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Abstract

The neutron transport equation describes the distribution of neutrons inside a nuclear reactor
core. Homogenization strategies have been used for decades to reduce the spatial and angular
domain complexity of a nuclear reactor by replacing previously calculated heterogeneous sub-
domains by homogeneous ones and using a low order transport approximation to solve the new
problem. The generalized equivalence theory for homogenization looks for discontinuous so-
lutions through the introduction of discontinuity factors at the boundaries of the homogenized
subdomains. In this work, the generalized equivalence theory is extended to the Simplified PN

equations using the finite element method. This extension proposes pin discontinuity factors
instead of the usual assembly discontinuity factors and the use of the simplified spherical har-
monics approximation rather than diffusion theory. An interior penalty finite element method is
used to discretize and solve the problem using discontinuity factors. One dimensional numerical
results show that the proposed pin discontinuity factors produce more accurate results than the
usual assembly discontinuity factors. The proposed pin discontinuity factors produce precise
results for both pin and assembly averaged values without using advanced reconstruction meth-
ods. Also, the homogenization methodology is verified against the calculation performed with
reference discontinuity factors.
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1. Introduction

The neutron transport equation describes the distribution of neutrons inside a nuclear reactor
core and its dynamics. Many different methods have been used to approximate this equation, and
the integro-differential formulation is studied here [1]. In particular, the steady-state distribution
satisfies an integro-differential eigenvalue problem, and its solution is fundamental because it is
used as initial condition for the time dependent simulations. The steady-state problem is also
important because it gives a measure of the criticality of the reactor.

Many different schemes have been employed to discretize the neutron transport equation
with respect to the angular variable [1], as the Discrete Ordinates method (SN) or the Spherical
Harmonics (PN); and with respect to the spatial variable, such as the Finite Differences (FD), the
Finite Element Method (FEM) [2], the Finite Volume Method (FVM) and different derivations
of nodal methods. These methods perform differently depending on the problem, but, in general,
they all require similar computational resources to achieve similar accuracy. Thus, the problem
remains computationally challenging because of the complexity of the spatial domain and the
fine angular discretization required to accurately solve it. To reduce computational cost, this
problem is usually solved with a scheme consisting of two stages of calculation for different
scales through a homogenization process [3].

Spatial homogenization consists in replacing heterogeneous subdomains by homogeneous
ones, in such a way that the homogenized problem provides fast and accurate average results.
Because the homogenized function to be calculated is smoother than the heterogeneous one,
the original exact transport operator can be replaced with a low-order transport operator that
eliminates some of the complexity of the original problem. In this way, the global solution can be
reconstructed approximately using the previously computed isolated heterogeneous subdomain
solutions multiplied by the average values of the subdomain obtained from the homogenized
problem over the whole domain.

A first step in a homogenization methodology is to choose heterogeneous reactor properties
that should be reproduced when the homogenized problem is solved. Usually, these quantities
are the subdomain averaged reaction rates, the surface-averaged net currents and the multiplica-
tive constant of the reactor, which is implicitly conserved if the two aforementioned quantities
are preserved. In the generalized equivalence theory [4], which is an extension of Koebke’s
homogenization method [5], flux discontinuity factors are introduced, relaxing the condition of
continuity of the neutron flux on the interior faces of the homogenized regions. Different homog-
enization strategies and definitions of discontinuity factors exist, such as the flux discontinuity
ratios [6], the current discontinuity factors [3] or the consistent discontinuity factors with the
reconstruction method [7], among others. Also, different mathematical justifications of the ho-
mogenization process in periodic lattices have been developed [8, 9].

For nuclear systems, spatial homogenization makes use of the periodicity of the geometry of
a nuclear core. A nuclear core consists of around 150-700 fuel assemblies measuring from 10
cm to 30 cm in radial size and slightly less than 4 m axially. Also, each of the fuel assemblies is
constituted by typically hundreds of solid fuel pins containing fissile nuclei surrounded by a thin
layer of water. Even though each assembly and pin contain different nuclear enrichments, they
have the same geometry and similar neutron flux behaviour [10].

For a long time, the preferred low order operator used for whole core calculations has been
the neutron diffusion equation and the homogenized regions have been subdomains of the size
of a fuel assembly. Because the computational resources available have increased, the homog-
enized regions have decreased to the size of a single pin and the low order operator relying on
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diffusion theory is being abandoned so that transport effects that occur at these smaller scales
can be taken into account. One could for instance use the Simplified PN (SPN) formulation [11].
Homogenization errors for pin computations are the main concern in these approximations, and
they have been recently studied for different problems [12, 13]. The main issue has been the
definition of the discontinuity factors for the SPN approximation in two- or three-dimensional
problems [14, 15, 16, 17]. On the other hand, the SPN approximation has been implemented
using the finite element method (FEM) for the spatial discretization [18, 19, 20].

In this work, we focus on the implementation of the classical discontinuity factors for the
correction of the homogenization error in a FEM when using SPN as low order operator for pin-
wise homogenization in one-dimensional problems, where the ambiguity in the definition of the
flux discontinuity factors does not exist. It must be noted that one dimensional SPN approxima-
tion is equivalent to the complete PN approximation. We quantify the error of the proposed pin
discontinuity factors and compare it to the usual assembly-wise homogenization.

The rest of the paper is structured as follows. In Section 2, we introduce the transport equa-
tion and the angular approximations that are relevant for this work, together with the spatial
discretization with the Interior Penalty Finite Element Method (IP-FEM). The homogenization
technique is briefly presented in Section 3 together with the discontinuity factors definition and
the way they are introduced in the Interior Penalty Finite Element Method. In Section 4, we test
the performance of the SPN neutron transport approximation using one-dimensional problems
against the SPN solution with IP-FEM without discontinuity factors, and against the classical
diffusion theory with discontinuity factors in order to show the importance of using discontinuity
factors for the homogenized equation. We finish with a brief summary and some conclusions
regarding the present study in Section 5.

2. The one-dimensional Simplified PN equations and their discretization

We consider the eigenvalue problem associated with the steady-state, multi-group, linear
Boltzmann transport equation [21], in slab geometry,

(
µ

d
dx

+ Σ
g
t (x)

)
ψg(x, µ) =

G∑
g′=1

1∫
−1

Σ
gg′
s (x, µ0)ψg′ (x, µ′)dµ′ +

1
λ

G∑
g′=1

χg(x)
2

νΣ
g′

f (x)

1∫
−1

ψg′ (x, µ′)dµ′,

g = 1, . . . , G, x ∈ [0, Lt] (1)

with vacuum boundary conditions at the extremes of the domain, x = 0 and x = Lt

ψg(0, µin) = 0, ψg(Lt, µin) = 0. (2)

G is the number of groups of energy considered, θ is the angle between the direction of the
incident neutron velocity and the x axis, µ = cos(θ), θ0 is the angle between the incident neutrons
and the scattered neutrons, µ0 = cos(θ0). µin is the set of directions cosines that are incident at
a given boundary, in other words, at x = 0, 0 < µ ≤ 1 and at x = Lt, −1 ≤ µ < 0. Other
quantities of interest are given in Table 1. The solutions of this eigenvalue problem are known
as the Lambda Modes of the transport equation [22]. The dominant eigenvalue, λ= keff, is the
multiplicative factor of the system and measures its criticality and the corresponding eigenvector
is the stationary angular flux distribution inside the domain.
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Table 1: Definition of the different quantities involved in Boltzmann’s neutron transport equation.

