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Abstract: We propose a setup for multiplexed distributed optical fiber sensors capable of 
resolving temperature distribution in thermo-therapies, with a spatial resolution of 2.5 mm 
over multiple fibers interrogated simultaneously. The setup is based on optical backscatter 
reflectometry (OBR) applied to optical fibers having backscattered power significantly larger 
than standard fibers (36.5 dB), obtained through MgO doping. The setup is based on a 
scattering-level multiplexing, which allows interrogating all the sensing fibers 
simultaneously, thanks to the fact that the backscattered power can be unambiguously 
associated to each fiber. The setup has been validated for the planar measurement of 
temperature profiles in ex vivo radiofrequency ablation, obtaining the measurement of 
temperature over a surface of 96 total points (4 fibers, 8 sensing points per cm2). The spatial 
resolution obtained for the planar measurement allows extending distributed sensing to 
surface, or even three-dimensional, geometries performing temperature sensing in the tissue 
with millimeter resolution in multiple dimensions. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Minimally invasive thermotherapies are playing a significant role in cancer treatment, for the 
removal of solid tumors after their diagnosis [1–3]. Minimally invasive methods based on 
thermal ablation make use of a minimally invasive applicator, inserted in situ to deliver heat 
in the form of electromagnetic energy to the surrounding tissue. Tumor cells mortality is a 
function of temperature and exposure time [4,5], with cytotoxicity phenomena appearing over 
42 °C; temperatures higher than 60 °C induce protein coagulation, resulting in a rapid cellular 
death [4]. 

Thermal ablation methods are successful in providing percutaneous treatments for solid 
tumors having small size in liver [3], kidney [6], thyroid [7], and brain [8] among others. Four 
principal methods have been implemented in clinical practice: radiofrequency ablation 
(RFA), which makes use of the difference of potential between an active electrode positioned 
on the applicator tip and a passive electrode placed in a neutral spot [1,6]; microwave ablation 
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(MWA) uses a generator emitting around 2.4 GHz to deliver an alternate power to the tissue, 
which acts as an electrical load [9]; laser ablation (LA), in which a solid-state laser delivers a 
continuous power to the tissue through one or multiple delivery fibers [7]; high-intensity 
focused ultrasound (HIFU), a non-contact method, in which an arrayed element focuses an 
ultrasound beam scanning the target tissue [10]. Among these methods, RFA and MWA have 
been appreciated for their capability to treat wide portions of tissue and rapid ablation 
process, and recent results show that these methods can be complemented with nanoparticles 
to extend the ablated tissue by a significant amount [11]. 

One of the main challenges of thermal ablation is the measurement of temperature across 
the treated regions [12] because the cellular mortality is a direct function of thermal 
dosimetry. This task is challenging since all thermal treatments generate heat patterns in the 
tissue that have high spatial and temporal gradients, often overcoming 50 °C/mm and 5 °C/s 
[13]. Therefore [4], the possibility to measure in real-time the temperature profile resolving 
thermal patterns is important to estimate the ablated portion of the tissue [14]; this allows 
verifying that the entire tumor has been treated, making thermometry the most important 
control for RFA/MWA [12]. 

The classical method for measuring the temperature in situ makes use of thermocouples 
[15,16]. These sensors, however, have two major weaknesses: thermocouples, even when 
packaged in a miniature form factor, can affect the heating propagation due to the two 
metallic wires which represent their sensing part, and they measure the temperature in a 
single point, while they cannot measure a spatial profile of temperature. Thermocouples are 
mounted on the tip of modern commercial RFA devices [17]. An alternative to thermocouples 
is thermal imaging [18–20], which uses magnetic resonance imaging (MRI) or computed 
tomography (CT) to perform thermal imaging on the tissue exposed to ablation. In these 
techniques, the temperature change is inferred from images of temperature dependent 
properties of biological tissue [18,19]. MRI thermometry is based on the dependence of 
several MR parameters on temperature. Among others, the relaxation times and the proton 
resonance frequency are the most employed in these fields [18]. This technique has been 
already used in vivo during different thermal treatments [20]. Basically, CT thermometry is 
based on the influence of the temperature on the phenomenon of Compton scattering. This 
influence causes a decrease of the attenuation of X-ray beam with temperature which can be 
observed on the CT images [20]. Both these techniques have the main advantages to be non-
invasive (or contactless) and to provide a three-dimensional temperature map around the 
tissue. Otherwise, the main concerns in the use of these techniques are the cost of MR scanner 
and specific sequences for obtaining good sensitivity to temperature, the need of using MR-
compatible devices (for MR thermometry), the need to an X-ray dose to the patient (for CT-
thermometry), and the presence of artefact due to patient respiratory movement [18,19]. 

