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Abstract

Over the past years, supervised models with end-to-end backpropagation have
dominated the Deep Learning paradigm. However, great potential can be observed
in out-of-the-box approaches like Greedy InfoMax, an unsupervised approach based
on the modularization of neural networks and driven by the goal of optimizing local
information as an alternative to global error backpropagation. This novel technique
has been proven useful for experiments in both visual and auditive domains. The
experiments described in this report aim to implement this method and compare it
with a well-established approach for Unsupervised Learning: Slow Feature Analysis.
This second method focuses on the extraction of slowly varying features from a quickly
varying input signal and has also been proven effective for numerous tasks.

Keywords— Unsupervised Learning, Slow Feature Analysis, Greedy InfoMax, Backpropagation,
Mutual Information Optimization
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1 Introduction

Over the past decade, Deep Learning models based on supervised methods with global back-
propagation have become the flagship of their paradigm and are currently present in numerous
fields. These models seek achieving one of the most ambitious goals Computer Science has been
pursuing since its origins: imitating and improving the human intellect. Perhaps as a result of the
wish to create them in our image and likeness, or simply by taking inspiration on how nature has
built the very same intelligence we aspire to replicate; Artificial Intelligence (AI) has historically
been firmly tied to the understanding of the ways of the human brain.

Machine Learning (ML) is often defined as a form of AI in which the machine tries to implicitly
learn the rules to optimize its performance for a given task, as opposite to traditional AI methods
where the rules are explicitly given to the machine, which then tries to use them in order to improve
said performance.

Among the many techniques proposed through the years, it is probably Deep Learning the
one whose popularity has grown faster in the last decade. Even though other truly competitive
alternatives like Random Forests [1] and Support Vector Machines [2] have been in the game
for a long time, Deep Learning’s versatility when it comes to complex problems, as well as its
widespread usage by big companies who handle massive volumes of data, have helped turning this
approach into a trending topic. This can be easily checked by looking at the search frequency in
Google Trends1 for some terms like Machine Learning, Deep Learning or Neural Network. Figure
1 shows the search interest of these terms in relation to their highest point of the chart for a
given time period, in a 100-point scale. Over the past decade, and specially over the past four
years, the interest on Machine Learning topics has undergone a notable increase alongside the
unprecedented technological growth that the field has experienced. More and more universities
are including advanced and specific ML-based courses to their curricula, setting the base for an
upcoming generation of specialized engineers that will try and push the existing boundaries even
further.

Figure 1: Google Trends historical search data from May 2010 to May
2020 (Worldwide).

Every day, news stories talk about new technologies based on Deep Learning. Despite the
information often not being entirely accurate as tech-related press articles have been historically
known for prioritizing nicely sounding words over scientific accuracy, it is a fact that —for better

1 Google Trends online tool by Google LLC
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rather than worse— the Machine Learning research field is in the spotlight, and this growing
interest can be highly beneficial for its further development in the upcoming years.

As initially stated, the vast majority of the models used for Machine Learning nowadays consist
of Deep Learning, by means of layered —and typically Convolutional— Neural Networks (NN or
CNN for the Convolutional case) with global backpropagation of the error. This is of course a wide
generalization and, in practice, many other variations are used. Nonetheless, these characteristics
have become predominant due to its repeatedly showcased power for various tasks, and are usu-
ally used as a reference example for teaching Deep Learning. However, the study of alternative
approaches opens up a wide range of potentially useful models.