ψg(x, µ) Angular flux for group g and eigenvector of the problem.
λ Eigenvalue value of the problem.
Σ

g
t (x) Total cross section for group energy g.

Σ
gg′
s (x, µ0) Scattering cross section through angle µ0 = cos(θ0) from group g′ to g.

νΣ
g′

f (x)
Fission cross section for energy group g′ multiplied
by the average number of neutrons per fission.

χg(x) Energy fission spectrum for group energy g.

Different angular discretizations are commonly used to solve this problem, as the discrete or-
dinates or the spherical harmonics expansion of the angular variable. In one-dimensional geome-
tries, both discretizations provide equivalent solutions with an appropriate choice of the quadra-
ture set that defines the discrete ordinates method, [23], and have simplified second order forms,
where odd moments are formally solved and substituted back into the equations, providing a
simplified formulation where the number of unknown fields is reduced.

The SPN approximation, which is the subject of study of this work, generally does not con-
verge to the true transport solution when N → ∞, except in one-dimensional problems where it
is equivalent to the complete PN approximations. Nevertheless, it is used as a low order approx-
imation of the neutron transport equation for coarse meshes. After a homogenization process of
the domain in coarser structures, transport effects are less important and this approximation is
enough to capture the coarse scale behaviour of the transport equation. In this work, the spherical
harmonics order is increased as far as 5. Higher orders do not produce better results for homog-
enized full-core problems as the homogenization error is greater than the angular discretization
error [24]. This work only deals with odd order SPN approximations because they have found
broader acceptance.

2.1. Simplified PN Angular Discretization

The PN approximation to the neutron transport equation (1) assumes that the angular de-
pendence of both the angular neutron flux distribution and the scattering cross-section can be
expanded in terms of N + 1 Legendre polynomials, Pn(µ), where N is odd in this work, as

ψg(x, µ) =

N∑
n=0

2n + 1
2

φ
g
n (x) Pn (µ) , (3)

Σ
gg′
s (x, µ0) =

L∑
n=0

2n + 1
2

Σ
gg′
sn (x) Pn (µ0) . (4)

where φg
n are the angular moments of the neutron flux, and Σ

gg′
sn are the scattering cross sections

moments up to order L ≤ N. Using expansions (3) and (4) into equation (1) and employing
the orthogonality relations for these polynomials, the following PN approximation equations are
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obtained [25],

dφg
1

dx
+

G∑
g′=1

(
Σ

g
t − Σ

gg′

s0

)
φ

g′

0 =
1
λ

G∑
g′=1

χgνΣ
g′

f φ
g′

0 , (5)

d
dx

(
n

2n + 1
φ

g
n−1 +

n + 1
2n + 1

φ
g
n+1

)
+

G∑
g′=1

(δgg′Σ
g
t − Σ

gg′
sn )φg′

n = 0, for n = 1, .... , N. (6)

where we consider the expansion order for the angular flux, N, to be larger than the order of
anisotropic scattering, L. In this formulation, we consider the components of the scattering equal
to zero for moments higher than L, but we keep them in the formulation for simplicity. The PN

equations (5) and (6) constitute a set of N + 1 equations with N + 2 unknowns. This problem
is usually solved setting the derivative of the highest order moment to zero d

dxφN+1 = 0. This
closure is the most common and straightforward but can be problematic for some time dependent
applications, so other closures have also been developed [26].

Equations (5) and (6) are more easily expressed in matrix notations as,

d Φ1

dx
+ Σ0Φ0 =

1
λ

FΦ0 , (7)

d
dx

(
n

2n + 1
Φn−1 +

n + 1
2n + 1

Φn+1

)
+ ΣnΦn = 0 , for n = 1, .... , N. (8)

where,

Σn =


Σ0

t − Σ00
sn −Σ01

sn . . . −Σ0G
sn

−Σ10
sn Σ1

t − Σ11
sn . . . −Σ1G

sn
...

...
. . .

...

−ΣG0
sn −ΣG1

sn . . . ΣG
t − ΣGG

sn


, F =


χ0νΣ0

f χ0νΣ1
f . . . χ0νΣG

f

χ1νΣ0
f χ1νΣ1

f . . . χ1νΣG
f

...
...

. . .
...

χGνΣ0
f χGνΣ1

f . . . χGνΣG
f


,

Φn =
(
φ1

n, φ
2
n, . . . , φ

G
n ,

)T
.

It must be noted that in many nuclear applications, as in usual static reactor calculations,
the scattering cross section, Σs, is considered isotropic and a transport correction is typically
introduced [27]. Thus, considering isotropic scattering, i.e. L = 0 in equation (4), the matrix Σn
is diagonal for n > 0. Substituting the equations related to the odd moments of the flux, equation
(8) yields

−
d
dx

(
nΣn−1

−1

(2n + 1)(2n − 1)
d
dx

((n − 1)Φn−2 + nΦn) +
(n + 1)Σn+1

−1

(2n + 1)(2n + 3)
d
dx

((n + 1)Φn + (n + 2)Φn+2)
)

+ ΣnΦn =
1
λ

FΦnδn0, for n = 2, 4, . . . , N. (9)

Equation (9) defines an eigenvalue problem associated with a linear system of (N + 1)/2 elliptic,
second-order equations. This eigenvalue problem can be converted into a problem composed of
a set of diffusion-like equations if the following linear change of variables is preformed,

Un = (n + 1) Φn + (n + 2) Φn+2, n = 0, 2, . . . , N − 1, (10)

U = (U0, U2, . . . , UN−1)T , (11)
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and each element of U contains the group dependent diffusive moments

Un = (u1
n, u2

n, . . . , uG
n )T . (12)

For example, the set of P5 equations are

−
d
dx

(
1
3
Σ1
−1 d

dx
(Φ0 + 2Φ2)

)
+ Σ0Φ0 =

1
λ

FΦ0 ,

−
d
dx

(
2
15
Σ1
−1 d

dx
(Φ0 + 2Φ2) +

3
35
Σ3
−1 d

dx
(3Φ2 + 4Φ4)

)
+ Σ2Φ2 = 0 ,

−
d
dx

(
4

63
Σ3
−1 d

dx
(3Φ2 + 4Φ4) +

5
99
Σ5
−1 d

dx
(5Φ4 + 6Φ6)

)
+ Σ4Φ4 = 0 , (13)

Using the change of variables,

U0 = Φ0 + 2Φ2 , U2 = 3Φ2 + 4Φ4 , U4 = 5Φ4 + 6Φ6 , (14)

the system (13) is rewritten as the eigenvalue problem,

−
d
dx

(
D

d
dx

U
)

+ AU =
1
λ

MU , (15)

where the effective diffusion matrix, D, the absorption matrix, A, and the fission matrix, M, are
defined as,

D =


1
3Σ1

−1 0 0
0 1

5Σ3
−1 0

0 0 1
7Σ5

−1

 , Ai j =

3∑
n=1

c(n)
i j Σn , Mi j = c(1)

i j F , (16)

and the coefficients matrix, c(m),

c(1) =


1 − 2

3
8

15

− 2
3

4
9 − 16

45

− 8
15 − 16

45
64
225

 , c(2) =


0 0 0

0 5
9 − 4

9

0 − 4
9

16
45

 , c(3) =


0 0 0

0 0 0

0 0 9
25

 . (17)

For details about the derivation of the boundary conditions, the reader is referred to Appendix
A.

