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Abstract

Contaminant source identification is a key problem in handling groundwater pollution events.

The ensemble Kalman filter (EnKF) is used for the spatiotemporal identification of a point

contaminant source in a sandbox experiment, together with the identification of the position

and length of a vertical plate inserted in the sandbox that modifies the geometry of the

system. For the identification of the different parameters, observations in time of solute

concentration are used, but not of piezometric head data since they were not available. A

restart version of the EnKF is utilized because it is necessary to restart the forecast from

time zero after each parameter update. The results show that the restart EnKF is capable of

identifying both contaminant source information and aquifer-geometry-related parameters

together with an uncertainty estimate of such identification.

Keywords: Inverse modeling; Observation error; Groundwater laboratory experiment;

Stochastic hydrogeology

1. Introduction1

The problem of identifying a contaminant source in an aquifer using solute concentra-2

tion data has been the subject of attention for many years (e.g., Atmadja and Bagtzoglou,3

∗Corresponding author
Email address: tenxu@posgrado.upv.es (Teng Xu )

Preprint submitted to Elsevier July 19, 2018



2001; Michalak and Kitanidis, 2004; Bagtzoglou and Atmadja, 2005; Sun et al., 2006, and4

references therein). Briefly, the proposed methods could be grouped into two categories:5

optimization approaches and probabilistic approaches. The main difference between the two6

approaches is that the optimization approaches cast the problem as a deterministic one in7

which parameters are found that minimize a given objective function, whereas the probabilis-8

tic approaches cast the problem in a stochastic framework and the parameters to estimate9

become random variables. In the first category, Gorelick et al. (1983) identified the ground-10

water pollution source information through an optimization model using linear programming11

and multiple regression; Wagner (1992) employed a non-liner maximum likelihood method12

to estimate source location and flux; Mahar and Datta (2000) used a nonlinear optimization13

model for estimating the magnitude, location and duration of groundwater pollution sources14

with binding equality constraints; Yeh et al. (2007) developed a hybrid approach, which15

combines simulated annealing, tabu search and a three-dimensional groundwater flow and16

solute transport model to solve the source identification problem; and Ayvaz (2010) utilized17

a harmony search-based simulation-optimization model to determine the source location and18

release histories by using an implicit solution procedure. In the second category, Bagtzoglou19

et al. (1992) applied a particle method to estimate, probabilistically, source location and20

spill-time history; Woodbury and Ulrych (1996) used a minimum relative entropy approach21

to recover the release and evolution histories of a groundwater contaminant plume in a one-22

dimensional system; Neupauer and Wilson (1999) employed a backward location model based23

on adjoint state method (BPM-ASM) to identify a contaminant source; Butera et al. (2013)24

utilized a simultaneous release function and source location identification (SRSI) method to25

identify the release history and source location of an injection in a groundwater aquifer; and26

Koch and Nowak (2016) derived and applied a Bayesian reverse-inverse methodology to infer27

source zone architectures and aquifer parameters.28

The ensemble Kalman filter (EnKF), which could be included in the group of probabilistic29

approaches mentioned above, has recently addressed the problem of contaminant source30
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identification. The EnKF introduced by Evensen (2003) has gained much popularity in recent31

years for its efficiency in solving inverse problems in different fields such as oceanography,32

meteorology and hydrology (Houtekamer and Mitchell, 2001; Li et al., 2012a; Xu et al.,33

2013b). The advantages of the EnKF can be summarized as follows (Chen and Zhang, 2006;34

Zhou et al., 2011): computational efficiency when compared with other inverse approaches,35

easy integration with different forecast models, ability to account for model and observation36

errors, and easy uncertainty characterization since the final outcome is always an ensemble37

of realizations. In hydrogeology, the EnKF has been mainly applied for the identification of38

aquifer parameters such as hydraulic conductivity or porosity (Li et al., 2012b; Xu et al.,39

2013a; Zhou et al., 2014; Xu and Gómez-Hernández, 2015, 2016a). Recently, Xu and Gómez-40

Hernández (2016b) demonstrated the possibility to apply the EnKF for the identification of a41

contaminant source in a deterministic synthetic aquifer, and later Xu and Gómez-Hernández42

