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 ABSTRACT 

Ruthenium nanoparticles with a core-shell structure formed by a core of metallic ruthenium 

and a shell of ruthenium carbide have been synthesized by a mild and easy hydrothermal 

treatment. The dual structure and composition of the nanoparticles have been determined by 

synchrotron X-ray Photoelectron Spectroscopy (XPS), Near Edge X-ray Absorption Fine Structure 

(NEXAFS) analysis and Transmission Electron Microscopy (TEM) imaging. According to depth 

profile synchrotron XPS and X-Ray Diffraction (XRD) analysis, metallic ruthenium species 

predominate in the inner layers of the material being ruthenium carbide species located on the 

upper surface layers. The Ruthenium carbon catalysts presented herein are able to activate both 

CO2 and H2, exhibiting exceptional high activity for CO2 hydrogenation at low temperatures (160-

200 °C) with 100% selectivity to methane, surpassing by far the most active Ru catalysts reported 

up to now. Based on catalytic studies and isotopic 13CO/12CO2/H2 experiments, the active sites 

responsible for this unprecedented activity can be associated to surface ruthenium carbide 

(RuC) species, which enable CO2 activation and transformation to methane via direct CO2 

hydrogenation mechanism. Both, the high activity and the absence of CO in the gas effluent 

confer relevance on these catalysts for the Sabatier reaction, a chemical process with renewed 

interest for storing surplus renewable energy in the form of methane. 

 

Keywords Ruthenium carbide, CO2 activation, low temperature Sabatier, NEXAFS, synchrotron 

XPS, methane, hydrothermal synthesis, isotopic experiments. 
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 INTRODUCTION 

The CO2 concentration in the atmosphere has been growing exponentially in the last decade 

exceeding the 400 ppm in 2016 and leading to important environmental damages as, for 

instance, the global warming or sea water acidification.1 Therefore, the reduction of CO2 

emissions is strongly required. Among the processes reported for CO2 capture and use, CO2 

methanation reaction (so called Sabatier reaction) has received renewed interest in the last 

years as a way to store surplus renewable energy in the form of CH4, which is easily stored, 

transported and used in the actual industrial infrastructure.2 CO2 methanation is a simple 

reaction, favoured thermodynamically at low temperatures (CO2+ 4H2  CH4 + 2H2O; H = -

252.9 KJ·mol-1), but limited kinetically because of the high CO2 stability. The catalysts proposed 

in patents and in the literature for producing CH4 from CO2 are based on metals like Ni, Ru, Pd, 

Rh, mono or multimetallic, with or without promoters (Na, K, Cs, rare-earth elements…) on 

different supports (TiO2, SiO2, Al2O3, CeO2, ZrO2, CNT doped with N).3-5 In all cases high 

temperatures (300-500 °C) are employed which results in large energy input, high operational 

costs for large-scale production and negative impact on catalyst stability. Ru is a highly active 

metal for CO2 methanation at lower temperature, however the highest space time yield to 

methane reported up to now does not exceed 0.9 µmolCH4·s-1·gcat
-1 at 165 °C and 2.6 µmolCH4·s-

1·gcat
-1 at 200 °C and atmospheric pressure, obtained at a 1.6 mL·g-1·s-1 gas feed rate on a Ru/TiO2 

catalyst, still too low for industrial application.6,7 Therefore, a breakthrough in the CO2 

methanation reaction will require a highly active and selective catalyst able to operate under 

mild reaction conditions. 

Transition metal carbides appear as appealing catalytic alternatives with interesting 

properties for many processes, such as isomerization of n-heptane,8 steam reforming of 

methanol,9 dry reforming of methane,10 CO hydrogenation,11-13 and CO2 hydrogenation.14-18 

Molybdenum carbide (β-Mo2C)14 and metal supported carbides (Me/Mo2C17 Me = Ni, Co, Cu; or 

Me/TiC16 Me = Cu, Ni, Au) have shown high activity for CO2 hydrogenation (i.e. 6-8% CO2 

conversion at 200 °C, 20 bar and 2.5 mL·g-1·s-1 gas feed rate),17 being 3-5 times higher than the 

corresponding metals supported on conventional oxide supports. However, the selectivity to the 

target product is relatively low (29% and 42% CH4 at 200 °C on β-Mo2C and Ni/Mo2C 

respectively)17 due to CO formation (39% and 37%, respectively). The high activity has been 

ascribed to the intrinsic activity of metal carbides to adsorb and activate the CO2 molecule 

through a net charge transfer from carbide to the CO2 molecule.15,19 The reactivity, i.e. C-O bond 

cleavage of the CO2 molecule, strongly depends on the carbon/metal ratio. Thus, CO2 

dissociation occurs spontaneously on a Mo-terminated β-Mo2C surface yielding CO and O, while 
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on a carbon rich surface (i.e. -MoC) a HOCO intermediate is formed, resulting in different 

product selectivity. 

