
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/153681

Mastylo, M.; Sánchez Pérez, EA. (2017). Factorization of Operators Through Orlicz Spaces.
Bulletin of the Malaysian Mathematical Sciences Society. 40(4):1653-1675.
https://doi.org/10.1007/s40840-015-0158-5

https://doi.org/10.1007/s40840-015-0158-5

Springer-Verlag



Noname manuscript No.
(will be inserted by the editor)

Factorization of operators through Orlicz spaces

M. Masty lo · E.A. Sánchez Pérez
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Abstract We study factorizations of operators between quasi-Banach spaces.
We prove the equivalence between certain vector norm inequalities and the
factorization of operators through Orlicz spaces. As a consequence, we obtain
the Maurey-Rosenthal factorization of operators into Lp-spaces. We give sev-
eral applications of our results. In particular, we prove a variant of Maurey’s
Extension Theorem.
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1 Introduction

This paper is devoted to factorization of operators between quasi-Banach func-
tion spaces. We recall that if X, Y are quasi-Banach spaces and T : X → Y
is a continuous operator, then T factors through a quasi-Banach space Z if
there are continuous operators R : X → Z and S : Z → Y so that T = SR.
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We are motivated by the fact that factorization theorems play a funda-
mental role in functional analysis. Curiously, the theorems about factorization
of operators with values in Lp-spaces, 0 ≤ p ≤ ∞ found numerous applica-
tions in the theory of Banach spaces. For instance, notice that Nikishin’s [18]
factorization theorem found applications in harmonic analysis (see, e.g., [22,
p. 263]).

There are many classical results on the description of concrete factoriza-
tions of operators between Banach lattices in terms of vector norm inequalities.
The so called Maurey-Rosenthal theorems relate some p-convexity/p-concavity
inequalities for operators with values on Banach lattices spaces with their fac-
torizations through weighted Lp-spaces (see, e.g., [22, Proposition III.H.10] and
[3,5,6,19]). For instance, ifX is an order continuous p-convex Banach lattice on
a σ-finite measure space (Ω,Σ, µ) and T : X(µ)→ E is a p-concave operator,
then there exist a measurable function g ≥ 0 a.e. such that the multiplication
operator Mg : X(µ)→ Lp(µ) is bounded and an operator S : Lp(µ)→ X such
that T factors through the space Lp(µ) as follows:

X(µ) E.-T

HHHj ��
�*

Lp(µ)
Mg S

We refer to Pisier’s book [20] for more on abstract factorization theorems
and their applications to Banach space theory.

The general problem we consider in this paper is to provide the inequalities
for the operators that characterize their factorizations and extensions through
Orlicz spaces.

We now describe our main results in more detail. The paper consists of five
sections. In Section 2, we recall some of the basic facts about the Banach enve-
lope of a quasi-Banach space. It consists of fundamental facts about the duality
in Banach function lattices we will need for the proofs of our main theorems.
In Section 3 we prove a separation theorem for operators T : X → E which
involves the generalized Orlicz spaces Xϕ generated by a Banach function lat-
tice X and an increasing, continuous positive function ϕ on [0,∞) (an Orlicz
function). We then investigate this result further motivated by applications to
factorization. In particular we show that under mild assumptions T : X → E
can be extended to the Orlicz space Lϕ(ν) as follows, where i : X → Lϕ(ν) is
the continuous inclusion map:

X E.-T

HHHj �
��*

Lϕ(ν)
i S

Recall that a function ϕ : R+ → R+ is said to be an Orlicz function if ϕ is
a convex continuous function at zero such that ϕ(u) = 0 if any only if u = 0.
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Let (Ω,S, ν) be a measure space. The Orlicz space Lϕ(ν) is defined to be the
space of all f ∈ L0(ν) satisfying∫

Ω

ϕ(λ|f(t)|) dν <∞

for some λ > 0. It is well known that Lϕ(ν) is a Banach lattice equipped with
the norm

‖f‖ = inf
{
ε > 0;

∫
Ω

ϕ(f/ε) dν ≤ 1
}
.

In Section 4 we present results and examples regarding the two notions of
(φ, ϕ)-concavity for operators that we introduce, where φ and ϕ are Orlicz
functions. Some consequences and applications in form of factorization the-
orems hold from our general results and are shown in Section 5. We apply
our arguments to give a variant of Maurey’s Extension Theorem. We prove
that if X is a 2-convex quasi-Banach lattice and Y is a closed subspace of X,
then every 2-concave operator T from Y to a quasi-Banach space E admits an
extension T̃ : X → E that factors through a Hilbert space. We also show that
when X is a p-convex Banach lattice and ϕ(t) = tp for all t ≥ 0, we recover
the Maurey-Rosenthal Theorem for p-concave operators. We conclude by pre-
senting some applications to the study of the continuous inclusions between
quasi-Banach function lattices.

2 Preliminaries

We now introduce notation and conventions and provide some technical ob-
servations which we will use later without any references. All the operators
considered in this paper are linear.

By definition, a quasi-normed space is a vector space X over K with a quasi-
norm ‖ · ‖X satisfying:

(i) ‖x‖X > 0, x ∈ X, x 6= 0,
(ii) ‖λx‖X = |λ|‖x‖X , λ ∈ K, x ∈ X,
(iii) ‖x+ y‖X ≤ CX(‖x‖X + ‖y‖X), x, y ∈ X

for some constant CX independent of x, y. If a quasi-normed space is complete,
we say that it is a quasi-Banach space.

Let (X, ‖ · ‖X) be a quasi-Banach space. The Mackey semi-norm ‖ · ‖cX on
X is the Minkowski functional of the convex hull conv(BX) of the unit ball
BX := {x ∈ X; ‖x‖X ≤ 1},

‖x‖cX = inf
{
λ > 0; x ∈ λ conv(BX)

}
, x ∈ X.

If the topological dual X∗ of X separates the points of X, then X∗ is a Banach
space under the norm

‖x∗‖X∗ = sup
x∈BX

|x∗(x)|.
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Since ‖x∗‖X∗ = sup
{
|x∗(x)|; x ∈ conv(BX)

}
, it follows

‖x‖cX = sup
‖x∗‖X∗≤1

|x∗(x)|, x ∈ X.

and so X∗ = (X, ‖ · ‖cX)∗ with equality of norms.
The completion of (X, ‖ · ‖cX) is called the Banach envelope of X. The

above formulas imply

‖κx‖X∗∗ = sup
‖x∗‖X∗≤1

|x∗(x)| = ‖x‖cX ,

where κ : X → X∗∗ is the canonical embedding defined by κx(x∗) = x∗(x),
x ∈ X, x∗ ∈ X∗. In particular, it follows that the Banach envelope of X is the
closure of the range of κ in X∗∗.

Let (Ω,µ) := (Ω,Σ, µ) be a complete σ-finite measure space, and let
L0(µ) denote the space of all equivalence classes of extended real-valued Σ-
measurable functions on Ω equipped with the topology of convergence in mea-
sure on µ-finite sets. As usual if x, y ∈ L0(µ), then |x| ≤ |y| means that
|x(ω)| ≤ |y(ω)| for µ-almost all ω ∈ Ω.