Unsupervised Learning (UL), although less popular than its Supervised counterpart, has also
been proven useful for several tasks. It specially finds its time to shine in clustering, visualization
and dimensionality reduction problems [3, 4, 5]. This type of learning will be covered in more
detail in the Background section, but the key difference with respect to Supervised Learning is
that UL does not require labeled samples for the training process. Imagine a simple classification
task, where a CNN is trying to learn how to differentiate between different objects: animals,
vehicles, plants... This is a common computer vision problem, where Supervised Learning would
use labels as a way to assess both how correctly it is learning during training and how accurate
it is when testing. A loss function such as cross-entropy can be used for the former and a simple
error rate estimation for the latter. In both cases, class labels are used to compare the actual
class of the objects with the class predicted by the model, and these labels have most likely been
assigned manually by a human beforehand. Unsupervised Learning, on the other hand, would
typically operate without using those labels —except perhaps for testing—, thus saving work time.
Instead of following the "This is a car" logic that teaches the machine, UL makes use of different
approaches that allow the machine to learn by using the data without being taught ; simply by
extracting features that would, following the previous example, allow the model to tell apart a
car from a dog and identify them properly after having learned which features most cars have in
common and which features they do not share with dogs. One could argue that a Supervised CNN
would also find such features, but the main difference resides in the fact that it would do so after
being explicitly taught on whether its decisions are right or wrong based on previously-gathered
information about the data, while an UL model would have learn this criterion by experience and
with no given information about how to do it or what to look for.

While UL might at first seems to work in mysterious or ambiguous ways, there is a good reason
for its success. This reason usually takes the form of an algorithm that is in charge of the magic
thanks to which the model can learn on its own. One of these algorithms is the well-known Slow
Feature Analysis (SFA) [6], which focuses on finding features in the data that are invariant or,
more precisely, vary slowly in a temporally (quickly) varying signal. In a self-descriptive fashion,
these are called slow features. In order to properly understand their relevance, a definition must
be provided for the concept of slowness, which is in fact relative. Imagine that the samples for an
analysis are the picture frames of a nature documentary on different Savannah animals and their
behavior: the lions are shown sleeping, then hunting, then there is a shot of a running prey... And
after a while, the focus goes to some birds and their daily routine, and so on for other species.
The takes are different and some "features" will vary quickly, such as the individual values for the
pixels in the screen. However, there are other "features" that will take up to several seconds to
vary, such as the species of the animal shown in the screen. This is due to the nature of real world
objects, which are usually highly persistent and change in a mostly continuous way. These are of
course —relatively— much slower than the pixel values when the time-scale in which they vary is
compared. SFA will try to detect this second type of features and extract them from the sensory
input via Unsupervised Learning.

Again, these concepts will be explained in their corresponding Background section. Nonethe-
less, it is important to introduce them now, since slow features are the basis of the novel Greedy
InfoMax method [7] for Self-supervised (Unsupervised) Learning on which most of this experiment
is based. This method does not only employ UL, but also renounces traditional end-to-end back-
propagation by means of splitting the network into individual modules with greedy optimization of
a local InfoNCE-based loss [9, 8], with the ultimate goal of maximizing the preservation of mutual
information in natural data. The modules can be composed of one or several convolutional layers.
This procedure encourages, in fact, the extraction of slow features.

8
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In this document, both Greedy InfoMax and Slow Feature Analysis will be described and
implemented with the ultimate goal of both comparing their performance in different tasks and
architectures, and discussing whether such comparison is applicable. Namely, the two main tasks
will consist of a first experiment based on Unsupervised Learning of image data applied to Su-
pervised classification, and a second, fully-unsupervised experiment focused on feature extraction
from images.

1.1 Structure

Up to this point, the project and its scope have been presented. In the following section, this
will be expanded by an exposition on the motivation of the research, focusing on the state of the
art and some related works, as well as the expected results and the relation of the main topics with
previous courses.

The work plan of the project will be described next; enumerating the main objectives and
describing the employed technologies and methodologies. Then, a theoretical background is pro-
vided in order to conduct a detailed explanation regarding the fundamental concepts on which
the experiments are based. First, a full description of Unsupervised Learning develops some of
the terms that were first featured in the Introduction section. Then, the concept of End-to-end
backpropagation is explained, devoting particular attention to both its relevance in the current
technologies and the problems or flaws this technique presents. Lastly, both Slow Feature Analysis
and Greedy InfoMax are thoroughly explained and introduced as the main approaches for the
experiments.

