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Pérez-Benito, F.J., Sáez, C., Conejero, J.A., Tortajada, S.,
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Abstract

Somewhere, something incredible is waiting
to be known.

Carl Sagan.

The data quality assessment has many dimensions, from those so obvious
as the data completeness and consistency to other less evident such as the
correctness or the ability to represent the target population. In general, it
is possible to classify them as those produced by an external effect, and
those that are inherent in the data itself. This work will be focused on those
inherent to data, such as the temporal and the multisource variability applied
to healthcare data repositories. Every process is usually improved over time,
and that has a direct impact on the data distribution. Similarly, how a process
is executed in different sources may vary due to many factors, such as the
diverse interpretation of standard protocols by human beings or different
previous experiences of experts.

Artificial Intelligence has become one of the most widely extended tech-
nological paradigms in almost all the scientific and industrial fields. Advances
not only in models but also in hardware have led to their use in almost all ar-
eas of science. Although the solved problems using this technology often have
the drawback of not being interpretable, or at least not as much as other clas-
sical mathematical or statistical techniques. This motivated the emergence of
the ”explainable artificial intelligence” concept, that study methods to quan-
tify and visualize the training process of models based on machine learning.

On the other hand, real systems may often be represented by large net-
works (graphs), and one of the most relevant features in such networks is the
community or clustering structure. Since sociology, biology or clinical situa-
tions could usually be modeled using graphs, community detection algorithms
are becoming more and more extended in a biomedical field.

In the present doctoral thesis, contributions have been made in the three
above mentioned areas. On the one hand, temporal and multisource variabil-
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ity assessment methods based on information geometry were used to detect
variability in data distribution that may hinder data reuse and, hence, the
conclusions which can be extracted from them. This methodology’s usability
was proved by a temporal variability analysis to detect data anomalies in the
electronic health records of a hospital over 7 years.

Besides, it showed that this methodology could have a positive impact
if it applied previously to any study. To this end, firstly, we extracted the
variables that highest influenced the intensity of headache in migraine pa-
tients using machine learning techniques. One of the principal characteristics
of machine learning algorithms is its capability of fitting the training set. In
those datasets with a small number of observations, the model can be bi-
ased by the training sample. The observed variability, after the application
of the mentioned methodology and considering as sources the registries of
migraine patients with different headache intensity, served as evidence for
the truthfulness of the extracted features. Secondly, such an approach was
applied to measure the variability among the gray-level histograms of digital
mammographies. We demonstrated that the acquisition device produced the
observed variability, and after defining an image preprocessing step, the per-
formance of a deep learning model, which modeled a marker of breast cancer
risk estimation, increased.

Given a dataset containing the answers to a survey formed by psychome-
tric scales, or in other words, questionnaires to measure psychologic factors,
such as depression, cope, etcetera, two deep learning architectures that used
the data structure were defined. Firstly, we designed a deep learning architec-
ture using the conceptual structure of such psychometric scales. This architec-
ture was trained to model the happiness degree of the participants, improved
the performance compared to classical statistical approaches. A second ar-
chitecture, automatically designed using community detection in graphs, was
not only a contribution to automation but obtained results comparable to its
predecessor.
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Resumen

El análisis de la calidad de los datos abarca muchas dimensiones, desde
aquellas tan obvias como la completitud y la coherencia, hasta otras menos
evidentes como la correctitud o la capacidad de representar a la población
objetivo. En general, es posible clasificar estas dimensiones como las produci-
das por un efecto externo y las que son inherentes a los propios datos. Este
trabajo se centrará en la evaluación de aquellas inherentes a los datos en
repositorios de datos sanitarios, como son la variabilidad temporal y multi-
fuente. Los procesos suelen evolucionar con el tiempo, y esto tiene un impacto
directo en la distribución de los datos. Análogamente, la subjetividad humana
puede influir en la forma en la que un mismo proceso, se ejecuta en diferentes
fuentes de datos, influyendo en su cuantificación o recogida.

La inteligencia artificial se ha convertido en uno de los paradigmas tec-
nológicos más extendidos en casi todos los campos cient́ıficos e industriales.
Los avances, no sólo en los modelos sino también en el hardware, han llevado
a su uso en casi todas las áreas de la ciencia. Es cierto que, los problemas
resueltos mediante esta tecnoloǵıa, suelen tener el inconveniente de no ser
interpretables, o al menos, no tanto como otras técnicas de matemáticas o
de estad́ıstica clásica. Esta falta de interpretabilidad, motivó la aparición
del concepto de “inteligencia artificial explicable”, que estudia métodos para
cuantificar y visualizar el proceso de entrenamiento de modelos basados en
aprendizaje automático.

Por otra parte, los sistemas reales pueden representarse a menudo me-
diante grandes redes (grafos), y una de las caracteŕısticas más relevantes de
esas redes, es la estructura de comunidades. Dado que la socioloǵıa, la bioloǵıa
o las situaciones cĺınicas, usualmente pueden modelarse mediante grafos, los
algoritmos de detección de comunidades se están extendiendo cada vez más
en el ámbito biomédico.

En la presente tesis doctoral, se han hecho contribuciones en los tres cam-
pos anteriormente mencionados. Por una parte, se han utilizado métodos de
evaluación de variabilidad temporal y multi-fuente, basados en geometŕıa de
la información, para detectar la variabilidad en la distribución de los datos
que pueda dificultar la reutilización de los mismos y, por tanto, las conclu-
siones que se puedan extraer. Esta metodoloǵıa demostró ser útil tras ser
aplicada a los registros electrónicos sanitarios de un hospital a lo largo de 7
años, donde se detectaron varias anomaĺıas.

Además, se demostró el impacto positivo que este análisis podŕıa añadir a
cualquier estudio. Para ello, en primer lugar, se utilizaron técnicas de apren-
dizaje automático para extraer las caracteŕısticas más relevantes, a la hora
de clasificar la intensidad del dolor de cabeza en pacientes con migraña. Una
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de las propiedades de los algoritmos de aprendizaje automático es su capaci-
dad de adaptación a los datos de entrenamiento, en bases de datos en los
que el número de observaciones es pequeño, el estimador puede estar ses-
gado por la muestra de entrenamiento. La variabilidad observada, tras la
utilización de la metodoloǵıa y considerando como fuentes, los registros de
los pacientes con diferente intensidad del dolor, sirvió como evidencia de la
veracidad de las caracteŕısticas extráıdas. En segundo lugar, se aplicó para
medir la variabilidad entre los histogramas de los niveles de gris de mamo-
graf́ıas digitales. Se demostró que esta variabilidad estaba producida por el
dispositivo de adquisición, y tras la definición de un preproceso de imagen,
se mejoró el rendimiento de un modelo de aprendizaje profundo, capaz de
estimar un marcador de imagen del riesgo de desarrollar cáncer de mama.

Dada una base de datos que recoǵıa las respuestas de una encuesta for-
mada por escalas psicométricas, o lo que es lo mismo cuestionarios que sirven
para medir un factor psicológico, tales como depresión, resiliencia, etc., se
definieron nuevas arquitecturas de aprendizaje profundo utilizando la estruc-
tura de los datos. En primer lugar, se diseño una arquitectura, utilizando la
estructura conceptual de las citadas escalas psicométricas. Dicha arquitec-
tura, que trataba de modelar el grado de felicidad de los participantes, tras
ser entrenada, mejoró la precisión en comparación con otros modelos basados
en estad́ıstica clásica. Una segunda aproximación, en la que la arquitectura se
diseñó de manera automática empleando detección de comunidades en grafos,
no solo fue una contribución de por śı por la automatización del proceso, sino
que, además, obtuvo resultados comparables a su predecesora.
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Resum

L’anàlisi de la qualitat de les dades comprén moltes dimensions, des
d’aquelles tan òbvies com la completesa i la coherència, fins a altres menys
evidents com la correctitud o la capacitat de representar a la població ob-
jectiu. En general, és possible classificar estes dimensions com les prodüıdes
per un efecte extern i les que són inherents a les pròpies dades. Este treball
se centrarà en l’avaluació d’aquelles inherents a les dades en reposadors de
dades sanitaris, com són la variabilitat temporal i multi-font. Els processos
solen evolucionar amb el temps i açò té un impacte directe en la distribució
de les dades. Anàlogament, la subjectivitat humana pot influir en la forma
en què un mateix procés, s’executa en diferents fonts de dades, influint en la
seua quantificació o arreplega.

La intel·ligència artificial s’ha convertit en un dels paradigmes tecnològics
més estesos en quasi tots els camps cient́ıfics i industrials. Els avanços, no
sols en els models sinó també en el maquinari, han portat al seu ús en quasi
totes les àrees de la ciència. És cert que els problemes resolts per mitjà d’esta
tecnologia, solen tindre l’inconvenient de no ser interpretables, o almenys,
no tant com altres tècniques de matemàtiques o d’estad́ıstica clàssica. Esta
falta d’interpretabilitat, va motivar l’aparició del concepte de “inteligencia
artificial explicable”, que estudia mètodes per a quantificar i visualitzar el
procés d’entrenament de models basats en aprenentatge automàtic.

D’altra banda, els sistemes reals poden representar-se sovint per mitjà
de grans xarxes (grafs) i una de les caracteŕıstiques més rellevants d’eixes
xarxes, és l’estructura de comunitats. Atés que la sociologia, la biologia o
les situacions cĺıniques, poden modelar-se usualment per mitjà de grafs, els
algoritmes de detecció de comunitats s’estan estenent cada vegada més en
l’àmbit biomèdic.

En la present tesi doctoral, s’han fet contribucions en els tres camps an-
teriorment mencionats. D’una banda, s’han utilitzat mètodes d’avaluació de
variabilitat temporal i multi-font, basats en geometria de la informació, per
a detectar la variabilitat en la distribució de les dades que puga dificultar la
reutilització dels mateixos i, per tant, les conclusions que es puguen extraure.
Esta metodologia va demostrar ser útil després de ser aplicada als registres
electrònics sanitaris d’un hospital al llarg de 7 anys, on es van detectar di-
verses anomalies.

A més, es va demostrar l’impacte positiu que esta anàlisi podria afe-
gir a qualsevol estudi. Per a això, en primer lloc, es van utilitzar tècniques
d’aprenentatge automàtic per a extraure les caracteŕıstiques més rellevants,
a l’hora de classificar la intensitat del mal de cap en pacients amb migranya.
Una de les propietats dels algoritmes d’aprenentatge automàtic és la seua
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capacitat d’adaptació a les dades d’entrenament, en bases de dades en què
el nombre d’observacions és xicotet, l’estimador pot estar esbiaixat per la
mostra d’entrenament. La variabilitat observada després de la utilització de
la metodologia, i considerant com a fonts els registres dels pacients amb
diferent intensitat del dolor, va servir com a evidència de la veracitat de les
caracteŕıstiques extretes. En segon lloc, es va aplicar per a mesurar la vari-
abilitat entre els histogrames dels nivells de gris de mamografies digitals. Es
va demostrar que esta variabilitat estava prodüıda pel dispositiu d’adquisició
i després de la definició d’un preprocés d’imatge, es va millorar el rendiment
d’un model d’aprenentatge profund, capaç d’estimar un marcador d’imatge
del risc de desenrotllar càncer de mama.

Donada una base de dades que arreplegava les respostes d’una enquesta
formada per escales psicomètriques, o el que és el mateix qüestionaris que
servixen per a mesurar un factor psicològic, com ara depressió, resiliència,
etc., es van definir noves arquitectures d’aprenentatge profund utilitzant
l’estructura de les dades. En primer lloc, es dissenyà una arquitectura, util-
itzant l’estructura conceptual de les esmentades escales psicomètriques. La
dita arquitectura, que tractava de modelar el grau de felicitat dels partici-
pants, després de ser entrenada, va millorar la precisió en comparació amb
altres models basats en estad́ıstica clàssica. Una segona aproximació, en la que
l’arquitectura es va dissenyar de manera automàtica emprant detecció de co-
munitats en grafs, no sols va ser una contribució de per si per l’automatització
del procés, sinó que, a més, va obtindre resultats comparables a la seua pre-
decessora.



1 Introduction

Life need not be easy, provided only
that it is not empty.

Lise Meitner.

1.1 Motivation

Since Wang and Strong Data Quality (DQ) definition that consisted of 15
data quality dimensions classified in four high-level categories -Intrinsic, Con-
textual, Representational and Accessibility [1], numerous data quality frame-
works have emerged and applied to a wide range of scenarios [2–5]. The
complexity of DQ demonstrated by Rajan et al. [6] by showing the ongoing
controversy flying on the concept. It is probably due to the blurry frontiers
between the concepts included in each dimension definition. In any case, the
common key is the idea of a DQ assessment is imperative to assure the data
fitness-to-use. In this sense, DQ assessment methods emerge as an artifact
helping in the community acceptance of the results of research works [7], and
standardizing these methods could lead the transparency and consistency of
DQ concept [8].

The controversy around DQ dimensions and concepts is also notorious in
the biomedical field. Since Kahn et al. proposed [3] to classified DQ dimen-
sions in two DQ main concepts -Intrinsic and Conceptual -, many approaches
have been proposed in a biomedical environment. Weiskopf et al. highlighted
five exhaustive and mutually exclusive dimensions [9] after a comprehensive
literature review, and classified each found concepts into one of their proposed
dimensions -Completeness, Correctness, Concordance, Plausibility and Cur-
rency. Almutiry et al. developed methods to measure DQ concepts Accuracy,
Consistency, Completeness, and Timeliness [10]. The work of Johnson et al.
[11] provides methods to assess enough DQ for secondary use of Electronic
Health Records (EHR), it brings methods to measure the level of Correctness,
Consistency, Completeness and Currency. The work of Kahn et al. [12] har-
monized some of the EHR DQ frameworks into three categories Conformance,
Completeness, and Plausibility and two frameworks to DQ assessment Veri-
fication and Validation. Finally, Rajan et al. [6] designed a computable data
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quality knowledge repository for assessing quality and characterizing data in
health repositories to standardize the data quality concepts and methods to
assess them.

Clinical research may benefit from the power of the new artificial intel-
ligence based technologies. Large multicenter and longitudinal studies could
improve and generalize conclusions by using such techniques. But its appli-
cation needs to ensure data is comparable among centers and different time-
spaces. These concepts could be classified in Concordance and Timeliness
DQ dimensions.

Arthur Lee Samuel provided the first Machine Learning (ML) definition
in 1959: “Machine Learning gives computers the ability to learn without being
explicitly programmed”. From a mathematical point of view, Tom Mitchell’s
definition in 1977 deserves recognition: “A computer program is said to learn
from experience E concerning some task T and some performance measure P ,
if its performance on T , as measured by P , improves with experience E”. It
must note that ML nowadays offers an operational definition of the problems
rather than a cognitive definition. It means that a machine can learn to solve
a problem intelligently through the experience instead of learning to think
about how the problem can be solved, as was proposed by Alan Turing [13].
In this work, the question “Can a machine think?” replaced with “Can a
machine do what we (as thinking entities) can do?”.

This thesis copes with the concepts mentioned above in the healthcare
medicine field. It focuses on characterizing the variability among different
sources and time batches in heterogeneous healthcare databases and assess-
ing how the knowledge of this variability may lead to the improvement of
ML-based models’ performance, in particular, Deep Learning (DL) models.
Furthermore, bearing in mind the need for the models to be deployed in
healthcare scenarios, probably without data scientist supervision, the au-
tomation of the data-driven model design was also evaluated. These concepts
established the main goals of this thesis, leading to the following research
questions and objectives.

1.2 Research questions and objectives

The clinical conclusions extracted from local research studies could be uni-
versalized by carrying large longitudinal studies or studies covering many
hospitals. Hospital management, population changes, or epidemics may im-
pact data records deriving in a lack of quality for its reuse. In this sense,
it becomes crucial to assess the temporal and multisource variability before
data reuse. Besides, one of the ML applications is to extract variables in-
fluencing a determined outcome. If we consider a classification problem and
measure the variability of inter sources -understanding as sources the classes-
not to have a significant variability between classes would not give us any
evidence of the reliability of the extracted discriminative variables.
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ML is a subset of the methods included in the Artificial Intelligence con-
cept. These algorithms have demonstrated good performance in many fields,
including healthcare. Far from being the panacea, the application of such
algorithms requires deep knowledge of themselves and the field of the study.
The research of how these models could take advantage of the conceptual
structure (for structured data) or observed data (for unstructured data) may
be one of the first steps for model design automation based on machine learn-
ing. It could also lead to a standardization of the models to be deployed in
different environments with the same target.

Healthcare medicine is a source of a great amount of data and establishes a
wide variety of challenges. This thesis focuses on assessing temporal and mul-
tisource variability (understood as a DQ problem) and how the assessment
of such DQ concepts may influence data reuse and methods to data-driven
model design. The research questions that motivated the current document
are:

RQ1 - Can data capture the complexity of a hospital working? Are temporal
and multisource variability assessment methods capable of serving as a
monitoring system of the DQ for its reuse?

RQ2 - May ML models use the information extracted from the application of
temporal and multisource variability assessment methods to give credibil-
ity to factors influencing a determined outcome or increase performance?

RQ3 - Would it be possible to automate the process of DL model design using
the conceptual structure of data? And for unstructured data, could the
architecture design be generalized for other data types?

RQ4 - In the health field, it is imperative to be able to measure the influence of
the variables in the prediction. Can this automatic architecture provide
methods to evaluate the influence of variables on prediction?

The research work conducted in this thesis aims to provide answers to
these questions. Theoretical scientific methods have been applied to a wide
range of scenarios. DQ assessment methods were applied to characterize the
temporal evolution of the EHR of a hospital, the intensity pain difference
between headache women, and the difference of the histograms of mammo-
graphies acquired with different devices. The design of DL architectures was
carried out, using a case of use, the estimation of the happiness degree (un-
derstanding happiness as a psychological factor) through five psychometric
scales. To this end, the following objectives were defined:

O1 - Review the state-of-the-art of DQ, especially in a biomedical environ-
ment. Given the dimension of such a concept, the focus was on two
inherent-to-data features such as temporal and multisource variability.

O2 - Review the state-of-the-art of ML models in a clinical environment. It
covered the use of such algorithms in the psychology field, in particular
in studies using Likert scales, and the use of DL algorithms in medical
image analysis.
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O3 - Evaluate the suitability of a temporal variability assessment methods to
extract information about time evolution with data reuse purposes.

O4 - Demonstrate that using a multisource variability assessment method may
give credibility to the feature importance extracted by an ML model and
may help improve the performance of those models.

O5 - Develop a DL framework to automatically design the architecture for a
specific type of structured data using its conceptual structure, which also
allows us to measure the importance of the variables in the outcome.

O6 - Generalize the previous framework to be used with other data types.
It relies on the building of the architecture by using the observed data
instead of the conceptual structure.

The aforementioned objectives enclose the main goal of this thesis: the
study of how machine learning algorithms can take advantage of information
captured in data. Such a goal has been approached from two scopes: Firstly,
data quality (the temporal and multisource variability), which aims to capture
differences in data distributions before model design, and secondly, machine
learning, which aims to automatically build data-driven deep learning ar-
chitectures that could be used without any prior knowledge on data. The
following scientific contributions support the achievement of the proposed
objectives.

1.3 Thesis contributions

This section presents the main contributions of this thesis. First, a summary
of the most relevant aspects of each contribution is shown. Next, the scientific
publications in high impact factor journals and conferences are listed.

1.3.1 Main contributions

C1 - Analysis of the temporal variability of data in the EHR of a
hospital over seven years.
In this study, a temporal variability assessment method called TVA, based
on information geometry, was applied to the EHR of a hospital. Data
was composed of information about hospital admissions over seven years
and the comorbidities of each patient. We were able to find some evi-
dence on data distributions that explained (1) a hospital relocation, (2)
a services reconfiguration, (3) a care-services redistribution, (4) the as-
signment to the hospital of a new area covering 80000 more patients, and
(5) a pre-surgery admission protocol change. Data distribution changes
were motivated by management decisions, so to a certain extent, they
were expected. Probably what it was not expected was the scope of such
changes since many times these decisions influenced unexpected factors.
This work was published in the journal contribution P1.
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C2 - The use of multisource variability assessment methods with fea-
ture extraction and prediction purposes.
A multisource variability assessment method called MSV, also based in
information geometry, was applied to two databases. This contribution
can be separated in the following “sub-contributions”:

C2.1 - Study of the reliability of the feature importance extracted
using a ML algorithm.
For this work, a database composed of clinical features and physical
examinations from 67 migraine women was considered. It was tried to
extract features influencing both intensity and frequency headache.
Random Forest is an ML algorithm based on decision trees, which
highlight by its ability to the adaptation to the decision space. With
so few samples, it is easy to obtain models over-fitted to the train-
ing data. The application of the MSV assessment method allowed
us to have scientific evidence that the features that Random Forest
discovered as important when headache intensity estimated were cer-
tainly influencing. Meanwhile, the MSV assessment method applied
to the headache frequency did not give any evidence of the feature
importance was concluding. This work was published in the journal
contribution P2.

C2.2 - The improvement of a deep learning model performance es-
timating the dense tissue in breasts.
The breasts are majority composed of fatty tissue. The appearance
of fibroglandular (or dense) tissue is known to be an important
biomarker of the risk of developing breast cancer. This study con-
tained the full-field digital mammographies from 1785 women from
eleven screening programs and its dense tissue segmentation made by
two radiologists. After applying the MSV assessment method, we real-
ized that there existed important differences in the image histograms
from mammograms acquired using different devices. This work pro-
poses a DL model to make a parametric dense tissue segmentation
in breasts where the performance was significantly increased by us-
ing a simple preprocessing step standardizing the histograms of the
images. The details of the preprocessing step, DL architecture and
results were published in the journal contribution P3.

C3 - A method to design DL architectures using the conceptual data
structure.
The Data-Structure driven architecture for Deep Neural Networks (D-
SDNN) is a method to design DL architectures using the conceptual
structure of (structured) data. The Likert scales are point scales that
are used to allow the individual to express how much they agree or
disagree with a particular statement. Its use is widely extended in so-
cial/behavioral sciences. These scales usually measure a factor which, in
turn, is divided into sub-factors that are measured by a subset of items



12 1 Introduction

of the scale. This structure was used to design a happiness/depression
degree predictor using socio-demographic data and the responses to five
Likert scales measuring five psychological factors. The training of such a
model provided better results than state-of-the-art methods in psychol-
ogy. Besides, two metrics to measure the importance of each item in the
prediction are proposed. The results obtained in this work were included
in the journal contribution P4.

C4 - A methodology to automatically design DL architectures using
Community Detection algorithms in large networks.
A framework to automatically design DL networks, named Community
Detection based Deep Neural Network (CD-DNN), is proposed. It is based
on the construction of a graph from a relationship between model inputs.
Once the graph is built, a community detection algorithm at different
resolutions is applied to infer the structure of data automatically. This
framework has been developed to work with structured data, in partic-
ular Likert scales, but it would be easily extended to other data types.
The metrics mentioned in Contribution C3 are also applicable to models
designed using CD-DNN. The proposal of the methodology was presented
in the conference contribution P5 and the journal contribution P6. The
performance of the model was compared to the results obtained with
the architecture of the previous contribution. The CD-DNN architecture
obtained better results than those obtained by D-SDNN, besides the au-
tomation of the model building is an added value. These results were also
published in the journal contribution P6 and presented in the conference
contribution P7.

1.3.2 Scientific Publications

The scientific contributions of this thesis have been published in four scientific
top-ranked journals and two conference proceedings in the fields of Multidis-
ciplinary Sciences, Clinical Neurology, Computer Science, Biomedical Engi-
neering, Medical Informatics, and Applied Mathematics. All the following
journal papers are either published or accepted for publication in journals
included in the Journal Citation Reports (JCR). The versions presented in
this dissertation are adaptations for the thesis due to university regulations.
Each of them as a chapter having the same structure and bibliography as the
original published version:

P1 - Francisco Javier Pérez-Benito, Carlos Sáez, José Alberto Conejero,
Salvador Tortajada, Bernardo Valdivieso, Juan Miguel Garćıa-Gómez.
“Temporal variability analysis reveals biases in electronic health records
due to hospital process reengineering interventions over seven years”.
PLoS ONE (2019) 14(8) e0220369.

IF: 2.740 (JCR 2019): 27/71 (Q2) Multidisciplinary sciences.
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P2 - Francisco Javier Pérez-Benito, José Alberto Conejero, Carlos Sáez,
Juan Miguel Garćıa-Gómez, Esperanza Navarro-Pardo, Lidiane Lima Flo-
rencio, César Fernández-de-las-Peñas. “Subgrouping factors influencing
Migraine intensity: A semi-automatic methodology based on machine
learning and information geometry”. Pain Pract. (2020) 20(3) 297-309.

IF: 2.258 (JCR 2019): 20/32 (Q3) Anesthesiology, 125/204 (Q3) Clinical
Neurology.

P3 - Francisco Javier Pérez-Benito, François Signol, Juan-Carlos Perez-
Cortes, Alejandro Fuster-Baggetto, Marina Pollán, Beatriz Pérez-Gómez,
Dolores Salas-Trejo, Maŕıa Casals, Inmaculada Mart́ınez, Rafael Llo-
bet. “A deep learning system to obtain the optimal parameters for a
threshold-based breast and dense tissue segmentation”. Comput. Meth.
Prog. Biomed. 195 (2020) 105668.

IF: 3.632 (JCR 2019): 30/109 (Q2) Computer science, interdisciplinary
applications, 16/108 (Q1) Computer science, theory & methods, 22/87
(Q2) Engineering, biomedical, 6/27 (Q1) Medical informatics.

P4 - Francisco Javier Pérez-Benito, Patricia Villacampa-Fernández, José
Alberto Conejero, Juan Miguel Garcá-Gómez, Esperanza Navarro-Pardo.
“A happiness degree predictor using the conceptual data structure for
deep learning architectures”. Comput. Meth. Prog. Biomed. 168 (2019)
59-68.

IF: 3.632 (JCR 2019): 30/109 (Q2) Computer science, interdisciplinary
applications, 16/108 (Q1) Computer science, theory & methods, 22/87
(Q2) Engineering, biomedical, 6/27 (Q1) Medical informatics.

P5 - Francisco Javier Pérez-Benito, E. Navarro Pardo, Juan Miguel Garćıa-
Gómez, José Alberto Conejero. “Network clustering strategies for set-
ting happiness degree predictors based on deep learning architectures”.
Modelling for Engineering and Human Behaviour 2018. Instituto de
Matemática Multidisciplinar, Universitat Politècnica de València. Valen-
cia, Spain. July 2018.

P6 - Francisco Javier Pérez-Benito, Juan Miguel Garćıa-Gómez, Esper-
anza Navarro-Pardo, José Alberto Conejero. “Community detection based
deep neural network architectures: a fully automated framework based on
Likert-scale data”. Math. Method. Appl. Sci. 43 (2020) 8290-8301.

IF: 1.626 (JCR 2019): 67/260 (Q2) Mathematics, applied.

P7 - Francisco Javier Pérez-Benito, José Alberto Conejero, Juan Miguel
Garćıa-Gómez, Esperanza Navarro-Pardo. “Community detection based
architectures for deep learning: a fully automated framework for Lik-
ert scales”.9th International Congress on Industrial and Applied Mathe-
matics (ICIAM 2019). International Council for Industrial and Applied
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Mathematics and Sociedad Española de Matemática Aplicada. Valencia,
Spain. July 2019.

1.4 Projects and partners

During the development of this thesis, the author has actively participated
in research projects:

DQV-MINECO Servicio de evaluación y rating de la calidad de reposi-
torios de datos biomédicos. Funded by the Spanish Ministry of Economy and
Competitiveness (Retos-Colaboración 2013 Programme, RTC-2014-1530-1,
2013-2016).

Objectives: This project aims to define a data quality evaluation and
rating service to assure the data value aimed at its reuse in clinical, strategic,
and scientific decision making. It will base on two software services. The
first will evaluate nine data quality dimensions. The second will generate
a data quality rating positioning the evaluated datasets according to reuse
knowledge extraction purposes. These objectives fit the thesis objectives O1,
O3, and O4.

Partners: VeraTech for Health S.L. (Valencia, Spain) and IBIME-ITACA
group of the Universitat Politècnica de València (Spain).

ANÁLISIS DE CALIDAD Y VARIABILIDAD DE DATOS
MÉDICOS. Funded by the Universitat Politècnica de València (Sept 2017-
Feb 2019).

Objectives: This project has two key objectives. The first will be to
assess the temporal and multisource variability of medical repositories. The
second will evaluate how the heterogeneity of medical datasets may improve
the performance of machine learning models. These objectives fit the the-
sis objectives O1, O3, O4, and O6. The framework of this project let the
publication of the scientific contributions P1, and P7.

Partners: Hospital la Fe (Valencia, Spain) and Universitat Politècnica
de València.

GVA18 HELPSALUD2 Investigación aplicada a tareas reales en el
sector de salud mediante técnicas de Machine Learning desplegadas en plata-
forma de Big Data Analytics. Funded by Instituto Valenciano de Competitivi-
dad Empresarial (IVACE) (IMAMCN/2018/1 - HELPSALUD2, 2018-2019).

Objectives: This project aims to promote personalized health manage-
ment as well as personalized prevention and diagnosis. With this purpose,
it searched to develop healthcare technology that eases a larger interaction
between specialists and users. These objectives fit the thesis contributions
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O2, O5, and O6. In the framework of this project, the scientific publication
P3 published.

Partners: Instituto Tecnológico de la Infórmatica (Valencia, Spain).

1.5 Outline

This thesis is structured in eight chapters describing the research work car-
ried out during the stage of development of this dissertation. Chapter 1 has
introduced the motivation of this thesis, the research objectives, and the
main contributions. Chapter 2 presents the theoretical background needed
to complement the description of the methods developed in the compendium
of articles included in this thesis. Chapter 3 describes the temporal analysis
conducted in a hospital to identify unusual patterns through data. Chapter 4
analyses the differences between women with migraine; these differences lead
to a different degree of intensity pain. Chapter 5 demonstrates how multi-
source variability assessment methods may be used to improve deep learning
models performance; the case of use is the parametric segmentation of dense
tissue in digital mammographies. Chapter 6 proposes the D-SDNN method
to build a deep learning architecture based on the conceptual data-structure
and two metrics to measure the importance of the variables in the estimation,
and it is applied to model a happiness/depression degree predictor. Chapter
7 automates the architecture design of the previous chapter by applying net-
work clustering strategies after the definition of a model inputs relationship.
Finally, Chapter 8 presents the concluding remarks and proposes recommen-
dations to continue with the research developed in this thesis.

