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Abstract. We determine the solid hull for 2 < p < ∞ and the solid core for
1 < p < 2 of weighted Bergman spaces Ap

µ, 1 < p < ∞, of analytic functions on
the disk and on the whole complex plane, for a very general class of nonatomic
positive bounded Borel measures µ. New examples are presented. Moreover,
we show that the space Ap

µ, 1 < p < ∞, is solid if and only if the monomials
are an unconditional basis of this space.

1. Introduction and preliminaries

Consider R = 1 or R = ∞ and D = {z ∈ C : |z| < 1}. We study holomorphic
functions f : R · D → C, where R · D = D if R = 1 and R · D = C if R = ∞.
Let f̂(k) be the Taylor coefficients of f ; that is, f(z) =

∑∞
k=0 f̂(k)z

k. We take a
nonatomic positive bounded Borel measure µ on [0, R[ such that µ([r, R[) > 0 for

every r > 0 and
∫ R

0
rn dµ(r) < ∞ for all n > 0. Put, for 1 ≤ p < ∞,

‖f‖p =
( 1

2π

∫ R

0

∫ 2π

0

∣∣f(reiϕ)∣∣p dϕ dµ(r)
)1/p

,

and let

Ap
µ =

{
f : R · D → C : f holomorphic with ‖f‖p < ∞

}
.

We call Ap
µ a weighted Bergman space.
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Let H(R · D) be the space of all holomorphic functions on R · D, and let
A ⊂ H(R · D) be a subspace containing the polynomials. We want to study the
solid core

s(A) =
{
f ∈ A : g ∈ A for all holomorphic g with

∣∣ĝ(k)∣∣ ≤ ∣∣f̂(k)∣∣ for all k}
and the solid hull

S(A) =
{
g : R · D → C : g holomorphic, there is f ∈ A with∣∣ĝ(k)∣∣ ≤ ∣∣f̂(k)∣∣ for all k}.

We call A solid if A = S(A). In the first four sections we consider A = Ap
µ, while

in Section 5 we include the case where A consists of weighted sup-norm spaces of
holomorphic functions.

The solid hull and core of spaces of analytic functions has been investigated by
many authors. We refer the reader to the recent books [6] and [13] and the many
references therein. For example, [6] presented a characterization of solid hulls and
cores of Ap

µ where dµ(r) = (1− r)α dr for some α > 0 and R = 1.
Originally, our main interest was to replace the “standard weights” (1 − r)α

by weights of the form va,b(r) = exp(−a/(1 − r)b) for some a > 0 and b > 0,
which are of a completely different nature and require different methods, and
hence to consider dµ(r) = va,b(r) dr. We wanted to extend to weighted Bergman
spaces the results of [1] and [2], works which were entirely devoted to this class
of weights va,b in connection with weighted sup-norms. In the present article we
give a characterization of solid hulls of Ap

µ if 2 < p < ∞ and solid cores of Ap
µ

if 1 < p < 2 in our main Theorem 2.1 for much more general µ which, under
some mild additional assumptions (Corollary 3.2), results in the explicit com-
putation of many examples including v(r) = exp(−a/(1 − r)b) for R = 1 and
v(r) = exp(−r) for R = ∞ (see Corollaries 3.4 and 3.5). Finally, Sections 4 and
5 are dedicated to Bergman spaces Ap

µ and weighted sup-norm spaces H∞
v which

are themselves solid. We give examples for this situation in connection with holo-
morphic functions over the complex plane and show that this can never happen
for holomorphic functions over the unit disk. The main results are Theorem 4.1,
which states that Ap

µ is solid if and only if the monomials (zn)∞n=0 are an uncon-
ditional basis of Ap

µ, and Theorem 5.2, which ensures that H∞
v is solid if and only

if (zn)∞n=0 is a Schauder basis of the closure H0
v of the polynomials in H∞

v .
For a holomorphic g and 0 < r, we define

Mp(g, r) =
( 1

2π

∫ 2π

0

∣∣g(reiϕ)∣∣p dϕ)1/p

and Png(z) =
∑n

k=0 ĝ(k)z
k. It is well known that, for 1 < p < ∞, there are

universal constants cp > 0 with Mp(Png, r) ≤ cpMp(g, r), where cp does not
depend on g, n, or r. Moreover, we have limn→∞ Mp(g − Png, r) = 0. Hence, we
obtain

‖Pnf‖p ≤ cp‖f‖p for all f ∈ Ap
µ and all n and lim

n→∞
‖f − Pnf‖p = 0.
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In particular, we see that the monomials z 7→ zn, n = 0, 1, 2, . . . form a Schauder
basis of Ap

µ if 1 < p < ∞. (Details can be found in [4] and [14].) In the rest of the
article [r] denotes the largest integer less than or equal to r > 0.

2. Main general result

The main result of this section is Theorem 2.1 below. There are relevant earlier,
related works. For example, in Theorem 4.1 of [12], Pavlović established a useful
norm in blocks for certain weighted Bergman spaces. (See also earlier work by
Mateljević and Pavlović [11].)

Theorem 2.1. Assume that there are constants d1, d2 > 0, and ωn > 0, n =
1, 2, . . ., numbers 0 ≤ l1 < l2 < · · · , and radii s1 < s2 < · · · such that, for every
f ∈ Ap

µ,

d1‖f‖p ≤
( ∞∑
n=1

ωp
nM

p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

≤ d2‖f‖p. (2.1)

(a) If 2 < p < ∞, then

S(Ap
µ) =

{
g : R · D → C :

g holomorphic with
∞∑
n=1

ωp
n

( [ln+1]∑
k=[ln]+1

∣∣ĝ(k)∣∣2s2kn )p/2

< ∞
}
.

