Document downloaded from:

http://hdl.handle.net/10251/153787

This paper must be cited as:

Company Rodríguez, J. (2017). Unusually thick dinosaur eggshell fragments from the Spanish Late Cretaceous. Historical Biology (Online). 31(2):203-210. https://doi.org/10.1080/08912963.2017.1357717

The final publication is available at https://doi.org/10.1080/08912963.2017.1357717

Copyright Taylor & Francis

Additional Information

Unusually thick dinosaur eggshell fragments from the Late Cretaceous of The Iberian Range, Spain.

Journal:	Historical Biology
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Company, Julio; Universidad Politecnica de Valencia, Departamento de Ingeniería del Terreno
Keywords:	dinosaur eggshells, Megaloolithidae, Megaloolithus aff. siruguei, Late Cretaceous, Spain

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 Unusually thick dinosaur eggshell fragments from the Late

- Cretaceous of Spain. 2
- 3 Julio Company
- ini 4 Departamento de Ingeniería del Terreno, Universidad Politécnica de Valencia, 46022
- 5 Valencia, Spain

7 Unusually thick dinosaur eggshell fragments from the Late Cretaceous

8 of Spain.

9	Recent fieldwork carried out in the south-eastern branch of the Iberian Range
10	(Valencia province, Spain) has produced a large collection of dinosaur eggshell
11	fragments of unusual thickness. The specimens, up to 4.8 mm thick, were
12	recovered from palustrine grey marls of the upper Campanian-lower
13	Maastrichtian Sierra Perenchiza Formation, which constitutes the deposits of a
14	wetland paleoenvironment. The eggshell fragments exhibit a characteristic
15	compactituberculate ornamentation, a tubospherulitic organization, and a
16	complex canaliculate respiratory system. The external tuberculate surface of the
17	shell and the internal microstructure permit to refer the studied specimens to
18	Megaloolithus aff. siruguei, the most common megaloolithid oospecies in the
19	Iberian Peninsula and Southern France. The biostratigraphic range of
20	Megaloolithus siruguei matches the temporal distribution of titanosaurid
21	dinosaurs in the Iberian Range, which are tentatively considered to be potential
22	producers.

Keywords: dinosaur eggshells, Megaloolithidae, *Megaloolithus* aff. *siruguei*, Late Cretaceous, Spain.

26 Introduction

The Upper Cretaceous continental deposits of the Iberian Peninsula and Southern France (Ibero-Armorican Island) have produced an extensive record of dinosaur remains since the 19th century (Allain & Pereda-Suberbiola 2003; Csiki-Slava et al. 2015; Canudo et al. 2016). The most productive localities are principally concentrated in the Pyrenean domain (Spain and France), Provence and Occitan (south-eastern France), and the Iberian Range (eastern Spain). This record includes skeletal remains as well as abundant oological and ichnological material. Up to eight different eggshell taxa have been defined in the Ibero-Armorican domain (Vianey-Liaud et al. 2003), albeit

Historical Biology

nowadays not all them are considered valid oospecies (for a complete revision, see Sellés, 2012; Fernández and Koshla, 2013). Recent fieldwork carried out in the foothills of the Sierra de Malacara (southwestern Iberian Range, Valencia province, Spain) has yielded abundant dinosaur eggshell fragments of the megaloolithid type. The fragments, of unusual shell thickness, greatly exceeds the usual parameters described for the megaloolithid structural type (Vianey-Liaud et al. 1994). The aim of the present work is to provide a detailed description of the microstructure of the recovered specimens, to determine their taxonomic position within the family Megaloolithidae, and to chronostratigraphically test the main hypothesis about the identity of the producer dinosaur group.

45 Locality and stratigraphy

The material described herein was collected from pale grey-pink pedogenic marls exposed in a 20-metres roadcut of deposits of the Late Cretaceous Sierra Perenchiza Formation in the southern part of the Iberian Range (eastern Spain), next to the Yegüeros creek, approximately 8 km west of the village of Buñol, Valencia province (Figure 1). The Sierra Perenchiza Formation constitutes a late Campanian-early Maastrichtian carbonate succession of interbedded palustrine marls and limestones with strong evidence of pedogenic modification (Vilas et al. 1982; Alonso et al. 1991; Garcia et al. 2004). These facies represent the sediments of seasonal wetlands, heavily modified by vegetation and by subaerial exposure (Freytet & Plaziat 1982; Wright & Platt 1995, Alonso-Zarza & Wright 2010). Neighbouring outcrops of the Sierra Perenchiza Formation, located about 20 km to the north, have yielded a rich vertebrate assemblage composed largely of dinosaurs, crocodiles, pterosaurs, and aquatic chelonians. Microvertebrate remains have also been recovered by screen-washing the sediments, including bony fish, squamates and

60	amphibians, together with tiny eggshell fragments, freshwater invertebrates (gastropods,
61	ostracodes, and bivalves), and charophyte remains (Company 2004; Company &
62	Szentesi 2012).
63	The paleoecological association and the sedimentological traits of these deposits
64	place the Sierra Perenchiza fossil localities in a palustrine paleoenvironment at the end
65	of the Cretaceous, settled in the western Tethyan margin of the Iberian coastline.
66	Materials and methods
67	More than 100 eggshell fragments were recovered by surface prospecting in a single
68	collecting site of approximately 500 square meters. They range from small pieces of
69	few millimetres up to larger pieces of 3.5-4 cm in size. Even smaller fragments were
70	recovered by screen-washing a bulk sample of sediment (ca. 25 kg), which also
71	produced tiny fragments of crocodile eggshells, abundant charophyte remains,
72	ostracodes and fragmentary freshwater gastropods. Neither complete eggs nor dinosaur
73	skeletal remains were found in the locality. The specimens are relatively equally well-
74	preserved, without noticeable signs of abrasion, and display a similar external
75	appearance, so it is presumed that the fragments had not been subject to significant
76	transportation and come from the same nesting area.
77	Eggshell fragments were cleaned with 30 sec. ultrasonic baths. The process was
78	monitoring using a stereomicroscope. Shell thickness of each specimen was estimated
79	as the mean of three different measurements taken with a digital micrometer. Radial
80	thin sections of the specimens were prepared following standard petrographic methods.
81	The sections were studied under a petrographic microscope (Olympus BXTR BX40), in
82	both normal and polarized light. Images were captured with a mounted digital camera
83	(Sony Cybershot TM QX-100) and edited with Adobe© Photoshop CS5©. Surface
84	ornamentation and microstructural organization of smaller Au, Pd-coated fragments

