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TERRA is an RNA molecule transcribed from human subtelomeric regions towards chromosome 

ends potentially involved in regulation of heterochromatin stability, semiconservative replication 

and telomerase inhibition, among others. TERRA contains tandem repeats of the sequence 

GGGUUA, with a strong tendency to fold into a four-stranded arrangement known as parallel G-

quadruplex. Here, we demonstrate by using single-molecule force spectroscopy that this 

potential is limited by the inherent capacity of RNA to self-associate randomly and further 

condense into entropically more favorable structures. We stretched RNA constructions with 

more than four and less than eight hexanucleotide repeats, thus unable to form several G-

quadruplexes in tandem, flanked by non-G-rich overhangs of random sequence by optical 

tweezers on a one by one basis. We found that condensed RNA stochastically blocks G-

quadruplex folding pathways with a near 20% probability, a behavior that is not found in DNA 

analogous molecules. 
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The G-quadruplex is a four-stranded nucleic acid structure formed by G-rich sequences1. G-

quadruplexes are preferentially formed in some genome regions, such as telomeres, gene 

promoters (including oncogene promoters) and ribosomal DNA (rDNA)2-4. G-quadruplexes can 

also form at RNA level and are particularly frequent in untranslated mRNA regions5-6. It is 

nowadays accepted that G-quadruplexes exist in vivo7 and play important roles in multiple key 

biological processes, such as transcription, replication, translation, and telomere maintenance3-7. 

Recently, it has been found that telomeres are transcribed into TElomeric Repeat containing 

RNA (TERRA), which holds several repetitions of the sequence GGGUUA at their 3’ end8-11. 

TERRA is thus capable of forming G-quadruplex structures in vitro and has the potential to do so 

in vivo12-13. TERRA is a non-coding RNA proposed to act as a scaffold for the assembly of 

telomeric proteins involved in telomere maintenance and telomeric heterochromatin formation10, 13-

19. 

G-quadruplex folding/unfolding processes have been studied by a number of theoretical 20-24 and 

experimental methods, including spectroscopic-based techniques21, 25, mass spectrometry26 and 

NMR27. However, most of the experimental methods do not represent the dynamical scenarios in 

which localized forces are applied by specialized proteins, such as the telomerase, to a single 

molecular structure in the cell. Here, we report on the unfolding dynamics of short TERRA 

molecules in the presence of extra single-stranded (ss) RNA. We singled out several repetitions, 

n, of the human telomeric sequence GGGUUA and added extra nucleotides (nts) of non-G-rich, 

random sequences on both the 3’ and 5’ ends of ssRNA (see Figure 1(A), Figure S1 and the 

experimental section in the Supporting Information document). We chose 4 < n < 8, first, to 

make sure that the sequence can only fold into a single G-quadruplex conformation and, second, 

to study the effect of additional repetitions in the formation of this non-canonical structure. 
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Figure 1. Scheme of the experimental configuration. (A) Molecular construction. It consists of 

a central sequence with “n” repeats of GGGUUA, which may yield a single RNA G-quadruplex 

(GQ, represented) or a randomly condensed ssRNA (see text for details). (B) Experimental set-

up: a single RNA construct was tethered by opposite hybrid duplex ends between two 

polystyrene microspheres: an α-digoxigenin-coated bead, optically trapped, and a streptavidin-

coated bead, held by air suction on top of a micropipette. “B” stands for biotin and “D” for 

digoxigenin. 

For reference purposes, we will focus on the five-repeat molecule (n = 5) with four extra 

nucleotides on both the 3’ and 5’ ends. These spacer tracts were added to provide elasticity to the 

central key sequence, following the double-stranded handles, which are mechanically more rigid 
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to bending. Within RNA preparation restraints, spacers sequences were selected to minimize any 

possible interference with the G-quadruplex formation. Earlier experiments therein by circular 

dichroism and NMR with this RNA fragment demonstrated its potential to form an 

intramolecular parallel G-quadruplex28. We will next show that the 8-nt ssRNA excess together 

with an extra GGGUUA repetition provides enough configurational flexibility for this telomeric 

sequence to fold into several conformations (see Results and Discussion section and Figure S2 in 

the Supporting Information document). This 38-nt sequence can give rise to: (i) a four-stranded, 