Figure 1.1 outlines the thesis contributions structured among the thesis
chapters along with the publications developed during this study.
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2 Rationale

A bottle of wine contains more philosophy
than all books in the world.

Louis Pasteur.

The research methodology followed in this thesis was a design science
approach [14]. By definition, this approach consists of taking existing tech-
nologies to generate knowledge and using this knowledge to improve conclu-
sions. The technologies used in the development of the works that make up
this thesis covered several fields. Methodologies based on Information Ge-
ometry were applied to assess the Quality of databases, Machine Learning
algorithms -in particular, Random Forest and deep learning- were developed
to solve some observational problems, and finally, community detection al-
gorithms in large networks were applied to propose ways to automatically
design machine learning-based models.

Since this document covers a wide range of technical disciplines, this chap-
ter aims to give insights into each of the previously mentioned technologies
to help readers follow the rest of the chapters. Each of the scientific papers
enclosed (from Chapter 3 to 7) in this dissertation extends the information
given in the current chapter.

As a brief, Chapter 3 contains the application of a DQ method based on
Information Geometry to assess the temporal variability of a hospital EHR
over seven years. In Chapter 4, we describe how this DQ method can serve as
an artifact to measure the differences among the intensities of headache pain
on migraine patients, and how these differences may reinforce the conclusions
extracted from a machine learning-based model (Random Forest). In Chap-
ter 3, we show a convolutional neural network (deep learning algorithm) that
estimates two parameters to segment a specific area of breasts. Its perfor-
mance has been improved after detecting differences among the histograms
of mammograms by using the previously mentioned DQ method and apply-
ing a simple preprocessing to the image. Chapter 6 proposes a deep learning
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architecture based on the conceptual data structure of a psychological survey
to predict the happiness/depression level. Finally, Chapter 7 tries to solve the
same problem of the previous chapter, but in this work, a framework based
on community detection on graphs is proposed to design the deep learning
architecture automatically.

2.1 Data Quality. Multisource and Temporal Variability
Assessment Methods

The comparison of two probability distributions is defined as follows. Suppose
a variable X follows a probability distribution p(x). A measure of information
from an observation x of p(x) was proposed by Shannon [15] as:

f(x) = − log (p(x))

then the expected information in X, (the Shannon entropy) is given by:

H(X) = −
∑
x∈X

p(x) log p(x) if X is discrete

H(X) = −
∫
p(x) log p(x) if X is continuous.

From this entropy, the Kullback-Leibler divergence, which measures the
information inefficiency of assuming a distribution Q when a true distribution
P , is given by:

KL(P ||Q) =
∑
x∈X

p(x) log
p(x)

q(x)

This divergence is not a true distance, because it is not symmetric nor
satisfies the triangle inequality. What drives to consider:

JSD(P,Q) =

(
KL(P ||M)

2
+
KL(Q||M)

2

) 1
2

where M = 1
2 (P + Q), is known as Jensen-Shannon distance, and besides

being a distance, it is also bounded by 0 and 1.
Information geometry is a field which translates the concepts and proper-

ties of differential geometry into spaces of probability distributions [16]. These
spaces are known as statistical manifolds and lie in Riemannian spaces.

From a set of n non-parametric probability functions (Pi, . . . , Pn), the
(
n
2

)
pairwise Jensen-Shannon distances may be computed. Let us define the dis-
similarity matrix Y = (y11, . . . , ynn) where yi,j = JSD(Pi, Pj). The objective
of Multidimensional Scaling (MDS), which is a manifold learning algorithm
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that allow us to obtain an Euclidean approximation of such spaces, is to
obtain the set E = (e11, . . . , enc) of points in a Euclidean space Rc, with
c ≤ n − 1, in order to find the best approximation of ‖ei − ej‖ ≈ f(yij),
where ‖·‖ is the euclidean norm, and f(·) is a transformation of the original
dissimilarities, optimally f(yij) = yij . This approximation can be solved by
the minimization of the raw loss function:

min
E

∑
i<j

(f(yij)− ‖pi − pj‖)2,

After applying MDS to the dissimilarity matrix of the distances between
the n probabilistic functions (P1, . . . , Pn), a n−(by)−c euclidean coordinates
matrix V = (V11, . . . , Vnc) is obtained. Each row, Vr = (Vr1 , . . . , Vrc), of this
matrix represents the c coordinates in the euclidean Rc space of the rth

Probability Density Functions (PDF) Pr.
Therefore, a c−dimensional irregular simplex (if the distance between all

pair of vertexes is equal, the simplex is said to be regular) S may be defined
as:

Sc = (V,C),

where V corresponds to the coordinates of the vertexes and C to the simplex
centroid, see(2.1).

C =

n∑
l=1

Vl
n
, (2.1)

Given a database, we can consider different groups of observations (either
in terms of sources or temporal batches) and compute their multidimensional
probability density functions (using for instance Kernel Density Estimation
(KDE) [17]). After applying the previously mentioned methodology, we ob-
tain the euclidean simplex S = (V,C) where the statistical manifold defined
by the PDFs is embedded.

The centroid C of the simplex S = (V,C) may be understood as the latent
central tendency of the original database. Then, the distance of a vertex
Vi ∈ V to C, d(Vi, C), where d(·, ·) is the euclidean distance, represents the
deviation of the group modeled and represented by Vi to the central tendency
of the database.

If the PDFs (represented by V when simplex built) are considered as
individuals of a population and the centroid of the simplex (C) the central
tendency of the population, the standard deviation among n PDFs can be
defined as:

Std(P1, . . . , Pn) =

∑n
i=i d(Vi, C)

n
,

It should be noted that although the Jensen-Shannon distance is [0, 1]-
bounded, the MDS transformation makes the distance between the pairs of
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points in the vertex could be higher than 1, depending on the transformation
of the space needed to embed the statistical manifold into the euclidean
space. It makes this standard deviation not to be comparable among different
studies. Besides, if a new group modeled by other probability density function
is wanted to be added to the study, it will be mandatory to compute the
simplex again [18].

A regular simplex fulfills that the distance from each of its vertexes to the
centroid is equal. The angle between any segments joining a vertex with the
centroid depends on the simplex dimension (c), and is [19]:

γ(c) = arccos

(
−1

c

)
The 1−regular (1R) simplex verifies that the distance any pair of its

vertexes is one. It can be proven that the distance between any vertex of the
1R−simplex to the centroid depends on the dimension and is given by:

d1R(c) =
1

2 sin
(
γ(c)
2

) ,
where d1R(1) = 1

2 . If we consider an irregular simplex defined as a simplicial
space upper-bounded by a 1R simplex, then the distance of any vertex to the
centroid of the irregular simplex will be bounded by:

dmax(c) = 1− 1

c+ 1
,

which is larger than d1R(c) for the same c [4].
Let us define two metrics [18], Global Probabilistic Deviation (GPD) and

Source Probabilistic outlyingness (SPO), based on the simplex previously
introduced:

• The global probabilistic deviation metric GPD among a set of groups of
observations X = (X1, ..., Xn) is defined as:

GPD(X1, ..., Xn) =
Std(P1, . . . , Pn)

d1R(c)
,

where Pi is the PDF for the group of observations Xi and c is the dimen-
sion of the euclidean simplex.
• The source probabilistic outlyingness metric (SPO) of a group of obser-

vations Xi with respect to the central tendency among the set of groups
of observations X = (X1, ..., Xn) is defined as:

SPO(Xi) =
d(Vi, C)

dmax(c)
,

where Vi are the euclidean coordinates for the ith−vertex of the simplex,
C is the centroid of the simplex, and c is its dimension.
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2.1.1 Variability visualization methods

The methodology previously explained serves as a way to measure differences
in the probability distributions of the variables among different groups of
observations. A database given can also split by time batches (e.g., months,
weeks, or years), and these methods provide measurements of the differences
of data among these time batches. Some visualization methods based on the
simplex and probabilistic distances provide a graphical way to assess how
data evolve across time. We refer readers to the work of Sáez et al. [5] for
further details:

• Information Geometry Temporal (IGT) Plot. It is a visualiza-
tion of the simplex obtained after the MDS application. The simplex
is projected into the two most relevant dimensions (D1-simplex and D2-
simplex), which allow representing the dissimilarity over temporal batches
as a two-dimensional (2D) plot. Each point of the plot is labeled to show
the batch (date) that the point represents, furthermore the points are col-
ored to facilitate the interpretation (cool colors for winter and warm colors
for summer), and a smoothed timeline path is also provided. Thus, this
visualization method helps in showing temporal trends in data, abrupt
changes (high distance between adjacent time points), recurrent changes
(recursive flow through specific areas), related periods, and anomalies
(outlying points).

• Probability Distribution Function Statistical Process Control
(PDF-SPC) algorithm: It is an adaptation of classical statistical pro-
cess control (SPC) algorithms. It is applied to monitor the variability of
data distribution through consecutive temporal batches. An upper con-
fidence interval of the accumulated distances of temporal batches to a
moving reference distribution (initially the first batch) is computed. The
degree of change of the current time batch to the reference distribution
is classified according to the magnitude of the current confidence inter-
val. The possible states are: in-control (distribution are stable), warning
(distribution are changing), and out-of-control (abrupt change detected
with respect to the reference distribution). When a out-of-control state
is reached, the reference distribution is set to the current. The PDF-SPC
consists of plotting a control chart in which we represent the time batches
on the X−axis and the distances on the Y−axis. The current distance
to the reference, the mean of the accumulated distances, and the upper
confidence interval are plotted for each time batch. If a warning state is
observed, a vertical broken line is drawn, and if a out-of-control state is
detected, a continuous vertical line is drawn.

• Temporal heat map: By representing temporal batches on X axis and
a value (or range of values) on the Y axis, the color at the pixel (x, y)
indicates the frequency at which value y was observed on date x. This
approach also allows the monitoring of how the values of a variable evolve.
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Similarly, a database can be split according to any feature (different to
time, e.g. the origin of data or the hospital service where data was acquired).
A visualization method based on the simplex and the SPO metric provides a
way to assess the differences among any groups of observations [4].

• Multi-Source Variability (MSV) Plot: Just like on IGT-plot, the
simplex is 2D projected. In this visualization, each point is represented
by a circle whose radius is proportional to the number of cases in the
group of observations it represents. The color of the circle indicates the
SPO metric value.

This methodology is used in Chapter 3 to measure the temporal variability
on EHR data from a hospital, in Chapter 4 to characterize differences among
migraine patients with different headache pain intensity and frequency, and
finally, in Chapter 5 to study differences among mammogram histograms.

2.2 Machine Learning

Every ML model is at least composed of two steps, training and validation.
These models usually consist of a set of parameters that are updated during
the training step to fit the problem to be solved. The training step is itera-
tive, and the performance is computed in each iteration to do the parameter
update until a tolerance value is reached. The validation step is typically a set
of samples in which the response is known. This response is used to estimate
the error of the model on the prediction of unseen samples. By monitoring the
validation error, it is possible to avoid problems of particularization, which
provoke the fail to predict future observations reliably. Such errors are known
as overfitting.

The task of an ML model may be categorized according to the desired
output as:

• Classification: The inputs of the models are labeled into two or more
classes. After the training of the model, this can assign unseen inputs to
one of these classes.

• Regression: The output, in this case, is continuous instead of discrete.
• Clustering: A set of inputs must be divided into a priori-unknown group.

According to how the ML model learns, the algorithms may be divided
into two major categories:

• Supervised learning: This kind of algorithm needs the inputs to be
labeled or have a continuous response. The model learns the way to best
infer, according to a predefined performance score, the expected classifi-
cation/response.
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• Unsupervised learning: This type of algorithm learns data patterns
on its own from observations without any associated response.

All the implemented ML models for this thesis contributions were trained
using supervised learning. Classification and regression tasks were performed
using different ML artifacts such as Random Forests (RF), and Deep Learning
(DL).

Without going into greater detail, RF can provide information about what
variables are the most important in the prediction task taking into account
the training samples. Although these features’ importance may decrease by
voting share between the correlated predictor variables, RF is a good option
because of its accuracy, robustness, ease of use, and relative interpretability.
Meanwhile, DL is probably the most powerful artifact in terms of perfor-
mance. Such has been demonstrated in many works of different fields [20–22].
But these DL models are usually applied in a black-box manner, and the lack
of interpretability can mean a major drawback in medical applications [23]. It
has led to the emergence of the Explainable Artificial Intelligence (EAI) re-
search line. Contribution 3 aligns with the EAI topic. It tries to exploiting the
DL powerful performance but proposing a way to interpret the importance
of the variables in the outcome.

Let us give some insights into each of the aforementioned technologies.

2.2.1 Ensemble Learning

Ensemble learning is a set of methods that use multiple algorithms to obtain
a better predictive performance than those that could get from each of the
algorithms alone. During the development of this thesis, we used an ensemble
learning algorithm known as Random Forest (RF). We can understand an RF
as a strong predictor that makes a prediction based on the pooled results of
several weak predictors, and for RF, these weak predictors are Decision Trees
(DT).

2.2.1.1 Decision trees

A DT may be considered as a directed graph G = (V,E) in which any two
vertexes are connected by exactly one path, so all the edges are directed away
from the root. If there exists an edge from v1 and v2 (i.e., if (v1, v2) ∈ E),
then v1 is said to be the parent of v2 while v2 is said to be a child of v1. A
node with no child is known as leaf.

Any regression or classification task f : X −→ Y , may be represented
by a DT. The root represent the whole input space X, and each node vi
represents a subspace of the space represented by its parent Xi ⊆ Xp where
(vp, vi) ∈ E. The set of the children of a node vp is {vc | (vp, vc) ∈ E} and it
is verified that

⋃
Xc = Xp.

The way a node is split into child nodes is under a condition on one of the
space features. This condition is chosen among all the possible conditions on
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the whole set of features based on the concept of node impurity. The lower
node impurity, the better partition of the parent set.

For regression tasks, common metrics to measure the impurity are the
variance, taking the mean squared error (MSE) or the mean absolute error
(MAE). For classification tasks, Gini impurity and Entropy are commonly
used (see the Table 2.1):

Impurity Task Formula

Variance MSE Regression
1

N

N∑
i=1

(yi − µ)2

Variance MAE Regression
1

N

N∑
i=1

|yi − µ|2

Gini Classification

C∑
i=1

fi(1− fi)

Entropy Classification

C∑
i=1

−fi log(fi)

Table 2.1: Impurity formulas. For regression, the number of elements in the set
associated to a node is N , {yi} is the observed target values for the elements of a
node. For classification, C are the set of classes, and fi represents the frequency of
the class i at a node.

These metrics are lower bounded by 0. For classification, both Gini and
Entropy impurity reach a value of 0 if and only if all the elements belong to
the same class. For regression, both MSE and MAE variance is 0 if and only
if all the elements of the node have the same target value.

2.2.1.2 Random Forest

Let us introduce two concepts related to ensemble methods. Given a train-
ing set T = {x1, . . . , xm} with m observations of D features, -i.e. xi =
(xi1, . . . , x

i
D) for each i ∈ {1, . . . ,m}-:

• Bootstrap aggregating (Bagging) is a strategy that provides t new
training sets {Ti}ti=1 of a predefined size m′ < m. These new sets are
uniformly sampled from T with replacement.
• Random Subspace l−dimensional of T provides a new training set

(T ′) with m observations of l < D features. These features are randomly
sampled with replace what allows the repetition of features in the set.

Apply bagging we obtain t new training sets {T1, . . . , Tt} with m′ samples
each set for training an RF model composed of t DTs. Then, we compute
Random Subspace with a predefined number of features l to each of these new
t sets. Finally, we train each of the DTs with one of the t new training sets of
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size (m′, l). If a regression task considered, the result of the RF is the mean or
the median of the DTs’ results, and if classification task, the resulting class
after applying the RF will be the most voted class by the DTs.

This algorithm has many advantages. It can be highlighted that RF works
well with categorical and continuous variables and can handle missing values.
Besides, it does not need data to be standardized and usually is robust to
outliers. Finally, it provides a way to compute features’ importance.

2.2.1.3 Interpretability

Firstly, let us see how to compute the importance of each feature for a DT.
Let vj be the jth node (space Xj), let us name {vji | i ∈ H} (spaces {Xj

i | i ∈
H , Xj

i ∈ Xj , X
j
l

⋂
l 6=k∈H X

j
k = ∅ ,

⋃
Xj
i = Xj}) the set of the children of

the node j, and Ij the impurity of the node j after the model training. Then,
the importance of the node j may be computed according to the following
formula:

NIj = wjIj −
∑
i∈I

wji I
j
i , where wl =

#Xl

#X
.

Let us j represent the nodes splitting by a condition on the feature l, the
importance of the feature l is given by:

FIDTl =

∑
j NIj∑

vk∈V NIk

Once the feature importance have been computed for each DT compos-
ing the RF, the ith-feature importance for the RF model is computed by
averaging its importance among the DTs:

FIRFi =
1

N

N∑
j=1

FI
DTj
i

where N is the number of DTs that compose the RF and DTj represents
the jth DT.

Random Forest is used in Chapter 4 to model the headache intensity in
migraine patients and to assess which variables are the most discriminatory
to classify patients according to its pain intensity.

2.2.2 Deep Learning

Around 1900, David Hilbert presented a famous collection of problems that
set the century mathematics research. The 13th problem considered the pos-
sibility of expressing a function of n variables as the combination of sums
and compositions of two functions of a single variable.
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Kolmogorov (1957), Arnold (1958), and Sprecher (1965) provided proofs
that there must exist such representation. This is known as Kolmogorov-
Arnold representation theorem, and its formulation is that shown in Equation
2.2.

f(x1, . . . , xD) =

2D∑
q=0

Φ

(
D∑
p=1

λpφ(xp + ηq) + q

)
(2.2)

where η and the {λp} are real numbers, and Φ and φ are univariate functions.
Without loss of generality, let us now consider a simple Neural Network

with one hidden layer composed of three neurons (see Figure 2.1). This model
is not considered to be a DL model, but its working is the same and it is a
good choice to introduce the technology.

Fig. 2.1: An example of a simple 1-hidden-layers neural network.

The output of each neuron is the application of a function, called activa-
tion function f that in this case we supposed is the same for all the neurons,
to the sum of the weighted sum of its inputs plus a number called bias. It is
easy to conclude that:

f(x1, . . . , xD) = f

 3∑
j=1

w
(2)
j1 f

(
D∑
i=1

w
(1)
ji xi + b1i

)
+ b2

 (2.3)

where, w and b are the parameters of the model which are randomly ini-
tialized and updated at each training iteration using derivative information.
The similarity between 2.2 and 2.3 equations is evident. In this sense, a neural
network model may be understood as an “easy univariate representation” of a
complex D−dimensional function. The training stage is a numerical method
to fit the model parameters, w and b, to the observations.
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The most typical activation functions are the following:

• Linear function: It ranges [−∞,∞] is 0−oriented and easy to compute.

f(x) = x whose derivative is f ′(x) = 1

• Sigmoid/Logistic function: It ranges [0, 1] is not 0−oriented and its
computation is intensive.

f(x) =
1

1 + e−x
whose derivative is f ′(x) = f(x)(1− f(x))

• Rectified Linear Unit (ReLu): It ranges [0,∞] is not 0−oriented and
its easy to compute.

f(x) =

0 for x < 0

x for x ≥ 0
whose derivative is f ′(x) =

 0 for x < 0

1 for x ≥ 0

• Leaky ReLu: It ranges [−∞,∞] is not 0−oriented but it could be, and
its easy to compute.

f(x) =

αx for x < 0

x for x ≥ 0
whose derivative is f ′(x) =

α for x < 0

1 for x ≥ 0

where α ∈ R− {0}.

The loss function, cost, is a function that quantifies the difference between
the predicted values by the model and the expected ones. This function having
in mind the task to be carried out. For each training iteration, from now on
epoch, the sum of the loss function of all training samples is computed to
obtain the estimation error.

Let it be x = xi
m
i=1 the training samples and y = yi

m
i=1 the observed

values with i ∈ [1, . . . , D] ⊂ N. The estimation error E is given by:

E = cost(x, y)

This step is known as forward step and is the evaluation of the model
over the set of training samples. After this, the backpropagation step begins,
it consists of the minimization of the computed error E by updating the
values of the model parameters {w} and {b} using the derivative information.
Without losing generality, suppose that the activation function is the same
for all the neurons in our model, f .

Let us denote:
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a(1) = {xi}Di=1 is the input layer

z(l)n =

Dl∑
i=1

wina
l−1
i + bl−1i is the nth neuron value at hidden layer l.

a(l) = f

 nl∑
j=1

z
(l)
j

 , where nl is the number of neurons in the layer l.

Using the chain rule, is easy to conclude that:

∂E

∂w
(l)
in

=
∂E

∂z
(l)
n

∂z
(l)
n

∂w
(l)
in

=
∂E

∂z
(l)
n

a
(l−1)
i

∂E

∂b
(l)
n

=
∂E

∂z
(l)
n

∂z
(l)
n

∂b
(l)
n

=
∂E

∂z
(l)
n

1

The local gradient ∂E

∂z
(l)
n

can be easily computed by going backwards

through the different layers. It is known as Gradient Descent (GD). The GD
is applied over the cost function applied to the whole training set meanwhile
Stochastic Gradient Descent (SGD) performs a parameter update for each
training sample. Once all of them have been obtained, the model parameters
are updated according to:

w
(l)
in = w

(l)
in − ε

∂E

∂w
(l)
in

b(l)n = b(l)n − ε
∂E

∂b
(l)
n

(2.4)

where ε is the learning rate and determines the gradient’s influence. It is also
worth mentioning that several adaptative gradient descent algorithms have
been proposed in which the learning rate is also updated at each stage. They
have demonstrated a better convergence than unadaptative algorithms such
as GD and SGD. Examples of these algorithms are Adagrad [24] and Adam
[25]. We refer readers to the original works to extend the information about
such algorithms.

Each forward and backpropagation step is a training epoch, and it is
repeated until a predefined number of epochs or a convergence stop criterion
reached.

These are the basics of how artificial neural networks learn to solve a
problem. Through observations, they are capable of updating their weights
to best fit the loss function wanted to minimize. A wide range of possibilities
are now available, and they are being exploited. Although the literature is
extensive, let us introduce some examples of modern architectures considered
deep learning approaches.
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If the architecture shown in Figure 2.1 is updated by adding some more
hidden layers, the obtained model is known as Deep Feedforward Neural Net-
works (DFFNN) [26], Recurrent Neural Networks are those whose neurons of
the hidden layers receives its output with a fixed delay [27] and by adding to
each neuron two elements called gates that control previously processed in-
formation, neurons can be provided with memory which give rise to the Long
Short Term Memory neural networks [28]. A new convolutional layer provides
a way to extract information from images (e.g. edges, shapes, etc.) by apply-
ing filters. Deep Feedforward Neural Networks are frequently attached to the
final convolution layer for further data processing. These architectures are
known as Convolutional Neural Networks [29] and will be deeper introduced
in the next section.

2.2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are those architectures that use two
operations called convolution and pooling to reduce an image to its essential
features. Typically these features serve to classify the image (usually by the
application of DFFNN after the convolution stages).

An image can be understood as a matrix in which each cell represents
a pixel and contains a number identifying the color. For color images each
cell typically contains a tuple (r, g, b) to describe the intensities of the three
additive primary colors (channels) Red, Green, and Blue (RGB) which repro-
duce the color of the pixel. For gray-scale images, each cell only contains a
number (one channel) identifying the gray intensity. The digital mammogra-
phies which were used in the development of this thesis were a gray-scale. In
this sense, the next explications will be given under starting from a 1-channel
image.

In computer vision, a convolution is an operation where a small matrix of
numbers called kernel or filter is used to transform the values of the image
by recursively applying it to consecutive image windows of the same size of
the kernel, until the whole image covered. Formally, let us denote by I a 1-
channel image and h a kernel, which without loss of generality may suppose
square, of sizes (nI , nI) and (nh, nh) respectively.

Let us introduce two concepts needed to apply a convolution, padding and
strides:

• Padding (p): is the addition of pixels (usually with a value of 0) around
the image to control the output of the image after the application of the
convolution. If we want to obtain an image with the same size as the
input, p pixels should be added at each border:

p =
nh − 1

2
, where nh is the kernel dimension.

Previous equation is under the assumption of having a stride of 1.
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• Stride (s): is other concept to control the size of the output of the con-
volution operation. It refers to the number of pixels shifted when a new
image window is selected to apply the kernel. To ease the understanding,
we will suppose the horizontal and vertical strides are the same. The di-
mension of the convolution output matrix, with p padding and s stride,
is given by:

nout = 1 +
nI + 2p− nh

s
.

Once the previous concepts defined, the result of the convolution by the
kernel h applied to the image f , with padding p and stride s, will be a matrix
G of size (nout, nout) where the pixel of the row r and column c obtain the
value:

G[m,n] = (f ∗ h)[m,n] =

nh∑
i=1

nh∑
j=1

h[i, j]f [m− i, n− k]

It should be noted that many times, pooling layers are used to reduce
the dimensions of an image after a convolution. The most typical pooling
layer is the maxpooling, which covers the image using disjoint windows of
size (nm, nm), the resulting matrix of size ( nInm ,

nI
nm

) will be composed of the
maximum value obtained in each window.

A convolutional layer is composed of a set of convolutions to which an
activation function f is applied after adding bias. Making the comparison
with Equation 2.3 of section 2.2.2:

• The weights w are the kernels h. The cell values of each kernel will be
updated during the training stage.
• The operation (

∑
) of each neuron of the conventional neural network is

replaced by the convolution. The output of a neuron was a number, and
CNN is a matrix.
• The bias for each convolutional layer will be a vector of matrices instead

of a vector. This vector of matrices will be composed of as many matrices
as kernels the convolution had. After making the sum of each convolution
to its bias, the activation function is applied to each matrices element.

The training is similar to the artificial neural networks explained at the
beginning of the section. The forward step goes transforming the image across
convolutions. When the final of the model is reached, the loss function is
evaluated and the derivative information is backpropagated, updating the
kernel values to obtain the best images representation to solve the task in
hand.

A deep architecture where not all the hidden layers were connected used
to model a task in Chapter 6 and Chapter 7. Chapter 5 provides a variation
of a convolutional neural network to learn breast segmentation parameters as
intrinsic features of the image.
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2.3 Graphs

In the domain of mathematics, physics, and computer science, graph theory
is the study of graphs, which are structures to model relationships between
individuals. This field has raised the interest of many great scientists, we
refer readers to the Euler’s Seven bridges of Königsberg [30] to understand a
classical problem to be solved with graphs.

Formally, a graph is a pair G = (V,E) where:

• V = {vi}ni=1 is the set of vertexes.
• E = {(v1, v2) ∈ V × V } is the set of edges.

If the edges have not orientation, i.e. if (v1, v2) ∈ E then v2 can be reached
by v1 and v1 reached by v2, then the graph is said to be undirected. If the
graph presents oriented edges, i.e. if (v1, v2) ∈ E implies that v2 can be
reached by v1 but not vice versa, then the graph is called directed.

Furthermore, the edges can have a weight associated, this weight is a way
to quantify the relation between two vertexes. The graphs whose edges have
a weight associated are known as weighted graphs and are represented as
G = (V,E,W ), where W = (wij) | i, j ∈ 1, . . . , n is a n × n-square matrix
and a specific element of this matrix wij is the weight between the vertexes
vi and vj . If (vi, vj) /∈ E then wij = 0.

An edge e ∈ E is a loop if e = (v, v) with v ∈ V , and two edges that have
the same origin and end vertexes are said to be parallel. A graph is simple if
it has no parallel nor loop edges and those graphs with only one vertex are
denominated as trivial graphs.

The vertex v2 ∈ V is adjacent to v1 ∈ V if they are connected by an
edge, i.e. (v1, v2) ∈ V . It is important to note that in undirected graphs v1
and v2 would be adjacent each other. Besides the edge (v1, v2) ∈ E is said
to be incident to vertexes v1 and v2 for undirected graphs, and incident to
v2 for directed graphs. It is important to note that two edges e1 = (v11, v12),
e2 = (v21, v22) ∈ E are adjacent if they share a common vertex:

• v12 = v21 for directed graphs.
• v1i = v2j where i, j ∈ {1, 2} for undirected graphs.

The neighborhood of a vertex v, N(v) is the vertexes adjacent to e, i.e.
N(v) = {u ∈ V, where (u, v) ∈ E for directed graphs, (u, v) ∈ Eor(v, u) ∈
E for undirected graphs}. Thus, the degree of a vertex v is defined as the
number of vertexes in its neighborhood, d(v) = #N(v).

It said to exist a path between two vertexes v1, v2 ∈ V if there is a set
of edges joining v1 to v2, i.e. p = {(v1i, v2i) ∈ E with i ∈ 1, . . . ,m, v11 =
v1, v2m = v2, and v1(j+1) = v2j for 1 ∈ 1, . . . ,m− 1. The distance between
two vertexes, d(v1, v2), is the shortest path between both vertexes. If {pk =
{(vlki , v2ki)}} is the set of paths between v1 and v2, then:
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d(v1, v2) =


mink #pk for undirected graphs

mink
∑#pk
ki=1 w1ki2ki for directed graphs

The eccentricity of a vertex v, ε(v), is the maximum distance to any vertex
from v, i.e. ε(v) = maxu∈V d(v, u). While the radius of the graph G is the min-
imum eccentricity of any vertex, r = minv∈V ε(v) = minv∈V maxu∈V d(v, u),
the diameter of the graph G is the maximum eccentricity of any of its ver-
texes, r = maxv∈V ε(v) = maxv∈V maxu∈V d(v, u). Finally, the betweenness
centrality of a vertex v is:

g(v) =
∑
s6=v 6=t

σst(v)

σst
,

where σst is the number of shortest paths from vertex s to vertex t, and σst(v)
is the number of shortest paths from vertex s to vertex t passing through v,
and is a measurement of the importance of the vertex v inside the graph.
And the betweenness centrality of a edge e is:

g(e) =
∑
s 6=t

σst(e)

σst
,

where σst(e) is the number of shortest paths from vertex s to vertex t.

Community detection

Given these notions on graphs, let us develop a brief on community detection
in graphs, which will be extended in Chapter 7.

A community can be defined as a subset of vertexes that are densely
connected to each other and loosely connected to other communities in the
same graph. Recent literature uses this technology to solve a wide variety of
problems [31–33], and we encourage readers to read the work of Fortunato
[34] since the number of algorithms to find communities is extremely high.

The community detection algorithm may be classified as graph partition-
ing or heuristic algorithms and hierarchical clustering, which in turn may
classified as Divisive clustering and Agglomerative clustering.