85	were examined using a scanning electron microscope (Philips XL30 ESEM FEG).
86	Nomenclature and definitions of eggshell microstructure used here are mainly based on
87	Mikhailov (1997). Specimens have been temporarily deposited in the collections of the
88	Polytechnic University of Valencia (Valencia, Spain).
89	Systematic palaeontology
90	Oofamily Megaloolithidae Zhao, 1979
91	Oogenus Megaloolithus Vianey-Liaud, Mallan,
92	Buscail and Montgellard, 1994
93	Megaloolithus aff. siruguei Vianey-Liaud, Mallan, Buscail and
94	Montgelard, 1994
95	Figs. 2 & 3
96	
97	Description
98	The eggshell fragments are composed of a single structural layer of calcite with a well
99	preserved surficial ornamentation (Figure 2). The eggshell thicknesses ranges from 1.8
100	to 4.8 mm, with an average of 3.45 mm ($n = 125$). The outer surface displays a distinct
101	compactituberculate ornamentation, consisting mostly of relatively rounded to
102	polygonal nodes which constitute the top of the shell units (Figures 2a-c). Occasionally,
103	neighbouring nodes coalesce, forming small chains. The average node diameter is about
104	0.59 mm, ranging from 0.34 to 0.90 mm in size. The pore openings are located in the
105	internodular spaces (Figures 2b-c). They are subcircular in shape and have diameters
106	ranging from 50 to 250 µm approximately.
107	In radial section, the eggshells consist of a single structural layer composed of
108	fan-shaped shell units of acicular calcite. Arched accretionary lines run from the base to
109	the top of the units (Figures 2e-f, Figure 3). The crystal units are spherulitic and

110	extremely high and narrow (average height/width ratios range from 4.4:1 to 6.1:1). A
111	few units are fused upwardly. In general, the shell units do not have parallel margins, as
112	their borders diverge at angles between 20° and 25° (Figure 2f).
113	The respiratory system is multicanaliculate (Mikhailov 1997). It consists of a
114	branching network of relatively straight, vertical primary canals with occasional
115	(transverse) anastomoses, forming a complex three-dimensional respiratory system
116	(Figure 2f). This eggshell structural type correlates with a high gas conductance,
117	characteristic of nesting in humid environments (Mikhailov 1997, López-Martínez et al.
118	2000; Deeming, 2006; Jackson et al., 2008; Tanaka and Zelenitsky, 2013). Many of the
119	vertical canals have been enlarged into galleries, filled posteriorly by diagenetic, coarse
120	sparry calcite cement during diagenesis (Figure 2f, Figure 3). The contour of these
121	cavities is irregular, suggesting dissolution of the boundaries of the shell units (Bravo et
122	al., 2006; Moreno-Azanza et al. 2016).
123	The inner surface of the shell is covered by irregular mamillae in different
124	degrees of dissolution (Figure 2d). The membrana tesacea is mostly missing in the
125	examined specimens; only rare remnants persist covering the base of the spherulites
126	(Figure 3). Occasional extra-spherulites are dispersed throughout the shell (Figure 2f).
127	Discussion
128	The external compactituberculate ornamentation, along with the tubospherulitic
129	(discretispherulitic) organization and the canaliculate pore system of the eggshell
130	fragments permit to refer the studied specimens to the oofamily Megaloolithidae (Zhao,
131	1979; Vianey-Liaud et al. 1994).
132	Megaloolithid eggs are widely distributed in the Upper Cretaceous deposits of
133	the Ibero-Armorican landmass of the European archipelago (Iberian Peninsula and
134	southern France), as well as in other Laurasian and Gondwanan paleoprovinces, and

Historical Biology

135	thus have a worldwide distribution (Powell, 1992; Grigorescu et al. 1994; Sahni et al.
136	1994; Vianey-Liaud et al. 1994, 2003; Mikhailov, 1997; Calvo et al. 1997; Vianey-Liaud
137	& Lopez-Martinez 1997; Mohabey 1998; Chiappe et al. 1998; Garcia 2000; Garcia &
138	Vianey-Liaud 2001a, 2001b; López-Martínez 2003; Garcia et al. 2003; Grellet-Tinner
139	et al. 2004; Jackson 2007; Grigorescu et al. 2010; Griebeler & Wermer 2011; Grellet-
140	Tinner et al. 2012; Fernández & Khosla 2015).
141	The most striking feature of the studied specimens is their unusual shell
142	thickness, often exceeding 3.5 mm and reaching a maximum value of 4.8 mm, which
143	are noticeably greater than the corresponding values of the different megaloolithid taxa,
144	that rarely reach 3.0 to 3.5 mm in thickness (Vianey-Liaud et al. 1994; Sellés 2012 and
145	references therein). Only four valid Late Cretaceous megaloolithid species are
146	considered to be medium- to thick-shelled taxa (Sellés et al, 2012), and exhibit high
147	(i.e., >3:1) length-to-width ratios of the shell units: <i>Megalolithus cylindricus</i> , <i>M</i> .
148	khempuriensis, M. megadermus, and M. siruguei. Whereas M. khempuriensis and M.
149	megadermus eggs are restricted to the Upper Cretaceous beds of Lameta Formation, in
150	India (Mohabey 1998), M. cylindricus, has also been reported from South America
151	(Kholsa & Sahni 1995; Fernández & Khosla 2015). Thus, all three oospecies have a
152	Gondwanan distribution. By contrast, M. siruguei is a Laurasian taxon, exclusively
153	documented in the European archipelago. M. siruguei constitutes the most common
154	megaloolithid oospecies in the Upper Cretaceous of the Iberian Peninsula and southern
155	France (Moratalla 1993; Vianey-Liaud et al. 1994, 2003; López-Martínez et al. 2000;
156	Garcia & Vianey-Liaud 2001; Bravo et al 2005, 2006; Vila et al. 2009, 2010, 2011;
157	Sellés 2012; Sellés et al. 2013; Sellés & Vila 2015).
158	Regarding <i>M. megadermus</i> , some authors consider it an invalid, pathologic
159	ootaxon (Sellés 2012), while others consider it a valid species (Mohabey, 1998;

