individual
refinement planning stage through their embedded POP systems (see figure
4.4) and consists of the following steps:

1. New refinements evaluation: In this step, agents evaluate the par-
tial plans obtained in the refinement planning stage (see section 4.3.2.1).
The obtained refinements are communicated to the rest of agents for
their evaluation. This evaluation is performed through a POP heuris-
tic function that estimates the quality of a refinement, that is, to what
extent it can be refined to a solution plan (the lower value, the better
quality). The quality of this function directly affects the planning ef-
ficiency. Although we are currently using a heuristic function, we aim
to enhance the whole refinement evaluation mechanism in the future
through the introduction of an argumentative process (see section 6.2),
which will provide a social approach to the evaluation and selection of
the refinements. As outlined in section 4.3.2.1, we are currently using
a heuristic function based on the sum of the costs of the open goals in
the Relaxed Planning Graph (the SUM heuristic). This POP heuristic
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function is also used to guide the internal POP process. Section 4.4.3
details the different heuristics we have considered for our MAP model.

2. Selection of the next base plan. Agents select the best valued
refinement over all the refinement plans generated until this point as
the new base plan Πb.

3. Solution checking: In this step, agents decide whether the current
base plan Πb is a solution plan or not. Taking into account that base
plans are threat free and that the problem goals are preconditions of
the final fictitious action, a base plan is a solution if it does not have
open goals. Since some open goals might not be visible to some agents,
all agents must confirm there are no unsupported preconditions in the
plan. The baton agent is in charge of collecting the other agents’ opin-
ion and sending back the reached consensus.

4. Subgoal selection: The baton agent selects the following open goal
sg to be solved (sg ∈ openGoals(Πb)) and communicates its decision
to the other agents. The subgoal is selected as the most costly open
goal, according to the dis-RPG the baton agent can observe. This is
a simple selection mechanism but, in general, produces good results.
It is important to notice that the baton agent may not see any of the
remaining open goals of the base plan; in this case, it will pass the
baton to the following agent to complete this step. The selection of the
subgoal to be solved starts a new refinement planning stage, by which
the agents will refine the current base plan Πb.

Hence, the coordination algorithm can be seen as an A* search process
[RN03], in which the refinement plans are the nodes in the search tree and
each planning stage expands a node in the search tree.

4.4 Partial-Order Planner

As shown in section 4.1, the core element of our MAP system is the planning
module, which provides every agent in the system with planning capabili-
ties. The designed component is based on the Partial-Order Planning (POP)
paradigm, since this framework offers some interesting features for our re-
finement planning approach. This section describes briefly the classical POP
approach and the adaptations performed to the classical POP algorithm to
extend it to a MAP context.



42 CHAPTER 4. MAP SYSTEM DESIGN

4.4.1 Classical Partial-Order Planning algorithm

In Total-Order Planning approaches, the plan’s actions are obtained in the
same order in which they are executed. This way, if a planner chooses a
wrong action, it will have to introduce another action to undo the effects
of the first one. As opposite to these models, the Partial-Order Planning
(POP) paradigm [BW94] introduces a more flexible approach, establishing
partial-order relations between the actions in the plan rather than enforcing
a strong, concrete order among them. POP-based planners work over all the
planning goals simultaneously, maintaining partial order relations between
actions without compromising a precise order among them, until the plan’s
own structure determines it. This strategy based on deferring decisions dur-
ing the planning search is known as least commitment [Wel94].

Instead of performing a state space search, POP models adopt a plan
space search approach. Hence, a POP addresses the process of building a
search tree in which each node represents a different partial plan, without
maintaining the notion of planning state. POP is also classified into the
backward-chaining search approaches, since it begins the search by satisfying
the problem goals, and builds the plan backwards. In conclusion, POP can
be considered a plan-based, backwards chaining search process.

This section presents the classical POP algorithm, using the nomenclature
for the main components of a partial-order plan introduced in section 3.2.

Algorithm 1 Classical POP algorithm
Open_nodes← {Void plan}
repeat
Select Π ∈ Open_nodes
Pending_flaws← open_goals(Π) ∪ threats(Π)
if Pending_flaws = ∅ then
return Π

end if
Select and extract Φ ∈ Pending_flaws
Successors← {Πr}, ∀ Πr that solves Φ
if Successors 6= ∅ then
Open_nodes← Open_nodes ∪ Successors

end if
until Open_nodes = ∅
return fail

Algorithm 1 outlines the classical POP process. The classical algorithm
explores a search tree in which each node represents a partial plan. The search



PARTIAL-ORDER PLANNER 43

process starts with an initial void plan, which only includes the fictitious steps
I and F . This plan is introduced on a Open_nodes list, which will store the
leaf nodes of the search tree.

At each iteration, the search algorithm extracts a plan from Open_nodes
and selects and solves one of its pending flaws (an open goal or a threat). This
points out the two key decision points of the POP algorithm: plan selection
and flaw selection. These decision points will determine the performance of
the search process, as they will direct the expansion of the search tree.

Once the plan’s flaw is selected, the search process will solve it. The
resolution of the flaw entails the generation of a set of refinement plans that
constitute the successors of the current plan. The POP system will create
as many refinement plans as different ways to solve the flaw. As explained
previously, an open goal is addressed with the introduction of a new causal
link in the plan, using an existing step or inserting a new one, while a flaw
is solved by promoting or demoting the threatening step. The current plan’s
successors will be introduced in the Open_nodes as candidates to be refined
in the subsequent iterations of the process.