The algorithms for graph partitioning consist of dividing the vertexes
into k groups of a predefined size. Once fixed the number of elements in each
community, it is minimized the number of edges between vertexes of different
communities. The number of edges running between clusters is called cut size.
A classical example of one of these algorithms is the Kernighan-Lin algorithm
[35].

The other general approach to deal with community detection in graphs is
hierarchical clustering. It is based on the identification of groups of vertexes
showing a high similarity. Hierarchical clustering algorithms are said to be
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divisive if clusters are iteratively split by removing edges connecting vertexes
with low similarity, while the agglomerative hierarchical algorithms are those
which the clusters are merged if their similarity is sufficiently high.

An example of a divisive algorithm is the Girvan and Newman algorithm
[36], which is an iterative algorithm that removes the edge with the highest
betweenness centrality until no edges remain. The result of this algorithm is
a dendogram with a hierarchical structure of vertexes. In order to obtain the
best community partitioning, it is sufficient to calculate a quality measure to
each partition and select the one with the highest quality value.

One of the most widespread quality measure for graph partitioning is the
modularity, that will be explained in Chapter 7.

Finally, an example of an agglomerative hierarchical algorithm is the Lou-
vain algorithm [37]. This algorithm starts considering each vertex as a com-
munity, and iteratively updates the communities by merging to each commu-
nity other community which maximizes the modularity of the graph in each
iteration (if exists) until a predefined level of modularity is reached.

Blondel’s community detection algorithm was used to automatically infer
the architecture of a deep learning model in Chapter 7.
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Abstract.

Objective: To evaluate the effects of Process-Reengineering inter-
ventions on the Electronic Health Records (EHR) of a hospital over
7 years.

Materials and methods: Temporal Variability Assessment (TVA)
based on probabilistic data quality assessment was applied to the
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historic monthly-batched admission data of Hospital La Fe Valencia,
Spain from 2010 to 2016. Routine healthcare data with a complete
EHR was expanded by processed variables such as the Charlson Co-
morbidity Index.

Results: Four Process-Reengineering interventions were detected by
quantifiable effects on the EHR: (1) the hospital relocation in 2011
involved progressive reduction of admissions during the next four
months, (2) the hospital services re-configuration incremented the
number of inter-services transfers, (3) the care-services re-distribution
led to transfers between facilities (4) the assignment to the hospital
of a new area with 80000 patients in 2015 inspired the discharge to
home for follow up and the update of the pre-surgery planned ad-
missions protocol that produced a significant decrease of the patient
length of stay.

Discussion: TVA provides an indicator of the effect of process reengi-
neering interventions on healthcare practice. Evaluating the effect of
facilities’ relocation and increment of citizens (findings 1, 3-4), the
impact of strategies (findings 2-3), and gradual changes in protocols
(finding 4) may help on the hospital management by optimizing in-
terventions based on their effect on EHRs or on data reuse.

Conclusions: The effects on hospitals EHR due to process reengi-
neering interventions can be evaluated using the TVA methodology.
Being aware of conditioned variations in EHR is of the utmost im-
portance for the reliable reuse of routine hospitalization data.

Keywords: Temporal Variability Assessment, Process Reengineering
indicator

3.1 Background and significance

3.1.1 Introduction

A business process is defined as a structured set of activities performed in
any organization for the description of the logical order and dependence of
the processes carried out [38]. In healthcare organizations, business Process
Reengineering means improving organizational performance by process or
information system redesign, covering the needs of healthcare institutions
[39–44]. Business process redesign has been applied in many healthcare sys-
tems such as pharmacies [45] and emergency departments [46] to increase
their efficiency since they are now under pressure all over the world [47]. The
authors of the review [48] showed that many of the studies that address the
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promotion of business process reengineering in the health sector are related to
the reduction in the length of hospitalization or the help with organizational
change and how this promotion may drive the development of similar actions,
that seek to improve the quality of the services offered, in other organizations.

The data used to evaluate the population’s health underlies the effects
of the decision-making processes that rely upon these data [49]. When as-
sessing data quality in health systems, one of the most commonly examined
dimensions is timeliness [49, 50], which are considered to be an extrinsic data
quality concept influencing fitness-to-use features [9, 12].

Our aim was to make a descriptive and retrospective analysis about the
process reengineering interventions influence on EHR, and to analyze how
these interventions might have influenced hospital activities focusing on the
potential technical knowledge which may be extracted from data. The TVA
methodology was applied to a database that collects information on admis-
sions to the Hospital Universitario y Politécnico La Fe (HFE) in Valencia
between January 2010 and December 2016.

As will be discussed in Section Discussion, many works in recent literature
are usually centered in one process and measures how well the intervention
is working. Meanwhile, this study count on the main objective of applying a
well-documented methodology for the evaluation of temporal variability [4,
5, 51, 52] based on Information Geometry, not only to measure the influence
of one process reengineering intervention but also to automatically detect
interventions through data distributions.

3.2 Materials and Methods

3.2.1 Ethics

This study did not involve any risk or changes to the healthcare services
to patients and did not alter their regular intervention and treatment. Only
authorized persons obtained data from electronic health records. They main-
tained the privacy and security of patients’ personal information by encoding
their identity with dissociated non-traceable codes. This research was car-
ried out in accordance with the International Guideline for Ethical Review
of Epidemiological Studies [53] and the Biomedical Research Ethics Commit-
tee of the HFE [54], which approved the study protocol on October 10th,
2017 under the name “ANÁLISIS DE LA CALIDAD Y VARIABILIDAD
DE DATOS MÉDICOS” (Registration Number 20170482).

3.2.2 Materials

The study considered the hospitalization data repository of the HFE, in Va-
lencia, Spain, including 108347 admissions from 2010 to 2016. The HFE co-
ordinates all public healthcare services provided by La Fe Valencian Health
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Department, from primary to tertiary care, covering 300000 inhabitants di-
rectly and adding up to 515000 persons from the catchment area. The HFE
is the biggest reference hospital in the Comunitat Valenciana and the fifth
largest in Spain. The HFE department is composed by the HFE (with 1000
beds approx.), the health center of Campanar, located in the old facilities
of the HFE, the specialty center Ricardo Trènor Palavicino and 20 primary
health centers. The health department is met by a team of more than 7000
people, that includes more than 1100 doctors, 400 Internal medicine residents,
3800 positions of different nursing areas and 1,500 people for management
and general services.

The repository includes healthcare information on each hospital admission
of the overall population during the aforementioned period. After gathering
the data, we excluded the episodes of isolated patients, i.e. those who did
not belong to the HFE department (for example tourists who are visiting
the city), because of the possibility of missing significant information for
the study, such as 30-day unplanned readmission or the diagnosis of chronic
diseases prior to the date of admission.

Before conducting the TVA, a preprocess was carried out on some admin-
istrative and clinical variables. The original dataset was completed with some
aggregate and processed variables, including the age of the patient which was
computed as the difference between the admission date and their birth date,
the Charlson comorbidity index score [55] that was calculated using updated
weights from Schneeweiss, [56] and the ICD-9-CM coding, as proposed by
Quan, [57]. This score was calculated by adding 1 point for the patient’s his-
tory of acute myocardial infarction, peripheral vascular disease, cerebrovascu-
lar disease and diabetes without complications; 2 points for congestive heart
failure, chronic obstructive pulmonary disease, mild liver disease, diabetes
with complications and malignancy; 3 points for dementia and renal disease;
4 points for moderate-to-severe liver disease and HIV infection; and 6 points
for metastatic cancer. This score was calculated using another repository that
included the ICD-9-CM code for each diagnosis of chronic disease recorded
in the HFE.

The list of variables considered is shown in Table 3.1. Extra information
on the materials can be found in the S1 Appendix.
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Variables Description Type(values/format)

Sex Sex of the person Discrete (Male, Female)
Age Age in years at the time of the admission Numerical Integer

AdmissionServiceCode Code of the service of hospitalization
Discrete 4-length

alphanumeric code

RealServiceCode Code of the service related to the episode
Discrete 4-length

alphanumeric code

DischargeServiceCode Code of the service which discharged the patient
Discrete 4-length

alphanumeric code
AdmissionReason Reason for hospital admission Discrete (See S1 Appendix)

DischargeDate Date of patient discharge Date (yyyy/mm/dd)
DischargeTurn[1,2,3] Discharge shift Discrete

DischargeReason Reason for patient discharge Discrete (See S1 Appendix)
DischargeDestination Destination after patient discharge Discrete (See S1 Appendix)

DischargeBefore12 Discharge before 12:00 noon Discrete (Yes, No)
Exitus Death of the patient during hospitalization Discrete (Yes, No)

Exitus48
Death of the patient within two days after

Discrete (Yes, No)
hospitalization

HospitalTransfer Existence of hospital transfer Discrete (See S1 Appendix)

LengthOfStay
Length of stay of hospitalization episode. It is

Numerical Integermeasured by the number of nights that the
patient was admitted

Intervention Surgical Intervention Discrete (Yes, No)
PreoperatoryStay Length of stay before the intervention Numerical Integer

Readmission30
Was the patient readmitted during the 30 days

Discrete (Yes, No)
after discharge?

CharlsonIndex Charlson comorbidity index for hospitalization Numerical Integer

Table 3.1: List of variables contained in the study case. The shift in which
the patient is admitted and discharged is coded as 1 for the morning (from 8:00
am to 3:59 pm), 2 for the evening (from 4:00 pm to 11:59 pm) and 3 for the night
(from 0:00 to 7:59 am)

3.2.3 Methods

3.2.3.1 Theoretical Background

A systematic TVA methodology based on probabilistic data quality control
was applied [5, 18, 58]. This methodology uses methods based on Information
Geometry [16, 59] which provide a way for the comparison of dissimilarities
between probability distributions of different temporal data batches.

It firstly consists of modeling Probability Density Functions (PDF’s) -in
our case, it was made by the use of Kernel Density Estimation [60]-. The
Jensen-Shannon distance (JSD), which is a symmetrized and smoothed ver-
sion of the Kullback-Leibler divergence [61, 62], provides a way to measure
how different the non-parametric PDF’s are.

The space in which each point represents one PDF and the distance be-
tween two points is that defined by the aforementioned distance, forms a
simplex and is known as statistical manifold and possesses good mathemati-
cal properties [16].

This function representation allows us, for example, to compute the cen-
troid of the PDF’s and to apply projection methods, such as Principal Com-
ponent analysis [63] or Multidimensional Scaling [64, 65]. These artifacts,
as can be seen in Figure 3.1 where a short artificial experiment was driven



40 3 Journal article (i)

to yield a simple proof of concept, give us the possibility of quantifying the
dispersion and making space representations as a graphical way to detect
variability. The exploratory methods provided by the methodology are:

• Information Geometry Temporal (IGT) plot: This presents a vi-
sualization of the temporal evolution of data. Temporal batches are laid
out as a 2D plot while conserving the dissimilarities among their distri-
butions. The IGT plot helps to reveal temporal trends in the data (as
a continuous flow of points), abrupt changes (as an abrupt break in the
flow of points), recurrent changes (as a recursive flow through specific ar-
eas), conceptually related time periods (as grouped points) and punctual
anomalies (as isolated outlying points). Temporal batches are also labeled
to show their date. They give seasonal information by means of colored
labels (warm colors for summer and cool colors for winter) and are sup-
ported by a smoothed timeline path joining them [18]. The Density-based
spatial clustering of applications with noise (DBScan) [66], was applied
to the IGT plot using the median of the JSDs as grouping coefficient in
order to automatically find temporal groups.
• Probabilistic Statistical Process Control (PDF-SPC) algorithm:

The purpose of PDF-SPC is to monitor the degree of change in data
variability distributions throughout consecutive temporal batches (in our
case months), to a moving reference distribution -initially the first batch.
According to the magnitude of the current change, measured by the JSD
with respect to the reference distribution, the degree of change of the
repository is classified into three states: in-control (distributions are sta-
ble), warning (distributions are changing), and out-of-control (recent dis-
tributions are significantly dissimilar to the reference, leading to an un-
stable state and yielding a change in the reference distribution). When
an out-of-control state is reached, a significant change is confirmed and
the reference distribution is set to the current one for subsequent com-
parisons. The warning and out-of-control states are represented as broken
and continuous vertical lines, respectively.
• Temporal Heat Maps: Temporal Heat maps show the absolute or rel-

ative frequencies over time. The Temporal Heat map of a variable is a
2D plot in which the X-axis represents the time, the Y-axis represents
a possible data value or range of values of the variable, and the color
of the pixel at a given (X, Y) position indicates the frequency at which
value Y was observed on date X. These heat maps facilitate a rapid broad
visualization of the evolution over time of the values of the given variable.

The TVA methodology consists of using these methods iteratively. In a
top-down approach, we start by analyzing the temporal variability of the com-
plete monthly-batched data set. We then drill down to the specific variables
or groups of variables which best explain the variability detected, according
to the results of the analysis and prior knowledge of the repository.
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Fig. 3.1: Technical diagram. The TVA methodology is based on information ge-
ometry. A short artificial experiment taking 4 temporal batches (only 4 batches
were taken to ensure that the simplex could be represented in three dimensions)
was drawn with the purpose of clarifying the concept. A) represents the generated
artificial database in which binary, quantitative and continuous variables cope with.
B) is the PDF representation. C) shows the simplex in which each point represents
the PDF of one batch and the bigger black point represent the centroid of the
simplex (the distance from each batch to the centroid serves as a dispersion mea-
sure). D) is the IGT-plot, in studies with more batches is one way to graphically
represent the variability among the batches and to apply clustering methods to
automatically detect temporal patterns, it must be noted that the color changes
from previous representations to simulate the seasonal color mapping. E) shows
the PDF-SPC, since the database was designed to present high variability, all the
batches are “out-of-control”. Finally, F) presents the heatmap of the concatenated
batches distributions which allows monitoring temporal pattern changes.

3.2.3.2 Working methodology

This study was carried out by a multidisciplinary team of professionals from
various fields: the technical background was provided by a computer scientist,
a statistician, a mathematician, and specialist physicians whose expertise is
the PR and the management of the hospital.

The study protocol was divided into two stages: in the first changes were
detected and in the second one, they were analyzed and their causes were
searched.

An overview of the study protocol is shown in Fig 2, in which the itera-
tive protocol used for the detection of process reengineering interventions is
described.
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Following the previously described TVA methodology, we start by con-
sidering the whole multivariate dataset grouped by monthly batches under
the assumption that PR interventions may imply an impact on EHR. This
is intended to detect different data behavior patterns (see A) in Figure 3.2).
Secondly, the same methodology was applied to the detected temporal data
changes with a univariate approach to identify the variable, or set of vari-
ables, that could have influenced the observed global change. Subsequent
automatic iterations for each variable may identify more univariate pattern
changes which could have been smoothed due to multivariate batches with
a greater global impact. These iterations can also detect interactions in the
variables produced by changes in one variable (see B) in Figure 3.2).

Fig. 3.2: Work-flow diagram. Multivariate analysis is able to discover changes
driven by the global probabilistic variability A). The obtained findings drive us to
make the univariate analysis with the purpose of explaining the aforementioned
changes B). It is worth mentioning that this step detects smoothed changes which
had been covered by more abrupt global differences. Step C) is the evaluation of
the interventions which provoked the data change and their implications. Finally,
this evaluation could serve as the starting point for the implementation of PR D).
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3.3 Results

We provide the description of how the proposed methodology was able to
detect the effects, through data analysis, of the process reengineering inter-
ventions which will be shown in Section 3.4.1. The list of findings mapped to
the PR interventions carried out in the hospital in that period is shown in
Table 3.2 in which the numerical evidence was added.
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In Figure 3.3 it can also be seen that the HFE probably suffered at least
one important change in late 2010 (F1) and early 2011 (F2) that caused an
abrupt change in all the monthly variable distributions, another significant
event can be detected at mid-2013 (F3) where a density condensation may
be observed on the top of the maximum-frequency band. Finally, at the be-
ginning of 2014 (F4), an atypical month is detected, this month is followed
by temporal patterns that had not been observed before and that led to an
increment of the frequency from early 2015, 2015 January is detected as an
outlier in the right down picture in Figure 3.3.

The univariate methodology was used in pursuit of an explanation for
these changes. The changes can be explained by almost all the variables.

Figure 3.4 shows that the variables which store the admission, real and
discharge service of each hospital episode explain F1 and F2. The configura-
tion of the hospital services may also explain Finding F3. The PDF-SPC’s of
the services configuration is shown in this figure.

After removing the cases prior to March 2011, the same methodology was
applied in order to avoid the non-detection of findings by the smoothing,
which could have caused the abrupt changes prior to this date. As already
mentioned, the changes previous to March 2011 had an impact on the whole
set of variables.
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Figure 3.5 shows the PDF-SPC, IGT Plot and its DBscan clustering for
the variable DischargeDestination, showing the change of the discharge policy
introduced between early-mid 2013 and mid-2016 which will be discussed in
the next Section. This change is probably related to Finding F3 and will be
referred to as Finding F5 (F5 is a new milestone -understanding milestone
as different data distribution pattern- detected by applying the univariate
methodology. The emergence of new milestones can be seen in Figure 3.2.
Two temporal clusters were found.

Fig. 3.5: PDF-SPC (top figure), IGT plot (left down figure) and its clus-
tering by DBScan (right down figure) of the variable which records the
method of patient follow-up after discharge (DischargeDestination). The
analysis of this variable shows new evidence for Finding F3 as well as a new Finding
F5 (a new milestone is detected as mentioned in Figure 3.1 which probably was not
detected by the multivariate analysis due to the higher hospitalizations from 2015
January.

The exploratory PDF-SPC visualizations, IGT Plot and its DBscan clus-
tering for the LengthOfStay variable are shown in Figure 3.6, where a varia-
tion in the patients’ average length of stay in early 2014 can be seen correlated
with Finding F4. The histograms of this variable show an increase of 1-day
stays with respect to 2 and 3-day stays (see S7 Figure).

The number of annual hospital admissions is shown in Table 3.3. It can
be seen that the number of patients increased significantly from 2015 and
this could have caused the change detected in the multivariate analysis (see
Figure 3.3).
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Fig. 3.6: PDF-SPC (top figure), IGT plot (left down figure) and its clus-
tering by DBScan (right down figure) of the variable which measures the
number of hospitalization days (LengthOfStay). A change in the length of
stay occurred in early 2014, related to Finding F4 was discovered in the multivariate
analysis.

Year Number of admissions
2010 14706
2011 12969
2012 14212
2013 14459
2014 14259
2015 18063
2016 19643
Total 108347

Table 3.3: Hospital admissions flow. Number of patients admitted per year

3.4 Discussion

Healthcare organizations are constantly forced to increase the quality of care
while maintaining an optimum use of resources [39, 42]. Therefore, managerial
decisions, which are routinely taken in a business environment, are constantly
influencing data distributions. These decisions may imply temporal variability
inherent to the data. In this field, the impact may not only be on the hospital
management, but also on the regular population health and on the perception
of its quality [67, 68].

There exist some approaches to carry out the assessment of process reengi-
neering interventions on literature. The authors of [69] propose a methodology
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based on process-mining to measure the organizational changes in the stroke
emergency process. The assessment was performed by the use of PALIA [70].
One of the most powerful tools for process-mining is PROM [71] which covers
a wide range of process-mining algorithms such as α-algorithm [72], genetic
process-mining [73] or Heuristic Miner [74].

The present study searches something similar but is based on a consis-
tent methodology driven by the variations of PDF applied to a health service
dataset with the purpose of studying the effect of PR interventions on data.
This methodology is used to monitor data distributions through time, becom-
ing a way for “real-time” detection of the impact of management decisions
and process reengineering interventions on hospital activities as well as find-
ing undesired factors or effects [75]. We think that the principal Impact of
our methodology is its global applicability when compared to the aforemen-
tioned approaches. These approaches are usually centered on one process
and measures how well the intervention is working. Meanwhile, the proposed
methodology provides the capability of detecting the own interventions by
the multivariate iteration and its influence (not only direct but also indirect)
in other related processes by the univariate iteration.

Besides, another contribution is that the detection of data distribution
changes can lead to the improvement of future decisions and research work,
for instance, a 30-day readmission model or the development of longitudinal
studies could be better built from the prior knowledge of the findings of our
study.

Although some of the milestones that have been detected are not the
result of process reengineering, but rather are specific daily situations that
influence the operation of the hospital. These milestones have been taught
because we believe that these situations could motivate one or more inter-
ventions in terms of process reengineering. We also remark that HFE experts
in PR analyze the impact on hospital management as well as on the regular
patient population’s health by exploring the reasons and the effects on hospi-
tal activities of decisions already taken (see C) in Figure 3.2). Although the
following is outside the scope of this work, the results of this analysis may
help to identify indicators which could be the input for further PR decisions
(see D) in Figure 3.2).

A list of the process reengineering interventions, contributions, limitations
and lines of future work are given below.

3.4.1 Process reengineering interventions

The process reengineering interventions carried out by the hospital managers
and their motivation are presented in chronological order with the purpose
of correctly interpreting the findings, shown in Section Results, that the ex-
ploratory method applied was able to detect.
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3.4.1.1 Hospital relocation (I1)

The HFE relocated to new facilities between December 2010 and February
2011, which involved a progressive reduction of admissions that lasted while
the intervention finished, the time when hospital activity recovered. The re-
location protocol was the following:

• The Outpatient Department was relocated on November 2010. The first
allergy, dermatology, internal medicine, and infectious disease consulta-
tions took place on November 29th (finding F1).

The remaining areas were progressively moved from lower to higher lo-
gistical complexity. Finishing with the transfer of the most delicate areas as
follow:

• Maternity and Child Health was transferred on February 13th, 2011,
moving 81 children and premature babies and 11 pregnant women and
recently delivered mothers (finding F2).

• The adult hospitalizations area was relocated on February 20th, 2011,
with 158 adults (finding F2).

Consequently, after December the admission-patient typology became ur-
gent profiles (see S1 and S2 Figures). The admission of patients with a higher
age and comorbidity index was caused by the relocation since this type of
patient frequently has a serious illness and requires more urgent resources.
The number of interventions decreased, as allowed for in the managers’ plan-
ning (see S2 Figure). After opening the new facilities, more hospital transfers
were (see S3 Figure) needed and the information system was changed. The
admission planning taken by the hospital management for the relocation was
quite similar to the interventions adopted during the summer months, in or-
der to allow for staff holidays, which can also be detected by the seasonality
in the data.

3.4.1.2 Services re-configuration (I2)

At the beginning of 2011 (Finding F2) and closely related to the previous
point, the services were restructured (see S4 Fig) when the old facilities com-
posed of four hospital centers were combined into one. The services were
reorganized into clinical management areas and a committee for the approval
or rejection of changes in service configuration was created.

3.4.1.3 Care services distribution (I3)

Despite the abovementioned relocation, some of the patients were still treated
in the old facilities, as in the case of chronic patients, since it was decided
to send them to the old facilities for patient follow-up at the beginning of
2013. This intervention involved a new service re-structuring and a higher
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percentage of patients were sent to their general practitioner in detriment of
those discharged home for follow-up (finding F3, see Table 3.2). This situation
was temporary due to the closure of the previous chronic unit in mid-2016
(finding F5, see Table 3.2), which meant more patients were monitored at
home. A higher quantity of resources, therefore, had to be allocated to this
end (see S5 Figure). Figire 3.3 served to detect this intervention and allowed
us to suspect that a new cluster would probably have appeared from mid-2016
if the following months had been added to the dataset.

3.4.1.4 Changes in the pre-surgery admission protocol due to the inclusion
of patients from another hospital (I4)

Another important intervention adopted by the hospital management in 2015
was due to prior knowledge of the assignment to the HFE of approximately
80000 patients (now the hospital covers around 280000 inhabitants when
before were approximately 200000 citizens) previously assigned to another
Valencian Hospital, the Hospital Doctor Peset (finding F4). The uptake of
this population was expected to initially cause an increase of 50 daily urgent
admissions, progressively rising to 70. For this reason, three actions were
taken, in which we can also find some of the findings previously detected by
the methodology:

• A new surgical admissions unit was created to assess patients to be hos-
pitalized.
• The number of beds assigned to home hospitalization was increased (see

S6 Figure) to cover two more areas (Pediatrics and Neonatology) (previ-
ously chronic, mental health and pediatric oncology patients).

The pre-surgery planned-admission protocol was updated in early 2014.
Whereas before this intervention, patients were admitted the night previous
to surgery, they were now admitted on the morning of the intervention and
they had a bed ready at midday after daily patient discharges. This meant
an increase of the daily bed-occupation in the hospital and also on patient
satisfaction, due to the shortening of the stay. The isolation of January 2014
in the multivariate analysis (see Figure 3.3) was probably caused by this
change.

3.4.2 Discoveries and possible particular contributions

Time is a factor which has been studied as part of data quality dimension,
generally leading to dimensions such as timeliness, currency, volatility, con-
cordance or comparability [76–80]. Some of the data quality dimensions are
used for validation of the quality of care [81]. The general contribution ob-
tained by the TVA proposed is the use of the assessment of a data quality
dimension in the monitoring of the interventions carried out by the hospital.
For each intervention we want to highlight:
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• I1. The relocation of the hospital. More than 1800 professionals were
involved in the operation and 40 ambulances were needed for the transfer.
The data suffered a great impact, both multivariate and univariate (see
Section 3.3 and S1, S3 Figures) an the impact on the whole set of variables
was monitored by the TVA proposed in the present study. The impact on
the variables was produced not only in the expected ones. In this sense,
the TVA monitoring may provide an added value when is used as a tool
for “real-time” detection.

• I2. Services reconfiguration due to changes in hospital management poli-
cies by logistic relocations (see Section 3.4.1.2). Some changes in services
and treatment areas occurred during the study period. In addition to its
capacity for management process control, our proposed methodology can
reveal information and subsequent considerations to help in data reuse,
for example for prediction purposes as well as for observational studies
involving the comparison of different services during a period of reduced
data quality.

• I3. Reconfiguration of care areas due to PR decisions (See Section
3.4.1.3). After a logistic relocation, the hospital activity probably suf-
fered several unexpected difficulties. These difficulties led to PR decision-
making that can be monitored by the proposed TVA which may be useful
to create “PR effectiveness indicators” to be used as a background for
future interventions.

• I4. The inclusion of 80000 patients from another Valencian Hospital. It
would have produced a hospital overcrowding if the interventions (de-
tected by the proposed approach) had not been taken. The most im-
portant intervention produced an increase in the percentage of surgeries
carried out on the day of admission, rising from 0% to 75%, avoiding a
collapse due to an increase in the percentage of beds occupied, which rose
to 97% from the previous 82%. It is worth mentioning that one of the
challenges in the rise in the number of patients was the integration of
computer data into the Business Intelligence used by the hospital. The
knowledge of both the increased population assigned to the HFE and the
pre-surgery planned-admission protocol change may influence the corre-
sponding data for descriptive or research purposes.

3.4.3 Limitations

One of the principal advantages of the TVA methodology used here is its
capacity to analyze a great number of variables in a single iteration. This may
also influence the loss of information about what is happening and where at
a higher granularity, implying the need for knowledge in the field of study.
For instance, finding 4 presented in Section Results firstly was considered as
two findings, the hospital PR expertise was needed to understand the scope
of the intervention associated with this finding.
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Using a single-component PCA reduces the dimensionality of the itera-
tion of the multivariate analysis and may smooth other discoveries with less
impact in global terms, making the univariate iteration necessary not only
to explain but also to detect. The use of other non-linear reduction meth-
ods such as t-distributed Stochastic Neighbor Embedding [82] or machine
learning approaches [83, 84] may have a better fit in certain cases and also
contribute in the pursuit of interactions between variables.

Faulty healthcare processes are one of the main causes of practitioners
making technical mistakes [85], can compromise patient safety and even cost
lives [86]. However, in this study, we did not focus our attention on detect-
ing processes for improvement, which is another possible application of the
methodology for healthcare management.

3.4.4 Future work

In line with the present study, and to overcome the limitation mentioned
above, we aim to develop an automated algorithm that can suggest the origin
of the multivariate changes in terms of a set of implicated variables or their
interactions.

3.5 Conclusions

Temporal variability in EHR may be considered as an intrinsic data quality
feature due to its implications for data reuse. In this work, we have demon-
strated how data changes over time and how the statistical distributions of
EHR are biased by clinical and management PR interventions in the case of a
Valencian hospital over seven years. Analyzing the temporal data variability
by means of TVA has the potential not only to detect but also to monitor
Big Data hospitalization resources, in order to improve the assessment of PR
in healthcare systems.

Acronyms for months

Jan: January, F: February, m: March, a: April, M: May, j: June, J: July, A:
August, S: September, O: October, N: November, D: December.
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3.6 Supplementary material

S1 Appendix

This document presents the consort diagram for the data base considered for
this study, the tables needed for the comprehension of the multi-category vari-
ables -understanding multi-category variables with more than three options-.

