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Abstract

In structural dynamics, energy dissipative mechanisms with nonviscous damping are characterized by
their dependence on the time-history of the response velocity, mathematically represented by convolution
integrals involving hereditary functions. Combination of damping parameters in the dissipative model can
lead the system to be overdamped in some (or all) modes. In the domain of the damping parameters,
the thresholds between induced oscillatory and non-oscillatory motion are named critical damping surfaces
(or critical manifolds, since several parameters can be involved). In this paper the theoretical foundations
to determine critical damping surfaces in nonviscously damped systems are established. In addition, a
numerical method to obtain critical curves is developed. The approach is based on the transformation of
the algebraic equations, which define implicitly the critical curves, into a system of differential equations.
The derivations are validated with three numerical methods covering single and multiple degree of freedom
systems.

Keywords: critical damping surfaces, nonviscous damping, viscoelastic damping, eigenvalues, hereditary
functions, overdamping

1. Introduction

In this paper, nonviscously damped linear systems are under consideration. Nonviscous (also named
viscoelastic) materials have been widely used for vibrating control in mechanical, aerospace, automotive
and civil engineering applications. This paper deals precisely with those applications where vibrations are
tried to be disappeared, that is, designing of damping devices which are able to avoid oscillatory motion
at dynamical systems. In nonviscous models, damping forces are assumed to be dependent on the history
of the response velocity via kernel time functions. As far as the motion equations concerned, this fact is
represented by convolution integrals involving the velocities of the degrees–of–freedom (dof) and affected by
the hereditary kernels. Denoting by u(t) ∈ R

n to the array with the degrees of freedom of the system, this
vector verifies the dynamic equilibrium equations which in turn has an integro-differential form

Mü+

∫ t

−∞

G(t− τ) u̇ dτ +Ku = f(t) (1)

where M, K ∈ R
n×n are the mass and stiffness matrices assumed to be positive definite and positive

semidefinite, respectively; G(t) ∈ R
n×n is the nonviscous damping matrix in the time domain, assumed

symmetric, which satisfies the necessary conditions of Golla and Hughes [1] for a strictly dissipative behavior.
As known, the viscous damping is just a particular case of Eq. (1) with G(t) ≡ C δ(t), where C is the viscous
damping matrix and δ(t) the Dirac’s delta function. The time–domain system of motion equations are then
reduced to the well known expressions

Mü+Cu̇+Ku = f(t) (2)
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Considering now the free motion case f(t) ≡ 0 in Eq. (1), exponential solutions of the type u(t) = u est

can be checked, with u and s to be found, leading the classical nonlinear eigenvalue problem associated to
viscoelastic vibrating structures

[

s2M+ sG(s) +K
]

u ≡ D(s)u = 0 (3)

where G(s) = L{G(t)} ∈ C
n×n is the damping matrix in the Laplace domain and D(s) is the dynamical

stiffness matrix or transcendental matrix.

The nature of the response governed by Eqs. (1) is closely related to the eigensolutions of the eigenvalue
problem (3). Adhikari [2] derived modal relationships and closed form expressions for the transfer function in
the Laplace domain. Due to the nonlinearity, induced by a frequency-dependent damping matrix, to search
eigensolutions is in general much more expensive computationally than that of classical viscous damping [3].
A survey of the different viscoelastic models can be found in the references [4, 5]. In this paper, hereditary
damping models based on exponential kernels will be considered [6].

Since the present paper is devoted on critical damping and this field has been deeply studied in the
bibliography for viscously damped systems, we consider relevant to review the main works related to them.
Duffin [7] defined an overdamped system in terms of the quadratic forms of the coefficient matrices. Nichol-
son [8] obtained eigenvalue bounds for free vibration of damped linear systems. Based on these bounds,
sufficient condition for subcritical damping were derived. Müller [9] characterized an underdamped system
in similar terms to Duffin’s work deriving a sufficient condition expressed as function of the definiteness of
the system matrices. Inman and Andry [10] proposed sufficient conditions for underdamped, overdamped
and critically damped motions in terms of the definiteness of the system matrices. These conditions are valid
for classically damped systems although Inman and Andry shown that they also could work for nonclassical
systems. Inman and Orabi [11] and Gray and Andry [12] proposed more efficient method for computing
the critical damping condition. However, Barkwell and Lancaster [13] pointed out some defficiencies in
the Inman and Andry criterion of ref. [10] presenting a counterexample and they provided some reasons
explaining why this criterion had been usually adopted to check criticality in damped systems. Addition-
ally, Barkwell and Lancaster [13] obtained necessary and sufficient conditions for overdamping in gyroscopic
vibrating sytems. Bhaskar [14] presented a more complete overdamping condition which somehow corrected
that of Inman and Andry [10] giving a generalization to a class of nonconservative systems. Beskos and
Boley [15] established conditions for finding critical damping surfaces from the determinant of the system
and its derivative. They proved that a critically damped eigenvalue was simultaneously root of the char-
acteristic equation and its derivative, something that can be used to detect critical damping surfaces. In
the work [16] the same authors studied conditions for critical damping in continuous systems. Beskou and
Beskos [17] presented an approximate method computationally efficient to find critical damping surfaces
separating overdamping or partially overdamping regions from those of underdamping for viscously damped
systems.

As far as nonviscous systems concerned, research on critical damping has not been as exhaustive as
that of viscous damping. Mainly, investigations have been focused on single degree–of–freedom systems
on the discussion of the type of response attending at the damping parameters of a single–exponential
hereditary kernel. Muravyov and Hutton [18] and Adhikari [19] analyzed the conditions under which single
degree–of–freedom nonviscously damped systems by one exponential kernel becomes critically damped. In
reference [19] a complete analysis of the roots arising from the third order characteristic polynomial is carried
out . Adhikari [20] studied the dynamic response of nonviscously damped oscillators and discussed the effect
of the damping parameters on the frequency response function. Müller [21] performed a detailed analysis
on the nature of the eigenmotions of a single degree of freedom Zener 3–parameter viscoelastic model. Mu-
ravyov [18] obtained closed–form solutions for forced nonviscoulsy damped beams studying the conditions
for overdamping or underdamping time response. As known, viscoelastic systems modeled by hereditary
exponential functions are characterized by having extra real overdamped modes associated to those kernels.
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In reference to these type of modes, the references [22, 23, 24] provide a mathematical characterization and
some numerical methods to their evaluation. Lázaro [5] observed that certain recursive method to obtain
eigenvalues in proportionally damped viscoelastic systems always converges under a linear rate except just
in the critical surfaces where the scheme is underlineal.