(b) If 1 < p < 2, then

s(Ap
µ) =

{
g : R · D → C :

g holomorphic with
∞∑
n=1

ωp
n

( [ln+1]∑
k=[ln]+1

∣∣ĝ(k)∣∣2s2kn )p/2

< ∞
}
.

Theorem 2.1 is proved below. Before presenting the proof, we point out that
condition (2.1) can be realized for any given µ. Indeed, fix β > 16·3p−1(1+2p)cpp+2,
and use induction to obtain 0 = l1 < l2 < l3 < · · · and 0 ≤ s1 < s2 < · · · < R
with∫ sn

0

rlnp dµ = β

∫ R

sn

rlnp dµ and

∫ sn

0

rln+1p dµ =
1

β

∫ R

sn

rln+1p dµ. (2.2)

Instead of starting with n = 1, we can just as well start the induction with
n = n0, for example, for some n0 ≥ 0 (with l1 = 0 and arbitrary s1) and restrict
the preceding relations to all n ≥ n0. Moreover, put

ωn =
(∫ sn

0

( r

sn

)lnp

dµ+

∫ R

sn

( r

sn

)ln+1p

dµ
)1/p

.

Then there are constants d1, d2 > 0 such that, for every f ∈ Ap
µ,

d1‖f‖p ≤
( ∞∑
n=1

ωp
nM

p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

≤ d2‖f‖p.
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This was shown in [5] for p = 1 and in [10] for 1 < p < ∞ and R = 1, but with
some slight modifications the proofs carry over to the case R = ∞.

Example 2.2.

(i) Let dµ(r) = dr where R = 1. Then we obtain

ln =
1

p
(an−1− 1) and sn =

( β

β + 1

)a1−n

where a =
log(β + 1)

log(1 + β)− log(β)
.

This can be easily verified using the definition (starting with n = 0) and
induction.

(ii) Let dµ(r) = rα dr for some α > 0 and R = 1. With example (i) and
lnp+ α = (an−1 − 1), where a is the number in (i), we obtain

ln =
1

p
(an−1 − 1)− α

p
and sn =

( β

β + 1

)a1−n

for n ≥ 2 with l1 = 0 and s1 = β/(β + 1).

Now we turn to the proof of Theorem 2.1. Let f : R · D → C be holomorphic.
Recall that f̂(n)rn = 1

2π

∫ 2π

0
f(reiϕ)e−inϕ dϕ for each 0 < r < R and each n =

0, 1, 2, . . . . For g(reiϕ) = rn(p−1)e−inϕ/(
∫ R

0
rnp dµ)1−1/p, we have∣∣f̂(n)∣∣(∫ R

0

rnp dµ
)1/p

=
1

2π

∣∣∣∫ R

0

∫ 2π

0

f(reiϕ)g(reiϕ) dϕ dµ
∣∣∣ ≤ ‖f‖p.

In the following, we make use of the Khintchine inequality (see [7, Theorem 2.b.3.]);
that is, for arbitrary bk and n we have

Ap

( n∑
k=1

|bk|2
)1/2

≤
( 1

2n

∑
θk=±1

∣∣∣ n∑
k=1

bkθk

∣∣∣p)1/p

≤ Bp

( n∑
k=1

|bk|2
)1/2

,

where Ap, Bp are universal constants not depending on n. (The summation in the
central expression runs over the 2n different possibilities of the change of signs.)

Conclusion of the proof of Theorem 2.1. For a holomorphic function g put

α(g) =
( ∞∑
n=1

ωp
nM

p
p

(
(P[ln+1] − P[ln])f, sn

))1/p

.

As assumed, α(·) is equivalent to ‖ · ‖p. Moreover, let

γ(g) =
( ∞∑
n=1

ωp
n

( [ln+1]∑
k=[ln]+1

∣∣ĝ(k)∣∣2s2kn )p/2)1/p

,

and let V = {g : R · D → C : g holomorphic with γ(g) < ∞}. Recall Parseval’s
identity, which implies that

M2
2

(
(P[ln+1] − P[ln])f, sn

)
=

[ln+1]∑
k=[ln]+1

∣∣ĝ(k)∣∣2s2kn .
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Proof of (a). Let g ∈ S(Ap
µ). Then there is f ∈ Ap

µ with |ĝ(k)| ≤ |f̂(k)| for all
k. If 2 < p < ∞, then

γ(g) ≤ γ(f) ≤ α(f) ≤ d2‖f‖p < ∞.

Hence g ∈ V .
Now let g ∈ V . Put ∆n = {+1,−1}[ln+1]−[ln]. For Θn = (θ[ln]+1, . . . , θ[ln+1]) ∈

∆n, put

gΘn(ϕ) =

[ln+1]∑
k=[ln]+1

θkĝ(k)s
k
ne

ikϕ and gn(ϕ) =

[ln+1]∑
k=[ln]+1

ĝ(k)skne
ikϕ.

Let Θ̃n be such that

Mp(gΘ̃n
, sn) ≤

( 1

2[ln+1]−[ln]

∑
Θn∈∆n

Mp
p (gΘn , sn)

)1/p

.

The Khintchine inequality yields

Mp(gΘ̃n
, sn) ≤ BpM2(gn, sn).

Put h =
∑

n gΘ̃n
. Then, by the preceding estimates,

d1‖h‖p ≤ α(h) ≤ Bpγ(g) < ∞.