160	Fernández, 2013; Fernández & Khosla 2015). The general features of M. megadermus
161	(Mohabey, 1998) resemble those of the Valencia eggshells, especially the strong shell
162	thickness, the coarse compactituberculate ornamentation, and the proportions of the
163	elongate, fan-shaped shell units. Nevertheless, the absence of a complex (i.e.
164	multicanaliculate) respiratory system in M. megadermus, prevents from placing the
165	Valencian specimens in this ootaxon. M. cylindricus exhibits "regular", never-fused
166	cylindrical shell units, more rounded and well-separated ornamental nodes, and simple,
167	vertical respiratory canals (Khosla & Sahni 1995), features not seen in the studied
168	samples. Moreover, the taxonomical validity of <i>M. cylindricus</i> , has been recently
169	questioned (Mohabey 1998; Khosla and Sahni 1995). Finally, M. khempuriensis also
170	differs from the Valencian specimens in the reduced thickness of the shell and in
171	lacking a complex pore system organization (Mohabey 1998).
172	The only thick-shelled megaloolithid oospecies provided with a three-
173	dimensional pore system is <i>M. siruguei</i> –and its junior synonym <i>M. multituberculata</i>
174	(Vianey-Liaud et al. 1994; Sellés 2012; Bravo & Gaete 2015). Even though the M.
175	siruguei type material and the large number of specimens recovered elsewhere display
176	lower values of shell thickness, ranging between 1.84 and 3.18 mm (Vianey-Liaud et al.
177	1994; López-Martínez et al. 2000; Vianey-Liaud et al. 2003; Bravo et al. 2005; Vila et
178	al. 2009, 2010, 2011; Sellés 2012; Sellés et al. 2013), in certain Campano-Maastrichtian
179	Iberian localities (La Rosaca and La Tejera sites, Burgos province), extremely thick
180	megaloolithid eggshell fragments of up to 5.46 mm have also been referred to by this
181	ootaxon (Izquierdo et al. 2001; Bravo et al. 2006; Moreno et al. 2016). Despite certain
182	differences of ornamentation and shape of the shell units that these specimens display
183	(Bravo et al. 2006, p. 229; Moreno-Azanza et al. 2006, p.5/17), given the morphological
184	variability usually observed in fossil oospecies, they have been ascribed to this Late

0
2
3
5
4
$egin{array}{c} 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
5
6
0
7
8
0
9
10
10
11
12
10
13
14
14
15
40
16
17
17
18
19
20
∠∪
21
<u> </u>
22
23
24
24
25
20
26
07
27
28
20
29
30
24
31
32
52
33
~ ~
34
25
30
36
50
37
00
38
20
29
40
41
42
42
43
44
45
46
47
48
-
49
50
51
52
53
54
55
56
57
58
59
60

185	Cretaceous oospecies. The close similarity between the Valencian samples and the
186	abovementioned specimens is indisputable. Additionally, the taphonomic history of the
187	eggshells from both localities followed a similar pattern resulting in an enlargement of
188	some pore canals in dissolution galleries, later filled with equant (blocky) calcite spar,
189	combined with the appearance of extra-spherulites of diagenetic origin (Moreno-Azanza
190	et al., 2016).
191	Other Upper Cretaceous megaloolithid oospecies reported in the Ibero-
192	Armorican Island are Megaloolithus aureliensis (= M. Peralta), Megaloolithus
193	mamillare (= M. baghensis, recently renamed Fusioolithus baghensis in Fernández &
194	Khosla (2015)), and <i>Megaloolithus jabalpurensis</i> (= <i>M. patagonicus</i>) (Vianey-Liaud et
195	al. 2003; Bravo et al. 2005; Vila et al. 2011; Sellés 2012; Sellés et al 2013; Bravo &
196	Gaete 2015). The shells of these taxa clearly differ from those of the studied specimens
197	in their general microstructure: they all display thinner shells composed of shorter and
198	wider spherulitic units, that are frequently fused producing coalescent nodes on the
199	external surface, and lack the complex multicanaliculate respiratory system
200	characteristic of <i>M. siruguei</i> .
201	Therefore, in accordance with the microstructural features observed in the
202	eggshell material from Valencia, and taking into account the well-known morphological
203	variability observed inside each taxa of the oofamily Megaloolithidae (Mikhailov 1997)
204	which has allowed a profusion of invalid oospecies (Vianey-Liaud et al. 2003; Sellés
205	2012; Fernandez & Khosla 2015; Bravo & Gaete 2015), the recently discovered
206	megaloolithid material from the Sierra Perenchiza Formation in Valencia province fits
207	in the range of variation of the thick-shelled variety of <i>M. siruguei</i> (Bravo et al. 2005;
208	Moreno-Azanza et al., 2006), and is hereafter assigned to Megaloolithus aff. siruguei.

3	
4	
5	
6	
7	
ጸ	
8 9 10 11 12 13 14 15 16 17 18	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
14	
20	
21	
20 21 22 23 24 25 26 27 29 30 31 32 33 34 35 36 37 38 39 40	
23 	
20	
24 07	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51 52	
52	
53	
54	
55	
50	
56	
57	
58	
59	
60	
-	

1 2

3

This small oological sample from Valencia province provides important information on the oodiversity of dinosaur faunas in one of the most meridional areas of the European archipelago just before the Cretaceous–Paleocene event, improving the data provided by coeval localities of the south-central and southeastern Pyrenees and the Iberian Range.

214 Megaloolithus siruguei record in the Iberian Peninsula and association with 215 titanosaurian dinosaurs

*titanosaurian dinosaurs*There is a general consensus that the megaloolithid eggs were laid by titanosaurian

217 sauropods (Powell, 1992; Calvo et al. 1997; Mikhailov 1997; Grellet-Tinner et al.

- 218 2012), especially after the discovery of sauropod embryonic remains inside
- 219 megaloolithid eggs in Argentina (Chiappe et al. 1998, 2003; Grellet-Tinner et al. 2004).
- 220 The occurrence in Romania of Upper Cretaceous (upper Maastrichtian) nesting horizons
- 221 with clutches of megaloolithid eggs (Megaloolithus cf. siruguei) associated with
- 222 hatchling and embryo remains of the basal hadrosaur *Telmatosaurus transsylvanycus*
- 223 (Grigorescu et al. 1994, 2010) calls in doubt that megaloolithid-type eggs are exclusive
- of sauropods.