G-quadruplex structure interacting with different lengths of excess ssRNA on both ends (see 

Figure S2), (ii) a three-stranded, G-triplex similarly coexisting with two ssRNA lateral fragments 

of variable lengths and (iii) either a hairpin-like structure or more general condensed 

conformations of ssRNA. These structural and subsequent kinetic scenarios as well as the 

probabilities for the conformations discussed above resemble the complex picture described for 

G-quadruplex DNA folding23, 29. Real-time single-molecule techniques are very well-suited to 

unveil the intricate dynamics inherent to G-quadruplex folding/unfolding, since bulk approaches 

in which an ensemble of equal preparations takes place can only provide average signals thus 

hindering the access to the less populated conformations30-31. 

We used optical tweezers (OT) to study single-molecule mechanical folding and unfolding 

processes under controlled in vitro conditions. To this end, the 38-nt reference ssRNA sequence 

was attached to polystyrene beads, as shown in Figure 1(B), through hybrid DNA-RNA handles. 

Rupture events became observable as jumps over the characteristic force-extension curves of the 

double-stranded (ds) hybrid handles, whose elastic response is similar to those of dsDNA and 

dsRNA32-33. We registered two categories of behaviors: (i) curves with single rupture events and 

(ii)  those with two consecutive ones, which we analyze next. 

Single rupture events. Force-extension curves with only one rupture event represented the 

typical behavior. Figure S3 shows the results of several single molecules with the reference 

sequence. The traces mostly reveal the characteristic elasticity of the double-stranded handles 
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interrupted by rupture events at intermediate forces. Some of the traces revealed the 

overstretching transition of the hybrid handles, this fact confirming that only one molecular 

construct has been attached between the beads32. Rupture signatures correspond to unfolding 

events of different species, as judged by their force and extension values and also by the 

relaxation behavior of the traces (see also the insets). 

Three different types of rupture events can be distinguished and they can be assigned, a priori, to 

the unfolding of different structures by estimating the released ssRNA. Let Lnt be the mean, 

effective distance between successive nucleotides in ssRNA, dG the solution-structure distance 

between first and last nucleotides in the G-structure (PDB ID: 2KBP)34-35, NG the number of 

nucleotides in the folded G-structure and x the rupture extension measured in the OT 

experiments, then: x = NG × Lnt – dG. The estimated released extension upon the G-quadruplex and 

the G-triplex ruptures are: 21 (nt) × Lnt – 1.5 (nm) = 9.2 nm and 15 (nt) × Lnt – 1.9 (nm) = 5.8 nm, 

respectively, where we have used Lnt = 0.51 nm/nt following Yangyuoru et al.35 (see also the 

Supplementary Discussion in the Supporting Information document). We conclude that the most 

probable rupture events arise from the unfolding of the G-quadruplex/G-triplex, Figure S3(A), 

and a more general structure that may take place as a consequence of the ssRNA non-specific 

self-interactions, Figure S3(B). This interpretation agrees with previous studies, where the G-

triplex and G-quadruplex rupture events were located primarily in the range of 20-30 pN35. The 

interpretation of the rupture event at low force is related to the decondensation plateau in the 

force-extension curves of plain single-stranded nucleic acids, between 4-10 pN, depending on 

ionic conditions36-39 (see Supplementary Discussion). 

To in situ confirm this probabilistic association we recorded data over almost 300 rupture events 

of this reference molecular construct. The statistical analysis of the force-extension curves for 

single-rupture events is presented in Figure 2 in parallel with DNA analogous molecules with the 

same sequence (see Figure S4 for unfolding-refolding curves of the DNA G-quadruplex 

sequence). Figure 2(A), left panel, shows the statistical behavior of the rupture forces for RNA. 
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Two major populations can be distinguished centered at nearly 9 and 22 pN. The structures that 

we propose as majorly responsible for the two populations are condensed ssRNA (due to ssRNA 

non-specific self-interactions, see also the Supplementary Discussion) for the lower and narrower 

force peak and the G-quadruplex/G-triplex unfolding for the higher and wider force peak 

(Supplementary Discussion). Figure 2(A), right panel, shows the unfolding extension histogram. 