In this paper, critical damping surfaces of nonviscously damped linear systems are presented. Critical
damping is refereed to the set of damping parameters within the threshold between induced oscillatory and
non-oscillatory motion (for all or for some modes). The general procedure to extract these manifolds in
the domain of the damping parameters is to eliminate the eigenparameter from a system of two algebraic
equations. In addition, since this elimination is not possible for polynomials with order greater than four,
a new method to construct critical curves is developed. This methodology is based on to transform the
algebraical equations into a system of two ordinary differential equations. The approach is validated with
three numerical examples. The two first are devoted on single degree–of–freedom systems with one and two
hereditary exponential kernels, respectively. The application of the current approach for multiple degree–
of–freedom systems is presented in the third example.

2. Conditions of criticality in terms of determinant of the system

2.1. Theoretical background

In this section, the main results derived by Beskos and Boley [15] in critical viscously damped systems
will be extended to nonviscous damping. In order to establish the main assumptions of the research, the
type of damping model will be described in its most general form. A general damping matrix based on
hereditary Biot’s exponential kernels will be considered. Mathematically, this model adopts the following
form in time and frequency domain

G(t) =
N
∑

k=1

Ck µk e
−µkt , G(s) = L{G(t)} =

N
∑

k=1

µk

s+ µk
Ck (4)

where µk > 0, 1 ≤ k ≤ N represent the nonviscous relaxation coefficients and Ck ∈ R
n×n are the (symmet-

ric) matrices of the limit viscous damping model, defined as

N
∑

k=1

Ck = lim
µ1...µN→∞

G(s) (5)

Coefficients µk control the time and frequency dependence of the damping model while the spatial location
and the level of damping are controlled by coefficients within matrices Ck. It is straightforward that the
following relationships hold

N
∑

k=1

Ck =

∫

∞

0

G(t) dt = G(0) (6)

Henceforth, the damping matrix (and by extension the transcendental matrix) will be assumed to be function
of a set of parameters controlling the dissipative behavior, additionally to the frequency dependence. In
the most general case, the symmetric damping model presented in (4) depends on lmax = N +Nn(n+ 1)/2
parameters. Indeed, N nonviscous coefficients µ1, . . . , µN plus n(n + 1)/2 possible independent entrees in
every symmetric matrix Ck, with 1 ≤ k ≤ N . Thus, the complete set of parameters can be listed as

µ1, . . . , µN , C111, . . . , C1nn, . . . , CN11, . . . , CNnn (7)

where Ckij = Ckji is the ijth entree of matrix Ck. Real applications depend in general on much less param-
eters, say l << lmax. For the sake of clarity, the set of independent damping parameter will be denoted by
θ = {θ1, . . . , θl}. Consequently, the damping matrix can be written as G(s,θ), highlighting its dependence
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on the frequency and, additionally, on the array of damping parameters.

The determinant associated to the nonlinear eigenvalue problem (3) can be denoted by D(s,θ) =
det [D(s)] and the eigenvalues are then the roots of the characteristic equation defined as

D(s,θ) = det

[

s2M+ s

N
∑

k=1

µk

s+ µk
Ck +K

]

= 0 (8)

The algebraic structure of the spectrum for this problem can vary depending on the actual value of θ ∈ R
l.

Thus, if the level of damping induced by matrix G(s,θ) is light, the set of roots is formed by 2n complex
eigenvalues with oscillatory nature and r real eigenvalues with non-oscillatory nature and associated to the
nonviscous hereditary kernels (usually named as nonviscous eigenvalues). Furthermore, the total number of
these real eigenvalues is [3]

r = r1 + · · ·+ rN =

N
∑

k=1

rank(Ck) (9)

As long as the set of R = 2n + r eigenvalues is formed by n conjugate complex pairs and r nonviscous
eigenvalues, it will be said that the system is completely underdamped. As the damping level increases,
the real part of eigenvalues (not necessary all) becomes higher (in absolute value) and the imaginary part
decreases. For certain value of the damping parameters a conjugate–complex pair could merge into a double
real negative root. The set of damping parameters is said then to be on a critical surface, which in turn
represents the threshold between underdamping and overdamping. If oscillatory and non-oscillatory modes
coexist, then the system is said to be partially overdamped (or under mixed overdamping). Finally, the
system is said to be completely overdamped if all modes are overcritically damped. For mixed or complete
overdamping, some roots (or maybe all) of Eq. (8) are negative real numbers, say s = λ, with λ < 0 so that

D(λ,θ) = det
[

λ2M+ λG(λ,θ) +K
]

= 0 (10)

In addition, if an eigenvalue lies exactly on the threshold between underdamped and overdamped motion
(critical), another mathematical condition in additon to that of Eq. (10) can be derived. Consider that for
a particular combination of the damping parameters, say θ0, the system lies on a critical surface. Then,
there exists a negative real eigenvalue, say λ = −σ0 so that D(−σ0,θ0) = 0. Let us assume that a small
perturbation of the damping parameters (from θ0 to θ) shifts the system to the underdamped region. Under
such case, the real eigenvalue −σ0 (associated to θ0) is transformed into the conjugate complex pair, say
−σ(θ) ± i ǫ(θ), verifying σ(θ0) = σ0 and ǫ(θ0) = 0. According to the algebra fundamental theorem, the
expression of the determinant D(λ,θ) can be written as

D(λ,θ) =
[

(λ+ σ(θ))
2
+ ǫ2(θ)

]

P(λ,θ) (11)

where P(λ,θ) is a polynomial of order 2R − 2, where R = 2n + r is the total number of eigenvalues. The
functions −σ(θ) and ± ǫ(θ) represent the variation of real and imaginary part of both eigenvalues around
the critical eigenvalue −σ0. Let us calculate the derivative of Eq.(11) respect λ

∂D

∂λ
= 2 (λ+ σ(θ)) P(λ,θ) +

[

(λ+ σ(θ))
2
+ ǫ2(θ)

] ∂P

∂λ
(12)

Evaluating at θ = θ0, yields

∂D

∂λ

∣

∣

∣

∣

(−σ0,θ0)

= 2 (λ+ σ0) P(−σ0,θ0) + (λ+ σ0)
2 ∂P

∂λ

∣

∣

∣

∣

(−σ0,θ0)

≡ (λ+ σ0) Q(λ) (13)

where Q(λ) is a polynomial of the same order as P(λ). Eq. (13) shows that the critical eigenvalue −σ0 is
also root of the equation ∂D/∂λ = 0.