In an early study, Moreno-Castilla et al20 reported the formation of ruthenium carbide (RuC) 

in a Ru activated carbon catalyst prepared by sublimating Ru3(CO)12 on a carbon support, 

followed by thermal decarbonylation in He at 150 °C. Based on CO and H2 chemisorption data, 

they argued the formation of a RuIV active phase, which according to the authors has been 

assigned to RuC. This result has to be reviewed considering the low tendency of ruthenium to 

form carbides or solid solution with carbon, usually requiring elevated pressure (5 GPa) and 

temperatures (1700-2500 °C) for their synthesis.21-24 Moreover, the reported yield to methane 

in the CO2/H2 reaction was not higher (1.4-1.0 times) than that of a similar sample without 

carbide species, which makes the assignation to RuC doubtful. 

In the present work, we show the possibility of synthesizing a ruthenium carbide catalyst 

(labelled as Ru@C) by an easy and mild hydrothermal method instead of using the harsh 

treatments previously reported. Most importantly, the as synthesized Ru@C catalyst show 

unprecedented activity for the low temperature (160-200 °C) CO2 hydrogenation reaction to 

CH4. Methane yields up to 3.5 µmolCH4·s-1·gcat
-1 at 160 °C and 13.8 µmolCH4·s-1·gcat

-1 at 200 °C are 

achieved at atmospheric pressure and at 8.3 mL·g-1·s-1 feed rate, surpassing by far the most 

active Ru catalyst reported up to now.5,6,7,25-26 The catalyst also show good stability under 

operational conditions with CH4 selectivity above 99.9%. Finally, we will show that the formation 

of CH4 is taken place by direct activation and hydrogenation of CO2. 

 EXPERIMENTAL SECTION 

Synthesis of Ru@C-EDTA 

Samples with different Ru contents were prepared using the same synthetic procedure but 

modifying the amount of Ru precursor. In general: X (X = 1.5, 3.1, 5.3 and 6.6) g Ru(acac)3 

(Aldrich), 1.77 g Na2EDTA·2H2O (Aldrich) and 0.39 g NaOH (Acros) were dissolved in 8 mL of 

deionized water. Then 4 mL of methanol were added to the mixed aqueous solution under 

stirring at room temperature, resulting in a red suspension, which was transferred into a 35 mL 

Teflon-coated stainless steel autoclave followed by static hydrothermal processing at 200 °C for 

24 h. After it, the autoclave was taken out of the oven and cooled down to room temperature 

for 3 h. The generated precipitate was filtered and washed with deionized water and acetone 

for five times. Samples were labelled as Ru@C-EDTA-X, where X corresponds to the ruthenium 

loading, determined by ICP (Table S1). 

Synthesis of Ru@C-Glucose 
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120 mg of glucose (Aldrich) dissolved in 7 mL of deionized water were stirred at room 

temperature for 0.5 h. Then 100 mg of RuO2 (Aldrich, 99.9%, particle size 32 nm, determined by 

XRD) were added and mixed under ultra-sonication (Branson 3510 operating at 40 Hz) for 0.5 h, 

obtaining a black suspension. The so obtained suspension was transferred into a Teflon-coated 

stainless steel autoclave of 12.5 mL. The autoclave was introduced in an oven placed at 175 °C 

and kept for 18 h under static conditions. After it, the autoclave was taken out of the oven and 

cooled down to room temperature for 2 h. The content of the autoclave was then filtrated under 

vacuum conditions, recovering a black solid. The solid was washed five times first with water 

and later with acetone. Finally, it was dried in an oven at 60 °C for 12 h. The loading of ruthenium 

in the sample was 24.3 wt %, according to ICP analysis. 