225 In the Iberian Peninsula, the most extensive record of eggshells, eggs, and 226 clutches belonging to the family megaloolithidae comes from the Upper Cretaceous 227 continental deposits of the south Pyrenean domain (Vila et al. 2011; Sellés et al 2013; 228 Sellés & Vila 2015; Bravo & Gaete 2015), which consist of a continuous stratigraphic 229 record of transitional and continental sediments ranging up to 1000-m-thick from the late 230 Campanian to the Paleogene (Oms et al. 2007; Vila et al 2011). The oological record 231 often co-occurs with a rich record of both dinosaur skeletal remains and ichnological 232 sites.

Page 11 of 26

233	According to recent reviews, between 150 and 200 dinosaur localities have been
234	identified in the foothills of the southern Pyrenees (Sellés & Vila 2015; Oms et al. 2016;
235	Canudo et al. 2016). The faunal composition of the sites illustrates a clear predominance
236	of titanosaurian sauropods and hadrosaurid ornithopods over ankylosaurians and
237	theropod dinosaurs (Riera et al. 2009; Vila et al. 2016; Canudo et al. 2016). Even
238	though titanosaurs are almost continuously present from the basalmost terms of the
239	sedimentary sequence (late Campanian) to the Cretaceous/Paleogene boundary, there is
240	a gradual decline in the abundance of remains towards the end of the Maastrichtian
241	(albeit there is an apparent increase in their taxonomical diversity: Vila et al. 2012).
242	Meanwhile, the hadrosaurids, which are completely absent from the late Campanian to
243	the early Maastrichtian, increases gradually their presence, and become the dominant
244	group at the end of the Maastrichtian (Riera et al 2009; Vila et al. 2016; Canudo et al.
245	2016). Similarly, any member of Megaloolithidae is present throughout all the
246	sedimentary sequence, and <i>M. siruguei</i> eggs and eggshells tend to be more frequent in
247	Upper Campanian to lower Maastrichtian deposits (Vianey-Liaud & López-Martínez
248	1997; López-Martínez et al 2000; Garcia & Vianey_Liaud 2001b; López-Martínez
249	2003; Vila et al. 2009, 2010, 2011; Sellés 2012; Sellés et al. 2013; Sellés & Vila 2015),
250	just when the sauropod (i. e., titanosaurian) skeletal record is more abundant. The last
251	occurrence of <i>M. siruguei</i> is located in the lower part of the late Maastrichtian, near the
252	C31r-C31n reversal (Vila et al. 2011; Sellés et al. 2013), which chronologically marks
253	the first appearance of the hadrosaurids in the Ibero-Armorican domain (Riera et al.
254	2009; Canudo et al. 2016). Up to now, no <i>M. siruguei</i> remains have been reported from
255	the younger sediments that have produced the rich hadrosaurid fauna of the Ibero-
256	Armorican domain.

257	Megaloolithid eggs and eggshells are not only present in the Pyrenean realm, but
258	also in other geological domains of the Iberian Peninsula, as the Iberian Range. The
259	Iberian Range is a large NW-SE fold belt generated, like the Pyrenees, as a result of the
260	Alpine compression in the eastern part of the Iberian Peninsula. Exposures of Late
261	Cretaceous continental deposits occur along the northwestern and south-eastern margins
262	of the range (Vilas et al. 1982; Alonso et al. 1991) where at least three different
263	continental formations have produced oological remains. Hundreds of megaloolithid
264	eggshell fragments have been recovered from Campanian-Maastrichtian strata in
265	Burgos, Cuenca and Valencia provinces (Gutiérrez & Robles 1976; Moratalla 1993;
266	Izquierdo et al. 2001; Company, 2004; Bravo et al. 2006; Moreno-Azanza et al. 2016).
267	The occurrence of megaloolithid eggs and titanosaurian remains has been documented
268	in each of these stratigraphic formations.
269	The stratigraphic distribution of Upper Cretaceous eggshells and dinosaur
270	skeletal remains in the Iberian Range is very similar to that in the Pyrenean record.
271	Eggshell fragments of <i>M. siruguei</i> (Moratalla 1993; Izquierdo et al. 2001; Bravo et al.
272	2006) and titanosaurian remains (Izquierdo et al. 2001; Company et al. 2009; Ortega &
273	Pérez-García, 2009; Ortega et al. 2015) occur only in late Campanian-early
274	Maastrichtian formations. The first appearance of hadrosaurid remains in the Iberian
275	Range is dated to the end of the Maastrichtian (Company 2004), far from the last
276	occurrence of <i>M. siruguei</i> . Therefore, the co-occurrence of titanosaur remains and <i>M</i> .
277	siruguei material in in coeval deposits of the Iberian Range matches with that observed
278	in the southern Pyrenees and gives support to the extended acceptance that there is a
279	close relationship between titanosaur sauropods and megaloolithid eggs. Therefore, the
280	oological material from Valencia is tentatively assigned to titanosaurian dinosaurs.

Historical Biology

281	In sum, none of the late Campanian-early Maastrichtian dinosaur localities from
282	the Ibero-Armorican Island that have yielded M. siruguei material and titanosaur
283	remains have provided hadrosaurid fossils. Late Maastrichtian formations, which have
284	produced hadrosaurid remains, have not yielded M. siruguei eggshells. This disparity
285	makes it highly improbable that this oospecies, at least in the Iberian domain, was laid
286	by hadrosaurid dinosaurs. This fact does not contradict that other megaloolithid-type
287	eggs belong to hadrosaurs, given their direct associations in Central Europe.

288 Conclusions

The dinosaur eggshell fragments recently recovered from the Upper Cretaceous beds of the Iberian Range, Valencia province (Spain) can be referred to the oofamily Megaloolithidae. The egg fragments are close similar to and exhibit the main microstructural features of Megaloolithus siruguei from southern France, south-central Pyrenees and other egg-producing localities of the Iberian Range. Even though these fragments display thicker shells than the type material, analogous eggshells from diverse Late Cretaceous Iberian localities have been referred to as the above-mentioned oospecies. In accord with recent discoveries and the chronostratigraphic distribution of dinosaur groups in the Iberian Range, the egg material is likely to have been laid by titanosaurian sauropod dinosaurs.

