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Abstract—We present a new version of the regularized com-
bined source integral equation (CSIE-AR) for the solution of
electromagnetic scattering problems in the presence of perfectly
conducting bodies. The integral equation is of the second kind
and has no spurious resonances. It is well-conditioned at all
frequencies for simply connected geometries. Reconstruction of
the magnetic field, however, is subject to catastrophic cancellation
due to the need for computing a scalar potential from magnetic
currents. Here, we show that by solving an auxiliary (scalar)
integral equation, we can avoid this form of low-frequency break-
down. The auxiliary scalar equation is used to solve a Neumann-
type boundary value problem using data corresponding to the
normal component of the magnetic field. This scalar equation is
also of the second kind, non-resonant, and well-conditioned at all
frequencies. A principal advantage of our approach, by contrast
with hyper-singular EFIE, CFIE or CSIE formulations, is that the
standard loop-star and related basis function constructions are
not needed, and preconditioners are not required. This permits
an easy coupling to fast algorithms such as the fast multipole
method (FMM). Furthermore, the formalism is compatible with
non-conformal mesh discretization and works well with singular
(sharp) boundaries.

Index Terms—electromagnetic (EM) scattering, Calderon pre-
conditioning (CP), charge-current formulations, high frequency
preconditioning, Maxwell equations.

I. INTRODUCTION

INTEGRAL equation methods are widely used for solving
electromagnetic scattering problems since they discretize

the boundary alone and permit the imposition of the Sommer-
feld radiation condition without the need for artificial boundary
conditions. The resulting discretized linear systems, however,
are dense so that naive solution methods are impractical for
large-scale modeling. At present, the state of the art (in three
dimensions) consists of using iterative solution techniques

This work was supported in part by the Spanish Ministry of Science and
Innovation (Ministerio de Ciencia e Innovacion) under the projects TEC2016-
78028-C3-3-P and in part by the Office of the Assistant Secretary of Defense
for Research and Engineering and AFOSR under NSSEFF Program Award
FA9550-10-1-0180.

F. Vico is with the Instituto de Telecomunicaciones y Aplicaciones
Multimedia (ITEAM) , Universitat Politècnica de València, e-mail: fe-
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combined with fast algorithms for computing the necessary
matrix-vector products. The net time, using fast multipole
acceleration [1], [2], [3], [4] is of the order O(niterN logN),
where N is the system size and niter is the number of
iterations required.

With fast algorithms in place, it remains to choose a
mathematical and computational framework that leads to a
small number of iterations and to robust, accurate and geo-
metrically flexible software. The most widely used techniques,
in practice, are the electric field and combined field integral
equations (EFIE and CFIE), with RWG basis functions and a
conforming mesh model of the scatterer [5], [6], [7]. Both the
EFIE and CFIE, however, are subject to numerical difficulties
such as ill-conditioning and low frequency or high density
mesh breakdown. As a result, a variety of techniques have
been developed to mitigate these problems. The use of loop-
star basis functions [8], [9], [10], [11], for example, is known
to improve performance in terms of accuracy and conditioning
in the low frequency regime. The intrinsic ill-conditioning of
these equations comes to a large extent from the involvement
of hypersingular integral operators, so that preconditioners
[12], [13] are important to improve performance, especially
when high density meshes are required. A more subtle problem
is that the simultaneous use of fast methods in combination
with low frequency stabilization techniques, including loop-
star basis functions, can produce instabilities [14].

In order to be able to handle large, high-frequency problems,
significant effort has been made to construct well-condtioned
Fredholm integral equations of the second kind. While we do
not seek to review the literature here, these include the use of
Calderon identities to precondition the EFIE [15], [16], [13]
and the use of regularizing operators to precondition the CFIE
[17], [18], [19]. Charge-current formulations have also been
developed that lead to well-conditioned formulations, avoiding
low frequency breakdown and catastrophic cancellation in
the far field [10], [20], [21], [22], [23], [24], [25]. Other
solution methods which lead to second-kind and resonance
free equations include those based on generalized Debye
sources [26], [27] and decoupled potential formulations [28],
[29].

