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ABSTRACT

We theoretically, numerically, and experimentally analyze the Density-Near-Zero (DNZ) regime of a one-dimensional acoustic metamaterial.
This acoustic metamaterial is composed of thin elastic plates periodically clamped in an air-filled waveguide, and the effective dynamic zero
mass density is obtained from the strong dispersion around the bandgaps associated with the resonances of the plates. We emphasize the
importance of the impedance mismatch between the acoustic metamaterial and the surrounding waveguide at the frequency of the zero effec-
tive density in addition to the consequences of the inherent losses. As a result, the frequency of the zero phase propagation, i.e., the acoustic
propagation with zero phase delay, is not exactly the frequency of the zero density and lies in the frequency bandgap where the effective den-
sity is negative. Considering these limitations, the zero phase propagation is still experimentally observed and a subwavelength acoustic
dipole is numerically designed, thus demonstrating the possible realistic implementations of DNZ acoustic metamaterials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121295

Acoustic and elastic metamaterials have attracted considerable
attention in the last few decades,1–4 certainly fueled by the possibilities
of tailoring their wave-dispersion properties and making previously
unexpected behaviors real. Actually, a plethora of effective dynamic
mass density values can be achieved, from negative5–8 to positive mass
density, thus presenting a zero mass density at specific frequency. At
the frequency at which the material mass density vanishes, the sup-
ported acoustic waves present a phase velocity tending to infinity in
the lossless case, leading to an effective quasistatic field distribution9–11

or, equivalently, to an infinite wavelength. In light of these features,
some outstanding effects and applications were initially proposed in
electromagnetics and optics by using the epsilon near zero metamate-
rials. Radiation patterning and lensing12 or energy super-squeezing
and tunneling via narrow ducts are examples of these possibilities.13–16

In acoustics, extraordinary properties have been numerically predicted
based on Density-Near-Zero (DNZ) lossless metamaterials, like
extraordinary sound transmission through ultranarrow channels17

and unity transmission through sharp bends and perfect power

dividers.18 The geometric mismatch between a large cross-sectional
air-filled waveguide and this ultranarrow channel is perfectly compen-
sated by the extremely low density of the material occupying the chan-
nel, thus realizing a perfect impedance matching and an extraordinary
tunneling via a supercoupling effect. This effect is accompanied by a
large and uniform field enhancement along the channel and a zero-
phase propagation of the wave front from the input to the output of
the waveguide, implying a quasistatic wave propagation due to the
extremely low value of the density. It is worth noting here that the
mass density should not be zero, since it would imply an infinite
impedance mismatch, but its value needs to be in the near zero region
in order to compensate the cross section drop. Therefore, in the ultra-
narrow channels with DNZ metamaterials, the impedance matching
and the wave tunneling do not depend on the channel length nor on
the presence of bends, twists, and even absorbing sections along
the channel. Supercoupling is thus ideal for long-distant waveguide
coupling with a high transmittance and no phase delay,17,19 light con-
centration and harvesting,13,14,20 sensing,21 filtering,9 and nonlinear
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applications.22,23 In the absence of huge cross-sectional change, the
impedance matching should be achieved when the bulk modulus is
nearly infinite.24

A DNZ material can be made using different systems including
plate-type acoustic metamaterials7,17,25,26 or periodic distributions of
structured cylindrical scatterers embedded in two-dimensional wave-
guides.18 On the one hand, plate type acoustic metamaterials2,3 are of
great practical interest thanks to their huge tunability. In particular,
structured arrays of such elastic elements allow us to break the density
law and thus make them good candidates for achieving DNZ metama-
terials.7,17,25 However, wave energy losses, not avoidable in this kind of
system,27–29 can dramatically alter its dispersion properties and as a
consequence drastically affect the DNZ metamaterial behavior. When
plate-type materials are considered, the viscoelasticity of the plate
material in the ultranarrow tube influences the DNZ transmission
peak amplitude.17 Low damping viscoelastic plate material has thus to
be selected. On the other hand, when periodic distributions of struc-
tured cylindrical scatterers embedded in a two-dimensional waveguide
are considered, impedance matching is fulfilled in the double negativ-
ity regime, which is reached over a narrow frequency band. However,
these systems are not able to maintain the extraordinary features asso-
ciated with double negativity because of the viscothermal losses29

which are inherent to the system geometry.
In this work, we show that zero phase propagation can be