For multidimensional problems, the SPN approximation is obtained substituting the x deriva-
tive gradient operator by the corresponding two- or three-dimensional gradient operator in equa-
tion (7) and equation (8). These equations are much simpler than the multidimensional PN equa-
tions and can be easily implemented using numerical methods suited for diffusion-like equations.

2.2. Spatial discretization using the Interior Penalty-Finite element method

For the spatial discretization of the diffusive eigenvalue problem corresponding to equa-
tion (15), a Discontinuous Galerkin finite element method is used extending the method pre-
sented in [28] for the SPN equations. If discontinuity factors are not taken into account, the
interior penalty finite element element method can be formulated as follows. First, we choose a
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partition of the one-dimensional domain, Ih, resulting in a splitting of the original domain defin-
ing the reactor, Ω, into subdomains, Ik = [ek−1, ek], k = 1 . . . ,Nk, defining the mesh. Second, we
define Eh := E0

h∪E
∂
h, as the set of all points that define the partition into subintervals, including the

boundaries of the domain E∂h := {e0, eNk }, and the interior interfaces E0
h := {ek, k = 1, . . . ,Nk−1}.

Now, problem (15) together with the continuity conditions for the moments and its derivatives,
considering zero Dirichlet boundary conditions for clarity (for different boundary conditions, as
the ones shown in Appendix A, see [28]), can be rewritten in a generic form, as

−
d
dx
· Dn

d
dx

un + Σ un = qn in each Ik ∈ Ih , (18)

~un(e)� = 0 on each e ∈ Eh , (19)�
Dn

d
dx

un(e)
�

= 0 on each e ∈ E0
h . (20)

where the jumps ~·� are defined by

~un� = n−u−n + n+u+
n = u−n − u+

n , on e ∈ E0
h,

~un� =

n+u+
n (e0) = −u+

n (e0)
n−u−n (eNk ) = +u−n (eNk )

, on e ∈ E∂h, (21)

where u±n are the lateral limits of un in a particular node, and n± are the normal vectors outward
to the adjacent cells − and + at the shared node e, so n− = +1 and n+ = −1 in one-dimension.
The indices for energy group g are avoided for simplicity of the notation, considering all the
contributions coming from different energy and moments inside the source term qn, together
with the neutrons produced due to the fission terms. Standard Interior Penalty Finite Element
Methods (IP-FEM) exist for the previous problem as follows [29]:

Find un ∈ H1(Ih) such that(
Dn

d
dx

un,
d
dx

v
)
Ih

+ (Σun, v)Ih −

({
Dn

d
dx

un

}
, ~v�

)
Eh

+ (s1 ~un� , ~v�)Eh
= (qn, v)Ih , ∀v ∈ H1(Ih) ,

(22)

where H1(Ih) :=
{
v ∈ L2(Ω) : v|Ik ∈ H1(Ik) ∀Ik ∈ Ih

}
, s1 is a penalty parameter large enough

to stabilize the problem, the averages {·} are defined by

{u} =
1
2

(u− + u+), on e ∈ E0
h, {u} = u, on e ∈ E∂h. (23)

Alternatively, using the edge operators over interior points, the problem can be rewritten as:
Find un ∈ H1(Ih) such that(

Dn
d
dx

un,
d
dx

v
)
Ih

+ (Σun, v)Ih −

({
Dn

d
dx

un

}
, ~v�

)
E0

h

+ (s1 ~un� , ~v�)E0
h

+ Dn(e0)
d
dx

un(e0)v(e0) − Dn(eNk )
d
dx

un(eNk )v(eNk ) = (qn, v)Ih , ∀v ∈ H1(Ih) ,

where we have used the boundary conditions u(e0) = 0 and u(eNk ) = 0. We notice that this
formulation of the problem is the same as the one obtained in [28] for the neutron diffusion
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equation with zero flux boundary conditions. The notation for the d- and (d − 1)-measures of the
functions, that for our one-dimensional problem corresponds to integrals over the elements in Ih

and the evaluation at the elements in Eh, stands as follows

( f , g)Ih
=

∑
Ik∈Ih

( f , g)Ik
=

∑
Ik∈Ih

∫
Ik

f (x)g(x) dx , ( f , g)Eh
= ( f , g)E0

h
+ ( f , g)E∂h

( f , g)E0
h

=
∑
e∈E0

h

( f , g)e =
∑
e∈E0

h

f (e)g(e) , ( f , g)E∂h =
∑
e∈E∂h

( f , g)e = f (e0)g(e0) + f (eNk )g(eNk ) .

This formulation is also called Incomplete Interior Penalty Galerkin method (IIPG). A more
detailed description of the different operators for higher dimensions can be found in [29]. Differ-
ent formulations have also been proposed in [30] and [31], where the scheme is consistent with a
transport formulation within the strategy of synthetic diffusion acceleration. The homogenization
process and the inclusion of the discontinuity factors in the finite element method formulation is
discussed in the next section.

3. Homogenization strategy

Numerically solving the neutron transport equation is challenging due to the heterogeneity
of the domain at different scales, together with the complexity of the cross sections at fine scales
and their energy dependence. A common strategy to circumvent these problems consists in us-
ing a two-stage calculation procedure, where the transport equation is solved accurately in single
domains with proper assumptions regarding the boundary conditions, and these solutions are
connected with each other through a full domain calculation with a homogenized equation. This
approach is justified because of two main reasons: first, the solution domain shows a pattern with
similar substructures repeated periodically and a subdomain with appropriate boundary condi-
tions can be calculated in a stand-alone manner providing a good representation of the behaviour
at fine scales. Secondly, homogenizing these substructures reduces the angular dependence of
the solution at the coarser scale, where the problem now is well represented by a diffusion-like
operator.

For this approach to be valid, we require the domain to be truly periodic, what is not the
case for most of the problems. Nevertheless, almost periodic domains still provide accurate
homogenization parameters. However there are situation where this assumption is far from be-
ing satisfied. In this scenario, the homogenization process is corrected with extra parameters
that mitigate the effect of the heterogeneity and reduce the error due to wrong homogenization
parameters [4, 3].