A quasi-normed function lattice X on a measure space (Ω,µ) is defined to
be a quasi-normed space X ⊂ L0(µ) such that there exists a strictly positive
u ∈ X and X is an ideal in L0(µ), i.e., if |x| ≤ |y|, where y ∈ X and x ∈ L0(µ),
then x ∈ X and ‖x‖X ≤ ‖y‖X . If in addition, (X, ‖ · ‖X) is complete then it
is called a quasi-Banach function lattice.

Fix a quasi-normed function lattice X on (Ω,µ). It is said that X is order
continuous if for any decreasing sequence 0 ≤ xn ∈ X, if xn ↓ 0 a.e., then
‖xn‖X → 0. We say that X has the weak Fatou property whenever if xn, x ∈ X,
xn ↑ x a.e., then ‖xn‖X → ‖x‖X . It is said that X satisfies the Fatou property
if for any x ∈ L0(µ) and xn ∈ X such that 0 ≤ xn ≤ x and xn ↑ x we have
that x ∈ X and ‖xn‖X → ‖x‖X .

The Köthe dual space (or associate space) X ′ of a normed function lat-
tice X on (Ω,µ) is defined to be the collection of all x ∈ L0(µ) such that∫
Ω
|xy| dµ <∞ for every y ∈ X equipped with the norm

‖x‖X′ = sup
‖y‖X≤1

∫
Ω

|xy| dµ .

X ′ is a Banach function lattice with the Fatou property. Notice that if X is a
Banach function lattice, then X ⊂ X ′′ with ‖x‖X′′ ≤ ‖x‖X for every x ∈ X.
Moreover, X = X ′′ with equality of the norms if and only if X has the Fatou
property (see [13]).

It is well known that a normed function lattice X is order continuous if
and only if the map X

′ 3 y 7→ x∗y ∈ X∗ where

x∗y(x) :=

∫
Ω

xy dµ, x ∈ X

is an order isometrical isomorphism of X ′ onto X∗ (see, e.g., [13]). It is also
known that for any x ≥ 0 there exists 0 ≤ x∗ ∈ X∗ such that ‖x∗‖X∗ = 1
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and x∗(x) = ‖x‖X (see e.g. [14]). In particular, by the above fact, there exists
y ∈ X ′ with ‖y‖X′ = 1 and ‖x‖X =

∫
Ω
xy dµ provided X is order continuous.

We will write Xa for the order continuous part of the normed function lattice
X, that is, the biggest order continuous Banach function lattice that is included
in X.

Let us observe that if (X, ‖·‖X) is a quasi-normed function lattice on (Ω,µ)
such that the topological dual X∗ separates the points of X, then (X, ‖ · ‖cX)
is a normed function lattice on (Ω,µ), which is order continuous provided X
is order continuous.

Quasi-Banach function spaces on measure spaces are the natural setting for
the development of the ideas of this paper. However, they can also be applied
in the case of abstract quasi-Banach lattices. This is the case for instance of
the spaces C(K), that will be relevant in this paper regarding some examples
and applications.

3 Factorization through Orlicz spaces

Let Φ be the set of all increasing and continuous functions ϕ : [0,∞)→ [0,∞)
such that ϕ(0) = 0. Given a quasi-normed latticeX on (Ω,Σ, µ) and a function
ϕ ∈ Φ, we define a linear subspace of L0(µ) by

Xϕ =
{
f ∈ L0(µ); ∃λ > 0, ϕ(λ|f |) ∈ X

}
.

and the functional ‖ · ‖Xϕ : Xϕ → [0,∞) by

‖f‖Xϕ := inf
{
λ > 0; ‖ϕ(|f |/λ)‖X ≤ 1

}
, f ∈ Xϕ.

Clearly ‖f‖Xϕ = 0 if and only if f = 0 and ‖λf‖Xϕ = |λ‖ ‖f‖Xϕ for all λ ∈ R,
f ∈ Xϕ. The space Xϕ is an ideal in L0(µ) on which ‖ · ‖Xϕ is monotone, i.e.,
f ∈ L0(µ), g ∈ Xϕ and |f | ≤ |g| a.e. implies f ∈ Xϕ and ‖f‖Xϕ ≤ ‖g‖Xϕ .

Notice that there is a large class of functions ϕ ∈ Φ for which ‖ · ‖Xϕ is
a quasi-norm on Xϕ. To see this let CX be a constant from the quasi-triangle
inequality of a quasi-normed function lattice X. If ϕ ∈ Φ is such that there is
a constant C such that

ϕ(t/C) ≤ ϕ(t)/2CX , t > 0,

then for all α, β ≥ 0 with α+ β = 1 we have

ϕ
( 1

C
(αs+ βt)

)
≤ 1

2CX
(ϕ(s) + ϕ(t)), s, t > 0.

Since
∥∥ϕ(|f |/(‖f‖Xϕ + ε)

)∥∥
X
≤ 1 for every ε > 0 and all f ∈ Xϕ, the above

inequality yields

‖f + g‖Xϕ ≤ C
(
‖f‖Xϕ + ‖g‖Xϕ

)
, f, g ∈ Xϕ.

Thus ‖ · ‖Xϕ is a quasi-norm on Xϕ and it may be verified that (Xϕ, ‖ · ‖Xϕ) is
complete. In particular, Xϕ is a Banach function lattice provided ϕ is a convex
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function and X is a Banach function lattice. Note that in the case ϕ(t) = tp for
all t ≥ 0, the same notion makes sense for the case of abstract quasi-Banach
lattices and the space Xϕ is known as Xp the p-convexification of X (see [14]
or [19, Ch.2]) equipped with the quasi-norm

‖f‖Xp = ‖|f |p‖1/pX .

If X = L1(µ) and ϕ ∈ Φ, then Xϕ is the Orlicz space denoted by Lϕ(µ)
(for short Lϕ).

Let ϕ ∈ Φ. Throughout the paper a quasi-Banach function lattice X is said
to be ϕ-admissible provided that ‖ · ‖Xϕ is a quasi-norm on Xϕ. If in addition
the topological dual (Xϕ)∗ separates the points of Xϕ, then X is said to be
strongly ϕ-admissible.

It is easy to check that if (Ω,Σ, µ) is an atomless measure space and ϕ ∈ Φ,
then L1(µ) is ϕ-admissible if and only if there exists C > 0 such that

ϕ(t/C) ≤ ϕ(t)/2, 0 < t < µ(Ω).

Let us observe that if an order continuous Banach function lattice X is
ϕ-admissible with ϕ ∈ ∆2 (i.e., there exists a constant C > 0 such that
ϕ(2t) ≤ Cϕ(t) for all t > 0), then ‖fn‖Xϕ → 0 if and only if ‖ϕ(|fn|)‖X → 0.
This implies that Xϕ is order continuous if and only if X is order continuous.

We will need the following obvious technical result.

Proposition 1 Let ϕ ∈ Φ and let X be a quasi-Banach function lattice on
(Ω,µ). If X has the weak Fatou property, then the inequalities ‖f‖Xϕ ≤ 1 and
‖ϕ(|f |)‖X ≤ 1 are equivalent.

The following lemma provides general examples of ϕ ∈ Φ and quasi-normed
lattices X which are strongly ϕ-admissible.

Lemma 1 Let ϕ ∈ Φ and let X be a ϕ-admissible quasi-normed function
lattice on (Ω,µ) such that χΩ ∈ X.