∂

∂λ
D(λ,θ) =

∂

∂λ
det [D(λ,θ)] = 0 (14)
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This result is in agreement with the condition derived by Beskos and Boley [15] for viscous systems.
Indeed, for each value of λ, Eq. (10) defines a l–dimensional surface in the space where the parameters
array θ can take values. Since for light damping n pairs of conjugate–complex eigenvalues exist initially, we
will have as much as n critical surfaces because, as Beskos and Boley [15] point out: “there are at most as
many partial critical damping possibilities as the number of the pairs in (8) of roots s with zero imaginary
part”. The mathematical principle which characterizes a critical damping surfaces can be extrapolated to
nonviscous damping and therefore these ones can be found imposing a minimum among all possible values
of λ in Eq. (10), that is ∂D/∂λ = 0. This condition is consistent with the fact that a critical root is real and
double under critical condition. Therefore, Eqs. (10) and (14) define a set of critical surfaces resulting after
eliminating parameter λ from both equations. This process, although well defined from a theoretical point
of view, can only be carried out provided that an analytical closed–form expression of D(λ,θ) is available,
something that only occurs for small to moderately sized systems. Analysis of critical damping in non-
viscous systems using simultaneously the information provided by Eqs. (10) and (14) has not been carried
out yet in the bibliography, up to the author’s knowledge. Instead, those available results have been found
for single degree–of–freedom systems and just for one hereditary kernel since for this particular problem
the roots’ nature can be studied using the Cardano’s formulas. In them, explicit expressions of the critical
curves can be derived from the discussion on the discriminant [18, 19, 20]. In the current work, the two
deduced conditions (10) and (14) will be used to validate the available results for single dof. Additionally, a
new numerical method to evaluate the critical damping surfaces for multiple dof systems is proposed in the
following point.

2.2. Derivation of the proposed numerical method

The numerical determination of critical damping surfaces consists in solving Eqs. (10) and (14) simul-
taneously for a prefixed range of values within the damping parameters. In general, from a computational
point of view, this process becomes highly inefficient. Indeed, for each combination of the prefixed param-
eters, a system of two nonlinear equations must be solved. The main objective of this paper is to propose
a new numerical method suitable to construct critical curves based on two parameters. In other words,
the approach allows to draw critical overdamped regions located in two dimensional cross sections of the
l–dimensional real critical manifolds. Thus, considering the l–dimensional domain of all possible values of
the array θ = {θ1, . . . , θl}, two of them can be chosen arbitrarily: they will be named as design parameters.
Let us take, without loss of generality, θ1 and θ2 as the design parameters, while the rest will remain fixed,
say θ30, . . . , θl0. The challenge is to find critical damping curves in the 2-dimensional domain of the design
parameters (θ1, θ2). for the sake of clarity in the notation, let us introduce two new symbols, p and q, to
refer the new free parameters: p = θ1 and q = θ2. Thus, the critical curves are then functions of the form
q = q(p). For each value of p, both equations

D(λ, p, q) = 0 ,
∂

∂λ
D(λ, p, q) = 0 (15)

allow to find a pair (λ, q) (or several pairs, since λ is affected by a polynomial). Let us consider a point p0
for which q0 and λ0 are solutions of both equations (15) and let us assume that around p = p0 the functions
q(p) and λ(p) exist. It is said then that the three numbers (p0, q0, λ0) form a initial point of the proposed
approach. The derivatives λ′(p)= dλ/dp and q′(p)= dq/dp can be evaluated just applying the chain rule in
Eqs. (15). Indeed,

∂D

∂λ
λ′(p) +

∂D

∂q
q′(p) +

∂D

∂p
= 0 (16)

∂2D

∂λ2
λ′(p) +

∂2D

∂λ∂q
q′(p) +

∂2D

∂λ∂p
= 0 (17)
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From Eq. (15), it is verified that ∂D/∂λ = 0. Hence, both λ′(p) and q′(p) can be solved, resulting

q′(p) = −
D,p

D,q

λ′(p) =
D,p D,λq

D,q D,λλ
−

D,λp

D,λλ
(18)

where

D,p =
∂D

∂p
, D,q =

∂D

∂q
, D,λλ =

∂2D

∂λ2
, D,λp =

∂2D

∂λ∂p
, D,λq =

∂2D

∂λ∂q
(19)

The equations (18) together with the initial conditions

λ(p0) = λ0 , q(p0) = q0 (20)

form an initial value problem which is well defined provided that the derivatives D,λλ and D,q do not vanish
at the initial point (p0, q0, λ0). The existence of the critical curve beyond the surroundings of the initial
point is subordinate to the existence of those derivatives along the curve. Then, critical curves arise as
the numerical solution of a system of ordinary differential equations, for which Runge–Kutta based methods
can be used. Previously, the method requires solving the system of two algebraical equations (15) and two
unkowns, say λ0, q0, which in general results in several solutions because of the polynomial form. Real pairs
(λ0, q0) verifying λ0 < 0 and q0 ≥ 0 (it is assumed a positive range for damping parameters) will be appro-
priate solutions lying on a critical curve. Taking derivatives repeatedly respect p in Eq. (17) also can lead to
obtain higher order derivatives, allowing to expand in its Taylor series the critical curve around p = p0. This
procedure is used to find an approximation of a critical curve in the one–kernel single–dof numerical example.