Data base description

1. Consort Diagram

Fig. A1: Consolidated Standard Reporting Trials (CONSORT) flow diagram of the
case study of the HFE hospitalization data base.
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2. Dictionaries

Service codes. Used for the variables AdmissionServiceCode, RealSer-
viceCode and DischargeServiceCode:

Code Description Code Description Code Description

HUDO Pain unit HURO Urology HREI Child rheumatology
HPSA Adolescent psychiatry HHEM Hematology and hemotherapy HCGI Pediatrics surgery
HREU Rheumatology HCCV Cardiovascular surgery HUTA Eating disorders unit
HORP Orthoptics and pleoptica HTRA Traumatology HRTE Radiation oncology
HDII Child Digestive HNAI Child pneumology and allergies HCMX Maxillofacial surgery

HMUR Short stay unit HCG2 General surgery and digestive system II HSEP Septic unit
HECI Child endocrinology HNEN Neonatology HCDG Digestive surgery
HNCI Child neurosurgery HCUR Curietherapy HCPI Child plastic surgery
HCVI Child cardiovascular surgery HUHP Hepatobiliopancreatic HPED General pediatrics
HRXD Radiology HMIN Internal medicine HALI Child allergy
HRQU Burn care resuscitation HOFT Ophtalmology HCAR Cardiology
HGIN Gynecology HONI Child oncology HQUE Burn care
HUEG Esophagogastric surgery HCTO Thoracic surgery HSII Child psychiatry
HREP Reproduction HCIR General surgery and digestive system HMNU Nuclear medicine
HRHB Rehabilitation HUHT Hemostasis and thrombosis HCAI Child cardiology
HECR Endogrinology and nutrition HNCG Neurosurgery HCOT Orthopedic and traumatology
HEPR Refractory epilepsy HOFI Child ophtalmolgy HMDH Hepatology
HUCP Pediatric ICU HRER Anesthesia-resuscitation (RET) HUEI Infectious diseases unit
HORL Otolaryngology HUEM Metabolic endocrine surgery HUMI Intensive medicine
HPSI Psyquiatry HOBS Obstetrics HCLP Coloproctology surgery

HUMM Functional Breast Cancer Unit HNER Neurology HALE Allergy
HPIN Pediatric infectious HURQ Raquis unit HHMI Child hematology
HCVA Angiology and vascular surgery HDER Dermatology HNMI Child pneumology
HURI Child urology HOTI Child orthopedic and traumatology HCMI Child maxillofacial surgery

HMDG Gastroenterology HCLP Plastic surgery HCEP Short stay unit and wall
HORI Child otolaryngology HUML Medium-long stay unit HNEM Pneumology
HONC Oncology HNRI Neuropediatrics HULM Spinal cord injury unit
HMIF Lower limb unit HREM Anesthesia-resuscitation (MAT) HUTP Lung transplantation unit
HMET Child metabolic diseases HNEF Child rheumatology HLIT Lithotripsy
HNFI Child nephrology HREA Resuscitation UCSI Non-admittance surgical unit

Table 1: List of variables contained in the study. Service Identifier
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Hospital Codes. Used for variable HospitalTransfer :

Code Description Code Description Code Description

1000 Inst. Oftalmologico Valencia 1101 Hospital de Vinaros 1102 Hospital Gral. de Castellón
1103 Hospital de la Magdalena 1104 Hospital de la Plana 1111 Hospital 9 de Octubre
1150 Hospital Prov. de Castellón 1191 Termalismo Heliomar Benicassim 1192 Mutua de Azulejeros, Onda
1369 Hospital Intern. Medimar 1537 Hospital Rey Don Jaime 1717 Hospital S. Jaime Torrevieja
1901 Cĺınica Santa Teresa 1902 Ntra. Sra. de la Misericordia 1903 Ctro de Rehabilitación, Onda
2021 Hospital de Levante 2101 Hospital de Sagunto 2102 Hospital Arnau Vilanova
2103 Hospital Doctor Moliner 2104 Hospital de Requena 2105 Hospital La Fe (Campanar)
2106 Hospital Dr Peset I Aleixandre 2107 Hospital Cĺınico Universitario 2108 Hospital Malvarrosa
2109 Hospital Francesc de Borja 2110 Hospital Lluis Alcanys Xativa 2111 Hospital d’Ontinyent
2115 Hospital Rehabilitación La Fe 2125 Hospital Maternal La Fe 2135 Hospital Infantil La Fe
2145 Hospital La Fe. Esc Enfermeŕıa 2150 Hospital General de Valencia 2155 La Fe Bulevar
2169 Vissum Inst. Oftalmológico 2191 Centro Rehabilitación Levante 2192 Inst. Valenciano Oncoloǵıa
2194 Hospital Santa Lućıa 2526 Hospital de Torrevieja 2837 Hospital de Manises
2840 Hospital de Denia 2844 Hospital la Pedrera 2901 Cĺınica Blanquer
2902 Cl. Sagrada Familia 2903 Casa de Reposo San Onofre 2904 Cĺınica Virgen del Consuelo
2905 Hospital de Valencia al mar 2906 Clinica Quirón de Valencia 2907 Cĺınica Casa de la Salud
2908 Hospital de Mislata (Militar) 2909 Hospital Santa Lućıa 2910 Hospital Padre Jofre
2993 FISABIO 3050 Hospital del Vinalopo 3082 Hospital de Lliria
3101 Hospital Marina Alta 3102 Hospital Vila-Joiosa 3103 Hospital Verge del Lliris
3104 Hospital de Elda 1105 Hospital General de Alicante 3106 Hospital S. Vicent del Raspeig
3107 Hospital D’Elx 3108 Hospital de Orihuela 3110 Hospital Sant Joan. Alicante
3116 Fundacion Lluis Alcanyis 3150 Hospital Provincial de Alicante 3191 S.S. FCO. de Borja. Fontiles
3192 Clinica Vistahermosa 3193 Cĺınica Velazquez II. Alicante 3194 S. Perpetuo Socorro. Alicante
3901 Centro Médico San Carlos 3902 Sanatorio San Jorge 3903 Cĺınica Benidorm
3904 Instituto Geriátrico de Levant 3905 Policĺınico S. Carlos de Denia 3906 Cĺınica Oftalmológica Buigues
3907 Cl. Médico Quirúrgica C. Jard́ın 3908 Cl. Villamartin de Orihuela 3909 Psiq. Penitenciario Fontcalent
3910 Hospital PSIQ. and Provincial Alicant 3911 Levante Mediterranea Matepss 7777 Hospital de la Ribera
7778 Hospital 9 de Octubre 7779 Other Country 8888 F.Oftalmológica Mediterránea
9040 Hospital La Fe Unificado 9998 Barraca de Aguas Vivas 9999 Other Community

Table 2: List of hospitals contained in the HFE registries.

Admissions reasons. This variable shows the reason for hospitalization:

Code Description
0 Undetermined
1 Examination
2 Common disease
4 Accident at work
5 Casual accident
6 Self-injury
7 Aggression
8 Birth
9 Others
10 Pathological new-born
11 Urgent outpatient complication
12 Surgery complication
13 Day hospital complication
14 Interventionism complication
15 Infract
19 Urgent outpatient complication
20 Patient from other hospital planned
60 An influenza research case
61 An influenza probable case
62 An influenza confirmed case
63 An influenza dismissed case
90 UCSI episode complication
99 Disaster

Table 3: List of hospitalization reasons contained in the study.
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Discharge reasons. The information collected in this variable indicates
the reason for discharge:

Code Description
1 Healing or improvement
2 Voluntary discharge
3 Transfer
4 Exitus
5 Other
6 In extremis

Table 4: List of discharge reasons contained in the study.

Destination after discharge. This variable contains the patient follow-
up method after discharge:

Code Description
1 Day hospital
2 Discharge home
3 Outpatient care
5 Specialty center
6 Emergency department
8 Escaped
9 Others
10 Medium and long stay hospitals
11 Nursing home or socio-health center
12 General practitioner
13 Disciplinary discharge

Table 5: List of discharge destinations contained in the study.
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S1 Figure. Supplementary evidence for I1.

Fig. S1: PDF-SPC, IGT plot, its clustering by DBScan and Heat Map for the
variable DischargeReason. An abrupt change is detected at the end of 2010 when
the hospital relocation took place. The admittance of patients in delicate health
states reduced the number of discharges under “Healing or improvement”.
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S2 Figure. Supplementary evidence for I1 and I2.

Fig. S2: The color density in February 2011 band shows the increase in the percent-
age due to the last month relocation. The lower number of observed interventions
and an increase in urgent admissions.

S3 Figure. Supplementary evidence for I1 and I2.

Fig. S3: PDF-SPC of HospitalTransfer. The abrupt changes detected in late 2010
and early 2011 are the results of the hospital relocation.
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S4 Figure. Supplementary evidence for I2.

Fig. S4: IGT Plot and Temporal Heat Maps for the Service configurations

S5 Figure. Supplementary evidence for I3.

Fig. S5: PDF-SPC for the HospitalTransfer variable. The change caused by a) the
opening of the chronic patient’s area in the old facilities in early 2013, and b) the
new readmittance to the new facilities in early 2016. The changes were detected
after removing the cases prior to March 2011 -with the purpose of avoiding the loss
of change detection due to the high impact of the hospital relocation-.
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S6 Figure. Supplementary evidence for I4.

Fig. S6: Temporal absolute count for the discharge destination variable. Since the
opening of the chronic service in the old hospital facilities, a new code -in which
patients who would be treated in the chronic area were included- was created “Out-
patient care”. This implies a decrease in the number of patients who were sent home
until 2016 when the chronic area was closed.

S7 Figure. Supplementary evidence for I4.

Fig. S7: Temporal relative count for the variable which records the length -in days-
of the stay for each hospitalization. The image shows the percentage of 1-day stays
increases in detriment of 2-days stays. This shows that the aim of reducing the
length of stay, as described in M4, was successful.
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All our knowledge begins with the senses, proceeds
then to the understanding, and ends with reason.

There is nothing higher than reason.

Immanuel Kant.

Subgrouping factors influencing migraine intensity in
women: A semi-automatic methodology based on
Machine Learning and Information Geometry

Pérez-Benito, F.J.1,2, Conejero, J.A.2, Sáez, C.1, Garćıa-Gómez, J.M.1, Navarro-
Pardo, E.3, Florencio, L.L.4, Fernández-de-las-Peñas, C.4

1 Biomedical Data Science Lab. Instituto de Aplicaciones de las Tecnoloǵıas
de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat
Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

2 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica
de València, Camino de Vera s/n, 46022 Valencia, Spain.

3 Departamento de Psicoloǵıa Evolutiva y de la Educación, Universitat de
València, Avenida Blasco Ibáñez, 21, 46010 Valencia, Spain.

4 Department of Physical Therapy, Occupational Therapy, Rehabilitation and
Physical Medicine, Universidad Rey Juan Carlos, 28922, Madrid, Spain.

Abstract.

Background: Migraine is a heterogeneous condition with multiple
clinical manifestations. Machine-learning algorithms permit the iden-
tification of population groups providing analytical advantages over
other modeling techniques.

Objective: The aim of this study was to analyze critical features that
permit to differentiate subgroups of patients with migraine according
to the intensity and frequency of attacks by using machine-learning
algorithms.
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Methods: Sixty-seven women with migraine participated. Clinical
features of migraine, related-disability (MIDAS), anxiety/depressive
levels (HADS), anxiety state/trait levels (STAI) and pressure pain
thresholds (PPT) over the temporalis, neck, second metacarpal, and
tibialis anterior were collected. Physical examination included the
flexion-rotation test, cervical range of cervical motion, forward head
position in sitting and standing, passive accessory intervertebral
movements (PAIVMs) with headache reproduction, and joint posi-
tioning sense error. Subgrouping was based on machine-learning algo-
rithms by using Nearest Neighbors algorithms, multisource variability
assessment, and Random Forest.

Results: For migraine intensity, group 2 (women with regular mi-
graine headache intensity of 7) were younger, had lower joint posi-
tioning sense error in cervical rotation, greater cervical mobility in ro-
tation and flexion, lower flexion-rotation test, positive PAIVMs repro-
ducing migraine, normal PPTs over tibialis anterior, shorter migraine
history, and lower cranio-vertebral angle in standing than the remain-
ing migraine intensity subgroups. The most discriminative variable
was the flexion-rotation test to the symptomatic side. For migraine
frequency, no model was able to identify differences between groups,
i.e. patients with episodic or chronic migraine.

Conclusions: A subgroup of women with migraine with common
migraine intensity was identify with machine-learning algorithms.

Keywords: Migraine, Random Forest, Machine Learning, Multi-
source variability

4.1 Indroduction

Migraine is a primary headache disorder with a worldwide prevalence of 11.6%
within female: male ratio 2:1 [87]. In the last Global Burden of Disease Study,
headache (e.g., migraine and tension-type headache) was found to be the sec-
ond most prevalent pain condition in the world [88]. In fact, health care costs
of primary headache in Europe (e13.8 billion) mainly account for migraine
and tension-type headache [89].

Migraine attacks are characterized by recurrent episodes of severe headache
with accompanying symptoms of autonomic nervous system dysfunction. It is
accepted that the pathophysiology of migraine is associated to abnormal neu-
ronal excitability leading to cortical spreading depression and to sensitization
of trigemino-vascular pathways [90]. In general, pain is a complex subjective
experience that includes sensory-discriminative, affective, and cognitive as-
pects. In such a scenario, it is usually seen in clinical practice that migraine
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can be heterogeneous condition with multiple manifestations. Therefore, the
identification of subgroups of patients can help to a better understanding
of migraine and provides useful data to support developing clinical decision
support systems.

Machine-learning algorithms trained to automatically classify patient
populations can be used as classification methods since they provide dis-
tinct analytical advantages over other modeling techniques. For instance, su-
pervised machine-learning techniques have the ability to assess all available
covariates in every possible clinically meaningful combination and report the
combinations in mutually exclusive groups capable of being easily incorpo-
rated into decision-support modeling [91]. In fact, they can be combined
with network methods for improving prediction and detecting potential cor-
relations between variables [92, 93].

Supervised machine-learning analyses have been able to identify groups of
patients experiencing the highest rates of mortality post-interhospital transfer
[94]; however, its use is scarce in patients with headache. Garcia-Chimeno et
al were able to distinguish with 93% accuracy between patients with sporadic
migraine, patients with chronic migraine, and patients at risk of medication
overuse via feature selection techniques and machine-learning analyses over
diffusion tensor images (DTIs) and questionnaire answers related to emotion
and cognition [95]. An overview of how Machine Learning techniques have
been used in the general context of pain research has been presented by
Lötsch and Ultsch [96].

The intensity and frequency of headache attacks are two features that
are clinically used in the differential diagnosis of headaches. For instance,
migraine is characterized by headache attacks of moderate-severe intensity
lasting 4-72 hours as opposite to headache attacks of mild-moderate inten-
sity lasting from 30 min to 7 days as occurs in tension-type headache [97].
The frequency of headache is mainly used for classification between episodic
or chronic headache. The episodic form comprises headache attacks occurring
less than 15 days per month, while the chronic comprises headaches occurring
15 or more days/month for more than 3 months and with migraine features
on at least 8 days/month [97]. Therefore, we aimed to identify differences in
clinical features and the presence of musculoskeletal disorders that permit to
subgrouping patients with migraine according to the intensity and frequency
of the migraine attacks. We chose these clinical variables for subgrouping
since migraine is characterized by moderate-severe intensity of headache and
because headache frequency is considered the main outcome in clinical tri-
als. Further, the variables used in this study to subgrouping included clinical
features and questionnaires focusing on migraine-related items and also the
presence of cervical musculoskeletal impairments, e.g. cervical range of mo-
tion, head position, joint position sense error, or reproduction of the headache
on manual palpation, commonly associated with primary headaches [98]. We
hypothesized that patients with higher intensity and/or higher frequency of
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migraine would exhibit more severe musculoskeletal disorders, e.g. lower cer-
vical range of motion, decrease pressure pain thresholds, higher joint position
sense error, than those with lower intensity and/or frequency of migraine at-
tacks.

4.2 Methods

4.2.1 Participants

Consecutive women with migraine recruited from a Headache Unit located in
a tertiary university-based hospital were included. To be eligible, they had to
meet the diagnostic criteria of migraine according to the International Clas-
sification of Headache Disorders, 3rd edition [97]. Migraine features includ-
ing location, years with disease, frequency and intensity of migraine attacks,
family history, and medication intake were collected. All participants were
screened by an experienced neurologist with more than 20 years of experi-
ence in headaches. Participants were excluded if presented any of the follow-
ing: 1, other primary or secondary headache; 2, history of cervical and/or
head trauma; 3, pregnancy; 4, history of cervical herniated disk or cervi-
cal osteoarthritis on medical records; 5, underlying systematic medical dis-
ease, e.g., rheumatoid arthritis, lupus erythematous; 6, comorbid fibromyalgia
syndrome; 7, had received treatment including anesthetic blocks, botulinum
toxin or physical therapy within the previous 6 months; or, 8, male gender.
All participants signed the informed consent form before their inclusion in the
study. The local Ethics Committee of the Hospital Rey Juan Carlos, Spain
(HRJ 07/14) approved the study design.

All examinations were held when patients were headache-free and when at
least one week had elapsed since the last migraine attack to avoid migraine
related allodynia. Since some patients exhibit high frequency of migraine
attacks, careful observation of this parameter was considered for examination.
If not possible, those women with high frequency of attacks were evaluated
at least 48 hours after the last attack. Participants were asked to avoid any
analgesic or muscle relaxant 24 hours prior to the examination. No change
was made on their prophylactic treatment.

4.2.2 Self-reported Outcomes

A 4-weeks headache diary was used to register clinical features of the migraine
[99]: 1, migraine intensity (the mean intensity of the days with migraine
attack based on a 11-points Numerical Pain Rate Scale (NPRS); 0: no pain,
10: maximum pain); 2, migraine frequency (days/week); 3, migraine duration
(hours/attack).

The Hospital Anxiety and Depression Scale (HADS) was used to evaluate
anxiety (HADS-A, 7items) and depressive (HADS-D, 7items) levels [100].
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In headache patients, the HADS has shown good internal consistency [101].
Higher scores indicate greater levels of anxiety or depressive levels.

The State-Trait Anxiety Inventory (STAI) was used to assess state (STAI-
S) and trait (STAI-T) anxiety levels [102]. The STAI-S assesses relatively
enduring symptoms of anxiety at a moment and the STAI-T scale measures
a stable propensity to experience anxiety and tendencies to perceive stressful
situation as threatening. Both subscales had exhibited good internal consis-
tency and high reliability [103]. Higher scores are indicate of greater state or
trait anxiety levels.

The Migraine Disability Assessment Scale (MIDAS) questionnaire was
used to assess the degree of related-disability in daily activities (work or
school, family and social) caused by migraine [104]. The final score comes
from the sum of the missed days regarding the 3 activities.

4.2.3 Widespread Pressure Pain Sensitivity

Pressure pain thresholds (PPTs), i.e., the minimal amount of pressure where
a sensation of pressure first changes to pain, were bilaterally assessed with
an electronic algometer (Somedic AB, Farsta, Sweden) over the temporalis
muscle, the cervical spine, the second metacarpal and the tibialis anterior
muscle following previous guidelines [105]. All participants attended a session
for familiarization with the pressure test procedure over the wrist extensors.
The order of assessment was randomized. The mean of 3 trials on each point
was calculated and used for the analysis. Since no side-to-side differences
were observed, mean of both sides were used in the analysis. Participants
were asked to avoid any analgesic or muscle relaxant 24 hours prior to the
examination.

4.2.4 Physical Examination

Physical examination included the musculoskeletal impairments most com-
monly associated to patients with headache [98, 106]: cervical flexion-rotation
test, active range of cervical motion, forward head posture, passive accessory
intervertebral movements with head pain reproduction and joint position
sense error (JPSE).

The cervical flexion-rotation test (FRT) and active cervical range of mo-
tion were assessed as previously described [107]. Briefly, for the FRT, partic-
ipants were positionednin supine and a CROM® device was placed at their
head. The evaluator performed a maximum flexion of the cervical spine fol-
lowed by rotation toward either side. The rotation limit was determined when
the evaluator self-perceived tissue resistance or the patient reported the pres-
ence of pain at the upper cervical area. Active cervical range of motion was
assessed with a CROM® device and participants seated in a relaxed position
on a chair. The CROM® device was positioned on the subject’s head and
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a familiarization session was performed. The mean of three repetitions was
considered in the analysis. This procedure has shown excellent reliability in
migraine patients [108].

Forward head position, passive accessory intervertebral movement with
headache reproduction and Joint Position Sense Error (JPSE) were assessed
following previous guidelines [109]. The cranio-vertebral angle, i.e., the angle
between the horizontal plane and a line from the tip of the C7 spinous process
to the tragus of the ear, was calculated in sitting and standing positions for
assessing forward head posture as previously described [110]. A smaller angle
reflects a greater forward head position. Passive accessory inter-vertebral mo-
tions were used to evaluate the presence of referred pain to the head elicited
by a posterior to anterior (PA) pressure applied to C1-C2 segment in an at-
tempt to provoke a pain response able to reproduce a migraine attack. This
procedure has been able to differentiate 3 migraine subtypes: pain-free, local
pain, and pain referral to the head [111]. Finally, the JPSE was evaluated
by assessing the subject ability to relocate the head to a natural head pos-
ture, whilst blindfolded, on active cervical extension, left and right rotations.
The difference between the starting (zero) and the position on return was
calculated in absolute degrees for each movement tested. Three trials were
performed in each direction and the mean JPSE was used in the analysis
[109].

All examinations were conducted by an experienced therapist with more
than 15 years of experience in the management of headache patients and who
was blinded to the migraine headache features (subgrouping classification as
described below).

4.2.5 Data Analysis Methods

We considered a fully automated methodology that can be split into 4 steps.
Firstly, we first input missing data using the Nearest Neighbors (NN) algo-
rithm. Secondly, we assessed the multisource variability [58, 112]. According
to the results, we sub-grouped the variables of migraine intensity and mi-
graine frequency in order to ensure inter-group differences. Finally, random
forests classifiers were used to determine physical factors influencing migraine
headache intensity and frequency subgroups.

4.2.5.1 Neighbors (NN) algorithm

One of the most widely used algorithms to impute missing data is the NN
algorithm. These algorithms are efficient methods to fill in missing data.
Each missing value on a record is replaced by a value from related cases in
the whole set of records that depends on the type of variable used: categorical
missing values are replaced by the mode and quantitative ones are replaced by
the mean [113]. The number of neighbors was fixed to 10 before conducting
experiments. Several papers including DNA microarray studies [114] (29),
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forest inventory [115], or breast cancer [116] have shown benefits of NN as
missing data imputer method.

4.2.5.2 Multisource Variability Assessment

This MSV is based on Information Geometry [16, 59], which provide a way
for the comparison of dissimilarities between the probability distributions
(Probability Density Functions, PDFs) of different data sources. In our case,
we modeled headache intensity subgroup distributions using Kernel Density
Estimation (KDE) [117]. Due to KDE provides a non-parametric distribution,
we used the non-parametric Jensen Shannon distance (JSD) to measure the
distance between pairs of PDF’s [61, 62]. A JSD is bounded between 0 and 1;
where a value of 1 indicates that the compared distributions are disjoint. We
constructed a simplex in which each point corresponds to a PDF and each
edge joining two points measures the distance between the PDF’s. Then, this
can be reduced by applying projection methods, such as Principal Component
Analysis (PCA) [63] or Multidimensional Scaling (MDS) [65, 118], providing
a graphical way to detect inter-group variability.

4.2.5.3 Case labelling

Before conducting the final machine-learning analyses, a preprocess analy-
sis was carried out in the subgrouping variables. The original dataset was
completed with two processed variables for grouping, headache intensity and
headache frequency due to the low number of cases.

Patients were grouped according to their migraine headache intensity as
follows: group 1, patients with migraine pain intensity ranging from 4 to 6;
group 2, patients with migraine pain intensity equal to 7 (regular migraine
attack pain intensity); group 3, patients with migraine intensity equal to 8;
and, groups 4 and 5, patients who suffered headache attacks intensities of
9 and 10, respectively. A second subgrouping according to the frequency of
migraine was also identified: group 0, patients with 1 to 8 days per month
with migraine (episodic); group 1, patients with 9 to 16 days migraine attacks
per month (episodic to chronic); group 2, patients with more than 16 days
per month with migraine (chronic).

4.2.5.4 Random Forest Classifier

One of the current trends in machine learning research concerns ensemble
methods that combine their results, as the case of Random Forest (RF),
which constructs many decision trees that are used to classify by the ma-
jority vote [119, 120]. RF classifiers also allow to measure the variables that
best explain intra-groups variance. Several authors proved that RF classifi-
cation outperforms other conventional machine learning algorithms, such as
back propagation neural networks and support vector machines and has the
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advantages of dealing with unbalanced or multiclass classification problems.
These reasons have motivated the use of RF in the current study [121–123].

The parameters were fixed to 512 decision trees composing the forest, the
maximum number of decision variables in each tree equal to the log2N where
N is the number of model inputs and the rest of parameters were fixed to
the default proposed by the python implementation of scikit-learn [124].

Due to the number of samples in our database is short, we have used
an ensemble of Random Forest to obtain more robust results. Besides, each
Random Forest of the ensemble was cross-validated using 8 random strati-
fied folds. This concept consists of creating 8 folds where the proportions of
predictor labels are similar to original dataset [125]. A visual description of
the ensemble is presented in Figure 4.1. Finally, to assess the performance
of the models, the recall and the F1-score were computed [126], according
with the equations 4.1. Here, TPc (True Positive) is the number of patients
of a given group c hat are correctly classified, FPc (False Positive) is the
number of patients of other groups that are wrongly classified in the given
group c, TNc (True Negative) is the number of patients of other groups that
are not classified in group c, and finally FNc (False Negative) is the number
of patients of a given group classified in other groups. The F1-score ranges
between [0, 1], being 1 the perfect classification.

Recall =
TPc

TPc + FNc
, P recision =

TPc
TPc + FPc

F1− score = 2
Recall · Precision
Precision+Recall

=
2 · TPc

2 · TPc + FPc + FNc

(4.1)

Fig. 4.1: Ensemble of Random Forest. Each Random Forest is composed of 512
decision trees. Each random forest is cross-validated using 8 random stratified folds.
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4.3 Results

4.3.1 Participants

Ninety (n=90) consecutive women presenting with headache were screened
for eligibility criteria. Twenty-three (25%) were excluded for the following
reasons: comorbid headaches (n=10); previous head or neck trauma (n=6);
receiving anesthetic block in the past 3 months (n=5) or pregnancy (n=2).
Finally, 67 women migraine (20% chronic, mean age: 42 ± 12 years) satisfied
all criteria and signed the informed consent. Participants were headache-free
at the moment of examination with a mean of 7.5 ± 3.0 days without a
migraine attack. Seventy (70%) of the patients self-reported the presence of
neck pain mainly during their migraine attacks. Only 4 (6%) self-reported
neck pain in interictal phases. Table 4.1 shows clinical, psychological and
psychophysical data of the sample.

Mean (95% CI)

Demographic Features
Age (years) 42(38− 46)

History of migraine (years) 19.8(16.5− 23.1)

Clinical Features

Migraine intensity (NPRS, 0-10) 8.3 (7.8− 8.8)
Migraine duration (hours/attack) 24.3(19.5− 29.1)
Migraine frequency (days/month) 13.0(4.0− 21.0)

Related-disability (MIDAS) 45.0(27.5− 62.5)

Psychological variables

HADS-A (0-21) 12.5(11.5− 13.5)
HADS-D (0-21) 10.5(10.0− 11.0)

STAI-trait (0-60) 25.7(24.0− 27.4)
STAI-state (0-60) 21.7(20.6− 22.8)

PPT (kPa)

Temporalis muscle 155.0(132.0− 178.0)
C5-C6 zygapophyseal joint 131.5(120.0− 143.0)

Second metacarpal 190.0(170.0− 210.0)
Tibialis anterior muscle 315.0(287.0− 343.0)

Physical Examination

JPSE Extension (degree) 4.8 (4.2− 5.4)
JPSE Cervical Rotation (degree) 6.0(5.4− 6.6)

FHP Sitting (CVA, angle) 35.5(34.0− 37.0)
FHP Standing (CVA, angle) 24.0(22.5− 25.5)

CROM Flexion (degree) 51.0(47.0− 55.0)
CROM Extension (degree) 60.0(56.0− 64.0)

CROM Latero-Flexion (degree) 39.0(37.0− 41.0)
CROM Rotation (degree) 63.0(60.0− 66.0)

Table 4.1: Clinical and demographic features of women with migraine.
NPRS: Numerical Pain Rate Scale; MIDAS: Migraine Disability Assessment Scale;
HADS-A: Hospital Anxiety and Depression Scale - Anxiety Subscale; HADS-D:
Hospital Anxiety and Depression Scale - Depression Subscale; STAI: State-Train
Anxiety Inventory; PPT: Pressure Pain Threshold; JPSE: Joint Positioning Sense
Error; FHP: Forward Head Posture; CVA: Cranio-Vertebral Angle; CROM: Cervical
Range of Motion.
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4.3.2 Accuracy of the subgrouping models

After imputing missing data and checking the interclass difference distribu-
tions with MSV for migraine intensity (Fig. 4.2A) and frequency (Fig. 4.2B),
the dataset was 200 times randomly stratified 8-fold cross-validated. This
overcomes the limitation of the low number of individuals. Each of the 200
stratifications produced 8 different folds which contained similar proportions
to the original dataset. As can be seen in Table 4.2, the group, to which
more patients belong to, has a total of 21 women. Each fold is composed of
2 individuals of this class, and then the number of possible combinations is
210. We chose 200 RF because each of them will be cross-validated using 8
random stratified folds. This gives us a totally of 1600 different splits, which
makes almost impossible not to consider the whole set of combinations.

Fig. 4.2: (A) The MSV-Plot for the different intensity classes. (B) The MSV-Plot for
the different frequency classes. Source Probabilistis Outlyingness (SPO) measures
the Jensen-Shannon distance to the central probabilistic tendency of the whole
dataset probability. This metric also ranges between [0, 1]. It is worth to mention
that distances in B are very small and may not provide enough dissimilarity to be
discriminative.

Group 1 Group 2 Group 3 Group 4 Group 5
Frequency total 10 8 17 11 21
Frequency fold 1 1 2 1 2
Frequency total 0.38 0.56 37.28 1.38 67.18

Table 4.2: First row shows the frequency of each group based on migraine intensity
subgrouping. Second row shows a typical frequency of each stratified fold, and
finally, last row presents the averaged sensitivity for each group.

For migraine intensity, the 8-fold cross-validation averaged recall and fre-
quency of each group are presented in Table 4.2. The averaged F1-score for
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the 200 models is shown within Figure 4.3A. Looking at the F1-score, ran-
dom forest models outperform random classification in a 50% on average.
This shows that the variables enclosed in the current study have a certain
discriminatory power for determining migraine intensity. The weighted sensi-
tivity mean was 30.86%. It is worth to mention that groups with low density
were the worst estimated, because of the low number of cases used to train
and to validate the model. Additionally, group 1 contained patients with
different headache intensities, which may probably hinder the estimation ac-
curacy. For migraine frequency, the mean accuracy of the 200 implemented
models was 0.41, which implied a modest, but not despicable, improvement
respect to randomness (Fig. 4.3B). According to the results showed in Table
4.3, none of the random forests was able to find group 2 individuals (a 0
score of sensitivity implies no true positives). This indicates that there was
no evidence in the current data which facilitates to discriminate group 2. In
this situation, the major possible accuracy score was near to 0.8.

Fig. 4.3: The histogram of the mean F1-score obtained in the 8-fold cross validation
of the 200 Random Forest models for migraine intensity (A) and frequency (B)
models.

Group 1 Group 2 Group 3
Frequency total 30 27 11
Frequency fold 4 4 2
Frequency total 61.51 34.60 0.00

Table 4.3: First row shows the frequency of each group based on migraine frequency
subgrouping. Second row shows a typical frequency of each stratified fold, and
finally, last row presents the averaged sensitivity for each group. It is worth to
mention that the Random Forest based models are not capable to discriminate
patients from group 2. It is probably due to the unbalanced samples per class.