Subsequently, implementation details of the pre-processing patch extraction algorithm and the
InfoNCE-based custom loss function are provided both formally and algorithmically, as well as the
specifics on how the models were built for the different architectures. This section is followed up
by the reports on both experiments. For each experiment, the dataset and followed procedure are
first introduced and then the results comparing the different parameters and configurations are
presented in the form of tables and plots.

Finally, the Conclusion section summarizes the key ideas and the knowledge acquired through-
out whole working process, while also hinting at some possible improvements that could be poten-
tially addressed in future projects.

9
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2 Motivation

This section aims to provide arguments to justify the choice of the topic of research. First, the
latest related works will be outlined, highlighting their impact and relevance. This overview of the
state-of-the-art will be followed by a brief exposition on the expected results. Finally, the relation
of the project with previously coursed subjects will be argued as to consolidate the coherence of
the project with the Bachelor’s curriculum.

2.1 State of the art

As indicated by the authors in its original paper [7], Greedy InfoMax is not alone when it comes
to novel initiatives looking for viable alternatives to end-to-end backpropagation. Balduzzi et al.
[10] (2015) decomposed backpropagation into interacting learning sub-algorithms and factorized
the error signals to derive an non-parametric regression algorithm known as Kickback. Scellier
and Bengio [11] (2017) introduced the concept of Equilibrium Propagation for energy-based sys-
tems, which only requires gradient computation for the prediction phase while simply performing
a nudging of the prediction during the second phase, in a sort of propagating perturbation signal
that is tantamount to backpropagation of error derivatives, but more biologically plausible. Kohan
et al. [12] (2018) also advocated for biological plausibility, even if accepting that "how the brain
solves the credit assignment problem is unclear", referring to weight update or backpropagation,
and proposed reusing the forward connections by feeding the errors to the input layer in an Error
Forward-Propagation mechanism. In fact, recent studies [Bartunov et al. [13] (2018), Xiao et al.
[14] (2019)] have focused on comparing different biologically-plausible approaches with promising
results, proving that it is possible to relax the weight symmetry requirements imposed by back-
propagation while performing on equal level with backpropagation-based models on increasingly
complex architectures and datasets. On a different take closer to modularity, Belilovsky et al. [15]
(2019) use 1-hidden neural networks sequentially as auxiliary layers capable of solving problems
with a performance similar to well-established architectures, scaling to ImageNet [16].

Regarding Unsupervised Learning, the amount of works based on Slow Feature Analysis provide
enough evidence as to why it is the reference to which variations such as Greedy InfoMax are
compared. Ever since its formal introduction in 2002 by Professor Laurenz Wiskott [6], slow
fature methods have experienced a flowering and are still present in state-of-the-art researches.
Franzius et al. [17] (2018) encoded slow features from spatial, high dimensional image data via
UL to represent camera positions and achieve an accurate system of self-localization, emulating
orientation cells in the hippocampus of rats, an experiment that shares resemblance with Wiskott’s
own work on place, head-direction ans spatial-view rodent cells from 2007 [18]. Both experiments
are based on the fact that cells selectively encode some aspects, such as position and orientation,
while being invariant to others.

Zhang and Tao [19] had already tested with human action recognition in 2012 for both su-
pervised and unsupervised SFA methods, demonstrating its capability to extract patterns and
recognize complex multiperson activities. In a topic with more relation to this project, Ghosh
et al. [20] combine SFA with Extreme Learning Machines [21] to perform pose-invariant object
recognition by encoding vision events, achieving an incredibly low error rate after training with 8
objects varying on over 90 degrees (poses). One of the main inspirations for this project’s experi-
ments is the recent work by Wiskott et al. [22] where an SFA-based model is capable of learning
the pose variations on grayscale objects. These experiments also lead to practical applications as
seen in the research by Du et al. [23], which focuses on change detection in multi-temporal data
via remote sensing technology and applies a custom variation of SFA named Deep Slow Feature
Analysis, where two symmetric networks project data of bi-temporal imagery so that unchanged
components are later suppressed to easily measure the changed features, outperforming state-of-
the art methods for this kind of task —including other SFA-based algorithms. Even the futuristic
Quantum Machine Learning [24] has been combined with Slow Feature Analysis [25] for both
dimensionality reduction and classification tasks with high efficiency and accuracy on its results.