Hence h ∈ Ap
µ. Since by definition |ĥ(k)| = |ĝ(k)| for all k, we obtain g ∈ S(Ap

µ).
Proof of (b). We retain the preceding notation. Let g ∈ V , and let f : R·D → C

be holomorphic with |f̂(k)| ≤ |ĝ(k)| for all k. Then

d1‖f‖p ≤ α(f) ≤ γ(f) ≤ γ(g) < ∞.

This implies that f ∈ Ap
µ and hence g ∈ s(Ap

µ).

Now let g ∈ s(Ap
µ). Let

˜̃Θn ∈ ∆n be such that

( 1

2[ln+1]−[ln]

∑
Θn∈∆n

Mp
p (gΘn , sn)

)1/p

≤ Mp(g ˜̃Θn
, sn).

Put h =
∑

n g ˜̃Θn
. Then we obtain |ĥ(k)| = |ĝ(k)| for all k. Hence h ∈ Ap

µ. The

Khintchine inequality together with the choice of ˜̃Θn yields

γ(g) = γ(h) ≤ A−1
p α(h) ≤ d2A

−1
p ‖h‖p < ∞.

We conclude that g ∈ V . �
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3. Main examples

Quite often it is very difficult to compute the parameters ln and sn in (2.2).
Therefore, it is worthwhile to consider special cases which yield an equivalent
representation of the norm ‖ · ‖p satisfying (2.1) and which are easier to compute
and cover many examples. To this end, let v : [0, R[→]0,∞[ be a weight function;
that is, let v be continuous, decreasing, and let it satisfy

lim
r→R

v(r) = 0 and sup
r

rnv(r) < ∞ for all n > 0.

Moreover, let ν be a nonatomic positive Borel measure on [0, R[ such that

ν([r, R[) > 0 for every r > 0 and such that
∫ R

0
rnv(r) dν(r) < ∞ for every

n ≥ 0. Put, for 1 ≤ p < ∞,

‖f‖p =
(∫ R

0

Mp
p (f, r)v(r) dν(r)

)1/p

.

Here we consider Ap
µ with dµ(r) = v(r) dν(r). Actually, one can relax the con-

ditions on v somewhat. It suffices to require that v be decreasing on [r0, R[ for
some r0 ∈ ]0, R[. This follows from the fact that, for dµ̃ = 1[r0,R[ dµ, the Lp-norms
with respect to µ and µ̃ are equivalent. Indeed, using the fact that Mp(f, r) is
increasing with respect to r for holomorphic functions f , we see that∫ R

r0

Mp
p (f, r) dµ(r) ≤

∫ R

0

Mp
p (f, r) dµ(r) ≤

(
1 +

µ([r0, R[)

µ([0, R[)

)∫ R

r0

Mp
p (f, r) dµ(r).

For any n > 0, let rn ∈ [0, R[ be a point where the function r 7→ rnv(r) attains
its global maximum. It is easily seen that rm < rn if m < n. In the following, we
assume that

rn is the unique global maximum of rnv(r) for all n

and there are no further local maxima.
(3.1)

For example, this is the case if v is differentiable and v′/v is injective. Assumption
(3.1) implies that rnv(r) is decreasing for r ≥ rn. Moreover, we assume that v
satisfies the following.

Condition (b0). There are numbers 1 < b < K and m1 < m2 < · · · with
limn→∞mn = ∞ such that

b ≤
( rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

Condition (b0) is exactly the same as condition (b) in [1], except that the treat-
ment of weighted Banach spaces of analytic functions with sup-norms requires
2 < b < K. We refer the reader to [1] and [9] for more information and examples
related to these conditions.

We take the parameters of condition (b0) and put

In = ν
(
[rmn , rmn+1 ]

)
,
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and we assume that

In < ∞ for all n and lim sup
n→∞

In
min(In−1, In+1)

< b. (3.2)

Theorem 3.1. Let 1 < p < ∞. Assume that v satisfies condition (b0) with (3.1)
and (3.2). Then there are constants d1, d2 > 0 with

d1‖f‖p ≤
( ∞∑
n=1

Mp
p

(
(P[mn+1/p] − P[mn/p])f, rmn

)
v(rmn)In

)1/p

≤ d2‖f‖p (3.3)

for all f ∈ Ap
µ.

In view of (2.1), we can apply Theorem 2.1 with the preceding ln = mn/p,
ωp
n = v(rmn)In, and sn = rmn .

Corollary 3.2. Let dµ = vdν.

(a) If 2 < p < ∞, then

S(Ap
µ) =

{
g : R · D → C : g holomorphic with

∞∑
n=1

v(rmn)In

( [mn+1/p]∑
k=[mn/p]+1

∣∣ĝ(k)∣∣2r2kmn

)p/2

< ∞
}
.

(b) If 1 < p < 2, then

s(Ap
µ) =

{
g : R · D → C : g holomorphic with

∞∑
n=1

v(rmn)In

( [mn+1/p]∑
k=[mn/p]+1

∣∣ĝ(k)∣∣2r2kmn

)p/2

< ∞
}
.

Before we prove Theorem 3.1, we present the following examples. They are
concrete cases to which Corollary 3.2 applies, thus permitting us to calculate
explicitly all the parameters which appear in the solid hull and solid core.