Once a plan which has no flaws is selected, it will be returned as a so-
lution and the planning process will end successfully. If the Open_nodes
list gets empty before finding a solution, the planner process will end with
a failure. The planner considers that there is no solution for the formulated
planning domain, since it has explored the whole search space without finding
a solution plan.

4.4.2 POP extensions for refinement planning

Our MAP approach, based on refinement planning, introduces new require-
ments that make it necessary to introduce several changes to the classical
POP algorithm. We have implemented a customized version of the classi-
cal POP algorithm, in order to satisfy these new requirements. The most
relevant changes brought into the algorithm can be summarized as follows:

1. Initial plan: The classical POP algorithm starts with a void plan,
which contains only the fictitious initial and final steps. Our imple-
mentation allows to choose any partial plan as the initial plan. This
way, the agents are able to establish the current base plan as the initial
plan of the POP process, in order to obtain the consequent refinements.

2. Subgoal resolution. Our POP implementation solves only the open
goal selected by the agents as the current subgoal. The rest of open
goals in the initial plan are ignored. Once the current subgoal is sup-
ported by a causal link, the planner will try to solve, in a cascading
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fashion, the new open goals resulting from the resolution of the cur-
rent subgoal and are only solvable by the agent which is performing
the planning process (the dis-RPG provides the information on which
agents can solve a open goal).

3. Solution checking. Classical POPs return only solution plans, i.e.
threat-free plans without open goals. Since our planner must generate
refinement plans, not necessarily solutions, we have redefined the solu-
tion checking stage of the algorithm. In order to be validated by the
POP as a refinement plan, a partial-order plan must meet the following
conditions:

• It must be threat and mutex free.
• It must have a causal link that supports the current subgoal.
• If the plan has added new open goals over the current base plan,

each one of them must be solvable by another agent or group of
agents. This way, the planning agent will only support a new
open goal if it is the only agent in the system able to solve it (the
dis-RPG provides information on which agents can solve an open
goal).

4. Planning restarting. Typically, the POP process finishes once a
solution is found. Nevertheless, our POP allows to resume the planning
process at will if the agent wants to obtain more refinements to the base
plan.

Consequently, our POP implementation is aimed at provide the planning
agents with refinement proposals that will be analyzed in the MAP process
in order to find a solution for the planning task.

4.4.3 POP heuristic functions

Our POP system applies an informed search approach i.e. it selects the
next partial plan to be refined by using a heuristic function [RN03]. A
heuristic is an evaluation function that returns a numeric value that denotes
the desirability of refining a certain partial plan. The heuristic value for a
given refinement plan Π is expressed as f(Π) = g(Π) + h(Π), where g(Π)
represents the cost of reaching the current partial plan from the initial one,
and h(Π) estimates the cost of reaching a solution plan from the current
refinement.

The efficiency of the POP search process is strongly related to the heuris-
tic function adopted. However, as outlined in section 2.3, one of the main
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shortcomings of the Partial-Order Planning (POP) paradigm is the absence
of a competitive search heuristic. The most recent efforts in this direction,
based on estimating the cost of the plans’ open goals, present poor results
that cannot compare with the performance of the most recent state-based
approaches.

Therefore, we have taken into consideration some of the most recent at-
tempts to define a high-quality heuristic function for POP [NK01], as well as
devising our own evaluation function.

The following sections summarize the different heuristics we have con-
sidered for our MAP framework. More precisely, we have adopted two of
the state-of-the-art POP heuristics (SUM and MAX heuristics), which esti-
mate the plan’s quality by studying the cost of its open goals in the Relaxed
Planning Graph. We also outline the basics of our in-development heuristic
function (the DTG heuristic), which analyzes the value transitions of the
state variables to estimate a solution plan.

Section 5.3.2.1 compares the performance of the SUM and MAX heuris-
tics. Due to its experimental nature, the DTG heuristic function has been
excluded from the comparison, since it requires further improvements to be
competitive against the other heuristics (see section 6.2 for details).

4.4.3.1 SUM heuristic

This heuristic estimates the cost of reaching a solution from a certain partial
plan by calculating the sum of the costs of the plan’s open goals. Although
it is not an admissible heuristic (it may overestimate the cost of reaching a
solution), the SUM heuristic has shown a good performance on most of the
tests (see section 5.3). The SUM heuristic function, f(Π) = g(Π) + h(Π), is
computed as follows:

• g(Π) is computed as the number of actions (except for the fictitious
ones) of the current refinement Π.

• h(Π) is defined as the sum of the costs of the refinement’s open goals
OC(Π) in the Relaxed Planning Graph.

4.4.3.2 MAX heuristic

The MAX heuristic is similar to the SUM heuristic, as it evaluates a partial
plan by analyzing the costs of the plan’s open goals. However, it tries to
minimize overestimation by computing the cost of reaching a solution as the
cost of the most costly open condition in the partial plan. Hence, the MAX
heuristic, f(Π) = g(Π) + h(Π), is computed as follows:
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• g(Π) is computed as the number of actions (except for the fictitious
ones) of the current refinement Π.

