

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/154375

Tuzov, I.; De-Andrés-Martínez, D.; Ruiz, JC. (2019). Simulating the effects of logic faults in
implementation-level VITAL-compliant models. Computing. 101(2):77-96.
https://doi.org/10.1007/s00607-018-0651-4

https://doi.org/10.1007/s00607-018-0651-4

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Simulating the effects of logic faults in
implementation-level VITAL-compliant models

Ilya Tuzov · David de Andrés ·
Juan-Carlos Ruiz

Received: date / Accepted: date

Abstract Simulation-based fault injection (SBFI) is a well-known technique
to assess the dependability of hardware designs specified using Hardware De-
scription Languages (HDL). Although logic faults are usually introduced in
models defined at the Register Transfer Level (RTL), most accurate results
can be obtained by considering implementation-level ones, which reflect the
actual structure and timing of the circuit. These models consist of a list of
interconnected technology-specific components (macrocells), provided by ven-
dors and annotated with post-place-and-route delays. Macrocells described in
the Very High Speed Integrated Circuit HDL (VHDL) should also comply with
the VHDL Initiative Towards Application Specific Integrated Circuit Libraries
(VITAL) standard to be interoperable across standard simulators. However,
the rigid architecture imposed by VITAL makes that fault injection procedures
applied at RTL cannot be used straightforwardly. This work identifies a set of
generic operations on VITAL-compliant macrocells that are later used to de-
fine how to accurately simulate the effects of common logic fault models. The

This work has been partially funded by the Ministerio de Economı́a, Industria y Competi-
tividad of Spain under grant agreement no TIN2016-81075-R, and the “Programa de Ayudas
de Investigación y Desarrollo” (PAID) of Universitat Politècnica de València.

Ilya Tuzov
ITACA, Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain
Tel.: +34 963877007
E-mail: tuil@disca.upv.es
ORCID 0000-0002-1980-0708

David de Andrés
ITACA, Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain
E-mail: ddandres@disca.upv.es
ORCID 0000-0002-4744-3795

Juan-Carlos Ruiz
ITACA, Universitat Politècnica de València, Campus de Vera s/n, 46022, Spain
E-mail: jcruizg@disca.upv.es
ORCID 0000-0001-7678-3513

2 Ilya Tuzov et al.

Q

Q
SET

CLR

S

R

Q

Q
SET

CLR

S

R

accuracy

simulation

effort

Processes, signals, operations

cycle-accuracy

Implementation-level

netlist

Register Transfer

Level model

Functional gate-level

netlist
K× 10

2

generic libraries

source code

process(inp_a, inp_b, aluop)

 begin

 case aluop is

 when "000" => res <= inp_a + inp_b;

Logic synthesis

Map, Place, Route

K× 10
3

K

Sequential/combinational logic

approx. propagation delays

Technology-specific components

accurate timing

implementation-level vendor-
specific libraries

.. .

Q

XFF a_reg[0]

IBU F…

XSF F alu op(…)

XFF b_reg[0]

XMU X4
C

CE

D

CLR

Q

IBU F…

C

CE

D

CLR

Q

IBU F…

C

CE

D

CLR

XCA RRY4

Fig. 1: Simulation effort at different HDL description levels

generality of this proposal is supported by the definition of a platform-specific
fault procedure based on these operations. Three embedded processors, im-
plemented using the Xilinx’s toolchain and SIMPRIM library of macrocells,
are considered as a case study, which exposes the gap existing between the
robustness assessment at both RTL and implementation-level.

Keywords Simulation-based fault injection · implementation-level HDL
models · VITAL · semicustom design flow

1 Introduction

Modern semicustom hardware design flow relies on the use of Hardware De-
scription Languages (HDL) to model hardware at either the implementation
level, the logic level, or the Register Transfer Level (RTL). Nevertheless, hard-
ware models are usually defined at the much simpler and higher-level RTL,
which describes the circuit in terms of registers and how information flows
among them with just clock cycle accuracy. It is the task of Electronic Design
Automation (EDA) tools to refine the RTL model into a gate level netlist
representation and, after that, an implementation level model for the selected
implementation technology [34], as depicted in Fig. 1. Accordingly, accurate
performance, area, power consumption, and dependability estimations, can
only be obtained from detailed implementation-level models [30].

EDA tools also enable the simulation of these models to verify both their
functionality and timing behavior [27]. This verification process, which is
mandatory previous to manufacturing any circuit, must also be accompa-
nied by a dependability assessment process whenever unexpected failures in
the system may lead to human lives or economic losses, environmental dam-
age, or affect the manufacturer’s reputation. Simulation-based fault injection
(SBFI) [4] is a privileged technique to intentionally introduce faults at sim-
ulation run-time for the dependability assessment and verification of systems
described using HDL models. This technique is usually applied to RTL models

Simulating logic faults in VITAL models 3

due to the uniformity of the involved procedures, and the low computational
cost of the simulation process. As depicted in Fig. 1, the simulation complexity
growth drastically as the model approaches to implementation level, being 2
to 4 orders of magnitude slower than at RTL [29]. On the one hand, simulation
components provided by device vendors (known as macrocells) describe very
accurately the timing behaviour of the components. An inverter which is de-
fined as 1 line in RTL (a <= not b) is translated into the macrocell described
in Listing 1 with 40 lines of code (removing comments and blank lines), with-
out considering the code of required libraries. On the other hand, a simple
combinational component like an 8-bit adder which is defined in 1 line in RTL
(result <= a + b) is translated into a set of 34 interconnected macrocells (16
input buffers, 8 output buffers, 8 look-up tables and 2 carry chains).

SBFI approaches rely on the modification/instrumentation of the HDL
model and/or on simulator commands [9].

Those that instrument the model use saboteurs—components that alter
the behavior/timing of signals—, and mutants—variations of existing com-
ponents that reproduce their behaviour in presence of faults. Most notable
instrumentation-based tools include: i) VERIFY [28], which makes the provider
responsible for taking into account all possible faults in the provided macro-
cells and requires a non-standard HDL simulator to support an extension of the
VHDL language; ii) the proposal in [16], which instruments the original library
for post-synthesis simulation to enable the injection of SEUs in FPGA-based
designs; and iii) a saboteur-based technique [3], which takes into account the
setup/hold time window to properly simulate bit-flips in clock-gated ASICs.
Although these methods enable the injection of sophisticated fault models [1],
they are highly intrusive, as they introduce/replace components into/from the
original model. Moreover, they cause a significant overhead in the experimen-
tal process. If the model is instrumented for each experiment, which may take
a couple of minutes for a medium-sized netlist (100K gates), this means that
the experimentation will take 2 additional weeks to complete for a campaign
consisting of 10000 experiments. If the model is instrumented to support all
the faults that have to be injected in the campaign, then the size of the model
will increase so much that will slow down the simulation of each experiments.