(i) If ϕ is concave then X ↪→ Xϕ.
(ii) If ϕ is convex then Xϕ ↪→ X. As a consequence X is strongly ϕ-admissible

provided the topological dual X∗ separates points of X.

Proof (i). Since ϕ is a concave function, the set

Cϕ := {(a, b); a, b ≥ 0, ∀t ≥ 0, ϕ(t) ≤ at+ b}

is non-empty and we have

ϕ(t) = inf{at+ b; (a, b) ∈ Cϕ}, t ≥ 0.
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Let C1 = ‖χΩ‖X and let C > 0 be such that CXC1ϕ
(
1/C1C

)
≤ 1. For any

(a, b) ∈ Cϕ and f ∈ X, ‖f‖ = 1, we have

0 ≤ ϕ
(
|f |/C

)
≤ a

C
|f |+ b µ− a.e.

Hence ϕ
(
|f |/C

)
∈ X by the monotonicity of the quasi-norm ‖ · ‖X , and

∥∥ϕ(|f |/C)∥∥
X
≤
∥∥a(|f |/C)+b

∥∥
X
≤ CX

( a
C
‖f‖X +bC1

)
≤ CXC1

(
a

1

C1C
+b
)
.

Since (a, b) ∈ Cϕ is arbitrary,

‖ϕ
(
|f |/C

)
‖X ≤ CXC1 inf

(a,b)∈Cϕ

(
a

1

C1C
+ b
)

= CXC1ϕ
(
1/C1C

)
≤ 1.

This implies f ∈ Xϕ with ‖f‖Xϕ ≤ C and shows that the inclusion map
i : X → Xϕ is bounded with ‖i‖ ≤ C. The proof of (ii) follows immediately
from (i).

In the sequel we will need Ky-Fan’s Lemma (see, e.g., [8, p. 190]). For the
sake of completeness we state it here.

Lemma 2 Let E be a Hausdorff topological vector space, and let K be a com-
pact convex subset of E. Let Ψ be a set of functions on K with values in
(−∞,∞] having the following properties:

(a) each f ∈ Ψ is convex and lower semicontinuous,
(b) Ψ is concave, i.e., if g ∈ conv(Ψ), there is an f ∈ Ψ with g(x) ≤ f(x), for

every x ∈ K,
(c) there is an r ∈ R such that each f ∈ Ψ has a value not greater than r.

Then there is an x0 ∈ K such that f(x0) ≤ r for all f ∈ Ψ .

We now state and prove a separation theorem that gives directly an exten-
sion theorem for operators.

Theorem 1 Let ϕ, φ ∈ Φ and X be a quasi-Banach lattice on (Ω,µ) such
that X is strongly ϕ−1-admissible. Suppose that T is an operator from X into
a quasi-Banach space E. Suppose 0 < C <∞ and Y is a non trivial subset of
X. Consider the following conditions:

(i) For every finite sequence of positive scalars {αk}nk=1 with
∑n
k=1 αk = 1

and every finite sequence {fk}nk=1 in Y ,

n∑
k=1

αkφ(‖Tfk‖E) ≤ C
∥∥∥ n∑
k=1

αkϕ(|fk|)
∥∥∥c
Xϕ−1

.
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(ii) There exists a positive functional x∗ in the closed unit ball of (Xϕ−1)∗ such
that

φ
(
‖Tf‖E

)
≤ Cx∗(ϕ(|f |)), f ∈ Y.

(iii) There exists 0 ≤ w ∈ B(Xϕ−1 )′ such that for A = suppw we have

φ
(
‖Tf‖E

)
≤ C

∫
A

ϕ(|f |)w dµ, f ∈ Y.

Then (i) is equivalent to (ii). If Xϕ−1 is order continuous then all three con-
ditions are equivalent.

Proof (i)⇒ (ii). Let us recall the following consequence of the Banach-Alaoglu
theorem, which will be used below: if the topological dual of a quasi-normed
space E separates the points then the closed unit ball of the dual space E∗,
BE∗ , is compact for the weak∗ topology σ(E∗, E) on E∗.

Put K :=
{
x∗ ∈ B(Xϕ−1 )∗ ; x

∗ ≥ 0
}

. Combining our hypotheses with the

basic facts shown at the beginning of Section 2, we deduce that the inequality
given in the condition (i) is equivalent to

n∑
k=1

αkφ(‖Tfk‖E) ≤ C sup
x∗∈K

n∑
k=1

αkx
∗(ϕ(|fk|)). (∗)

Let S`n1 denotes be the unit sphere of n-dimensional `n1 -space. Consider the
family

Ψ :=
{
ψα,f ; 0 ≤ α = {αk}nk=1 ∈ S`n1 , f = {fk}nk=1 ∈

n∏
k=1

Y, n ∈ N
}

of convex functions ψα,f : K → R defined for 0 ≤ α = {αk} ∈ S`n1 , f = {fk} ∈∏n
k=1 Y by

ψα,f (x∗) =

n∑
k=1

αkφ(‖Tfk‖E)− C
n∑
k=1

αkx
∗(ϕ(|fk|)), x∗ ∈ K.

It may be easily verified that Ψ is a concave family. Our hypotheses yields that
the unit ball B(Xϕ−1 )∗ is a compact convex subset for the weak*-topology w∗ =

σ((Xϕ−1)∗, Xϕ−1). Since the set K is w∗-closed, it is w∗-compact. Clearly,
every function in Ψ is continuous for the w∗-topology. Thus the Hahn-Banach
theorem together with the inequality (∗) imply that for every ψ ∈ Ψ there
exists x∗ ∈ B(Xϕ−1 )∗ such that Ψ(x∗) ≤ 0. Then Ky-Fan’s lemma applies and

we deduce that there exists x∗ ∈ K such that

φ
(
‖Tf‖

)
≤ Cx∗(ϕ(|f |)), f ∈ Y

and this completes the proof of (i).
The implication (ii) ⇒ (i) is obvious.
If Xϕ−1 is order continuous, then the topological dual (Xϕ−1)∗ can be

isometrically identified with the Köthe dual (Xϕ−1)′. This completes the proof.
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We remark that if X is a quasi-Banach lattice which contains no copy of c0
and has a weak unit then a standard representation theorem can be applied to
represent X as an order continuous quasi-Banach function lattice on a measure
space (Ω,Σ, µ) where Ω is a compact Hausdorff space and Σ is the σ-algebra
of Borel sets of Ω (for details see [11]). Notice also that no ideal structure for
X is needed for the separation argument used in (i) ⇒ (ii) of the proof above:
the same result remains true for the case X = C(K).

We state now a theorem in which the domain space is an abstract quasi-
Banach lattice. The proof is similar to the one given above.

Theorem 2 Let 0 < p < ∞ and let X be a quasi-Banach lattice such that
the dual (X1/p)

∗ separates the points of X1/p. Suppose φ ∈ Φ and T is an
operator from X in a quasi-Banach space E. Suppose 0 < C <∞ and Y is a
non trivial subset of X. Then the following conditions are equivalent:

(i) For every finite sequence of positive scalars {αk}nk=1 with
∑n
k=1 αk = 1

and every finite sequence {fk}nk=1 in Y ,

n∑
k=1

αkφ(‖Tfk‖E) ≤ C
∥∥∥ n∑
k=1

αk|fk|p
∥∥∥c
X1/p

.