Example 3.3. (i) R = 1 and dµ(r) = exp(−α/(1− r)β) dr for some α, β > 0.
We take v(r) = exp(−α/(1 − r)β) and dν(r) = dr. The weight v satisfies

condition (b0) with

mn = β
(β
α

)1/β

n2+2/β − βn2 and rmn = 1−
(α
β

)1/β 1

n2/β

and b = e1 (see [1], Theorem 3.1.) Here In = (α/β)1/β(n−2/β− (n+1)−2/β). Hence

lim
n→∞

In
min(In−1, In+1)

= 1.

This shows that (3.2) is satisfied. We note that (3.1) holds, too, according to [1].
So we can apply Corollary 3.2.

(ii) R = 1 and dµ(r) = (1− log(1− r))−1 dr.
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Here we take

v(r) = 1− r and dν(r) =
dr

(1− r)(1− log(1− r))
.

Note that rm = 1− 1/(m+ 1) is the only zero of the derivative of rmv(r). Hence
(3.1) is satisfied. If we take mn = 9n and hence rmn = 1 − 1/(9n + 1), then a
simple calculation reveals that v satisfies condition (b0) with b = 3. We obtain

In =

∫ rmn+1

rmn

dν = log
(1 + log(9n+1 + 1)

1 + log(9n + 1)

)
from which we infer limn→∞ In/min(In−1, In+1) = 1. This implies (3.2).

(iii) R = ∞ and dµ(r) = e−r dr.
Here we take v(r) = e−r, dν(r) = dr. Note that rm = m is the only zero of the

derivative of rmv(r). Hence (3.1) is satisfied. Put

m1 = 1 and mn+1 = mn + 2
√
mn, n = 1, 2 . . . , and rmn = mn.

A simple calculation yields, with

−x− 1

2

( x

1− x

)2

≤ log(1− x) ≤ −x if 0 < x < 1,

exp
( 4

√
m√

m+ 2
− 2

)
≤

( rmn

rmn+1

)mn v(rmn)

v(rmn+1)

= exp
(
m log

(
1− 2√

m+ 2

)
+ 2

√
m
)
≤ exp

( 4
√
m√

m+ 2

)
.

Similarly, with

x− x2

2
≤ log(1 + x) ≤ x for 0 < x < 1,

exp
(
4− 2

(
1 +

2√
m

))
≤ exp

(
(m+ 2

√
m) log

(
1 +

2√
m

)
− 2

√
m
)

=
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ e4.

This shows that condition (b0) holds. Moreover, we easily obtain

In = 2
√
mn and lim

n→∞

In
min(In−1, In+1)

= 1,

which yields (3.2). Observe that in this case we can take mn = n2 (see Theorem
3.1 in [3]). This fact is not surprising, since one can easily prove by induction that
our selection of mn above satisfies (n− 1)2 ≤ mn ≤ n2 for each n.

Corollary 3.4. Let R = 1 and dµ(r) = exp(−1/(1− r)) dr.

(a) If 2 < p < ∞, then

S(Ap
µ) =

{
g ∈ H(D) :

∞∑
n=1

e−n2
( 1

n3

)( [(n+1)4/p]∑
k=[n4/p]+1

∣∣ĝ(k)∣∣2(1− 1

n2

)2k)p/2

< ∞
}
.
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(b) If 1 < p < 2, then

s(Ap
µ) =

{
g ∈ H(D) :

∞∑
n=1

e−n2
( 1

n3

)( [(n+1)4/p]∑
k=[n4/p]+1

∣∣ĝ(k)∣∣2(1− 1

n2

)2k)p/2

< ∞
}
.

Proof. Example 3.3(i) and Corollary 3.2 yield, with α = β = 1 and mn = n4−n2,

S(Ap
µ) =

{
g ∈ H(D) :

∞∑
n=1

e−n2
( 1

n2
− 1

(n+ 1)2

)([((n+1)4−(n+1)2)/p]∑
k=[(n4−n2)/p]+1

∣∣ĝ(k)∣∣2(1− 1

n2

)2k)p/2

< ∞
}

if 2 < p < ∞ and

s(Ap
µ) =

{
g ∈ H(D) :

∞∑
n=1

e−n2
( 1

n2
− 1

(n+ 1)2

)([((n+1)4−(n+1)2)/p]∑
k=[(n4−n2)/p]+1

∣∣ĝ(k)∣∣2(1− 1

n2

)2k)p/2

< ∞
}

if 1 < p < 2. If we let k run, in the preceding summations, from [n4/p] + 1
to [(n + 1)4/p] instead, then we obtain conditions which are equivalent to the
preceding ones and hence characterize again S(Ap

µ) and s(Ap
µ). This follows from

n4 − n2 ≤ n4 ≤ (n+ 1)4 − (n+ 1)2 for all n.

(Compare this with Lemma 3.2. and Example 3.3(i) in [1].) Then, finally, Corol-
lary 3.4 follows from(1

2

) 1

n3
≤ 1

n2
− 1

(n+ 1)2
≤ 2

n3
for all n. �

Corollary 3.5. Let R = ∞ and dµ(r) = e−r dr.

(a) If 2 < p < ∞, then

S(Ap
µ) =

{
g ∈ H(C) :

∞∑
n=1

e−n2

2n
( [(n+1)2/p]∑
k=[n2/p]+1

∣∣ĝ(k)∣∣2n2k
)p/2

< ∞
}
.

(b) If 1 < p < 2, then

s(Ap
µ) =

{
g ∈ H(C) :

∞∑
n=1

e−n2

2n
( [(n+1)2/p]∑
k=[n2/p]+1

∣∣ĝ(k)∣∣2n2k
)p/2

< ∞
}
.