Fiber optic sensors (FOS) represent the main alternative to these methods and have been 
recently extensively applied for temperature sensing in real time during RFA and MWA 
[13,14]. FOS are an excellent candidate to outperform thermocouples and MRI, because they 
have miniature form factor (smaller than RFA/MWA applicators), they are biocompatible in 
accordance to ISO 10993 standard [21] and have an instantaneous response. Most 
importantly, FOS have the unique property of detecting temperature patterns on a single fiber 
with resolutions between 0.1 mm and 10 mm [14], and the possibility of multiplexing among 
multiple fibers to detect the temperature pattern in one- or two-dimensional geometries [22] 
in a single scan. Fiber Bragg Gratings (FBGs) have been used for this task: FBG arrays make 
use of wavelength-division multiplexing and multiple channel interrogators to detect 
temperature patterns with spatial resolution included within 5 mm and 10 mm [12,14]; 
however, the spatial resolution is coarse compared to the thermal gradients at which the tissue 
is exposed in RFA [12]. An alternative is chirped FBGs [13], which can virtually reduce the 
resolution to the millimeter scale; however, chirped grating sensing system operate under the 
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assumption that the temperature pattern is known a priori, such as a Gaussian function, as 
reported by Korganbayev et al. in 2018 [23]. 

Distributed sensing stands as the most modern approach for temperature sensing in 
thermal ablation, using methods derived from optical frequency domain reflectometry 
(OFDR) [14]. An OFDR system based on white-light interferometry interrogates distributed 
reflections occurring in the fiber [24,25]. The most important OFDR implementation for 
sensing is optical backscatter reflectometry (OBR), whereas the distributed reflections are the 
random Rayleigh backscattering components naturally occurring on any standard fiber, 
labeled as the “signature”. The OBR system is an OFDR with detectors sufficiently accurate 
to detect the fiber signature in each location and estimate the spectral shift of each signature 
[26–28]. After being pioneered and consolidated by Froggatt et al. [26,27], and industrialized 
in the OBR instrument [28], distributed sensing based on OBR has been first demonstrated in 
RFA by Macchi et al. [29]. OBR allows an inline measurement of temperature with resolution 
below the millimeter scale [14,28,29]. 

A major weakness of OBR is that this method is not suitable for multiplexing onto 
multiple fibers. It is possible to use a switch to connect multiple channels, but since each 
channel requires an independent triggering and the measurement is relatively slow, 
performing a multi-fiber measurement at a speed inferior to 1 s is not feasible. Because of this 
drawback, OBR measurements are inherently single-channel, resulting in a one-directional 
inline measurement of temperature [14]. It is possible to bend the sensing fiber around the 
tissue in order to obtain a multi-dimensional measurement, as reported in [29]; however, this 
type of layout of the fiber is suitable only in investigations performed in the laboratory and 
cannot mimic a percutaneous insertion of the sensor as in [13] [22,23]. The detection of a 
planar temperature distribution with FOS, using a setup that can be percutaneously inserted in 
the tissue, has been reported in [22,30] using FBG arrays, however the 1-cm spacing between 
each grating element limited the resolution to the centimeter level, while OBR can operate at 
few millimeters or below. 