3.1. Homogenization of cross sections

In order to simplify the notation here, the transport equation to be homogenized is considered
in its mono-energetic formulation. Equation (1), using expansions (3) and (4), the orthogonal-
ity relations of the Legendre polynomials and the addition theorem of the associated Legendre
functions, can be rewritten as [10](

µ
d
dx

+ Σt(x)
)
ψ(x, µ) =

L∑
l=0

2l + 1
2

Pl(µ)Σsl(x)φl(x) +
1
λ
χ(x)νΣ f (x)φ0(x) , (24)
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and the SPN approximation (6) is rewritten as

d
dx

(
n

2n + 1
φn−1 +

n + 1
2n + 1

φn+1

)
+ (Σt(x) − δn≤LΣsn(x)) φn =

δn,0

λ
χ(x)νΣ f (x)φ0, n = 0, . . . , N ,

(25)

where the lower and upper limits for the recurrence are φ−1 = φN+1 = 0. We consider the
equations for the even and odd moments separately. Our target is to find a homogenized equation
for even indices moments as follows

d
dx

(
n

2n + 1
φh

n−1 +
n + 1

2n + 1
φh

n+1

)
+

(
Σh

t − δn≤LΣh
sn

)
φh

n =
δn,0

λh χ
hνΣh

fφ
h
0, n = 0, 2, . . . , N − 1,

(26)

which preserves local quantities over the smaller subdomains Ik, such as the average of the flux
moments

φ̄k,n :=
∫

Ik

φn dx =

∫
Ik

φh
n dx, n = 0, 2, . . . , N − 1, (27)

which implies ∫
Ik

un dx =

∫
Ik

uh
n dx , n = 0, 2, . . . , N − 1, (28)

and preserves the eigenvalue λh = λ of the original problem, using piecewise constant cross
sections in the subdomains. Moreover, we introduce the concepts of High Order (HO) and Low
Order (LO) operators, meaning that different approximations can be used to solve the equations
at different scales, where an HO operator is more accurate using more functions to represent
space, angle and energy, but more expensive in computational terms. A LO operator has lower
accuracy in space, angle and energy, but is computationally less expensive. Thus, when we talk
about a solution of the original problem, this should be obtained with a HO solver, while the
solution of the homogenized problem is obtained by a LO solver. Later on we will see that the
homogenization parameters are tailored for the LO solver that is used to solve the homogenized
equation.

A common strategy to obtain the homogenized parameters consists of integrating the original
and the homogenized equations over each spatial subdomain, to obtain∫

Ik

d
dx

(
n

2n + 1
φn−1 +

n + 1
2n + 1

φn+1

)
dx +

∫
Ik

(Σt(x) − δn≤LΣsn(x)) φn(x) dxdµ dx

=
δ0,n

λ

∫
Ik

χ(x)νΣ f (x)φ0(x) dx , (29)∫
Ik

d
dx

(
n

2n + 1
φh

n−1 +
n + 1

2n + 1
φh

n+1

)
dx +

(
Σh

t − δn≤LΣh
sn

) ∫
Ik

φh
n(x) dxdµ dx

=
δ0,n

λh χ
hνΣh

f

∫
Ik

φh
0(x) dx . (30)
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Now we force equations (29) and (30) to be equal term by term, as follows∫
Ik

d
dx

(
n

2n + 1
φn−1 +

n + 1
2n + 1

φn+1

)
dx =

∫
Ik

d
dx

(
n

2n + 1
φh

n−1 +
n + 1
2n + 1

φh
n+1

)
dx , (31)∫

Ik

(Σt(x) − δn≤LΣsn(x)) φn(x) dx =
(
Σh

t − δn≤LΣh
sn

) ∫
Ik

φh
n(x) dx , (32)

δ0,n

λ

∫
Ik

χ(x)
2
νΣ f (x)φ0(x) dx =

δ0,n

λh χ
hνΣh

f

∫
Ik

φh
0(x) dx , (33)

in order to ensure that the solution of the homogenized equation reproduces the averages quanti-
ties of the heterogeneous solution in terms of reaction rates. We can see that using equation (27)
to preserve average flux moments, and imposing λ = λh, we obtain from equation (33) that the
homogenized fission cross section is defined by

χhνΣh
f =

∫
Ik
χ(x)νΣ f (x)φ0(x) dx∫

Ik
φh

0(x) dx
=

∫
Ik
χ(x)νΣ f (x)φ0(x) dx

φ̄k,0(x)
, (34)

and because the homogenized solution does not appear in this expression, we say that the ho-
mogenized fission cross section is independent of the LO solver. We apply the same procedure
to the scattering term in equation (32) to obtain

(
Σh

t − δn≤LΣh
sn

)
=

∫
Ik

(Σt(x) − δn≤LΣsn(x)) φn(x) dx∫
Ik
φh

n(x) dx
=

∫
Ik

(Σt(x) − δn≤LΣsn(x)) φn(x) dx

φ̄k,n(x)
. (35)

But this definition of the homogenized cross section could produce non physical values, due to
the fact that the denominator in the equation is not necessarily positive for all moments, φ̄n(x).
This problem is exposed in [3], where the proposed solution consists in using the zero moment
homogenized flux for the denominator, obtaining

(
Σh

t − δn≤LΣh
sm

)
=

∫
Ik

(Σt(x) − δn≤LΣsn(x)) φn(x) dx

φ̄k,0(x)
. (36)

Moreover, this approximation is exact for isotropic scattering problems because only zero order
is considered for the homogenized cross section, and the error due to the change in the formula
is preferred to the non-physical values obtained with negative or almost zero flux moments. We
notice that the homogenized scattering cross section is also independent of the LO solver.

Last, we must deal with equation (31) involving the streaming terms in order to obtain a
completely equivalent homogenized formulation. We integrate by parts equation (31) to obtain[

n
2n + 1

φn−1 +
n + 1

2n + 1
φn+1

]
Ik

=

[
n

2n + 1
φh

n−1 +
n + 1
2n + 1

φh
n+1

]
Ik

, n = 0, 2, . . . , N − 1, (37)

where [ f (x)]Ik = f (xk) − f (xk−1). Because it must happen for all odd indices, and we use the
closures φ−1 = φN+1 = 0, this is equivalent to ask for[

φn
]

Ik
= [φh

n]Ik , n = 1, 3, . . . , N, (38)
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In order to continue, we want to express the odd moments in terms of the even ones. In order
to do this, we go back to equation (25) and consider the odd fluxes. For odd indices the source
term is zero because of the isotropic representation of the fission term (only exists for the zero
moment), so the odd fluxes satisfy the following equations

φn = −
1

(Σt(x) − δn≤LΣsn)
d
dx

(
n

2n + 1
φn−1 +

n + 1
2n + 1

φn+1

)
, n = 1, 3, . . . , N, (39)

that can be rewritten, using the definition of the diffusion-like coefficient and the change of
variables (10), as follows

φn+1 = −Dn
d
dx

un, Dn =
1

(2n + 3) (Σt − δn≤LΣsn)
, n = 0, 2, . . . , N − 1. (40)

Equation (38) will be satisfied if the heterogeneous and the homogeneous odd fluxes are equal
pointwise at the interfaces, or average-wise for dimensions higher that 1. In terms of the even
fluxes it reads as

− Dn
d
dx

un = −Dh
n

d
dx

uh
n, n = 0, 2, . . . , N − 1.