• h(Π) is defined as the cost in the Relaxed Planning Graph of the most
costly of the open goals OC(Π).

4.4.3.3 DTG heuristic

The heuristic functions presented in the previous sections, based on esti-
mating the cost of the plans’ open goals, present poor results that cannot
compare with the performance of the most recent state-based approaches.
Therefore, one of the challenges we face to improve the performance of our
MAP system is the design of a reliable heuristic that guides the POP search
process efficiently.

The introduction of the PDDL3.1 language, and more precisely, the use
of state variables to model the literals of the planning task provides new and
valuable information that was not available in propositional approaches. It
is possible to take advantage of this information to devise new and more
powerful search heuristics for POP.

The work in [Hel04] introduces the Domain Transition Graphs (DTGs).
The procedure described in this paper analyzes the planning task’s actions
and generates, for each state variable, a directed graph that represents the
ways in which the variable can change its value. Each transition on a DTG
is also labeled with the necessary conditions for the transition to occur i.e.
those preconditions that figure on all the planning actions that perform the
value transition.

Our heuristic relies on the DTGs for building an intermediate data struc-
ture that estimates the layout of a solution plan for the planning task, the
Plan Transition Graph (PTG). Our purpose is to use this data structure to
guide the search process efficiently. To do so, we have designed a heuristic
that maps the plan’s actions to the PTG’s ones, and estimates the quality
of a partial plan according to its similarity to the PTG.

However, our heuristic is still in development, and it is not yet competitive
against the SUM and MAX heuristics. Section 6.2 summarizes the research
we will carry out in the following months in order to improve the DTG
heuristic.



Chapter 5

Multi-Agent Planning system
implementation

As well as designing the components of the MAP system, we have carried out
an initial implementation of the system has. The developed software consti-
tutes an essential framework that will be used as a base for the development
of our future research lines.

The present chapter analyzes the implementation details of the main com-
ponents of the MAP system, outlining the structure and features of each
component, along with the technologies used to develop them. Finally, we
present the experimental results obtained after testing the system with a set
of planning tasks. These results evaluate the quality of the current imple-
mentation of our MAP system.

5.1 Multi-Agent System implementation details

Our Multi-Agent Planning system has been developed under the Magen-
tix2 platform [FAS+10]. Magentix2 has been chosen since it is aimed at
simplifying the development of multi-agent systems and ensuring standard
compliance with the FIPA specifications [ON98] through a comprehensive set
of system services: naming and yellow-page service (DF), message transport
and parsing service (MTS), and a library of FIPA interaction protocols ready
to be used.

A planning agent extends a Magentix2 single agent with (distributed)
planning capabilities. This means that a planning agent is able to:

• Compute a (partial-order) plan to achieve a set of propositional goals,
as each planning agent has a Partial-Order Planner (POP) at its dis-

47



48 CHAPTER 5. MAP SYSTEM IMPLEMENTATION

posal. This way, planning agents can be used as planning services for
the purposes of other agents.

• Collaborate with other planning agents to build a joint plan that reach
the goals. This feature allows solving planning tasks which are dis-
tributed among several agents.

Figure 5.1 shows the integration of the planning agents in a Magentix2
platform. When a planning agent enters in the system, it is registered in the
DF (Directory Facilitator) and a planning service is associated to it. The
planning tasks are encoded in several PDDL3.1 input files. When a task
requires the collaboration of other planning agents, they are searched in the
DF and the joint plan building process begins.

Figure 5.1: Structure of the Magentix platform

The AMS and DF services are implemented as Linux processes, children of
the Magentix2 process, which are replicated in each computer in the platform.

In turn, Magentix2 agents, including the planning agents, are Linux pro-
cesses, children of the AMS process. This way, the AMS process has the same
control that a Linux process has over its children, which includes creation,
termination, completion status information, etc. With this design we have a



MULTI-AGENT SYSTEM IMPLEMENTATION DETAILS 49

tree of processes in each computer whose root is the Magentix2 process and
its leaves are the agents being executed in that computer.

Planning agents wait in an idle state for a planning request. When it
is received, the agent analyzes whether the planning task must be solved
collaboratively or not; this piece of information is explicitly defined in the
PDDL-based description files of the task. If the agent can solve the task
on its own, it uses the internal POP to find a solution plan; in this case,
our planner behaves like a classical single-agent Partial-Order Planner. This
behaviour can be observed in Figure 5.2.

Figure 5.2: State diagram of a planning agent

When the task to solve is distributed among several planning agents, they
collaborate to find a joint solution plan. As described in section 4.3, the plan
building process has two main stages:

1. First, a distributed relaxed planning graph (dis-RPG) is built. Agents
inform the other ones about the propositions they likely can achieve
(this data is heuristically calculated). Agents, of course, only commu-
nicate their public information during this process. As a result, the
dis-RPG construction is very fast and provides the agents with useful
information for the next stage.

2. In the second stage, agents build the joint plan collaboratively. They
use their internal POP to compute refinements for the existing partial
plans, thus incrementally building the joint solution plan.
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5.2 Partial-Order Planner implementation de-
tails

The Partial-Order Planner component represents the core element of our
MAP system, and it is also in the center of some of the future research
lines. Hence, we have carried out a modular implementation that allows this
component to be flexible, reusable and easily extensible.