(2018) showed that the method can be also applied for the simultaneous identification of43

hydraulic conductivities and the parameters defining a contaminant source also in a synthetic44

aquifer.45

All the works mentioned above were tested in synthetic cases. Only a few works can be46

found in the literature for laboratory or field cases. Woodbury et al. (1998) extended the47

minimum relative entropy (MRE) method to recover the release history of a contaminant and48

applied it to reconstruct the release history of a 1,4-dioxane plume observed at the Gloucester49

Landfill in Ontario, Canada. Michalak (2003); Michalak and Kitanidis (2004) employed a50

Bayesian inverse formulation to estimate the contaminant history of trichloroethylene (TCE)51

and perchloroethylene (PCE) in an aquifer at the Dover Air Force Base, Delaware, a site that52

had already been analyzed by Liu and Ball (1999) in the same context of source identifica-53

tion. Cupola et al. (2015b,a) compared the source location identification (SRSI) method to54

the backward probability model based on the adjoint state method (BPM-ASM) with data55

taken from a sandbox experiment. Zanini and Woodbury (2016) also used data from a sand-56

box experiment to apply an empirical Bayesian method combined with Akaike’s Bayesian57
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Information Criterion (ABIC) to deduce the release history of a groundwater contaminant.58

The main objective of this paper is to assess the performance of the restart EnKF (r-59

EnKF) for the identification of contaminant source parameters and aquifer geometry with60

data from a sandbox experiment. The source parameters of interest are the release location,61

release starting and ending times, and contaminant load, and regarding the geometry the62

method should try to retrieve the position and length of a plate that is inserted about the63

center of the sandbox and induces a deflection of the flowlines towards the bottom of the64

sandbox. The state information assimilated by the r-EnKF is limited to concentration data65

at a few observation points, since no piezometric head data were available.66

The paper is organized as follows, first, the state equations and the fundamentals of the67

r-EnKF will be recalled, second, the sandbox characteristics are described together with the68

numerical model used to reproduce its behavior, third, the r-EnKF is tested with data from69

a synthetic experiment that mimics the sandbox experiment with the aim to verify if the r-70

EnKF is capable of identifying the kind of parameters sought, and four, the r-EnKF is applied71

with observation values taken from the sandbox experiment, the problems encountered are72

analyzed, alternative approaches are discussed and the final results presented. The paper73

ends with a summary and conclusions on the main findings.74

2. Methodology75

2.1. Groundwater Flow and Solute Transport Equation76

The sandbox will be modeled as a two-dimensional system in the XZ plane, where an77

inert contaminant spreads due to advection and dispersion under a steady-state flow. The78

dimension of the sandbox in the y direction is small enough to assume that the state variables79

are constant along any line for any given (x, z) value. The governing equations are:80

∂

∂x

(

Kx

∂h

∂x

)

+
∂

∂z

(

Kz

∂h

∂z

)

+ w = 0 (1)
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∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs (2)

where Kx and Kz are the principal components of the hydraulic conductivity tensor in the x81

and z spatial coordinates respectively [LT−1] which are assumed aligned with the coordinate82

system of reference in the entire domain; h is the hydraulic head [L]; w represents distributed83

sources or sinks [T−1]; t is time [T ]; θ represents the porosity of the medium; C is dissolved84

concentration [ML−3]; ∇· is the divergence operator; ∇ is the gradient operator; D represents85

the hydrodynamic dispersion coefficient tensor [L2T−1]; v is the flow velocity vector [LT−1]86

derived from the solution of the flow model; qs represents volumetric flow rate per unit87

volume of aquifer associated with a fluid source or sink [T−1] and Cs is the concentration of88

the source or sink [ML−3].89

The flow equation is solved using MODFLOW (McDonald and Harbaugh, 1988), and the90

transport equation is solved using MT3DS (Zheng and Wang, 1999).91

2.2. The Ensemble Kalman Filter92

The ensemble Kalman filter was first introduced by Evensen (2003) to circumvent the93

difficulty of propagating covariances in time in the original and extended Kalman filter94

formulations. The restart EnKF (r-EnKF) has proven its capacity for contaminant source95