For clarification, we notice that in the special case of N = 1, the original equation is the neutron
diffusion equation, and the previous expression takes the form of preserving the neutron current,
J, at the interfaces by

J := −D0
d
dx
φ0 = −Dh

0
d
dx
φh

0 := Jh.

The main problem is that this condition must be satisfied on the two boundaries of each of the
K subdomains for one-dimension, for each of the N/2 even fluxes for each energy group, i.e.
K ×N ×G restrictions, but there is only one degree of freedom per subdomain, per even moment
and per energy group, i.e. K×N/2×G degrees of freedom, that can be tuned to force this situation,
i.e., the coefficients Dh

n−1. Thus, we have more restrictions than degrees of freedoms and this
can not be satisfied. Instead, we are going to use some extra parameters, called discontinuity
factors, that add some extra degrees of freedom in order to recover some physical properties of
the solution and minimize the homogenization error.

3.2. Discontinuity factors for the Simplified PN

In the generalized equivalence theory [4], which is an extension of Koebke’s homogenization
method [5], flux discontinuity factors (DFs) are introduced in the neutron diffusion theory and
they improve the homogenization strategy stated before. In this theory, for a given node e limiting
two adjacent homogenized subdomains, the energy-dependent discontinuity factors are defined
as interface constants f −e , f +

e , such that the scalar flux, φ0, satisfies the following condition

f −e φ
h−
0 (e) = f +

e φ
h+
0 (e) , (41)

where φh−
0 and φh+

0 are the lateral limits of the homogenized scalar flux viewed from the two
different subdomains sharing this node. A possible definition of these discontinuity factors is

f −e =
φ−0 (e)

φh−
0 (e)

, f +
e =

φ+
0 (e)

φh+
0 (e)

, (42)
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so continuity for the heterogeneous reconstructed zero-th order flux is enforced [4].
The angular flux in one-dimensional geometries, ψ(x, µ), can be projected onto the different

diffusive moments of the SPN equations, un. Then, a homogeneous problem must be solved in the
homogenized subdomain using odd reference flux moments as boundary conditions to calculate
the homogeneous even flux moments.

To calculate the discontinuity factors for the SPN equations in the subdomain edge e, equa-
tion (42) can be extended to

f +
n, e =

u+
n (e)

uh+
n (e)

, f −n, e =
u−n (e)
uh−

n (e)
, for n = 0, 2, . . . , N − 1 , (43)

where u−n and u+
n are the left and right extremes of the reference heterogeneous diffusive moments

defined in equation (10), extracted from the transport solution and uh−
n and uh+

n are the left and
right extremes of the homogeneous diffusive moments calculated with the SPN approximation in
the homogenized region. Thus, for a given node e shared by two adjacent homogenized regions,
for the different moments we have the relationship

f −n, e uh−
n (e) = f +

n, e uh+
n (e) , for n = 0, 2, . . . , N − 1 . (44)

It is worth to notice that the values of the homogenized solution appear explicitly in equation (44),
and thus, the values of the discontinuity factors will depend on the homogenized solution, which
depends on the LO solver. Thus, the discontinuity factors depend on the LO solver that is going
to be used when solving the homogenized equation.

At this point we need the value of the heterogeneous and homogeneous flux moments, un(x)
and uh

n(x) respectively, to generate the homogenized cross sections and the discontinuity factors.
Since the full heterogeneous solution is not known, these values must be determined by cal-
culating each heterogeneous subdomain separately with a high order transport operator. These
calculations are performed for a reference problem [3] whose solution is close enough to the
solution that would be obtained if the entire heterogeneous system was calculated.

Usually, the reference problem is an isolated assembly with reflective boundary conditions.
Then, the assembly homogenized cross sections are generated with assembly heterogeneous flux
from the reference problem. The homogeneous flux is the solution of the reference homoge-
neous assembly with reflective boundary conditions and using the assembly homogenized cross
sections. We can calculate Assembly Discontinuity Factors (ADFs) dividing the heterogeneous
flux by the homogeneous flux. A scheme of the problems solved to calculate the ADFs is shown
in Figure 1a. It must be noted that for a homogeneous reflective assembly, as the homogeneous
reference problem, the fluxes are spatially constant and all the spherical harmonics expansion
terms are zero except the first one. In this work, for homogenization at assembly level, the
discontinuity factors for the moments greater than 0 are arbitrarily set to 1.0 .

Another possibility is to use the assembly heterogeneous results to compute pin homogenized
parameters. In this way, we solve a homogeneous pin problem using the cross sections and
current boundary conditions for the isolated heterogeneous assembly problem. Then, the Pin
Discontinuity Factors (PDFs) are calculated by the ratio of the reference pin boundary flux values
and the homogeneous reference problem boundary flux values. This procedure is schematised in
Figure 1b.

Finally, the heterogeneous flux calculated for the whole reactor can be used to generate ref-
erence cross sections and appropriate current boundary conditions. With the global keff and these
cross sections the homogeneous flux can be generated in a particular region considered here as
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an assembly or a pin. Then, Reference Discontinuity Factors (RDFs) are generated using equa-
tion (43). This strategy corresponds to Figure 1c. This technique provides exact homogenized
parameters, but it requires the solution of the whole heterogeneous problem to generate the ho-
mogenized parameters, what makes it of no practical sense. However, it is used here to verify
that the discontinuity factors technique is successfully implemented within the interior penalty
finite element method (IP-FEM).

Heterogeneous

Ref. Problems 

(HO Solvers)

Homogenized

Problem

(LO Solvers)

Homogeneous

Ref. Problems

(LO Solvers)

(a) ADFs (b) PDFs (c) RDFs

Figure 1: Scheme of homogenization strategies. The LO solvers for the Homogeneous Ref. Problems and for the
Homogenized problem must be the same, due to the dependence of the discontinuity factors on the LO solver, at least for
PDFs and RDFs (for ADFs the fluxes are constant and the solver used does not matter).