Synthesis of Ru/C-WI 

The sample was prepared by a wet impregnation method as follows: 396 mg of Ru(acac)3 

were dissolved in 20 mL toluene for 0.5 h. Then 900 mg of carbon (activated charcoal Norit®, 

Aldrich) were added and stirred for 15 h at room temperature. The final suspension was 

evaporated under vacuum resulting in a black solid. The solid was reduced in 50 mL·min-1 H2 at 

250 °C for 3 h with a heating ramp of 10 °C·min-1, followed by cooling down in N2 to 25 °C. After 

this, it was oxidized in 50 mL·min-1 O2 flow at 400 °C for 3 h. The loading of ruthenium in the 

sample was 3.0 wt %, according to ICP analysis. XRD is shown in Figure S5. 

Synthesis of Ru/C-Ar800 

58 mg of Ru(acac)3 were dissolved in 20 mL of acetone and stirred at 50 °C. 1.47 g of Na2EDTA 

and 0.12 g NaOH were dissolved in water (20 mL) and the resulting aqueous solution was added 

to the metal solution and stirred at 50 °C for 0.5 h. Then, 1.6 g of carbon (activated charcoal 

Norit®, Aldrich) were added and the mixture was refluxed at 50 °C for 24 h. After cooling, the 

suspension was rotoevaporated, washed with water, filtered and dried at 100 °C overnight. The 

black solid was pyrolized in an Ar flow (10 mL·min-1) at 800 °C for 5 h (5 °C·min-1). XRD is shown 

in Fig. S5. 

Synthesis of Ru@C/NG 

The catalyst was synthesized according to Reference 27. Briefly, graphene oxide (GO) support 

was prepared following the improved Hummers method. GO was doped with nitrogen using 

formaldehyde (37% in water, Aldrich) and melamine (Acros) and the suspension was transferred 

into a Teflon-coated stainless steel autoclave (12.5 mL) and kept at 180 °C for 12 h. The gel 

obtained was submitted to pyrolysis in a N2 flow at 750 °C for 5 h. NG support was dispersed in 

a phosphate buffered solution with the metal precursor (RuCl3·3H2O, Johnson Matthey), 

dopamine hydrochloride (Aldrich) and CTAB (Acros) and hydrothermally treated at 140 °C for 6 
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h. The resulting suspension was centrifuged and the solid was washed with water and dried. The 

catalyst was obtained after a high temperature treatment in argon (800 °C, 10 mL·min-1) for 3 h. 

Ruthenium references 

Commercial Ru on carbon, Ru/C-com (Acros Organics, 5 wt % Ru) and Ru-Black (Aldrich, 

>98%) were used as reference samples in catalytic and spectroscopic studies. XRD are shown in 

Figure S5. 

Catalysts characterization 

The Ru content was analysed by Inductively Coupled Plasma Optical Emission Spectrometry 

(ICP-OES) using a Varian 715-ES spectrometer. The samples were dissolved in aqua regia at 60 

°C for 20 h. X-Ray powder diffraction (XRD) was recorded with a Philips X´Pert diffractometer 

using a monochromatic Cu Kα radiation (=0.15406 nm). Average particle size was calculated 

from the main peaks (38.4, 42.2, 44.0, 58.3, 69.4, 78.4; 2θ) of Ru0 (JCPDS: 00-006-0663) using 

the Scherrer equation and assuming a shape factor k=0.9. Transmission Electron Microscopy 

(TEM) measurements were performed in a JEOL-JEM 2100F operating at 200 kV. Samples were 

prepared by dropping the suspension of the powder catalyst using ethanol as the solvent directly 

onto holey-carbon coated Cu grids. The amount of surface ruthenium metal sites was measured 

by CO chemisorption at 25 °C in a Quantachrome Autosorb-1C instrument by extrapolating the 

total gas uptakes in the adsorption isotherms at zero pressure and assuming an adsorption 

stoichiometry of 1:1 (Ru:CO).20 Before measurements, about 300 mg of catalyst were activated 

in a helium flow at 100 °C (2 h) and in vacuum at the same temperature (1 h). Near Edge X-ray 

Absorption Fine Structure (NEXAFS) spectra at Ru L3/L2 edge were collected by the total 

fluorescence yield via Lytle detector at beamline 16A1 at Taiwan Light Source. The spot size was 

0.5 x 0.5 (HxV) mm2, where probed at the Ru powder sample by incident 45° angle. X-ray energy 

from Si (111) monocromator was calibrated using the energy jump of standard Mo foil at L3 

edge. Synchrotron X-ray Photoelectron Spectroscopy (XPS) experiments were performed at 

beamline BL24-CIRCE (NAPP branch) at ALBA Synchrotron Light Source (Cerdanyola del Vallès, 

Barcelona). CIRCE is an undulator beamline with a photon energy range of 100-2000 eV. Data 

acquisition was performed using a PHOIBOS 150NAP electron energy analyser (SPECS GmbH). 