Proof. This is a consequence of Example 3.3(iii) and Corollary 3.2. �

Lemma 3.6. Let 1 ≤ p < ∞, let 0 < r < s, and let f(z) =
∑

m≤j≤n αjz
j for

some αj and 0 ≤ m < n. Then we have

(i) Mp(f, r) ≤
(r
s

)m

Mp(f, s)
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and

(ii) Mp(f, s) ≤
(s
r

)n

Mp(f, r).

Proof. Part (i) follows from the fact that, for holomorphic f , the function Mp(f, ·)
is increasing in r, while part (ii) is Lemma 3.1(i) of [8]. �

Now consider 1 < p < ∞, and let mn, In satisfy condition (b0), (3.1), and (3.2).

Lemma 3.7. Fix k, n, and rmk
≤ r ≤ rmk+1

. Then we have

(i)
( r

rmn

)mn v(r)

v(rmn)
≤

(1
b

)n−k−1

if k < n

and

(ii)
( r

rmn

)mn+1 v(r)

v(rmn)
≤ K

(1
b

)k−n−1

if k ≥ n.

Proof. If k < n, then we have( r

rmn

)mn v(r)

v(rmn)

=
( r

rmk+1

)mn v(r)

v(rmk+1
)

(rmk+1

rmk+2

)mn v(rmk+1
)

v(rmk+2
)
. . .

(rmn−1

rmn

)mn v(rmn−1)

v(rmn)

≤
( r

rmk+1

)mk+1 v(r)

v(rmk+1
)

(rmk+1

rmk+2

)mk+2 v(rmk+1
)

v(rmk+2
)
. . .

(rmn−1

rmn

)mn v(rmn−1)

v(rmn)

≤
(1
b

)n−k−1

.

If k ≥ n+ 1, then we have( r

rmn

)mn+1 v(r)

v(rmn)

=
( r

rmk

)mn+1 v(r)

v(rmk
)

( rmk

rmk−1

)mn+1 v(rmk
)

v(rmk−1
)
. . .

(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

≤
( r

rmk

)mk v(r)

v(rmk
)

( rmk

rmk−1

)mk−1 v(rmk
)

v(rmk−1
)
. . .

(rmn+2

rmn+1

)mn+1 v(rmn−1)

v(rmn)
K

≤ K
(1
b

)k−n−1

.

Similarly, for k = n,( r

rmn

)mn+1 v(r)

v(rmn)
≤

(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)
≤ K.

�

Now fix k0 > 0 and 0 < ρ < b such that

In
min(In−1, In+1)

≤ ρ if k ≥ k0. (3.4)
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Corollary 3.8. Let fn(z) =
∑

mn/p≤j<mn+1/p
αjz

j, where n ≥ k0. Then, for any
k ≥ k0 we have∫ rmk+1

rmk

Mp
p (fn, r)v(r) dν(r) ≤ c

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In. (3.5)

Here c > 0 is a universal constant independent of k, n, fn.

Proof. First let k < n. Then Lemmas 3.6(i) and 3.7(i) imply that∫ rmk+1

rmk

Mp
p (fn, r)v(r) dν(r)

≤ Mp
p (fn, rmn)v(rmn)

∫ rmk+1

rmk

( r

rmn

)mn v(r)

v(rmn)
dν(r)

≤ c0M
p
p (fn, rmn)v(rmn)In

(n−1∏
j=k

Ij
Ij+1

)(1
b

)|n−k|

≤ c1

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In,

where c0, c1 are universal constants. If k ≥ n, then we use Lemmas 3.6(ii) and
3.7(ii) to get∫ rmk+1

rmk

Mp
p (fn, r)v(r) dν(r)

≤ Mp
p (fn, rmn)v(rmn)

∫ rmk+1

rmk

( r

rmn

)mn+1 v(r)

v(rmn)
dν(r)

≤ KbMp
p (fn, rmn)v(rmn)In

(k−1∏
j=n

Ij+1

Ij

)(1
b

)|n−k|

≤ c2

(ρ
b

)|n−k|
Mp

p (fn, rmn)v(rmn)In,

where c2 is a universal constant. �

Conclusion of the proof of Theorem 3.1. Let f ∈ Ap
µ, say, f =

∑
n fn, where fn

is as in Corollary 3.8. We can assume that fn = 0 for n ≤ k0 with k0 as in (3.4).
To prove the right-hand inequality in Theorem 3.1 we use that Mp(fn, r) ≤

cMp(f, r) for a universal constant independent of r, as well as that, in view of
(3.1), rmnv(r) is decreasing for r ≥ rmn . We have∑

n

Mp
p (fn, rmn)v(rmn)In

≤
∑
n

∫ rmn+1

rmn

(rmn

r

)mn v(rmn)

v(r)
Mp

p (fn, r)v(r) dν(r)

≤
∑
n

∫ rmn+1

rmn

( rmn

rmn+1

)mn v(rmn)

v(rmn+1)
Mp

p (fn, r)v(r) dν(r)
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≤ K
∑
n

∫ rmn+1

rmn

Mp
p (fn, r)v(r) dν(r)

≤ cpK
∑
n

∫ rmn+1

rmn

Mp
p (f, r)v(r) dν(r)

≤ cpK‖f‖pp.

This in particular implies that
∑

nM
p
p (fn, rmn)v(rmn)In < ∞.