Simulator commands avoid instrumenting the model by changing the value
of signals/variables at run-time to simulate the effect of faults [4]. Most no-
table tools supporting the SBFI by simulator commands are MEFISTO [14]
and VFIT [2] tools. An alternative command-based approach [7] injects stuck-
at faults into Verilog models by including Verilog instructions in the testbench.
The approach proposed in [20] injects logic faults at gate-level with a rate de-
pendent on the switching activity of the netlist. Even if the set of logic fault
models that can be injected using simulator commands is smaller than instru-
menting the model, this is the preferred technique to reduce the overhead in the
simulation time. However, the same approaches used for RTL models cannot
be applied to implementation-level ones, as simulator commands sequences do
not take into account the particular architecture of macrocells, which results
in an unexpected behaviour of the target component in presence of faults [33].

4 Ilya Tuzov et al.

Alternative SBFI approaches proposed the development of non-standard
simulators to speed-up the simulation of faults, like the one targeting IcarusVer-
ilog models [19] or those using GPGPUs [15]. However, these approaches are
not generic and cannot be applied to off-the-shelf EDA tools.

This contribution aims at defining a generic approach, which could be
applied to any standard simulator and implementation target, for enabling
the simulation of logic faults at implementation-level models described using
the Very High Speed Integrated Circuit HDL (VHDL) [13]. These macrocells
must comply with the VHDL Initiative Towards ASIC Libraries (VITAL) stan-
dard [12] to make them portable across EDA tools, enable the back-annotation
of timing properties, and enable simulators to implement specific optimiza-
tions. Although comprehensive guidelines for developing VITAL-based com-
ponents exist [18] [6], works focused on the injection of faults in these macro-
cells did not take into account the accuracy of the considered fault models [8],
and generated highly intrusive injectable VITAL-compliant models for a sin-
gle type of logic faults [25] [26]. Authors previous work on this subject [33]
focused on how to inject stuck-at and delay faults into Xilinx’s SIMPRIM
macrocells from a very practical perspective. This contribution extends this
work by analysing the architecture of VITAL-compliant macrocells and deter-
mining which generic operations would be required to support the injection
of logic faults into these components. These operations are defined so that
simulator commands are employed whenever possible, reducing the instru-
mentation of the macrocell to a minimum. The proposed operations keep the
functional and timing behaviour of the target component, have a negligible
impact on the simulation time, and ensure that VITAL requirements are met.
Only the injection of interconnect path delays will degrade the model from
VITAL level 1 to 0. By targeting the vendor’s macrocells neither the origi-
nal implementation-level model nor the VITAL libraries are modified and no
further recompilation will be required in future experiments.

The rest of the paper is structured as follows. Section 2 describes in depth
the architecture of VITAL-compliant macrocells. Section 3 analyses this ar-
chitecture to define a number of generic operations to support the injection
of faults VITAL-compliant macrocells. High-level procedures based on these
operations are derived for most common logic fault models. The generality of
this proposal is shown by defining a platform-specific fault injection procedure.
The case study described in Section 4 details an experimental procedure that
follows the defined generic operations. Results analysed in Section 5 illustrate
the gap existing between results obtained at RTL and implementation level,
and the importance of defining procedures for accurate robustness assessment.
Finally, Section 6 presents the main conclusions of this work.

2 The VITAL Standard

In its early years, there was no uniform and efficient method for handling tim-
ing in VHDL, which resulted in a lack of ASIC libraries with which model

Simulating logic faults in VITAL models 5

Wire Delay

Signal Delay

Path Delay

Timing
checks

Functionality

GlitchData

Paths [In→O]

O_zd

violation

VITALBehavior process
(sensitivity list)

VITAL level-1 architecture

In_resolved

In_ipd

VITAL level-0 entityIn O

SchedValue = O_zd

Glitch detected?

Retain previous value
(return)

O , SchedValue 
 ProcessGlitch(Mode)

LastValue  O_zd

O  O_zd after
 delay max(Path[In→O])

SchedValue  O_zd

SchedValue  LastValue

Yes

Yes

In_dly

Fig. 2: VITAL-compliant macro-cell model

and implement digital systems. The VHDL Initiative Towards ASIC Libraries
(VITAL) standard [12] was the result of an agreement among ASIC vendors,
EDA tool vendors, and ASIC designers about the requirements (timing ac-
curacy, model maintainability, and simulation performance) for the effective
modelling of ASIC primitive, or macrocells, in VHDL.

The VITAL specification contains four main elements: i) the Model De-
velopment Specification document defines how to specify ASIC libraries in
VITAL-compliant VHDL to be used in simulators; ii) the Vital Timing package
provides a standard set of procedures for checking timing constraints defined
in a Standard Delay Format (SDF) [24] file; iii) the Vital Primitives package
models all gate-level primitives already used by simulation tools vendors, so
they could be optimised for the faster simulation of VHDL; and iv) the VITAL
SDF map which maps SDF files to VHDL generic values.

The basic architecture of a VITAL-compliant macrocell is depicted in Fig. 2
and Listing 1 specifies an inverter that follows this architecture.

VITAL defines two levels of support. VITAL level 0 requires the defini-
tion of a level 0 attribute (line 21 of Listing 1), using ports of type std ulogic
and std logic vector with no underscores in the port names (lines 18–19), and
special naming convention for timing generics (lines 8–11, with ports names
prefixed as tpid —interconnect path delay that represents the delay between
components—and tpd —propagation delay that represents the pin-to-pin de-
lay within a component). Compliance with VITAL level 0 provides SDF back
annotation and negative timing constraints. VITAL level 1 requires the defi-
nition of a level 1 attribute (line 26), no use of shared variables, use of those
operators defined in the Standard and std logic 1164 packages (lines 1–3 en-
sure that only those packages, in addition to the VITAL packages, are used),
and all outputs must be driven by a VitalPathDelay or a Vital primitive (lines
53–63 make use of a VitalPathDelay01 primitive to drive the YNeg output—
line 54). Compliance with VITAL level 1, as the inverter described in Listing 1,
provides accelerated simulation of primitives and tables.

6 Ilya Tuzov et al.

Any VITAL-compliant macrocell must include a Wire Delay block, a Signal
Delay block, and a VITALBehavior process, as depicted in Fig. 2.

Interconnect delays represent the time it takes a signal to traverse the
circuit from one component to another, and it will depend on various factors,
like the length of the wire, its resistance, and fan-out, among others. As there
is no way to simulate a wire in VHDL, the Wire Delay block (lines 30–34 in
Listing 1) is in charge of delaying incoming signals by the time specified in the
associated timing generic (tpid using the VitalWireDelay routine (line 37 in
Listing 1). This routine can only be called once per input port, which cannot
be used anywhere else in the model afterwards, and its output must be an
internal signal (A ipd in the example).