The spectra were acquired with exit slit of 20 µm and pass energy of 20 eV. The X-ray spot size 

was 100 µm x 65 µm (HxV). Incident photon energies of 500 and 1150 eV for Ru 3d and C 1s 

were used to record the XPS spectra. Binding energies (BE) were calibrated with respect to C 1s 

signal settled at 284.5 eV. The sample (50 mg) was pelletized, mounted onto the sample holder 

and measured at room temperature at a 10-9 mbar pressure without previous activation. Shirley 

type background and Lorentzian type curves have been used in the spectra fitting. Laboratory 

X-ray Photoelectron Spectroscopy (XPS) experiments were performed on a SPECS equipment 
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with a Phoibos 150 MCD-9 detector and using non-monochromatic AlKα (1486.6 eV) X-ray 

radiation. The pass energy was 20 eV and the X-ray power was 100 W. Raman studies were 

performed using a Renishaw “In via” spectrometer connected to an Olympia Microscope. The 

instrument is equipped with a He-Ne green laser (514 nm), a diode laser (785 nm) and a CCD 

detector. Temperature Programmed Reduction with H2 (TPR-H2) studies were performed using 

a quartz reactor, connected online to a mass spectrometer Balzer (QMG 220M1). 120 mg of 

catalyst were flushed with Argon at 25 °C for 30 min, and then switched to a 70 vol % H2 in Ar 

flow (14 mL·min-1). The reaction was carried out at increasing temperatures (160, 180, 200, 220, 

260 and 280 °C, at a rate of 10 °C·min-1). The m/z values used to monitor each product were 44 

(CO2), 28 (CO and CO2), 2 (H2), 15 (CH4), 16 (CH4) and 18 (H2O). 

Isotopic 13CO/12CO2/H2 experiments 

Catalytic tests with carbon labelled species were performed in a home-made stainless steel 

cell connected online with a mass spectrometer (Balzer QMG 220M1). The catalysts (15 mg) 

were pelletized and kept in vacuum at 120 °C for 0.5 h. In case of Ru/C-com, the sample was 

additionally reduced in situ with a H2 flow (280 °C, 1 h, 10 mL·min-1) before reaction. After 

activation, a mixture of 13CO/12CO2/H2 (1:1:6 vol %) was fed continuously at 15 mbar total 

pressure. Then, the temperature was increased to 160 °C and finally the pressure was set at 25 

mbar. The reaction evolution was monitored by Mass Spectrometry (MS) with m/z values: 44 

(12CO2), 45 (13CO2), 28 (12CO), 29 (13CO), 15 (12CH4), 17 (13CH4), 18 (H2O) and 2 (H2). 

CO2 hydrogenation catalysis 

CO2 hydrogenation was performed in a stainless steel fixed bed reactor with an inner 

diameter of 11 mm and 240 mm length. Typically, 210 mg of catalyst (particle size 400-600 µm) 

were diluted in SiC in a weight ratio 0.14 (Cat/SiC). Ru@C-EDTA and Ru@C-Glucose were not 

activated before reaction, while the other samples were in situ reduced prior to catalytic tests 

(25 mL·min-1 H2, 280 °C, 1 h, 10 °C·min-1). The reaction took place at atmospheric pressure and 

the reaction temperatures were 160, 180 and 200 °C. Each temperature was maintained for at 

least 1.5 h. The reaction was carried out at 21428 h-1 GHSV under concentrated (23.8 vol % CO2, 

71.3 vol % H2, 5 vol % N2) or diluted (5 vol % CO2, 20 vol % H2, 75 % vol N2) conditions. Direct 

analysis of the reaction products was done by online gas chromatography (GC), using a SCION-

456-GC equipment with TCD (MS-13X column) and FID (BR-Q Plot column) detectors. Blank 

experiments (in the presence of SiC) shown the absence of homogeneous contribution to the 

reaction. Turnover frequency values (TOFs) were obtained from CO chemisorption data. 