 

Figure 2. Statistics of single rupture events in the reference sequence. Rupture force and 

unfolding extension distribution for (A) the RNA construction of 5 repeats (N=299) and (B) its 

analogue in DNA (N= 163). Mean ± standard error (s.e.) and standard deviation (s.d.) according 

to Gaussian fitting are: (A) 8.8 ± 0.2 and 1.3 pN (pink line), 22.3 ± 0.5 and 8.6 pN (light blue 

line), left panel, 8.2 ± 0.2 and 2.4 nm (green line), right panel; and (B) 20.4 ± 0.4 and 6.9 pN 

(blue line, left panel), 8.6 ± 0.1 and 1.9 nm (green line, right panel). In the left panel of (A), dark 

blue line corresponds to a Gaussian double-peak fit. 
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Figure 2(B) shows the statistics of unfolding/refolding experiments with an equivalent molecular 

construct entirely made of DNA, thus preserving the sequence of both the central single-stranded 

segment and the double-stranded handles for attachment to beads. This molecule has also a 

potential to fold into a G-quadruplex, as reflected in the force-extension curves of Figure S4. Its 

rupture force statistics, Figure 2(B), left panel, exhibits a single broad peak center at around the 

same force of that corresponding to the G-quadruplex/G-triplex. The peak force is shifted to the 

left by less than 2 pN with respect to the RNA distribution corresponding to the G-quadruplex/G-

triplex, in agreement with previous works that reported that DNA G-quadruplex unfold at lower 

force40-44. The most important feature of these control experiments is the absence of a peak near 9 

pN, which indicates that the potential of the RNA molecule to self-fold non-specifically and thus 

block highly organized non-canonical structures is unique. The experiments with this DNA 

analogue were measured in a high-resolution instrument (see the experimental section in the 

Supporting Information document and Figure S4) to confirm the low probability of rupture 

events at low forces. 

To further confirm the interpretation of the two statistical populations for TERRA, two filters in 

extension were applied to the histogram in Figure 2 (A), left panel, based on the theoretical 

dimensions of G-triplex and G-quadruplex structures35: a low-pass filter with a cutoff extension 

of 12 nm, which favors rupture events corresponding to the unfolding of the G-quadruplex/G-

triplex conformations and a high-pass filter above 12 nm, which favors the populations 

corresponding to the unfolding of hairpins and those with more random behavior related with 

ssRNA non-specific self-interactions45-47. Figure 3 shows the resulting force histograms. The 

populations correlate with the expected conformations. Namely, Figure 3(A) shows a broad peak 

centered at approximately the same force as that shown for the wide population in Figure 2(A), 

left panel, and that has been attributed to the G-quadruplex/G-triplex, and the histogram in 

Figure 3(B) populates majorly the low forces, including a peak at 7-9 pN similar to the narrow 

one in Figure 2(A), left panel, which has been associated to generally condensed ssRNA 

structures. 
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Figure 3. Rupture force distributions for the different conformations in the reference sequence. 

(A) G-quadruplex and G-triplex (N= 241, 80.6%), data filtered in the range [0, 12] nm. Mean ± 

s.e. and s.d. according to Gaussian fitting are 22.0 ± 0.6 and 9.3 pN. (B) Duplex or other 

condensed conformations (N=58, 19.4%), data filtered in the range (12, 26] nm. Median ± s.d. 

according to a log-normal distribution is 8.7 ± 4.4 pN. Peak value (mode) ± s.e. is 7.2 ± 1.2 pN. 

To study the behavior of the stochastic blockage with the number of repeats and with flanking 

sequences different from the previously analyzed one, we synthetized three other molecular 

constructs: a 6-repeat and a 7-repeat molecules flanked by the same random sequences as 

previously used (44 and 50 nts, respectively) and a 5-repeat construction with more extra random 

RNA sequence (44 nts) (see the experimental section in the Supporting Information document). 