In this paper we introduce an augmented regularized com-
bined source integral equation (CSIE-AR) that is of the second
kind and yields very modest condition numbers, even in the
high frequency regime. By solving an auxiliary scalar equa-
tion, we avoid catastrophic cancellation in a manner similar to
charge-current schemes. We will show that the proposed for-
mulation yields good accuracy for singular (sharp) geometries
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even with low order discretization and requires a very modest
number of triangles to obtain good resolution. Moreover,
the scheme works well even when the triangulation is non-
conforming. The latter property is extremely useful when
meshing complicated structures, since distinct components can
be meshed separately and concatenated without geometric
complications during the assembly of a full model. Finally,
the formulation does not require the use of preconditioners
and (unlike hyper-singular formulations) can be combined with
FMM acceleration without compromising accuracy.

II. STANDARD FORMULATIONS

The problem of electromagnetic scattering from a perfect
electric conductor (PEC) Ω with boundary Γ is governed (in
the frequency domain) by the Maxwell equations

∇×Htot = −iωεEtot , ∇×Etot = iωµHtot , (1)

subject to the following boundary conditions [30], [31] on the
total electric and magnetic fields:

n×Etot = 0, n ·Htot = 0 , (2)

n×Htot = J , n ·Etot =
ρ

ε
.

We use the language of scattering theory and write the total
field as the sum of a known incoming field and an unknown
scattered field:

Etot = Ein + Escat , Htot = Hin + Hscat . (3)

It is well-known that the boundary conditions (2) are redundant
and it is sufficient (for example) to enforce the boundary
conditions on the tangential components of the electric field
alone.

Most integral equation methods begin by representing the
scattered field in terms of the vector and scalar potentials A, φ
in the Lorenz gauge as

Escat = iωAscat −∇φscat, (4)

Hscat =
1

µ
∇×Ascat, (5)

where
Ascat[J ](r) = µSk[J ](r) (6)

φscat[ρ](r) =
1

ε
Sk[ρ](r) (7)

with
Sk[J ](r) =

∫
Γ

gk(r − r′)J(r′)dAr′

Sk[ρ](r) =

∫
Γ

gk(r − r′)ρ(r′)dAr′

(8)

and

gk(r) =
eik|r|

4π|r|
(9)

In order for the resulting electromagnetic fields Escat,Hscat,
to be Maxwellian, the current and charge (J and ρ) must
satisfy the continuity condition

iωρ = ∇Γ · J . (10)

In particular, if this condition is violated, the electric field fails
to be divergence-free.

While the standard EFIE is obtained from (4) and n ×
Etot = 0, the standard magnetic field integral equation
(MFIE) is obtained from (5) and n × Htot = J , and
the standard CFIE is obtained as a linear combination of
n × Htot = J and −n × n × Etot = 0, it is possible
to use additional unknowns (e.g. charge and current) and
to make use of the boundary conditions on normal field
components in (2) as well. Such formulations are generally
referred to as charge-current formulations or, more generally,
as augmented formulations [32], [21], [22], [23], [24], [25].
These are discussed briefly in the next section.

A. The Charge Current Integral Equation

One useful approach to obtaining well-conditioned integral
equations is to impose the tangential boundary conditions on
the magnetic field and the normal boundary condition on the
electric field in (2). The current and charge are then treated as
independent unknowns, yielding the system of equations:

J

2
−K[J ] = n×Hin

ρ

2
+ S′k[ρ]− iωεµn · Sk[J ] = εn ·Ein

(11)

where:
S′k[ρ] =

∫
Γ

∂gk
∂nr

(r − r′)ρ(r′) dAr′ . (12)

and:

K[J ] =

∫
Γ

n×∇× gk(r − r′)J(r′) dAr′ . (13)

This formulation was introduced to overcome the low
frequency breakdown of the EFIE (see [21], [22]) and the
inaccuracy of the MFIE (see [20]). It was shown in [24] that,
so long as the incoming data was Maxwellian, the solution to
(11) satisfies the continuity condition, and that high precision
can be achieved in computing the radiated electric field for
simply connected geometries, even for subwavelength-size
objects. The first of the equations in (11), however, is simply
the MFIE and is subject to resonances as the frequency
increases.