An explanation to this fact can be found looking at how random forests
models are generated, since they are not robust to unbalanced data and they
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usually tend to be biased towards the groups with the majority of elements.
Even though the 8-fold cross-validation of the 200 models obtained an F1-
score of 0.41 on average, that is a slightly higher than the expected F1-
score associated to a random classification, not finding group 2 individuals
makes impossible to interpret correctly which variables are influencing the
estimation of the migraine frequency.

4.3.3 Variables importance

Random Forests also provide a quantification of the importance of the fea-
tures within the subgrouping discrimination. The 10 most influential features
of each of the 200 models were extracted only for migraine intensity. As it
can be seen in Figure 4.4, 20 variables were chosen as the most important
from the 200 generated models.

Fig. 4.4: Counting of the variables selected by the RF models. Age, JPSE rotation,
FRT symptomatic side, FRT non-symptomatic side and positive PAIVMs were
selected as one of the 10 most influential variables by all the models.

For migraine intensity, 6 variables were selected by all the models and
other 3 by more than the 50% of the models. Therefore, the results can be
considered to be robust. The 10 more frequent variables for identifying sub-
group 2 were: age, JPSE in cervical rotation, active cervical range of motion
in rotation and flexion, FRT to both symptomatic and non-symptomatic
sides, positive PAIVMs, PPT on the tibialis anterior, years with migraine,
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and cranio-vertebral angle in standing. In such a scenario, group 2 (women
with migraine headache intensity of 7) were younger, had lower JPSE in
cervical rotation, greater active cervical range of motion in rotation and flex-
ion, lower FRT to both sides, positive PAIVMs reproducing their migraine
headache, normal PPT on tibialis anterior, shorter history with migraine and
lower cranio-vertebral angle (i.e., higher forward head posture) in standing
position than the remaining groups.

Once these clinical features were selected, we quantify their importance
in the discriminative power of the models. In this sense, the histograms of the
averaged 8-folds corresponding to each of the 200 models were computed just
for migraine intensity (Figure 4.5). The descriptive statistics can be found
in Table 4.4. The most discriminative variable in mean over the 200 models
after a stratified 8-fold cross-validation was FRT to the symptomatic side
(averaged influence of 3.02%).

Variable Mean (%) Standard Deviation (%)
Age (years) 2.59 0.09

JPSE in cervical rotation (degrees) 2.53 0.08
Cervical Range of Motion in rotation (degrees) 2.30 0.07

FRT of the non-symptomatic side (degrees) 2.44 0.08
FRT to the symptomatic side (degrees)* 3.02 0.09

Positive PAIVMs 2.44 0.08
Cervical Range of Motion in flexion (degrees) 2.20 0.07

PPT Tibialis Anterior (kPa) 2.20 0.08
Years with migraine 2.13 0.08

Cranio-Vertebral Angle Standing (degrees) 2.12 0.07

Table 4.4: Descriptive statistics (the percentage of relevance) of the 10 most dis-
criminative variables for migraine intensity. (*) The most discriminative variable
for migraine intensity.

4.4 Discussion

A group of women with migraine with common migraine intensity was iden-
tified with machine-learning algorithms. Random forest models identified the
following most frequent variables in individual trees: age, JPSE in rotation,
cervical mobility in rotation and flexion, positive flexion-rotation test, pos-
itive PAIVMs reproducing migraine, PPTs over tibialis anterior, migraine
history, and cranio-vertebral angle in standing. The most discriminative vari-
able in the model was the flexion-rotation test to the symptomatic side. The
random forest model was not able to identify any subgroup depending on
the frequency of migraine attacks (episodic, frequent episodic or chronic mi-
graine). These results did not support the a priori hypothesis of this study
since individuals with higher intensity or frequency of migraine attacks did
not exhibit more severe musculoskeletal disorders.
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Fig. 4.5: The histograms of the importance of the 10 most important variables of
the 200 RF models for migraine intensity.

It is important to note that features were selected in the current study to
carry out a clinical classification when differentiating groups of women with
migraine according to their intensity or frequency of migraine attacks. From
a full set comprising clinical, psychological, and psychophysical outcomes and
also physical examination a subgroup of women with migraine suffering from
pain intensity of 7 (moderate-intense) during their attacks was identified. It is
important to note that migraine pain is characterized by headache attacks of
moderate-severe intensity lasting 4-72 hours accordingly to the International
Classification of Headache Disorders [97]. Since the results were robust, it
seems that the random forest classifier model offered an efficient method for
classifying this subgroup of migraine sufferers, as it has solid foundations in
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terms of statistical learning, enabling to optimize the decision function in the
process.

The subgroup of migraine sufferers identified within the random forest
model were younger, lower JPSE in cervical rotation, greater cervical mo-
bility in rotation and flexion, lower flexion-rotation test (positive), positive
PAIVMs reproducing migraine symptoms, normal PPTs over the tibialis an-
terior, shorter migraine history, and lower cranio-vertebral angle in standing
as compared to other migraine intensity subgroups. The association of these
variables with migraine is not new since some previous studies have inves-
tigated the presence of cervical musculoskeletal disorders in this population
[106–111]; although its association is still questioned. In fact, a recent meta-
analysis has concluded that, among several cervical spine musculoskeletal
impairments, individuals with migraine exhibit minimally reduced cervical
range of motion with no differences in head posture or JPSE as compared to
headache-free people [98]. The current study identified a subgroup of women
with migraine with some musculoskeletal disorders of the neck, e.g., positive
flexion-rotation test, manual examination (PAIVMs) of the upper cervical
able to reproduce their migraine symptoms, and greater forward head pos-
ture in standing, when compared to other subgroups of women with migraine.
Current results agree with some previous studies suggesting a relevant role of
the flexion-rotation test [107, 109], the ability of reproducing migraine symp-
toms with manual examination of the upper cervical spine joints [111] or a
forward head position [110] in migraine. In fact, it is interesting to note that
other variables identified by the random forest model, such as cervical range
of motion or PPTs over tibialis anterior muscle, should not be considered as
impaired, since their values were normal. Similarly, shorter migraine history
could be also related to the younger age of this group of patients. There-
fore, our study identified that subclassification of individuals with migraine
is a highly complex process needing sophisticated analysis such as machine-
learning algorithms. Additionally, it is probably that musculoskeletal impair-
ments of the cervical spine have different roles, not only, in promoting or
precipitating migraine attacks but also in the intensity of the attacks. From
a clinical viewpoint, the variables identified in our study would suggest that
the upper cervical spine could be more relevant for this subgroup of patients
with migraine than in others. This assumption is supported by the fact that
this subgroup of patients exhibited normal cervical range of motion but a
positive flexion-rotation test, which supports the presence of upper cervical
spine impairment. Therefore, examination of musculoskeletal impairments of
the cervical spine should focus on specific groups of migraine patients.

We should also discuss that our sample of women with migraine was ex-
plored in a headache-free situation for avoiding migraine-related allodynia
and other concomitant symptoms. For instance, this situation also permitted
the absence of neck pain during our exploration, a common symptom expe-
rienced by patients with migraine during their attacks and associated with
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a poor clinical presentation [127]. It is possible that patients experienced
concomitant neck pain during migraine attacks could also exhibit different
musculoskeletal impairments of the cervical spine representing another sub-
group.

We were not able to identify by using random forest models a cluster of
variables associated with a group of women with migraine according to the
frequency of attacks. We used a clinical subgrouping for headache frequency,
mostly based on identification of infrequent episodic, frequent episodic, or
chronic migraine. The lack of classification based on the frequency of mi-
graine attacks may be related to the fact that some of the outcomes included
in our study, e.g., PPTs, [105], active cervical range of motion [108], JPSE
[109] or migraine pain reproduction with passive accessory inter-vertebral
motion [111], have not been found to be significantly different between indi-
viduals with episodic or chronic migraine, whereas the differences in others,
e.g., flexion-rotation test [107] are small. It is also possible the small num-
ber of patients within the chronic migraine group, as previously reported in
the results section, would lead to an unpowered subgrouping. Future studies
should investigate variables associated to frequency of migraine attacks with
other outcomes, i.e., migraine-related disability, or kinesiophobia.

Finally, although this is the first study using machine-learning algorithms
for the identification of groups of patients with migraine, we should recognize
some technical limitations. First, we should highlight that the short number
of cases in some subgroups, having fewer than 20 subjects/group. This situ-
ation could have led to poor classification accuracy due to the dispersion of
the decision space, e.g., in the classification according to migraine frequency.
Future studies should include larger dataset of patients to avoid this problem
and the main goal should bet the percentage of accuracy of the classifier.
Second, future studies could include the use of algorithms for feature selec-
tion, such as sequential forward/backward floating selection [128], where the
dimension of decision spaces would be reduced and therefore the points spar-
sity. Further, we only included a sample of women with migraine; therefore,
current results should not be extrapolated to men with this condition. In ad-
dition, the current subclassification was based on clinical findings observed
in a headache-free (interictal phase) status; hence, it is possible that exam-
ination during an active phase of a migraine attack could lead to different
findings.

4.5 Conclusion

A subgroup of women with migraine with common migraine intensity (moder-
ate to intensity, 7/10) was identify by using machine-learning algorithms. The
random forest models identified age, JPSE in rotation, cervical mobility in
rotation and flexion, positive flexion-rotation test, positive PAIVMs repro-
ducing migraine, PPTs over tibialis anterior, migraine history, and cranio-
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vertebral angle in standing as main variables associated with the group of
patients. No cluster of variables was identified accordingly the frequency of
migraine.
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Abstract.

Background and Objective: Breast cancer is the most frequent
cancer in women. The Spanish healthcare network established pop-
ulation-based screening programs in all Autonomous Communities,
where mammograms of asymptomatic women are taken with early di-
agnosis purposes. Breast density assessed from digital mammograms
is a biomarker known to be related to a higher risk to develop breast
cancer.
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It is thus crucial to provide a reliable method to measure breast
density from mammograms. Furthermore the complete automation
of this segmentation process is becoming fundamental as the amount
of mammograms increases every day. Important challenges are related
with the differences in images from different devices and the lack of
an objective gold standard.
This paper presents a fully automated framework based on deep
learning to estimate the breast density. The framework covers breast
detection, pectoral muscle exclusion, and fibroglandular tissue seg-
mentation.

Methods: A multi-center study, composed of 1785 women whose
“for presentation” mammograms were segmented by two experienced
radiologists. A total of 4992 of the 6680 mammograms were used as
training corpus and the remaining (1688) formed the test corpus. This
paper presents a histogram normalization step that smoothed the
difference between acquisition, a regression architecture that learned
segmentation parameters as intrinsic image features and a loss func-
tion based on the DICE score.

Results: The results obtained indicate that the level of concordance
(DICE score) reached by the two radiologists (0.77) was also achieved
by the automated framework when it was compared to the closest
breast segmentation from the radiologists. For the acquired with the
highest quality device, the DICE score per acquisition device reached
0.84, while the concordance between radiologists was 0.76.

Conclusions: An automatic breast density estimator based on deep
learning exhibits similar performance when compared with two ex-
perienced radiologists. It suggests that this system could be used to
support radiologists to ease its work.

Keywords: Breast density, Entirely Convolutional Neural Network
(ECNN), Deep Learning, Dense tissue segmentation, Mammography.

5.1 Background

Mammographic screening is a highly standardized procedure for breast can-
cer early detection programs, and the acquired mammograms are interpreted
by specialized radiologists who batch read up to 50 mammographies per hour
[129]. Full Field Digital Mammography (FFDM) is still one of the preferred
methods for breast cancer screening programs. Technology innovations pro-
vide better imaging features that promote earlier diagnosis of breast cancer.
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Percent Density (PD) which measures the percentage of fibroglandular
tissue over the total breast, is known to be a marker of breast cancer devel-
opment risk [130, 131]. The American College of Radiology Breast Imaging
Reporting and Data System (BI-RADS) has also reported a breast classi-
fication, based on density, shape, and granularity of the dense tissue [132],
suggesting that not only the total amount but also its distribution matters
[133, 134]. Besides, one of the principal problems in PD assessment is the
inter and intra-observer variability [135–138].

In this sense, an automated tool exhibiting a high agreement with several
radiologists could serve as one of the first steps in standardizing the read of
breast density. Authors of [139] emphasize a human-like automatic tool could
be used as fully independent second reader of screening mammograms, where
double reading is standard. A second human reader would only arbitrate
discrepancies between the first human reader and the system, halving the
workload for any screening program where double reading is standard.

Coupled with this are the tremendous opportunities and challenges for
research which are brought by healthcare systems [140], in particular, breast
screening programs. To manage and model this huge amount of data, the
paradigm of Deep Learning (DL) has emerged. The abstraction ability of
DL [141] has demonstrated promising results from speech recognition [142,
143], reconstructing brain circuits [144, 145] or predicting the effects of DNA
mutations [146, 147] to medical imaging tasks [148, 149].

One of the most widespread paradigms used in computer vision problems
solved via DL take advantage of Convolutional Neural Networks (CNN) [150].
It is based on the extraction of features that are of higher-order as the images
go through more layers. CNNs are nowadays the state-of-the-art for many
recognition and detection tasks [151–153].

The current work presents a fully automated framework for dense tis-
sue segmentation. It includes breast detection, pectoral muscle exclusion and
dense tissue segmentation. Among the contributions of this work, we can
highlight (1) a preprocessing algorithm dealing with the variability of mam-
mograms acquired from different devices in the training stage, (2) a new
regression architecture Entirely CNN (ECNN), whose output are two param-
eters used as intrinsic segmentation features, improves classical CNN network
(3) a loss function which maximizes the DICE score [154] by continuously
rebuilding a probabilistic dense tissue mask, and finally, (4) the ability to
manually modify the segmentation using the DMScan software [155, 156].

5.2 Methods

5.2.1 Dataset and participants

A multi-center study covered women from 11 hospitals of the Comunitat
Valenciana which belong to the Spanish breast cancer screening network.
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The prior design of the study was a 1:1 case-control to find factors influencing
the development of breast cancer. In this sense, a representation of the whole
PD spectrum is assured.

The current study contains a total of 1785 women with ages from 45 to 70.
For each patient who developed cancer, if available, the contralateral mam-
mogram was taken from the screening visit previous to diagnostic, otherwise,
the contralateral mammogram to the one diagnosed with cancer from the
most recent screening visit was selected. Finally, if no previous mammogram
existed, then the contralateral mammogram at the diagnostic time was ex-
tracted. Since in Spain “raw” mammograms are not routinely stored, all the
mammograms are of the type “for presentation”.

In 10 of the 11 facilities, the cranio-caudal (CC) and medio lateral-oblique
(MLO) views were recruited for each woman, meanwhile, the other facility
only collected the CC view. A brief summary of data from the different mam-
mography facilities can be found in Table 5.1.

Id Unit Mammography device Number of women
Number of mammograms

(Number of reads)
01 Castellón FUJIFILM 191 382(764)
02 Fuente de San Luis FUJIFILM 190 380(760)
04 Alcoi IMS s.r.l. / Giotto IRE (*) 66 132(264)
05 Xàtiva FUJIFILM 159 318(636)
07 Requena HOLOGIC / Giotto IRE (*) 28 56(112)
10 Elda SIEMENS / Giotto IRE (*) 311 622(1244)
11 Elche FUJIFILM 278 556(1112)
13 Orihuela FUJIFILM 117 234(468)
18 Denia IMS s.r.l. / Giotto IRE(*) 38 76(152)
20 Serreŕıa (**) 177 354(708)
99 Burjassot Senographe 2000D 230 230(460)

Total 1785 3340(6680)

Table 5.1: Screening units, their mammography devices and the number of women
and mammograms per device. (*) Implies the use of a new device [Gioto IRE] since
2015. (**) The device is not known.

Mammograms were analyzed by two experienced radiologists using DM-
Scan [155, 156]. This software provides assisted semiautomatic tools to seg-
ment the breast and the fibroglandular tissue and to exclude undesired regions
such as pectoral muscle or armpit.

5.2.2 Breast segmentation framework

The segmentation pipeline is composed of a first step covering breast detec-
tion and pectoral muscle exclusion, a second step to normalize the histogram
variability between acquisition devices, and then, the dense tissue paramet-
ric segmentation is carried out using a deep learning model that was trained
using an ad-hoc loss function. Details on each of the aforementioned steps
are given below.
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5.2.2.1 Background and breast detection

We have used a heuristic, iterative algorithm based on connected components
to obtain the gray level threshold that distinguishes breast from background.
Even though there exist some issues concerning the use of connected compo-
nents labeling on binary images [157], homogeneous breast shape makes this
kind of algorithms suitable to be used for breast segmentation and exhibits
perfect breast detection.

The first step of our approach is to assess the histogram of the image.
Based on the premise that the most frequent pixel value has to belong to the
background, a range of possible breast thresholds is defined.

Then, this range of thresholds is covered until only two homogeneous
components are detected. The first step is to assure that the breast is left-
oriented and to binarize the image using the first possible threshold, then
apply the connected component labeling method. We chose the Scan plus
Array-based Union-Find (SAUF) algorithm [158]. Finally, if only two com-
ponents are obtained, the threshold is set if not, it is continued covering the
range of thresholds.

5.2.2.2 Armpit and pectoral muscle exclusion

Several approaches have been proposed in the literature for armpit and pec-
toral muscle recognition and exclusion. The authors of [159] proposed a
method based on homogeneous contours; the work presented in [160] pro-
posed a combination of image processing, genetic algorithm, morphological
selection, and polynomial curve fitting. The approach explained in [161] com-
bines fractional differential enhancement methods with iterative thresholding
algorithms meanwhile the authors of [162] propose the use of the outputs of
three existing algorithms (region growing, thresholding and k -means clus-
tering) as the input of a machine learning-based computer-aided decision
system.

The common key observed in all the aforementioned studies is the knowl-
edge that pectoral muscle appears in a triangle of one of the top corners of
the image. Based on this premise, we have defined a robust procedure to
exclude pectoral muscles founded on negative gradient changes.

After assuring the image is left-oriented, we applied a Gaussian filter and
a 50-pixel moving average to smooth edges and remove spurious isolated
brightness pixels. As the muscle is a well contrasted border, it tends to be
the last remaining after the smoothing process. We iteratively built a polygon
that encloses the exclusion area by selecting the pixel with the lowest gradient
every 50 rows until the column of the selected pixel was enough close to the
left image border. Finally, the vertex that closed the polygon was the first
pixel from the top left corner.
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5.2.2.3 Normalizing variability between acquisition devices

The pixel size, grey-scale bit resolution, signal to noise ratio or detective
quantum efficiency are important concepts related to image quality [163].
The different mammogram acquisition devices show a huge variability in the
quality of mammograms. The first experiments carried out produced dif-
ferent performance results depending on the mammography facility. These
results influenced the variability assessment among different devices and how
it can negatively impact the training of a machine learning model. We evalu-
ated the differences among the histograms of mammograms over the different
mammography facilities by applying the framework proposed by Sáez et al.
[4, 52] at image level and checking that well-differentiated mammography
facility-clusters appeared as can be seen in Figure 5.1a, where the images
from medical centers using different devices were extracted.

Mammogram features like resolution or signal to noise ratio depend on the
electronic components of acquisition devices and produce a specific signature
visible on the image histogram. In this work, we propose a way to standardize
them, which leads to better performance when a model using the images of
the whole set of the mammography facilities is trained, avoiding the need of
a specific model for each acquisition device.

The preprocessing steps proposed are the following, and the comparison of
two histograms from two different acquisition devices can be found in Figure
5.1b):

1. Normalize the pixel values of the image between [0, 1].
2. Shift histogram to set the minimum breast tissue pixel to 0.
3. Normalize again the pixel values between [0, 1].
4. Standardize the breast pixel values to a normal distribution Z ∼ N(0, 1).
5. Adjust the pixel values so that the mode is 0.
6. Under the assumption that most typical percent density values are below

30% (above 70th percentile) and values under the 30th percentile only
belong to fatty tissue, apply a linear stretching from percentile 30 to −1
and from percentile 70 to 1.

7. Apply once more a normalization to ensure inputs for the Deep Neural
Network are between [0, 1].

5.2.2.4 Dense tissue segmentation with Entirely Convolutional Neural
Network (ECNN)

Recent works address dense tissue segmentation from different points of view.
Authors of [164] used a fractal inspired approach and a multiresolution stack
representation to extract 3D histogram features, which were used to apply
k-means [165] to classify each pixel as fatty, semi-fatty, semi-dense or dense.

Another interesting approach is that proposed in [148], in which an unsu-
pervised step to extract features, based on a sparse autoencoder, is followed
by a supervised classifier which tried to classify each pixel as pectoral muscle,



5.2 Methods 87

Fig. 5.1: A) Differences among the histograms of the mammograms of the facili-
ties with different acquisition devices. Well-differentiated clusters demonstrated the
dissimilarity between acquisition devices. B) Example of histogram transformation
using one mammogram from each of the different mammography facilities.

fatty or dense tissue. Close to this approach is the one of [166] that uses 4
fully convolutional networks, two to segment breast tissue on CC and MLO
views and the other two to segment the dense tissue on those same views.

Since an accurate and objective gold standard does not exist for the seg-
mentation task, the ground-truth of the model to be trained is the segmen-
tation provided by two experienced radiologists who used a semi-atuomatic
segmentation tool. Usually, these tools are based on the selection of two
thresholds thB and thF to segment, respectively, the breast and the fibrog-
landular tissue. In our study we have used DMScan, a semi-automatic tool
that provides a more accurate segmentation using a third parameter α ex-
plained below. Therefore, this tool interactively rebuilds a dense tissue mask
using the values of three parameters.
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• The breast region threshold (thB). Pixels with values higher than thB
are considered to belong to the breast.
• The brightness corrector α. The X-ray attenuation depends on the thick-

ness of the breast. The thicker the tissue irradiated, the greater the at-
tenuation and, consequently, the brighter the image [155]. The first pa-
rameter is related to a brightness correction coefficient kij by which each
pixel is multiplied. The user-defined parameter α ∈ [0, 1] updates the
kij according to Equation 5.1 where dij is the horizontal distance of the
pixel (i, j) to the image border or the pectoral muscle. It compensates
the variation of thickness along the breast.

kij = α+ 2(1− α)dij (5.1)

• The fibroglandular tissue threshold (thF ). Pixels with values higher than
thF are considered to belong to the dense tissue.

We propose an architecture in which convolutions were employed to ex-
tract the features needed to replicate the DMScan segmentation as image-
intrinsic features: α and thF . A similar architecture could be applicable to
meet the requirements of other semi-automatic threshold-based tools. From
now on, we will refer to this architecture as Entirely Convolutional Neural
Network (ECNN). It was designed to work with 256×256 px sized images. The
proposed architecture and its convolutional layers configuration are shown in
Figure 5.2.

Besides, the activation function for the layers was the Leaky Rectified
Linear Unit (ReLU), with exception of the last layer which was set to sigmoid
function to ensure output was [0, 1]-bounded. The activation functions are
presented in Equation 5.2.

ReLU(x) =

x ifx > 0

0.2x otherwise

sigmoid(x) = 1
1+e−x

(5.2)

5.2.2.5 Continuous parameter-based DICE loss function

To measure the performance of our model, we chose the widespread used
Sørensen-Dice Similarity Coefficient [154] which measures how much two
masks M1 and M2 overlap according to equation 5.3.

DICE(M1,M2) =
2|M1 ∩M2|
|M1|+ |M2|

(5.3)

The use of mean squared error is not monotonically related to the DICE
score, leading to an erratic convergence on the learning stage. Furthermore,
DICE is the function we want to maximize as it measures the agreement
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Fig. 5.2: Entirely Convolutional Neural Network (ECNN) architecture.
The kernel and the strides size for each layer are shown, padding was added to
the first convolution to preserve information on the borders. Only convolutions are
used to extract the features (α and thF ) needed to segment the dense tissue.

between binary masks. Maximizing DICE is equivalent to minimizing 1−
DICE. Given two masks M1 and M2, a DICE of 2

3 = 0.66 means that the
number of pixels belonging to M1 and M2 is equal to the number of pixels
that only belong to one of them. A DICE score of 0.8 implies that the number
of pixels belonging to only one of the masks half the number of pixels that
belong to both masks.

This was the reason to develop our metric based on DICE to be used as
a loss function in the training stage. The underlying key is to build a map
of probabilities in which each element represents the probability of the cor-
responding pixel belonging to dense tissue and, then, apply the DICE score
between estimated mask and the dense tissue mask provided by the radiol-
ogists (ground truth). The metric can be represented according to Equation
5.4:
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R[0,1]
256×256 × R[0,1] R[0,1]

256×256 × R[0,1] R[0,1]
256×256 × R{0,1}256×256 R[0,1]

fil
(

(mij), α̂
) (

[α̂+ 2(1− α̂)dij ]mij

)

logistic
(

(mij), ˆthF

) (
1

e−(40[mij− ˆthF ])

)

loss
(

(mij), (nij)
)

2
∑
mijnij∑

mij+
∑
nij

fil logistic loss

(5.4)

Where mij ∈ R[0,1]
256×256 is the mammography resized to 256 × 256 and

nij ∈ R{0,1}256×256 is the dense tissue mask provided by an specialist. It is worth
to mention that in fil(.), dij is the one defined in Section 5.2.2.4. The logistic
function logistic(.) was applied instead of a step function to maintain the
continuity, and 40 was used as a slope factor to assure a quick transition
between 0 and 1.

Finally, the loss function, which from now on will be referred to as Con-
tinuous based Parameters DICE loss score (CPDICE) is defined according to
Equation 5.5:

CPDICE
(
(mij), α̂, ˆthF , (nij)

)
= 1− 2

∑(
1 + e−40([α̂+2(1−α̂)dij ]mij− ˆthF ))−1nij∑(

1 + e−40([α̂+2(1−α̂)dij ]mij− ˆthF ))−1 +
∑
nij
(5.5)

The corpus, consisting of a total of 3340 mammograms and segmented
using DMScan by two radiologists (6680 reads), was randomly stratified tak-
ing 75% (4992 segmentations) as training set, from which 10% of the seg-
mentations were extracted with validation purposes (validation set), and the
remaining 25% (1688 segmentations) as test set. Both mammogram reads of
the same image were always included in the same set. The maximum number
of epochs was fixed to 500, the optimizer for the training stage was the Adam
algorithm [25], and finally, the learning rate was set to 0.001.

5.2.2.6 Dense tissue segmentation example

Three examples of ECNN segmentation of test images using the steps previ-
ously described can be found in Figure 5.3. The segmentation is compared
to those proposed by the two radiologists. The mammograms were recruited
using different acquisition devices. The last example shows the emergence of
the abdomen that is still not covered by our pipeline and may negatively
influence performance results.
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R1 segmentation

R1 segmentation R2 segmentation

R2 segmentation

ECNN segmentation

ECNN segmentation

A) IMAGE FROM DEVICE 01

B) IMAGE FROM DEVICE 18

ECNN segmentation R1 segmentation R2 segmentation
C) IMAGE WITH ABDOMEN 

Fig. 5.3: ECNN segmentation compared to radiologists segmentations on
different devices. A) Segmentation of a mammogram acquired using the device
of mammography facility 01. B) Segmentation of a mammogram acquired using
the device of mammography facility 18. C) A mammogram from mammography
facility 11 where abdomen tissue is found. Medio-lateral oblique mammograms were
selected so the exclusion of the pectoral muscle could be seen, however, the abdomen
is not excluded.

5.3 Results

As previously mentioned, our model was configured to be trained at most 500
epochs. The lowest loss error obtained was around epoch 400 and the final
selected model was then obtained after this number of training iterations.

The lack of a real gold-standard, along with the inter-reader variability
[139, 167] motivated us to train our ECNN using segmentations of more
than one radiologist as explained before. This decision was made because
we did not want a model behaving like a specific specialist, but we wanted
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a model that could obtain a level of agreement with any of the specialists
comparable to the agreement among them. It is important to note that the
segmentation of each radiologist is considered as an independent element.
In this sense, if the model gets a perfect segmentation for a mammogram
compared to a specific radiologist (R1 for instance), the segmentation of
the same mammogram gives a difference concerning the other radiologist
(R2) of exactly the difference between R1 and R2. This implies the existence
of an unavoidable intrinsic error which has an impact on the performance
of the model. It is also worth to mention that radiologists segmentations
were labeled using DMScan, which provides an interactive tool to exclude
the armpit and pectoral muscle. As can be seen in Figure 5.3, the approach
implemented in the current study does not manage, for example, the presence
of the abdomen tissue at the bottom of the image. This may also lead to an
additional increase of the errors reported in this study.

5.3.1 ECNN as an alternative architecture to standard CNN

As previously mentioned, one of the requirements of the present study is
to learn the same parameters that the radiologist has access to. The use of
approaches where each pixel or each local region could be freely assigned as
dense or not dense was discarded due to the interest in comparing our results
with those obtained using widely used threshold-based semi-automatic tools.

Then, to measure the performance of the proposed architecture -ECNN-
we trained a fully connected convolutional neural network (CNN) to esti-
mate the desired parameters. A typical architecture for similar tasks [168]
composed of a convolutional part followed by a three dense layers (see Ta-
ble 5.2 for architecture details) provided the intended parameter estimation.
It was trained using the CPDICE as a loss function with a learning rate of
0.001.

Layer number Type layer Filters/Neurons Kernel size Strides Padding Activation function
1 Convolutional 32 3× 3 1× 1 same Leaky ReLu
2 Convolutional 64 3× 3 1× 1 valid Leaky ReLu
3 Maxpooling - 2× 2 2× 2 valid -
4 Convolutional 64 3× 3 1× 1 valid Leaky ReLu
5 Convolutional 64 3× 3 1× 1 valid Leaky ReLu
6 Maxpooling - 2× 2 2× 2 valid -
7 Dense 512 - - - Leaky ReLu
8 Dense 512 - - - Leaky ReLu
9 Dense 2 - - - Sigmoid

Table 5.2: The details of CNN layers implementation. The first six layers extract
image features (convolution stage) and the last three layers play the role of the
regressor.