CO hydrogenation catalysis 

CO hydrogenation was performed in the CO2 hydrogenation reactor setup described before. 

In this case, the inlet gas mixture was 30 % vol CO, 60 % vol H2 and 10 % vol Ar with identical 
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total flow (100 mL·min-1). The process took place at atmospheric pressure and in a temperature 

range of 160-240 °C, using 210 mg of catalyst. 

 RESULTS AND DISCUSSION 

The Ru@C-EDTA samples are prepared under hydrothermal conditions (details in 

Experimental Section), modifying the amount of Ruthenium(III) acetylacetonate (Ru(acac)3) in 

the synthesis gel, while keeping constant the ethylenediaminetetraacetic acid disodium salt 

dihydrate (Na2EDTA·2H2O). The synthesis takes place at autogenous pressure at 200 °C for 24 h. 

The ruthenium loading in the as prepared samples, determined from ICP analysis, takes values 

between 6 wt % and 28 wt % (Table S1). Representative TEM images obtained from the Ru@C-

EDTA samples are presented in Figure 1 and Fig.S1-S4, which show the presence of Ru0 NP 

embedded in a carbon matrix. An homogeneous distribution of small Ru NP with average particle 

sizes of 2-5 nm are observed in the Ru@C-EDTA-6, Ru@C-EDTA-12 and Ru@C-EDTA-20 samples. 

However, a more heterogeneous size distribution of small (2-5 nm) and bigger (10-15 nm) Ru 

nanoparticles can be detected in the Ru@C-EDTA-28 sample (Fig.S4). 

 

Figure 1. TEM images of Ru@C-EDTA samples prepared by hydrothermal synthesis with different 

ratios of Ru/EDTA. (a) Ru@C-EDTA-6, (b) Ru@C-EDTA-12, (c) Ru@C-EDTA-20 and (d) Ru@C-

EDTA-28. 



 

Page 9 from 21 
 

This is in accordance with the bulk information extracted from X-ray diffractograms (Fig.S5) 

where the peak broadening observed in samples Ru@C-EDTA-6, Ru@C-EDTA-12 and Ru@C-

EDTA-20 samples corresponds to a small crystallite size, whereas some sharp peaks are 

visualized in the Ru@C-EDTA-28 sample, corresponding to crystalline Ru0 (hexagonal, JCPDS: 00-

006-0663). The nature of the carbon matrix studied by Raman spectroscopy shows a graphitic 

structure (1600 cm-1) with defects (1371 cm-1) and some amorphous carbon (1506 cm-1)29 

(Fig.S6). In addition, concerning to the nature of ruthenium species, XPS studies performed in a 

laboratory scale spectrometer using AlKα (1486.6 eV) X-ray energy (Fig.S7) displays the presence 

of Ru0 (279.3 eV) and RuO2 (281.0 eV). However, high-resolution XPS spectroscopy using 

synchrotron radiation allowed us to obtain surface sensitive information of the Ru@C-EDTA 

samples working at variable X-Ray excitation energy. In fact, at low X-ray excitation energy (500 

eV) with a probing depth of around 2.2 nm,30 an additional ruthenium specie at 279.6 eV, 

together with Ru0 (at 279.1 eV) and RuO2 ( 281.0-280.4 eV) are clearly observed (Fig.2a). The 

surface concentration of this new specie slightly increases from 56% to 70% at decreasing the 

Ru content in the samples (Fig.2b). 

 

Figure 2. a) Synchrotron XPS of the C 1s and Ru 3d5/2 core levels at 500 eV X-ray excitation 

energy on fresh Ru@C-EDTA samples. Colour code for components: Ru0 (red), RuC (blue) RuO2 

(green), C (grey). b) Surface concentration of the RuC phase relative to the total Ru (RuT). 