(ii) There exists a positive functional x∗ in the closed unit ball of (X1/p)
∗ such

that

φ
(
‖Tf‖E

)
≤ Cx∗(|f |p), f ∈ Y.

In what follows if Σ is a σ-algebra of subsets of Ω and A ∈ Σ, then
ΣA = {F ∩A; F ∈ Σ} denotes a σ-algebra of subsets of A.

The following theorem characterizes vector inequalities in terms of factor-
ization under a mild assumption on ϕ ∈ Φ. Recall that we write Lϕ(ν)a for
the order continuous part of the Orlicz space Lϕ(ν).

Theorem 3 Let ϕ ∈ Φ and let X be a quasi-Banach lattice on (Ω,Σ, µ) that
is strongly ϕ−1-admissible and such that Xϕ−1 is order continuous. Suppose
T is an operator from X into a quasi-Banach space E. Consider the following
statements:

(i) There exists a constant C > 0 such that for every finite sequence of positive
scalars {αk}nk=1 with

∑n
k=1 αk = 1 and every finite sequence {fk}nk=1 in

X,
n∑
k=1

αkϕ(‖Tfk‖E) ≤ C
∥∥∥ n∑
k=1

αiϕ(|fk|)
∥∥∥c
Xϕ−1

.

(ii) There exists 0 ≤ w ∈ B(Xϕ−1 )′ such that T admits the following factor-

ization where Lϕ(ν) is the Orlicz space on (A,ΣA, ν) with A = suppw,
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dν = wdµ and i : X → Lϕ(ν)a is an operator given by i(f) = fχA for all
f ∈ X:

X E-T

H
HHj ��

�*

Lϕ(ν)a
i S

Then (i) implies (ii). If in addition ϕ is super-multiplicative (i.e., there exists

C̃ > 0 such that ϕ(s)ϕ(t) ≤ C̃ϕ(st) for all s, t > 0) then (ii) implies (i) too.

Proof (i) ⇒ (ii). From Theorem 1 it follows that there is 0 ≤ w ∈ BX′
ϕ−1

such

that

ϕ(‖Tf‖E) ≤ C
∫
A

ϕ(|f |)dν, f ∈ X (∗)

where A = suppw, dν := wdµ.
We claim that the map i : X → Lϕ(ν)a and is bounded. To see that fix

f ∈ X with ‖f‖ ≤ 1. Then ϕ(|f |) ∈ Xϕ−1 with ‖ϕ(|f |)‖Xϕ−1 ≤ 1 and so∫
A

ϕ(|f |)w dµ ≤ ‖ϕ(|f |)‖Xϕ−1 ‖w‖(Xϕ−1 )′ ≤ 1.

Combining with our hypothesis Xϕ−1 = (Xϕ−1)a yields i : X → Lϕ(ν)a with
‖i‖ ≤ 1. Thus the claim follows.

Using the inequality (∗) we obtain with λ := ‖f‖Lϕ(ν) > 0,

ϕ
(
‖Tf‖E/λ

)
≤
∫
A

ϕ(|f |/λ) dν ≤ 1, f ∈ X

and so

‖Tf‖E ≤ ϕ−1(C)‖f‖Lϕ(ν), f ∈ X.

The required result then holds for the extension S of T to Lϕ(ν)a, by the
density of simple functions in Lϕ(ν)a.

(ii) ⇒ (i). Let dν = wdµ, w ∈ B(Xϕ−1 )′ . Assume that there exists C̃ > 0

such that ϕ(s)ϕ(t) ≤ C̃ϕ(s t) for all s, t > 0. Clearly ϕ ∈ ∆2 and so Lϕ(ν)a =
Lϕ(ν). Hence our hypothesis yields

C̃

∫
A

ϕ(|f |) dν =

∫
A

C̃ϕ
( |f |
‖f‖Lϕ(ν)

‖f‖Lϕ(ν)
)
dν

≥ ϕ(‖f‖Lϕ(ν)) ·
∫
A

ϕ
( |f |
‖f‖Lϕ(ν)

)
dν

= ϕ(‖f‖Lϕ(ν)).



Factorization of operators through Orlicz spaces 11

Thus, for every f ∈ X,

‖Tf‖E ≤ ‖S(i(f))‖ ≤ ‖S‖‖f‖Lϕ(ν) ≤ ‖S‖ϕ
−1(C̃ ∫

A

ϕ(|f |)dν
)
.

Therefore,

ϕ(‖Tf‖E)ϕ
(
1/‖S‖

)
≤ C̃ϕ

(
‖Tf‖E/‖S‖

)
) ≤ C̃2

∫
A

ϕ(|f |) dν.

An application of Theorem 1 for C = C̃2/ϕ(1/‖S‖) gives the result.

Notice that in the above results the Mackey norms as well as the dual
(or the Köthe dual) space of Xϕ−1 appears. Both notions require delicate
investigations when concrete spaces are considered. In the present paper we do
not study this problem in general, since we are more interested in showing that
our results find applications in some general classes of spaces and operators.
Let us show one of them to close this section.

Let (X0, X1) is a pair of quasi-Banach function lattices on a measure space
(Ω,µ). Denote by U the class of all functions ψ : [0,∞)× [0,∞)→ [0,∞) that
are concave and positively homogeneous of degree 1. The Calderón-Lozanovskii
space ψ(X0, X1) consists of all x ∈ L0(µ) such that |x| = ψ(|x0|, |x1|) for some
xj ∈ Xj , j = 0, 1. The space ψ(X0, X1) is a quasi-Banach lattice equipped
with the quasi-norm (cf. [15,21])

‖x‖ = inf
{

max{‖x0‖X0
, ‖x1‖X1

}; |x| = ψ(|x0|, |x1|)
}
.

For instance, in the case when ψ(s, t) = s1−θtθ, ψ(X0, X1) is the well known
Calderón space (see [1]).

The Lozanovskii Köthe duality formula (see [15,21]) states that when
(X0, X1) is a couple of Banach function lattices on a meaasure space, then

ψ(X0, X1)′ = ψ̂(X ′0, X
′
1)

with equality of norms, where the space on the right hand side of the above
equality is equipped with the norm

‖x′‖ = inf
{
‖x′0‖X′0 + ‖x′1‖X′1 ; |x′| = ψ̂(|x′0|, |x′1|)

}
.

Here, for ψ ∈ U , the conjugate function ψ̂ is defined by

ψ̂(s, t) := inf
{αs+ βt

ψ(α, β)
; α, β > 0

}
for all s, t ≥ 0. We have ψ ∈ U and (̂ψ̂) = ψ (see [16]).

Notice that if X is a quasi-Banach function lattice on (Ω,µ), ϕ ∈ Φ is
a concave function and ψ ∈ U is defined by ψ(s, t) = tϕ(s/t) for all s ≥ 0,
t > 0 and ψ(0, 0) = 0, then it is not difficult to check that

Xϕ−1 = ψ(X,L∞)
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with equality of norms. In particular, the Köthe duality formula given above
implies that if X is a Banach function lattice, then we have

(Xϕ−1)′ = ψ̂(X ′, L1)

also with equality of norms.
We end this section with the remark that in the case when ϕ ∈ Φ is

a convex function and X is a quasi-Banach function lattice, then Xϕ−1 is
not normable in general. We refer to [12], where the Banach envelopes as
well as the topological duals of a large class of rearrangement invariant quasi-
Banach lattices are described. These results can be applied under some mild
assumptions in our setting.