B. The Non-Resonant Charge Current Integral Equation

To avoid the spurious resonances of the MFIE, a non-
resonant charge-current integral equation was first introduced
in [21], [33]. A more recent version, called the combined
current charge integral equation (C3IE) was introduced in [23].
The C3IE is obtained from the following four equations:

J

2
−K[J ] = n×H in (14)

−iωεµn · Sk[J ] +
ρ

2
+ S′k[ρ] = εn ·Ein (15)

iωµn× Sk[J ]− 1

ε
n×∇Sk[ρ] = −n×Ein (16)

∇ · Sk[J ]− iωSk[ρ] = 0 (17)
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where (17) comes from the continuity condition (10). Notice
that the surface divergence in (10) transforms to a full 3D
divergence in (17) (see [17] page 205).

For this, the tangential boundary conditions on E and H
and the normal boundary condition on E are used from (2),
supplemented by a less standard condition on the divergence
of the electric field:

∇ ·Escat|Γ = 0 . (18)

Using (14) with (15) and (16) with (17), we get the non-
resonant C3IE:

J
2 −K[J ] + αn×

{
iωµn× Sk[J ]− 1

εn×∇Sk[ρ]
}

= n×H in − αn× n×Ein

ρ
2 + S′k[ρ]− iωµεn · Sk[J ] + α

{
∇ · Sk[J ]− iωSk[ρ]

}
= εn ·Ein

(19)
where α is an arbitrary real positive constant. By construc-

tion, the functions J = n ×Htot|∂D and ρ = εn · Etot|∂D
form a solution to the system (19). Since equation (19) has
been shown to have a unique solution [23], the continuity con-
dition is automatically satisfied. Due to the non-compactness
of the operators ∇ · Sk[J ] and n × ∇Sk[ρ], the resulting
system (19) is not strictly speaking a Fredholm equation
of the second kind. Nevertheless, it has similar properties
[23]. Unfortunately, while the C3IE solves the low frequency
breakdown problem for simply connected geometries and has
good conditioning at higher frequencies, it has been shown
in [23], [25] that it performs poorly for geometries with sharp
features (edges) for the standard discretization techniques used
in those references. It has also been shown that it requires
substantial mesh refinement to obtain accurate results.

III. A COMBINED SOURCE CHARGE CURRENT INTEGRAL
EQUATION

This section contains the main analytic contribution of
our paper. We show that a charge-current combined source
integral equation has properties similar to the C3IE in terms
of conditioning at low and high frequency, but that it also
performs well when the scatterer has sharp features. The
scheme is based on the following representation, involving
both electric current-like and magnetic current-like variables:

Escat = ∇× Sk[M ](r) + iα∇×∇× Sk[J ](r)

Hscat = iωεµSk[M ](r) +∇ψ(r) + iα∇× Sk[J ](r)
(20)

where the scalar field ψ(r) is given by:

ψ(r) =
1

iωµ
∇ · Sk[M ](r) (21)

we also define an the following operator that will be used
shortly:

T [J ] =

∫
Γ

n×∇×∇× gk(r − r′)J(r′)dAr′ (22)

In order to avoid catastrophic cancellation in the evaluation
of (21), we introduce an additional scalar unknown σ with

ψ(x) = Sk[σ](r) + iβDk[Sik[σ]](r) (23)

where
Dk[σ](r) =

∫
Γ

∂gk
∂nr′

(r − r′)σ(r′)dAr′ (24)