Finally, Contrastive Predictive Coding [26] (2018) proposes "a universal unsupervised learning
approach to extract useful representations from high-dimensional data" and sets a precedent for
Greedy InfoMax regarding future predictions in latent space and maximization of the mutual
information between a temporal signal and its context via a contrastive loss function based on NCE.

10



Degree Final Project Manuel Roselló Oviedo

These concepts will be explained in the upcoming sections as they are crucial for the experiment.
This type of approach is also used by Bengio et al. [27] to study the unsupervised learning of
representations with yet another variant labeled as Deep InfoMax, also based on InfoNCE, this
time combining it with the power of Adversarial Networks [28]; being capable of outperforming
other unsupervised methods for classification tasks. Tschannen et al. [29] (2020) recently published
a paper emphasizing the relevance of Mutual Information and the InfoMax principle, a concept on
which both Greedy InfoMax and CPC are based, explaining its success in many experiments for
the past few years.

2.2 Expected results

The main goal of this research is to develop simple models capable of obtaining significant
results so that a comparison between Greedy InfoMax and Slow Feature Analysis regarding perfor-
mance for different tasks is possible. This comparison is not arbitrary; it is based on the fact that
both methods work with the concept of slowness in data features (see Section 4.3). By the end of
the project, two different Convolutional Network architectures will have been built: a Multi-Layer,
Single-Module version and its Multi-Layer, Multi-Module counterpart. Both of them will be able
to perform both classification and feature extraction tasks based on slow features, either via GIM
or SFA. The NORB dataset [30] will be used for both experiments.

Image classification is a well-known task in the Machine Learning and Computer Vision fields.
Both unsupervised methods have demonstrated their capability in individual experiments, so ap-
plying them for the same problem and with the same architectures will allow assessing which
approach is capable of obtaining better results. Löwe’s experiments achieved up to an 81.9% ac-
curacy when working with a bigger dataset formed by RGB images. Therefore, a result above
80% will be considered acceptable given the smaller, grayscale dataset that will be used and the
dimensional limitations of the model. To avoid any possible misconception note that, even if the
training process will be unsupervised, labels will be used to test the classification accuracy of the
models in a classical supervised fashion.

Regarding the other experiment, the feature extraction process will be focused on the specific
case of pose (angle) variance detection with independence to lighting conditions. This experiment
is inspired by the SFA-based work by Wiskott et al. [22] and the final model should be able to
learn such variations in an unsupervised fashion; obtaining results similar to those in the reference
paper, as the same dataset is being used.

Figure 2: Training (a, b) and testing (c, d) results front and side visual-
izations on the NORB dataset, with azimuth colored. The circumference
of the cylinder encodes the rotation of the plane. From [22].

The motivation for this goal is to visually analyze the results to assert the coherence of the
learning results obtained by the model with the actual pose variations, such that the actual data
for the azimuth and elevation values is translated into a radial shape whose correlation with the
values can be confirmed by the continuity in the color mapping.

The resulting models will therefore be capable of performing object classification problems,
with pose and lighting independence, as well as being capable of (implicitly) identifying such pose.
Even if currently limited by scheduling and technological constraints, a more complex version of
the models can be built in the future, allowing for further improvement on both tasks. Both main
experiments focus on grayscale images, although a previous toy experiment was performed on RGB

11
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imagery. Even if it was not the main objective, this challenging variation could also be addressed
in future projects since [7] demonstrated how Unsupervised approaches based on the maximization
of mutual information can be competitive for such tasks.

2.3 Relation with previous courses

The realization of both the theoretical and practical parts of the project was only possible
thanks to the knowledge previously acquired from the undertaken courses during the four years
of Bachelor’s Degree studies, which are listed hereafter. Not only that, but given that learning
is a continuous and cumulative process, the inclusion the courses undertook in Copenhagen was
considered to be imperative: one of which was just recently finished; and a second one that is
currently on-going.