The qualitative behavior is maintained for single rupture events, as reflected in their force-
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extension curves (Figures S5-S7): rupture events at both high forces, compatible with G-

quadruplex/G-triplex, and low forces, related to condensation, are observed. Bimodal rupture 

force distributions (Figures S8 and S9) confirm the stochastic effect, which probability increases 

with the number of repeats and decreases with length of the extra random sequence. These trends 

correlate with the number of Gs, a very promiscuous nucleobase thus tending to increase the 

probability of a condensate in RNA. 

Consecutive rupture events. The category of force-extension curves with two consecutive 

rupture events was significantly less probable, as we analyzed next. Figures S10-S13 show 

characteristic force-extension curves corresponding to different molecules with sequential 

rupture events for the TERRA molecules with 5-7 repeats and extra random sequence. As 

discussed above, the formation of condensed ssRNA blocks the assembly of the G-triplex and 

the G-quadruplex. Nevertheless, when one of these non-canonical structures assembles, it may 

interact with the excess ssRNA in the sequence. Then, the mechanical unfolding should provoke 

the separation of the extra ssRNA from the G-quadruplex or G-triplex before the full opening of 

the structure. According to the forces and extensions found in Figure S10-S13, this is the most 

probable scenario for the analyzed molecules. The statistical analysis of the 5-repeat TERRA 

molecule, Figure 4, confirms this interpretation when two consecutive rupture events are 

observed in the force-extension curves: the first rupture peak complies with low forces and short 

extensions, Figure 4(A), and the second one with high forces and typical extensions for the G-

quadruplex and G-triplex, Figure 4(B). The statistics corresponding to the 6 and 7-repeat 

TERRA molecules and to those with 5 repeats and extra random sequence, Figure S14, confirm 

this trend. Peak forces and peak extensions are compatible with the single-rupture event 

statistics, both for the ssRNA condensates and the G-quadruplex, thus supporting this 

interpretation. 
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Figure 4. Statistics of single-molecule sequential unfolding events in the reference sequence 

(N=43). (A) Rupture force and unfolding extension distributions for the first rupture event. 

Median and s.d. according to a log-normal fitting for this force distribution are 14.9 and 8.3 pN 

(peak value (mode) ± s.e., 11.9 ± 0.5 pN). Median and s.d. for the unfolding extension 

distribution are 7.3 and 4.4 nm (peak value (mode) ± s.e., 5.7 ± 0.4 nm). (B) Rupture force and 

unfolding extension distributions for the second rupture event. Mean ± s.e. and s.d. for this force 

distribution, according to a Gaussian fitting (red line) are 27.4 ± 0.5 and 7.3 pN. Median and s.d. 

according to log-normal fitting for the unfolding extension distribution are 7.6 and 2.8 nm (peak 

value (mode) ± s.e., 6.7 ± 0.2 nm). 

Importantly, it is observed that the probability of interaction of the formed G-quadruplex with 

the single-stranded RNA excess increases with the number of added nucleotides: 12.6%, 17.4% 

and 26.1% for 5, 6 and 7 repeats, and 27% for the 5-repeat molecule with more extra random 
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ssRNA. This trend was expected for longer molecules since self-interactions allowed by the 

bending elasticity are more probable. 

The probability of formation of a non-canonical structure can be calculated based on the next 

heuristic inference: 

P(G-QT) = P(consecutive RE) + P(single RE) × P(G-QT|single RE)                       (1) 

where G-QT stands for G-quadruplex or G-triplex, RE stands for rupture event and the vertical 

bar denotes conditional probability. The results, along with the previously presented 

experimental probabilities, are shown on Table S1. It is observed that the number of repeats 

hardly affects the probability of formation of the G-quadruplex/G-triplex, slightly above an 80%, 

and that the addition of random nucleotides flanking the hexanucleotide repeats attenuates the 

stochastic blockage raising the probability of the non-canonical structure formation to a 90%. 