identification in synthetic cases (Xu and Gómez-Hernández, 2016b, 2018); now, we propose96

to test the r-EnKF in a sandbox experiment. For this specific case, there will be eight97

parameters to identify, six related to the contaminant source, and two related to aquifer98

geometry. In the first group, they are the contaminant source location (Xs , Zs), the injection99

concentration Ic, the injection rate Ir , plus the starting Ts and ending Te release times. In100

the second group, the algorithm will try to identify the position along the x direction Xb101

and the total depth Zb of a vertical plate inserted about the center of the sandbox to deflect102

the flowlines. The rest of the parameters defining the flow and transport conditions in the103

sandbox are not subject to identification and are equal to their observed values as explained104

5



in the description of the experiment in the next section. The r-EnKF is shortly described105

next.106

In the ensemble Kalman filter with extended state vector, we deal with two types of107

variables, the system parameters subject of identification, of which there could be observa-108

tions or not, and the state of the system, of which there will be observations. The state109

is forecasted in time solving the corresponding state equations, with the latest parameter110

update, up to the specific time steps when observations are collected; these observations are111

assimilated by the filter and serve to update the parameters and the state of the system. In112

the restart filter, state variables are not updated, only system parameters are, because the113

system state forecast for the next observation time is restarted from time zero to make sure114

that the forecasted system state is fully coherent with the state equations, and, in our case,115

with the updated contaminant source. (In the original implementation of the filter, both116

state and parameters are updated, and the state system is forecasted from the last updated117

state values using the last updated parameters.) The r-EnKF is an iterative algorithm that118

cycles forecast and data assimilation (with the corresponding parameter update) until all119

observations have been accounted for. The implementation of the r-EnKF for the identi-120

fication of the eight parameters described above can be summarized as follows (Evensen,121

2003; Xu and Gómez-Hernández, 2016b):122

1. Generate an initial ensemble of parameter values. An ensemble of Ne realizations123

of eight-tuples of the parameters to be identified is generated. Parameter values are124

drawn, independently, from uniform distributions defined between first-guess minimum125

and maximum values—there are no restrictions on these uniform distributions, their126

range can be wider or narrower than the one used in this paper, and they do not have127

to necessarily contain the “real” value, they are simply used to initialize the algorithm.128

We build Ne vectors Si with the eight parameters for each realization:129

Si = [Xs i,Zs i,Xbi,Zbi, Ici, Ir i,Ts i,Tei]
T (3)
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where i is the realization index and the superscript T stands for transpose.130

2. Repeat for each system state observation time. Forecast the state. For each ensemble131

member, forecast the system state, that is, the concentrations in the aquifer, for the132

tth observation time using the values of the parameters from the last update (or the133

initial parameters for the first observation time). In the original implementation of134

the EnKF, the system state at the tth observation time is forecasted based on the135

concentrations at the (t−1)th observation time and using the last updated parameters;136

however, it is virtually impossible to account for an update of the source location or137

the injection time unless the state equation is solved from time zero, thus the need to138

restart the simulation from time zero (Xu and Gómez-Hernández, 2016b). The forecast139

of concentrations is given by140

C
f
i (t) = ψ [C0, S

a
i (t− 1)] , (4)

where the superscripts f and a refer to forecasted and updated values after assimilation,141

respectively; ψ represents the numerical model that forecast, in time, concentrations,142

on a grid with Nm nodes; Ci is an Nm × 1 column vector containing the forecasted143

concentrations at all the discretization nodes of the numerical model for realization144

i; Sa
i is the vector with the last updated parameters; C0 is the initial contaminant145

concentration of the domain, which is the same for all realizations. The forecast of the146

parameters is simply147

S
f
i (t) = Sa

i (t− 1). (5)

3. Parameters update. First compute the parameter covariance through the ensemble of148

forecasted realizations149

P
f
S (t) =

1

Ne

Ne
∑

i=1

{

[

S
f
i (t)− S

f
i (t)

] [

S
f
i (t)− S

f
i (t)