Based on XPS depth profile analysis at a sample depth of 4.4 nm, the contribution of the new 

component at 279.6 eV to the total Ru peak intensity decreases  30-40% in all samples at the 
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expense of the component of Ru0 (Fig.S8), meaning that the new Ru specie identified by 

synchrotron XPS is preferentially located on the upper surface layers of the catalyst. This new 

component is ascribed in our work to ruthenium carbide (RuC) species. However, their 

assignation is not straightforward, due to the lack of reference data associated with RuC and 

uncertainties that exist in the literature regarding to the assignation of ruthenium chemical 

states.31 Our assignation has been made based on previous studies where a +0.5 eV shift respect 

to the metal was related to carbide species,32 and is also supported by HRTEM analysis (Fig.3a 

and Fig.S9), in where lattice fringes at 0.21 and 0.31 nm, corresponding to Ru0 and RuOx 

respectively, and 0.28 nm, due to RuC (PDF number 01-089-3016) are detected. In addition to 

XPS and HRTEM analysis, the assignation of the new detected specie to RuC is supported by 

Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique performed on the Ru@C-EDTA-

20 sample at the Ru L2,3-edge, which is compared with RuO2 and Ru0 references (Fig.3b). The 

spectra reflect the electronic structure of surface Ru species and their local environment, which 

don’t correspond to RuO2 nor Ru0. Indeed, the Ru L2,3-edge white lines of Ru@C-EDTA-20 

(located around 2840 and 2969 eV for the L3 and L2, respectively) are shifted to higher photon 

energy compared to that of Ru metal, and to lower energy respect to that of RuO2, while are 

compatible with the RuC phase.34 Moreover, the global spectral shapes characteristic of Ru0 and 

RuO2 result incompatible with the spectra collected on the Ru@C-EDTA-20 sample, where both 

the double peak structure around 2850 (L3) / 2980 (L2) eV (characteristic of the metal phase) and 

the one broadened peak structure of the white line (characteristic of the RuO2 phase) are absent 

(details in Fig.S10(a),(b)). Curve fitting simulation from the NEXAFS spectra at L3 and L2 edge is 

shown in Figure 3c, representing two peaks corresponding to the electronic transition 2p->4d-

t2g (A) and 4d-eg (B) state. The A/B ratios in RuO2 and Ru metal at L3 edge (L2) are 0.024 (0.17) 

and 2.61 (2.92) respectively, which are the opposite cases by their electronic configurations (4d4 

and 4d8 electrons). In the Ru@C-EDTA-20 sample, the A/B ratios result at L3 edge (1.19) and L2 

edge (2.00), which is between RuO2 and Ru metal, reflecting a different feature symmetry and 

ligand environment in the Ru@C-EDTA sample. This agrees with the previous results and 

indicates that the upper surface of our catalysts is most likely ascribed to RuC. To our knowledge, 

this is the first time that a ruthenium carbide phase is formed under mild conditions 

(hydrothermal synthesis at 200 °C) in opposite to the harsh conditions (5 GPa and 1000-2500 °C) 

usually required for its synthesis.21-24 
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Figure 3. (a) HRTEM image of the Ru@C-EDTA-20 sample. (b) L3-edge spectra (left panel) and 

L2-edge spectra (right panel) of Ru0, Ru@C-EDTA-20, and RuO2. (c) Curve fitting simulation from 

the NEXAFS spectra at L3 and L2 edge on RuO2, Ru@C-EDTA-20 and Ru0. 
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followed by online Mass Spectrometry (MS). Under these conditions, CH4 MS signal (m/z=15) 

clearly evolves above 240 °C (Fig.S11), limiting the catalytic studies to this temperature. 

The herein reported Ru@C-EDTA catalysts show markedly high activity at low temperature 

(160-200 °C) and atmospheric pressure for the CO2 hydrogenation reaction, with 99.9% 

selectivity to methane, operating at 21428 h-1 GHSV (details in Experimental Section). The CO2 

conversion and the methane space time yield (STYCH4) in the 160-180 °C temperature range at 

concentrated reaction conditions is summarized in Table 1a, where an increase in the catalytic 

activity is observed at increasing Ru loading in the samples. The catalyst stability of Ru@C-EDTA-
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20 sample tested over a period of 15 h reaction time at 160 C is plotted in Figure 4. A decrease 

in activity (8%) is observed in the first 12 h of reaction, while it remains stable in the last 3 h. 