Now we show the left-hand inequality of Theorem 3.1. Using the Minkowski
inequality in the first estimate and Corollary 3.8 in the second one, we obtain

‖f‖pp =
∑
k

∫ rmk+1

rmk

Mp
p (f, r)v(r) dν(r)

≤
∑
k

(∑
n

(∫ rmk+1

rmk

Mp
p (fn, r)v(r) dν(r)

)1/p)p

≤ c1
∑
k

(∑
n

(ρ
b

)|n−k|/p(
Mp

p (fn, rmn)v(rmn)In
)1/p)p

≤ c2
∑
k

∑
n

(ρ
b

)|n−k|/p
Mp

p (fn, rmn)v(rmn)In

≤ c3
∑
n

Mp
p (fn, rmn)v(rmn)In.

Here c1, c2, c3 are universal constants. In the second to last inequality we used the
Hölder inequality in the following way. Put an = (Mp

p (fn, rmn)v(rmn)In)
1/p. Then∑

n

(ρ
b

)|n−k|/p
an ≤

(∑
n

(ρ
b

)|n−k|/p
apn

)1/p

·
(∑

n

(ρ
b

)|n−k|/p)1/q

,

with 1/p+1/q = 1. In the last inequality we interchanged the summation over k
and n and utilized supk

∑
n(ρ/b)

|n−k|/p = supn

∑
k(ρ/b)

|n−k|/p < ∞. �

4. Solid Bergman spaces

Recall that a Bergman space Ap
µ is solid if S(Ap

µ) = Ap
µ.

Theorem 4.1. Let 1 < p < ∞, p 6= 2. Then the following are equivalent:

(i) Ap
µ is solid,

(ii) s(Ap
µ) = Ap

µ,
(iii) the monomials (zn)∞n=0 are an unconditional basis of Ap

µ,
(iv) the normalized monomials (zn/‖zn‖p)∞n=0 are equivalent to the unit vector

basis of lp,
(v) supn(ln+1 − ln) < ∞ for the numbers ln in (2.1).

Remark 4.2. If p = 2, then the normalized monomials are an orthonormal basis
for A2

µ and all conditions (i)–(iv) are satisfied.

The following example is relevant in connection with Theorem 4.1.
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Example 4.3. Consider R = ∞ and v(r) = exp(−(log r)2), dν(r) = dr. (This
is included in Example 2.2 of [9].) Note that v is decreasing on [1,∞[ which
suffices in view of the remarks at the beginning of Section 3. We easily see that
rm = exp(m/2) is the only zero of the derivative of rmv(r). Hence (3.1) is satisfied.
We get, for any n > 0 and m > 0,(rm

rn

)mv(rm)

v(rn)
=

( rn
rm

)n v(rn)

v(rm)
= exp

((n−m)2

4

)
.

So, if we take mn = 4n, then condition (b0) is satisfied with b = e4. Moreover, we
have In = exp(2n+2)−exp(2n). An easy calculation shows that (3.2) holds. Hence
we can consider (2.1) with ln = mn/p. Therefore, supn(ln+1 − ln) = 4/p < ∞.
This means that, for dµ(r) = v(r) dr, the Bergman space Ap

µ is solid.

For the preceding example it is essential that R = ∞. Indeed, we have the
following.

Corollary 4.4. Let 1 < p < ∞, p 6= 2, and R = 1. Then no Bergman space Ap
µ

is solid.

We prove Corollary 4.4 at the end of this section. For the proof of Theorem 4.1
we need the following.

Lemma 4.5. Let (en) be a Schauder basis of a Banach space X with basis projec-
tions Pn. For M ⊂ N, let TM be the linear (not necessarily continuous) operator
defined in the linear span of (en) by TMek = ek if k ∈ M and TMek = 0 otherwise.
If the basis (en) is not unconditional, then there is N ⊂ N such that, for any n,
there exists mn and 0 6= y ∈ PmnX with n‖y‖ ≤ ‖TNy‖.

Proof. If (en) is a conditional basis, then there exists an operator of the form TN

which is unbounded on X. Hence there is a sequence xk ∈ X with ‖xk‖ = 1 and
limk→∞ ‖TNxk‖ = ∞, and we find kn with n = n‖xkn‖ < ‖TNxkn‖ for all n. Using
TNPl = PlTN for all l, we find mn such that

0 < n‖Pmnxkn‖ ≤ ‖PmnTNxkn‖ = ‖TNPmnxkn‖ for all n. �

In the following we retain the definition of TN with respect to the monomials
(zn).

Lemma 4.6. Let 1 < p < ∞, p 6= 2, and assume that there are constants cn > 0,
dn > 0 with supn dn/cn < ∞, integers 0 < an < bn < an+1, and radii sn such
that, for any fn ∈ Ap

µ with fn(z) =
∑

an≤j≤bn
αjz

j, we have

cnMp(fn, sn) ≤ ‖fn‖p ≤ dnMp(fn, sn).

If supn(bn − an) = ∞, then the monomials are not unconditional in Ap
µ.