In this work, we propose a new method to overcome this scenario, that makes use of 
specialty fibers and an architecture hereby defined as “scattering-level multiplexing” 
(SLMux). The 2 building blocks of this concept are the use of a fiber doped with MgO-based 
nanoparticles that has a backscattering power of 36.5 dB larger than a standard single-mode 
fiber, used as sensing elements, and a matrix of fiber extenders that displaces the position of 
each sensor such that the scattering components do not overlap in length. For each location 
we observe the overlap of the scattering components of multiple fibers; however, since the 
sensing fibers backscatter a power orders of magnitude larger than each other fiber, it is 
possible to unambiguously demodulate each sensing fiber. In practice, this architecture allows 
detecting multiple sensing regions on a plurality of fibers, maintaining the same spatial 
resolution of the OBR technique. The MgO-doped fiber has a thermo-optic coefficient similar 
to silica fibers. 

This concept allows extending OBR from one-dimensional to two-dimensional (planar) 
temperature measurements in thermal ablation. An experimental setup has been designed to 
perform a temperature detection over 4 sensing fibers, achieving a total of 96 sensing points 
on a surface of 900 mm2. This highly resolved temperature measurement allows extending 
OBR to the real-time measurement of temperature spatial distribution over the inner plane of 
thermal ablation, providing a valuable alternative to thermal imaging at a simpler 
implementation. 

2. Experimental setup 

2.1 Experimental setup 

The experimental setup, embodying both the RFA setup and the distributed sensing system, is 
sketched in Fig. 1, while Fig. 2 shows photographic views. 
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with a “useful” region of 60 mm where a temperature change occurs. With the setup arranged 
in this way, it is possible to obtain 96 (4 fibers × 24 useful sensing point per fiber) over an 
area of 900 mm2 (60 mm × 15 mm). 

The photographic view of the setup is shown in Fig. 2, including both the RF module and 
the OBR sensing system. Extenders have been laid out on a plate in order to maintain the 
fiber bending unaltered during measurements. The phantom after ablation is shown in Fig. 
2(c), whereas the sensors are positioned on the same plane of the RFA applicator. The photo 
has been obtained by manually cutting the phantom, which caused fibers to slightly move 
from their location during the measurement; however, this figure is indicative to show the 
size of the ablated tissue. 

2.2 Fiber characterization and interrogation 

The preform was fabricated by conventional MCVD (Modified Chemical Vapor Deposition) 
process [32]. A Ge-doped silica porous layer of the core was immersed three times with 5 mL 
of the doping solution injected in the horizontally rotating tube. The composition of the 
ethanol-based doping solution is 0.1 mol/L of MgCl2 and 10−4 mol/L of ErCl3. The porous 
layer was dried at 1000°C under an oxygen gas flow, then sintered at 1800°C. The tube was 
collapsed into the preform by heating above 2000°C. The diameter of the preform was around 
10 mm with a 0.8 mm core diameter. The optical fiber was drawn on a drawing tower by 
heating the preform at approximately 2000°C. The external diameter of the fiber was 125 µm 
while the core diameter is about 10 µm. 

The compositions of the optical preform and fiber were measured using Energy 
Dispersive X-ray (EDX) analyses. The average magnesium and germanium concentrations 
vary along the length (axial direction) of the fiber. The highest magnesium and germanium 
concentrations are 1.7 and 0.4 at.%, respectively. The introduction of magnesium triggers the 
formation of nanoparticles through the phase separation mechanism due to high temperatures 
reached during the fabrication [33]. The exact composition of the nanoparticles is unknown 
for this fiber, but it has been reported previously for other fibers where the nanoparticles are 
enriched with Mg [34]. 

 

Fig. 3. Thermal response of the MgO-doped sensing fiber. 

The thermal response of the fiber is shown in Fig. 3, which has been estimated by 
inserting a spool of MgO-doped fiber on the surface of a hot plate, recording the plate 
temperature with a contact thermometer and measuring the wavelength shift of the fiber 
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scattering signature with the OBR. The result is a linear sensitivity, with coefficient 11.9 
pm/°C; this value is similar to silica fibers (~10.2 pm/°C), confirming that the doping 
concentration does not largely modify the thermo-optic coefficient of the fiber. 