The representation used in the equation (23) was introduced
by [34] to solve high frequency Helmholtz scalar equations
with Neumann boundary conditions. The only goal of that
arbitrary choice for the representation of ψ is to obtain a well
conditioned second kind integral equation. Finally, we reduce
the number of unknowns by defining J in terms of M using
the relation

J ≡ n× S2
ik[M ] (25)

Here,

Sik[M ](r) ≡
∫

Γ

e−k|r−r′|

|r − r′|
M(r′)dAr′ (26)

and S2
ik[M ] is used to denote the composition of operators:

S2
ik[M ] ≡ Sik[Sik[M ]] (27)

Note that we have introduced two regularizing operators:
Sik[σ] which is composed with Dk in (23) and the operator
R = n × S2

ik which regularizes the operator T (see [17],
page 211, and [19]) that appears when applying the boundary
condition on the tangent electric field in (20). These will yield
a second kind integral equation (as we shall see shortly) with
good conditioning even at high frequencies. Other regularizing
operators have been shown to be effective previously, such as
R = n× S2

0 in [17] and R = n× Sik in [19]. To derive the
actual integral equation, we impose boundary conditions on
the tangential components of the electric field n × Escat =
−n×Ein and on the normal component of the magnetic field
n ·Hscat = −n ·H in.

M

2
+K[M ] + iαT [n× S2

ik[M ]] =

= −n×Ein

−σ
2

+ S′k[σ] + iβD′k[Sik[σ]] = b

(28)

where the operator D′k is defined as:

D′k[ρ] =
∂

∂nr

∫
Γ

∂gk
∂nr′

(r − r′)ρ(r′) dAr′ .

and the right hand side b in (28) is defined by:

b =− n ·H in − iωεµn · Sk[M ]−
− iαn · ∇ × Sk[n× S2

ik[M ]]
(29)

Note that the two integral equations are decoupled and that
the first (vector) equation can be solved independently of the
second (scalar) equation. The scalar equation for σ can then be
solved once M and, therefore, the righ-hand side b are known.
Note also that, if one is interested only in the scattered electric
field, the second auxiliary equation is not needed. Finally, note
that the electromagnetic field will be Maxwellian if and only
if the scalar function σ satisfies the condition (21). As for
the C3IE, this can be shown to follow from the uniqueness
of solutions to (28) and the fact that the incoming data is
Maxwellian.

In practice, the coupling coefficients α and β can be
optimized to improve the condition number of the resulting
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system. In general, the optimum values will depend on the
frequency and geometry. We propose the following heuristic:
α = max(1, k) and β = 1 (see [35], [36]).

IV. HIGH FREQUENCY ASYMPTOTIC ANALYSIS

It is informative to investigate the spectral properties of the
proposed integral equation (CSIE-AR) for a spherical scatterer.
In that case, all of the operators appearing in (19) or (28) can
be diagonalized using spherical harmonics Ynm and vector
spherical harmonics Xnm := n×Unm (see [26], [36], [37]).
This permits us to compute the condition numbers and spectra
analytically and compare various formulations.

Figure 1 compares the condition number of the proposed
formulation with other known non-resonant formulations. Both
CSIE-AR variants show very good performance.
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Fig. 1. Condition number of the CSIE-AR using either S2
ik or Sik as the

regularizer, the generalized Debye method [26] and the CSIE method as a
function of frequency.

Figure 2 compares the spectrum at k = 10 of the CSIE-AR
for the proposed regularizing operator n×S2

ik, the regularizing
operator n × Sik, and the C3IE. As we can see, there is a
unique limit point for CSIE − S2

ik, which is a consequence
of the fact that is is a Fredholm integral equation of the second
kind. Using the regularizing operator n×Sik or the C3IE, we
find two and three limit points, respectively. In all three cases,
the spectra are well-separated from zero and have modest
spread.
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Fig. 2. Spectrum of two CSIE-AR methods and the C3IE for a unit sphere
at k = 10.