The POP software can be used not only as part of the MAP system, but
also as a standalone planner. Furthermore, it can be integrated in a service-
oriented platform, and its modules can be reused independently if necessary.
This section outlines the structure of the implemented POP system, its main
features and the technologies used in its development.

5.2.1 POP implementation structure

Our Partial-Order Planner (POP) implementation, fully based on the Java
language [Gos00], is structured in three different modules: the instancing
module, the grounding module and the planning module. Each module pro-
vides a well-defined interface, which allow them to be reused independently if
needed. The functionality provided by each module is summarized as follows:

1. Instancing module: This module takes the agent’s domain and prob-
lem description files and processes the information into Java classes.
The input files are written in our PDDL3.1 -based MAP domain defini-
tion language described in section 4.2. The parser module is also ready
to process regular PDDL3.1 domains.

2. Grounding module: Our POP implementation works with fully in-
stanced planning tasks. This requirement makes necessary an interme-
diate module that instances the tsk’s actions and fluents. The ground-
ing module solves all the variables in the actions and fluents, generating
all the possible instanced actions and fluents. The grounding algorithm
performs a reachability analysis, which discards those instanced actions
and fluents that are not reachable from the initial state. Finally, the
grounding module is also in charge of generating the dis-RPG described
in section 4.3.

3. Planning module: This module implements the actual POP search
process. As explained in the previous sections, our POP implementa-
tion allows to take any partial plan as the initial plan. It is also able
to restart the search after generating a valid refinement. The planner
can also work with regular, single-agent planning domains.



PARTIAL-ORDER PLANNER IMPLEMENTATION DETAILS 51

The POP modules have also been implemented to be used in a service-
oriented platform. All the modules are implemented as bundles that follow
the OSGi standard [All03]. When integrated in an OSGi service-oriented
platform, the system will be able to provide the agents with a fully configured
POP, which they will be able to handle through the POP interface.

5.2.2 POP main features

Our POP implementation has been devised to be used as the core of the MAP
system or as a standalone planner. The implementation is also extensible and
customizable, allowing the user to develop new search methods and heuristics,
among other customizable elements. The most relevant features of our POP
implementation are listed as follows:

1. Modularity: As explained in the previous section, the modules that
compose the Partial-Order Planner, and be used independently, and as
they have been designed as OSGi bundles, they can be easily integrated
in a service-oriented system.

2. Flexibility: Our POP can be used both with MAP domains (as a part
of our MAP system) or with regular planning domain (as a standalone
application). The implementation implementation is strongly based on
Java interfaces, which allow the user to modify and customize certain
aspects of the planning process, the more relevant of which are the
following ones:

• Search strategy: The search strategy is a key aspect of the
planning process, since it controls the exploration of the plan
space. The current implementation of the POP supports sev-
eral uninformed search strategies, such as depth-first or breadth-
first search methods. It also supports several heuristic (informed)
search strategies, such as A* or Iterative Deepening A* [RN03].
The user is allowed to implement other search strategies, whether
they are uninformed or informed.

• Plan selection heuristic: One of the key points of the POP
algorithm is the selection of the next plan to be refined. Our
implementation provides some of the most popular POP heuristics
[NK01] as well as a set of custom heuristics, based on the notion
of the dis-Graph introduced in section 4.3.1. Again, the user can
define new heuristics and integrate them with the POP.
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• Flaw selection strategy: The second key decision point of the
POP search algorithm comes up when selecting the next flaw to
solve. There are several flaw selection strategies already defined
for POP [PJP97], concerning the moment when the plan’s threats
get solved (its resolution can be deferred till the plan has no un-
solved conditions, or performed immediately after being detected),
and the selection of an unsolved condition. Currently, our POP
implementation gives priority to the threat resolution, and uses
a custom multi-criteria to cope with the open goals (we choose
firstly the precondition that generates less successors, and apply
other criteria in case of a tie). However, the user may redefine the
flaw selection criteria if needed.

• Solution checking: As seen in section 4.4.2, one of the mod-
ifications performed to the classical POP algorithm to adapt it
to a MAP context deals with the solution checking. Hence, our
POP implementation can return solution plans when working as
a regular planner or valid refinements, in a MAP context. This
part of the algorithm is also fully customizable, which allows us
to modify it in case we change the notion of solution plan.

3. Performance: The POP implementation has been carefully designed
in order to maintain a compromise between time and space cost. To do
so, plans are stored in an incremental fashion. Each new node added
to the search tree contains only the new information generated over
its parent node (the partial plan it has refined). Data structures have
also been designed to be reused over the planning process as much as
possible. This reduces dramatically the memory consumption, which
is an important aspect in planning, due to the massive dimensions the
search trees can get in medium-sized problems. The implementation
has also been tweaked in order to take profit of its internal structure
and speed up the code. This way, the implementation keeps a sensible
equilibrium between memory and time consumption.

Hence, the POP implementation offers a flexible and modular approach,
while keeping an adequate performance. The flexibility is an important re-
quirement being our MAP system a work in progress. Section 6.2 introduces
the next extensions we are about to perform to the MAP system, and par-
ticularly to the POP.