4 Generalized concavity of operators

The main Theorem 1 of Section 2 motivates the study of classes of operators
which satisfy inequality (i) of Theorem 1. In the present section we study
classes of operators which satisfy the mentioned requirement. In particular,
we introduce definitions which generalize the classical concept of (q, p)-concave
operators (see [8]).

Let X be a quasi-Banach function lattice and let Y be a subspace of X.
Let T be an operator from X to a quasi-Banach space E and let `ϕ and `φ
be Orlicz sequence lattices on N. T is said to be (φ, ϕ)-concave if there is
a positive constant C such that, for every finite sequence {fk}nk=1 in X,∥∥{‖Tfk‖E}nk=1

∥∥
`nφ
≤ C

∥∥‖{|fk|}nk=1‖`nϕ
∥∥
X
.

Here `nϕ is Rn equipped with the quasi-norm ‖ · ‖ϕ. Notice that the definition
makes sense also in the case of an abstract quasi-Banach lattice X with ϕ(t) =
tp for all t ≥ 0 where 1 ≤ p <∞, since the expression (

∑
|xi|p)1/p makes sense

also in this case due to Krivine´s calculus (see [14]). The notion of (φ, ϕ)-
concave operator has been analyzed and has found applications recently in
a series of papers (see for instance [4,17] where examples of (φ, ϕ)-concave
operators can be found).

We write Kφ,ϕ(T ) for the least constant C that works in the inequality
above. If 0 < p <∞ and ϕ(t) = tp (resp., φ(t) = tq and ϕ(t) = tp for all t ≥ 0
with 0 < q ≤ p), we say that T is (φ, p)-concave (resp., (q, p)-concave) and
writeKφ,p(T ) (resp.,Kq,p(T )). As usual, the (q, q)-concave operators are called
q-concave, and Kq(T ) is used instead of Kq,q(T ). We say that a quasi-Banach
lattice X is q-concave if idX is a q-concave operator and we write Kq(X)
instead of Kq(idX). We refer to [8] for the definitions and more information
on relationships between (q, p)-concave and (q, p)-summing operators between
Banach spaces.

We introduce now a different notion of concavity for operators, that coin-
cides with the previous one for the case of q-concave operators. Let φ, ϕ ∈ Φ.
An operator T from a quasi-Banach lattice X to a quasi-Banach space E is
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said to be strongly (φ, ϕ)-concave if there is a constant C such that, for any
finite sequence {fk}nk=1 in X,

φ−1
( n∑
k=1

αkφ
(
‖Tfk‖E/C

))
≤
∥∥∥ϕ−1( n∑

k=1

αkϕ(|fk|)
)∥∥∥

X
.

We let K̃φ,ϕ(T ) be the least constant C for which the above inequality holds.

Example 1 Let φ ∈ Φ be given by φ(t) = t2 for 0 ≤ t ≤ 1 and φ(t) = t for
1 < t < ∞. Then every 2-concave operator T : X → E from a Banach lattice
X into a Banach space E is strongly (φ, 2)-concave.

To show this we first notice that we can and do assume that K2(T ) = 1.
Fix a finite sequence of positive scalars {αk}nk=1 with

∑n
k=1 αk = 1. Consider

a finite sequence {f1, ..., fn} of elements of X, and order them in a way that
the first f1, ..., fm satisfy ‖Tfk‖E ≤ 1 and ‖Tfk‖E > 1 for m+ 1 ≤ k ≤ n. We
put

C :=

m∑
k=1

αk‖Tfk‖2E +

n∑
k=m+1

αk‖Tfk‖E .

If C ≤ 1, then we have

φ−1
( n∑
k=1

αkφ(‖Tfk‖E)
)

= φ−1
( m∑
k=1

αk‖Tfk‖2E +
n∑

k=m+1

αk‖Tfk‖E
)

= φ−1(C) ≤
( n∑
k=1

αk‖Tfk‖2E
)1/2

.

If C ≥ 1, then it follows by concavity of the function t 7→ t1/2 that

C ≤
( n∑
k=1

αk‖Tfk‖E
)
≤
( n∑
k=1

αk‖Tfk‖2E
)1/2

.

Since the operator is 2-concave with K2(T ) = 1, we obtain

φ−1
( n∑
k=1

αkφ(‖Tfk‖E)
)
≤
∥∥∥( n∑

k=1

αk|fk|2
)1/2∥∥∥

X
.

Example 2 Every 1-concave operator T : X → E from a Banach function
lattice X into a Banach space E is strongly (1, ϕ)-concave where ϕ(t) = et−1
for all t ≥ 0. In fact ϕ−1(t) = log(t + 1), t ≥ 0 and so, for any f1, ..., fn ∈ X
and α1, ..., αn ≥ 0 with

∑n
k=1 αk = 1, we have∥∥∥ϕ−1( n∑

i=k

αkϕ(|fk|)
)∥∥∥

X
=
∥∥∥ log

( n∑
k=1

(αke
|fk| − αk) + 1

)∥∥∥
X

≥ ‖
n∑
k=1

αk|fk|‖ ≥
1

K1(T )

n∑
k=1

αk‖Tfk‖

and so the statement follows.
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4.1 (ϕ, φ)-concavity for operators on C(K)-spaces

The following result shows that, for the case of spaces of continuous functions
both notions of (φ, ϕ)-concavity of operators coincides, providing in this case
a broad class of examples. As we mentioned in Section 2, these spaces are
not Banach function lattices in our sense, but the same arguments that prove
Theorem 1 works also in this case. If φ, ϕ ∈ Φ we say that ϕ ≺ φ near 0 if
both functions are equivalent in a neighborhood of 0.

Theorem 4 Let φ, ϕ ∈ Φ be convex functions such that ϕ ≺ φ near 0 and
ϕ ∈ ∆2. Suppose that K is a compact Hausdorff space and that Y is a Ba-
nach space. Suppose T : C(K)→ Y is a bounded operator. Then the following
conditions on T are equivalent:

(i) There is a constant C1 so that for every finite sequence of positive scalars
{αk}nk=1 with

∑n
k=1 αk = 1 and every finite sequence {fk}nk=1 in the unit

ball of C(K),

n∑
k=1

αkφ(‖Tfk‖Y ) ≤ C1

∥∥∥ n∑
k=1

αkϕ(|fk|)
∥∥∥
C(K)

.

(ii) There is a constant C2 and a probability Borel measure µ on K such that
for all f in the unit ball of C(K),

φ(‖Tf‖Y ) ≤ C2

∫
K

ϕ(|f |) dµ.

(iii) T is a (φ, ϕ)-concave operator.

Proof (i) ⇒ (ii). Since (C(K))ϕ−1 = C(K) with equality of norms, thus by
Theorem 1 we can find a positive functional x∗ in the unit ball of C(K)∗ such
that for all f in the unit ball of C(K),

φ(‖Tf‖Y ) ≤ C1x
∗(ϕ(|f |)).

Combining with the Riesz representation Theorem we obtain the statement.
The implication (ii)⇒ (iii) is easy and we omit it. (iii)⇒ (ii) is proved in [17],
and (ii) ⇒ (i) is obvious.