Components may present negative timing constraints (either setup or hold
times, not both) only if they present some kind of internal delay. The Signal
Delay block takes charge of delaying the internal signals of the component
(suffix ipd), if needed, in a similar fashion to the Wire Delay block, but
using the VitalSignalDelay routing instead. The sample model has no negative
timing constraints, so this block is not defined (line 36).

The actual functionality of the component is defined within a process la-
belled as VITALBehaviour (lines 38–63 in Listing 1). All signal read within
the process (A ipd is read in line 46) must be included in its sensitivity list
(line 39), so the process will be triggered whenever the value of any of these
signals changes. First of all, the process may perform timing constraint checks
for possible violations if the TimingChecksOn generic parameter is active.
Those checks make use of predefine routines, like VitalSetupHoldCheck, from
the VITAL Timings package. No timing checks are performed in the sample
model (line 47). After that, the functionality section computes the actual logic
function of the component without any delay (YNeg zd). Lines 49-50 of List-
ing 1 define the behaviour of the inverter by means of the predefined VitalINV
function to comply with VITAL level 1. Finally, the output values computed
are delayed after applying the appropriate delays using VitalPathDelay pro-
cedures (lines 52-63). These procedures enable different optimisations of the
simulation like, for instance, checking whether the output has changed with
respect to the previously scheduled value to prevent further processing.

3 Injecting Logic Faults into VITAL-compliant Macrocells

Commonly used fault injection approaches at RTL cannot be directly applied
to implementation level VITAL-compliant models. This section defines generic
operations on those macrocells to support the injection of logic faults and how
to use them to mimic the expected effect of the selected fault models.

Simulating logic faults in VITAL models 7

Listing 1: VITAL-compliant inverter gate (std04.vhd) [22]

1 LIBRARY IEEE; USE IEEE. std logic 1164 .ALL;
2 USE IEEE. VITAL timing .ALL;
3 USE IEEE. VITAL primitives .ALL;
4
5 −− ENTITY DECLARATION
6 ENTITY std04 IS
7 GENERIC (
8 −− tipd delays : interconnect path delays
9 tipd A : VitalDelayType01 := VitalZeroDelay01 ;

10 −− tpd delays
11 tpd A YNeg : VitalDelayType01 := UnitDelay01 ;
12 −− generic control parameters
13 MsgOn : BOOLEAN := DefaultMsgOn ;
14 XOn : BOOLEAN := DefaultXOn ;
15 InstancePath : STRING := DefaultInstancePath
16);
17 PORT (
18 A : IN std ulogic := ’U ’;
19 YNeg : OUT std ulogic := ’U’
20);
21 ATTRIBUTE VITAL LEVEL0 of std04 : ENTITY IS TRUE;
22 END std04 ;
23
24 −− ARCHITECTURE DECLARATION
25 ARCHITECTURE vhdl behavioral of std04 IS
26 ATTRIBUTE VITAL LEVEL1 of vhdl behavioral : ARCHITECTURE IS TRUE;
27 SIGNAL A ipd : std ulogic := ’U ’;
28
29 BEGIN
30 −− Wire Delays
31 WireDelay : BLOCK
32 BEGIN
33 w 1 : VitalWireDelay (A ipd , A, tipd A);
34 END BLOCK ;
35
36 −− No Signal Delay block
37
38 −− VITALBehavior Process
39 VITALBehavior : PROCESS (A ipd)
40
41 −− Functionality Results Variables
42 VARIABLE YNeg zd : std ulogic := ’U ’;
43 −− Output Glitch Detection Variables
44 VARIABLE Y GlitchData : VitalGlitchDataType ;
45
46 BEGIN
47 −− No Timing Checks section
48
49 −− Functionality Section
50 YNeg zd := VitalINV (A ipd);
51
52 −− Path Delay Section
53 VitalPathDelay01 (
54 OutSignal => YNeg ,
55 OutSignalName => "YNeg",
56 OutTemp => YNeg zd ,
57 XOn => XOn ,
58 MsgOn => MsgOn ,
59 Paths => (
60 0 => (InputChangeTime => A ipd ’ LAST EVENT ,
61 PathDelay => tpd A Yneg ,
62 PathCondition => TRUE)),
63 GlitchData => Y GlitchData);
64
65 END PROCESS ;
66
67 END vhdl behavioral ;

8 Ilya Tuzov et al.

Table 1: Operations on VITAL-compliant macrocells to support fault injection

Operation Type Description

examine(target) simulator command gets the current value of the target signal or variable
force(target, mode, value, duration) simulator command changes the state of the target signal to value

for duration (freeze mode) or until overwritten (deposit mode)
change(target, value) simulator command like the force command,

but the target is a constant, generic, or variable
generic2signal(target) instrumentation rule initialises an internal signal with the value of the generic

and feeds that signal wherever the generic is used
constant2signal(target) instrumentation rule like the generic2signal operation, but the target is a constant
addToList(target, signal) instrumentation rule adds the signal signal to the sensitivity list

of the process identified by the target label
encloseInProcess(target) instrumentation rule encloses the procedure identified by the target label into a process

activated by all the incoming parameters of the enclosed procedure

3.1 Definition of Generic Operations to Support the Fault Injection

The netlist obtained after the synthesis of an RTL model described using
VHDL consists of a set of interconnected VITAL-compliant macrocells. As
these macrocells are also defined in VHDL it is possible to follow the simu-
lator commands approach [4] to modify the state of its internal signals and
variables to reproduce the effect of a given fault model and observe the be-
haviour of the system in presence of such fault. Table 1 lists the commonly used
operations by state of the art simulators to retrieve and modify the contents
of signals and variables of the model. These commands have been defined after
Mentor Graphics’ Modelsim/Questasim commands [17]. So, taking Listing 1
as a reference, the current state of signal A ipd can be obtained by the exam-
ine(A ipd) operation, and the state of the YNeg zd variable can be set to a low
logic level by the change(YNeg zd, 0) operation. Nevertheless, not all possible
elements of a macrocell can be directly modified by following this approach,
thus requiring the definition of additional generic operations to support the
required transformations in the VITAL-compliant model.

Sometimes would be interesting to modify the value of generic parame-
ters of a model, like the specified delays, the logic function implemented by
a look-up table, or the initial contents of a memory block. However, as noted
in Questsim commands reference manual [17], changes in generic parameters
cannot take place if the design is optimised for fast simulation and, even so,
the simulation will not recompute dependent expressions. Thus, a new oper-
ation called generic2signal has been defined to include supplementary signals
in the macrocell that can capture the value of generic parameters and feed
that signals to those elements using the associated generics. Thus, to make
injectable the tipd A generic from Listing 1, the generic2signal(tpid A) oper-
ation should be executed. It will take charge of: i) creating a new signal of
the same type as the generic in the declarative part of the model architecture
(lines 26–28)—SIGNAL v tpd A YNeg : VitalDelayType01 := UnitDelay01;
ii) initialising that signal after back-annotation by including the following
assignment—v tpd A YNeg <= tpd A YNeg—outside any other block defined
in the body of the model (lines 30–66); and iii) using that signal instead of the
generic wherever required, like in line 61—PathDelay =>v tpd A YNeg.