EXPERIMENTAL RESULTS 53

5.3 Experimental results
The MAP system implementation has been put to test through the execution
of several tests. The tests compare the performance and the quality of the
solution plans between MAP tasks and their centralized counterparts. We
have also performed several tests to analyze the performance of our POP
heuristic against other state-of-the-art POP heuristics.

These tests performed involve a set of planning tasks, defined over three
different planning domains.We have defined several multi-agent and single-
agent problems for each of these planning domains. Next sections present
the planning domains defined and analyze the results of the different tests.

5.3.1 MAP domains

The planning domains devised to try the MAP system have been taken from
real-life problems or adapted from well-known case studies. They are de-
signed to ease the definition of distributed problems, but they also allow the
modeling of centralized problems.

5.3.1.1 Transport domain

The first planning domain we will use to put our MAP system to work
is depicted in Figure 5.3. This domain presents a a transportation and a
storage scenario, in which agents can carry out the role of a driver or manage
a storage facility. The objective of the driver agents is to transport a set
of packages between the warehouse and a set of cities. In turn, warehouse
agents are in charge of storing packages or loading the trucks.

Truck agents are in charge of transporting packages through a network
of cities. The domain specifies bidirectional links among cities, that can be
used by the trucks to move from one city to another. Trucks can only travel
within the cities included in their working areas. This way, they have to
work together with other agents in order to send packages to a different area.
Truck agents have the following capabilities:

• load: Loads a package into a truck. Both the package and the truck
must be located at a city within the agent’s area.

• unload: Unloads a package from a truck located at a city within the
agent’s area.

• drive: Drives the truck from a city to another one. Both cities must
be within the agent’s area.
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Figure 5.3: Transport domain example

The warehouse domain is similar to the classical blocksworld domain, in
which packages can be stacked and unstacked on/from the table or other
packages. In this case, however, there is room in the table for just one stack
of packages, and there are two types of packages, raw materials and final
products. The warehouse agent can deliver final products to the city adjacent
to the warehouse (the exchange city), and acquire raw materials previously
unloaded by the trucks in the exchange city. The warehouse agents can
perform the following actions:

• acquire: Obtains a raw-material from the exchange-city.

• deliver: Delivers a final-product to the exchange-city.

• stack: Stacks a package over another package, or puts it down on the
table, in case it is empty.

• unstack: Unstacks a a package from another package, or picks it up
from the table, in case it is empty.

The centralized problems based on this domain are defined by introduc-
ing the carrier and depot types, which represent the truck and warehouse
agents. This allows to formulate single-agent problems, in which the central-
ized planning entity devises a plan for all the workers in the system.

5.3.1.2 Picture domain

This domain, adapted from the case study presented in [PSJ98], presents
a situation in which several workers have to work together to hang a set of



EXPERIMENTAL RESULTS 55

pictures on walls. To do so, they can acquire different tools that are scattered
over several rooms. Hence, agents must move through the rooms to obtain
the tools and hang the pictures. The domain establishes a set of bidirectional
links that indicate the connections among the different locations.

Figure 5.4: Picture domain example

Figure 5.4 depicts an example of this planning domain. In contrast to
the transport domain, agents in the picture domain are not specialized, they
share the same capabilities, which are listed as follows:

• pickUp: Obtains a tool from a location. The agent and the tool
must be situated at the same location.

• putDown: Puts down a tool in a certain location. The agent must
be carrying the tool in order to put the tool down.

• pass: Passes the tool to another agent. Both agents must be at the
same location, and the first agent must carry the tool in order to
pass it.

• walk: Walks from a location to another. Both locations must be
linked to allow the agent to walk between them.

• hang: Hangs a picture on a certain location with a tool. Both the
agent and the picture must be placed at the same location, and the
agent must carry the tool in order to hang the picture.
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The centralized problems based on this domain are defined by introducing
the worker type. The objects of this type play the role of the agents in the
centralized approach.

5.3.1.3 Port domain

This domain models the management of merchandise in a commercial port.
When a ship reaches the port, the ship’s crew should unload the containers
carried by the ship and load it with new cargo. As for the tiers, they store
the containers unloaded from the ships. Both the ships and the tiers have a
set of slots, in which they can stack the containers. However, the maximum
height of the slot is limited, so the the containers can be stacked up to a
certain number. Each tier’s containers should be arranged properly, in order
to have the top-priority containers on top of the different stacks. The ship
and the tier exchange container through a conveyor, which can only transport
a container simultaneously.

Therefore, the domain is modeled through a set of tier and ship agents.
Ship agents are in charge of loading containers into the vessel and unloading
them into the conveyor. To unload a container into a conveyor, it must
not have any other container on top of it. Therefore, ship agents have the
following capabilities:

• load: Picks up a container from the conveyor and loads it into one
of the ship’s slots. If the slot has some containers yet, the ship agent
stacks the container over the rest of containers on the stack. The
resulting stack should not exceed the maximum height defined for the
slot.

• unload: Picks up a container (which does not have any other container
on top) from one of the ship’s slots and loads it into one of the convey-
ors. If the container is stacked over another container, it unstacks
it. The conveyor should be free in order to perform the operation.