Figure 3 shows the singular values of the CSIE-AR with
regularizing operator n × S2

ik at the same frequency. The
limiting value of 1/2 as n→∞ is (again) a reflection of the
fact that the integral equation is of the second second kind.
It is this property that prevents so-called “high density mesh
breakdown”.
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To summarize, the analytic behavior in the spherical case
suggests that the proposed CSIE-AR approach will have
good properties in terms of conditioning across the frequency
spectrum and will be stable for dense and adaptive meshes.

V. DISCRETIZATION

For the sake of simplicity, we assume the scatterer of
interest has been modeled by a union of flat triangles. For dis-
cretization of each operator, we use zero order non-conformal
piecewise constant basis functions and use collocation at
the triangle centroid to define the system matrix. No charge
continuity is enforced between triangles and no edge elements
are introduced.

On each triangle we have one unknown for the fictitious
scalar function σ and two unknowns for the unknown current
density (see figure 4) defined in terms of two orthogonal
components of a local coordinate system [38].

Fig. 4. Two orthogonal constant basis functions on each flat triangle for the
unknown current.

An advantage of Fredholm equations of the second kind
is that the resulting order of accuracy for the solution is
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simply the order of accuracy of the underlying quadrature rule
[39], [40]. We solve the discrete linear system using GMRES
iteration with FMM acceleration, resulting in a solution time
of the order O(niterN logN) where niter is the number of
iterations required and N is the number of unknowns. niter
depends on the conditioning of the system and its spectral
properties [4], [1], [2], [3], [38].

Unlike the EFIE, the CFIE or the classical CSIE (which
involve hypersingular operators), no preconditioning is re-
quired, instead we need to apply a regularizing operator which
also requires the computation of operator products. Next we
describe in more detail the discretization process for operator
products. [12], [14].

For the calculation of the matrix elements of each inte-
gral operator we use standard quadrature rules for the far
interactions and singularity subtraction for the self and near
interactions. By doing this we can write each operator acting
on a source density as a matrix-vector multiplication. For
the discretization of each composition of operators, we use
the same techniques applied on each operator independently
(resulting in a standard matrix-matrix-vector multiplication).
This will imply two standard FMM calls for a fast evaluation
of the composition of two operators.

When the surface divergence of J is required, we make use
of the following identity involving the regularizing operator
R:

∇Γ · J = ∇Γ · n× S2
ik[M ] = −n · ∇ × S2

ik[M ] =

= −n · ∇ × Sik[Sik[M ]]
(30)

The discretization of the resulting composition of two oper-
ators Sik[M ] and −n·∇×Sik[·] is performed as mentioned in
the first paragraph of this section (which implies two standard
FMM calls, one to evaluate Sik[M ] and other to evaluate
−n · ∇ × Sik[·] with a source given by the result of the
first FMM call). Notice that the operator −n · ∇ × Sik[·] is a
bounded operator, not hyper-singular (see [41] page 139).

Using the identity (30) and the vector identity ∇×∇× =
−∆ + ∇∇·, we can simplify the third term of the equation
(28) in the following way:

T [n× S2
ik[M ]] = n×∇×∇× Sk[n× S2

ik[M ]] =

= n× k2Sk[n× S2
ik[M ]] + n×∇Sk[−n · ∇ × S2

ik[M ]]
(31)

Notice that this will imply the composition of three inte-
gral operators, which are again discretized independently and
therefore it will require three consecutive standard FMM calls.

We also use the identity D′ik · Sik = S′2ik − 1
4 to simplify

the scalar part of equation (28) in the following way:

D′k[Sik[σ]] = (D′k −D′ik)[Sik[σ]] +D′ik[Sik[σ]]

= (D′k −D′ik)[Sik[σ]] + S′2ik[σ]− σ

4

(32)

where all the resulting operators are compact, and therefore,
the singularity can be computed easily without facing any
hypersingular kernel.