3.3. IP-FEM with discontinuity factors
In this case, the reference situation is one assembly or a pin with suitable boundary con-

ditions. Thus, the continuity condition for the flux will be forced to be discontinuous as in
equation (44). This type of interface conditions leads to a slightly different problem from the one
stated by equations (18), (19) and (20), i.e., the problem with discontinuity factors is of the form

−
d
dx

Dn
d
dx

un + Σnun = qn in each Ik ∈ Ih, (45)

~un(e)� f = 0 on each e ∈ Eh, (46)�
Dn

d
dx

un(e)
�

= 0 on each e ∈ E0
h. (47)

where the new jumps ~·� f are defined as follows

~un� f = f −n, e n−u−n + f +
n, e n+u+

n = f −n, e u−n − f +
n, e u+

n , on e ∈ E0
h,

~un� f =

 f −n, e0
n+u+

n (e0) = − f −n, e0
u+

n (e0)
f +
n, eNk

n−u−n (eNk ) = + f +
n, eNk

u−n (eNk )
, on e ∈ E∂h, (48)

where f +
n, e is generally different from f −n, e for a particular edge e and even moment n, defining

the jumps imposed to the solution, un. A scheme to approximate the problem defined by equa-
tions (45), (46) and (47), has been implemented in an IP-FEM using a formulation based on
equation (22) as follows(

Dn
d
dx

un,
d
dx

vn

)
Ih

+ (Σnun, vn)Ih −

({
D

d
dx

un

}
, ~vn�

)
Eh

+
(
s1 ~u� f , ~vn�

)
Eh

= (qn, vn)Ih , (49)

following analogous steps to the ones presented in [28] for the neutron diffusion equation.
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4. Numerical Results

To study the performance of the homogenization method exposed above, two different one-
dimensional reactor configurations based on the C5G7 benchmark [32] are defined. The first
configuration is comprised of two assemblies and the second configuration has five assemblies
of 21.42 cm wide with reflective boundary conditions as Figure 2 shows. Each assembly consists
of 17 pins of 1.26 cm wide, each pin is made of a layer of nuclear fuel of 1.08 cm, surrounded
by a thin layer of water of 0.09 cm. The particular composition of each one of the assemblies
can be found in Figure 3 and the pins composition is presented in Figure 4. Seven energy group
cross sections for every material can be found in reference [32].

Homogeneous 2Homogeneous 1

(a) Configuration 1

UO2MOX UO2MOX MOX

(b) Configuration 2

Figure 2: Reactor configurations definition.

1111 1 1 11 11 1 1 1 1 1 1 1

Homogeneous 1

2222 2 2 22 2222 2 2 2 2 2

Homogeneous 2

(a) Assemblies for Configuration 1

11 16 11 11 61 651 16 66

UO2

644 36 65 24 46 44 4 432

MOX

(b) Assemblies for Configuration 2

Figure 3: Assemblies composition. Each pin is defined in Figure 4. Pin types 1, 2, 3 and 4 contain nuclear fuel while pin
types 5 and 6 do not contain fissile materials.

Water

I II III

IV V VI

Pin 1 Pin 2 Pin 3

Pin 6Pin 5Pin 4

Figure 4: Pins composition. Material I is UO2 fuel, material II is 4.3% MOX, material III is 7.0% MOX, material IV is
8.7% MOX, material V is the fission chamber and material VI is the guide tube.

Different strategies for the homogenization of the two reactor configurations are compared
in this work. These strategies are presented in Table 2. The reason for including RXS (refer-
ence cross sections without discontinuity factors) is to show that using better homogenized cross
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section does not correct the homogenization error alone, thus being advantageous the use of
discontinuity factors even if the cross sections are just an approximation.

Table 2: Acronyms used for the different homogenization strategies.

No DFs Problem without DFs and assembly homogenized cross sections.
RXSs Problem without DFs and reference homogenized cross sections.
ADFs Problem with assembly DFs and assembly homogenized cross sections.
PDFs Problem with pin DFs and pin homogenized cross sections,

they are calculated from an isolated assembly problem.
RDFs Problem with reference DFs and reference homogenized cross sections.

To compare the results, neutronic power averaged assembly and neutronic power averaged
pin errors are condensed using the root mean square (RMS) of the relative errors as defined in
equation (50),

RMS =

√√
1
Lt

∑
i

Li

(
Pi − P∗i

P∗i

)2

, (50)

where Pi and P∗i represent the homogeneous and the heterogeneous reference, respectively, aver-
aged neutronic power in the region i (this region can be an assembly or a pin). Li represents the
length of the region i and Lt is the total length of the reactor. The averaged power in region i is
defined as

Pi =
1
Li

∫
Li

G∑
g=1

Σ
g
fφ

g
0 dx. (51)

In the same way, the maximum relative error for the scalar flux, φ0 is defined as

ε = max


∣∣∣φ0 − φ

∗
0

∣∣∣
φ∗0

 , (52)

where φ0 and φ∗0 represent the homogeneous and the heterogeneous reference, respectively, scalar
fluxes. The eigenvalue absolute error is calculated in pcm as

∆keff = 105
∣∣∣keff − k∗eff

∣∣∣ , (53)

where keff and k∗eff
represent the homogeneous and the heterogeneous reference, respectively, mul-

tiplicative factors. The transport reference solution is calculated with a discrete ordinates code
using a S96 approximation where the solution is fully converged. The transport reference results
are also used to compute reference homogenized cross sections and reference discontinuity fac-
tors. The same code using a discrete ordinates approximations of order 96 is used to calculate
isolated assembly heterogeneous fluxes to be able to calculate assembly and pin homogenization
parameters.

4.1. Configuration 1

The reactor named configuration 1 is composed of two different assemblies. Each assembly is
formed by 17 equal pins. Figures 5a and 5b show the heterogeneous fluxes for the same transport
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approximations for g = 1 and g = 7 energy groups. Figures 5c and 5d show the relative errors
for these energy groups. Looking at Figure 5a for the flux for g = 1, and its relative error in
Figure 5c, we see that the error is mostly due to the the fact that the lower order approximations
SP1, SP3 and SP5 do not capture the local behaviour of the solution in regions with water, where
the flux is lower than in fuel regions for fast groups (low values of g). The same problem occurs
when looking at the behaviour for g = 7 in Figures 5b and 5d, but this time because the flux
is underestimated in the region with water, where the flux is larger than in regions with fuel for
slow groups (high values of g). This behaviour is typical. Moreover, we also observe that the
relative error is much bigger for g = 7 than for g = 1 (around one order of magnitude), but this
is mainly due to the fact that the value of the flux is smaller (around one order of magnitude),
and this means that the absolute value of the error is similar (of the same order). This effect is
enhanced by the fact that strong heterogeneity in the cross sections in the thermal groups (g > 5)
result in more heterogeneous thermal fluxes.
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(a) Scalar flux for group 1
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(b) Scalar flux for group 7
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(d) Relative error for group 7

Figure 5: Comparison of results for heterogeneous fluxes and the spatial distribution of the relative error in the scalar
flux for Configuration 1 test.