Each tier agent has a hoist on its disposal in order to organize the con-
tainers in the conveyors. Their objective is to organize the conveyors in order
to place the goal containers (containers which have a high priority) on top
of the different stacks. The tier agents can perform the following actions:

• pickUp: Obtains a container from a conveyor and stores it in a slot.
If the slot is not free, the container is stacked on top of the stack.
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• takeOut: Picks up a container (or unstacks it, if it is on top of another
container) and puts it down over a conveyor. The container should
be on top of its slot and the conveyor should be free in order to
perform the operation.

• stack: Stacks a container over another container or puts it down
over an empty slot. The hoist should be carrying the container and
the resulting stack should not exceed the maximum height of the slot.

• unstack: Lifts a container with the hoist. The the lift lift should
be free and the container should be on top of a stack (or be the only
container on the slot).

• checkGoal1: Checks if a goal-container is on top of its stack. If so,
the goal-container is marked as ready.

• checkGoal2: Checks if a goal-container is placed just below of an-
other goal-container, which is ready. If so, the goal-container
situated below is also marked as ready.

The centralized problems based on this domain are defined through the
introduction of the worker type, which has two subtypes, tier and ship.
The objects of these subtypes will represent the agents in the centralized
domain.

5.3.2 Tests and results

The following subsections outline the experimental results obtained. We have
carried out three different tests. The first one compares the two state-of-the-
art POP heuristics presented in section 4.4.3 through a set of single-agent
planning tasks based on the domains presented in the previous sections.

The second set of tests compares the quality of the solution plans obtained
through a Single-Agent Planning perspective and through our Multi-Agent
Planning (MAP) approach. To do so, we have defined a set of MAP tasks
and an equivalent centralized version for each one of them.

Finally, we have measured the robustness and scalability of the MAP
system by executing a planning task several times, increasing each time the
number of planning agents in the system.

5.3.2.1 POP heuristics

This first test compares the efficiency of the MAX and SUM heuristics intro-
duced in section 4.4.3. The experimental DTG heuristic has been excluded
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from the test because of its current sub-par performance. The testbed in-
cludes five different planning tasks of increasing difficulty for each of the
planning domains presented above.

Problem
MAX heuristic SUM heuristic

IDA* A* IDA* A*
#Exp #A #Exp #A #Exp #A #Exp #A

Transport1 32 8 37 8 61 8 37 8
Transport2 2294 10 1827 10 861 10 519 10
Transport3 1385 11 1388 11 2235 11 1954 11
Transport4 6732 12 9679 12 16655 12 7273 12
Transport5 18177 14 10446 14 4488 14 1511 14
Picture1 301 8 277 8 95 8 84 8
Picture2 673 8 1323 8 1163 8 370 8
Picture3 4448 10 3723 9 328 10 158 10
Picture4 18350 11 18197 11 764 11 795 11
Picture5 50809 11 90205 11 17467 11 9612 12
Port1 1207 6 3116 6 39 8 70 6
Port2 3524 8 14778 8 107 8 73 8
Port3 78619 7 63005 7 40 7 59 7
Port4 † - 200000 † - 283 11 221 11
Port5 † - 200000 † - 342 11 427 11

Table 5.1: POP heuristics comparison

Table 5.1 presents the results of this test. #Exp indicates the number
of expanded plans in each test, while #A refers to the number of actions
of the solution plan found. Each planning problem has been tested twice,
using an Iterative Deepening A* and an A* search strategy. A dagger (†)
indicates either that the system has run out of memory (in an A* search)
or that the search process has expanded more than ten million plans (in an
IDA* search).

The results show that the performance of the SUM heuristic is vastly
superior in terms of expanded plans, particularly in the case of the port
domain. The picture domain presents also better results in the case of the
SUM heuristic. The MAX heuristic only presents competitive results in the
transport problems, showing even better performance than the SUM heuristic
in some cases.

Both heuristics obtain similar results in terms of the plan quality; solution
plans obtained with both heuristics have the same number of actions in
almost all the cases.
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In conclusion, the SUM heuristic obtains similar results than the MAX
heuristic and reduces significantly the expansion of plans. Therefore we have
adopted the SUM function as the heuristic that will guide both the POP
search process and the evaluation of refinements in the following tests.

5.3.2.2 Multi-Agent vs. Single-Agent Planning

The second set of tests compares the quality of the solution plans obtained
by our MAP framework with the ones generated by a centralized approach.
The testbed includes 5 different planning tasks (five tasks per each of the
previously defined planning domains) of increasing difficulty. Each planning
task has been defined both in a MAP and a centralized fashion. MAP plan-
ning tasks have been tried out with our MAP system using the SUM heuristic
and an A* search strategy. As for centralized tasks, they have been solved
by our MAP system configured as a single-agent POP, using again the SUM
heuristic and an A* search process.

Problem Multi-Agent Planning Single-Agent Planning
#Ag #Actions #Time steps #Actions #Time steps

Transport1 2 14 10 15 15
Transport2 3 11 9 16 16
Transport3 3 9 8 8 8
Transport4 4 12 10 13 13
Transport5 4 10 7 11 11
Picture1 2 6 6 6 6
Picture2 3 9 9 9 9
Picture3 3 8 8 8 8
Picture4 4 8 6 7 6
Picture5 4 8 3 8 3
Port1 2 6 5 6 6
Port2 2 4 3 4 4
Port3 2 9 7 9 9
Port4 3 3 3 3 3
Port5 3 4 3 4 4

Table 5.2: Single-Agent vs. Multi-Agent Planning comparison

Table 5.2 shows the obtained results. #Ag indicates the number of agents
that undertake the planning task in the MAP tests. #Actions and #Time
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Figure 5.5: Solution plan for the Transport5 MAP task

steps refer to the number of actions and time steps of the devised solution
plan (notice that we do not take into account the plans’ fictitious actions).