]T
}

(6)
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with150

S
f
i (t) =

1

Ne

Ne
∑

i=1

S
f
i (t), (7)

where P f
S is an 8×8 matrix of parameter covariances and Sf

i (t) is an 8×1 column vector151

of parameter averages. Then, compute the parameter-concentration cross-covariances152

but only with the forecasted concentration values that fall at concentration observation153

locations for time t (for the sake of simplicity, we will assume that observations are154

taken coinciding with some of the numerical model nodes, if not, there will be a need to155

provide a linear averaging procedure to estimate concentrations at observation locations156

from model concentration forecasts)157

P
f
SC(t) =

1

Ne

Ne
∑

i=1

{

[

S
f
i (t)− S

f
i (t)

] [

C
f
i (t)− C

f
i (t)

]T
}

(8)

with158

C
f
i (t) =

1

Ne

Ne
∑

i=1

C
f
i (t), (9)

where P f
SC is an 8×No matrix of parameter-concentration cross-covariances, with No159

being the number of nodes of the numerical model at which observations are taken at160

time step t, and C
f
i (t) is an No × 1 column vector of average concentrations. Next,161

compute the 8×No Kalman gain matrix K(t) as162

K(t) = P
f
S (t)[P

f
SC(t) +R(t)]−1 (10)

where R(t) is an No × No diagonal observation error covariance matrix (implying163

that there is no correlation between observation errors) and proceed to update164

the parameter values, realization by realization by165

Sa
i (t) = S

f
i (t) +K(t)

[

di(t)− C
f
io(t)

]

, (11)
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where di(t) is an No×1 vector of observed concentrations (including observation errors166

with covariance given by R(t)) and Cf
io(t) is an No × 1 vector of forecasted concentra-167

tions.168

4. Go back to step 2 and repeat the whole process until all observations are assimilated.169

3. Experimental Case170

3.1. Description of the experiment171

A single point pollution experiment was performed in a sandbox using sodium fluorescein172

as tracer. The sandbox is built in plexiglass and has external dimensions of 120 cm × 14173

cm × 70 cm as sketched in Fig. 1. The internal volume of 96 cm × 10 cm × 70 cm is174

filled with constant-diameter spherical glass beads. There are two reservoirs at the edges of175

the box imposing constant water levels of 60.7 cm and 53.6 m upstream and downstream,176

respectively. An injector was set up at the upstream part of the sandbox at the location177

indicated by a red square in the figure, and a plastic plate was vertically inserted inside178

the glass beads in the middle of the sandbox, whose position and length is also shown in179

the figure. The experimental equipment was placed in a dark box and a digital camera was180

used to capture, every 5 s, the fluorescein luminosity within the rectangular zone of 85 cm181

by 44 cm marked with a ticked rectangle in Fig. 1. The pictures were then processed and182

the fluorescein luminosity transformed into concentrations after a calibration procedure, as183

described by Citarella et al. (2015). In this case, eight different fluorescein concentrations184

(C = 0; 2.5; 5; 10; 20; 25; 30; 35 mg/l) were used to calibrate and generate the luminosity-185

concentration curves in each picture pixel. The total experiment time lasted 1965 s, the186

injection started at time 120 s and finished at time 1000 s. During the experiment, the rate187

and concentration of the injection were also recorded.188

It is very important to note that there are no piezometric head observations. The design189

of the tank did not allow for those observations. Had there been piezometric head data, they190
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could have been assimilated in the filter and, without doubt, would have helped in improving191

the identification (as shown by Xu and Gómez-Hernández (2018)).192

3.2. Numerical Model193

Since the thickness of the sandbox along the y axis is relatively small, we can assume194

that the variability of piezometric heads and concentration along this direction is negligible.195

Therefore, a two-dimensional groundwater flow and transport model in the XZ plane is196

built. The upstream and downstream vertical boundaries are set as constant prescribed197

piezometric head values, and the bottom boundary is impermeable while the top boundary198

is the phreatic surface. The model corresponds to the yellowish area in Fig. 1, where199

the coordinates of the four model corners are given. The tank is filled with homogeneous200

spherical glass beads with a conductivity of 0.58 cm/s and a porosity of 0.37. The vertical201

plastic plate was inserted at a distance of 52 cm from the left boundary and its length is of202