Here again, the composition of operators is computed in a
similar way. The operator with difference kernel D′k −D′ik is

computed by doing two FMM calls for the far interaction and
singularity substraction for the near interaction.

Notice that the proposed method implies the evaluation of
compositions of integral operators, in that sense the proposed
method is similar to the Calderon preconditioning technique.
Nevertheless, we don’t need to use special types of basis
functions and test functions or barycentric meshes (see [13].)

VI. NUMERICAL EXAMPLES

We show the properties of our method by testing first the
absence of resonances, absence of low frequency breakdown
and absence of high density mesh breakdown.
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Figure 5 shows that the number of iterations when running
the iterative solver GMRES with FMM remains stable in a
range between L = 0.1λ and L = 1λ. No internal resonances
are observed for a cubic, spheric and tetrahedral PEC scatterer.

Figure 6 shows that the number of iterations when running
the iterative solver GMRES with FMM remains stable in a
range between L = 0.1λ and L = 10−12λ. No low frequency
breakdown is observed for a cubic, spheric and tetrahedral
PEC scatterer.

Figure 7 shows that the number of iterations when running
the iterative solver GMRES with FMM remains stable in a
range between 1/h = 3 to 1/h = 33. No high density mesh
breakdown is observed for a cubic, spheric and tetrahedral
PEC scatterer.

Next we illustrate the performance of our method with
several benchmark geometries. All our calculations are carried
out using an eight-core Intel Xeon E5-2680 at 2.7GHz. (Some
rudimentary parallelization has been used, but the code has not
been carefully optimized.)

For our first example, we consider the irregular decahedron
shown in figure 8 (A) with a maximum dimension Dmax =
0.5λ. We compare the result using the proposed equation
CSIE −S2

ik with C3IE and with a reference solution based
on the Loop-Star RWG-CFIE using a much finer conformal
mesh and a direct solver. As we can see from Figs. 10, 11,
12, and 13, we obtain better accuracy for the CSIE − S2

ik

for both the electric and magnetic fields. The mesh used for
the CSIE − S2

ik and C3IE is non-conformal. In particular,
the triangles in the upper half-space (z ≥ 0) and those in the
lower half space (z ≤ 0) that meet with edges along the z = 0
plane are not aligned (see zoom in figure 9).
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Fig. 8. Various testing geometries

Fig. 9. Zoom of the non-conformal mesh in figure 8 (A).
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37.5 MHz. The solution is computed using the C3IE formulation with FMM
acceleration, a non-conformal mesh and zero order piecewise constant basis
functions and collocation method.
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Our second example is a perfeclty conducting tetrahedron
(figure 8 (B)), with a maximum dimension of Dmax = 0.5 ·
10−12λ. We compare the result using the proposed equation
CSIE −S2

ik with C3IE and with a reference solution based
on the Loop-Star RWG-CFIE using a much finer conformal
mesh and a direct solver. As can be seen from Figs. 14 and
15, we again obtain better accuracy with the CSIE − S2

ik.
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Fig. 11. The norm of the scattered electric field (in dB) for a PEC decahedron
of maximum dimension Dmax = 0.5λ. The target points are located at
R = 9m and φ = 0 for an incoming plane wave Ein = x̂ exp(ikz) of
frequency 37.5 MHz. The solution for the proposed CSIE−S2

ik formulation
with FMM acceleration, a non-conformal mesh, and zero order piecewise
constant basis functions and collocation method.
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Fig. 12. The scattered magnetic field (in dB) for a PEC decahedron of
maximum dimension Dmax = 0.5λ. The target points are located at R = 9m
and φ = 0 for an incoming plane wave Ein = x̂ exp(ikz) of frequency 37.5
MHz. The solution for the C3IE formulation with FMM acceleration, a
non-conformal mesh, and zero order piecewise constant basis functions and
collocation method.
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Fig. 13. The scattered magnetic field (in dB) for a PEC decahedron of
maximum dimension Dmax = 0.5λ. The target points are located at R = 9m
and φ = 0 for an incoming plane wave Ein = x̂ exp(ikz) of frequency 37.5
MHz. The solution for the proposed CSIE − S2