As it can be observed, the MAP approach obtains slightly better results
in terms of the number of actions of the solution plans. In particular, the
transport and port domains show better results for the MAP approach, while
the picture domain presents similar results for both planning approaches.

However, the biggest difference comes in terms of the time steps. The time
steps take into account the actions that can be performed simultaneously in
order to measure the time units necessary to execute the plan. For instance,
figure 5.5 depicts the solution plan for the Transport5 MAP task. Although
the plan is composed by ten planning actions (without taking into account
the fictitious ones), it can be executed in only seven time steps, since some
of its actions can be executed in parallel.

The MAP approach enforces this parallelism, since different planning en-
tities devise different parts of the plan that can be executed at the same time.
The centralized approach is not as effective at introducing parallel actions,
as it can be observed in the results of both the transport and port domains.
In these domains, the MAP approach obtains a lower number of time steps
in almost all the tests. The picture domain, however, is prone to completely
linear solution plans, and therefore, the time steps of the solution plans for
both approaches coincide in all the tests.

In conclusion, while being a more costly approach (see next section for
scalability tests), MAP obtains better solution plans in terms of both actions
and time steps.

5.3.2.3 Scalability analysis

This latter test evaluates the scalability of our MAP framework i.e. how the
number of agents in the MAP system affects its efficiency. To do so, five
different tests have been prepared for the transport and the picture domains.
Each test increases the number of agents by one, keeping the rest of the
planning task’s parameters unchanged.
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Figure 5.6: Scalability results for the transport domain
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Figure 5.7: Scalability results for the picture domain

Each transport domain test includes four cities per area, one truck, one
table per depot loaded with three different products, and one package of
raw material. The goal defined for all the test problems is to transport two
different products.

As for the picture domain, all the test problems include three tools and
eight different locations. The objective in all the defined problems is to hang
three different pictures.

Figures 5.6 and 5.7 depict the results for each domain. As it can be
observed, the execution time experiments a notable increase with each new
agent included in the MAP process. So does the number of messages ex-
changed among agents.

These results are caused by the growing number of refinement plans de-
vised by the agents. On the one hand, refinement plans are communicated
to all the agents in the MAP system. Therefore, the addition of a planning
agent represents an important increase in the number of messages exchanges.
On the other hand, each extra planning agent is also able to propose new
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refinements, that have to be communicated to the rest of agents. These ex-
tra refinements can also be adopted as base plans, increasing this way the
complexity of the search tree and the number of messages exchanged in the
system.

In conclusion, the number of agents in the MAP system is a parameter
that has a notable influence on its efficiency, as the message exchange among
agents constitutes one of the bottlenecks of the system. Therefore, one of the
challenges we face focuses on tuning up the system performance in order to
reduce as much as possible the number of messages exchanged by the agents.
This way, we will improve the scalability of the system, giving it the ability
to deal with more complex planning tasks.



Chapter 6

Conclusions and future work

This latter chapter summarizes the main contributions presented in this work,
outlines the future lines of research and list the related publications produced
as a result of this research work.

6.1 Summary of contributions

In the present dissertation, we have introduced a Multi-Agent Planning
(MAP) model based on Partial-Order Planning (POP). More precisely, our
model follows a refinement planning approach i.e. it is based on the progres-
sive refinement of partial-order plans by the planning agents.

As well as outlining our MAP model, we have detailed the design of a
MAP system built upon our refinement planning approach. The system is
composed by a set of agents, each of them provided with planning capabilities,
that are coordinated through a democratic leadership protocol, in which a
different agent takes the leadership role in each iteration of the process.

The problem-solving algorithm is divided in two stages, namely the coor-
dination stage, in which agents exchange proposals and select the next base
plan, and the planning stage, in which agents try to refine the current base
plan individually, using the partial-order planner they possess.

The POP paradigm has been extended to cope with the new requirements
that emerge in the MAP context. We also have designed a customized plan-
ning language, that introduces a set of constructs according with these new
MAP requirements. We have also performed an early design of a novel POP
heuristic, based on the domain transition graph constructs, which creates an
estimated scheme of the solution plan, and relies on it in order to guide the
search process.

This work also summarizes the details of the development of the MAP

63
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platform. The implementation is fully based on Java language. The devel-
opment of the multi-agent component of the system relies on the Magen-
tix2 [FAS+10] platform, a FIPA-compliant [ON98] Multi-Agent System. The
POP component, integrated in all the planning agents, presents a modular,
flexible and extensible implementation that allows the user to integrate new
heuristics and search methods. All the components on the system have been
built by following the OSGi [All03] standards, which allows to integrate them
easily into a service-oriented platform.