The results per mammography facility compared to those obtained with
the ECNN are presented in Table 5.3.
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mammography ECNN CNN R1 vs R2
facility DICE CI DICE CI DICE CI

01 0.81 [0.78, 0.84] 0.79 [0.76, 0.83] 0.79 [0.76, 0.83]
02 0.83 [0.79, 0.86] 0.79 [0.75, 0.83] 0.79 [0.76, 0.82]
04 0.57 [0.50, 0.65] 0.60 [0.53, 0.68] 0.75 [0.69, 0.81]
05 0.84 [0.81, 0.87] 0.83 [0.80, 0.86] 0.65 [0.61, 0.68]
07 0.85 [0.77, 0.94] 0.81 [0.69, 0.92] 0.88 [0.81, 0.96]
10 0.68 [0.65, 0.72] 0.71 [0.67, 0.75] 0.77 [0.75, 0.80]
11 0.87 [0.85, 0.88] 0.83 [0.81, 0.85] 0.82 [0.80, 0.84]
13 0.86 [0.83, 0.89] 0.83 [0.80, 0.87] 0.78 [0.75, 0.82]
18 0.51 [0.40, 0.64] 0.56 [0.46, 0.66] 0.74 [0.68, 0.79]
20 0.61 [0.55, 0.67] 0.62 [0.57, 0.67] 0.78 [0.75, 0.81]
99 0.78 [0.73, 0.83] 0.75 [0.69, 0.81] 0.79 [0.76, 0.82]

Total 0.77 [0.75, 0.78] 0.76 [0.74, 0.77] 0.77 [0.75, 0.78]

Table 5.3: ECNN results compared to conventional convolutional architecture. CI
refers to 95% confidence interval. ECNN outperforms in many of the devices the
agreement between R1 and R2. CNN got better scores on some mammography
facilities in which the quality of the mammogram is lower. The DICE scores for the
DL models represent the DICE scores to the closer radiologist segmentation.

The conventional convolutional architecture only got significantly better
results on mammography facilities 04 and 18. These mammography facilities
correspond to the device with the lowest gray-level resolution. The DICE
scores in these facilities show also poor agreement between radiologists. Al-
though the best performance of ECNN compared to CNN only can be consid-
ered statistically significant for device 11, this approach provided, at least, a
similar performance, and it is also faster, more interpretable, and has a lower
computational load.

5.3.2 ECNN improvement in function with training epochs

Figure 5.4 shows the model assessment of test images at different epochs
(10, 50, 100, 200, 220, 400 and 460) to make clear the achieved balance
at different mammography facilities. Averaged-score of validation set also
reported its best punctuation at epoch 400 when the validation set score
monitored during the training stage.

According to these results, there exist mammography facilities in which
the proposed model performance is significantly worse than the obtained in
others. It is related to the acquisition device, the quality of acquired images,
and probably the unbalanced number of images among different devices.

It should be noted that devices of mammography facilities 1, 2, 5, 11, and
13 come from the same manufacturer and the sum of images in these mam-
mography facilities exceeds by far images coming from other manufacturers.
It may influence the good performance at early epochs on images of these
mammography facilities. The model seems to improve its results on images
from other devices when the local maxima are near to be reached in these
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Fig. 5.4: DICE score per mammography facility at different epochs in the
test set. The first epochs already get acceptable results for images in which the
quality is high. As training iterations increase, accuracy increases in these devices
and the model is also able to improve its accuracy for the facilities in which their
acquisition device image quality is worse. Finally, epoch 400 gets the best averaged
score and the model is selected at this point.

mammography facilities which share the same device (the most represented
in the corpus).

5.3.3 ECNN segmentation compared with two radiologists

A brief comparison of the obtained DICE scores can be found in Table 5.4.
These results demonstrate a good agreement level of ECNN with segmen-

tations provided by experienced radiologists. As can be seen in Table 5.1, the
mammography facilities with a FUJIFILM device (mammography facilities
01, 02, 05, 11, and 13) are those that present better results in Table 5.4. Those
mammography facilities presenting lower levels of agreement for the ECNN
are also the least populated. This situation makes us suspect that training
the model using a balanced number of images per device could increase the
reported scores. This probable increment in the performance would be always
bounded by the lower gray-level resolution observed in these devices. It also
leads to a lower agreement between specialists, with exception of the mam-
mography facility 05 (FUJIFILM acquisition device) where DICE between
radiologists is surprisingly low.
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Medical
test size

ECNN
R1 vs R2

# ECNN closer # ECNN closer # ECNN closer
facility vs closer to R1 than R2 to R2 than R1 to R1 or R2

01 96 0.81 0.79 52 35 58
02 96 0.83 0.79 51 43 63
04 34 0.58 0.75 7 3 8
05 80 0.84 0.65 64 63 76
07 14 0.85 0.88 3 5 6
10 156 0.68 0.77 42 57 65
11 140 0.87 0.82 63 85 100
13 60 0.86 0.78 30 43 49
18 20 0.51 0.74 2 4 6
20 90 0.61 0.78 15 19 27
99 58 0.78 0.79 19 25 35

Total 844 0.77 0.77 348 382 493

Table 5.4: ECNN segmentation DICE scores in function with acquisition devices.
Test size column is the number of mammograms available in the test set for each
mammography facility. The third column refers to DICE score when ECNN is con-
sidered as other radiologist. Fourth column is the DICE score between radiologists.
The last three columns show the number of segmentations in which ECNN-R1 are
closer than R1-R2, ECNN-R2 are closer than R1-R2 and ECNN-[R1 or R2] is closer
than R1-R2.

ECNN outperforms in many devices when compared to the agreement
between radiologists and still obtains better results in some devices when
it is considered as an specialist. It highlights that almost 60% of ECNN
segmentation masks (493 out of 844) are closer to one of the radiologists
than the radiologists to each other. This percentage is increased in facilities
with FUJIFILM devices. This suggests that ECNN could be considered as
an independent reader, but a validation considering the segmentations from
other radiologists is needed.

5.3.4 Histogram normalization importance

Figure 5.5 shows how image preprocessing increases the performance of our
ECNN.

The substantial increment in the performance of our model, when a pre-
processing step is carried out, captures how variability among acquisition
devices impacts in the mammogram analysis. These results support the need
for standardization of gray-level values from different sources before modeling
problems using mammograms.

5.3.5 Specific segmentation model per acquisition device

Having images from different devices could act as a confounder for the models,
so the next step was to check if the performance of percent density estimation
improved when a specific model is trained for each mammography facility. In
this sense, two models using the train images only from one mammography
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Fig. 5.5: Comparison of ECNN segmentation using and not using a pre-
processing step. It is observed that results using the proposed histogram normal-
ization outperforms those obtained without any preprocess

facility were trained. One of the models was trained using mammograms from
the mammography facility 01 and the other using those from the mammog-
raphy facility 18. The performance results over the same samples (test corpus
from devices 01 and 18) are shown in Table 5.5. They suggest that using a
generic model does not imply a substantial loss of performance compared to
a specific model.

Medical
test size

ECNN
R1 vs R2

# ECNN closer # ECNN closer # ECNN closer
Center vs closer to R1 than R2 to R2 than R1 to R1 or R2

01 96 0.82(0.81) 0.79 41(52) 44(35) 59(58)
18 20 0.58(0.51) 0.74 4(2) 2(4) 5(6)

Table 5.5: Specialized models segmentation DICE scores in function with acquisi-
tion devices. Test size column is the number of mammograms available in the test
set for each mammography facility. The third column refers to DICE score when
ECNN is considered as other radiologist. Fourth column is the DICE score between
radiologists. The last three columns show the number of segmentations in which
ECNN-R1 are closer than R1-R2, ECNN-R2 are closer than R1-R2 and ECNN-[R1
or R2] is closer than R1-R2. Values in parentheses are the results for the global
model.

The specialized model for mammography facility 18 obtained better re-
sults when compared to the global model but, still, poor concordance is main-
tained probably due to the lack of training images and/or the poor quality
of them.
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5.4 Discussion

According to [139, 169, 170], one of the important tasks for computer-aided
diagnosis systems is to provide an accurate and reproducible assessment
of mammographic breast density. We consider that our multi-center study
demonstrates a good performance of breast density assessment using ECNN,
and constitutes a first step in the standardization of how mammographic
breast density is assessed. Globally, the score obtained by the proposed frame-
work is comparable, in terms of concordance, to the score obtained by two
radiologists.

Typical convolution usage covers pixel-level classification tasks, using
convolutional autoencoder architectures [171, 172], or pattern recognition
based classification tasks, using fully connected convolutional neural networks
[173, 174], or Deep Residual Learning for BI-RADS breast density categories
classification [175]. Since our output was continuous, approaches intended
to pixel-level classification were discarded. A fully convolutional neural net-
work to estimate the threshold segmentation-based parameters (CNN) was
overcome by the architecture in which the desired paramenters are directly
extracted as features of the image (ECNN). The performance of the ECNN
is better than the obtained by CNN, however this architecture obtain signif-
icant better performance for two over the eleven facilities (04 and 18). These
mammography facilities have the same acquisition device model and it is also
the less represented one in the sample. We expect that increasing the number
of images from devices of this model may improve the segmentation results.
It is also worth to mention that automatic segmentation applied to the most
represented device (FUJIFILM in facilities 01, 02, 05, 11, and 13) were closer
to one of the radiologists than each radiologist to the other 73% times (346
out of 472), implying a significant DICE score improvement, outperforming
the radiologists concordance.

The main contributions of the present paper can be summarized as:

1. An intuitive preprocess protocol standardizes the histograms of breasts
by centering the mode and stretching the tails of the histograms. It allows
to extend the range in which the fibroglandular threshold is found. This
step reduced the impact of using different acquisition devices.

2. A convolution-based architecture trained to learn the two desired param-
eters used by radiologists to segment the image. The results provided by
this approach obtained slightly better results compared to state-of-the-art
algorithms with lower computing workload.

3. An ad hoc, continuous, and differentiable loss function which rebuilds
the intended mask from the estimated parameters and assesses the DICE
score against the “training ground truth”.

4. The approach followed makes easy that a radiologists perform a fine-
tuning of the results by interactively modifying the segmentation param-
eters using a tool such as DMScan.
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5.4.1 Limitations and future research

While the parameter based approach was justified to make it compatible
with threshold-based semi-automatic tools, exploring other, supervised or
unsupervised, mask-based approaches is planned. Supervised mask based ap-
proaches could deal with the suboptimal results obtained in some devices and
unsupervised approaches would let us complement the models using large
databases without the need of human effort.

A second limitation is the pectoral muscle exclusion algorithm. The so-
lution adopted in the present work, although robust, could be improved by
taking into account other approaches mentioned in Section 5.2.2.2.

Finally, the use of “for presentation” mammograms instead of “raw” im-
ages may be the reason for some of the differences among acquisition devices.
It is also desirable to check if “Raw” mammograms would avoid the prepro-
cessing step.

5.5 Conclusion

Nowadays, with the explosion of complex models that can identify features
and patterns which are undetectable to the human eye, having a large amount
of labeled mammograms is highly necessary for basic and clinical research.
In this sense, the availability of a tool that provides automatic segmentation
of dense tissue on processed digital mammographies with a high level of
concordance with the segmentation of experienced radiologists is desirable.

The work presented in this paper provides an automatic framework based
on deep learning which detects the breast, excludes the pectoral muscle,
and finally performs a dense tissue segmentation. Our approach is based
on the estimation of two segmentation parameters which are learned as im-
age level features. A preprocess step alleviates the influence of the variability
among mammograms from different sources and improved the algorithm per-
formance.

The concordance scores (DICE) of the proposed framework are close to
the agreement achieved between two radiologists in a multi-center (and multi-
device) study. Images from those devices with the highest gray-level resolution
provide concordance results even better than those raised by two experienced
specialists, suggesting that our model could be used as a fully independent
reader. As a final contribution, if the radiologist does not agree with the seg-
mentation proposal, it may easily fine-tuned using a software tool, DMScan,
built in our laboratory and freely available for research purposes.
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tura de densidad mamográfica como fenotipo marcador de riesgo de cáncer
de mama”) and consent was obtained from study participants at the time of
screening.





6 Journal article (iv)

The two enemies of human hapiness
are pain and boredom.

Arthur Schopenhauer.

A happiness degree predictor using the conceptual data
structure for deep learning architectures.
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Abstract.

Background and Objective: Happiness is a universal fundamental
human goal. Since the emergence of Positive Psychology, a major fo-
cus in psychological research has been to study the role of certain fac-
tors in the prediction of happiness. The conventional methodologies
are based on linear relationships, such as the commonly used Mul-
tivariate Linear Regression (MLR), which may suffer from the lack
of representative capacity to the varied psychological features.Using
Deep Neural Networks (DNN), we define a Happiness Degree Predic-
tor (H-DP) based on the answers to five psychometric standardized
questionnaires.

Methods: A Data-Structure driven architecture for DNNs (D-SDNN)
is proposed for defining a HDP in which the network architecture en-
ables the conceptual interpretation of psychological factors associated
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to happiness. Four different neural network configurations have been
tested, varying the number of neurons and the presence or absence
of bias in the hidden layers. Two metrics for evaluating the influ-
ence of conceptual dimensions have been defined and computed: one
quantifies the influence weight of the conceptual dimension in ab-
solute terms and the other one pinpoints the direction (positive or
negative) of the influence.

Materials: A cross-sectional survey targeting non-institutionalized
adult population residing in Spain was completed by 823 cases. The
total of 111 elements of the survey are grouped by socio-demographic
data and by five psychometric scales (Brief COPE Inventory, EPQR-
A, GHQ-28, MOS-SSS and SDHS) measuring several psychological
factors acting one as the outcome (SDHS) and the four others as
predictors.

Results: Our D-SDNN approach provided a better outcome (MSE:
1.46·10−2) than MLR (MSE: 2.30·10−2), hence improving by 37% the
predictive accuracy, and allowing to simulate the conceptual struc-
ture.

Conclusions: We observe a better performance of Deep Neural Net-
works (DNN) with respect to traditional methodologies. This demon-
strates its capability to capture the conceptual structure for predict-
ing happiness degree through psychological variables assessed by stan-
dardized questionnaires. It also permits to estimate the influence of
each factor on the outcome without assuming a linear relationship.

Keywords: Deep learning, Data-structure driven deep neural net-
work (D-SDNN), Happiness, Happiness-Degree Predictor (H-DP)

6.1 Introduction

The pursuit of happiness is a universal - both cultural and time wise - core
driver of human behaviour. Since ancient times pivotal and referent philo-
sophical figures, as for example Aristotle 1 from West or Zhuangzi 2 from
East, devoted much of their work to the idea of happiness as an ultimate
purpose of human existence. The major proof that this consciousness pursuit
of happiness should be considered as a fundamental human goal is the reso-
lution adopted by the United Nations General Assembly on June 28th, 2012
where March, 20th was proclaimed the International Day of Happiness:

1 Happiness depends on ourselves. Aristotle
2 Happiness is the absence of the striving for happiness. Zhuangzi
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Recognizing the relevance of happiness and well-being as universal
goals and aspirations in the lives of human beings around the world
and the importance of their recognition in public policy objectives.
Recognizing also the need for a more inclusive, equitable and balanced
approach to economic growth that promotes sustainable development,
poverty eradication, happiness and the well-being of all peoples [176].

Consistent with this resolution, the United Nations (UN) has created a
civilian based movement for a happier world [177, 178], and took the lead to
well-being and happiness as a principal aim in the development and launch
of the 17 Sustainable Development Goals of the 2030 Agenda for Sustainable
Development [179, 180].

6.1.1 Happiness-Degree Predictor

Since the emergence of Positive Psychology [181] as the scientific study of
factors that lead humans – both at the individual and collective level– to
thrive, the research community has consistently built up the evidence-based
knowledge about the so-called happiness or subjective well-being [182–189].

Happiness and depression are terms employed in daily life to denote affec-
tive states and mood swings, which are reliably represented as falling at oppo-
site ends of a bipolar valence continuum [190, 191]. For illustrative purposes,
a graphical representation of the emotional valence spectrum is displayed in
Figure 6.1.

Fig. 6.1: Emotional valence spectrum

As it can be seen, depression is allocated at the very end of the negative
affect side whereas happiness is placed at the opposite one. This implies that
happiness is not just the absence of negative mood and affective states, but
also the presence of positive ones.

Regarding happiness predictors, existent research has found psychological
factors such as stress coping strategies [192, 193], perceived social support
[194–197] or personality [198–201] to have a considerable weight in its emer-
gence. Up to now, the traditional methodological approach employed for hap-
piness degree prediction has been a Multivariate Linear Regression (MLR)
[202].

Emerging paradigms, novel approaches, and tools such as deep learning
are becoming increasingly influential in psychological research as in the case of
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emotion recognition [203–205], sentiment analysis and/or classification [206–
208]. It is worth to mention that both topics were endorsed in recent special
issues in the last years [209–211] demonstrating the significance of the study
and enabling us to avoid one of the pressing constraints of MLR that is
the assumption of a linear relationship between the predictors (psychological
factors) and the outcome (happiness degree).

Recent studies in sentiment analysis enclosed inside the field of psychol-
ogy show the tendency to monitor the state of the people through social net-
work activity, image/video and sentence classification [207, 212–214]. These
researches show the use of convolutional deep learning approaches which
present a better behaviour for feature extraction and selection. Our study
aims to mimic –without assuming any linear relationship– the structure of
a set of psychometric scales which are conformed by structured data with
prediction and interpretation purposes, becoming unnecessary the use of the
convolutional technology because of the nature of data.

6.1.2 Motivation of present study

The main objective of our work is to define a Happiness Degree Predic-
tor (H-DP) that permits to obtain information of the most significant fac-
tors influencing happiness. In particular, this will permit to test the effi-
ciency of increasingly popular regression deep-learning approach in the pre-
diction of Happiness measured in terms of the psychometric Short Depression-
Happiness Scale (SDHS).

For this purpose, we propose the construction of an intuitive Data-
Structure driven Deep Neural Network (D-SDNN) based on the conceptual
structure of the psychological factors -emotional distress, personality, stress
coping strategies, and perceived social support- for supervised learning. The
current technique of deep learning is believed to have many different advan-
tages [214, 215]. Among them, D-SDNN’s are expected to improve the correct-
ness of prediction respect to the ones given by MLR, as well as to monitor
the influence –weight– that different conceptual dimensions –psychological
factors– have in the emergence of a certain degree of happiness and hence in
the H-DP.

The rest of the paper is organized as follows. First, in Section 6.2, we
provide a short description of the psychometric scales employed to measure
the psychological factors used by our D-SDNN. Next, the sample and the
data preprocessing procedure are presented. Section 6.3 is devoted to the
conceptual scheme and principal features of D-SDNNs. Four D-SDNNs have
been trained. Section 6.4 presents our results using a real data and compared
to MLR. Impact, contributions, limitations and future work are presented in
Section 6.5. Finally, a short conclusion is drawn in Section 6.6.
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6.2 Materials

6.2.1 Sample: Issues to consider

Psychological and mental wellbeing has only recently been measurable with
valid and reliable measures, but happiness can be understood as satisfaction
with life, depression absence, stable extraversion, etc., so even they do not
constitute the same construct may be found strong relationships between
them. Literature reveals that a lot of sources may influence in happiness, the
strongest effects are due to marital status, the relation with the employment,
occupational status, leisure and competencies of health and social skills [216].
So, in this paper we have used a specific instrument to assess happiness and
we have included other related and different constructs (as coping strategies,
personality, emotional distress and social support) in the model in order to
design a whole picture of mental and psychological status of the sample.

6.2.1.1 Description of the sample

The target of the cross-sectional survey was the non-institutionalized adult
population residing in Valencia. A total of 823 participants completed the sur-
vey, 59.8% of whom were women. The mean age was 46 (±21.1) ranging from
18 to 92 years old. Regarding the educational level of the sample, a 12.2% had
not received formal education, 25.8% primary education, 28.7% secondary ed-
ucation, and the remaining 33.3% had received –or were currently receiving–
tertiary education. For what it concerns their marital status, 39% of them
were single, 41.4% married, 8.3% separated or divorced, and the remaining
11.3% were widow(er).

6.2.1.2 Grounds for exclusion

The sample was collected by 76 different interviewers implying that some of
the participants were interviewed by more than one person. We took this fact
into account in order to avoid incorrect results. In this sense, if the multiple
responses of each repeated participant were equal, then the participant was
included, being excluded in the other case.

6.2.2 Descriptions of psychometric scales

Psychometric scales are standardized questionnaires that measure latent vari-
ables (psychological factors) through empirical items (behavioral indicators).
The procedure of using a psychometric scale comprises a first step where
the scale is validated and a second one where its reliability is estimated. In
order to be usable, once a scale has been validated in a certain population,
its validity does not need to be checked again. However, the reliability of a
scale must be checked every time this scale is used over a different sample.
There are several indexes to estimate the internal consistency (i.e. reliability)
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of a scale. The index most commonly employed is the Cronbach’s α coeffi-
cient [217]. Therefore, we will present below the different psychometric scales
employed in this work to measure latent variables. Cronbach’s α coefficients
obtained for each scale are presented in Section 6.2.3.

Happiness was measured with the Short Depression-Happiness Scale
(SDHS) [191]. It is a 4-point Likert-scale ranging from 0 (“never”) to 3 (“of-
ten”) with a total of 6 items, 3 of which describe positive feelings (e.g. “I
felt that life was enjoyable”) while three other describe negative feelings –and
are hence reverse scored– (e.g. “I felt cheerless”). The total score (which may
vary between 0 –Depression– and 18 –Happiness–) was computed to obtain
the happiness/depression degree for each participant and was employed as
gold-standard for supervised-training for the outcome of the D-SDNN.

Coping Strategies are different mental mechanism regarding to manage
demands and conflicts and to regulate emotional response and stress. These
strategies include the use of personal resources and coping strategies are in-
volved in situations which individuals frequently feel that do not have enough
resources or they are not able to answer properly to these demands. Main
coping strategies are conductual, cognitive and emotional and could be fo-
cussed towards the problem or towards the emotion –that we have at that
moment–. Coping Strategies were assessed using the Brief COPE Inventory
[218]. It is a 4-point Likert-scale ranging from 1 (“I usually don’t do this at
all”) to 4 (“I usually do this a lot”) with a total of 28 items regrouped in 14
sub-scales of 2 items each: self-distraction, active coping, denial, substance
abuse, use of emotional support, use of instrumental support, behavioural
disengagement, venting, positive re-framing, planning, humour, religion, and
self-blame.

Personality was assessed with the Eysenck Personality Questionnaire
Revised-Abbreviated (EPQR-A) [219]. It consists of 4 scales of 6 dichoto-
mous items (“yes/no”) each that assess neuroticism, extraversion, psychoti-
cism, and sincerity.

Emotional Distress is a feeling that a person or situation is triggering
a psychological suffering and could be expresed in different degrees not only
cognitive or verbally but through mental or physical symptoms –deppression,
anxiety, insomnia, anorexia or poliphagia, upset, vertigo, fatigue, nausea,
pain, etc.–. Emotional distress can be interpreted as the opposite status of
well-being, happiness, personal satisfaction, welfare, etc. This psychological
factor was measured using the 28-item General Health Questionnaire (GHQ-
28) [220]. It is a 5-point Likert-scale ranging from 0 (“not at all”) to 4 (“much
more than usual”) with a total of 28 items regrouped in 4 sub-scales of 7 items
each: somatic symptoms, anxiety/insomnia, social dysfunction, and severe
depression.

Social Support was assessed with the Medical Outcomes Study (MOS)
Social Support Survey (MOS-SSS) [221]. It consists of a first question asking
for the number of close friends and close relatives that the person has, plus a
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5-point Likert-scale ranging from 1 (“non of the time”) to 4 (“all of the time”)
with a total of 19 items regrouped into 4 functional support sub-scales of 8,
4, 4, and 3 items per sub-scale. These are: emotional/informational, tangible,
affectionate, and positive social interaction.

6.2.3 Descriptions of Data preprocessing

The reliability is referred to the non-systematic error of the measure. It is a
feature of the results and can be influenced by the length of the instrument,
the homogeneity of the group measured, etc. [222]. The minimum acceptable
value of the reliability coefficient depends on the use made of the instrument
[223]. In this sense, we first computed the Cronbach’s α coefficients for esti-
mating the internal consistency of the psychometric scales in order to check
the reliability work prior to use the data gathered with them. The coefficients
obtained are summarized in Table 6.1. It is considered an acceptable internal
consistency for Cronbach’s α for values from 0.70. As it can be seen in Table
6.1, all scales presented a good reliability except for the case of the EPQR-A
(that measured personality). Some authors highlight that reliability indices
can be influenced by the scale length [224, 225]. Shorter scales usually show
lower coefficients than the longer ones, the personality was measured by the
abbreviated version of the scale EPQR (the revised scale consist of 100 items
while the abbreviated version comprises 24 items) and this may explain the
low internal consistency. In any case, we propose the use of the scale but the
results regarding this dimension should be interpreted with caution consid-
ering the obtained degree of internal consistency.

Psychometric scale Cronbach’s α coefficient
SDHS 0.79

Brief COPE Inventory 0.84
EPQR-A 0.42
GHQ-28 0.87

MOS-SSS 0.95

Table 6.1: Cronbach’s α coefficients obtained for each psychometric scale

The variables used in this work can be distinguished between numerical
or state ones. We pre-processed them differently according to their nature.

State variables (Marital Status and Level of Education) needed re-
codification before the analysis under the assumption: if two states are re-
lated, i.e. exists the possibility of changing from one state to the other, then
the codification only differs in one digit, defining an Ordered Binary-Decision
Diagram (OBDD) [226] and permiting to use a dummy codification [227].

The range of the numerical variables, such as age (discrete data), gen-
der (binary data) and the results of the standardized psychometric scales
(continuous data) -including the predictors and the outcome-, are known.
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We therefore normalized data for deep neural network’s inputs according to
equation (6.1), since networks tend to work better when the data are nor-
malized [228].

t = (tmax − tmin)
x− xmin

xmax − xmin
+ tmin. (6.1)

Here, t represents each input variable for the neural network and x the
original value for each variable. Note that xmax − xmin and tmax − tmin rep-
resent the range of data collected and neural network’s inputs, respectively.
The use of data in its original range may provoke a need for comparison of
the network’s output against the real range, in such case:

x = xmin +
(t− tmin)(xmax − xmin)

tmax − tmin
. (6.2)

Values tmax = 1 and tmin = 0 have been taken in order to use logistic
activation function (see (6.3)) in each neuron of the hidden layers.

f(x) =
1

1 + e−x
. (6.3)

6.3 Methods

6.3.1 Conceptual scheme

In line with the above objectives mentioned, we have tried to simulate the
data conceptual structure in order to gather extra information about the
importance of each dimension (i.e. psychological factors) in the H-DP. This
architecture can be understood as an ensemble of simpler networks to ap-
proximate a function f : RN −→ R. In the context of regression, ensembling
some of the neural networks may be better than ensembling all of them [229].

We propose a hierarchical ensembling data driven method for modeling
the task in hand. The preconceived data structure has led the layers’ en-
sembling. The items of the psychometric scales employed for measuring the
psychological factors used as predictors have been empirically proved to clus-
ter into sub-dimensions and dimensions, i.e. sub-factors and factors [218–221].
We have mimicked this empirically-based conceptual structure in the design
of the architecture for our D-SDNN, as it is shown in Table 6.2 and Figure
6.2. We may observe that the 105 inputs included have been regrouped into
six main domains:

1 - Interviewer ID, which is included in order to control for the influence
of the person who was in charge of the data gathering.

2 - Age, Gender, Marital Status and Level of Education are Socio-
Demographic features and therefore grouped into the conceptual dimen-
sion Socio-Demographic Data.
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3 - The 28 items from the Brief COPE Inventory are firstly grouped
into fourteen conceptual sub-dimensions: Active Coping, Positive Re-
maining, Acceptance, Use of Instrumental Support, Self-distraction, Re-
ligion, Self Blame, Planning, Humour, Use of Emotional Support, Be-
havioral disengagement, Denial, Substance Use and Venting. These are
finally grouped into the conceptual dimension Coping Strategies that is
the psychological factor measured by the Brief COPE Inventory.

4 - The 24 items from the EPQR-A are firstly grouped into four con-
ceptual sub-dimensions: Neuroticism, Extraversion, Psychoticism, and
Sincerity ; joining together to the conceptual dimension Personality,
which is the psychological factor that the EPQR-A measures.

5 - The 28 items from the GHQ are in the first place grouped into
four conceptual sub-dimensions: Somatic Symptoms, Anxiety/Insomnia,
Social Dysfunction and Severe Depression, which finally conform the con-
ceptual dimension Emotional Distress. This is the psychological factor
measured by the GHQ-28.

6 - The 20 items from the MOS-SSS are firstly grouped into five con-
ceptual sub-dimensions: Emotional Support, Material Assistance, Social
Relationships and Affective Support. They are joined together to the con-
ceptual dimension Social Support, which is the psychological factor that
the MOS-SSS measures. It should be mentioned that the first item of
this scale is related to the number of friends and relatives you can count
on and this goes directly to the conceptual dimension. Furthermore, this
item has been normalized by formula (6.1) taking xmin = 0 and xmax the
higher value observed in the sample.
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PREDICTORS
Psychometric Scale Input/Example of Item Conceptual Sub-dimensions Conceptual Dimensions

Interviewer ID - -

-
Age, Sex, Marital Status

- Socio-Demographic data
and level of education

Brief COPE Inventory

Self distraction

Coping Strategies

Active coping
Denial

Substance use
Use of emotional support

Use of instrumental support
“I’ve been turning to work Behavioural disengagement
or other activities to take Venting

my mind off things” Positive remaining
Planning
Humour

Acceptance
Religion

Self Blame

EPQR-A

Neuroticism

Personality
“Can you easily get some life Extraversion

into a rather dull party?” Psychoticism
Sincerity

GHQ-28

Somatic Symptoms

Emotional distress
“Have you found everything Anxiety/Insomnia

getting on top of you?” Social Dysfunction
Severe Depression

MOS-SSS

Emotional Support

Social Support
“Someone to give you Material Assistance

good advice about a crisis” Social Relationship
Affective Support

Table 6.2: Data Conceptual Structure. The first two columns correspond to net-
works’ inputs. Columns Conceptual Sub-dimensions and Conceptual Dimensions
are materialised to layers of the deep neural networks as it is shown in Figure 6.2.
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Fig. 6.2: Data-structure driven architecture for our proposed neural networks. The
associated number to each arrow, this is arriving to the sub-dimension layers, are
related to the number of the items enclosed into the sub-dimension.
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6.3.2 D-SDNN features

By mimicking the conceptual structure presented in Figure 6.2, we have cre-
ated 4 deep neural networks (net1, net1b, net2 and net2b) for supervised
learning, in which each conceptual sub-dimension and dimension conforms
one hidden layer.

The four neural networks were the result of combining two conditions
with two options in each case:

a) the number of neurons per layer (one vs. as many as incoming inputs),
and

b) the Bias/Variance Dilemma [230] (existence vs. absence of bias in the
hidden layer).