4.2 The modulus of convexity and the (φ, p)-concavity on Banach function
spaces

In this subsection we present a new class of (φ, p)-concave operators. Suppose
X is a quasi-normed lattice. Following the Banach case, we define the modulus
of uniform monotonicity by

σX(ε) = inf
{
‖x+ y‖ − 1; x, y ≥ 0, ‖x‖ = 1, ‖y‖ ≥ ε

}
, ε ≥ 0.
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Clearly, σX is non-decreasing with σX(0) = 0. X is said to be uniformly
monotone if σX(ε) > 0 for all ε > 0.

We prove the following result, which is a lattice analogue of the theorem of
Kadec, for uniformly convex Banach spaces (see, e.g., [7, p. 125]). We remark
that the theorem of Kadec applies only to Banach spaces since there is no
equivalent uniformly convex quasi-norm on non-locally convex quasi-normed
spaces.

Lemma 3 If
∑∞
k=1 |xk| is a convergent series in a quasi-normed lattice X,

then
∞∑
k=1

σX(‖xk‖) <∞.

Proof We may assume, by subtracting the first few terms, that x1 6= 0. We
may also assume that ‖

∑n
k=1 |xk|‖ ≤ 1 for all n ≥ 0. Then, it follows from

the definition of σX that

‖x1‖(1 + σX(‖x2‖)) ≤ ‖x1 + x2‖.

Since ‖x1 + x2‖ ≤ 1,

‖x1 + x2‖
(
1 + σX(‖x3‖)

)
≤ ‖x1 + x2 + x3‖ ≤ 1.

Repeating, we find that for all n ≥ 2

‖x1‖
n∏
k=2

(
1 + σX(‖xk‖)

)
≤ ‖x1 + ...+ xn‖ ≤ 1.

This implies
n∑
k=2

σX(‖xk‖) ≤ ‖x1‖−1

and the result then follows.

We have the following application of Lemma 3 and the Closed Graph The-
orem.

Corollary 1 Assume that X is uniformly monotone quasi-Banach lattice. Let
φ ∈ Φ be an admissible function such that φ ≺ σX near 0. Then the iden-
tity map on X is (φ, 1)-concave. In particular every operator T from X into
a quasi-Banach space is (ϕ, 1)-summing.
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To provide next example let us recall that the modulus of convexity δX of
a Banach space X is given by

δX(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥; ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε
}
, 0 ≤ ε ≤ 2.

X is said to be uniformly convex if δX(ε) > 0 for all 0 < ε ≤ 2. In this case,
the modulus of convexity is equivalent (on (0, 2]) to a canonic Orlicz function
δ̃X (cf. [17, pp.65ff]), and `2 ↪→ `δ̃X .

Since the modulus of convexity is equivalent at zero to the modulus δ̂X
(see [2]) given by

δ̂X(ε) = inf{max{‖x+ y‖, ‖x− y‖} − 1; ‖x‖ = 1, ‖y‖ = ε}, ε ≥ 0,

it follows that an uniformly convex Banach lattice X is uniformly monotone
and

σX(ε) ≤ δ̂X(ε), 0 ≤ ε ≤ 2.

The content of the following result is essentially due to Figiel and Pisier [10]
(for details we refer to [4]), and provides a relevant example of (φ, ϕ)-concave
operator.

Proposition 2 Let X be a uniformly convex Banach space. Then X is of δ̃X-
cotype, i.e., there exists C > 0 such that for arbitrarily many x1, ..., xn ∈ X∥∥{‖xk‖X}nk=1

∥∥
`δ̃X
≤ C

(∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥2
X
dt
)1/2

,

where (rk)∞k=1 is the sequence of Rademacher functions. Moreover, if X is

a uniformly convex Banach lattice, then X is (δ̃X , 2)-concave.

5 ϕ-convexity of quasi-Banach function spaces and factorization of
strongly (φ, ϕ)-concave operators

In this section we present some general applications of the notions and results
given in the previous ones using our factorization tools. First we recall that
a quasi-normed space (X, ‖ · ‖) is normable whenever there exists a norm ‖ · ‖∗
in X and a constant C > 0 such that C−1 ‖ · ‖∗ ≤ ‖ · ‖ ≤ C ‖ · ‖∗.

In the sequel, we will make use of the following result.

Proposition 3 Suppose that ϕ ∈ Φ and that a quasi-normed function lattice
X is ϕ−1-admissible. If ϕ is super-multiplicative (i.e. there exists a constant
C > 0 such that ϕ(s)ϕ(t) ≤ Cϕ(st) for every s, t ≥ 0), then

C ‖ϕ(|f |)‖Xϕ−1 ≥ ϕ
(
‖f‖X

)
, f ∈ X.
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Proof Observe that ‖g‖X = 1 implies ‖ϕ(|g|)‖Xϕ−1 = 1. If 0 6= f ∈ X, then
combining with our hypothesis on ϕ yields,

C ‖ϕ(|f |)‖Xϕ−1 = C
∥∥∥ϕ(‖f‖X |f |

‖f‖X

)∥∥∥
Xϕ−1

≥ ϕ
(
‖f‖X

) ∥∥ϕ(|f |/‖f‖X)
∥∥
Xϕ−1

= ϕ
(
‖f‖X

)
.

A quasi-normed lattice X = (X, ‖ · ‖) is said to be p-convex if there exists
a constant C > 0 such that for every every finite sequence {x1, ..., xn} in X,∥∥∥( n∑

k=1

|xk|p
)∥∥∥1/p

X
≤ C

( n∑
k=1

‖xk‖p
)1/p

.

We notice the well-known easily verified fact that X is p-convex if and only
if X1/p is normable. This motivates the following definition. Given ϕ ∈ Φ,
a quasi-normed function lattice X is said to be ϕ-convex if there is a constant
M > 0 such that for every finite sequence {f1, ..., fn} in Xϕ−1 ,

‖f1 + ...+ fn‖Xϕ−1 ≤M
(
‖f1‖Xϕ−1 + ...+ ‖fn‖Xϕ−1

)
.

Proposition 4 Let ϕ ∈ Φ and X be a quasi-normed function lattice. Then X
is ϕ-convex if and only if Xϕ−1 is normable.

Proof Assume that X is ϕ-convex with constant M . Let us define

‖f‖∗Xϕ−1
= inf

{ n∑
k=1

‖fk‖Xϕ−1 ; |f | ≤
n∑
k=1

|fk|, fk ∈ Xϕ−1

}
, f ∈ Xϕ−1 .

Clearly, this expression defines a lattice norm on Xϕ−1 and for every f ∈ Xϕ−1 ,
‖f‖Xϕ−1 ≤ M‖f‖∗Xϕ−1

≤ ‖f‖Xϕ−1 , so Xϕ−1 is normable. The converse is a

consequence of a direct calculation using an equivalent norm to ‖ · ‖Xϕ−1 .

Remark 1 Notice that for any quasi-normed Orlicz space X := Lϕ on a mea-
sure space (Ω,Σ, µ), we have Xϕ−1 = L1 with ‖ ·‖Xϕ−1 = ‖ ·‖L1

. In particular
this implies that X is ϕ-convex. To see this observe that if f ∈ Xϕ−1 , then for
any k > ‖f‖Xϕ−1 we have c = ‖ϕ−1(|f |/k)‖Lϕ ≤ 1. Hence∫

Ω

ϕ(ϕ−1(|f |/k))dµ ≤
∫
Ω

ϕ
(ϕ−1(|f |/k)

c

)
dµ ≤ 1.