Table 3 shows a comparison of the heterogeneous results for this reactor, without any ho-
mogenization, for different order of SPN approximations to the neutron transport equation and
different finite element polynomials degrees p. In this comparison, the different keff for the differ-
ent approximations are provided together with the difference with respect to the reference results,
as well as the Root Mean Square error for the neutronic power, and the maximum relative error
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(pointwise) for the fluxes for groups g = 1 and g = 7. The results show that the problem is
spatially converged for polynomials of fifth degree, so for now on, all calculations will be per-
formed with p = 5. It must be noted that the relative errors are much larger for the thermal groups
(g > 3), i.e., the relative error for the g = 7 flux is locally above 35% for SP1, 25% for SP3, and
15% for SP5, as it has been explained before. Instead the pin averages power RMS errors are
less than 0.4% for any of the approximations. The reason for this is that the regions with water
do not produce power (because there is not fission there), so the error in these regions does not
directly affect the RMS error in the power (neither assembly-wise nor pin-wise). Nevertheless,
we can observe that the error in the keff is very big for these approximations (above 900 pcm
for N ≤ 5) because this global parameter is affected by errors in the water regions through the
balance equations. Increasing the order of the angular approximation for SPN affects mainly the
value of the keff through better capturing of the behaviour in these regions.

Table 3: Comparison of heterogeneous results for Configuration 1.

Transport
Approx.

Eigenvalue Power RMS Flux Max. Rel. Error
p keff ∆keff (pcm) Assembly (%) Pin (%) g = 1 (%) g = 7 (%)

SP1

1 0.90951 1 563 0.07 0.46 3.85 43.29
3 0.90951 1 360 0.05 0.32 3.56 36.18
5 0.91154 1 360 0.05 0.32 3.56 36.18

SP3

1 0.91015 1 499 0.35 0.46 3.85 40.51
3 0.91411 1 103 0.34 0.37 3.18 25.85
5 0.91411 1 103 0.34 0.37 3.18 25.84

SP5

1 0.91042 1 472 0.33 0.42 3.77 38.37
3 0.91610 904 0.30 0.32 2.80 17.56
5 0.91610 904 0.30 0.32 2.80 17.49

S96 0.92514

Table 4 shows the assembly-wise homogenization results for different SPN approximations
using different homogenization strategies defined in Table 2. At assembly level, the diffusion
theory, SP1, results are accurate enough and increasing the number of spherical harmonics does
not provide better results. This behaviour is explained by the fact that the assemblies are large
enough to provide precise average results with a LO solver such as the diffusion approximation,
and the angular dependence does not have a strong effect average-wise for this size of the homog-
enized regions. However, reconstructed pin power results have RMS errors around 11%. This is
explained by the assembly shape function (which is the heterogeneous power computed for an
isolated assembly with reflexive boundary conditions) being inaccurate as it does not take into
account influences of neighbouring assemblies. To improve these results a more sophisticated
reconstruction method or pin homogenization strategy is necessary. We can also mention that
using RXSs provide good results, even if no discontinuity factors are used. This is because the
reconstruction has been done with the right shape for the local flux, which in practical reactor
calculations is not available. Nevertheless, we observe that we must also use discontinuity factors
together with the reference cross sections, RDFs, in order to completely reproduce the average
values of the power and the keff of the original problem with a HO solver with the homogenized
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problem and a LO solver.

Table 4: Comparison for assembly-wise homogenization results for Configuration 1.

Transport Homogenization Eigenvalue Power RMS
Approx. Method keff ∆keff (pcm) Assembly (%) Pin (%)

SP1

No DFs 0.92475 39 0.49 10.95
ADFs 0.92547 33 0.10 10.90
RXSs 0.92468 46 0.39 0.39
RDFs 0.92514 0 0.00 0.00

SP3

No DFs 0.92514 0 0.06 10.91
ADFs 0.92583 69 0.52 10.88
RXSs 0.92507 7 0.04 0.04
RDFs 0.92514 0 0.00 0.00

SP5

No DFs 0.92516 2 0.06 10.91
ADFs 0.92585 71 0.53 10.88
RXSs 0.92509 5 0.05 0.05
RDFs 0.92514 0 0.00 0.00

Transport Reference 0.92514

Last, pin-wise homogenization results are shown in Table 5. In this Table, we can observe a
similar behaviour as for average-wise homogenization except that now the RMS error is reduced
for pin-power averages. This is the main reason for using pin discontinuity factors. This comes
from the choice of smaller domains for the homogenization and it requires that we correct the
homogenization error at these scales. The RXSs and RDFs results behave analogously to the
case of assembly-wise homogenization above.

4.2. Configuration 2
The reactor named as Configuration 2 is composed of five assemblies with reflexive boundary

conditions. Each assembly is composed of 17 pins describing an usual nuclear arrangement.
This test is built to be more heterogeneous than the previous one, to be able to test the different
homogenization methods in more realistic conditions, since the composition of each assembly
will not be completely homogeneous.

First we analyse the behaviour of the fluxes and the errors for different energy groups and
different LO solvers (SP1, SP3, and SP5) without spatial homogenization. Figures 6a and 6b
present the heterogeneous scalar fluxes, φg

0, of the groups g = 1 and g = 7 for different transport
approximations. Figures 6c and 6d show the relative errors for these low order angular approx-
imations. We see a similar behaviour as the one observed in the previous problem. In this way,
the relative errors are larger for thermal groups g > 5. than for fast groups g < 5. Again we
observe that this effect is higher in the regions with water and now also in regions with materials
5 and 6, which represent strong absorbers or fission chambers where almost no fission occurs.
Again, the LO solvers are unable to fully capture the behaviour of the HO solver (S96) in these
regions.
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Table 5: Comparison for pin-wise homogenization results for Configuration 1.

Transport Homogenization Eigenvalue Power RMS
Approx. Method keff ∆keff (pcm) Assembly (%) Pin (%)

SP1

No DFs 0.92476 38 0.49 0.56
PDFs 0.92547 33 0.10 0.44
RXSs 0.92469 45 0.42 0.53
RDFs 0.92514 0 0.00 0.00

SP3

No DFs 0.92515 1 0.05 0.15
PDFs 0.92531 17 0.11 0.15
RXSs 0.92508 6 0.02 0.17
RDFs 0.92514 0 0.00 0.00

SP5

No DFs 0.92517 3 0.04 0.11
PDFs 0.92533 19 0.12 0.17
RXSs 0.92511 3 0.02 0.13
RDFs 0.92514 0 0.00 0.00

Transport Reference 0.92514

Table 6 shows a comparison of the heterogeneous results, without any homogenization, for
SP1, SP3, and SP5, approximations. This Table shows the same type of errors as Table 3. We
can see the same behaviour, with larger point-wise flux maximum relative error for g = 7 than
for g = 1, and large errors in the eigenvalue of the problem. We can also see that the average-
wise error is larger for the power (pin-wise and assembly-wise), and that this error decreases
when increasing the order of the LO solver. This suggests that for more realistic problems, there
is actually a need of using LO solvers of slightly higher order for reducing both pin-wise and
assembly-wise, RMS errors for average power.

Table 6: Comparison of heterogeneous results for Configuration 2.

Transport
Approx.