A brief of the configuration of each deep neural network is presented in Table
6.3.

net1 net1b net2 net2b
Number of hidden layers 32 32 32 32

Bias in layer No Yes No Yes
Algorithm for training L-M L-M L-M L-M
Test for performance MSE MSE MSE MSE

Initialization algorithm Random Random Nguyen-Widrow Nguyen-Widrow

Layers net1 net1b net2 net2b
1 - 14 1 1 2 2
15 - 18 1 1 6 6
19 - 22 1 1 7 7

23 1 1 8 8
24 - 25 1 1 4 4

Number of 26 1 1 3 3
Neurons 27 1 1 4 4

28 1 1 28 28
29 1 1 24 24
30 1 1 28 28
31 1 1 20 20
32 1 1 1 1

Table 6.3: Configuration parameters for the tested D-SDNN. Levenberg-Marquardt
algorithm for training has been represented as L-M.

In the sequel we will follow this notation: f(.) denotes the logistic function
[231] (see (6.3)), x the input vector, wDij the weight of the ith arriving input
into the jth neuron of the conceptual dimension/sub-dimension D, bh the
hth bias vector coordinate and [.] has been used to reflect bias existence or
absence depending on the settings of each D-SDNN according to Section
6.3.2. Levenberg-Marquardt has been chosen as training algorithm [232] and
MSE as test of performance.

Let S1, . . . , S26 be the hidden layers that represent the conceptual sub-
dimensions of the scales according to Figure 6.2. We denote by nS1

, . . . , nS26
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the number of neurons in each layer, IS1
, . . . , IS26

stand for the set of input
indexes arriving at each layer with lengths nsIS1

, . . . , nsIS26
. Then the output of

the jth neuron, j ∈ 1, . . . , nSi , into the ith sub-dimension layer ∈ S1, . . . , S26

is given by

sij = f

 nsIi∑
h=1
l∈Ii

w
(i)
hj xl + [bh]

 . (6.4)

In the same way, let D1, . . . , D5 be the hidden layers that represent
the conceptual dimension (Socio-Demographic Data, Coping Strategies, Per-
sonality, Emotional Distress, and Social Support, respectively). We call
nD1

, . . . , nD5
the number of neurons in each layer D1, . . . , D5. Note that the

output of the mth neuron in the dimension layer D1 is given by

dD1m = f

(
4∑
i=1

w
(D1)
im xi+1 + [bi]

)
. (6.5)

For the other dimension layers, the output for the mth neuron in the
dimension layer Dk, with k = 2, . . . , 5, being ID2 , . . . , ID5 the sets of outputs
{sij} connected to each layer with lengths ndID2

, . . . , ndID5
, we have

dkm = f

 ndIk∑
i=1
t∈Ik

w
(k)
im st + [bi]

 . (6.6)

We point out that D5 has an additional connection from one of the inputs
(see Figure 6.2) and D5 must be updated starting from (6.6), x86 is corre-
sponding with the first item of MOS-SSS, which is directly connected to the
dimension layer as can be shown in Figure 6.2.

dD5m = dD5m + w
(D5)

(ndID5
+1)m

x86 + [bnID5
]. (6.7)

Finally, the last hidden layer in all of our proposed schemes of D-SDNN’s
has only one neuron. The output can be written as

y = f

(
w1x1 +

nD1∑
i=1

wi+1dD1i +

nD2∑
i=1

wi+1+nD1
dD2i +

nD3∑
i=1

wi+1+nD1
+nD2

dD3i+

+

nD4∑
i=1

wi+1+nD1
+nD2

nD3
dD3i+

nD5∑
i=1

wi+1+nD1
+nD2

+nD3
+nD4

dD5i+[b]

)
∈ [0, 1].

(6.8)
The regression layer (H) provides a value in [0, 1]. With (6.2) we can

denormalize and obtain values ŷ ∈ [0, 18]. Goodness of the fitting will be
evaluated according to
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GT =

nT∑
i=1

(yi − ŷi)2

nT
. (6.9)

The testing deviation from the original results will be measured according
to

δt =

nt∑
i=1

(yi − ŷi)2

nt
, (6.10)

where nT is the training set size and nt is the testing set size.
Let it be ninp the number of inputs of one neuron of the layer L. In order

to measure the global importance of the inputs, we propose the following
metrics regarding to weights for each jth neuron in the layer L

L
(j)
i =

ninp∑
i=1

|wij |
ninp

, (6.11)

and the positivity or negativity of the relationship is determined by

sgn
(
L
(j)
i

)
= sgn

(
ninp∑
i=1

wij

)
. (6.12)

6.4 Experimental Results

6.4.1 Training, validating and testing the deep neural networks

For each participant we construct a column vector with the inputs for the
deep neural network. The first element represents a numeric identifier for the
interviewer. From the 2nd to the 5th elements we have the socio-demographic
data about the interviewee. The rest of inputs (from the 6th to the 105th)
are the responses to the items that conform the standardized psychometric
scales.

We have used 578 instances (column vectors) of the total sample, approx-
imately the 70%, for training the 4 tentatives D-SDNNs. Regarding to the
other 30%, a 15% has been used for validating and the last 15% for testing.

The fitting with the training data is better for networks with the same
number of neurons as incoming inputs (net2 and net2b). This implies that
we get a better adaptability of multi-neuron layers networks. Besides, within
these 2 networks, we can observe that the biased network learns so quickly
that it falls into over-fitting problems [233]. So as to, these results raise the
suspicion that the best network for the database used in the present study is
net2.
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6.4.2 Comparison of D-SDNNs against Multivariate Linear
Regression

6.4.2.1 Multivariate Linear Regression

Multivariate Linear Regression (MLR) models are used to predict the value
of one or more responses from a set of predictors. MLR’s are often used
to rate emotional prediction through music [234], effects of colors [235], or
neuroimaging [236]. We have constructed a model based on MLR using the
inputs of the D-SDNNs as predictors with the purpose of comparison between
our D-SDNN’s against MLR.

6.4.2.2 D-SDNNs vs MLR

For the construction of the regression model, we proceed in the same way
as in Section 6.4.1. We choose the same sample used for training the neural
networks proposed (approx. 70%) and we have then calculated the predicted
values for the other 245 participants (approx 30%). In the same way, we
have evaluated our 4 deep neural networks for the 245 cases excluded of the
training set with the purpose of comparison against the same cases predicted
by MLR (see Figure 6.3). We have obtained the Mean Square Error (MSE)
for each model as shown in Table 6.4.

MLR net1 net2 net1b net2b
MSE 2.30 · 10−2 1.54 · 10−2 1.46 · 10−2 1.58 · 10−2 1.86 · 10−2

Improvement % 0 33 37 31 19

Table 6.4: MSE of the models. The percentage of improvement has been calculated
taking as basis MLR. Both observed and predicted values used for the calculus of
the MSE were normalized between [0,1] according to (6.1)

.

As it can be seen in Table 6.4, the models that best behaved were those
generated by deep neural networks. Among them, net2 stands out, presenting
an improvement of 37% taking as basis MLR. It is worth noting here again
the significant depletion of MSE in the case of net2b. The outstanding per-
formance results of net2 may be considered as a sign suggesting that the bias
added to net2b originates an over-training that leads to over-fitting issues
causing a detriment in the performance test (i.e. and undermined predictive
accuracy).

The predictions obtained by using the D-SDNN net2 and Regression pro-
duced a MSE for each possible score as shown in Table 6.5.

It can be observed in Table 6.5 that these scores with more frequency are
better predicted by net2, i.e. all the scores from 8 to 16 –which represent
approximately the 94%– are predicted with more accuracy by net2. Besides,
those scores that are less frequent present better results for net2 in cases 5, 6
and 7 improving the percentage of best prediction against MLR up to 97.5%.
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Fig. 6.3: Figure (a) presents the comparison of net2 network against MLR. The
points have the value observed as x coordinate, and the predicted value as y. The
straight line is g(x) = x which represents the accurate prediction. Figure (b) shows
the real, MLR and best fitting D-SDNN color spectrum as indicated in Figure 6.1.
Note that MLR color spectrum produces out of range colors.

In the same way, the regression predictions often produce the highest
deviations from the expected value, even exceeding the output range (see
Figure 6.3). This situation is produced by the little adaptability to data
of linear models, which is improved using non-linear methods such as the
proposed D-SDNN’s in the present study.
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SDHS score Count of cases MSE net2 MSE Regression
3 1 4.43 · 10−4 1.95 · 10−4

4 2 3.55 · 10−4 2.65 · 10−4

5 2 3.39 · 10−5 8.96 · 10−5

6 2 5.90 · 10−5 6.24 · 10−7

7 5 10−3 1.5 · 10−3

8 4 1.73 · 10−4 1.32 · 10−4

9 6 3.87 · 10−4 6.46 · 10−4

10 10 1.80 · 10−3 1.80 · 10−3

11 16 1.80 · 10−3 2.60 · 10−3

12 13 1.20 · 10−3 1.90 · 10−3

13 30 1.20 · 10−3 1.90 · 10−3

14 19 7.53 · 10−4 1.70 · 10−3

15 28 5.37 · 10−4 1.40 · 10−3

16 41 1.20 · 10−3 3.10 · 10−3

17 43 1.90 · 10−3 3.00 · 10−3

18 24 1.80 · 10−3 2.80 · 10−3

Table 6.5: Best model and MLR MSE for each possible score. It is also shown the
number of participants who obtained the score. Nobody obtained scores less than
3.

Finally, we have calculated the differences between the values obtained
from each prediction model against the ones observed in order to compare the
symmetry and the dispersion of the differences. As shown in Figure 6.4, the
plot corresponding to the differences between net2 and the observed values
is the one with the narrowest box and with the closest outliers.

Fig. 6.4: Box-and-whisker plots of differences between predictive models and ex-
pected value.
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6.4.3 The last layer weights metrics

The weight of each conceptual dimension quantifies its influence in the predic-
tion. Therefore, weights comprehend all the arriving inputs to the last hidden
layer. In order to pinpoint the importance that each psychological factor has
on the purpose (happiness degree), we have computed metrics (6.11) and
(6.12) over each dimension of the best fitting net (net2 ). The results are
displayed in Table 6.6. We observed two key values: the weight of the con-

ceptual dimension’s influence in absolute terms (L
(l)
32 ), and the direction of

the influence (sgn
(
L
(l)
32

)
).

Accordingly, the most influential dimension in a positive direction for H-
DP appeared to be Social Support, whilst the most influential dimension in
a negative direction was Coping Strategies. The significantly less influential
dimensions were the Interviewer and Socio-demographic Data.

Conceptual dimensions L
(l)
32 sgn

(
L
(l)
32

)
Interpretation

Interviewer 0.0311 - Small negative influence
Socio-demographic data 0.1403 + Small positive influence

Coping Strategies 0.4476 - Most negatively influential
Personality 0.4186 + Positively influential

Emotional Distress 0.3897 - Negatively influential
Social Support 0.5025 + Most positively influential

Table 6.6: Influence metric values in the best prediction.

6.5 Discussion

6.5.1 Impact

The aim of the present study was the construction of an intuitive D-SDNN
based on a set of psychological factors and their sub-components for super-
vised learning in order to improve traditional methods for H-DP, which are
based on linear relationships [237–239]. As expected, when compared with
MLR, D-SDNN’s show consistent superiority regardless of their configura-
tion (i.e.. number of neurons per layer, and presence or absence of bias).
They also allow us to estimate the weight of each psychological factor on the
prediction accuracy of the target. According to the best fitting net (net2 ),
the psychological factors least influential in the emergence of Happiness were,
as expected, the Interviewer and the Socio-demographic data, whereas the
most influential ones were Social Support and Coping Strategies. Although
the obtained weights might appear weak, they are not. Indeed, for psycho-
logical features, it is not only expected to obtain smaller weights than those
from artificial devices, but also desirable. This fact prevents people from psy-
chological determinism, i.e. that psychological factors only explain between
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a 30 and 50% of the variance allows people to compensate their deficits and
to achieve happiness in spite of them.

6.5.2 Contributions

The contributions of the proposed method for H-DP can be summarized in
two key points:

(1.1) An intuitive neural network architecture taking advantage of the data
conceptual structure which provides the possibility of drawing conclu-
sions about the importance of each conceptual dimension in the outcome
measured.

(1.2) Two metrics that allow us to evaluate and quantify the importance of
each conceptual dimension on the outcome in absolute terms as well as
in which direction (positive or negative).

It is also worth mentioning that the results shown in Section 6.4.1 raised
the suspicion that multiple-neuron layer network without bias (net2 ) was the
one that would yield better performance because of:

(2.1) It provides enough adaptability to changes within sub-dimensions and
dimensions, achieving a better fit to the training dataset.

(2.2) The learning rate was controllable enough to fall into problems of
over-fitting what shows the importance of determining under what cir-
cumstances it is beneficial or detrimental the use of bias.

After the evaluation and comparison of the chosen test set against MLR
(see Section 6.4.2), our results demonstrate a consistently superior perfor-
mance (for the task in hand) for any neural network. We also point out that:

(3.1) MLR may predict out of range values
(3.2) The best performance for testing set is achieved by net2. As shown in

Table 6.4.

Using the metrics proposed in (6.11) and (6.12), we have been able to
determine the influence of psychological factors in H-DP. The results can be
summarized in two main findings:

(4.1) As expected, the people who were in charge of the data collection
(i.e. the interviewers) and the socio-demographic characteristics of the
participants were the least influential factors for what it concerns H-DP.
This means that no matters who asks you, or what your gender, age,
marital status or level of education is, your degree of happiness is not
likely to be affected.

(4.2) Regarding the role that the studied psychological factors play in the
emergence of happiness, we can emphasize:
a. It can be considered congruent with common sense expectations the

significantly high and negative influence of Emotional Distress in the
degree of happiness.
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b. By the same token, it is also consistent with literature the significantly
high and positive influence of the perceived Social Support in the
degree of happiness. According to these findings, the perceived Social
Support may be seen as a buffer for the deleterious effect of the
Emotional Distress.

c. The interpretation of the results becomes more controversial for
the case of Personality and Coping Strategies. While all the sub-
dimensions of the previous factors were in the same direction, is not
the case for those of Personality and Coping Strategies (i.e. the in-
fluence of some sub-dimensions is expected to be positive, and of
some others negative). Concluding that Personality or Coping Strate-
gies, as a whole, have a positive and negative effect, respectively,
would very likely be hazardous. One potential explanation is that
sub-dimensions, with a positive direction in the case of Personal-
ity and with a negative direction in the case of Coping Strategies,
have substantially higher weights in absolute terms. However, their
respective directions prevail when estimating the general influence
of broader dimensions. This would mean that, for example, in the
case of Coping Strategies, the adverse effect of Substance abuse or
Self blame would be remarkably stronger than the beneficial effect of
Humour or Planning.

6.5.3 Limitations

In the case of multi-neuron layer, the proposed metrics for the evaluation
of the inputs’ influence, eqs. (6.11) and (6.12), can only be conceptually
evaluated at the last layer due to the loss of the conceptual scheme within
the multi-neuron layers.

By forcing the conceptual structure, the D-SDNNs is not allowed to learn
other possible structures that could provide information about the definition
of the psychometric scales.

In order to assure the results presented in the present study, the use
of the non-abbreviated version of the psychometric scale that measures the
personality (EPQR) in the collection of a new data base should be carried
out.

6.5.4 Future work

Insights for future works may be arranged in two main points, in order of
priority:

(1) In case of multi-neuron layer D-SDNNs, to look for weights character-
izations that allow to measure and monitor inputs’ influence into each
sub-dimension. Besides, it would be interesting to analyze how outputs
of the sub-dimensions influence each dimension until reaching the output
of the network.
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(2) Applying D-SDNN to longitudinal datasets would allow to monitor the
variation of weights over time and hence to underpin whether the influ-
ence of psychological factors under study changes through the lifespan.

6.6 Conclusions

This paper presented a D-SDNN architecture for H-DP from Socio-Demographic
Data and a set of psychological factors (Social Support, Personality, Emo-
tional Distress, and Stress Coping Strategies). The four network configu-
rations used showed better results in comparison with MLR, obtaining an
improvement of 37% in the best case.

The best predictor was that employing as many neurons –without bias–
as questions endorsed in the sub-dimension or dimension. This prediction
obtained a best accuracy in the 97.5% of cases of the population studied in
comparison with MLR. It only showed a worst performance –compared to
MLR– in SDHS scores with low frequency. The most frequent SDHS score
that raised lower MSE for MLR was the value 8 with a relative frequency
4

823 ≈ 0.4%.
Furthermore, this method opens the possibility for conceptual interpre-

tations regarding the importance of each predictor considered: in our study
results have shown that socio-demographic characteristics such as gender, age
or marital status are not likely to affect the degree of happiness whilst other
psychological factors as perceived social support or coping strategies play a
major role in the emergence and/or maintenance of happiness.

Based on this, it can be concluded that this study is a new approach of a
predictive method, which relies on deep learning architectures by mimicking
the conceptual data structure, that presents a consistently superior predictive
accuracy together with a better conceptual interpretation.
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València, Avenida Blasco Ibáñez, 21, 46010 Valencia, Spain.

Abstract.

Deep Neural Networks have emerged as a state-of-the-art tool in very
different research fields due to its adaptive power to the decision
space since they do not presuppose any linear relationship between
data. Some of the main disadvantages of these trending models are
that the choice of the network underlying architecture profoundly
influences the performance of the model and that the architecture
design requires prior knowledge of the field of study.
The use of questionnaires is hugely extended in social/behavioral sci-
ences. The main contribution of this work is to automate the process
of a deep neural network architecture design by using an agglomer-
ative hierarchical algorithm that mimics the conceptual structure of
such surveys. Although the train had regression purposes, it is easily
convertible to deal with classification tasks.
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Our proposed methodology will be tested with a database containing
socio-demographic data and the responses to five psychometric Lik-
ert scales related to the prediction of happiness. These scales have
been already used to design a DNN architecture based on the subdi-
mension of the scales. We show that our new network configurations
outperform the previous existing DNN architectures.

Keywords: Community detection, Network Science, Deep Learning,
Automatic Architecture, Regression, Community-Detection Deep Neu-
ral Network (CD-DNN), Happiness, Psychometric scales.

7.1 Introduction

The admissible level of complexity of neural network architectures was con-
strained until the computational capacity provided by GPU’s was unlocked.
This new capacity has permitted Deep Neural Networks (DNN) to become
one of the best tools for classification and regression tasks using data from
different science fields [240–242]. Under this new paradigm, DNN’s can learn
from data represented into subsequent levels of abstraction, which permits
to increase its predictive performance [241].

A DNN is composed of several hidden layers which, in turn, are divided
into neurons. A neuron is composed of a matrix of weights which produces
a value after applying an activation function to the entries of the neuron. In
general, the design of the network layers structure, the activation function,
and the use of bias in the model are human choices, that are usually based
on the researcher’s knowledge in the problem under consideration. However,
sometimes the best architecture that fits a problem can be obtained after a
trial-and-error process.

Several attempts of automatic design of DNN architectures have been al-
ready considered [243–248] with successful results. Their methods are mainly
based on genetic algorithms, hyper-parameter optimization, and reinforce-
ment learning. In all these cases, lots of computational resources are required
because of the exponential increment of steps at the training stage.

The study of the network representations of complex processes arisen in
physics, biology, and sociology can be represented in terms of interconnected
nodes of graphs combining organization and randomness [249, 250]. This field
is known as Network Science. Some well-known examples include the world-
wide-web [251], citation networks [252] the interactome [253] , diseasome
[254], or P2P networks [255]. For further information, we refer the reader
to Barabasi’s book [256]. We will refer to these networks as graphs to avoid
confusion with neural networks.

Community detection algorithms permit to decompose graphs into highly
inter-connected sub-units [257]. Unlike partitioning, in community detection
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procedures the number and size of communities cannot be determined in
advance. There is a wide variety of community detection algorithms, covering
heuristic [258], divisive [259], and agglomerative algorithms [260, 261].

The current research on graph community detection has many branches.
On one side, although almost all community detection algorithms require the
global information of the graph, a local approach based on fuzzy relations
has been proposed [262]. Furthermore, other approaches based on the trend
paradigm of deep learning have emerged, this is known as Graph Neural
Networks and has many applications, in particular, community detection.
From a Deep Graph Kernels framework that can learn latent representations
inside a graph [263] or a variant of a convolutional network that encodes
the local graph structure and the features of nodes [264]. Up to adversarial
networks that make perturbations on the graph to generate constrained ones
which are then classified into communities [265] or the extraction of temporal
features using local long short-term memory networks to be used to learn
spatio-temporal patterns to infer the communities [266]. Finally, the Graph
Attention Networks provide a methodology based on convolutional networks,
without depending or knowing the graph structure upfront [267].

In this work, we propose a methodology to design DNN architectures for
conceptual-structured data of the answers to items of Likert-type scales. It
will rely on the use of community detection algorithms for determining the
aggregation of items by similarity in the answers, that is if some items are
answered in a similar way (positive or negative) we assume that they will work
fine if we consider them in the same layer. To define a DNN with several layers
we will apply community detection algorithms at different resolutions. The
graph modularity will be a figure of merit of the resulting distribution of the
graph into communities. Modularity optimization algorithms belong to the
class of agglomerative methods that provide a hierarchical clustering fitting
the problem nature. Thereby, methods based on modularity optimization will
be our starting point.

The rest of the paper is organized as follows: First, the proposed method-
ology is presented in Section 7.2. To test the performance of this new method,
we apply it to a psychological dataset that has been recently used for pre-
dicting happiness [92]. The new proposed DNN architectures enhance the
prediction given by the DNN based on the inner structure of psychological
scales shown in [92], as it is drawn in Section 7.4 Discussion of the results, in-
cluding the limitations of the methodology and a proposal for future research
lines, are shown in Section 7.5. Finally, some brief conclusions are presented
in Section 7.6.

7.2 Proposed Methodology

Our study aims to present a framework to fully automate the development
of DNN architectures for solving supervised regression-type problems based
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on conceptual-structured data. Our approach that we will call Community
Detection based Deep Neural Networks (CD-DNN), consists of:

• Construction of a graph which quantifies the similarity in the answers to
items from different scales.
• Application of a community detection method based on modularity op-

timization at different resolutions.
• Proposal of a DNN architecture automatically inferred from the commu-

nity hierarchy of the scales items.
• Implementation, training, and validation of the new proposed architec-

ture.

Let us develop each one of these steps.

7.2.1 Construction of a similarity graph from the dataset

Likert scales, or summated rating scales [268], are one of the most commonly
used research tools in behavioral sciences. They consist of a list of items that
present a finite ordered list of possible answers. The subject who is evaluated
answers showing his agreement or disagreement degree with the statement of
the item [269]. A value is assigned to each answer, and later all of them are
summed. Depending on that value the individual is classified into a group.

Let us suppose that each subject answers to n Likert-type questionnaires,
denoted by Si with 1 ≤ i ≤ n, where each questionnaire Si is composed of ni
items. Let us sequentially rename all the items as {vj : 1 ≤ i ≤ m}, where
m =

∑n
i=1mi.

Before defining our similarity graph, we recall that a weighted graph is
given by 3-tuple G = (V,E,w), where V is the set of nodes, E = {(vi, vj) :
vi, vj ∈ V } is the set of edges, and w : E → R+ is a function that assign
weights to the edges.

Let us considered a dataset in which we have the answers of s0 subjects
to all the scales. Our similarity graph will be a weighted graph G = (V,E,w)
defined as follows:

1. We consider V = {vj : 1 ≤ i ≤ m} as the set of nodes.
2. A pair of nodes is connected by an edge (vi, vj) ∈ E if there exists at

least two people answering in the same sense (agreeing or disagreeing) to
both items.

3. The weight associated to the edge (vi, vj), denoted by wij , will be the
number of subjects answering in the same sense both items vi and vj .

7.2.2 Communities detection and architecture construction

Now, we will apply to the similarity graph G community detection algorithms
at different resolutions to automatically infer the conceptual hierarchy that
will provide us the conceptual hierarchy of the DNN to be trained.
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Let us suppose that we have split the graph G into k different communi-
ties. The notion of modularity of a weighted graph G, denoted by Q(G), was
introduced by Newman and Girvan [36] as follows:

Q(G) =
1

2W

m∑
i,j=1

(
wij −

WiWj

2W

)
δ(Ci, Cj) (7.1)

where wij is the weight between nodes i and j, Wi =
∑m
j=1 wij is the sum

of the weights associated to edges adjacent to vi, Ci ∈ {1, . . . , k} is the
identifier of the community to which the node vi belongs to, δ is the Kronecker
delta function such that δ(u, v) is equal to 1 if u = v and 0 otherwise, and
W =

∑n
i,j=1 wij . The value of Q is defined between -1 and 1, and it measures

the density of edges inside communities compared to the density of edges
between communities.

According to Clauset et al [270], modularity is a property of a graph and
a specific proposed division of that graph into communities. The modularity
optimization algorithm [36] belongs to the set of agglomerative hierarchical
clustering methods [259, 271]. It iterates until a non-null value of modularity
is reached. As a reference 0 indicates a random division and 1 the best possible
division into communities.

It has been demonstrated that a value above 0.3 is a good indicator of sig-
nificant community structure in a network [270]. One of the most widespread
algorithms for modularity optimization is the Louvain algorithm [37], and
it was our choice due to its balance between community detection capa-
bility and computation time. Louvain [37] is a 2-phases iterative algorithm
which optimizes -in terms of computational time- those proposed by New-
man et al. [36] and Clauset et al. [270]. The aim of the algorithm is to
find the graph communities which outperform a predefined value of incre-
ment of modularity, namely resolution (∆Q, see Eq. 7.2). This value may
vary between 0 and 1. Let us briefly outline how it works: Starting with a
weighted graph G = (V,E,w), the first step is to assign a different commu-
nity to each node v ∈ V . The set of neighbors of a node vi can be defined as
N(vi) = {vj : (vi, vj) ∈ E}.

Let us now consider the gain of modularity (resolution) by moving a
vertex vi into a community C proposed by [37], which in terms of graph can
be denoted by:

∆Q(G, vi, C) =

[
WC +WiC

2W
−
(
WĈ +Wi

2W

)2
]
−

[
WC

2W
−
(
WĈ

2W

)2

−
(
Wi

2W

)2
]

(7.2)
where W,Wi are already defined, and

WC =
∑

vj ,vk∈C
wjk, WiC =

∑
vj∈C

wij , and WĈ =
∑

vj∈C,vk 6∈C

wjk. (7.3)
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First, for each node vi e compute the gains of modularity ∆Q(vi), that is
assessed by removing vi from its community and placing it in the community
of each one of its neighbours vj ∈ N(vi). Then, we will place vi in the
community for which the gain is positive and maximum. If all the gains are
negative, vi will stay in its original community.

Secondly, we construct a new graph G̃ whose nodes represent the commu-
nities found in the previous step. Two nodes of G̃ will be connected as long
as there was a node in each community that was already connected in G.
The weights between two nodes of G̃ will be given by the sum of the weights
of edges between the corresponding two communities. This second step has
been shown to preserve modularity of G for G̃ [272].

Finally, the modularity Q(G̃) is assessed, and the process is repeated until
the resolution reached.

7.3 Proposal of DNN architecture

The next step is to define the DNN architecture. We propose optimizing
the modularity at different resolutions ranging between 0.6 and 1 to ensure
deviations from randomness.

By optimizing the modularity at different resolutions ranging between
0.6 and 1, we were capable of inferring a hierarchy to develop the DNN
architecture automatically. Low-resolution levels produce a higher number of
communities while the highest resolution, 1, produces the smallest possible
number of them.

To create a DNN architecture we first fix the number of hierarchical levels
h0 in which the layers will be included. We express the range of resolutions,
[0.6, 1], in terms of the number of levels according to the next formula, that
assigns 0.6 to the first level and 1 to the last one.

rh = 0.6 +
h− 1

h0 − 1
0.4, with 1 ≤ h ≤ h0. (7.4)

The set of layers that belong to the hierarchical level h will be denoted as
Hh. Note that the number of layers in each level is, by definition, the number
of communities at resolution rh.

Let H1Lj be a layer of the first hierarchical level with 1 ≤ j ≤ l1, and
q(s) be one of the inputs of the model with 1 ≤ s ≤ s0, i.e. an answer to the
question q by one of the subjects. Then, H1Lj receives each q(s) as input if,
and only if, q belongs to community j at resolution r1.

Now, let HiLj be a layer of the hierarchical level i with 1 ≤ j ≤ li and
Hi+1Lj′ with 1 ≤ j′ ≤ li+1 be a layer of the following level. Then, the outputs
of HiLj will act as entries for the layer Hi+1Lj′ if, and only if, there exists at
least one item in the scale whose community at resolution ri is j and whose
community at resolution ri+1 is j′.
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Finally, the last hierarchical level only contains one fully connected layer
with one neuron, which provides a one-dimensional result which is that opti-
mized using the gold-standard in a supervised learning process.

Now, we have explored the performance of this architecture with different
subconfigurations in every layer. We have considered the cases of one neuron
per layer, and as many neurons as the number of incoming inputs, that is: for
the first hierarchical level it corresponds to the number of incoming items,
and for the rest levels it corresponds to the number of incoming layers from
the previous one. We have also tested the outcome with and without bias in
the hidden layers in both cases.

7.3.1 CD-DNN: Training, validation and test stages

Common practices in machine learning suggest to split the corpus into Train-
ing, Test, and Validation sets, to monitor the training process and to avoid
over-fitting problems. In this sense, we split the corpus by taking the 70% as
the training set, and the remaining 30% as the test set. Half of the test set
was extracted as a validation set to monitor the performance between train-
ing and validation at each epoch of the training process. So, the training set
was composed of the data provided by 578 individuals to the questionnaires.
The remaining data was split into the text set (123) and the validation one
(122).

We define a heuristic stop rule to avoid over-fitting. This rule is taken
as follows:if during five training epochs the training error was reduced and
the validation error was incremented then the training process stops. Sigmoid
function was selected as activation function.

The Adam optimizer [273] was chosen as the training algorithm and the
performance test the Mean Squared Error (MSE) with the maximum training
epoch set to 100. Finally, the results were assessed taking into account the
whole test set (the 30% of the original corpus).

7.3.2 Algorithm

The proposed methodology may be summarized in four key points as pre-
sented in Section 7.2. Following the notation on this Section, each participant
answered m questions.

Firstly, a way to quantify how two questions related was used to define
a graph G that represents the similarity between the m questions. Once the
graph is built, the number of hierarchical levels needs to be fixed (R). This
number lets us choose R thresholds from the resolutions space and apply R
times the Blondel’s community detection algorithm.