• Polytechnic University of Valencia
– Intelligent Systems (2018). This subject served as a formal introduction to Form

Recognition and Automatic Learning. It provided with basic notions on discriminant
functions, the Perceptron algorithm, K-means and other concepts that later allowed
taking the first steps in the ML field.

– Perception (2019). As a continuation of Intelligent Systems, this course focused on
some key concepts for ML works, such as feature extraction, dimensionality reduction,
kernels and classifiers; all of which have either explicitly or implicitly been applied in
this project.

– Machine Learning (2019). The main foundations of this work are directly related
to the syllabus: learning models, optimization techniques, error backpropagation and
multilayer neural networks. In fact, this course served as an inspiration to pursue a
project related to Neural Networks.

– Others. Several other courses have a minor relation with this work, but also had an
invaluable impact that made it possible: Databases and Information Systems (2018)
served as an introduction to Python programming and in-code data management,
Project Management (2018) provided with valuable guidelines regarding planning and
scheduling; and Bioinformatics (2019) significantly widened the views of the students
on the real applications of ML.

• University of Copenhagen
– Signal and Image Processing (2020). Grasping the concept of convolution can be

tricky at first, and many students find themselves working with Convolutional Neural
Networks way before they are taught about how they operate, or rather, how they
convolve in order to operate. This course helped fully understanding the meaning and
relevance of convolutions. In addition to that, the PyTorch library was used for an
assignment and many other ML concepts were applied during the practical sessions.

– Large Scale Data Analysis (2020). This course, even if quite similar to the Machine
Learning one, expands its contents and goes beyond with MSc-level lectures on topics
such as the Adam algorithm, Recurrent Networks and Distributed Data Analysis. This
course was also taken in parallel with this project, and it served as an additional source
of knowledge.

• University of Liège - Board of European Students of Technology
– Root for Deep Learning (2019, summer course). Even though probably attended

one year too early, this summer course was an entire MSc course on Deep Learning
summarized in one week of daily classes. Most of the work was done in PyTorch and
the syllabus went through all the aforementioned key concepts and even more. In spite
of the lack of preparation back then, it still served as an initial contact with the big
picture of Convolutional Neural Networks, their —at first, overwhelming— complexity
and their outstanding potential.

12
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3 Work plan

This section will delve into the organization and scheduling of the project. Namely, the main
objectives will be presented, followed by an exposition on the main technologies used and an
account on the specific stages of the work plan.

3.1 Objectives

Two specific objectives were initially set in order to develop this project, from which other
sub-objectives emerged as the project evolved:

1. Construction of a simple Unsupervised Learning model with PyTorch [31], implementing a
custom loss function based on Greedy InfoMax’s InfoNCE.
(a) Construction and comparison of a single-module architecture versus a multi-module

architecture.
(b) Performance evaluation of the model for both image classification and pose-related

feature extraction independent to lighting.

2. Comparison of the models against an SFA-based version of them; both given the same tasks
and architectures.

3.2 Technologies

The practical nature of the project entailed the usage of modern coding technologies. The
Python Programming Language2 was used for all the experiments. Being a general-purpose lan-
guage, the recent development of some specialized libraries such as PyTorch3 or TensorFlow4 have
helped it become one of the most popular programming languages for Machine Learning tasks.
Readability and user-friendliness are its key strengths, and the final choice to use PyTorch over
other libraries for the development of the experiments was in part due to the fact that this library
was built such that it would feel native and fully integrated in PyTorch, as opposite to TensorFlow.

However, the main reason for the use of PyTorch was to ensure consistency with the original
experiments performed by Löwe et al. [7]. The library stands out in Deep Learning due to its
automatic differentiation feature autograd, which will handle the gradient backpropagation during
training (see Section 4.1). Moreover, the data is manipulated in complex structures called tensors;
multidimensional numerical arrays similar to NumPy arrays but capable of being operated with
hardware acceleration thanks to the CUDA5 technology, as long as a capable GPU is available.
PyTorch also offers a wide range of pre-built functions for data preprocessing, network construction
and optimization.