42 cm. It is modeled as an impermeable barrier, which will deflect the flowlines towards the203

bottom of the sandbox. The sandbox is discretized into 96 columns, one row, and 70 layers;204

the size of each cell is (∆x,∆y,∆z) = (1, 10, 1) cm. The total simulation time is 1800 s and205

is discretized into 90 uniform time steps. Citarella et al. (2015) evaluated the longitudinal206

and transverse dispersivities of the spherical beads, resulting in values of 0.16 cm and 0.048207

cm, respectively. The flow and transport parameters are collected in Table 1.208

The release happens at coordinates (18.5 cm, 30.5 cm), with a concentration of 20 mg/l209

and an injection rate of 0.95 cm3/s. To start the ensemble Kalman filter 800 8-tuples of210

the source and plate parameters are generated from uniform distributions (not centered at211

the true values). The true values of the parameters to identify and the suspect range of the212

uniform distributions used to generate the initial ensemble are collected in Table 2.213
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4. Application214

The objective of this work is to demonstrate the capacity of the r-EnKF for the identifi-215

cation of contaminant source information, including contaminant source location (Xs , Zs),216

injection information (Ic, Ir) and release time (Ts, Te) together with the position and length217

of the vertical plate (Xb, Zb), using concentration observations collected in a laboratory ex-218

periment. As a prior test, we analyze a synthetic case, in which the concentration data are219

generated by the numerical model of the sandbox, therefore removing any modeling error220

since the forward model used to forecast by the r-EnKF will coincide with the model used to221

generate the observations. In the next section, we will redo the analysis using the laboratory222

data, we will analyze the problems found and propose some solutions.223

4.1. Synthetic Sandbox Test224

In this case, we design two scenarios (S1, S2) with different number of observation wells225

to evaluate the performance of the r-EnKF: scenario S1 with 20 observation wells, and226

scenario S2 with 24 observation wells containing 4 additional wells (#21, #22, #23, #24)227

located at the four corners of the suspect release area (see Fig. 1). The rationale for the228

second scenario is that, after analyzing the first scenario, we felt that additional229

information about the plume evolution was needed, and thus we decided to230

add four wells around the suspect release zone. Such an addition will, indeed,231

improve the characterization. In both scenarios, model error is neglected and we assume232

that observation errors are uncorrelated with mean zero, and standard deviation of 0.1 mg/l.233

Figure 2 and 3 show the time evolution of the ensemble mean and the ensemble variance,234

respectively, of the updated state parameters for the two scenarios. Figure 4 shows the235

evolution in time of the boxplots computed from the 800 ensemble members. After time236

step 60, the convergence rate of the means and variances of the parameters237

are less than 1% and 5%, respectively, all the parameters get close to the final238

estimation and become stable. Notice also the sudden drop of the variance at a239

11



given time step for most of the parameters. This drop is related to the activation240

of new observation wells as time progresses, what implies that the amount of241

information assimilated by the filter does not vary continuously in time, but242

rather it increases stepwise, with steps occurring when new wells observe, for243

the first time, the arrival of the solute plume. We can distinguish between the244

parameters that are perfectly identified by an ensemble mean equal to the true value, and245

practically zero variance, and those that are approximated closely but which are not exact246

and present some residual uncertainty. In the first group, there are the position parameters247

for the plate, Xb and Zb, plus the vertical location of the release source Zs , independently248

of whether 20 or 24 data are used during the assimilation steps; in the second group are249

the remaining parameters, which become more precise (mean closer to the true value) and250

less uncertain (smaller variability) for S2 than for S1. The horizontal source location Xs251

is less sensitive to the concentration data, and only when the four additional data points252

in the corners of the suspect release location are added the algorithm is able to provide a253

good estimate for this parameter; similar comment can be made about the beginning Ts254

and end Te times of the release. The injection concentration Ic and injection rate Ir are255

well identified by their median values, with smallest uncertainty for S2. These results are256

consistent with the sensitivity of concentrations at the observation locations to changes in257

the parameter values: concentration distributions are most sensitive to the position of the258

plate, which affects the flow field, and the vertical release location, which affects the main259

trajectory of the contaminant plume, but are less sensitive to the other parameters, for which260