A similar procedure but handling constants is defined by constant2signal.

Simulating logic faults in VITAL models 9

Listing 2: Enabling procedures to recompute incoming generics and constants

1 encloseInProcess w 1 : PROCESS (A, v tipd A)
2 BEGIN
3 w 1 : VitalWireDelay (A ipd , A, v tipd A);
4 END PROCESS ;

Processes are only activated upon changes on any of the signals listed
in their sensitivity list. Thus, the transformation of any generic or constant
into an internal signal that is used within a process requires also this sig-
nal to be included into the process sensitivity list. The addToList operation
takes care of this transformation. Following the previous example, the ad-
dToList(VITALBehavior, v tpd A YNeg) operation will include the signal
v tpd A YNeg in the sensitivity list of the VITALBehavior process in line
39—VITALBehavior : PROCESS(A ipd, v tpd A YNeg).

VITAL level 1 enables the deployment of optimisations to speed up the
simulation of the model. For instance, when procedures have input parameters
taken from generics and constants they are not rechecked during simulation,
as they are not supposed to change dynamically. Thus, any fault injected in
these elements will not propagate through the model. A new operation called
encloseInProcess has been defined to insert the desired procedure within a
process that will be activated whenever an input parameter changes its value.
This will ensure that the new state of generics or constants (previously trans-
formed by generic2signal or constant2signal operations) will be recomputed
within the process. So, for the VitalWireDelay procedure call in line 33 to
be aware of a change in its input v tipd A (resulting from the transformation
of tipd A generic into an internal signal), the operation encloseInProcess(w 1)
will transform it into the code listed in Listing 2. It must be noted that,
although this process describes exactly the same functionality as the bare pro-
cedure, it does not comply with the requirements for VITAL level 1, as a Wire
Delay block can only contain concurrent procedure calls. The instrumented
model still will be compliant with VITAL level 0 and could deploy most of
the optimisations available for VITAL level 1, although this particular one,
regarding the generics and constants, will be forfeited.

3.2 Injecting Logic Faults Models into VITAL-compliant Macrocells

Common logic faults [10] that can be injected at VHDL models using simula-
tor commands include stuck-at (fixing the logic state of an element), bit-flip
(inverting the logic state of a sequential element), pulse (inverting the logic
state of a combinational element), indetermination (fixing the logic state of
an element between the high and low logic levels), and delay (modifying the
propagation delay of an element). Logic faults that target the interconnection

10 Ilya Tuzov et al.

1 12
2

A

B

recovery recovery

Fig. 3: Injecting two consecutive pulses into a combinational component

of the components, like stuck-open, short, open-line, and bridging, require the
instrumentation of the model and are, thus, out of the scope of this study.

3.2.1 Stuck-at, Pulse, and Indetermination Faults

The permanent nature of stuck-at faults makes that their injection into im-
plementation level models could follow exactly the same procedure used for
RTL models. In this case, it is just a matter of targeting the signal connected
to the output of the selected macrocell instead of dealing with the internal
complexities of the component. As the signal will be permanently set to the
injected value, it does not matter whether the internal state of the macrocell
is really stuck or not. Thus, causing a stuck-at-1 to a flip-flop driving a signal
named ff o will be accomplished by using the operation force(ff o, freeze, 1).

As pulse fault models affect combinational components, and these macro-
cells do not store any logic value, it is also possible to just target the signal
driven by the macrocell. For instance, a pulse can be injected for 10 ns to
a look-up-table driving a signal named lut o by means of these operations
newValue = (examine(lut o) == 0) ? 1 : 0; force(lut o, freeze, newValue, 10
ns). Fig. 3 displays the injection of two consecutive pulses in the output of an
X LUT6 macrocell from the Xilinx’s SIMPRIM library [35].

Permanent indetermination faults can be treated as stuck-at faults, and
transient indetermination targeting combinational elements can follow the
same approach as pulses, but setting the target signal to an ‘X’ value.

3.2.2 Bit-flip Faults

Bit-flip faults can be injected by inverting the logic value of RTL signals
that represent sequential elements, like flip-flops. However, when applying that
same procedure to the signal driven by the output of the sequential macrocell,
the observed behaviour is not the one expected. As depicted in Fig. 4a, once
the fault has been injected, the flip-flop’s state is not restored on the follow-
ing rising clock edge. On the next simulation event after the fault injection,
the VITALBehavior process is activated (see Fig. 2). As this is a rising edge
active flip-flop, the Functionality section recomputes the ‘zero-delay’ output.
However, as O zd equals the previously scheduled value (Path Delay checks),
the output retains its current (faulty) value to optimize the simulation.

To bypass this check, the fault injection procedure should also invert the
value of the O zd variable. If no event occurs after the injection, the next rising

Simulating logic faults in VITAL models 11

no recovery
recovery

no recovery
recovery

recovery
no recovery

(a) (b)

Fig. 4: Injecting a bit-flip fault on a flip-flop at implementation level following
(a) the RTL procedure, and (b) the proposed approach

Listing 3: Proposed procedure to inject a bit-flip in the target macrocell

1 bitflip (target) {
2 newValue = (examine (target /O) == 0) ? 1 : 0;
3 force (target /O, deposit , newValue , 0);
4 change (target / VITALBehavior / O zd , newValue);
5 change (target / VITALBehavior / O GlitchData .LastValue , newValue);
6 }

clock edge updates the logic value on O zd to ‘1’. As this is exactly the value
that was previously scheduled, the output will retain its faulty logic value.
Thus, the scheduled value should also be targeted to prevent this erroneous
behaviour. However, the first action within the Path Delay section updates
this value according to the last value stored to prevent glitches. Hence, the
O GitchData.LastValue variable should have also been modified.

Now, as depicted in Fig. 4b, the flip-flop recovers from the fault as expected.
On the rising clock edge, the scheduled value is updated with the last value and,
as being different from that captured on the clock edge, O zd is propagated
to the scheduled and last values and the output of the flip-flop. The proposed
sequence of simulator commands-based operations is listed in Listing 3.

3.2.3 Delay Faults

Although possible in theory, delays faults are rarely considered in RTL models,
whereas implementation level models present a very accurate timing descrip-
tion that enables the injection of these faults.

All VITAL-compliant macrocells must define two main timing generic pa-
rameters: interconnect path delays and propagation delays. Being generic pa-
rameters, it will be necessary to include some internal signals to be able to
modify their values and pass these signals to the elements that use the original
generics. In the case of generics used in the Path Delay block, this signal must
be added to the sensitivity list of the VITALBehavior process. If the generics
are used in the Wire Delay block, then it must be enclosed into a process ac-
tivated by all its incoming signals. The proposed procedure for instrumenting
a macrocell to support both types of delays is listed in Listing 4.