3. Numerical examples

3.1. Single degree of freedom systems, N = 1 exponential kernel

F (t)F (t) Q(t)

G(t)

mm

k

u(t)

Figure 1: A single degree–of–freedom viscoelastic oscillator

First, a single dof nonviscous system with one hereditary kernel will be considered. The dof represents the
displacement of certain mass m attached to the ground by a linear viscoelastic constraint. Fig. 1 shows the
schematic configuration mass–spring–viscoelastic damper and the corresponding free body diagram. Hence,
the internal force is related to the displacement by

Q(t) =

∫ t

−∞

G(t− τ)u̇(τ)dτ + ku(t) (21)

where k is the constant of the linear–elastic spring and G(t) is the dissipative kernel or damping function
with the general form, both in time and frequency domain

G(t) = c µ e−µt , G(s) =
µ c

s+ µ
(22)
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where µ and c are respectively is the nonviscous (relaxation) and the viscous coefficients, which verifies at
the limit limµ→∞ G(s) = c. This latter relationship represents the particular case of Eq. (5) for single dof
systems with one exponential kernel. The free motion equation can be deduced from the dynamic equilibrium
for F (t) ≡ 0

mü+

∫ t

−∞

G(t− τ)u̇(τ)dτ + ku(t) = 0 (23)

And the associated characteristic equation yields

ms2 + sG(s) + k = ms2 + s
µ c

s+ µ
+ k = 0 (24)

In order to compare the results of the current example with those presented in the bibliography, it is
suitable to introduce the following dimensionless variables.

x =
s

ωn
, ν =

ωn

µ
, ζ =

c

2mωn
(25)

where ωn =
√

k/m is he natural frequency of the undamped system, ν and ζ denote the nonviscous parameter
and the viscous damping ratio, respectively. After straight operations and multiplying Eq. (24) by the
denominator of the hereditary function, the characterisitc polynomial in nondimensional form is obtained
as

D(x, ν, ζ) = (1 + νx)(x2 + 1) + 2xζ = νx3 + x2 + (ν + 2ζ)x+ 1 = 0 (26)

As known, the three roots are available as function of the coefficients using the Cardano’s formulas so that
a detailed discussion of the nature of the three roots can be addressed as function of the values of ζ > 0 and
ν > 0. This work has been carried out by Adhikari in the references [19, 20] where closed form expressions
of the critical curves enclosing the overdamped region were derived. For the sake of our exposition, it is
considered of interest to transcript here the Adhikari’s results of the critical curves because approximations
based on Taylor expansions will also be presented later. Thus, the overdamped region is a 2-dimensional set
in the domain of the damping parameters (ζ, ν) which can be defined mathematically as

{

(ζ, ν) ∈ R
+ : ζL(ν) ≤ ζ ≤ ζU (ν)

}

(27)

where the critical damping curves ζL(ν), ζU (ν) are

ζL(ν) =
1

24ν

[

1− 12ν2 + 2
√

1 + 216ν2 + cos

(

4π + ϕ

3

)]

ζU (ν) =
1

24ν

[

1− 12ν2 + 2
√

1 + 216ν2 + cos
(ϕ

3

)]

(28)

with

ϕ = arccos

[

−
5832ν4 + 540ν2 − 1

(1 + 216ν2)
3/2

]

(29)

Let us apply the proposed method to find critical damping curves based on the solution of the system
of differential equations (18). According to the theoretical derivations, the critical surfaces arise from
eliminating the variable x from the two following equations

D(x, ν, ζ) = νx3 + x2 + (ν + 2ζ)x+ 1 = 0

∂D

∂x
= 3νx2 + 2x+ ν + 2ζ = 0 (30)

From the second equation the two roots x1,2 = (−1 ±
√

−6ζν − 3ν2 + 1)/3ν can be determined. Hence,
plug them into the first equation and after some simplifications, it yields

8ζ3ν + 12ζ2ν2 − ζ2 + 6ζν3 − 10ζν + ν4 + 2ν2 + 1 = 0 (31)
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expression which defines the critical surface in implicit form and it matches with the third order polynomial
obtained by Adhikari [19].

The proposed numerical method to determine critical curves will be now applied to the current single
dof system. The main objective is to find critical curves of the type ζ = ζ(ν), therefore the nonviscous
parameter ν is chosen as independent variable (p ≡ ν) while the viscous damping ratio is defined as a
dependent variable (q ≡ ζ). As described in Sec. 2.2, to construct the system of differential equations, the
partial derivatives of D(x, ν, ζ) and D,x(x, ν, ζ) respect to x, ζ and ν need to be found

D,ν = x+ x3 , D,ζ = 2x

D,xν = 1 + 3x2 , D,xζ = 2 , D,xx = 2 + 6νx (32)

After some math, the two differential equations are set as

ζ ′(ν) = −
1

2

(

1 + x2
)

x′(ν) = −
x2

1 + 3νx
(33)

Viscous damping ratio ζ0 1.00 1.00 1.00
Nonviscous damping factor ν0 0.00 0.134884 −3.06744± 2.32772i
Dimensionless critical eigenvalue x0 −1.00 −3.38298 0.191488± 0.50885i
Type of solution Real Real Complex

Table 1: Initial conditions used for the critical damping curves shown in Fig. 2

In order to define properly the initial value problem of the proposed method, the corresponding initial
conditions must be added. Taking ζ0 = 1, Eqs. (30) can be solved obtaining the four pairs of roots with the
form (ν, x) shown in Table 1. Only real solutions with x < 0, ν ≥ 0 are of interest as initial values. The
first pair results in the initial values ζ0 = 1, ν0 = 0, x0 = −1 of the critical curve ζL(ν) while the second one
ζ0 = 1, ν0 = 0.134884, x0 = −3.38298 is used to obtain the curve ζU (ν). Both curves have been plotted in
Fig. 2 achieving a perfect fitting with those of the exact expressions from Eqs. (28).

As stated above, the limit viscous behavior associated to a nonviscous oscillator arises for high values
of the relaxation parameter µ or, equivalently, for low values of the nonviscous dimensionless parameter
ν = ωn/µ. The plot of Fig. (2) represents the nature of the response for any pair of the parameters (ζ, ν)
within 0 ≤ ζ, ν ≤ ∞. Therefore, it is expected that the oscillatory nature of the associated viscous system
is also shown within the parametric domain as particular case. Indeed, the limit µ → ∞ is depicted as the
set defined by the abscissas axis (ν = 0). It is well known that for viscous systems the eigenfrequency has
oscillatory nature for 0 ≤ ζ < 1 while non-oscillatory motion occurs for ζ ≥ 1. This latter behavior can be
observed along the line (ν = 0) and it has been highlighted with a blue line.