achieved in a Plate-type Acoustic Metamaterial (PAM) and can be a
promising tool for directive acoustic emission or wavefront shaping
devices. The unit cell of length Lunit forming the PAM is shown in
Fig. 1 and is composed of one plate of thickness h¼ 102lm and
radius R¼ 1.615 cm which is surrounded on both sides by two
cylindrical cavities of length Lgap=2 giving Lunit ¼ Lgap þ h. The inner
and outer radii of the cylinders, which are made of aluminum, are
Ri ¼ 1:5 cm and Ro ¼ 1:615, respectively. The plate is clamped
between the two aluminum cylinders using 500lm thick annular
Teflon rings in order to enhance the reproducibility of the clamped
condition. N unit cells are then hold together in a sample holder, and a
uniform pressure is applied on the sample by screws at the extremities.

The elastic parameters characterizing the plates are extracted
from the experimental results [see supplementary material (S.III)].
These parameters are the complex Young’s Modulus E ¼ E0ð1þ ibÞ,
which contains the elastic part E0 ¼ 4:6 GPa and the loss factor
b ¼ 0:13 to account for the viscoelastic losses, Poisson’s ratio � ¼ 0:4,
and the mass density q¼ 1400 kgm�3. The plastic shim constituting
the plates is chosen for its low loss factor. The resonance frequency of
one single plate is experimentally measured at fm¼ 438Hz which gives
in the lossless case fm¼ 423Hz. In the cylindrical cavities surrounding
the plates, the viscothermal losses are accounted for by considering a
complex wavenumber k0ðxÞ and an impedance Z0ðxÞ,30,31 where x
is the cyclic frequency.

The theoretical effective dynamic mass density qðxÞ of an infinite
lossless PAM is first analyzed and paralleled up with the transmission
and reflection coefficients of a PAM of finite size composed of N¼ 1,
3, 6, and 9 unit cells as shown in Fig. 2. The effective mass density is
found with qðxÞ ¼ ZðxÞ=cðxÞ, where cðxÞ ¼ x=kðxÞ is the effective
sound velocity and kðxÞ and ZðxÞ are the effective wavenumber and
impedance of the PAM, respectively. The effective frequency depen-
dent wavenumber kðxÞ and impedance ZðxÞ of the PAM are obtained
from the transfer matrix of a single unit cell as follows:

kðxÞLunit ¼ cos�1 ðT11 þ T22Þ=2½ �; (1)

ZðxÞ ¼ ðT12=T21Þ
1
2; (2)

where Tij are the ij-th element of the 2� 2 transfer matrix which is
obtained theoretically [see supplementary material (S.I)] and can be
extracted from the experimental and numerical scattering coefficients.

We define three characteristic frequencies.
The first one is the resonance frequency of the plate, fm, where

the PAM impedance matches that of the air. At fm, perfect transmis-
sion is achieved, because of the impedance matching condition, with a
phase shift related to the length L ¼ NLunit of the material. The phase
equals the one produced in an air-filled cavity of the same length. The
second frequency of interest is that at which the dynamic mass density
reaches the zero value fq0

. At this particular frequency, zero-phase
delay propagation and a constant wavefield within the PAM are
expected, but the PAM is not impedance matched with the surround-
ing medium. The amplitude of the transmission coefficient is thus not
unitary and more importantly depends on the number N of unit cells.
The phase shift at fq0

is weaker than that at fm (when the system is
impedance matched), but even more importantly, it depends on N.
Therefore, no propagation without phase change is supported by the
system at fq0

. The third important frequency is that at which the phase

FIG. 1. (a) Considered plate-based metamaterial sketch, [(b) and (c)] unit cell, (d)
photography of an exploded view of the unit cell composed of a thin elastic plate
embedded between two Teflon and aluminum rings, and (e) photography of the
experimental setup.
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of the transmission coefficient is exactly zero f/¼0. At this frequency,
the effective density is negative and equal to qðxÞ ¼ �q0j0=jðxÞ
[see supplementary material (S.V)]. The negative effective density
regime [gray mapped areas in Fig. 2(c)] corresponds to a stop band for
an infinite system. Although f/¼0 lies in the negative mass range, the
transmission remains considerable due to the small size of the consid-
ered PAM. The amplitude of the transmission coefficient also depends
on the number of unit cells composing the system, but the zero phase
propagation is operated independently of the number of unit cells.
Having zero density, zero phase, and unitary transmission at the exact
same frequency would also imply to have an infinite bulk modulus
[see supplementary material (S.V)], which is not the case in the PAM.