This implies f ∈ L1(µ) with ‖f‖L1 ≤ k and so L1 ⊂ Xϕ−1 with

‖f‖L1
≤ ‖f‖Xϕ−1 , f ∈ Xϕ−1 .

The converse inclusion and inequality are obvious.



18 M. Masty lo, E.A. Sánchez Pérez

Example 3 Let (Ω,µ) be an infinite measure space. Then L2 := L2(µ) is φ-
convex, where φ is the function given in Example 1. To see this we first observe
that Lφ = L1(µ) + L2(µ). Since φ−1(t) = t1/2 for 0 ≤ t ≤ 1 and φ−1(t) = t
for 1 ≤ t <∞, we conclude that for any non zero function f ∈ (L2)φ−1 there
exists λ > 0 such that

1 ≥ ‖φ−1(|f |/λ)‖L2
=
(∫

Ω

|φ−1(|f |/λ)2 dµ
)1/2

=
(∫

Ω

ϕ(|f |/λ) dµ
)1/2

,

where ϕ(t) = t for 0 ≤ t ≤ 1 and ϕ(t) = t2 for 1 ≤ t < ∞. This gives that
(L2)φ−1 = Lϕ. Clearly that Lϕ = L1 ∩ L2 and so Proposition 4 implies that
L2 is φ-convex.

Theorem 5 Let ϕ, φ ∈ Φ be such that ϕ is super-multiplicative and t 7→
ϕ◦φ−1(t) is a concave function on (0,∞). Assume that a quasi-Banach lattice
X on (Ω,Σ, µ) is ϕ-convex and that an operator T from X into a quasi-Banach
space E is strongly (φ, ϕ)-concave.

(i) There exists a constant C > 0 and a positive functional x∗ in the closed
unit ball of (Xϕ−1)∗ such that

φ
(
‖Tf‖E/K̃φ,ϕ(T )

)
≤ C x∗(ϕ(|f |)), f ∈ X.

(ii) If Xϕ−1 is order continuous, then there exists 0 ≤ w ∈ B(Xϕ−1 )′ such that

T admits the following factorization where Lϕ(ν) is the Orlicz space on
(A,ΣA, ν) with A = suppw, dν = wdµ and i : X → Lϕ(ν)a is an operator
given by i(f) = fχA for all f ∈ X:

X E-T

HHHj ��
�*

Lϕ(ν)a
i S

Proof (i). Assume without loss of generality that K̃φ,ϕ(T ) = 1. We claim that
the condition (i) in Theorem 3 is satisfied. Fix a finite sequence of positive
scalars {αk}nk=1 with

∑n
k=1 αk = 1 and a finite sequence {fk}nk=1 in X. Put

ψ(t) := ϕ ◦ φ−1(t) for all t ≥ 0. Since ψ is concave, our hypothesis on T yields

n∑
k=1

αkϕ(‖Tfk‖E) =

n∑
k=1

αkψ
(
φ(‖Tfk‖E)

)
≤ ψ

( n∑
k=1

αkφ(‖Tfk‖E)
)

≤ ϕ
(∥∥∥ϕ−1( n∑

k=1

αkϕ(|fk|)
)∥∥∥

X

)
.
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Since ϕ is super-multiplicative, we find by Proposition 3 that there exists
a constant Cϕ such that

ϕ
(∥∥∥ϕ−1( n∑

k=1

αkϕ(|fk|)
)∥∥∥

X

)
≤ Cϕ

∥∥∥ n∑
k=1

αkϕ(|fk|)
∥∥∥
Xϕ−1

.

Then, using ϕ-convexity of X, we conclude that there exists a positive
constant C̃ = C̃(ϕ,X) such that the Mackey norm on Xϕ−1 satisfies ‖·‖cXϕ−1

≥
C̃ ‖ · ‖Xϕ−1 . Combining this fact with both obtained estimates yields

n∑
k=1

αkϕ(‖Tfk‖E) ≤ C
∥∥∥ n∑
k=1

αiϕ(|fk|)
∥∥∥c
Xϕ−1

,

where C = C̃ Cϕ. This proves the claim and so Theorem 1 applies. The state-
ment (ii) follows by Theorem 3.

We obtain as direct applications of Theorem 5 the following corollaries.
Both of them recover the Maurey-Rosenthal Theorem for ϕ(t) = tp and φ(t) =
tp, respectively.

Corollary 2 Let 0 < p < ∞, ϕ ∈ Φ and let T be a strongly (p, ϕ)-concave
operator from a quasi-Banach lattice X on (Ω,Σ, µ) into a quasi-Banach space
E. Suppose that ϕ ∈ Φ is a super-multiplicative function such that X is ϕ-
convex and t 7→ ϕ(t1/p) is a concave function.

(i) There exists a constant C > 0 and a positive functional x∗ in the closed
unit ball of (Xϕ−1)∗ such that

ϕ
(
‖Tf‖E/K̃p,ϕ‖) ≤ C x∗(ϕ(|f |)), f ∈ X.

(ii) If Xϕ−1 is order continuous, then there exists 0 ≤ w ∈ B(Xϕ−1 )′ such that

T admits the following factorization through Lp(ν) defined on (A,ΣA, ν),
where A = suppw, dν = wdµ and i : X → Lϕ(ν)a is an operator given by
i(f) = fχA for all f ∈ X:

X E-T

H
HHj �

��*

Lϕ(ν)a
i S

Corollary 3 Let 0 < p < ∞, ϕ ∈ Φ and let T be a strongly (φ, p)-concave
operator from a quasi-Banach lattice X on (Ω,Σ, µ) into a quasi-Banach space
E. Suppose that X is p-convex and t 7→ φ

(
t1/p

)
is a convex function.
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(i) There exists a positive constant C and a positive functional x∗ in the closed
unit ball of (X1/p)

∗ such that

‖Tf‖E ≤ C
(
x∗(|f |p)

)1/p
, f ∈ X.

(ii) If X is order continuous, then there exists 0 ≤ w ∈ B(X1/p)′ such that
T admits the following factorization through Lp(ν) defined on (A,ΣA, ν),
where A = suppw, dν = wdµ and i : X → Lp(ν) is an operator given by
i(f) = fχA for all f ∈ X:

X E-T

HHHj ��
�*

Lp(ν)
i S

We state the following result that is interesting on its own. Based on The-
orem 2 the proof of this result is similar to the proof of Theorem 5.

Theorem 6 Let 0 < p < ∞. Let X be a p-convex quasi-Banach lattice and
let Y be a closed subspace of X. Suppose that T is a p-concave operator from
Y into a quasi-Banach space E. Then there exists a positive functional x∗ in
the closed unit ball of (X1/p)

∗ such that

‖Tx‖E ≤ Kp(T )
(
x∗(|x|p)

)1/p
, x ∈ Y.

As an application of our results we prove a variant of the classical ex-
tension theorem for operators that we state in Theorem 7, that is known as
Maurey’s Extension Theorem. We refer to [8, p.248]) where several remarkable
consequences of this famous result are presented.