variations within the identified uncertainty ranges induce concentration changes of the same261

order of magnitude as the observation errors. Also notice that the horizontal coordinate262

of the release and the starting and ending release times are correlated for the purpose of263

identifying their values (a displacement of the horizontal coordinate of the release could264

be compensated with a displacement of its starting time), what also explains their larger265

uncertainties.266
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These results prove that the r-EnKF could work for the identification of a contaminant267

source and of some parameters defining the geometry of the aquifer. The next step is to test268

the algorithm under more realistic conditions using observations obtained from a laboratory269

experiment.270

4.2. Laboratory Sandbox Test271

The sandbox experiment was carried out as described previously. Figure 5 shows a272

picture of the fluorescein plume at the 48th time step (840 s since the beginning of the273

release) already transformed into concentration values and the position of the observation274

points. The deflection of the flowlines induced by the vertical plate is clearly seen. Notice275

that only a few observation piezometers will actually detect the plume breakthrough. Before276

testing the r-EnKF, we performed a simulation of the concentration evolution using the277

known release parameters and compared the predictions with the observed data. Figure278

6 shows a comparison between observed and numerically predicted concentrations at five279

observation locations (wells #7, #9, #10, #13, #22) through which the plume passes. As280

can be seen, the reproduction is very good for the closest well #22, and it deteriorates with281

the distance from the source, but not dramatically, except for well #9. For this well, the282

beginning and ending times of the breakthrough curve are the same for predictions and283

observations, but the mismatch in concentrations indicates either some error in the model284

parameters or faulty observations. The predicted breakthrough curve in the farthest well,285

though, is quite close to the observed one. In the application that follows we will analyze286

different observation error distributions in an attempt to identify the source parameters by287

the r-EnKF.288

We have run the r-EnKF with three different magnitudes of the observation error, which289

will be referred to as R1, R2, and R3. In all three cases, the error mean is zero and its290

standard deviation is 0.5 mg/l for R1, 1.0 mg/l for R2, and 3.0 mg/l for R3. We must291

notice that in previous experiments, Cupola et al. (2015a) report an observation292
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error with a standard deviation around 1 mg/l.293

The hydraulic conductivity value of the beads, which is considered homogeneous in each294

realization, is considered uncertain and drawn from a Gaussian distribution with a mean of295

0.58 cm/s and a standard deviation of 0.05 cm/s. We have decided to introduce some296

uncertainty on the beads hydraulic conductivity as a surrogate to model error.297

The choice of a Gaussian distribution centered at the calibrated conductivity298

value was arbitrary, any other distribution could have been used. Considering299

that the differences in the results between including or not such an uncertainty300

are minimal (and not reported here), we believe that the choice of the specific301

distribution has little effect in the final outcome.302

Fig. 7 shows the boxplots of the updated parameters at different time steps for the three303

scenarios R1, R2, and R3. The results are not as good as for the synthetic case, for which the304

observed concentrations were generated with the same numerical model used for the forecast305

step in the Kalman filter. The first thing to note is that for scenario R1, the use of a small306

observation error makes the r-EnKF to seek for source parameter values that can be far307

from the true ones in order to produce concentrations that are close to the observed values,308

and, particularly, the injection concentration and injection rate do not seem to converge to309

a stable value after 90 time steps. The other parameters do reach a stable median, not as310

close to the true values as for the synthetic case but close enough except for the horizontal311

position of the vertical plate.312

When the observation error is increased (scenario R2), the two main findings are that the313

two injection parameters now seem to reach a stable estimate (albeit with large uncertainty)314

with a median close to the true value, and that all parameters have a wider uncertainty range.315