Finally, the experimental results show that the new POP heuristic, even
in an early stage, appears to be a promising approach, since its performance
is comparable to some of the state-of-the-art POP heuristics. We have also
carried out some tests to compare the efficiency of the MAP system against
centralized versions of the MAP domains. The results reveal that the MAP
approach focuses on distributing the workload among the agents, minimizing
this way the time steps of the plan through the parallelization of the tasks,
rather than the number of actions, as happens in the centralized examples.
Hence, the MAP approach presents some advantages over the centralized
planning that make its use preferable in many planning applications.

6.2 Future work

The implementation of the MAP system is an important milestone in our
work, since this framework will be used as a base to integrate the future
developments. Our future lines of research follow two different directions:
on the one hand, we will undertake some changes to the new heuristic in
order to improve it over the most recent works. On the other hand, we have
another research line based on the definition on an argumentation framework
for MAP. Our aim is to integrate it into the coordination stage. This way,
our MAP system will use a social mechanism by which agents will deliberate
to select refinements, as well as having a reliable internal search process to
build the individual refinements.

6.2.1 Improvements over the POP heuristic

The heuristic function for Partial-Order Planning (POP) we have designed
presents some promising results. Even at an initial stage of its development,
its performance is not far from the most recent POP heuristics. The use of
the Domain Transition Graphs and the Plan Transition Graph (PTG) allows
to obtain valuable information to guide the search process.

However, the heuristic still present some shortcomings. On the one hand,
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at this point the heuristic is not able to distinguish between refinements of the
same partial plan. For this reason, its performance in depth-first based search
algorithms, such as the Iterative Deepening A*, is worse than expected. On
the other hand, the heuristic is very dependent on the quality of the Plan
Transition Graph. This could lead to poor results in case the PTG is not an
accurate estimation of a solution plan.

Hence, the future improvements over the POP heuristic follow two differ-
ent directions:

• The heuristic calculation algorithm requires further improvements. Cur-
rently, it only establishes correspondences between the actions on the
partial plan and the PTG. However, it does not value the quality of
the actions individually, which would be important to be able to dis-
tinguish among refinements of the same partial plan. The causal links
and the ordering constraints on the plan and the PTG can also provide
valuable contextual information to improve the heuristic. Hence, the
whole heuristic will be subject of research over the next months, in
order to improve its efficiency.

• The construction of the PTG is also a key aspect of our heuristic.
Changes over the construction algorithm alter radically the structure of
the PTG. Hence, we will carry out some research on the PTG building
process, in order to improve the quality of the PTGs.

6.2.2 Integration of an argumentation framework for co-
ordination

In the context of our Multi-Agent Planning (MAP) system, we have devised
an argumentation-based to tackle the multi-agent evaluation and selection of
the refinement plans from a social standpoint. Our aim is to enhance the role
of argumentation as a means to attain a collective behavior when devising a
joint plan. Since agents’ decisions are influenced by the other agents’ plans,
it becomes relevant the use of mechanisms for persuading an agent to adopt
a certain course of action, or negotiating on the use of scarce resources.
Instead of using a heuristic function to evaluate the different alternatives,
agents discuss them through a dialectical process, giving out opinions on the
adequacy of these proposals and modifying them to the benefit of the overall
process.

Our argumentation framework adapts the instantiation of an argument
scheme and the associated critical questions to a MAP context by following
the computational representation of practical argumentation presented in
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[ABCM06, ABC07]. This approach is particularly suitable for representing
multi-agent concurrent plans.

Argumentation will replace the current ad-hoc heuristic function for both
validating plan refinements and choosing the most suitable one as the next
base plan. Hence, the MAP model will be enhanced by the inclusion of
a social approach in which the agents evaluate the plan according to their
preferences and interests and effectively discuss on the details of the plan,
instead of performing the evaluation through a common heuristic function.

Currently, the argumentation model is at a theoretical stage. One of our
research lines for the next months consists on the development and improve-
ment of the argumentation model, in order to integrate it with the MAP
system.

The theoretical argumentation model has received generally positive feed-
back, and has been published in several international conferences. The fol-
lowing section list the research papers written and published in the context
of the work presented in this dissertation.

6.3 Related publications

The following research papers are directly related to the present work and
have been published during its development:

• O. Sapena, A. Torreño, E. Onaindia. On the Construction of Joint
Plans through Argumentation Schemes. 10th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2011).

• O. Sapena, E. Onaindia, A. Torreño. On the use of Argumentation in
Multi-Agent Planning. 19th European Conference on Artificial Intelli-
gence (ECAI 2010).

• E. Onaindia, O. Sapena, A. Torreño. Argumentation-based Planning
in multi-agent systems. Negotiation and argumentation in Multiagent
Systems. Bentham eBooks. In press (2011).

• E. Onaindia, O. Sapena, A. Torreño. Cooperative Distributed Planning
through Argumentation. International Journal of Artificial Intelligence.
ISSN: 0974-0635. In Press (2010).

• A. Torreño, E. Onaindia, O. Sapena. Reaching a common agreement
discourse universe on Multi-Agent Planning. 5th International Confer-
ence on Hybrid Artificial Intelligence Systems (HAIS 2010).
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• S. Pajares, E. Onaindia, A. Torreño. An architecture for Defeasible-
Reasoning-based Cooperative Distributed Planning. 9th International
Conference on Cooperative Information Systems (CoopIS 2011).
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