 

Fig. 4. Scattering characterization of the proposed setup. (a) Backscattered power as a function 
of length, as recorded on the OBR, for each fiber length. The chart identifies the 4 sensing 
regions S1 – S4, each having ~20 cm length of MgO-doped fiber. (b) Inset of the left chart, 
showing an individual sensing region, with estimation of scattering “gain” G, fiber attenuation 
2α, and signal-to-noise ratio. 

The scattering characterization of the setup is shown in Fig. 4. In the left chart, it is 
possible to visualize the scattering trace, corresponding to the backscattered power as a 
function of length in the fiber. The chart identifies the 4 sensing regions, all designed using a 
length of ~18 cm of MgO-doped fiber, and the effect of the extenders: since each extender has 
a progressive length, the 4 locations can be unambiguously separated (S1: 9.77 – 9.95 m; S2: 
10.03 –10.21 m; S3: 10.28 – 10.46 m; S4: 10.55 – 10.74 m). All the sensing regions are 
enclosed within approximately 1 m of window on the OBR. All fibers have been cleaved 
prior to insertion in the tissue, and the local termination points of each fiber are not 
considered for the thermal map estimation. 

The high scattering content shows the validity of the multiplexing concept and is reported 
in Fig. 4(b) for the longest extender region. While the SMF fiber has a scattering level of 
−108.9 dBm and its attenuation is negligible over the short length of this setup, the magnitude 
of the MgO-doped fiber is −72.4 dBm, showing a scattering “gain” of G = 36.5 dB. In this 
framework, we define the gain as an additional intensity of the MgO-doped fiber that 
magnifies the scattering content, while there is no signal amplification [31]. The losses of the 
MgO-doped fiber are high and are accounted by estimating the slope of the trace in Fig. 4(b) 
as 2α = 25.5 dB/m cumulating the forward and backward losses that are accounted by the 
OBR. 

The multiplexing concept works since the scattering trace of the sensing fibers is always 
much larger than the combination of all the scattering components of the SMF fibers. We can 
therefore define a signal-to-noise ratio (SNR) that relates to the only scattering component 
and is defined as the ratio of the scattering content of the MgO-doped fiber (signal) over the 
scattering of the SMF fibers that overlap to the signal at the same location (which acts as a 
noise that corrupts the scattering estimate). Since the MgO-doped fibers have high losses, the 
SNR is higher at the beginning of each sensing trace and is the lowest at the end of each 
sensing tract. In our setup, the worst case is observed for the sensor S1, since it has the 
shortest extender and therefore it overlaps to all the other 3 SMF spans in the same location; 
on this specific channel, it also appears that losses are higher due to a splitter excess loss on 
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this specific channel. In any case, even at the tail of S1 the SNR is approximately 24 dB, 
while Fig. 4(b) shows that the SNR is ~27 dB at the end of S4 region. 

Empirically, we observe that a SNR of 20 dB is sufficient to ensure that the performances 
are limited by the trade-off between spatial resolution and accuracy of the OBR [31], without 
noticeable impairments due to multiple scattering components. This is also reinforced by the 
good noise rejection guaranteed by the mutual correlation algorithm. In comparison, FBG 
sensing networks operate with 20-30 dB of extinction ratio between adjacent gratings [22], 
confirming that the SLMux operates as a true multiplexing concept for fiber optic sensors. 

Sensor interrogation has been performed by adjusting the OBR software, operating in 
distributed sensing, that allows continuous measurement of the scattering signatures. The 
mutual correlation algorithm has been used correlate the Rayleigh backscattering spectra 
within each gage length (i.e., the signatures), with the signatures measured at the start of the 
experiment. The thermo-optic coefficient previously estimated has been used to convert the 
wavelength shift into temperature variation for each measurement point. After the whole 
temperature distribution has been estimated, the thermal maps have been updated by 
converting each OBR location into its xy coordinates evaluated as in Fig. 1, making the 
conversion between the linear trace to the planar geometry. The spectral correlation output is 
independent upon the power level (which removes minor effects such as temperature-
dependent loss of the MgO-doped fibers) and operates on an 8 pm grid, correspondent to 0.7 
°C thermal resolution. 