The median estimate of the initial and ending release times is also closer to the true ones316

than in R1. The horizontal position of the vertical plate continues to be underestimated, as317

well as the length of the plate.318

When the observation error is increased even more (scenario R3) the main effect is that319
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the final estimates have wide uncertainty estimates, and for some of the parameters it seems320

as if the concentration observations do not bring any added value since the boxplot width321

remains unaltered through the assimilation steps. The estimates of the parameters by their322

median is comparable to the results in R2, but their uncertainty is larger.323

The predicted concentrations at three observation wells that were not used during the324

assimilation step computed using the initial 8-tuples of parameters, and using the 8-tuples325

obtained at the end of the three scenarios are shown in Figure 8. The figure shows the326

true concentrations in the sandbox as a dotted blue line, each one of the 800 predicted327

concentration breakthrough curves computed with the 8-tuples of the ensemble, along with328

their median, as a red line, and their 90% confidence interval, as dashed lines. It can be329

observed that, prior to assimilation (top row), concentration predictions were very scattered,330

and that after the assimilation (bottom three rows, one for each scenario) the breakthrough331

curves change substantially (compare, for instance, the median curves). For scenario R1, the332

scatter of prediction curves is the smallest but recall that these wells were not used during333

the assimilation, the updated parameters were biased because the algorithm tried to fit the334

observed concentrations too closely and as a result, at the control wells, the prediction of335

the true curves by the ensemble median is also biased, up to the point that the true curves336

are outside the 90% confidence interval. For scenarios R2 and R3 the median curves for the337

three wells have a smaller bias than for R1, and the main difference between R2 and R3 is338

the same as for parameter prediction, the uncertainty is the widest for R3. The true curve339

is in both cases within the 90% confidence interval of the predictions.340

At this point, it seems that an observation error with a standard deviation of 1 mg/l341

was the most consistent with our observations and model. As mentioned above, this342

conclusion fits the findings by (Cupola et al., 2015b). Yet, we were concerned with343

the big discrepancy between predictions and observations at well #9, so we decided to rerun344

scenario R2 without using the data from this well. The results for this scenario, called R2b,345

are shown in Figure 9. When comparing this figure to the middle two rows in Figure 7 we346
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can notice that there is some overall improvement in the estimation of the true parameters347

—particularly for the position parameters— by the median values of the ensemble without348

a significant change on their uncertainty. This improvement reinforces our suspicion that349

there could have been some problems in the data collection at well #9.350

We also considered that there could be a problem with the tightness of the vertical plate351

after its insertion in the sandbox. The plate was supposed to represent a perfectly352

impermeable barrier, and no evidence of the contrary was observed during the353

experiments, yet the contact between the plate and sandbox walls could have354

had some small gaps, making the plate slightly permeable. Therefore, we decided355

to rerun scenario R2 but assuming that the plate is slightly permeable, more precisely, with356

a conductivity of two orders of magnitude smaller than the beads, this value was chosen357

arbitrarily low since nothing was actually observed in the laboratory. The results358

for the new scenario, referred to as R2c are shown in Figure 10. (Note that well #9 was kept359

in this scenario.) The main difference of this run is that the estimate of the size of the vertical360

plate by the median of the ensemble jumps from 40.5 cm to 44.2 cm (true value is 42.0 cm)361

indicating that possibly the plate conductivity used in this scenario was too large and, as362

a consequence, the algorithm enlarges the plate to reproduce the observed concentrations.363

This result, while does not serve to justify that the tightness of the plate explains364

the numerical model misfit, shows the impact that such permeability would have365

in the estimation of the remaining parameters defining the plate.366

We can conclude that the r-EnKF can be applied to a more realistic case of a homogeneous367

aquifer in a sandbox for the identification of a contaminant source and some geometry368

parameters. A proper evaluation of the observation errors is paramount, since attempting369

to match too closely the data may result in biased estimates of the parameters.370
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5. Summary and Conclusion371

The main purpose of this paper was to test whether the restart ensemble Kalman filter,372

which had been successfully applied in synthetic experiments, could be applied to a more373

realistic case based on a sandbox experiment. The test focuses on the identification of the374

parameters defining a finite-pulse point injection of a solute, together with the position of a375

vertical plate that modifies the initial rectangular geometry of the sandbox.376

As a preliminary step, we tested the r-EnKF in a synthetic case mimicking the sandbox.377