299 Acknowledgements

- 300 The author gratefully acknowledges the support of the Central Service for Experimental
- 301 Research of the University of Valencia. Research was partly supported by the
- 302 Ministerio de Economía y Competitividad of Spain (Secretaría de Estado de
- 303 Investigación, Desarrollo e Innovación, projects CGL2013-47521-P and CGL2014-
- 304 53548-P). The original version of the manuscript was submitted for professional

<text><text><text>

1 2		
3	307	References
4 5	308	Allain R, Pereda-Suberbiola X. 2003. Dinosaurs of France. C R Palevol Palevol 2:27-
6 7	309	44.
8 9	310	Alonso A, Meléndez N, Mas JR. 1991. Sedimentación lacustre durante el Cretácico en
10	311	la Cordillera Ibérica, España. Acta Geol Hisp. 26: 35-54.
11 12	312	Alonso-Zarza AM, Wright VP. 2010. Palustrine carbonates. In: Alonso-Zarza AM,
13 14	313	Tanner LH, editors. Carbonates in Continental Settings: Geochemistry,
15	314	Diagenesis and Applications. Develop Sedim. 61: p.103–132. Elsevier.
16 17	315	Bravo AM, Gaete R. 2015. Titanosaur eggshells from the Tremp Formation (Upper
18 19	316	Cretaceous, Southern Pyrenees, Spain). Hist Biol. 27:1079–1089.
20	317	Bravo AM, Huerta P, Izquierdo-Montero LA, Montero-Huerta D, Pérez-Martínez G,
21 22	318	Torcida Fernández-Baldor, F, Urién-Montero V. 2006. Un nuevo yacimiento de
23 24	319	cáscaras de huevo de dinosaurio de la provincia de Burgos, España
25	320	(Maastrichtiense, Fm. Santibañez del Val). Actas de las III Jornadas
26 27	321	Internacionales sobre Paleontología de Dinosaurios y su Entorno. Ed. Colectivo
28 29	322	Arqueológico y Paleontológico de Salas. Salas de los Infantes, 223–234.
30	323	Bravo AM, Vila B, Galobart, A. & Oms, O. 2005. Restos de huevos de dinosaurio en el
31 32	324	Cretácico Superior del sinclinal de Vallcebre (Berguedà, provincia de
33 34	325	Barcelona). Rev Esp Paleont. N.E:10, 49–57.
35	326	Calvo JO, Engelland S, Heredia SE, Salgado L. 1997. First record of dinosaur eggshells
36 37	327	(?Sauropoda–Megaloolithidae) from Neuquén, Patagonia, Argentina. Gaia.
38 39	328	14:23–32.
40	329	Canudo JI, Oms O, Vila B, Galobart À, Fondevilla V, Puertolas-Pascual E, Sellès AG,
41 42	330	Cruzado-Caballero P, Dinarès-Turell J, Vicens E, Castanera D, Company J,
43 44	331	Burrel L, Estrada R, Marmi J, Blanco A. 2016. The upper Maastrichtian
45	332	dinosaur fossil record from the southern Pyrenees and its contribution to the
46 47	333	topic of the CretaceousePalaeogene mass extinction event. Cret Res. 57:540-
48 49	334	551.
50	335	Cruzado-Caballero P, Ruiz-Omeñaca JI, Gaete R, Riera V, Oms O, Canudo, JI. 2014. A
51 52	336	new hadrosaurid dentary from the latest Maastrichtian of the Pyrenees (north
53 54	337	Spain) and the high diversity of the duck-billed dinosaurs of the Ibero-
55	338	Armorican Realm at the very end of the Cretaceous. Hist Biol. 26,619–630.
56 57		
58 59		

339	Chiappe LM, Coria RA, Dingus L, Jackson F, Chinsamy A, Fox M. 1998. Sauropod
340	dinosaur embryos from the Late Cretaceous of Patagonia. Nature. 396:258–261.
341	Chiappe LM, Coria RA, Jackson F, Dingus L. 2003. The Late Cretaceous nesting site of
342	Auca Mahuevo (Patagonia, Argentina): eggs, nests and embryos of titanosaurian
343	sauropods. Palaeovertebr Montpelier. 32:97-108.
344	Company J. 2004. Vertebrados continentales del Cretácico superior (Campaniense-
345	Maastrichtiense) de Valencia. [PhD dissertation]. Valencia: Universidad de
346	Valencia.
347	Company J, Szentesi Z. 2012. Amphibians from the Late Cretaceous Sierra Perenchiza
348	Formation of the Chera Basin, Valencia Province, Spain. Cret Res. 37:240-245.
349	Csiki-Sava Z, Buffetaut E, Ősi A, Pereda-Suberbiola X, Brusatte SL. 2015. Island life in
350	the Cretaceous-faunal composition, biogeography, evolution, and extinction of
351	land-living vertebrates on the Late Cretaceous European archipelago. ZooKeys
352	469:1–161.
353	Deeming DC. 2006. Ultrastructural and functional morphology of eggshells supports
354	the idea that dinosaur eggs were incubated buried in a substrate. Palaeontology
355	49:171–185.
356	Fernández MS. 2013. Análisis de cáscaras de huevos de Dinosaurios de la Formación
357	Allen, Cretácico Superior de Río Negro (Campaniano-Maastrichtiano): Utilidad
358	de los macrocaracteres de interés parataxonómico. Ameghiniana 50:79-97.
359	Fernández MS, Khosla A. 2015. Parataxonomic review of the Upper Cretaceous
360	dinosaur eggshells belonging to the oofamily Megaloolithidae from India and
361	Argentina. Hist Biol. 27:158–180.
362	Freytet P, Plaziat JC. 1982. Continental carbonate sedimentation and pedogenesis - Late
363	Cretaceous and Early Tertiary of southern France. Contrib Sedimentol. 12:1-
364	213.
365	Garcia G. 2000. Diversité des coquilles "minces" d'oeufs fossiles du Crétacé supérieur
366	du Sud de la France. Geobios. 33:113–126.
367	Garcia G, Tabuce R, Cappetta H, Marandat B, Bentaleb I, Benabdallah A, Vianey-
368	Liaud M. 2003. First record of dinosaur eggshells and teeth from the North-West
369	African Maastrichtian (Morocco): Palaeovertebrata. 32:59-69.
370	Garcia G, Vianey-Liaud M. 2001a. Nouvelles donnees sur les coquilles d'œufs de
371	dinosaures Megaloolithidae du Sud de la France: systematiue et variabilite