Instead of using traditional Python files, the code was written in Colab6 notebooks, browser-
based files which allow for the interactive execution of code in independent cells within the same
session. Cells can also contain text and images, which enables creating illustrative textbooks and
tutorials. The main difference with respect to standard Jupyter Notebooks7 is that Colab offers the
user an option to run their code on a cloud server, being able to use remote hardware acceleration
via GPU or TPU, which is especially handy when training of big Deep Learning models. Of course,
the service is limited for free users, and even those with a paid subscription have certain restrictions
since hardware availability changes dynamically depending on the current overall usage. Due to
these limits, the experimentation was sometimes delayed when the personal usage was exceeded.
Nonetheless, the models were trained locally for the feature extraction experiment as the dataset
was smaller and the training process could be performed with a simple mid-market NVIDIA GPU,
thus parallelizing this process with the remote training of the classification modules in Colab.

2 Python Programming Language
3 PyTorch, open source ML library.
4 TensorFlow by Google Brain.
5 CUDA by NVIDIA Corporation.
6 Colaboratory by Google LLC.
7 Jupyter Notebook by Project Jupyter.
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3.3 Methodology and work plan

An Individual Study Project worth 15 ECTS is equivalent to 412 hours of work. This project
was developed over a span of 18 weeks, with an average of 20 hours of workload per week, including
a weekly 1-hour meeting with the project supervisor. Due to the COVID-19 situation, most of
these meetings took place remotely via Skype, and e-mail communication was frequently used for
both problem solving and update reporting outside meeting hours.

The work plan was split into 4 stages:

1. Initial research and familiarization with the technology (1 month). The first weeks were
devoted to thoroughly studying the reference papers via both individual reading during the
weekly meetings in which specific goals were established progressively.
The models were built using the PyTorch Deep Learning library for Python. During this first
stage, most of the work time was dedicated to learning with tutorials and performing small
experiments in order to properly assimilate the basics of PyTorch and grow accustomed to
working with Google Colab notebooks.

2. Greedy Info Max implementation, CIFAR-10 experiment (1 month). A toy experiment based
on image classification with the CIFAR-10 dataset (Sections 5.1.1 and 6.1) was built in order
to test possible ways of implementing Greedy InfoMax. Specifically, two architectures were
built: a Single-Module model with four convolutional layers and a Multi-Module version
that split those into two modules of two convolutional layers each. Both architectures used
a custom InfoNCE-based loss for training. Most of the work was focused on coding the
different blocks: the custom loss, the patch extraction functions, the custom dataloaders and
the architectures —mostly aiming to find an optimal way to implement the modularization.

3. Slow Feature Analysis and the NORB experiments (2 months). Once the CIFAR experiment
was up and running, it was the turn for the main experiments based on the NORB dataset
(Sections 5.1.2, 6.2 and 6.3). The models and dataloaders were adapted to the new data
and an SFA-based version was implemented. Since every execution would take up to several
hours and the usage of Google Colab was limited, this process took place in parallel with
early drafts of the project report.

4. Report completion (1 week). Once the experiments were finished, a week was devoted to
compiling the results into plots and tables, and focusing on completing the written report.

5. Final revisions (1 week). A final draft was sent to both supervisors so that the last days of
work could be invested in reviewing and fixing possible issues before the official hand-in.
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4 Background

Before diving into the experiment details and their implementation, a detailed exposition of the
main theoretical concepts on which they are based is imperative. First, the Unsupervised Learning
paradigm will be explained and some examples of its applications will be presented. Then, the
basics of backpropagation will be explained to justify its relevance and its downsides, which Greedy
InfoMax attempts to subside. Following this, the main logic behind Slow Feature Analysis will
be described as an introduction to the implementation that was later applied in the experiments.
Lastly, a thorough justification of Greedy InfoMax will take place, focusing on its relation with
Contrastive Predictive Coding and the InfoNCE loss.