Theorem 7 Let X and Y be Banach spaces such that X has type 2 and Y
has cotype 2 and Z is a subspace of X. Then every operator T : Z → Y admits
an extension T̃ : X → Y that factors through a Hilbert space.

We recall that a Banach space E has type 2, respectively, cotype 2 provided
there exists a constant C > 0 such that for every finite sequence {x1, ..., xn}
of elements in E,(∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥2
E
dt
)1/2

≤ C
( n∑
k=1

‖xk‖2E
)1/2

,

respectively, ( n∑
k=1

‖xk‖2E
)1/2

≤ C
(∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥2
E
dt
)1/2

.

We can now state the following variant of Maurey’s Extension Theorem.
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Theorem 8 Let X be 2-convex quasi-Banach lattice and Y be a closed sub-
space of X. Then every 2-concave operator T from Y to a quasi-Banach space
E admits an extension T̃ : X → E that factors through a Hilbert space with
‖T̃‖X→E ≤ K2(T ).

Proof By Theorem 6 there exists a positive functional x∗ in the closed unit
ball of (X1/2)∗ such that

‖Tx‖E ≤ Cx∗(|x|2)1/2, x ∈ Y, (∗)

where C = K2(T ). Notice that the formula

p(x) := x∗(|x|2)1/2, x ∈ X

defines a semi-norm on X which satisfies

p(x+ y)2 + p(x− y)2 = 2(p(x)2 + p(y)2), x, y ∈ X.

Since p(x) ≤ ‖|x|2‖1/2X1/2
= ‖x‖X , N := {x ∈ Y ; p(x) = 0} is a closed subspace

of X. Combining the above equality we conclude that the quotient space X/N
under the norm

‖[x]‖X/N = p(x), [x] ∈ X/N

satisfies the parallelogram law. Thus X/N is an inner product space. The norm
completion H of X/N is a Hilbert space.

It follows from (∗) that ‖Tx‖E ≤ C ‖[x]‖Y/N holds for all [x] ∈ Y/N . In
particular, this implies that the formula S([x]) := Tx defines a continuous

operator from Y/N into E with ‖S̃‖ ≤ K2(T ). Denote by S̃ the unique linear
continuous extension of S to G, the closure of Y/N in H. Let P : H → G be
a norm one continuous projection and let Q : X → H be defined by Qx = [x]

for all x ∈ X. Then the operator T̃ = PS̃Q : X → E is an extension of T and
we have the required factorization of T̃ through a Hilbert space H,

X E-T̃

H
HHHj ��

��*

H
Q PS̃

To complete the proof it is enough to observe that ‖T̃‖X→E ≤ K2(T ).

We show some applications of our results to study continuous inclusions
between quasi-Banach function lattices.



22 M. Masty lo, E.A. Sánchez Pérez

Corollary 4 Let ϕ ∈ Φ and let X be a quasi-Banach function lattice on
(Ω,Σ, µ). Assume that Y ⊂ X is a quasi-Banach function lattice such that
Y is ϕ−1-admissible and Yϕ−1 is order continuous. If there exists a constant
C > 0 such that for every finite sequence of positive scalars {αk}nk=1 with∑n
k=1 αk = 1 and every finite sequence {fk}nk=1 in Y ,

n∑
k=1

αkϕ(‖fk‖X) ≤ C
∥∥∥ n∑
k=1

αkϕ(|fk|)
∥∥∥c
Yϕ−1

,

then there exists 0 ≤ w ∈ B(Yϕ−1 )′ such that Y ↪→ Lϕ(ν)a ↪→ X, where the

Orlicz space Lϕ(ν) is defined on (Ω,ΣA, ν) with dν = wdµ. If ϕ is a super-
multiplicative function, then the converse is also true, i.e., the shown contin-
uous inclusions imply the above inequality.

The proof is just an application of Theorem 3 to the factorization

Y X-i

HHHj ��
�*

Lϕ(ν)a
i i

Example 4 Let us show an application regarding a generalization of the func-
tion φ that appeared in Example 1. Let 1 ≤ p <∞ and let (Ω,Σ, µ) be a mea-
sure space. Consider the function φp ∈ Φ given by φp(t) = tp for 0 ≤ t ≤ 1 and
φp(t) = t for t ≥ 1. Clearly this function is super-multiplicative with constant
1 and Lφp = L1 + Lp (see for instance [9, Th.16]).

An application of Corollary 4 provides the following characterization of
the spaces L1 + Lp. If fk is a measurable function, define the measurable sets
Ak = {fk ≤ 1} and Bk = {fk > 1}. For an order continuous Banach function
lattice X over the Lebesgue measure µ, the following assertions are equivalent.

(1) X = Lφp(ν) where dν = wdµ with 0 < w ∈ (Xφ−1
p

)′.

(2) The space X is φp-convex, and there is a constant C > 0 such that for
every set of functions f1, ..., fn ∈ X with f1, ..., fm with norm less or equal
than 1 and fm+1, ...fn with norm bigger than 1, and positive scalars αk
such that

∑n
k=1 αk = 1,

m∑
k=1

αk‖fi‖pX +

n∑
k=m+1

αk‖fi‖X ≤ C
∥∥∥ n∑
k=1

αk(|fk|pχAk + |fk|χBk)
∥∥∥
X
φ
−1
p

.

Notice that this result extends the one that is known for Lp-spaces, which
can be proved using the Maurey-Rosenthal factorization theorem: an order
continuous Banach function lattice X on (Ω,µ) is p-convex and p-concave if
and only if it is isomorphic to an Lp(wdµ) space for function w ∈ (X1/p)

′.

The following result is a consequence of Theorem 5.
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Corollary 5 Let ϕ, φ ∈ Φ be such that ϕ is super-multiplicative and t 7→
ϕ ◦ φ−1(t) is a concave function. Assume that X and Y are quasi-Banach
function lattices on (Ω,Σ, µ) are such that Y is a ϕ-convex, Yϕ−1 is order
continuous and the inclusion map i : Y → X is strongly (φ, ϕ)-concave. Then
Y is continuously embedded into an Orlicz space Lϕ(wdµ) on (Ω,ΣA, ν), where
0 ≤ w ∈ (Xϕ−1)′.

We conclude by showing an application of a direct extension of one of the
most famous instances of the Maurey-Rosenthal Theorem for operators from
Banach function lattices taking values in L1 that factors through L2. Con-
sider a finite measure space (Ω,µ) and an order continuous 2-convex Banach
function space X on (Ω,µ) such that X ⊂ L1(µ). Suppose that φ ∈ Φ is such
that t 7→ (φ−1(t))2 is a concave function on [0,∞). If there exists a constant
K > 0 such that for every finite sequence of positive scalars {αk}nk=1 with∑n
k=1 αk = 1 and every finite sequence {fk}nk=1 in X,

φ−1
( n∑
k=1

αkφ
(∫

Ω

|fk| dµ
))
≤ K

∥∥∥( n∑
k=1

αk|fk|2
)1/2∥∥∥

X
,

then there exists w ∈ (X1/2)′ with w ≥ 0 a.e. such that X ↪→ L2(wdµ). The
inclusion Lp(µ) ↪→ L2(µ) is a particular case of this result for 2 ≤ p <∞ and
φ(t) = tp for all t ≥ 0.
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