We now analyze the limits of zero phase transmission in the pres-
ence of losses when N � 6. These numbers of unit cells constitute a
good balance between the finite size of the system and the transmis-
sion coefficient amplitude value in the lossless case at f/¼0 (jTj � 0:9).
Both viscothermal losses in the waveguide and viscoelasticity of the
plate material are accounted for. First, we analyze the dependence of
the zero phase frequency, f/¼0, on the viscoelastic losses which are the
most important loss source in usual PAM. The zero phase frequency
decreases with the increase in the loss factor [see Fig. 3(a)], thus enter-
ing more and more in the PAM stop band. However, the change in
frequency is less than 10% with respect to the lossless case. Figures
3(b) and 3(c) depict the amplitude and the phase of the transmission
coefficient of N¼ 6 PAM for different values of the loss factor, respec-
tively. The transmitted amplitude is reduced because of the losses but
remains reasonable for the application of zero phase propagation in

realistic situations. Moreover, in Fig. 3(d), we represent the depen-
dence of the phase of the transmission coefficient on the number of
unit cells considered in the finite length PAM. The variation of the
phase remains lower than 8% at f/¼0 in the cases N � 6.

In order to validate the previous results, we followed a twofold
procedure focusing the analysis on the case of N¼ 6 PAM. The first
procedure consists in performing full-wave numerical simulations in a
2D-axisymmetric configuration using FEM. The system is insonified
by a plane incident wave from left to right, and the plates are com-
posed of viscoelastic material of the above-mentioned properties. A
plane wave radiation condition is applied at the waveguide end bound-
ary to avoid spurious reflections. The second procedure is the mea-
surement of the scattering parameters and the recovery of the effective
dynamic mass density of the system using the experimental setup
shown in Fig. 1(d). The details on the retrieval procedure can be found
in Ref. 32 and in supplementary material (S.II).

The red dashed line and symbols in Figs. 3(a)–3(d) show the full
numerical and experimental validation of the analytical predictions for

FIG. 3. Analysis of the zero phase frequency and the scattering properties of the
PAM considering the viscoelastic and viscothermal losses. (a) Dependence of the
zero phase frequency on the viscoelastic losses of the system. (b) and (c) repre-
sent the amplitude of the transmission coefficient as well as its normalized phase
for a finite PAM made of N¼ 6 plates depending on the losses. (d) represents the
dependence of the phase of the transmission coefficient with the number of unit
cells in the PAM for the case with b ¼ 0:13 (experimental losses). Continuous
lines, dashed lines, and symbols in (b)–(d) represent the experimental, numerical,
and analytical results, respectively. Horizontal and vertical blue lines in (a)–(d) rep-
resent the frequency for the zero phase PAM experimentally analyzed in this work.

FIG. 2. Effective mass density and scattering properties of the PAM in the lossless
case. (a) Effective dynamic mass density in terms of function as obtained from Eqs.
(1) and (2). (b) and (c) represent the amplitude of the transmission [left vertical axis
of (b)] and reflection [right vertical axis of (b)] coefficients as well as the normalized
phase of the transmission coefficient for a finite PAM made of N¼ 1, 3, 6, and 9
plates, respectively. Vertical blue, gray, and green lines in (a), (b), and (c) represent
the frequencies for the zero phase, f/¼0, zero mass density, fq¼0, and impedance
matching, fm, frequencies, respectively. The gray mapped area delimits the zero-
frequency bandgap of an infinite system.
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N¼ 6 PAM, respectively. Figure 3(b) depicts the amplitude of the
transmission coefficient of the system. A maximum of the transmis-
sion coefficient occurs at fm¼ 439Hz due to the quasi-impedance
matching condition. The phase of the transmission coefficient is
shown in Figs. 3(c) and 3(d). A zero phase propagation is measured at
f/¼0 ¼ 389 Hz, in agreement with the predictions, thus experimentally
confirming the feasibility of zero-phase propagation. Good agreement
is observed between the measurement, the analytical, and the numeri-
cal results.

Figure 4 depicts the real and imaginary parts of the effective
dynamic mass density. In the propagative regime, the real part of the
effective dynamic mass density is positive, while its imaginary counter-
part is negative, thus fulfilling the causality principle. In contrast, both
real and imaginary parts of the density are negative in the forbidden
bandgap. Moreover, the real and imaginary parts of the density are of
the same order of magnitude over the frequency range of interest, con-
trary to the bulk modulus, the imaginary part of which is much
smaller than its real part (see supplementary material Fig. S1). Thus,
most of the losses can be attributed to the complex effective mass den-
sity. Fairly good agreement is found between the measurement, the
numerical, and the analytical predictions. The visible discrepancies are
attributed to a residual variability on the unit cells, due to either the
clamping condition or the intrinsic properties of the plate. This vari-
ability mainly affects the reflection coefficient [see supplementary
material (S.IV)] and therefore the effective density.