ik formulation with FMM
acceleration, a non-conformal mesh, and zero order piecewise constant basis
functions and collocation method.
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Fig. 14. The scattered electric field for a PEC tetrahedron of maximum
dimension Dmax = 0.5 · 10−12λ. The target points are located at R = 5m
and φ = 0 for an incoming plane wave Ein = x̂ exp(ikz) of frequency
75µHz. The solution is computed using the C3IE formulation with FMM
acceleration, a non-conformal mesh, and zero order piecewise constant basis
functions and collocation method.
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Fig. 15. The scattered electric field for a PEC tetrahedron of maximum
dimension Dmax = 0.5 · 10−12λ. The target points are located at R = 5m
and φ = 0 for an incoming plane wave Ein = x̂ exp(ikz) of frequency
75µHz. The solution is computed using the CSIE − S2

ik formulation with
FMM acceleration, a non-conformal mesh, and zero order piecewise constant
basis functions and collocation method.
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Fig. 16. The scattered electric field for a PEC tetrahedron of maximum
dimension Dmax = 3λ. The target points are located at R = 10m and φ = 0
for an incoming plane wave Ein = x̂ exp(ikz) of frequency 45 MHz. The
solution is computed using the C3IE formulation with FMM acceleration, a
non-conformal mesh, and zero order piecewise constant basis functions and
collocation method.

We next simulate scattering from the same geometry (the
PEC tetrahedron) at a higher frequency, Dmax = 3λ. We
obtain similar results in terms of accuracy (see Figs. 16,17).
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Fig. 17. The scattered electric field for a PEC tetrahedron of maximum
dimension Dmax = 3λ. The target points are located at R = 10m and φ = 0
for an incoming plane wave Ein = x̂ exp(ikz) of frequency 45 MHz. The
solution is computed using the proposed CSIE−S2

ik formulation with FMM
acceleration, a non-conformal mesh, and zero order piecewise constant basis
functions and collocation method

For our last example, we consider a model of the A320 air-
craft without engines (figure 8 (C)). The maximum dimension
is Dmax = 3λ. We can see that the CSIE − S2

ik formulation
gives consistent results for 43,000 and 122,000 triangles.
(figure 18). To improve the condition number with irregular
triangulation, we normalize each unknown by the square root
of the triangle area, following the L2 ideas proposed by
Bremer [42]. Figure 18 shows the induced charge density σ
(the fictitious magnetic charge) on the aircraft surface.
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Fig. 18. The scattered electric field from a PEC aircraft of maximum
dimension Dmax = 3λ. The target points are located at R = 25.5m and
φ = 0 for an incoming plane wave Ein = x̂ exp(ikz) of frequency 26.5
MHz. The solution is computed using the proposed CSIE−S2

ik formulation
with FMM acceleration, a non-conformal mesh, and zero order piecewise
constant basis functions and collocation method.
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Fig. 19. Induced fictitious magnetic charge density σ on a PEC aircraft of
maximum dimension Dmax = 3λ with an incoming plane wave Ein =
x̂ exp(ikz) of frequency 26.5 MHz. The solution is computed using the
proposed CSIE−S2

ik formulation with FMM acceleration, a non-conformal
mesh, zero order piecewise constant basis functions and collocation method.

VII. CONCLUSIONS

In this paper, we have presented an augmented, regularized
combined source integral equation (CSIE-AR), which has
useful properties across the frequency spectrum. In particular,
it is resonance-free, is low frequency stable for simply con-
nected geometries and immune from high density mesh break-
down. Unlike other second kind charge-current formulations,
it performs well even for sharp geometries without substantial
mesh refinement. The formulation is compatible with non-
conformal meshes, which can be very useful when meshing
complicated structures. Unlike hypersingular formulations, no
preconditioning is required and approximate fast methods can
be used without compromising accuracy. While RWG-based
EFIE implementations are still more accurate in this low order,
barely resolved regime, the proposed method is much easier
to combine with high order basis functions and high order
Nyström discretization (see [43], [44], [25]).
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[43] A. Klöckner, A. Barnett, L. Greengarde, and M. ONeil. Quadrature by
expansion: A new method for the evaluation of layer potentials. Journal
of Computational Physics, 252:332–349, 2013.