The new perspective proposed in this work allows to interpret critical curves as solutions of certain dif-
ferential equations. Based on such equations, the Taylor series expansion of the critical curves can also be
determined. Although the resulting expressions are approximations, its derivation is considered of interest
because it leads to much simpler and more intuitive expressions for both the real critical eigenvalues and
parameters.

Encouraged by the fact that the initial point of the critical curve ζL(ν) is as simple as ζL(0) = 1 and also
by its regularity and low curvature (information already known since the exact result is available in Fig. 2,
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Figure 2: Example 1: single degree–of–freedom with one exponential kernel. Representation of overdamped region and ap-
proximated critical curves obtained from Taylor expansion —Eq. (34)— and from the method of polynomial pivots —Eqs.(41),
ref. [25]—. Formulas of xL(ν) and xU (ν) evaluate the approximate critical eigenvalues along the critical curves

we think that the Taylor series expansion around ν0 = 0 can provide accurate results and in turn simple in
form. Indeed, the first derivative can be determined just from Eq. (33) for x0 = −1 and ν0 = 0, yielding

ζ ′L(0) = −1 , x′(0) = −1

Now, taking again derivatives respect to ν in Eqs. (32) and after some operations, second derivatives ζ ′′L(0)
and x′′(0) can be found, so that

ζ ′′L(0) = −1 , x′′(0) = −5

Hence, Taylor series expansions up to the second order of the critical damping curve ζL(ν), and its
associated critical eigenvalue xL(ν) are then

ζL(ν) ≈ 1− ν − ν2/2 (34)

xL(ν) ≈ −1− ν − 5ν2/2 (35)

Similar procedure could be followed to find a Taylor based approximation around upper critical curve
ζU . However, this function presents higher changes of curvatures and a wider domain of ζ (in fact an infinite
range). It is expected that a polynomial based approximation only will perform satisfactory results around
the initial point and of course it will not be able to represent the asymptotic behavior. To undertake this
approach, a recent result on asymptotic behavior of polynomial roots proposed by Lázaro et al. [25] will be
used. Given a kth order polynomial (k ∈ N)

a0 + a1x+ · · ·+ ak−2x
k−2 + ak−1x

k−1 + xk (36)

then the following two numbers (called polynomial pivots)

−
ak−1

2
±

√

(ak−1

2

)2

− ak−2 (37)
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present the property of lying close to two roots provided that they are not relatively smaller than the rest
of the polynomial coefficients. The exact and rigorous mathematical conditions describing this statement
are given in form of several theorems in the reference [25]. Let us verify if the so defined pivots of the third
order polynomial D(x, ν, ζ) can give us valuable information respect to the nature of the roots. Thus, the
closed-form expression of the determinant (of order k = 3) expressed in the form (36), is

1

ν
+

ν + 2ζ

ν
x+

1

ν
x2 + x3 (38)

and the coefficients ak−2 = a1 and ak−1 = a2 are

a1 =
ν + 2ζ

ν
, a2 =

1

ν
(39)

Therefore, from Eqs. (37) the pivots are

−
a2
2

±

√

(a2
2

)2

− a1 = −
1

2ν
±

√

1

4ν2
−

2ζ

ν
− 1 (40)

It is known that the roots have multiplicity two (double roots) on the critical damping curves. Therefore,
if the two pivots are forced to be equal, it will represent a double root and therefore it will lie approximately
on a critical curve. To impose that both pivots are equal is equivalent to impose the argument within the
square root of Eq. (40) to be zero. From this condition, an approximation of the upper curve ζU (ν) is found
resulting

1

4ν2
−

2ζ

ν
− 1 = 0 → ζU (ν) ≈

1

8ν
−

ν

2
(41)

Returning to the expression of the pivots, the associated (approximate) critically damped eigenvalue results
in the unique value (with double multiplicity)

xU (ν) ≈ −
1

2ν
(42)

obtained from Eq. (40) after deleting the discriminant, as imposed in Eq. (41). According to the results
of [25] the higher the pivots (in absolute value) the more accurate the approximation to the polynomial roots.
Therefore, since the (double) pivot has the nonviscous parameter ν in the denominator (see Eq. (42)), the
lower the nonviscous parameter ν, the better is the prediction of the associated critical curve ζU (ν), as it
can be appreciated in the Fig. 2.

3.2. Single degree of freedom systems, N = 2 exponential kernels

In this point, critical damping surfaces for single dof system with N = 2 hereditary kernels will be
determined. The approach can easily be extrapolated to the general case of N kernels. According to
Eq. (4), the damping function is

G(t) = c1 µ1 e
−µ1t + c2 µ2 e

−µ2t , G(s) = L{G(t)} =
µ1 c1
s+ µ1

+
µ2 c2
s+ µ2

(43)

And the characteristic equation yields

ms2 + sG(s) + k = ms2 + s

(

µ1 c1
s+ µ1

+
µ2 c2
s+ µ2

)

+ k = 0 (44)

As noticed, the dissipative model has four parameters, c1, c2, µ1, µ2. The proposed method has been designed
to draw critical curves of two parameters. Hence, the other two parameters must be fixed before attempting
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the numerical solution by the differential equations. For the sake of the representation, let us consider the
particular case with c1 = c2 = c and let us define the following dimensionless parameters

x =
s

ωn
, ν1 =

ωn

µ1
, ν2 =

ωn

µ2
, ζ =

c

mωn
(45)

Where ωn =
√

k/m is the natural frequency of the system, ν1 and ν2 represent the nonviscous parameters
and ζ denotes the viscous damping ratio.. Using the new dimensionless parameters, the Eq. (44) can be
expressed as

x2 + x ζ

(

1

1 + ν1 x
+

1

1 + ν2 x

)

+ 1 = 0 (46)

Note that the limit viscous system emerges when the nonviscous parameters become zero ν1 = ν2 = 0 or,
equivalently, when the relaxation coefficients are infinite (µ1 = µ2 = ∞). At that situation, it is clear that
the critical damping ratio is ζcr = 1. Multiplying Eq. (46) by (1 + ν1x)(1 + ν2x) the characteristic equation
can be transformed into a four order polynomial equation

D(x, ν1, ν2, ζ) = (1 + ν1x)(1 + ν2x)(x
2 + 1) + xζ(2 + ν1x+ ν2x) = 0 (47)

This equation together with its derivative respect to x

D,x(x, ν1, ν2, ζ) = 2ζ + 2x+ 2x ν1ν2(1 + 2x2) + (1 + 2xζ + 3x2)(ν1 + ν2) = 0 (48)

allow to find the critical surfaces after eliminating x. Observe that the last equation is a third order polyno-
mial, therefore the Cardano formulas could be used to obtain the three roots. Plugging them into Eq. (47)
would lead the exact critical curves. These derivations will not be carried out here explicitly due to the
complexity of the resulting expressions. On the other hand, they can easily be programmed in a symbolic
software and their results can be compared to those of the proposed approach.