372	intraspecifique: C R Acad Sci Paris, Sciences de la Terre et des planètes.
373	332:183–191.
374	Garcia G, Vianey-Liaud M .2001b. Dinosaur eggshells as biochronological markers in
375	Upper Cretaceous continental deposits. Palaeog Palaeoclim Palaeoec. 169:153-
376	164.
377	Grellet-Tinner G, Chiappe LM, Coria R. 2004. Eggs of titanosaurid sauropods from the
378	Upper Cretaceous of Auca Mahuevo (Argentina). Can J Earth Sci. 41:949–960.
379	Grellet-Tinner G, Codrea V, Folie A, Higa A, Smith T .2012. First evidence of
380	reproductive adaptation to "Island Effect" of a dwarf Cretaceous Romanian
381	titanosaur, with embryonic integument in ovo. PLoS ONE 7(3): e32051.
382	Griebeler EM, Werner J. 2011. The life cycle of sauropod dinosaurs. In: Klein N,
383	Remes K, Gee CT, Sander PM, editors. Biology of the Sauropod Dinosaurs:
384	Understanding the Life of Giants. Bloomington: Indiana University Press; p.
385	263–275.
386	Grigorescu D, Garcia G, Csiki Z, Codrea V, Bojar AV. 2010. Uppermost Cretaceous
387	megaloolithid eggs from the Hateg Basin, Romania, associated with hadrosaur
388	hatchlings: Search for explanation . Palaeog Palaeoclim Palaeoec. 293:360-374.
389	Grigorescu D, Weishampel D, Norman D, Seclamen M, Rusu M, Baltres A, Teodorescu
390	V. 1994. Late Maastrichtian dinosaur eggs from the Hateg Basin (Romania). In:
391	Carpenter K, Hirsch KF, Horner JR, editors. Dinosaur eggs and babies.
392	Cambridge: Cambridge University Press; p. 75–87.
393	Gutiérrez G, Robles F.1976. Biostratigraphie du Sénonien continental des environs de
394	Villalba de la Sierra (Province de Cuenca, Espagne). Paléobiol Cont. 7:1–17.
395	Izquierdo LA, Montero D, Pérez G, UriénV, Meijide M. 2001. Macroestructura de
396	huevos de dinosaurios en el Cretácico superior de "La Rosaca" (Burgos,
397	España). Actas de las I Jornadas Internacionales Sobre Paleontología de
398	Dinosaurios y su Entorno. Ed. Colectivo Arqueológico y Paleontológico de
399	Salas. Salas de los Infantes, 389 – 395.
400	Jackson FD. 2007. Titanosaur reproductive biology : comparison of the Auca Mahuevo
401	Titanosaur nesting locality (Argentina), to the Pinyes Megaloolithus nesting
402	locality (Spain). [PhD dissertation]. Bozeman (Mt): Montana State University.
403	Jackson FD, Varrichio DJ, Jackson R, Vila B, Chiappe L. 2008. Comparison of water-
404	vapor conductance on a titanosaur egg from Argentina with a Megaloolithus
405	siruguei from Spain. Paleobiology 34: 229–246.

406	Khosla A, Sahni A. 1995. Parataxonomic classification of Late Cretaceous dinosaur
407	eggshells from India. J Paleontol Soc India. 40:87–102.
408	López-Martínez N. 2003. Dating dinosaur oodiversity: chronostratigraphic control of
409	late Cretaceous oospecies succession. Palaeovertebrata. 32:120-148.
410	López-Martínez N, Canudo JI, Ardévol L, Pereda-Suberbiola X, Orue-Etxebarría X,
411	Cuenca-Bescós G, Ruiz Omeñaca JI, Murelaga X, Feist M. 2001. New dinosaur
412	sites correlated with Upper Maastrichtian pelagic deposits in the Spanish
413	Pyrenees: implications for the dinosaur extinction pattern in Europe. Cret Res.
414	22:41–61.
415	López-Martínez N, Moratalla JJ, Sanz JL. 2000. Dinosaurs nesting on tidal flats.
416	Palaeogeogr Palaeoclimatol Palaeoecol.160:153–163.
417	Mikhailov KE. 1997. Fossil and recent eggshell in amniotic vertebrates: fine structure,
418	comparative morphology and classification. Spec Pap Paleontol. 56:1–80.
419	Mohabey DM. 1998. Systematics of Indian Upper Cretaceous dinosaur and chelonian
420	eggshells. J Vert Paleontol. 18:348–362.
421	Moratalla JJ. 1993. Restos indirectos de dinosaurios del registro español: paleoicnología
422	de la Cuenca de (Jurásico superior-Cretácico inferior) y paleoología del
423	Cretácico superior. [PhD dissertation]. Madrid: Universidad Autónoma de
424	Madrid.
425	Moreno-Azanza M, Bauluz B, Canudo JI, Puértolas-Pascual E, Sellés AG. 2013. A re-
426	evaluation of aff. Megaloolithidae eggshell fragments from the uppermost
427	Cretaceous of the Pyrenees and implications for crocodylomorph eggshell
428	structure. Hist Biol. 26:195–205.
429	Moreno-Azanza M, Bauluz B, Canudo JI, Gasca JM, Torcida Fernández-Baldor F.
430	2016. Combined use of electron and light microscopy techniques reveals false
431	secondary shell units in Megaloolithidae eggshells. PLoS ONE 11(5): e0153026.
432	doi:10.1371/journal.pone.0153026.
433	Oms O, Dinarés-Turell J, Vicens E, Estrada R, Vila B, Galobart A, Bravo AM. 2007.
434	Integrated stratigraphy from the Vallcebre Basin (southeastern Pyrenees, Spain):
435	new insights on the continental Cretaceous-Tertiary transition in southwest
436	Europe. Palaeog Palaeoclim Palaeoec. 255:35-47.
437	Oms O, Fondevilla V, Riera V, Marmi J, Vicens E, Estrada R, Anadón P, Vila B.
438	Galobart, A. 2016. Transitional environments of the Maastrichtian south