12 Ilya Tuzov et al.

Listing 4: Enabling the injection of delays in the target macrocell

1 delayInstrumentation (target) {
2 foreach (genericInput in target) {
3 if (prefix (genericInput , " tpd ") {
4 internalSignal = generic2signal (genericInput);
5 addToList (" VITALBehaviour ", internalSignal);
6 }
7 else if (prefix (genericInput , " tipd ") {
8 blockLabel = generic2signal (genericInput);
9 encloseInProcess (blockLabel);

10 }
11 }
12 }

** Warning: /X_FF SETUP Low VIOLATION ON I WITH RESPECT TO CLK;
Expected := 0.3 ns; Observed := 0.1 ns; At : 25.7 ns(a) (b)

Fig. 5: Injecting delay faults into a flip-flop: a) interconnect delay of I input,
and b) propagation delay from CLK to O path

Once the macrocell instrumented, the available operations based on sim-
ulator commands can be used to change the state of those internal signals
holding the delay values. For instance, after instrumenting the inverter mod-
elled in Listing 1 by means of delayInstrumentation(std04), the propagation
delay can be increased in 2 ns by calling force(v tpd A YNeg, freeze, 2 ns, 0).

Fig. 5a depicts a warning issued by the simulator due to a setup time
violation after increasing the interconnect delay of the I input port of a flip-
flop from the Xilinx’s SIMPRIM library [35] in 3 ns. Likewise, Fig. 5b shows
the case of increasing the propagation delay from CLK to O in 3 ns.

3.3 Generality of this Proposal: Considering Device-specific Components

The proposed procedures are generic enough to be applied to any VITAL-
compliant macrocell and support the injection of any logic fault not related
to the interconnection of components. To show its generality, these operations
will be used to define a platform-specific fault injection approach to enable the
injection of stuck-at faults into the configuration memory of look-up tables.

The combinational logic in Field-Programmable Gate Arrays (FPGAs) is
mostly implemented by means of Look-Up Tables (LUTs). Accordingly, any
arithmetic/boolean expression of arbitrary complexity at RTL is mapped onto

Simulating logic faults in VITAL models 13

1

0

M0

M1

1

0

M2

M3

1

0

1

0

M4

M5

1

0

M6

M7

1

0

1

0

A0 A1 A2

OUT

1

0

M0

M1

1

0

M2

M3

1

0

1

0

M4

M5

1

0

M6

M7

1

0

1

0

A0 A1 A2

OUT

A0
A1
A2
A3
A4
A5

OUT

X_LUT6

A0

A1

A2

OUT

X_LUT3

function lut4_mux4

data [7:0]

res

Implementation-level netlist LUT3 macro-cellRTL
entity parity is
 port (
 data : in std_logic_vector(7 downto 0);
 pbit : out std_logic);
end parity;

arc hitecture behav of parity is
 function unary_xor (vect :std_logic_vector)
 return std_logic is
 variable res : std_logic;
 begin
 res := vect(vect'length-1);
 if vect'length > 1 then
 for i in (vect'length - 2) downto 0 loop
 res := res xor vect(i);
 end loop; end if;
 return res;
 end function;
begin
 pbit <= unary_xor(data);
end behav;

(a) (b) (c)

Fig. 6: Combinational logic: a) described at RTL, b) implemented by LUTs,
and c) macrocell’s internal structure

a set of interconnected LUTs at the implementation-level. As depicted in
Fig. 6, each LUT consists of a tree of multiplexers controlled by the input
address, which selects the output from the configuration memory cells.

From a robustness assessment perspective, this means that only input/out-
put signals of arithmetic/boolean expressions are available for fault injection
at RTL, whereas input/output ports of all LUTs can also be targeted by
faults at the implementation level. This can be accomplished by the previously
presented injection procedure for stuck-at, pulse, and indetermination faults.
However, by considering the particular implementation of each macrocell, it is
also possible to define specific fault injection approaches like, for instance, to
study the sensitivity of configuration memory cells to bit-flip faults.

The logic function implemented by the X LUT6 macrocell, from Xilinx’s
SIMPRIM library [35], is defined as generic parameter (INIT). This param-
eter initialises an internal constant named INIT reg, which represents the
memory cells of the macrocell. This constant is used in the Functionality
section of the VITALBehavior process to compute the expected output of
the macrocell. Accordingly, the macrocell must be instrumented to use a
signal instead of a constant and activate the process whenever this signal
changes. The required instrumentation is deployed by the following opera-
tions: constant2signal(INIT reg); addToList(VITALBehavior, v INIT reg). Af-
ter that, any bit of this truth table can be modified. For instance, a bit-flip
targeting the bit 0 can be injected by means of value=examine(v INIT reg);
force(v INIT reg, freeze, value xor 0x00000001, 0).

4 Robustness Assessment at RTL and Implementation Level:
Embedded Processors as a Case Study

Three embedded processors with different architectures—32-bit SPARC V8
(LEON3) [5], Intel 8051 (MC8051) [21], and Microchip PIC16C5X (PIC) [23]—
have been selected as a case study to illustrate the gap in robustness assessment
between RTL and implementation level models. As the PIC and MC8051 cores

14 Ilya Tuzov et al.

Table 2: Range of fault targets at RTL and implementation level for all the
considered configurations of the toolchain parameters

RTL Implementation level ([Minimum, Default, Maximum])
Cores (signals) Flip-flops Look-Up Tables

LEON3 1354 [905, 907, 986] [1906, 2128, 3420]
MC8051 1287 [577, 608, 679] [2310, 3218, 3728]
PIC 1070 [719, 719, 783] [530, 695, 1327]

Table 3: Faultload Configuration

Injections per target
Injection Forced RTL Implementation

Fault model Time Value signals Flip-Flops LUTs CMEM1

Bit-flip Random Inverted 3 / signal2 3 / FF2 – –
Stuck-at-0 0 1 1 / signal2 1 / FF2 1 / LUT2 1 / bit
Stuck-at-1 0 0 1 / signal2 1 / FF2 1 / LUT2 1 / bit

Pulse Random Inverted – – 24 / LUT3 –
Propagation delay 0 +δ4 – 10 / path 10 / path –
Interconnect delay 0 +δ4 – 10 / port 10 / port –

1 CMEM: Configuration memory cells of LUTs.
2 At implementation level applied to 128 factorial configurations as well as to default configuration.
3 Considering 3 instants in time with 8 different widths ([0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0]× clk)
4 Delay increased by ([0.02, 0.05, 0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]× clk)

will execute pre-compiled synthetic tests that activate most paths within the
cores, and the LEON3 unit will run a matrix multiplication workload from the
MiBench benchmark suite [11], robustness results cannot be compared among
targets. It must be noted that differences between RTL and implementation-
level models cannot be attributed to the workloads, as both models should
behave exactly the same when running the same workload.