According to the derived method, the critical curves are defined in terms of two parameters, leaving fixed
the rest. In the current example two cases will be considered:

Case (a): critical curves in the plane (ν1, ν2) (i.e. functions ν2 = f(ν1) with ζ: fixed)

Case (b): critical curves in the plane (ζ, ν2) (i.e. functions ν2 = f(ζ) with ν1: fixed)

Case (a): Critical curves in plane (ν1, ν2)

For this case the nonviscous parameter ν1 is considered as independent variable and the overdamped
regions will be plotted in the 2D domain (ν1, ν2). Thus, critical curves are functions of the form ν2 = f(ν1)
and, for their representation, the proposed system of two differential equations with two unknowns, x(ν1)
and ν2(ν1), must be solved. Such system, derived in Section 2.2 in terms of two functions λ(p) and q(p) can
be adapted to the actual notation considering λ ≡ x, q ≡ ν2 and p ≡ ν1. Thus, the system can be written
in matrix form as

[

0 D,ν2

D,xx D,xν2

]{

x′(ν1)
ν′2(ν1)

}

= −

{

D,ν1

D,xν1

}

,

{

x(ν10)
ν2(ν10)

}

=

{

x0

ν20

}

(49)

where

D,ν1
= x

[

1 + x(x+ ζ + ν2 + x2ν2)
]

D,ν2
= x

[

1 + x(x+ ζ + ν1 + x2ν1)
]

D,xν1
= 1 + x [2(ζ + ν2) + x(3 + 4xν2)] D,xν2

= 1 + x [2(ζ + ν1) + x(3 + 4xν1)]

Since the main aim is to find critical curves in the parametric plane (ν1, ν2), particular values should be given
for the fixed parameter ζ. For this example three values of the viscous damping ratio will be considered:
ζ = {0.90, 5.00, 8.00}. Additionally, initial conditions emerge from the solution of Eqs. (47) and (48) in terms
of x and ν2 for prescribed values of ζ (fixed parameter in the current case) and ν1 (independent variable).
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INITIAL VALUES

Fixed parameter Critical curve ν10 ν20 x0

ζ = 0.90 A-01 0.00000 0.17053 -1.14479
A-02 0.00000 0.22155 -2.26820

ζ = 5.00 A-03 0.00000 0.03443 -16.97040
A-04 0.00000 1.32591 -2.83001
A-05 0.05200 2.06935 -9.20408
A-06 1.20000 0.01599 -3.10458
A-07 1.20000 0.05344 -8.61426

ζ = 8.00 A-08 0.00000 0.02148 -27.25100
A-09 0.00000 0.76381 -4.62400
A-10 0.03400 0.56548 -13.0963
A-11 0.70000 0.00952 -5.03922
A-12 0.70000 0.03329 -13.89100

Table 2: Initial conditions used to the computation of the critical damping curves shown in Fig. 3

In Table 2 a list of initial conditions obtained from the solution of the aforementioned algebraic equations
is shown.
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Figure 3: Example 2, Case (a): Single degree–of freedom nonviscous system with 2 hereditary kernels. Overdamped regions
and critical curves in the domain of parameters ν1 and ν2 for three different damping rations. ζ = 0.90 (top), ζ = 5.00 (middle),
ζ = 8.00 (bottom)

Suitable pairs of the form (ν10, x0) and (ν10, ν20) allow us to find the critical curves using the proposed
approach. The so found curves, named by A-01, A-02,...., have been represented in Fig. 3 within three
different plots associated to each value of ζ = {0.9, 5, 8}. Overdamped regions, represented by shaded areas
within the critical curves, are indeed cross sections of 3D-manifolds defined in the space formed by the 3
parameters (ζ, ν1, ν2). It can be observed that the figures show symmetry respect to the line ν1 = ν2 due to
the symmetry of the physical model respect to the parameters ν1 and ν2.
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Case (b): Critical curves in plane (ζ, ν2)

In this second case, critical curves in the plane (ζ, ν2) will be determined, assuming now ν1 as fixed
parameter and consequently ζ will be considered as independent variable. Following the notation introduced
in Sec. 2.2, it yields λ ≡ x, q ≡ ν2 and p ≡ ζ. After assembling the proposed system of differential equations,
the main matrix multiplying the derivatives x′(ζ) and ν′2(ζ) has the same form as that of the previous case.
Indeed, it results

[

0 D,ν2

D,xx D,xν2

]{

x′(ζ)
ν′2(ζ)

}

= −

{

D,ζ

D,xζ

}

,

{

x(ζ0)
ν2(ζ0)

}

=

{

x0

ν20

}

(50)

where now
D,ζ = x [2 + x(ν1 + ν2)] , D,xζ = 2 [1 + x(ν1 + ν2)] (51)

The method to construct the critical curves requires initial values which again are determined solving
Eqs. (47) and (48) in terms of x and ν2 fixing values of ν1 and ζ. Three values are considered For the
nonviscous parameter, say ν1 = {0.00, 0.05, 1.50}. Table 3 shows the chosen values for the viscous damping
ratio ζ and their corresponding solutions ν20 and x0. Each row in Table 3 leads to a critical curve, denoted
in this case with the letter “B”.