Under these very controlled conditions, the algorithm performs well, as expected. The main378

difference with previous synthetic analyses is that no piezometric head data were used during379

the assimilation step of the filter.380

Then, the r-EnKF is tested using the data coming from the laboratory experiment. In this381

case, the observations were not generated by a computer code nor we knew the observation382

error magnitude. The analysis of the results show that using a too small observation error383

variance results in more or less precise but biased estimates, both for the parameters subject384

to identification and for the concentrations at control locations. When a larger observation385

error (with a standard deviation of 1 mg/l) is introduced, estimates and predictions improve,386

although with larger uncertainty. And finally, when the observation error is large, the results387

worsen considerably. The removal of a suspicious observation well, the concentration of which388

is always underestimated by our forecast model, improves the results, indicating that the389

measurements from such well may need to be reconsidered. The changes observed after390

making the vertical plate slightly permeable do not appear to justify the hypothesis that the391

plate leaks.392

The r-EnKF appears as a good algorithm for source identification in aquifers, yet it still393

needs further tests in closer-to-reality conditions. Currently, the sandbox has been replaced394

with a heterogeneous distribution of glass beads, and the challenge is to test the method in395

this new sandbox.396
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Zhou, H., Gómez-Hernández, J.J., Hendricks Franssen, H.J., Li, L., 2011. An approach to496

handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering.497

Advances in Water Resources 34, 844–864.498
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Table 1: Parameters of the groundwater flow and transport model

Hydr. conduct., K 0.58 cm/s
Porosity, φ 0.37

Long. disp., αL 0.16 cm
Transv. disp., αT 0.048 cm

Table 2: Source and geometry parameters. True values and suspect ranges for the generation of the initial
ensemble of realizations

Parameter Actual Value Suspect Range

Xs (cm) - x-coordinate of source 18.5 16− 25
Zs (cm) - z-coordinate of source 30.5 23− 32
Xb (cm) - x-coordinate of plate 52.5 50− 59

Zb (cm) - plate length 42.5 35− 43
Ir (cm3/s) - injection rate 0.95 0.6− 1.1
Ic (mg/l) - injection load 20 5− 24

Ts (s) - starting release time 120 80− 260
Te (s) - ending release time 1000 960− 1140

P3

P2

P1

#6 #7 #8 #9

#5#4#3#2#1

#16 #17 #18 #19 #20

#15#14#13#12#11

#21 #22

#10

#24#23

observation zone Injector Suspect zone observation well calibration wells

6 6 52 44 6 6

42

28

Hu Hd

Upstream

spillway

Downstream 

spillway

Water table

Barrier

(0,0) (96,0)

(0,70) (96,70)

Figure 1: Sketch of the experimental device with indication of the upstream (Hu) and downstream (Hd)
constant head boundaries. The ticked rectangle corresponds to the area captured by the camera in which
concentrations will be monitored. Red dot is the release location. Dashed line around red dot indicates the
release suspect location. Dimensions are in cm. Coordinates of the four corners of the flow and transport
models are also shown.
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Figure 2: Time evolution of the ensemble mean of the 8 updated parameters, contaminant source location
(Xs, Zs), plate position (Xb, Zb), injection information (Ic, Ir) and release time interval (Ts , Te) for
scenarios S1 and S2
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Figure 3: Time evolution of the ensemble variance for the same parameters and scenarios as in the previous
figure.
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Figure 4: Boxplot of the 8 updated parameters at different time steps (1, 15, 30, 45, 60, 75, 90) for scenarios
S1 and S2
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Figure 5: Fluorescein concentration field in the sandbox at the 48th time step. The area shown corresponds
to the observation zone indicated in Fig. 1. The dash line shows the suspect zone for the injection and the
white dots indicate the observation wells.
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Figure 6: Fluorescein observed breakthrough curves at the observation wells located inside the plume and
the curves computed from the numerical model
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Figure 7: Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45, 60, 75 and 90 for scenarios R1,
R2 and R3
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Figure 8: Breakthrough curves at control wells. The blue dots correspond to the curves in the sandbox
experiment. The thin gray lines are the curves for all 800 realizations; they are summarized by their median
(red diamond lines) and their 5 and 95 percentiles (black dash lines).
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Figure 9: Boxplot of the 8 updated parameters in scenario R2b at different time steps (1, 15, 30, 45, 60, 75,
90)
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Figure 10: Boxplot of the 8 updated parameters in scenario R2c at different time steps (1, 15, 30, 45, 60,
75, 90)
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