These models have been implemented using Xilinx’s ISE Design Suite 14.7
for a Virtex-6 FPGA (6vcx240tff784-2), thus using Xilinx’s SIMPRIM macro-
cells. The performance, area, power consumption, and robustness of the system
depend on the actual configuration of the parameters of the toolchain. To take
this variability into account, 128 configurations (plus the default configuration
provided by the considered tools) have been implemented after [30], which en-
sures a statistically representative sample of all possible configurations. Table 2
lists the total number of fault injection targets, and shows a maximum differ-
ence of 12% sequential targets with respect to the default configuration and
nearly 90% in the case of combinational targets.

The faultload applied to each model is listed in Table 3. Even though
pulses, delays, and faults on the configuration memory of LUTs were injected
just on the default configuration of the core to keep the experimentation time
within reasonable limits, a total of 3.7 millions of experiments were carried
out in a time frame of 15 days.

The structure and naming conventions of VITAL-compliant macrocells
can be exploited to automatically build custom scripts to instrument selected
macrocells and generate simulator commands sequences to inject a given fault.

Simulating logic faults in VITAL models 15

DAVOS [32], a custom SBFI tool, has been extended to enable the injection of
logic faults into SIMPRIM macrocells using the proposed generic operations.

The log files containing the raw measurements obtained for the default im-
plementation of each microcontroller is publicly available at [31]. The outcome
of an experiment will be classified as a failure when the outputs deviate from
the expected ones. Thus, robustness is quantified as 100%−failure rate. The
robustness assessment extracted form this logs is detailed in the next Section.

5 Analysis of Results

The experimentally estimated failure rate for each microcontroller in presence
of the various injected faults is depicted in Fig. 7.

The diagram in Fig. 7a focuses on stuck-at-1/0 faults, as they can be in-
jected into all available targets at both RTL and implementation level without
distinguishing between sequential and combinational logic. As can be expected,
results show that there exists a significant gap between the robustness esti-
mated at RTL and implementation level, but what is more important is that
the robustness of all three microcontrollers is overestimated at the RTL. Fur-
thermore, this gap may become more pronounced depending on the particular
configuration of the selected toolchain, as denoted by the error bars in Fig. 7.
Since these fault models do not require precise timing information (post-place
and route models) to obtain accurate robustness results, it is highly recom-
mendable to run fault injection experiments as soon as synthesizable models
are available, as post-map models already contain accurate information about
the required combinational logic. In this way, it could be possible to detect
existing dependability bottlenecks overlooked by the analysis at the RTL, and
apply solutions that could be greatly costly to deploy after the implementation
level is available.

The diagram in Fig. 7b shows that the estimated failure rate in presence
of stuck-at-1/0 and bit-flips faults targeting the sequential logic of the sys-
tem is very similar for both RTL and implementation level models. Thanks
to the naming convention followed by Xilinx’s toolchain it has been possible
to trace each sequential macrocell back to the original RTL model. Thus, the
same faults have been injected exactly at the same location in both models.
Small differences observed with respect to the default implementation are at-
tributable to the small percentage of targets that could not be traced back
(1% for LEON3, 6% for MC8051, and 0% for PIC), due to the particular final
implementation of the 128 different configurations. This result not only ver-
ifies the accuracy of the proposed fault injection procedure, but also enables
the early and accurate injection of bit-flips into synthesizable HDL models, as
soon as sequential signals can be traced back from a post-map model.

The diagram in Fig. 7c illustrates that, as expected, considering the whole
macrocell as faulty underestimates the robustness of the system in presence of
faults affecting its combinational logic. The very low failure rate for faults af-
fecting the configuration memory representing the logic function of the LUTs

16 Ilya Tuzov et al.

0

10

20

30

40

50

60

70

Stuck-at-1 Stuck-at-0

Fa
ilu

re
 r

at
e,

 %
RTL

Implementation

0

10

20

30

40

50

60

70

Stuck-at-1 Stuck-at-0 Bit-Flip

RTL Matched

Implementation Registers

2.85 1.87

0

10

20

30

40

50

60

70

Stuck-at-1 Stuck-at-0

Implementation
LUTs output
LUTs CMEM

0

10

20

30

40

50

60

Stuck-at-1 Stuck-at-0

Fa
ilu

re
 r

at
e,

 %

RTL

Implementation

0

10

20

30

40

50

60

Stuck-at-1 Stuck-at-0 Bit-Flip

RTL Matched

Implementation Registers

3.12 1.71

0

10

20

30

40

50

60

Stuck-at-1 Stuck-at-0

Implementation

LUTs output
LUTs CMEM

0

10

20

30

40

50

60

70

80

Stuck-at-1 Stuck-at-0

Fa
ilu

re
 r

at
e,

 %

RTL

Implementation

0

10

20

30

40

50

60

70

80

Stuck-at-1 Stuck-at-0 Bit-Flip

RTL Matched

Implementation Registers

7.01
2.84

0

10

20

30

40

50

60

70

80

Stuck-at-1 Stuck-at-0

Implementation
LUTs output
LUTs CMEM

LE
O

N
3

M

C
8

05

1

P
IC

(a)

(a)

(a)

(b)

(b)

(b)

(c)

(c)

(c)

Fig. 7: Estimated failure rate for the default configuration in presence of stuck-
at-1/0 and/or bit-flip faults targeting: (a) all signals at RTL and all macrocells
at the implementation level, (b) all sequential macrocells at the implementa-
tion level and all signals matching them at RTL, and (c) the output or the
configuration memory of all combinational macrocells at implementation level.
Error bars represent the deviation observed for all considered implementations.

is due to the selected workload. Even though about 25% of the faults targeting
active memory cells lead to failure, around the 80%, 44%, and 60% of cells were
inactive for the LEON3, MC8051, and PIC, respectively. Accordingly, tailored
procedures should be defined for each particular macrocell, so accurate and
precise fault injection procedures could be deployed, although macroscopic
approaches (macrocell is faulty) could also be used to get fast but inaccurate
estimations. This inaccuracy greatly underestimates the robustness of the sys-
tem, so costly fault tolerance mechanisms in terms of area, maximum clock
frequency, and power consumption will be unnecessarily deployed.

Simulating logic faults in VITAL models 17

0

4

8

12

16

2% 5% 10% 20% 30% 50% 80% 100%

Fa
ilu

re
 r

at
e,

 %

pulse width % clock period

LEON3

Failure rate

Latent Fault rate

0

2

4

6

8

2% 5% 10% 20% 30% 50% 80% 100%

pulse width % clock period

MC8051

Failure rate

Latent Fault rate

0

2

4

6

8

10

12

2% 5% 10% 20% 30% 50% 80% 100%

pulse width % clock period

PIC

Failure rate

Latent Fault rate

Fig. 8: Estimated failure rate for pulse faults with increasing width

Furthermore, implementation-level models provide accurate timing infor-
mation that is required to consider delay faults and to estimate the effects of
transient faults with respect to their duration.