INITIAL VALUES

Fixed parameter Critical curve ζ0 ν20 x0

ν1 = 0.00 B-01 1.00000 0.00000 -1.00000
B-02 1.00000 0.19160 -2.76929
B-03 4.00000 1.80565 -2.22076

ν1 = 0.05 B-04 0.95000 0.04736 -1.05573
B-05 0.95000 0.19197 -2.72450
B-06 5.20000 0.79903 -4.84245
B-07 5.20000 1.93559 -9.57166

ν1 = 1.50 B-08 4.00000 0.03207 -2.61688
B-09 4.00000 0.06738 -6.74685

Table 3: Initial conditions used to the computation of the critical damping curves shown in Fig. 4
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Figure 4: Example 2, Case (b): Single degree–of freedom nonviscous system with 2 hereditary kernels. Overdamped regions
and critical curves in the domain of parameters (ζ, ν2) for ν1 = 0.00 (top), ν1 = 0.05 (middle), ν = 1.50 (bottom)

The critical curves determined from integration of Eqs. (50) with help of the initial values (Table 3) have
been represented in Fig. 4 highlighting the enclosed overdamped regions by filled areas. As before, the three
figures depict respectively three cross sections of the corresponding 3D critical manifolds, associated to the
three given values of ν1, say ν1 = {0.00, 0.05, 1.50}. The codes B-01, B-02,... assigned to each curve are in
accordance with those shown in Table 3 with the corresponding initial values. It is interesting to observe
that in Fig. 4 (top, for ν1 = 0.00), an overdamped subregion for values ν2 ≪ 1 very similar to that of Fig. 2
arises. Additionally, a new overdamped subregion can be observed at the right–top corner of that plot (Fig.
4-top), which does not exist in Fig. 2. Presumably, according to this subregion, high values of ζ and ν2
(simultaneously) lead the system to non-oscillatory motion. Let us see that the damper model in this case
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is formed by two dampers in parallel, one is viscous with coefficient c1 and the other one is nonviscous with
relaxation parameter µ2. Indeed, at the limit µ1 → ∞ (ν1 = 0) the damping function is transformed into

lim
µ1→∞

G(t) = c1 δ(t) + c2 µ2 e
−µ2t lim

µ1→∞

G(s) = c1 +
µ2 c2
s+ µ2

(52)

Somehow, this overdamped subregion shown at right-top corner of Fig. 4(ν1 = 0) can be interpreted as
the effect produced by both the nonviscous parameter µ2 (associated to the second kernel) and the viscous
coefficcient c1 (associated to the first kernel). This is the reason why such critical subregion did not appear in
the Fig. 2 of Example 1, which was modeled exclusively with one kernel. Again, from the symmetry respect
to the nonviscous parameters, this overdamped subregion also would appear in the plane (ζ, ν1) for ν2 = 0.
Furthermore, this effect is extended as a narrow volume in the approximate range 0 ≤ ν1 ≤ 0.07 (respectively
for symmetry in 0 ≤ ν2 ≤ 0.07), see Fig. 3(middle and bottom). It seems clear that the hypothetical addition
of new damping parameters would lead to a more difficult interpretation of the overdamped manifolds,
specially because, as seen in this example, they do not follow regular geometrical structures. However, the
proposed method could be sequentially applied to extract the most interesting curves for our analysis, for
instance in artificial dampers design problems. Let us see now, in a final example, how to extract critical
damping curves for a multiple dof system.

3.3. Multiple degree of freedom systems

m

k

m

k

m

k

m

k

G (t) G (t)

u
1

u
2

u
3 u

4

Figure 5: Example 3: The four degrees–of–freedom discrete system. G(t) represents the hereditary function of nonviscous
dampers

In order to validate the proposed approach to find critical damping curves for multiple dof systems, a
discrete lumped mass dynamical system with four dof is under consideration. The Fig. 5 represents the
distribution of masses m, rigidities k and viscoelastic dampers with a hereditary function G(t). The mass
matrix of the system is M = mI4 while, according to the rigidities and dampers distribution, stiffness matrix
yields

K = k









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2









= kK (53)

A damping function formed by one hereditary exponential kernel with viscous coefficient c and nonviscous
relaxation parameter µ will be assumed. Hence, the damping matrix can be expressed as G(t) = µC e−µ t

where

C = c









0 0 0 0
0 1 −1 0
0 −1 2 −1
0 0 1 1









≡ cC (54)
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With help of these dimensionless matrices, K and C, the nonlinear eigenvalue problem associated to this
problem under dimensionless form can be expressed as

[

x2I4 +
2x ζ

1 + ν x
C +K

]

u = 0 (55)

where
x =

s

ω0
, ν =

ω0

µ
, ζ =

c

2mω0
, ω0 =

√

k/m (56)

Since r = rank(C) = 2, the system has 2n + r = 10 eigenvalues. Therefore, the determinant of the
transcendental matrix can be transformed into a 10th order polynomial multiplying by the factor (1+ νx)2.
Introducing then the function D(x, ν, ζ) as

D(x, ν, ζ) = (1 + νx)2 det

[

x2I4 +
2x ζ

1 + ν x
C +K

]

= 5 + 2(8ζ + 5ν)x+ [(2ζ + ν)(6ζ + 5ν) + 20]x2 + (54ζ + 40ν)x3

+
(

32ζ2 + 54ζν + 20ν2 + 21
)

x4 + (40ζ + 42ν)x5 +
(

12ζ2 + 40ζν + 21ν2 + 8
)

x6

+8(ζ + 2ν)x7 +
(

1 + 8νζ + 8ν2
)

x8 + 2νx9 + νx10 (57)

The objective is to determine overdamped regions enclosed by critical curves of the form ν = ν(ζ). For that,
the proposed method needs the previous construction of the system given by Eqs. (16) and (17) in terms of
x(ζ) and ν(ζ) (the equivalences between the notation of Sec. 2 and that of the current example is λ ≡ x,
q ≡ ν and p ≡ ζ. Thus, the system in matrix form yields

[

0 D,ν

D,xx D,xν

]{

x′(ζ)
ν′(ζ)

}

= −

{

D,ζ

D,xζ

}

,

{

x(ζ0)
ν(ζ0)

}

=

{

x0

ν0

}

(58)

For the sake of clarity in the exposition, the expressions of the partial derivatives will not be written. Initial
conditions can be found solving the system of algebraical equations for a particular value of ν0 and ζ0

D(x0, ν0, ζ0) = 0 , D,x(x0, ν0, ζ0) = 0 (59)

Testing for ν0 = 0.06 we obtain four different pairs (ζ0, x0), listed in Table 4. After numerically solving