As an example of application, this peculiar zero phase propaga-
tion property is used to create a subwavelength dipole source by con-
sidering two waveguides: the first waveguide is filled with a DNZ PAM
and the other one is a coiled-up Fabry–P�erot resonator (FPR) occu-
pied by a porous material in order to compensate the amplitude
decrease due to the losses of the PAM in the first waveguide. A dipole
source can be approximated by two out-of-phase monopoles of equal
flow rates, resulting in two symmetric lobes in the polar directivity pat-
tern. By designing the length of this FPR such that its first resonance
coincides with the zero-phase frequency of the PAM, the acoustic
fields at both waveguide boundaries are out-of-phase, thus fulfilling
the design condition for an acoustic dipole.

Figure 5 shows a 2D full-wave simulation of such a device.
Using the previously characterized plastic shim material, an L¼ 6 cm
periodic arrangement of 6 square plates of width w¼ 2 cm and thick-
ness h¼ 102lm is tested. The zero-phase frequency of the plate

lattice is f/¼0 ¼ 488 Hz. The 2 cm wide FPR waveguide length is
thus LFP ¼ c0=ð2f/¼0Þ � 35 cm long to resonate at that frequency.
In the simulation, the FPR is coiled-up to reduce the device total vol-
ume (total width: 19.7 cm and total height: 6 cm). To reproduce the
sound attenuation of the PAM, the Fabry–P�erot waveguide is filled
with a porous medium (porosity: 0.96, flow resistivity: 2847 Pa sm–2,
viscous length: 273lm, thermal length: 672lm, tortuosity: 1.07, and
Biot frequency: fc¼ 334Hz)33–35 lying in the inertial regime at f/¼0.
Both waveguides are excited by a plane wave pressure field at the top
boundary and radiate in a semi-infinite domain. An out-of-phase
equal mean flow rate is found at each outer boundary, leading to a
two lobe directivity pattern (purple line) and thus evidencing the effi-
ciency of the device as a subwavelength dipole (Lx � k=4 for the
width and Ly � k=12 for the height).

In this work, we have reported the impact of the viscothermal
and viscoelastic losses on the zero phase propagation regime of a
PAM. We have shown that the zero phase propagation appears at fre-
quencies in the negative mass density regime. In this regime, corre-
sponding to the bandgap, the amplitude of the transmission coefficient
depends on the number of unit cells in the system. In contrast, the
phase of the transmission coefficient remains constant in the lossless
case. Therefore, a compromise between the number of unit cells and
the variation of the amplitude should be reached. In this case, we con-
sider systems made of N � 6, leading to a lossless transmission ampli-
tude of jTj � 0:9. Once the losses are introduced in the system, a
weak dependence of both the zero phase frequency, f/¼0, and the
phase of the transmission coefficient, /, on both the number of unit
cells and the amount of losses is observed. In both cases, the variation
is less than 10%. These analytical results have been numerically repro-
duced by full-wave simulations and experimentally validated by mea-
suring the scattering parameters of a PAM made of N¼ 6 plates as
well as the effective mass density. The agreement between the analyti-
cal predictions, the numerical simulations, and the experimental
results is found to be very good. The results shown in this work pave
the way for designing devices based on PAM with zero phase propaga-
tion. As an example, a subwavelength acoustic dipole has been
designed numerically.

See the supplementary material for the details on the transfer
matrix analytical model (S.I); the experimental reconstruction of the

FIG. 4. Analysis of the lossy effective dynamic mass density: real part (black color, left
axis) and imaginary part (red color, right axis). Continuous lines, dashed lines, and
symbols represent the analytical, numerical, and experimental results, respectively.

FIG. 5. 2D Full-wave simulation of a subwavelength dipole device built of a coiled-
up Fabry–P�erot waveguide of length LFP � 35 cm and a 6 plates PAM. The y com-
ponent of the velocity field is shown as well as the normalized directivity polar plot
of the dipole (purple line).
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scattering parameters (S.II); the plate characterization process (S.III);
the measured scattering parameters and effective dynamic mass den-
sity of a 6 PAM (S.IV); and the theoretical reason for the frequency
offset between the zero-phase, zero-density, and unit transmission in
the case of a noninfinite effective bulk modulus system (S.V).
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