The observed loss of activity corresponds to a partial removal of surface ruthenium carbide 

species under reaction conditions, as evidenced from XPS studies using synchrotron radiation 

performed on the spent catalysts (Fig.S12a) while maintaining the carbonaceous matrix where 

the Ru NPs are embedded (see Raman spectra of the spent catalysts in Fig.S6). In fact, a loss of 

RuC species is observed in all samples according to the XPS spectra acquired at 500 eV X-ray 

excitation energy, being in the order of 31-23% on the Ru@C-EDTA-6, Ru@C-EDTA-12 and 

Ru@C-EDTA-20 samples and of 5% on the Ru@C-EDTA-28 sample (Fig.S12b). Based on this data, 

a fairly good correlation between the amount of surface RuC of the spent Ru@C-EDTA catalysts 

and the STYCH4 at 160 C (Table 1a) is found, as displayed in Figure 5. These results suggest that 

the RuC species should play a key role in the catalytic activity of the Ru@C-EDTA samples, as 

discussed later. 

 

Figure 4. CO2 conversion (left axe, black) and methane STY (right axe, blue) on the Ru@C-

EDTA-20 catalyst at 160 °C, 21428 h-1 GHSV and 5% CO2, 20% H2 and 75% N2 (% vol). 
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Figure 5. Methane STY (left axe, black) at 160 °C, 21428 h-1 GHSV and 23.8% CO2, 71.3% H2, 5% 

N2 (% vol). On the right axe (blue), RuC/RuT atomic ratio obtained from XPS analysis on the spent 

Ru@C-EDTA catalysts at 500 eV X-ray excitation energy (Fig.S12). 

The activity of the Ru@C-EDTA samples surpasses by far that of other synthesized ruthenium 

carbon catalysts as shown in Table 1b and is markedly higher than that of most active ruthenium 

catalysts we found in the literature (Table S2). Being aware that the CO2 methanation on Ru 

catalysts has been reported to be size dependent, where large particles were found to be more 

active than smaller ones,35 reference catalysts with different particle sizes have been 

considered. All catalysts prepared by different synthesis strategies, some of them reproducing 

those of the literature,20,27,36 and the commercial type catalysts (such as Ru/C-com and Ru-Black) 

show negligible activity at the mild operation conditions considered in this work. Moreover, the 

selectivity to methane is almost 100 % on the Ru@C-EDTA samples, while other by-products like 

CO or CxHy are formed on the other samples (Fig.S13). Altogether endows in a very promising 

catalyst for the Sabatier reaction. In addition, the synthesis of this type of catalyst can be also 

achieved starting from other precursors like RuO2 and glucose, using water as solvent (see 

Experimental Section and Fig.S14). The similar catalytic activity achieved in the Ru@C-Glucose 

catalyst, (see Table S3) allows to discard the enhanced catalytic activity of the Ru@C-EDTA 

catalysts due to the presence of nitrogen or Na+ additives coming from the Na2EDTA precursor. 

Regarding to the ruthenium surface speciation in the samples, Ru0 is the only specie present 

in all reference catalysts (Table 1b). However, in Ru@C-EDTA materials, it exists a combination 

of Ru0 and RuC (that predominates in upper layers), together with carbon coating, which could 

explain their much superior performance. In fact, if the RuC phase in Ru@C-EDTA-20 is removed 

by treating the catalyst in H2 at 280 °C, the catalytic activity strongly decreases (Fig.S15). This 
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result reinforces our previous assumption of RuC species as a key component responsible for 

the high catalytic reactivity obtained in the CO2 methanation reaction at low temperature. 

 

Table 1. a) Catalytic activity in the CO2 hydrogenation reaction at concentrated reaction 

conditionsa on the Ru@C-EDTA samples; b) Catalytic activity at 160 °C of the Ru@C-EDTA-20 

sample compared to other reference ruthenium carbon samples. 

a) 

Sample 

160 C 

   XCO2                    STYCH4                       

       (%)          (µmolCH4·s-1·gcat
-1)       

180 C 

    XCO2                STYCH4          

    (%)      (µmolCH4·s-1·gcat
-1)   

Ru@EDTA-28    4.9                      3.76                       13.2               10.07          

Ru@EDTA-20    4.6                      3.52                        9.8                 7.56           

Ru@EDTA-12    2.7                      2.16                        6.5                 5.26           

Ru@EDTA-6    1.3                      1.84                        2.5                 3.48           

b) 

Sample 
wt% Ru 

(Part. size)f 

XCO2
a 

(%) 

STYCH4 

(µmolCH4·s-1·gcat
-1) 