4.1 Unsupervised Learning

Traditionally, the most common approach for dealing with Machine Learning tasks has been
Supervised Learning. The term is named based on the fact that the machine is given both inputs and
their desired outputs during training, with a goal to produce a correct output for any new inputs
once it has been trained. The Supervised Learning application par excellence is classification:
physical objects, handwritten digits or words, spoken language, etc.

Another popular type of machine learning is Reinforcement Learning, which can be generalized
as an application of game theory. There are many possible variations, but the main precept is letting
the machine interact with its environments via actions that can be rewarded or punished. The
machine will then aim to improve its behavior progressively so that its score is maximized.

However, the approach that was selected for the experiments in this project is the so-called
Unsupervised Learning or Semi-Supervised Learning. Unlike the aforementioned methods, Unsu-
pervised Learning (UL) obtains neither target outputs nor rewards [32]. Instead, the goal of UL
techniques is to extract internal representations of the implicit structures present in the input data
[33]. Even if this might sound vague or even unattainable at first sight, there are several techniques
that have been proven capable of achieving such premise. For semi-supervised, just a small amount
of the data is labeled, that is, has a given output. Of course, the lack of need for sample labeling
is highly appealing since this is often done manually, resulting in a tedious but fundamental task
to perform before training any Supervised model.

Unsupervised Learning has repeatedly proven its usefulness for various tasks in several fields,
as commented in the Motivation section. Perhaps one of the most relevant applications is anomaly
detection, for instance, in multivariate time series data for wereables or even power plants [34];
or in potentially contaminated, high-dimensional data [35] via Generative Adversarial Networks
[28]. Reviewing some of the examples from the previous sections, the variety of applications
for UL techniques becomes evident. Recapitulating, related work has been done for networking
problems such as traffic engineering and classification, quality of service optimization and, again,
anomaly detection [36]. Some data mining methods [37] use UL to determine association rules in
data [38]. In addition to these fairly novel uses, UL has been a staple approach for traditional
tasks like classification and dimensionality reduction for decades. For instance, [32] shows how an
unsupervised model is perfectly capable of surpassing an equivalent supervised model for a simple
pattern classification task.

Some authors emphasize the neuroscience inspiration and applications of UL [39], mainly based
on the argument of the biological implausibility of current Deep Learning networks, an argument
which is also mentioned as part of the motivation for Greedy InfoMax [7]. All three mentioned
variants of Machine Learning are somehow based on different ways of reproducing the way human
beings learn and process information in their brains. UL models can be formally explained within
a mathematical and statistical framework, but the original idea was to imitate how the brain is
able to extract statistical patterns from complex sensory data.

Nowadays, there are several UL techniques available, most of them focused on clustering meth-
ods or K-nearest neighbors [40]. This project will focus on two approaches based on the detection
and analysis of slow features —which will be described in Section 4.3— with the usage of Deep
Learning models in the form of Convolutional Neural Networks, albeit a cluster-related technique
(nearest centroid) will be used for classification. This technique assigns for the data the label of
the class of training samples whose mean is spatially closer.

15



Degree Final Project Manuel Roselló Oviedo

4.2 End-to-end Backpropagation

Along the past sections, the term backpropagation has been repeatedly used without further
explanation other than it referring to a backpropagation "of the error along the network". The
history of the algorithm is, surprisingly enough, a sequence of discoveries and rediscoveries followed
by years in the shadow just to become a relevant topic again later thanks to new scientific break-
throughs. Even if some preceding studies in control theory [42] and derivation [43] in dynamic
programming are often regarded as the initial steps towards its development, it was not until 1986
that a paper published by David Rumelhart, Geoffrey Hinton, and Ronald Williams [41] helped
it start to gain popularity and eventually become the workhorse it is today. They described how
backpropagation allowed for faster performances when compared to its contemporary alternatives
but, more than that; it allowed solving certain problems that were considered practically insoluble
with the available technology back then.