439	Pyrenean basin (Catalonia, Spain): the Fumanya Member tidal flat. Cret Res.
440	57:428-442.
441	Ortega F, Bardet N, Barroso-Barcenilla F, Callapez PM, Cambra-Moo O, Daviero-
442	Gómez V, Díez-Díaz V, Domingo L, Elvira A, Escaso F, et al. 2015. The biota
443	of the Upper Cretaceous site of "Lo Hueco" (Cuenca, Spain). J Iber Geol.41:83-
444	99.
445	Ortega F, Pérez García A. 2009. Cf. Lirainosaurus sp.(Dinosauria: Titanosauria) en el
446	Cretácico Superior de Guadalajara. Geogaceta 46:87–90.
447	Powell, JE. 1992. Hallazgo de huevos asignables a dinosaurios titanosauridos
448	(Saurischia, Sauropoda) de la Provincia de Río Negro, Argentina. Acta Zool
449	Lill. 41:381–389.
450	Riera V, Oms O, Gaete R, Galobart A. 2009. The end-Cretaceous dinosaur succession
451	in Europe: the Tremp Basin record (Spain). Palaeogeogr Palaeoclimatol
452	Palaeoecol. 283:160–171.
453	Sahni A, Khosla A. 1994. Paleobiology, taphonomical and paleoenvironmental aspects
454	of Indian Cretaceous sauropod nesting sites. Gaia 10:215–223.
455	Sahni A, Tandon SK, Jolly A, Bajpai S, Sood A, Srinivasan S. 1994. Upper Cretaceous
456	dinosaur eggs and nesting sites from the Deccan volcano-sedimentary province
457	of peninsular India. In: Carpenter K, Hirsch KF, Horner JR, editors. Dinosaur
458	eggs and babies. Cambridge, UK: Cambridge University Press; p. 204–226.
459	Sanz JL, Moratalla JJ, Díaz-Molina M, López-Martínez N, Kälin O, Vianey-Liaud M.
460	1995. Dinosaur nests at the sea shore. Nature. 376:731–732.
461	Segura M, García A, Carenas B, García-Hidalgo JF, Gil J. 2002. Upper Cretaceous of
462	the Iberian Basin. In: Gibbons W, Moreno T, editors. The Geology of Spain.
463	London: The Geological Society; p. 288–292.
464	Sellés AG. 2012. Oological Record of Dinosaurs in South-Central Pyrenees (SW
465	Europe): Parataxonomy, diversity and biostratigraphical implications
466	[dissertation]. Barcelona (Spain): Universitat de Barcelona.
467	Sellés AG, Bravo AM, Delclòs X, Colombo F, Marti X, Ortega-Blanco J, Parellada C.
468	Galobart A. 2013. Dinosaur eggs in the Upper Cretaceous of the Coll de Nargó
469	area, Lleida Province, south-central Pyrenees, Spain: Oodiversity,
470	biostratigraphy and their implications. Cret Res. 40:10–20.
471	Sellés AG, Vila, B. 2015. Re-evaluation of the age of some dinosaur localities from the
472	southern Pyrenees by means of megaloothid oospecies. J Iber Geol. 41:125–139.

473	Tanaka K, Zelenitsky DK. 2014. Comparisons between experimental and morphometric
474	water vapor conductance in the eggs of extant birds and crocodiles: implications
475	for predicting nest type in dinosaurs. Can J Zool. 92: 1049–1058.
476	Vianey-Liaud M, Khosla A, Garcia G. 2003. Comparison of European and Indian
477	dinosaur eggshells: paleobiogeographicl implications. J Vert Paleontol. 23:575-
478	585.
479	Vianey-Liaud M, López-Martínez N. 1997. Late Cretaceous dinosaur eggshells from the
480	Tremp basin, southern Pyrenees, Lleida, Spain. J Paleont. 71:1157–1171.
481	Vianey-Liaud M, Mallan P, Buscail O, Montgelard C. 1994. Review of French dinosaur
482	eggshells: morphology, structure, mineral and organic composition. In:
483	Carpenter K, Hirsch KF, Horner JR, editors. Dinosaur Eggs and Babies.
484	Cambridge: Cambridge University Press; p. 151–183.
485	Vila B. Galobart A, Canudo J I, Le Loeuff J, Dinarés-Turell J, Riera V, Oms O, Tortosa
486	T, Gaete R. 2012. The diversity of sauropod dinosaurs in the latest Cretaceous of
487	Southwest of Europe. Palaeogeogr Palaeoclimatol Palaeoecol. 350:19-38.
488	Vila B, Galobart A, Oms O, Poza B, Bravo AM. 2009. Assessing the nesting strategies
489	of Late Cretaceous titanosaurs: 3-D clutch geometry from a new megaloolithid
490	eggsite. Lethaia 43:197–208.
491	Vila B, Jackson FD, Fortuny J, Sellés AG, Galobart A. 2010. 3-D Modelling of
492	Megaloolithid Clutches: Insights about Nest Construction and Dinosaur
493	Behaviour. PLoS ONE 5(5): e10362. doi:10.1371/journal.pone.0010362.
494	Vila B, Riera V, Bravo AM, Oms O, Vicens E, Estrada R, Galobart A. 2011. The
495	chronology of dinosaur oospecies in south-western Europe: Refinements from
496	the Maastrichtian succession of the eastern Pyrenees, Cret Res. 32: 378–386.
497	Vila B, Sellés AG, Brusatte SL. 2016. Diversity and faunal changes in the latest
498	Cretaceous dinosaur communities of southwestern Europe. Cret Res. 57: 552-
499	564.
500	Vilas L, Mas R, García A, Arias C, Alonso A, Meléndez N, Rincón R. 1982. Ibérica
501	Suroccidental. In: García A, editor. El Cretácico de España. Madrid:
502	Universidad Complutense de Madrid; p. 457-513.
503	Vissers RLM, Meijer PTh. 2012. Iberian plate kinematics and Alpine collision in the
504	Pyrenees. Earth-Sci Rev. 114:61-83.
505	Wright VP, Platt NH. 1995. Seasonal wetland carbonate sequences and dynamic
506	catenas: a reappraisal of palustrine limestones. Sedim Geol. 99:65-71.

URL: http://mc.manuscriptcentral.com/ghbi

Historical Biology

507	Zhao Z. 1979. The advancement of researches on the dinosaurian eggs in China. In:
508	IVPP, N.G.P.I., editor. Mesozoic and Cenozoic Red Beds of South China.
509	Beijing: Science Publishing Co.; p. 330–340.

Figure 1. Sketch maps showing the locality from which the specimens were collected.
Inset shows the position of the sketch map of Valencia province showing the location
(star) of the collecting site, in the vicinity of Buñol village (exact location on file at
DGPC, Generalitat Valenciana).