Proof. It is well known that the monomials are a conditional basis sequence with
respect to the norm Mp(·, 1). So we find N ⊂ N and yn ∈ Yn := span {zj : 0 ≤
j ≤ mn} with Mp(yn, 1) = 1 and n ≤ Mp(TNyn, 1). Find kn with bkn − akn > mn,
put Yn = {zj : akn ≤ j ≤ bkn} ⊂ Ap

µ, and define Sn : Xn → Yn by

(Snf)(z) = zaknf(z/sn).
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Then, according to our assumptions, we have ‖Sn‖ · ‖S−1
n ‖ ≤ dn/cn < c for some

universal constant c. Put Mn = {akn + j : j ∈ N, j ≤ mn}. Then SnTNS
−1
n =

TMn|Xn . If we consider M =
⋃

nMn, then the preceding shows that TM is
unbounded on Ap

µ. This proves that the system of monomials is conditional in
Ap

µ. �

Conclusion of the proof of Theorem 4.1. We have that (i) ⇔ (ii) follows from the
definition of solid hull, while (ii) ⇔ (iii) follows from the definition of solid core.
(Recall that, in any case, the monomials are a basis of Ap

µ.) Now (iii) and Lemma
4.6 imply (v). Finally, (v) and (2.1) imply (iv), while (iv) trivially implies (iii). �

Proof of Corollary 4.4. Proposition 3.5 of [8] shows that, for R = 1, the assump-
tions of Lemma 4.6 are always satisfied. Hence the system of monomials can never
be unconditional. In view of Theorem 4.1, the Bergman space Ap

µ can never be
solid. �

5. Solid weighted spaces of entire functions with sup-norms

In this section we consider weighted Banach spaces of analytic functions with
sup-norms. The main result of this section, Theorem 5.2, complements Theo-
rem 4.1. This result was announced in Remark 5.6 of [1]. Here, as in Section 3,
a continuous weight v : C →]0,∞[ is a function satisfying

v(z) = v
(
|z|

)
, z ∈ C, v(r) ≥ v(s) if 0 ≤ r < s and

lim
r→∞

rnv(r) = 0 for all n ≥ 0.

We deal with the weighted space H∞
v over C, that is,

H∞
v =

{
f : C → C : f holomorphic, ‖f‖v := sup

z∈C

∣∣f(z)∣∣v(z) < ∞
}
.

Let H0
v be the closure of the polynomials in H∞

v .
Similarly to the weighted Lp-norms in Sections 3 and 4, one sees that it suffices

to require only that v(r) ≥ v(s) for r0 ≤ r < s and some r0 > 0, since ‖f‖v
and supr0≤|z|<∞ |f(z)|v(z) are equivalent for holomorphic f . Again, for n > 0 let
rn ∈ [0,∞[ be a point where the function r 7→ rnv(r) attains its global maximum.
The next lemma can be easily proved with induction (which was done in Lemma
5.1 of [9]). The indices mn are needed in the following.

Lemma 5.1. For any b > 2 there are numbers 0 < m1 < m2 < · · · with
limn→∞mn = ∞ and

b = min
(( rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)
.

Actually, one can show that Lemma 5.1 works for all b > 1, but we need
b > 2 in the following proof. There are examples of weights on C such that the
monomials (zn)∞n=0 are a Schauder basis in the Banach space H0

v . This is the same
as saying that the Taylor series of each element in H0

v converges with respect to
the weighted sup-norm ‖ · ‖v. In the known examples, in this case, (zn/‖zn‖v)∞n=0

is equivalent to the unit vector basis of c0. Moreover, here H∞
v is solid. We show
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that this is always true provided that (zn)∞n=0 is a Schauder basis of H0
v . We also

characterize this situation by a property for the indices mn of Lemma 5.1. Our
arguments are similar to those of [8].

Let h(z) =
∑∞

k=0 bkz
k. As before, let Pn be the partial sum operators, that is,

(Pnh)(z) =
n∑

k=0

bkz
k.

If the monomials are a basis of H0
v , then supn ‖Pn|H0

v
‖ = supn ‖Pn|H∞

v
‖ < ∞. For

any k, we have

|bk| · ‖zk‖v = |bk|rkkv(rk) =
∣∣∣ 1
2π

∫ 2π

0

h(rke
iϕ)e−ikϕ dϕ

∣∣∣v(rk) ≤ ‖h‖v. (5.1)

Moreover, take the numbers mn of Lemma 5.1 and put

(Rnh)(z) =

mn−1∑
k=0

bkz
k +

∑
mn−1<k≤mn

[mn]− k

[mn]− [mn−1]
bkz

k.

Finally, put M∞(h, r) = sup|z|=r |h(z)|.

Theorem 5.2. The following are equivalent:

(i) supn(mn+1 −mn) < ∞ where mn are the indices of Lemma 5.1,
(ii) (zn)∞n=0 is a Schauder basis of H0

v ,
(iii) (zn/‖zn‖v)∞n=0 is equivalent to the unit vector basis of c0,
(iv) H∞

v is solid,
(v) H0

v is solid.

Proof. Put Vn = Rn−Rn−1. According to Proposition 5.2 in [9], since we assumed
that b > 2 in Lemma 5.1, the norms ‖h‖v and supn suprmn−1≤r≤rmn+1

M∞(Vnh,

r)v(r) are equivalent. Since Lemma 3.3 in [9] implies that the operators Vn are
uniformly bounded on H∞

v , we obtain constants c1 > 0 and c2 > 0 with

c1 sup
n

‖Vnh‖v ≤ ‖h‖v ≤ c2‖Vnh‖v for all h ∈ H∞
v . (5.2)

(i) ⇒ (ii): Observe that, by the definition of Vn, dim Vn(H
0
v ) = [mn+1]− [mn−1].