INITIAL VALUES

Curve ζ0 ν0 x0

C-01 0.53258 0.06000 -2.05512
C-02 0.72949 0.06000 -7.88861
C-03 1.25218 0.06000 -1.45645
C-04 2.14493 0.06000 -8.07994

Table 4: Initial conditions used for the critical damping curves shown in Fig. 6

Eqs. (58), the curves are plotted in Fig. 6. It is observed that the so-obtained four curves enclose two
overdamped regions which in turn intersect each other. The solid–filled region represents the set of values
(ζ, ν) which lead the fourth mode to overdamping. On the other hand, lines–filled area corresponds to the
overdamped region of the second mode. This can be checked following a root–locus plot varying parameters
(ζ, ν) from underdamping to overdamping. Moreover, 2nd and 4th mode are precisely those modes in which
the degrees of freedom attached to the viscoelastic dampers are most activated. Obviously, it follows then
that the overlapping area (intersection between both types of filled-regions in Fig. 6) corresponds to the
overdamping of both modes, simultaneously.
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Figure 6: Example 3: Critical damping curves and the corresponding overdamped regions for the four degrees–of–freedom
system. Overlapping areas represent two modes overcritically damped

A deeper inspection of Fig. 6 leads to the following question: Are there exist singularities in the domain
(ζ, ν) which do not allow the application of the proposed method? To address the answer it is known that
a system of differential equations like that one shown in Eq. (58) has solution (and it is unique) provided
that the determinant of the matrix does not vanish in a neighborhood around the initial value. That
determinant results to be −D,ν D,xx, therefore possible singularities arise from the solution the systems of
algebraic equations S1 or S2, in terms of the unknowns (x, ζ, ν), given by

S1:











D = 0

D,x = 0

D,ν = 0

S2:











D = 0

D,x = 0

D,xx = 0

(60)

These two problems can be solved numerically obtaining: (i) on one hand, complex solutions for some of
the variables, x, ζ or ν for system S1. (ii) On the other hand, the solution of system S2 leads to suitable
solutions for our interest, verifying x < 0 and ζ, ν ≥ 0. For the latter case, the corresponding coordinates
of the singularity points have been listed in Table 5. These two points, represented in Fig. 6, result to

SINGULARITY POINTS

x ζ ν

POINT S1 -3.1059 0.46473 0.10658
POINT S2 -2.3221 1.06113 0.14088

Table 5: Example 3: Singularity points in the overdamped region of the 4-dof system. The points have been plotted in Fig. 6

be precisely the vertexes of the two overdamped regions, namely, intersection points of curves C01–C02
and C03–C04, respectively. They can not be used as initial values since, according to the implicit function
theorem, equations D = 0 and D,x = 0 do not define x(ζ) and ν(ζ) unequivocally. Furthermore, the are
triple roots, since for them the relations D = D,x = D,xx = 0 hold.
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We wonder now how does the solution behave in the intersection point between curves C-02 and C-03,
located approximately at ζ = 1.30465, ν = 0.03239. This point satisfies −D,ν D,xx 6= 0, therefore it should
be valid as initial value of the proposed method. However, it belongs to both curves simultaneously, so that
at a first sight the solution would not seem to be well defined. However, it turns out that two different
solutions for the variable x (x = −1.38042 and x = −15.2148) are found, something that leads to two
different initial values. In some way, this point does not correspond with a intersection point of the curves
in the 3D domain (x, ν, ζ), while the triple roots of Table 5 effectively do.

As far as multiple degree-of-freedom systems concern, the success of the method lies on the availability
of the transcendental matrix determinant and their derivatives. Therefore, from a numerical point of view,
large systems will require high computational effort which limits the range of applicability for small or
moderate order systems. Currently, our efforts are addressed to find out numerical procedures allowing to
construct approximate critical curves but for larger systems, something that is under current research.

4. Conclusions

In this paper critical damping of nonviscously damped linear systems is studied. Nonviscous or viscoelas-
tic vibrating structures are characterized by dissipative mechanisms depending on the history of response
through hereditary functions. For certain values of the damping parameters, the response can become non-
oscillatory. It is said then that some (or all) modes are overdamped. Particular values of the damping
parameters which establish the limit between oscillatory and non-oscillatory motion are said to be on a
critical surface (or critical manifold). In the present paper two methods to determine critical surfaces are
presented:

Analytical method: it is proved that critical surfaces can analytically be obtained eliminating the
eigenparameter λ from both the system determinant and its λ-derivative. That is, the two equations

D(λ,θ) = 0 ,
∂D(λ,θ)

∂λ
= 0 (61)

where θ denotes the array containing the damping parameters. This procedure is only affordable if
the determinant can be reduced to a polynomial with order lower or equal than 5, since in such case
the second equation is a fourth order polynomial.

Numerical method: In addition, a computational approach based on the transformation of the alge-
braical equations into a system of two ordinary differential equations is proposed. The system can be
constructed from the available closed-form of the determinant D(λ, p, q), which is assumed to depend
not only on the eigenparameter λ, but also on two damping parameters, p and q. Critical curves
become relations of the form q = q(p) and can be determined as solutions of the following system of
differential equations







0
∂D

∂q
∂2D

∂λ2

∂2D

∂λ∂q







{

λ′(p)
q′(p)

}

= −











∂D

∂p
∂2D

∂λ∂p











,

{

λ(p0)
q(p0)

}

=

{

λ0

q0

}

The initial conditions are found solving the unknowns λ, q in Eqs. (61) for p = p0.

To validate the theoretical results three numerical examples are analyzed. In the first example, the
well-known overdamped region of a single degree-of-freedom system with one exponential kernel is resolved,
showing perfect fitting between the proposed curves (obtained from the differential equations) and those
of the analytical expressions. Moreover, simplified approximate expressions for the critical curves are also
proposed. The second example is devoted to construct overdamped regions for single dof system with two
exponential hereditary kernels. This problem involves three parameters, so that the solutions are 3D critical
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manifolds in the 3D-domain of the three parameters. This is undertaken plotting cross sections after leaving
as fixed one of the three parameters. The third example shows how the method can be applied for multiple
degrees of freedoms systems deriving overdamping regions for different modes and interpreting the obtained
overlapping areas. Since this method is based on the evaluation and derivation of the determinant of the
transcendental matrix, its range of validity is reduced to small or moderately sized systems. Encouraged by
this limitation, the author is currently investigating how to extrapolate this method for larger systems.
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