3. Results 

The experiments have been carried out by obtaining the reference temperature and fiber 
signature during the initialization, and then turning on the RFA generator in safe mode. The 
RF power has been delivered to the tissue until the vaporization, where the tissue impedance 
overcomes the threshold of 700 Ω, and then the power has been automatically discontinued. 
The thermal maps have been obtained on the xy plane by processing the data from each 
sensing fiber: temperature has been sampled with 2.5 mm resolution along the x axis parallel 
to the RFA applicator (corresponding to the OBR spatial resolution), with 5 mm resolution 
along the y axis perpendicular to the RFA applicator (corresponding to the distance between 
adjacent sensing fibers), and with 0.33 s time resolution (corresponding to the OBR speed in 
single-scan). Multiple experiments have been performed, showing similar results; in the 
following, we report the result for the ablation shown photographically in Fig. 2(c) as a 
benchmark of the distributed sensing system. 
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Fig. 5. Thermal maps reporting the measured temperature as a function of distance along the 
fiber (direction x) and time for each of the four sensing elements, located at coordinates y = 
−7.5 mm (S1), y = −2.5 mm (S2), y = 2.5 mm (S3), y = 7.5 mm (S4). 

In Fig. 5 we report the thermal maps obtained in this experiment, using the notation of 
[22] that reports the temperature as a function of distance along the fiber (x) and time elapsed. 
The thermal maps show the initial temperature rising, from the ~20°C room temperature, for 
as the RF power is dissipated on the tissue. The heating pattern progressively enlarged, as the 
impedance of the tissue decreased from the initial 120 Ω to ~85 Ω. In this moment, the heat 
pattern was recorded by both inner sensors S2-S3, with the sensor placed on the right of the 
applicator observing a higher heating. This asymmetric pattern is confirmed by Fig. 2(c) and 
is largely due to the non-homogeneous properties of the tissue, including fat and capillaries 
that deviate the RF ablation pattern particularly for fast ablation phenomena [3]. Conversely, 
heat did not significantly propagate to the external fibers, that see a marginal increase of 
temperature. After 25 s the vaporization of the tissue occurs, causing the RF power to be 
discontinued; the consequence is the temperature drop, with a gradient that is steeper in the 
center where the RF power is discontinued and is lower in on the sides, due to the delays of 
heat propagation from inner parts of the tissue to the peripheral sides. The maximum 
temperature of 102.7°C has been observed after 25 s. The external sensors detect a heating 
process having a peak at 41 s and a maximum temperature of 42.4°C (S4) and 33.2°C (S1), 16 
s after the RF power has been discontinued. 
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The method described in Fig. 1 can be potentially extended by using a 1xN splitter in lieu 
of the 1x2 splitter cascade, and using multiple extenders E1, …, EN to multiplex N sensing 
regions S1, …, SN. Assuming that the length of the i-th extender is LEi and includes all the 
optical path from the splitter output to the sensor, and LSi is the length of the i-th sensing 
region made with MgO-doped fiber, we can arrange the fibers such that: 

 ( ) ( )      ,÷ + ÷ + ∀ ≠doesnotoverlapwithEi Ei Si Ej Ej SjL L L L L L   i j  (1) 

In this case, we can write the backscattered power PS,i (in dBm units) from each i-th 
channel along the generic fiber direction z (corresponding to x in Fig. 1) as: 

 ( ) ( ),

                                0

2         

z

G z zα
≤ ≤

=  + − ≤ ≤ +

SMF Ei
S i

SMF Ei Ei Si

P L
P z

P L L L
 (2) 

where z = 0 is assumed to be the output of the splitter, PSMF is the power scattered by the SMF 
fiber (which is assumed to be lossless over the short interrogation window of the OBR, 
limited to 20-70 m), G is the scattering “gain”, i.e., the amount of extra scattering provided by 
the MgO-doped fiber, and 2α is twice the attenuation of the MgO-doped sensing fiber, that 
corresponds to the forward and backward waves. 