[44] C.L. Epstein, L. Greengard, and A. Klockner. On the convergence
of local expansions of layer potentials. SIAM Journal on Numerical
Analysis, 51(5):2660–2679, 2013.

Felipe Vico was born in Valencia, Spain, in 1981. He received the M.S degree
in 2004 in Telecommunication engineering from the Polytechnic University
of Valencia and the Ph.D. degree in 2009 in Telecommunications engineering
also from UPV. He received the M.S in Mathematics in 2009 from Universidad
Nacional de Educacion a Distancia. He received the best paper award in
EUCAP 2006. During 2010 he stayed for several months as a guest researcher
at the Courant Institute of Mathematical Sciences, in New York City, USA.
He is now assistant Professor in Universidad Politcnica de Valencia. His
research interests are Numerical methods for CEM, high frequency methods
and integral equation methods.

Leslie Greengard (M’07) was born in London, England on April 19, 1957.
He received a B.A. degree in Mathematics from Wesleyan University in
1979, a Ph.D. degree in Computer Science from Yale University in 1987,
and an M.D. degree from Yale University in 1987. From 1987-1989 he was
an NSF Postdoctoral Fellow at Yale University and at the Courant Institute
of Mathematical Sciences, NYU, where he has been a faculty member since
1989. He was the Director of the Courant Institute from 2006-2011 and is
currently Director of the Simons Center for Data Analysis at the Simons
Foundation in New York, NY. His research interests include fast algorithms,
computational acoustics and electromagnetics, elasticity, heat transfer, fluid
dynamics, and medical imaging. Prof. Greengard is a member of the National
Academy of Sciences and the National Academy of Engineering.

Miguel Ferrando-Bataller (S81M83) was born in Alcoy, Spain, in 1954.
He received the M.S. and Ph.D. degrees in telecommunication engineering
from the Universidad Politecnica de Catalunya, Barcelona, Spain, in 1977
and 1982, respectively. From 1977 to 1982, he was a Teaching Assistant
with the Antennas, Microwave, and Radar Group, Universidad Politcnica
de Catalunya, and in 1982 he became an Associate Professor. In 1990, he
joined the Universidad Politecnica de Valencia, Valencia, Spain, where he was
Director of the Telecommunication Engineering School and Vice-Chancellor.
He was Director of Long-life learning Office and he is currently Professor of
antennas and satellite communications. His current research interest includes
numerical methods, antenna design and e-learning activities.

Eva Antonino-Daviu was born in Valencia, Spain, on July 10, 1978. She
received the M.S. and Ph.D. degrees in electrical engineering from the
Universidad Politcnica de Valencia, Valencia, Spain, in 2002 and 2008, respec-
tively. In 2002, she joined the Electromagnetic Radiation Group, Universidad
Politcnica de Valencia, and in 2005 she became a Lecturer at the Escuela
Politcnia Superior de Gandia, Gandia, Spain. During 2005 she stayed for
several months as a guest researcher at the Department of Antennas and
EM Modelling of IMST GmbH, in Kamp-Lintfort, Germany. Eva Antonino-
Daviu has published over 50 papers in international technical journals and
renowned conferences in the field of antennas and propagation, and she is a
regular lecturer in European School of Antennas courses. Her current research
interests include wideband and multi-band planar antenna design, modal
analysis of antennas, MIMO and antenna design for mmwave applications.
Eva Antonino-Daviu was awarded the Premio Extraordinario de Tesis Doctoral
from the Universidad Politcnica de Valencia in 2008.