Single rupture events as those represented in Figures S3-S7 may correspond to separate events 

sequential but proximal in force, which would match to the release of one arm of the G-

quadruplex rapidly followed by the rupture of the G-triplex into ssRNA. Neither these events nor 

the G-hairpin unfolding48-50 could be distinguished within our experimental resolution. Although 

some force-extension curves with two rupture events in our experiments could be interpreted in 

this fashion, we have not found sufficient statistical significance. Then, we conclude that, if in-

pathway, G-triplex and G-hairpin breakage takes place almost simultaneously after the G-

quadruplex disassembly in our experiments; that is, the sequential release of the GGGUUA arms 

of the G-quadruplex are detected within the same rupture event in the force-extension curves at 

the herein used experimental velocity.44 A triangular, three state kinetic model, as that proposed 

elsewhere35, 51-53, is compatible with our results (see the abstract figure). 

The dynamic behavior of the rupture events has another feature in the stretch-relaxation cycles: 

the reversibility. Refolding during relaxation is the normal behavior but the mechanical 

hysteresis is typically lower for the duplexes with respect to the G-quadruplex or G-triplex 
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conformations, as measured by the degree of overlapping of the stretch and relaxation traces (see 

Figures S3-S7). The refolding is more likely for the duplex than for the G-triplex or G- 

quadruplex since these latter conformations involve the ordered assembly of three and four 

strands, respectively, within similar time frames, which is less probable than the assembly of 

randomly-condensed ssRNA or duplexes, with lower entropy. Then, it is expected that the non-

canonical conformations involve refolding further from equilibrium than simpler conformations 

at the same loading rate. 

Free energies can be recovered by using Jarzynski’s equality, which evaluates this equilibrium 

thermodynamic potential increment from non-equilibrium work measurements (see Supporting 

Information document)54. Tables S2 and S3 collect the work calculated from our experiments for 

the non-canonical structure and the condensates, respectively, in each molecular preparation. 

Tables S4 and S5 show the corresponding Gibbs free energy results. For the 5-repeat DNA 

analogous molecule, we obtained ΔG = −(6.9 ± 0.6) kcal/mol, which is similar within 

experimental error to earlier bulk reports that yielded −7.1 kcal/mol for the parallel G-quadruplex 

assembled with a four-repeat molecule55. This consistency serves as a control check, both from a 

qualitative and a quantitative viewpoint, for our results at the single-molecule level. RNA G-

quadruplex has always higher Gibbs free energy increment (in absolute value) than the DNA 

analogue, also consistent with earlier literature35. 

Although condensed ssRNA conformations have lower stability per nucleotide (see Tables S2-

S5) than the G-triplex or the G-quadruplex, the overall energy is higher for the former. 

Therefore, folding pathways that give rise to condensates, with distinct hydration and which are 

entropically favored, cannot be discarded in a cellular context. The formation of a condensed 

ssRNA knot instead of a G-quadruplex/G-triplex can largely facilitate its denaturation by 

specialized protein machinery; specifically, decondensing the ssRNA involves an average force 

barrier near 10 pN, whereas that of the G-triplex or the G-quadruplex is on average above 20 pN. 
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In conclusion, we have found a remarkable conformational competition between unspecific self-

interacting ssRNA species and the G-quadruplex or the G-triplex conformations. This 

phenomenon, which only occurs in RNA and not in DNA species, is due to the G-rich nature of 

the sequence. Although expected for random ribonucleic sequences, this behavior has neither 

been observed nor quantified for this genomically central RNA tract. Furthermore, to our 

knowledge, this is the first demonstration of a conformational stochastic blockage in a biological 

nanostructure, which we show in an important molecule. Although any G-rich RNA sequence 

may produce strong condensation, the G-quadruplex forming sequences are inherently G-rich, 

thus concomitantly generating the reported stochastic blockage. Considering that the structural 

state of TERRA tracts determines its function, we believe that the condensed ssRNA stochastic 

blockage may show relevant to understand TERRA regulation in telomeric heterochromatin 

stability or in telomerase inhibition, apart from being an important knowledge to counteract 

TERRA function by drug-targeting in tumorigenesis and senescence. 
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