For each resolution, each community defines a layer of the final deep neural
network, and two layers of different hierarchical levels are connected if and
only if the communities that they represent contain at least one question. The
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layers of the first hierarchical level receive as input the questions that belong
to the communities it represents. By adding the last layer (fully connected)
that receives as inputs the outputs of the layers of the last hierarchical level,
the deep neural network is ready to be trained.

The complexity of the graph building is O(m2). Due to the definition of
the relationship between questions, every pair of nodes have an edge between
them. This implies that the complexity of the community detection for each
resolution is O(m2) but it could be optimized until O(m log(k)) where k is
the average degree [274]. Then, the complexity of the construction of the
model is O(R ·m2) and could become O(R ·m log(k)) where R is the number
of hierarchical levels we want to use.

The stages of the procedure may be found in the Algorithm 1. The ex-
perimentation for this work was made using python 3.7 language and the
extended libraries Networkx [275] and Tensorflow [276].

Algorithm 1 The algorithm of the CD-DNN model construction and train-
ing.

procedure CD-DNN(d,R) . Building the CD-DNN for the database d with R
hierarchical levels

d train, d test = split corpus train and test()
d validation = random half(d test)
for 0 ≤ row < rows(d train) do

for row < column < rows(d train) do
G← obtain weight(row, column) . Definition of the graph edges.

end for
end for
m = empty model()
while i < R do

r ← 0.6 + i−1
R−1

0.4
C ← comm detection(G, r) . comm detection(G, r) obtain the Blondel’s

communities of G at resolution r.
inf ← create layers(C) . Creates layers for current hierarchical level

and its associations with previous level.
m.update(inf)

end while
create last layer() . Creates the last layer. It is dense.
while j < 100 or not(stop criterion) do

model.train(d train)
stop criterion← is converging(d validation)

end while
return m . m is the trained model

end procedure
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7.4 Experimental Results

We will compare the performance of our new automatically designed archi-
tectures with the ones in [92], that were applied to the dataset described
below.

7.4.1 Dataset

A cross-sectional survey targeting the non-institutionalized adult population
residing in Spain was completed by 823 cases. The total of 111 elements of
the survey is grouped by socio-demographic data and by five psychometric
scales. The psychometric scales measure latent variables describing psycho-
logical factors through empirical behavioral indicators. Socio-demographic
data covers an identifier of the person who recorded the survey, and the
age, gender, marital status and level of education for each individual. The
psychometric scales enclosed in the study were:

1. Short-Depression-Happiness Scale (SDHS) [191] is a 4-point Likert-scale
with a total of 6 items. The total score is a measurement of the happiness
degree of the patient (ranging from 0 -Depression- to 18 -Happiness-) and
was the gold standard of the model.

2. Brief COPE Inventory [218] is a 4-point Likert-scale with a total of 28
items regrouped in 14 sub-scales. The total scale measures coping strate-
gies which are different mental mechanisms regarding manage demands
and conflicts and to regulate emotional responses and stress. The 14 sub-
scales represent self-distraction, active coping, denial, substance abuse,
use of emotional support, use of instrumental support, behavioral dis-
engagement, venting, positive reframing, planning, humor, religion, and
self-blame.

3. Eysenck Personality Questionnaire Revised-Abbreviated (EPQR-A) [219]
consists of 4 sub-scales of 6 dichotomous items, each that assess neuroti-
cism, extraversion, psychoticism, and sincerity. The total scale measures
the personality.

4. General Health Questionnaire of 28-items (GHQ-28) [220] is a 5-point
Likert-scale assessing the emotional distress which is defined as a feel-
ing that a person or situation is triggering psychological suffering and
could be expressed in different degrees not only cognitive or verbally but
through mental or physical symptoms. Emotional distress is composed
of 4 sub-scales to evaluate somatic symptoms, anxiety/insomnia, social
dysfunction, and severe depression.

5. Medical Outcomes Study Social Support Survey (MOS-SSS) [221] mea-
sures social support. It is composed of 20 items consisting of a first ques-
tion asking for the number of close people that the person has, plus a
total of 19 5-point Likert-scale items that covers 4 functional support
sub-scales: emotional/informational, tangible, affectionate, and positive
social interaction.
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7.4.2 Previous architecture

We will compare the proposed architecture with the one based on the concep-
tual two-level structure of the scales of the (DS-DNN). We recall that each
scale is composed of items. These items are firstly grouped to measure differ-
ent psychological sub-factors or sub-scales. At the same time, psychological
sub-factors are considered altogether to quantify a more general psychological
factor. So that, we can consider that the conceptual structure of each scale
is composed of two hierarchical levels: the first one to describe psychologi-
cal sub-scales and the second one to describe the global psychological factor
measured by the scale.

We can transfer this structure into a DNN as follows: In the first level
of hidden layers, we represent the sub-scales. The items of each sub-scale
will be their inputs. For the second hierarchical level the scales as the hidden
layers. Here, the outputs of the sub-scales are the inputs of the corresponding
scale layers. We also add in this second level a new layer where the socio-
demographic data is considered. Its output is directly was included as input
in the last layer. This DNN architecture is the same as the one exposed in
Section 7.3.

Finally, it is worth to mention that for facilitating the validation of our
methodology and to obtain comparable results, the exception of the socio-
demographic layer is also considered in the construction of the proposed
automatic architecture.

7.4.3 Experimentation

For testing our method with the results obtained with the DNN described
in Section 7.4.2, we have automatically generated DNN with 2 hierarchical
levels including the socio-demographic layer in the second one. According to
Equation 7.4, the resolutions for community detection were 0.6 and 1. The
detected communities at these resolutions can be found in Figure 7.1.

The inferred architecture is summarized in Figure 7.2, with a total of 22
layers in the first hierarchical level and 4 layers in the second one, apart from
the layer related to socio-demographic information. All the CD-DNN models
were trained using the Adam optimizer [273] with random initialization and
a learning rate of 0.001 to minimize the MSE. All the layers used the sigmoid
function as activation and the last hidden layer, is a dense one which receives
as inputs the outputs of all of the layers of the last hierarchical level, in this
case, all the outputs of the layers from the second hierarchical level.

Results show that the automatic approach, CD-DNN, outperforms the
results obtained by the DNN created using the preconceived survey structure
(DS-DNN). The comparison between the results obtained using both methods
can be found in Figure 7.3. We highlight that the new proposed methodology
tends to be more accurate to predict the less frequent degrees of happiness.
This suggests that this methodology has a higher power of abstraction. It is
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Fig. 7.1: Detected communities after applying Louvain algorithm at different res-
olutions. Each node represents an item of a psychometric scales. Each node is
depicted by the acronym of the scale which belongs to and the number of the item.
The stronger relationships are, the thicker the line between nodes are depicted. In
A) we show communities at resolution 0.6 and in B) we present communities at
resolution 1.

also worth to mention that both approaches reach the best performance using
the same layers configuration, namely multi-neuron layers without using bias.

Finally, a short description of each trained model architecture with some
training features are drawn in Table 7.1. The elapsed time per training epoch
barely suffers when neurons are added, meanwhile the needed number of
epochs, until the stop criterion is reached, significantly decreases with multi-
neuron configurations. Multi-neuron biased network (CD-DNN N B) gives a
training error of 9 · 10−3 while the validation error is 1.8 · 10−2 when the
training process ends. This undesirable behavior is only observed in this con-
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Fig. 7.2: CD-DNN architecture. This architecture is automatically inferred by using
the similarity in the responses to the scale items, observed from the responses
gathered in the dataset.

figuration. It may imply that this network “learns” so quickly that the stop
criterion is not enough to avoid over-fitting problems [233].

Although out of the scope of this work, it is worth to mention that we
have noticed latent relationships between the psychometric scales. This can
be observed at the inputs of the H2L1 and H2L2. We observe that the cor-
responding communities at resolution 1 have grouped altogether layers of
different scales in contrast to what can be seen at resolution 0.6 when there
were no intersections between scales. It is also highlighted that all the items
that belong to the MOS-SSS survey formed one unique community at both
resolutions. This suggests that the sub-scales of the MOS-SSS had similar
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Fig. 7.3: Comparison performance results for DS-DNN and CD-DNN of the tested
network configurations. A) presents the comparison of the results of “one-neuron
without adding bias” configuration, B) shows the results considering the case of
”one-neuron with bias” configuration, C) compares the “multi-neuron without bias”
results, and finally D) displays the results for “multi-neuron with bias” configura-
tion.

Table 7.1: The four DNN configurations applied to test the performance of our
CD-DNN.

Net Bias (T/F)1 Neurons per layer Epochs2 Time per epoch3

CDDNN 1 F 1 42 1.32
CDDNN 1 B T 1 26 1.32
CDDNN N F multi 19 1.34
CDDNN N B T multi 10 1.35

1 Use of bias in layers. T = True, F = False.
2 Number of training epochs until the stop criterion is reached.
3 Mean elapsed time during one training and validation epoch (in sec).

responses in our dataset and the use of two hierarchical levels may be un-
necessary for these items. Finally, 12 of 28 GHQ-28 items were grouped at
resolution 1, while these items were grouped into 6 communities at resolution
0.6.
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7.5 Discussion

7.5.1 Impact and contributions

The aim of the present study has been the definition of a new methodology
to automatically construct the architecture of a deep learning-based model to
be used with regression purposes. We focused our efforts on the case Likert-
scale datasets. The nature of these measurement artifacts provides a simple
way to define similarity relationships between items of different scales.

By definition, the proposed methodology is a contribution in the sense
that it automates the construction of the model architecture. Besides, the
results showed in Section 7.4 demonstrate that the CD-DNN provides bet-
ter experimental results on real data when compared with a data-structure
architecture drawn using the preconceived sub-scale structure of the scales.

Congruent with our previous work, CD-DNN with unbiased multiple-
neuron layers gives the best results. This may indicate that multiple-neuron
configurations provide enough adaptability to changes within hierarchical
levels, and the learning rate is controllable enough to avoid falling into over-
fitting problems.

Although the interpretation of the results shown in this paper is out its
scope, the presented approach also opens a debate about the possibility of
finding latent relationships between items of different psychological scales.
Furthermore, the architecture based on these relationships increases the pre-
dictive ability of DNN models when compared to those whose architecture is
based on the structure of the scales.

Finally, it would be easy to generalize to classification problems by only
modifying the behavior of the last layer, which is independent of the commu-
nity detection based architecture, and the way of codifying the ground truth
for supervised learning.

7.5.2 Limitations and future work

Problems based on predictions (either in regression or classification problems)
from Likert scales have a very particular field of application. In this sense,
the most critical limitation, which is aligned with the most important line
for future work, is the capability of extending the automatic construction of
the architecture for the DNN for other types of datasets.

If we distinguish between the graph construction and the implementation
of the DNN, our efforts should focus on generalizing the graph definition.
That is because the DNN is automatically generated when the communities
are known, and the communities are automatically detected if the graph is
known. So it is enough to find a way to generalize the construction of the
graph or to find a set of ways that covered a wide range of data. The use
of deep learning in the search of communities could lead to a community
detection generalization independent of the data type. It would be necessary
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to explore how to mimic the hierarchy for these questionnaires. Although the
methodology proposed in the present paper uses agglomerative hierarchical
algorithms to match the conceptual structure of the questionnaires, it would
also be interesting to try other community detection algorithms where an
element could belong to two communities.

The experimental results presented in this work are good for the dataset
considered, but the validation of the proposed methodology, considering
larger datasets, would also be desirable.

7.6 Conclusion

Deep learning-based models are a trending paradigm in research fields us-
ing data science techniques. This technology is increasingly being used for
all kinds of tasks and is outperforming results obtained with previous ap-
proaches. The main problem of using models based on deep learning is to
know the most accurate way of designing them, and many times this process
is carried out as trial and error until a quality criterion is reached.

Several studies are based on the analysis of structured data, as is the
case with Likert-scales based studies, for which we propose a framework to
construct a deep learning model with regression purposes automatically. The
methodology consists of the definition theoretic graph quantifying the rela-
tionships between different items of the scales, applying a community detec-
tion algorithm to infer the architecture for the deep neural network (CD-
DNN) and the training of the model.

The first experiments using real data have demonstrated better perfor-
mance when compared to a previous work in which the architecture was
drawn by using the conceptual structure of the Likert scales. The natural
next step is to get the graph definition abstracted to apply the same method-
ology to other types of data.

Future steps must explore other approaches for community detection to
make the model independent of the data type. Algorithms based on deep
learning could deal with community detection generalization.
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and JAC acknowledge the support of the H2020 project CrowdHealth (Col-
lective Wisdom Driving Public Health Policies - 727560) funded by the Euro-
pean Comission. JMGG acknowledge and to the InAdvance project (Patient-
Centred Pathways of Early Palliative Care, Supportive Ecosystems and Ap-
praisal Standard - 825750) funded by the European Comission, too.



138 7 Journal article (v)

Conflicts of interest

This work does not have any conflicts of interest.



8 Concluding remarks and recommendations

The human brain is an incredible
pattern-matching machine.

Jeff Bezos.

This chapter ends the work carried out in the development of this thesis.
A summary of the main concluding remarks is presented below, as well as a
set of recommendations for continuing in this line.

8.1 Concluding remarks

Healthcare systems are complex organisms in continuous evolution, and the
registries acquired in these scenarios capture this complexity. Besides, the
need for much current research requires the combination of data from differ-
ent healthcare organisms, which promotes the increment of data complexity.
It is essential to find methodologies to deal with the challenges that this
complexity may raise. This thesis has tackled this problem from two points
of view. Firstly, a set of methodologies to prior detection of evidence on
differences from distinct sources or time batches was investigated and the
way to use this prior information to improve ML-based models’ performance.
Secondly, it has been demonstrated that letting models be designed using
the conceptual structure of data, or even using the observed data, increases
the performance without prior knowledge of data distribution. This last has
the added value of allowing to extract information of the most influential
variables in the prediction tasks.

This thesis has contributed to the fields of Computer Science, Applied
Mathematics, Medical Informatics, Medical Imaging, and Biomedical Engi-
neering by the innovative application of trending technologies such as Data
Quality, Machine Learning or Network Science. The publication of the de-
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veloped work in top-ranked journals and their diffusion in international con-
ferences endorses the community research interest.

The specific concluding remarks of this thesis are listed as follows:

CR1 - Temporal and multisource variability assessment methods are important
tools to measure data fitness-to-reuse. Many works have been demon-
strated DQ to be a notorious technology that should be applied as the
first step when a new database is considered to analyze. Concepts related
to a fault acquisition process, such as the lack of complete registries or
duplicates ones, are easier to be discovered. In this work, we have fo-
cused on the characterization of two inherent-to-data DQ concepts as
Temporal and multisource variability are, which could be included inside
the Concordance and Timeliness DQ dimensions. Three key ideas can be
highlighted:

– The study conducted in chapter 3 demonstrates that the hospital
operations, population changes, and managerial decisions influence
the hospital records. These data changes may be monitored by using
a TVA method. This method can be useful to measure the impact of
managerial decisions on unexpected hospital areas or to know if all
the registries would be appropriated for an ML-based task.

This key idea responds to the research question RQ1, covers the ob-
jectives O1 and O3 and derived in the journal publication P1.

– Chapter 4 proposes a semi-automatic methodology to extract the
variables influencing a determined classification task. It is tried to
classify migraine patients according to the different headache inten-
sities and frequencies. The MVA method endorsed the robustness of
the influencing variables in the headache intensity, while it does not
provide scientific support on those influencing headache frequency.
Random Forest was the ML tool selected to extract the importance
of the features. The variables influencing headache intensity were sup-
ported by the literature, which signifies that the MVA method could
contribute to the credibility of the results when feature extraction
uses ML approaches.

This key idea responds to the research questions RQ1 and RQ2, covers
the objectives O1, O2, and O4 and derived in the journal publication
P2.

– That the MVA method (and therefore TVA method, which is based
on the same technology) could be used to obtain useful information
to improve DL model performance is demonstrated in chapter 5. The
performance of a DL model was improved by applying a preprocessing
step in the histograms of digital mammographies after discovering
histogram differences using the MVA method. Here, the histogram
can be understood as a PDF, and the MVA method was applied to
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each image. Images acquired from different devices showed being far
in the simplex built using such a method.

This key idea responds to the research questions RQ1 and RQ2, covers
the objectives O1, O2, and O4 and derived in the journal publication
P3.

CR2 - The cornerstones for DL emergence have been hardware evolution, an
explosion of information sources, and brilliant researchers’ imagination.
The work conducted in chapter 6 is aligned with such a technique. A
methodology to design a DL architecture using the conceptual structure
of data (D-SDNN) is proposed. This architecture demonstrated a better
performance than state-of-the-art technologies in the psychology field.
Besides, the lack of interpretability of DL models is a major drawback
in the healthcare environment. It, among other reasons, has lead to the
emergence of the “Explainable Artificial Intelligence” (EAI) concept. This
concept covers any methodology intended to give insights into the DL-
based models working. Besides, two metrics were proposed to measure the
influence of each model input in the prediction, which also aligned the
EAI topic. Furthermore, the feature importance extraction after the ap-
plication of the D-SDNN to model a happiness degree predictor provided
results concordant with literature.

This concluding remark responds to the research questions RQ3 and RQ4,
covers the objectives O2 and O5 and derived in the journal publication
P4.

CR3 - It should be noted that the D-SDNN previously proposed cannot deal
with the identification of differences among data sources. By definition,
it takes the conceptual structure of data to be used in the DL architec-
ture design. Since it uses the observed data, the approach (CD-DNN)
described in chapter 7 can somehow take into account the differences in
data acquisition. The observed data is used to define a relationship among
model inputs. This relationship serves to build an undirected graph where
community detection algorithms are applied to obtain the DL architec-
ture. One of the principal advantages of this approach is that it is enough
to define a relationship among model inputs for the architecture to be
directly built. This framework (CD-DNN) was applied using the same
database as used with D-SDNN. The results suggest that this framework
can take advantage of the data distribution without any supervision apart
from the added-value that the automation signifies. Furthermore, by its
definition, the metrics proposed in chapter 6 can still be used in the
CD-DNN framework.

This concluding remark responds to the research questions RQ3 and RQ4,
covers the objectives O2 and O6 and derived in the journal publication
P6 and conferences participation P5 and P7.



142 8 Concluding remarks and recommendations

8.2 Recommendations

The healthcare systems historically have been a source of large amounts of
data. Healthcare data is heterogeneous since it covers socio-demographic,
clinical data, or medical imaging to the recent genetic information. Further-
more, such an amount of recorded variables for each patient makes necessary
the collection of more and more patients for getting enough dimension to
approach the clinical challenges. This supports the need for building large
datasets, by combining the registries from several sources and, then, tools to
measure the data adequacy or let ML models be designed using the observed
data, is becoming crucial.

The research findings and proposed methods discussed in this thesis aim
to give some knowledge on that scenario and serve as the starting point for
further research. In this sense, the following lines are suggested for future
investigations.

R1 - The selected DQ method to assess the multisource and temporal variabil-
ity is based on the construction of a simplex contained in Riemannian
manifold. In such a simplex, each point represents a PDF and the dis-
tance between two points is the JSD between the PDFs represented by
them. The DBScan strategy was applied in that scenario to find cluster-
ing patterns that could serve as scientific evidence about the dissimilarity
over the found clusters. Despite the appropriateness of using an algorithm
based on distance (as DBScan is), there exist several state-of-the-art ap-
proaches to deal with this task.
In this regard, we identify this point as a line of future research, where ML
approaches can be applied with promising expectations. Supervised learn-
ing algorithms such as K Nearest Neighbors, Random Forest, or Support
Vector Machines, and Unsupervised learning algorithms, such as Autoen-
coders, can capture subtle clusters that nowadays are not being detected.

R2 - The MVA and TVA methods have demonstrated suiting the task of de-
tecting anomalies in data distributions. These anomalies have also been
proved to be effective for designing methodologies that palliate the im-
pact of such for the data reuse. How to join these both paradigms is key
to automate the extraction of conclusions with guarantees. Under this
assumption, we encourage the use of metrics based on the Information
Geometry on which the TVA and MVA methods are founded to train ML
models.

R3 - The framework to automatically design DL architectures (CD-DNN) is
based on community detection algorithms applied to a weighted-complete
graph due to the definition of the relationship between model inputs. A
weighted-complete graph is a graph in which each pair of nodes are joint
with an associated weight. In this sense, the number of edges is n2, where
n is the number of nodes, and therefore the community detection algo-
rithms have a high computational cost. Since a weighted-complete graph
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may be represented by a non-sparse matrix, the community detection
strategy that generates the DL architecture could be approached using
classical clustering strategies or unsupervised ML algorithms. The cur-
rent version of the method most probably would need for distributed
computation for large datasets.

R4 - Furthermore, the CD-DNN has been validated to be used with a specific
data type, Likert-scales. The methodology bases on the application of
community detection algorithms at different resolutions, given a graph,
which lets to define a hierarchical architecture. This methodology can
be available for other data types by defining relationships for the model
inputs, which covers all possible data types. In this sense, we encourage
to define relationships between model inputs with a wide range of data
covered or to explore relationships that could be applied to any data
types.
It would also be desirable to validate the performance of the auto-
matic deep neural network design in larger datasets that covered multiple
sources.

R5 - Breast cancer is one of the most frequent cancers in women. The screen-
ing programs have emerged with the purpose of early diagnostic. The
percentage of dense tissue over the breast is demonstrated to be an im-
portant biomarker of the risk of disease development. Although these
programs are intended to discover malignancies in breasts, obtaining an
objective way to measure this marker is crucial. The differences inter and
intra reader, the differences in the acquisition process of the devices, or if
the mammograms are stored processed or not, have a high impact on the
standardization of the measurement. Besides, it could serve, for example,
to generate decision-making aid systems for the establishment of women
follow-up periodicity.
This thesis was not intended to the breast percent density reading stan-
dardization, but the results obtained in Chapter 5 suggest that it is an
important field.





References

[1] R.-Y. Wang and D.-M. Strong, “Beyond accuracy: What data quality
means to data consumers,” J. Manage. Inform. Syst., vol. 12, no. 4,
pp. 5–33, 1996.

[2] I.-G. Todoran, L. Lecornu, A. Khenchaf, and J.-M.-L. Caillec, “A
methodology to evaluate important dimensions of information quality
in systems,” Journal of Data and Information Quality (JDIQ), vol. 6,
no. 2-3, pp. 1–23, 2015.

[3] M.-G. Kahn, M.-A. Raebel, J.-M. Glanz, K. Riedlinger, and J.-F.
Steiner, “A pragmatic framework for single-site and multisite data qual-
ity assessment in electronic health record-based clinical research,” Med.
Care, vol. 50, 2012.
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“Organizing data quality assessment of shifting biomedical data.,”
Studies in Health Record Data, vol. 180, pp. 721–725, 2012.
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[53] “Universitari i politècnic la fe hospital research ethics committee..”



References 149

[54] S. Rose, “International ethical guidelines for epidemiological studies: by
the council for international organizations of medical sciences (cioms),”
2009.

[55] M.-E. Charlson, P. Pompei, K.-L. Ales, and C.-R. MacKenzie, “A new
method of classifying prognostic comorbidity in longitudinal studies:
development and validation,” Chronic Dis., vol. 40, no. 5, pp. 373–383,
1987.

[56] S. Schneeweiss, P.-S. Wang, J. Avorn, and R.-J. Glynn, “Improved
comorbidity adjustment for predicting mortality in medicare popula-
tions,” Health Serv.Res., vol. 38, no. 4, pp. 1103–1120, 2003.

[57] H. Quan, V. Sundararajan, P. Halfon, A. Fong, B. Burnand, J.-C. Luthi,
L.-D. Saunders, C.-A. Beck, T.-E. Feasby, and W.-A. Ghali, “Coding
algorithms for defining comorbidities in icd-9-cm and icd-10 adminis-
trative data,” Med. Care, pp. 1130–1139, 2005.
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M. Sepúlveda, E. Rojas, V. Gálvez, et al., “Analyzing medical emer-
gency processes with process mining: the stroke case,” in International
Conference on Business Process Management, pp. 214–225, Springer,
2018.

[70] C. Fernandez-Llatas, A. Lizondo, E. Monton, J.-M. Benedi, and
V. Traver, “Process mining methodology for health process tracking
using real-time indoor location systems,” Sensors, vol. 15, no. 12,
pp. 29821–29840, 2015.

[71] B.-F. Van Dongen, A.-K.-A. de Medeiros, H.-M.-W. Verbeek, A.-J.-
M.-M. Weijters, and W.-M.-P. van Der Aalst, “The prom framework: A
new era in process mining tool support,” in International Conference on
Application and Theory of Petri Nets, pp. 444–454, Springer, Springer,
2005.

[72] W. Van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl. Data
Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[73] A.-K.-A. De Medeiros, A.-J.-M.-M. Weijters, and W.-M.-P. Van der
Aalst, “Genetic process mining: a basic approach and its challenges,”
in International Conference on Business Process Management, pp. 203–
215, Springer, Springer, 2005.

[74] A.-J.-M.-M. Weijters, W.-M.-P. van Der Aalst, and A.-K.-A.
De Medeiros, “Process mining with the heuristics miner-algorithm,”
Technische Universiteit Eindhoven, Tech. Rep. WP, vol. 166, pp. 1–34,
2006.

[75] J. Barjis, A. Verbraeck, S.-J. Shim, and A. Kumar, “Simulation
for emergency care process reengineering in hospitals,” Bus. Process
Manag. J., 2010.

[76] G. Svolba and P. Bauer, “Statistical quality control in clinical trials,”
Control Clin. Trials., vol. 20, no. 6, pp. 519–530, 1999.

[77] F. Bray and D.-M. Parkin, “Evaluation of data quality in the cancer
registry: principles and methods. part i: comparability, validity and
timeliness,” Eur. J. Cancer., vol. 45, no. 5, pp. 747–755, 2009.

[78] M.-G. Kahn, M.-A. Raebel, J.-M. Glanz, K. Riedlinger, and J.-F.
Steiner, “A pragmatic framework for single-site and multisite data qual-
ity assessment in electronic health record-based clinical research,” Med.
Care., vol. 50 (SUPPL. 1) S21–9, 2012.

[79] C. Batini, C. Cappiello, C. Francalanci, and A. Maurino, “Method-
ologies for data quality assessment and improvement,” ACM Comput.
Surv., vol. 41, no. 3, pp. 1–52, 2009.



References 151

[80] B. Heinrich, M. Klier, and M. Kaiser, “A procedure to develop metrics
for currency and its application in crm,” J. Data Inf. Qual., vol. 1,
no. 1, pp. 1–28, 2009.

[81] G. Sirgo, F. Esteban, J. Gómez, G. Moreno, A. Rodŕıguez, L. Blanch,
J.-J. Guardiola, R. Gracia, L. De Haro, and M. Bod́ı, “Validation of
the icu-dama tool for automatically extracting variables for minimum
dataset and quality indicators: The importance of data quality assess-
ment,” Int. J. Med. Inform., vol. 112, pp. 166–172, 2018.

[82] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” J.
Mach.Learn. Res., vol. 9, no. Nov, pp. 2579–2605, 2008.

[83] G.-E. Hinton and R.-R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science., vol. 313, no. 5786, pp. 504–507,
2006.

[84] K.-Q. Weinberger, F. Sha, and L.-K. Saul, “Learning a kernel matrix
for nonlinear dimensionality reduction,” in Inf. Conf. Mach. Learn.,
pp. 106–113, 2004.

[85] G. Fanjiang, J.-H. Grossman, W.-D. Compton, P.-P. Reid, et al., Build-
ing a better delivery system: a new engineering/health care partnership.
National Academies Press., 2005.

[86] L.-T. Kohn, J. Corrigan, M.-S. Donaldson, et al., To err is human:
building a safer health system, vol. 6. National Academy Press., 2000.

[87] Y.-W. Woldeamanuel and R.-P. Cowan, “Migraine affects 1 in 10 people
worldwide featuring recent rise: a systematic review and meta-analysis
of community-based studies involving 6 million participants,” J. Neurol.
Sci., vol. 372, pp. 307–315, 2017.

[88] T. Vos, A.-A. Abajobir, K.-H. Abate, C. Abbafati, K.-M. Abbas,
F. Abd-Allah, R.-S. Abdulkader, A.-M. Abdulle, T.-A. Abebo, S.-F.
Abera, et al., “Global, regional, and national incidence, prevalence, and
years lived with disability for 328 diseases and injuries for 195 coun-
tries, 1990–2016: a systematic analysis for the global burden of disease
study 2016,” Lancet, vol. 390, no. 10100, pp. 1211–1259, 2017.

[89] A. Raggi and M. Leonardi, “Burden and cost of neurological diseases:
a e uropean n orth–s outh comparison,” Acta Neurol. Scand., vol. 132,
no. 1, pp. 16–22, 2015.

[90] M. de Tommaso and V. Sciruicchio, “Migraine and central sensiti-
zation: clinical features, main comorbidities and therapeutic perspec-
tives,” Curr.Rheumatol. Rev., vol. 12, no. 2, pp. 113–126, 2016.

[91] K.-Y. Ngiam and W. Khor, “Big data and machine learning algorithms
for health-care delivery,” Lancet Oncol., vol. 20, no. 5, pp. e262–e273,
2019.
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[196] F. Gülaçtı, “The effect of perceived social support on subjective well-
being,” Proc. Soc. Behv., vol. 2, no. 2, pp. 3844–3849, 2010.

[197] K. L. Siedlecki, T. A. Salthouse, S. Oishi, and S. Jeswani, “The rela-
tionship between social support and subjective well-being across age,”
Soc. Indic. Res., vol. 117, no. 2, pp. 561–576, 2014.

[198] A. Furnham and C.-R. Brewin, “Personality and happiness,” Pers. In-
div. Differ., vol. 11, no. 10, pp. 1093–1096, 1990.

[199] J. Brebner, J. Donaldson, N. Kirby, and L. Ward, “Relationships be-
tween happiness and personality,” Pers. Indiv. Differ., vol. 19, no. 2,
pp. 251–258, 1995.

[200] N. Pishva, M. Ghalehban, A. Moradi, and L. Hoseini, “Personality and
happiness,” Proc. Soc. Behv., vol. 30, pp. 429–432, 2011.

[201] L. Lu and J. Shih, “Personality and happiness: Is mental health a me-
diator?,” Pers. Indiv. Differ., vol. 22, no. 2, pp. 249–256, 1997.

[202] D. Campos, A. Cebolla, S. Quero, J. Bretón-López, C. Botella,
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