Eigenvalue Power RMS Flux Max. Rel. Error
keff ∆keff (pcm) Assembly (%) Pin (%) g = 1 (%) g = 7 (%)

SP1 1.11869 1 443 2.05 2.03 13.25 36.77
SP3 1.12290 1 022 1.30 1.17 8.18 23.33
SP5 1.12649 663 0.75 0.68 5.04 13.83

S96 1.13312

Table 7 shows the assembly-wise homogenization results SP1, SP3 and SP5 approximations
using the different strategies of homogenization defined in Table 2. As it occurs for reactor
Configuration 1, for reactor Configuration 2 the computations at assembly level using ADFs, by
means of the diffusion theory, SP1, are accurate enough and increasing the number of spherical
harmonics in the transport approximation does not provide better results. In this case, the intro-
duction of assembly discontinuity factors improves the obtained solution in terms of eigenvalue
error and assembly averaged neutronic error, while the pin-wise RMS error remains high, even
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Figure 6: Comparison of results for heterogeneous fluxes and the spatial distribution of the relative error in the scalar
flux for Configuration 2 test.

if the order of the LO solver is increased up to SP5.
Results for pin-wise homogenization are shown in Table 8. We see that the use of pin-

wise homogenization provides more accurate results, both in assembly and pin averaged power,
specially if the proposed pin discontinuity factors are used. Increasing the number of spherical
harmonics, N, reduces the eigenvalue error and pin averaged power errors because at pin scale
the angular dependence is relevant. In this way, if the proposed pin discontinuity factors are
used, the eigenvalue error can be reduced to 38 pcm and less than 1% in pin averaged power
error results if one uses SP5 approximation.
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Table 7: Comparison for assembly-wise homogenization results for Configuration 2.

Transport Homogenization Eigenvalue Power RMS
Approx. Method keff ∆keff (pcm) Assembly (%) Pin (%)

SP1

No DFs 1.13462 150 1.20 14.82
ADFs 1.13334 22 1.52 14.95
RXSs 1.13368 56 3.16 2.55
RDFs 1.13312 0 0.00 0.0

SP3

No DFs 1.13613 301 3.54 15.00
ADFs 1.13392 80 0.95 14.89
RXSs 1.13421 109 3.70 2.97
RDFs 1.13312 0 0.00 0.00

SP5

No DFs 1.13618 306 3.55 15.00
ADFs 1.13398 86 0.94 14.89
RXSs 1.13426 114 3.71 2.98
RDFs 1.13312 0 0.00 0.00

Transport Reference 1.13312

Table 8: Comparison for pin-wise homogenization results for Configuration 2.

Transport Homogenization Eigenvalue Power RMS
Approx. Method keff ∆keff (pcm) Assembly (%) Pin (%)

SP1

No DFs 1.12458 854 1.66 1.66
PDFs 1.13331 19 0.46 1.43
RXSs 1.12436 876 1.64 1.67
RDFs 1.13312 0 0.00 0.00

SP3

No DFs 1.12795 517 1.32 1.20
PDFs 1.1335 55 0.89 0.92
RXSs 1.12775 537 1.31 1.18
RDFs 1.13312 0 0.00 0.00

SP5

No DFs 1.13053 259 1.03 0.94
PDFs 1.1335 38 0.76 0.78
RXSs 1.13033 279 1.02 0.93
RDFs 1.13312 0 0.00 0.00

Transport Reference 1.13312
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5. Conclusions

An extension of the generalized equivalence theory for the Simplified PN equations in one-
dimensional geometries has been developed in this work using a finite element method. This
extension proposes pin discontinuity factors for every even flux moment of the spherical har-
monics approximation calculated from an isolated assembly transport calculation and the use of
SP3 or SP5 approximations to the neutron transport equation for accurate reactor calculations.
An interior penalty finite element method has been presented to discretize and solve the problem
using discontinuity factors.

Numerical results show that low order spherical harmonics approximations cannot reproduce
accurately sub-pin heterogeneities when solving for the whole domain. This strongly affects the
approximation of the largest eigenvalue of the problem. In order to improve the approximation
for the largest eigenvalue while keeping the computations efficient, the problem can be solved
using a homogenization process with two different solvers at two different scales. In this way,
assembly discontinuity factors correct some of the errors introduced during the homogenization
process, and it produces acceptable eigenvalue and assembly averaged results using diffusion
theory, even if they do not reconstruct precise pin averaged results. The proposed pin disconti-
nuity factors produce accurate results for both pin and assembly averaged values without the use
of reconstruction methods. The results show that pin-wise homogenization is a reliable method-
ology instead of the computationally expensive full-core heterogeneous calculations. Also, the
homogenization methodology has been verified with the calculation of reference discontinuity
factors, which fully reproduce average values with the homogenized problem. The extension of
this work to multidimensional geometries using the simplified spherical harmonics method will
be undertaken in the future.
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Appendix A. Boundary Conditions in SPN

To approximate the vacuum boundary conditions, we shall consider Marshak’s conditions
[10]. These boundary conditions impose a restriction in the flux odd moments at each boundary,
xB, given by ∫

µin

Pn (µ)ψg(xB, µ)dµ = 0, g = 1, 2, . . . , G, n = 1, 3, . . . ,N. (A.1)

Expanding ψ(Lt, µ) using equation (3),∫
µin

Pn (µ)
N∑

n′=0

2n′ + 1
2

φ
g
n′ (xB, µ)Pn′ (µ)dµ = 0, g = 1, 2, . . . , G, n = 1, 3, . . . ,N. (A.2)

Using the orthogonality relationship of Legendre polynomials and setting N = 5, the Marshak’s
boundary condition are,

1
2

Φ0 +
5
8

Φ2 −
3

16
Φ4 = −Φ1,

−
1
8

Φ0 +
5
8

Φ2 −
81

128
Φ4 = −Φ3,

1
16

Φ0 −
25

128
Φ2 −

81
128

Φ4 = −Φ5 .

Applying the change of variables proposed in equation (10), the vacuum condition in the P5
approximation can be applied as

−n̂ D
d
dx

U(xB) = BU(xB) , (A.3)

where matrix B is given by the Kronecker product of matrix b by an (G ×G) identity matrix,

B = b ⊗ I(G×G) , b =


1
2 − 1

8
1
16

− 1
8

7
24 − 41

384
1

16 − 41
384

407
1920

 , (A.4)

and n̂ is the normal direction of the boundary, either 1 or −1 in one dimensional geometries.
On the other hand, reflective boundary conditions are imposed if all the flux odd moments

are set to zero.

φ
g
n(xB) = 0, g = 1, 2, . . . , G, n = 1, 3, . . . , N . (A.5)

Thus, reflective boundary conditions are set imposing,

d
dx

ug
n(xB) = 0, g = 1, 2, . . . , G, n = 0, 2, . . . , N . (A.6)

These treatments yield to (N +1)/2 equations in the boundary that effectively clauses the sys-
tem. We note that both of these boundary conditions treatments contain asymmetric components
when N is even. Thus, only odd sets of SPN equations are considered. It must be noted that for
each group the SPN system of equations (15) is symmetric because the coefficients c(m) and B
are symmetric.
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