Figure 2. Megaloolithus aff. siruguei from the Late Cretaceous Sierra Perenchiza Formation (Valencia province, Spain). (a–c), SEM photographs of the outer eggshell surface, showing the compactituberculate ornamentation composed of densely packed nodes (a–b). Note the occasional coalescence of the nodes (b). White arrows mark the position of the pore apertures (b-c). (d), SEM photograph of the inner surface showing partially dissolved mamillae. (e), SEM photograph in radial view showing the shape of the fan-shaped units made of acicular calcite crystals radiating from the nucleation centres. (f), Polarized light microscope photograph of a radial thin section showing the highly elongated fan-shaped units, with a few fused units (red arrow). Growth lines are markedly convex and end at the margins of the shell units. Note the presence of extra-spherulites (green arrows) and the prolatocanaliculate canal system sometimes linked by transverse channels (blue arrows). Anastomosed canals are coloured for a better view. Scale bar in (c) = 1 mm.

Figure 3. *Megaloolithus* aff. *siruguei* from the Late Cretaceous Sierra Perenchiza
Formation (Valencia province, Spain). Polarized light microscope photograph of a
radial section showing the fan-shaped morphology of the elongated shell units and the
presence of extended cavities filled with sparry calcite cement. Remains of a membrane
partially covers the base of the spherulites (white arrows). Abbreviations: al,
accretionary lines; acc, acicular calcite crystals; ca, cavities. Scale bar = 0.5 mm.
Fig. 4. (a), map of the main Late Cretaceous megaloolithid, hadrosaur and titanosaur-

535 producing localities in the Iberian Peninsula. (b), chronostratigraphic ranges of

- 536 megaloolithid oospecies in the Ibero-Armorican realm (data from the Iberian Range in a
- 537 separate graph. Star marks the chronostratigraphic position of the studied locality). (c),

<section-header>

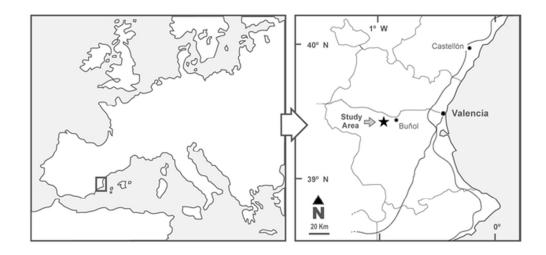


Figure 1. Sketch maps showing the locality from which the specimens were collected. Inset shows the position of the sketch map of Valencia province showing the location (star) of the collecting site, in the vicinity of Buñol village (exact location on file at DGPC, Generalitat Valenciana).

53x25mm (300 x 300 DPI)

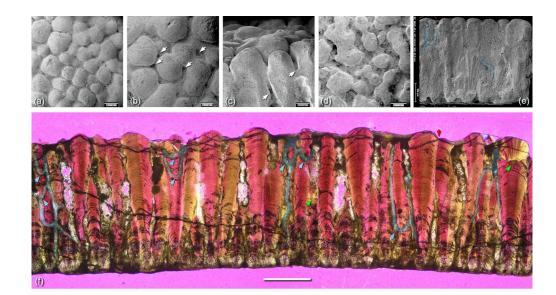


Figure 2. Megaloolithus aff. siruguei from the Late Cretaceous Sierra Perenchiza Formation (Valencia province, Spain). (a–c), SEM photographs of the outer eggshell surface, showing the compactituberculate ornamentation composed of densely packed nodes (a–b). Note the occasional coalescence of the nodes (b). White arrows mark the position of the pore apertures (b–c). (d), SEM photograph of the inner surface showing partially dissolved mamillae. (e), SEM photograph in radial view showing the shape of the fanshaped units made of acicular calcite crystals radiating from the nucleation centres. (f), Polarized light microscope photograph of a radial thin section showing the highly elongated fan-shaped units, with a few fused units (red arrow). Growth lines are markedly convex and end at the margins of the shell units. Note the presence of extra spherulites (green arrows) and the prolatocanaliculate canal system sometimes linked by transverse channels (blue arrows).Anastomosed canals are coloured for a better view. Scale bar in (c) = 1 mm.

98x53mm (300 x 300 DPI)

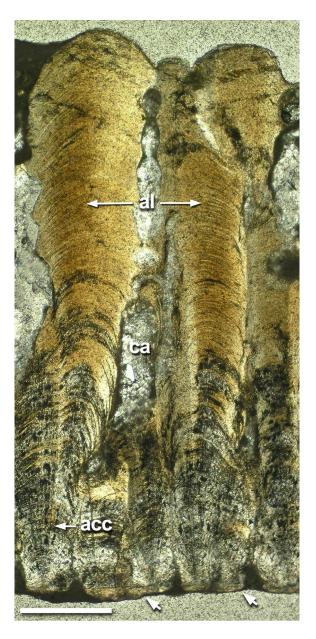


Figure 3. Megaloolithus cf. siruguei from the Late Cretaceous Sierra Perenchiza Formation (Valencia province, Spain). Polarized light microscope photograph of a radial section showing the fan-shaped morphology of the elongated shell units and the presence of extended cavities filled with sparry calcite cement. Remains of a membrane partially covers the base of the spherulites (white arrows). Abbreviations: al, accretionary lines; acc,a cicular calcite crystals; ca, cavities. Scale bar = 0.5 mm.

90x189mm (300 x 300 DPI)

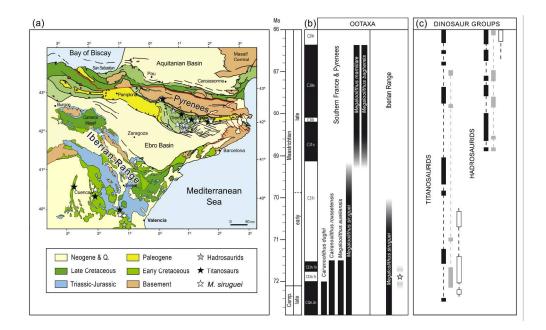


Fig. 4. (a), map of the main Late Cretaceous megaloolithid, hadrosaur and titanosaur-producing localities in the Iberian Peninsula. (b), chronostratigraphic ranges of megaloolithid oospecies in the Ibero-Armorican realm (data from the Iberian Range in a separate graph. Star marks the chronostratigraphic position of the studied locality). (c), Stratigraphic distribution of titanosaur and hadrosaur occurences in the northern Pyrenees (grey graphs), southern Pyrenees (black graphs), and the Iberian Range (white graphs). (a, modified from Vissers & Meijer 2012; b, c, modified from Sellés & Vila 2015).

118x73mm (600 x 600 DPI)