The power detected by the OBR is the combination of all backscattered waves, and from 
Eq. (1) it is possible to separate the location of each sensing region, as shown in Fig. 4. The 
worst-case scenario occurs for the shortest extender, whereas the sensing fiber overlaps to (N-
1) SMF fibers, which act as a noise on the spectral signature. We can thus write the signal-to-
noise ratio (SNR), in dB units, as: 

 ( )102 10log 1= − − −SNR G αz N  (3) 

whereas the splitter and link losses are not appearing as they apply to both the SMF fibers and 
the sensing fiber. By defining the target SNR and the number of fibers in the system, it is 
possible to obtain the maximum distance for each sensor by solving Eq. (3) for the maximum 
z value. Given that, from Sect. 2.2, the estimated parameters for the MgO-doped fiber are G = 
36.5 dB and 2α = 25.5 dB/m, and empirically the OBR correlator appears to work without 
impairments for SNR ≥ 20 dB (i.e. for values of SNR higher than this threshold the 
performance are limited by the accuracy-resolution trade-off and not by the noise affecting 
the fiber signatures) for a 1x4 splitter the maximum distance is 46 cm, reducing to 19 cm for a 
1x16 splitter and 6 cm for 1x32 splitter. Overall, this implies that we can transform a purely 
linear measurement with OBR into a multi-fiber measurement, each fiber having a length 
sufficient for in situ detection and maintaining a simultaneous scan even with 32 sensing 
fibers, considering that thermo-therapies affect the tissue by up to 3-4 cm in diameter [12]. 

Regarding MRI thermometry, recent findings allowed improving the performances of this 
technique during thermal treatments and obtaining good spatial (e.g., 1.25 × 1.25 × 3.5 mm) 
and temporal resolution (e.g., 1.9 s) [38]. By optimizing the SLMux method and 
consolidating the time-delay unit constituted by the extender array, it is possible to approach 
this level of resolution, but using sensors in lieu of imaging for in situ detection. 

In this work, the SLMux technique has been demonstrated on a two-dimensional grid, 
achieving a horizontal resolution of 2.5 mm which depends on the temperature accuracy and 
the total sensing length on the OBR, and a vertical resolution of 5 mm that depends on the 
number of used fibers and how closely and precisely they can be inserted in the tissue. With 
these values, the estimated temperature accuracy is close to the resolution of the OBR. 
However, shortening the total sensing length might be beneficial to improve the accuracy or 
reduce the spatial resolution, as by the trade-off. 
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5. Conclusions 

In conclusion, we report a scattering level-based multiplexing configuration that allows 
extending the OBR/OFDR distributed sensing to multiple fibers with a single scan. This 
SLMux configuration finds immediate application in the measurement of temperature patterns 
in cancer thermo-therapies [12–14], whereas the possibility of measuring at a fast rate with 
narrow spatial resolution with fibers arranged in planar configuration is needed to estimate in 
real time the extension of the treated tissues [16]. The SLMux configuration is enabled by 
fibers having superior amount of backscattering, and a set of extenders that implements a 
network of delayers that allows arbitrarily spacing the sensing fibers. The setup has been 
validated in RFA measurements, resulting in two-dimensional thermal maps with sub-
centimeter resolution in both dimensions. This configuration is an excellent candidate for 
real-time sensing in all biomedical applications that require sensing on multiple fibers, each 
used as a short-length distributed sensor [14]. The spatial resolution achievable by this 
configuration is comparable with thermal imaging, but with the advantage of in situ 
measurement and the possibility of embodying the sensing elements in miniature needles. 

Future work will address the expansion of the proposed method to >10 fibers arranged 
also in 3-dimensional way, to better identify the SNR performance limits of the SLMux 
concept and extending the SLMux configuration to strain/shape sensing on smart medical 
percutaneous catheters [14] [31]. 
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