By (i) we obtain supndim Vn(H
0
v ) < ∞. With the definition of Pj and (5.1),

we see that supj,n ‖Pj|Vn(H0
v )
‖ ≤ supn([mn+1] − [mn−1]) < ∞. With (5.2) and

PjVn = VnPj for all j and n, we conclude that the projections Pj are uniformly
bounded. Hence (zn)∞n=0 is a Schauder basis of H0

v .
(ii) ⇒ (i): Assume that (ii) holds. By definition, Vn(Pmn+1 − Pmn−1) = Vn. In

view of the uniform boundedness of the Vn and (5.2), we obtain constants c′1 > 0
and c′2 > 0 with

c′1 sup
n

∥∥(Pmn+1 − Pmn)h
∥∥
v
≤ ‖h‖v ≤ c′2 sup

n

∥∥(Pmn+1 − Pmn)h
∥∥
v

(5.3)

for all h ∈ H∞
v . Here the first inequality follows from the uniform boundedness of

the Pn in view of (ii), while the second inequality follows from (5.2). Let tn ∈ [0, R[
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be such that

tn = rmn if b =
(rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

and

tn = rmn+1 if b =
( rmn

rmn+1

)mn v(rmn)

v(rmn+1)

in Lemma 5.1 Then Corollary 3.2(b) of [9] implies that∥∥(Pmn+1 − Pmn)h
∥∥
v
≤ 2bM∞

(
(Pmn+1 − Pmn)h, tn

)
v(tn).

With (5.3) we obtain

d1 sup
n

M∞
(
(Pmn+1 − Pmn)h, tn

)
v(tn)

≤ ‖h‖v ≤ d2 sup
n

M∞
(
(Pmn+1 − Pmn)h, tn

)
v(tn) (5.4)

for some constants d1 > 0, d2 > 0 and all h ∈ H0
v .

It is well known that there are bounded holomorphic functions whose Taylor
series do not converge with respect to M∞(·, 1). By going over to suitable Cesàro
means if necessary, we see that, for each n ∈ N, there is a polynomial f of degree
N and an index M ≤ N such that

M∞(f, 1) = 1 but n ≤ M∞(PMf, 1).

Proceeding by contradiction, assume that (i) does not hold, that is, supn(mn+1−
mn) = ∞. Then we find k with dim (Pmk+1

− Pmk
)H0

v > N . Put h(z) =
zmkf(z)/v(tk). Then, in view of (5.4), we obtain

d1 ≤ ‖h‖v ≤ d2 and
n

d2
≤ ‖PM+mk

h‖v.

This implies that the projections Pj are not uniformly bounded, contradicting
assumption (ii). This contradiction implies that supn(mn+1 −mn) < ∞, and we
have checked that (ii) ⇒ (i).

Moreover, if supn(mn+1 −mn) < ∞, then (5.4) easily implies that the normal-
ized monomials are equivalent to the unit vector basis of c0. Hence we have (ii) ⇒
(iii). The implication (iii) ⇒ (ii) is trivial.

(iii) ⇒ (iv): By the preceding we know already that (iii) implies (ii) and hence
(5.4). If σn is the nth Cesàro mean and h ∈ H∞

v , then σnh ∈ H0
v . We have

σnPj = Pjσn for all n and j. Moreover, ‖σnh‖v ≤ ‖h‖v and supn ‖σnh‖v = ‖h‖v.
This implies that (5.4) remains valid for all h ∈ H∞

v . This together with the fact
that supn(mn+1 −mn) < ∞ shows that H∞

v is solid.
(iv) ⇒ (iii): This implication follows from Theorem 5.2 in [1]. (iv) ⇒ (v): If

g ∈ S(H0
v ), then by definition and (iii),

lim
n→∞

ĝ(n)‖zn‖v = 0,

which implies by (iii) that g ∈ H0
v .

(v) ⇒ (iv): If g ∈ S(H∞
v ), then by definition σng ∈ S(H0

v ) = H0
v for all n. This

implies that g ∈ H∞
v . �
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(In [9], the second author showed that v(r) = exp(−(log r)2), R = ∞, satisfies
(ii) (and hence all assertions) of Theorem 5.2.)

Note that in the preceding proof we do not use the fact that our functions are
defined on C. The arguments work just as well for weighted spaces of holomorphic
functions over the unit disk D. However, in this case limn→∞ rn = 1 and this fact
together with

4 < b2 ≤
(rmn+1

rmn

)mn+1−mn

implies that supn(mn+1 −mn) = ∞ (in view of Lemma 5.1, which remains true
over D). This means that in the case of holomorphic functions over D the preceding
theorem is empty (cf. Corollary 5.3 in [1]).
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6. M. Jevtić, D. Vukotić, and M. Arsenović, Taylor Coefficients and Coefficient Multipli-
ers of Hardy and Bergman-Type Spaces, RSME Springer Ser. 2, Springer, Cham, 2016.
Zbl 1368.30001. MR3587910. DOI 10.1007/978-3-319-45644-7. 469

7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Ergeb. Math. Grenzgeb. (3)
92, Springer, Berlin, 1977. Zbl 0362.46013. MR0500056. 471

8. W. Lusky, On the Fourier series of unbounded harmonic functions, J. Lond. Math. Soc. (2)
61 (2000), no. 2, 568–580. Zbl 0956.46019. MR1760680. DOI 10.1112/S0024610799008443.
477, 481, 482

9. W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holomorphic
functions, Studia Math. 175 (2006), no. 1, 19–45. Zbl 1114.46020. MR2261698. DOI
10.4064/sm175-1-2. 473, 480, 481, 482, 483, 484

10. W. Lusky and J. Taskinen, Toeplitz operators on Bergman spaces and Hardy multipliers,
Studia Math. 204 (2011), no. 2, 137–154. Zbl 1237.47034. MR2805536. DOI 10.4064/
sm204-2-3. 471
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