For instance, Fig. 8 depicts the effects of pulse faults, targeting target
combinational logic, with different widths. As can be expected, wider pulses
lead to higher failure rates, but both factors are highly dependent on the target
system. For instance, the width of the pulse must be of 50% and 80% of the
clock period of the LEON3 and PIC (4.25 ns and 6 ns respectively) for the
failure rate to reach a 10%, whereas it keeps below an 8% for the MC8051
with pulses as wide as the clock period (17 ns).

Special care should be taken when considering the propagation of pulses
(or other transient faults), as they may be affected by the delay mode used
within the macrocell. Four delay modes are defined in the VITAL standard.
VitalTransport and VitalInertial behave like transport and inertial delays in
VHDL: transport delay propagates the pulse independently from its width,
whereas inertial delay filters out the pulses shorter than the specified propa-
gation time. In both modes glitches are not detected. OnEvent and OnDetect
modes enable glitch detection and, if the pulse is shorter than the propagation
time, the undetermined ‘X’ value is scheduled to the output. All examined
components of the SIMPRIM library are defined with VitalTransport delay
mode, therefore they do not affect the expected behavior of injected pulses.
However, when working with different libraries, these modes should be taken
into account for the accurate injection of pulses.

Finally, Fig. 9 illustrates the failure rate caused by interconnect and propa-
gation delays of different magnitude. As can be seen, the impact of interconnect
delays depend on the target macrocell’s input. Delays on the CLK input of
flip-flops already manifest as failures when its interconnect delay is increased a
5% of the clock period, and the failure rate reaches its maximum (35%) when
the delay is increased a 40% of the clock period. Such a high failure rate can
be explained by hold violations on I with respect to CLK. However, when the
delay is increased a whole clock period, the flip-flop gets synchronized again
with the rest of sequential elements (just missing one clock cycle), and the
failure rate decreases to just 3%. Delays on the I input of flip-flops start to
manifest as failures when its interconnect delay is increased a 60% of the clock

18 Ilya Tuzov et al.

0

5

10

15

20

25

30

35

40

45

0% 20% 40% 60% 80% 100%

Fa
ilu

re
 r

at
e,

 %

Delay width, % clock period

Interconnect delays - LEON3

Flip-Flops: Input I Flip-Flops: Mean
Flip-Flops: Input CLK LUTs: Mean
Flip-Flops: Input CE

0

5

10

15

20

25

30

35

40

45

0% 20% 40% 60% 80% 100%

Fa
ilu

re
 r

at
e,

 %

Delay width, % clock period

Propagation delays (Flip-Flops and LUTs)

LEON3 MC8051 PIC

(a) (b)

Fig. 9: Estimated failure rate for delay faults with increasing (a) interconnect
and (b) propagation delays

period, but the failure rate grows very fast, reaching 36% when the delay is
increased a whole clock period. Interconnect delays on the Clock Enable input
CE of flip-flops have a much lower impact, reaching a maximum failure rate
of 7% when the delay is increased by a whole clock period.

Regarding propagation delays, they start to manifest as failures for MC8051,
PIC, and LEON3 when the delay is increased a 10%, 40%, and 60% of the
clock period, respectively. For all of them, the failure rate grows rapidly when
the propagation delay is increased between a 60% and 80% of the clock period.

6 Conclusions

The VITAL standard establishes a comprehensive set of rules to unify the
design of macrocells libraries and EDA tools, enabling the implementation
of efficient optimizations for simulation speed-up. However, such rigorous re-
quirements make that common SBFI techniques cannot be easily applied to
implementation level HDL models that use VITAL-compliant libraries.

This work has carefully studied the architecture of VITAL-compliant macro-
cells to define generic operations that can be deployed to enable the injection
of the most common logic faults into implementation-level models. Sequences
of generic simulator commands have been defined to conduct the injection of
faults whenever possible, to reduce to the minimum the intrusion and the over-
head on the simulation time. However, some faults can only be injected after
instrumenting the target macrocells. In such cases, the defined operations keep
the functionality and timing behaviour of the target macrocell while follow-
ing VITAL requirements. Only in the case of interconnection path delays, the
VITAL level of support will be degraded from 1 to 0. By instrumenting the
macrocells, the original implementation-level model and the VITAL libraries

Simulating logic faults in VITAL models 19

are not modified by any means, reducing the intrusiveness of the proposed ap-
proach. Likewise, once the macrocell is instrumented and recomplied, no fur-
ther recompilations are required, thus reducing also the experimental overhead
with respect to other common approaches. The defined operations are generic
enough to be technology independent, so they can be applied to the VITAL-
compliant macrocells of any vendor and the commands can be supported by
most common industry standard simulators. Obviously, this approach limits
its applicability to VHDL-based models, whereas Verilog-based models are out
of the scope of this contribution. Nevertheless, the same kind of problems ap-
pear when trying to inject logic faults at Verilog-based implementation-level
models using simulator commands. In this case, the problem is that simulators
use precompiled Verilog macrocells provided by vendors, so it is not straight-
forward to access and analyse the internal implementation of these macrocells.
Further research is required to deal with this problem.

The proposed case study has considered the RTL models of three differ-
ent microprocessors that have been implemented using the Xilinx’s toolchain,
and thus using the SIMPRIM library. Logic faults have been automatically
injected by extending a custom SBFI to support the proposed unified speci-
fication. Results confirm the gap that exists between the assessed robustness
at the RTL and the implementation level. However, if it is possible to match
the signals representing the sequential logic at RTL with the macrocells ob-
tained after mapping, then fast to simulate RTL models can be used for faults
targeting the sequential logic of the system with an accuracy close to that of
the final implementation. In case of faults targeting the combinational logic of
the system, those dealing with timing information, or targeting device-specific
components, it is mandatory to rely on implementation level models.

Our future work will focus on extending the proposed specification and
set of logic fault models to consider routing-related faults and Verilog-based
macrocells. As accurate robustness assessment can only be obtained at the
implementation level for these faults, we will also continue to devise new tech-
niques to speed-up the SBFI process.