(%) Selectivity 

CH4 / CO / C2H6 

Ru@C-EDTA-20 
20.2% 

(--) 
4.6 3.52 99.9 / 0 / 0.1 

Ru/C-WIb 
3.0% 

(17 nm) 
<0.1 0.04 38.3 / 61.5 / 0.2 

Ru/C-com 
5.0% 

(2 nm)g 
<0.1 0.07 92.7 / 6.8 / 0.5 

Ru/C-Ar800c 
4.0% 

- 
0.1 <0.01 73.4 / 25.6 / 1.0 

Ru@C/NGd 
13.0%27 

- 
0 - - 

Ru3(CO)12/Ce 
2.5% 

(1.2 nm)20 
<0.1 0 0 / 100 / 0 

Ru-Black 

Aldrich 

100% 

(20 nm) 
0.3 0.23 99.9 / 0 / 0.1 
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a1 bar, GHSV 21428 h-1, reactant feed composed of 23.8 vol % CO2, 71.2 vol % H2, 5 vol 

% N2; bPrepared by wet impregnation of Ru(acac)3 on a carbon support; cPrepared by 

pyrolisis of the metal precursors according to ref. 36; dPrepared through thermal 

annealing of polydopamine (PDA) coated Ru NP supported on a three-dimensional N-

doped graphene layer as in ref. 27; ePrepared from Ru3(CO)12 precursor as described in 

ref. 20; fCalculated by XRD; gCalculated by HRTEM. 

The reaction mechanism (direct CO2 hydrogenation or via reverse water gas-shift (RWGS)) of 

the Ru@C-EDTA samples have been studied combining catalytic studies using a CO/H2 feed, with 

isotopic studies using a 13CO/12CO2/H2 (1:1:6) reactant feed. For this purpose, the Ru@C-EDTA-

20 catalyst is selected as the reference sample that presents surface RuC species, and its 

behaviour compared to a sample containing only Ru0 (i.e. commercial Ru/C-com). Catalytic 

studies show negligible CO conversion (0.01-0.05%) on the Ru@C-EDTA-20 sample in the 180-

240 °C temperature range, while CO reacts in the commercial Ru/C sample (Table S4). Isotopic 

studies in the presence of both 13CO/12CO2 show a very high preferential 12CO2 hydrogenation 

versus 13CO on the Ru@C-EDTA-20 sample, since only 12CH4 is detected (Fig.S16a). Meanwhile, 

13CO is preferentially hydrogenated versus 12CO2 on the Ru/C sample, resulting in 13CH4 

formation (Fig.S16b). Combining both results, and taking into account the different selectivity 

to CO obtained during the CO2 hydrogenation, (CO is not detected in the Ru@C-EDTA-20 sample, 

while it is formed as the major by-product in the Ru/C sample, Fig.S13), we can conclude that a 

direct CO2 hydrogenation path to CH4 takes place on the Ru@C-EDTA-20 sample, while 

contribution of a RWGS reaction mechanism occurs on the Ru/C sample in the presence of Ru0, 

in agreement to previous studies. 35,37-42 Moreover, the fact that 13CH4 is not observed in the 

isotopic studies of the Ru@C-EDTA-20 sample allows to discard the co-existence of Ru0 species 

on the catalyst surface or, if present,  they should be in a very low amount, being the activity 

ascribed predominately to the presence of RuC species. Based on it, a core-shell structure 

containing a metallic core and an upper shell of ruthenium carbide and carbon species can be 

proposed in our catalysts. The RuC phase has been proven to be the active specie in the CO2 

hydrogenation, which in accordance with the literature,15,19 favors CO2 binding and activation. 

 CONCLUSION 

We have described an easy hydrothermal synthesis method that allows the stabilization of 

surface ruthenium carbide species on a metallic ruthenium core. Advanced surface-sensitive 

characterization techniques such as synchrotron XPS, NEXAFS and HRTEM were required to 

elucidate the presence of these carbidic species, which are not present in other catalysts 

previously reported. Surface RuC enables CO2 activation, which is hydrogenated to methane in 
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a direct reaction path, yielding 100% selectivity to CH4. The high activity at low temperature 

(160-200 C) and the absence of CO in the gas effluent makes the herein synthesized Ru@C-

EDTA and Ru@C-Glucose samples very promising candidates for the Sabatier reaction. 
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