References

1. Baraza, J.C., Gracia, J., Blanc, S., Gil, D., Gil, P.: Enhancement of fault injection
techniques based on the modification of vhdl code. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, pp. 693–706 (2008)

2. Baraza, J.C., Gracia, J., Gil, D., Gil, P.: A prototype of a vhdl-based fault injection tool:
description and application. Journal of Systems Architecture 47(10), 847–867 (2002)

3. Benites, L.A.C., Kastensmidt, F.L.: Fault injection methodology for single event effects
on clock-gated asics. In: IEEE Latin American Test Symposium, pp. 1–4. IEEE (2017)

4. Benso, A., Prinetto, P.: Fault Injection Techniques and Tools for VLSI reliability eval-
uation. Frontiers In Electronic Testing. Kluwer Academic Publishers (2003)

5. Cobham Gaisler AB: LEON3 processor product sheet (2016). URL http://www.

gaisler.com/doc/leon3_product_sheet.pdf

6. Cohen, B.: VHDL Coding Styles and Methodologies. Springer US (2012)
7. Das, S.R., Mukherjee, S., Petriu, E.M., Assaf, M.H., Sahinoglu, M., Jone, W.B.: An

improved fault simulation approach based on verilog with application to iscas benchmark

http://www.gaisler.com/doc/leon3_product_sheet.pdf
http://www.gaisler.com/doc/leon3_product_sheet.pdf

20 Ilya Tuzov et al.

circuits. In: IEEE Instrumentation and Measurement Technology Conference, pp. 1902–
1907 (2006)

8. Fernandez, V., Sanchez, P., Garcia, M., Villar, E.: Fault Modeling and Injection in
VITAL Descriptions. In: Third Annual Atlantic Test Workshop, pp. o1–o4 (1994)

9. Gil, D., Gracia, J., Baraza, J.C., Gil, P.: Study, comparison and application of different
vhdl-based fault injection techniques for the experimental validation of a fault-tolerant
system. Journal of Systems Architecture 34(1), 41–51 (2003)

10. Gil, P., Arlat, J., Madeira, H., Crouzet, Y., Jarboui, T., Kanoun, K., Marteau, T.,
Duraes, J., Vieira, M., Gil, D., Baraza, J.C., Gracia, J.: Fault Representativeness. Tech.
rep., Dependability Benchmarking project (2002)

11. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.:
MiBench: A free, commercially representative embedded benchmark suite. In: IEEE
4th Annual Workshop on Workload Characterization, pp. 3–14 (2001)

12. IEEE Standard for VITAL ASIC (Application Specific Integrated Circuit) Modeling
Specification. Standard, Institute of Electrical and Electronic Engineers (2000)

13. IEEE Standard VHDL Language Reference Manual. Standard, Institute of Electrical
and Electronic Engineers (2008)

14. Jenn, E., Arlat, J., Rimen, M., Ohlsson, J., Karlsson, J.: Fault injection into vhdl models:
the mefisto tool. In: International Symposium on Fault-Tolerant Computing, pp. 66–75
(1994)

15. Kochte, M.A., Schaal, M., Wunderlich, H.J., Zoellin, C.G.: Efficient fault simulation on
many-core processors. In: Design Automation Conference, pp. 380–385 (2010)

16. Mansour, W., Velazco, R.: An automated seu fault-injection method and tool for hdl-
based designs. IEEE Transactions on Nuclear Science 60(4), 2728–2733 (2013)

17. Mentor Graphics: Questa SIM Command Reference Manual 10.7b, Document Revision
3.5 (2016). URL https://www.mentor.com/products/fv/modelsim/

18. Munden, R.: ASIC and FPGA Verification: A Guide to Component Modeling. Systems
on Silicon. Elsevier Science (2004)

19. Na, J., Lee, D.: Simulated fault injection using simulator modification technique. ETRI
Journal 33(1), 50–59 (2011)

20. Nimara, S., Amaricai, A., Popa, M.: Sub-threshold cmos circuits reliability assessment
using simulated fault injection based on simulator commands. In: IEEE International
Symposium on Applied Computational Intelligence and Informatics, pp. 101–104 (2015)

21. Oregano Systems GmbH: MC8051 IP Core, User Guide (V 1.2), 2013 (2013). URL
http://www.oreganosystems.at/download/mc8051_ug.pdf

22. R. Munden: Inverter, STDN library, Free Model Foundry VHDL Model List (2000).
URL https://freemodelfoundry.com/fmf_models/stnd/std04.vhd

23. Romani, E.: Structural PIC165X microcontroller. Hamburg VHDL Archive (1998). URL
https://tams-www.informatik.uni-hamburg.de/vhdl

24. IEEE Standard for Standard Delay Format (SDF) for the Electronic Design Process.
Standard, Institute of Electrical and Electronic Engineers (2001)

25. Shaw, D., Al-Khalili, D., Rozon, C.: Automatic generation of defect injectable vhdl fault
models for ASIC standard cell libraries. Integration, the VLSI Journal 39(4), 382–406
(2006)

26. Shaw, D.B., Al-Khalili, D., et al.: Ic bridge fault modeling for ip blocks using neural
network-based vhdl saboteurs. IEEE Transactions on Computers (10), 1285–1297 (2003)

27. Short, K.L.: VHDL for Engineers, 1 edn. Pearson (2008)
28. Sieh, V., Tschache, O., Balbach, F.: Verify: Evaluation of reliability using vhdl-models

with embedded fault descriptions. In: International Symposium on Fault-Tolerant Com-
puting, pp. 32–36 (1997)

29. Singh, L., Drucker, L.: Advanced Verification Techniques. Frontiers In Electronic Test-
ing. Springer US (2004)

30. Tuzov, I., de Andrés, D., Ruiz, J.C.: Dependability-aware design space exploration for
optimal synthesis parameters tuning. In: IEEE/IFIP International Conference on De-
pendable Systems and Networks, pp. 1–12 (2017)

31. Tuzov, I., de Andrés, D., Ruiz, J.C.: Robustness assessment via simulation-based fault
injection of the implementation level models of the LEON3, MC8051, and PIC micro-
controllers in presence of stuck-at, bit-flip, pulse, and delay fault models [Data set].
Zenodo (2017). URL http://doi.org/10.5281/zenodo.891316

https://www.mentor.com/products/fv/modelsim/
http://www.oreganosystems.at/download/mc8051_ug.pdf
https://freemodelfoundry.com/fmf_models/stnd/std04.vhd
https://tams-www.informatik.uni-hamburg.de/vhdl
http://doi.org/10.5281/zenodo.891316

Simulating logic faults in VITAL models 21

32. Tuzov, I., de Andrés, D., Ruiz, J.C.: DAVOS: EDA toolkit for dependability assessment,
verification, optimization and selection of hardware models. In: IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, pp. 322–329 (2018)

33. Tuzov, I., Ruiz, J.C., de Andrés, D.: Accurately Simulating the Effects of Faults in
VHDL Models Described at the Implementation-Level. In: European Dependable Com-
puting Conference, pp. 10–17 (2017)

34. Wang, L.T., Chang, Y.W., Cheng, K.T.: Electronic Design Automation: Synthesis, Ver-
ification, and Test. Morgan Kaufmann (2009)

35. Xilinx: Synthesis and Simulation Design Guide, UG626 (v14.4) (2012). URL https:

//www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/sim.pdf