The relevance of backpropagation is excellently summarized in this quote by Balduzzi et al.
from [10]: "The discovery of error backpropagation was hailed as a breakthrough because it solved the
main problem of distributed learning [. . . ] Decades later, Backprop is the workhorse underlying most
deep learning algorithms, and a major component of the state-of-the-art in supervised learning."
Of course, this statement can be extended to Unsupervised Learning as well, as backpropagation
is also a standard algorithm used in most unsupervised models.

To put it bluntly, end-to-end backpropagation is a mechanism that allows a learning model
to properly adjust its weights based on its previous performance(s), with the goal of finding an
optimal value for them. The concept of weight must be interpreted in its mathematical sense,
that is, how relevant a piece of data is for the model: for instance, an input value for the well-
known Perceptron algorithm [44], whose multilayer version is possible thanks to backpropagation.
It is not in the scope of this document to explain how models such as a multilayer Perceptron
or a neural network operate, and it is assumed that the reader is knowledgeable or has at least
some basic notions on these topics. The objective of this section is to focus on the reason why
backpropagation is indispensable in Deep Learning models, as well as to outline some of its biggest
flaws and counterarguments.

After a neural network model is initialized, the input data undergoes a forward propagation
from the first layers and until the output layer. This output is then evaluated by a loss function,
such as MSE (Mean Squared Error), that will estimate the correctness of the results. The goal of
backpropagation is to force the network to change its internal parameters in such a way that this
loss or error will be optimally low. Many optimizers handle this task in different ways, such as
the classic SGD [45] or other novel, fast algorithms such as Adam [46] or RMSProp [47]; but all of
them are based on the common goal of computing the gradient of the loss function with respect to
the weights. In other words, it is an iterative differentiation process based on the chain rule that
allows updating the weights of a network in an —ideally— optimal way.

Take for instance a simple multilayer perceptron with one input layer, one hidden layer and
one output layer. For simplicity, let us assume that the function to minimize is the Mean Squared
Error. For a given training set S = {x1, . . . , xN}, the goal is to find the set of weights Θ such that
the error

εS(Θ) =
1

N

N∑
n=1

εn(Θ); εn(Θ) =
1

2

ML∑
i=1

(
tni − sLi (xn; Θ)

)2
(4.2.1)

is minimized, where ML is the number of nodes in the output layer L, tni is a target value (label)
for a sample n and sLi is the output of the node i in the output layer as ski is the output value for
node i in layer l, which in the current case example of L = 2 would be calculated for the hidden
and output layers as

s1i (x; Θ) = g

M0∑
j=0

θ1ijxj

 ; s2i (x; Θ) = g

M1∑
j=0

θ2ijs
1
j (x)

 , (4.2.2)

where g is an activation function. For each weight θ connecting neuron j in layer l−1 with neuron
i in layer l, its gradient ∆θlij in a simple gradient descent algorithm with a learning rate α would
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be computed as

∆θlij = −α∂εS(Θ)

∂θlij
=

1

N

N∑
n=1

−α∂εn(Θ)

∂θlij
. (4.2.3)

When dealing with high-dimensional data, the GPU must be able to fit in the entire compu-
tational graph at once (weights, activation functions and gradients). A simple approach would be
reducing the batch size; but the main issue is that, as a network becomes deeper, the backprop-
agation operation becomes increasingly expensive due to the amount of trainable (differentiable)
parameters present in the layers. Asynchronous training of the layers might be a solution, but tra-
ditional backpropagation requires sequential continuity, that is, each layer requires the activations
from its predecessors. In addition to this, tracking issues becomes more difficult as well since often
not even the designer can be certain about which layer is faulty and how the modifications to one
layer would affect the overall performance and the final output.

Moreover, deep networks can suffer from the infamous vanishing gradient problem. This issue
appears when the gradients of the loss function produce values close to zero, preventing the model
from properly updating its weights and consequently preventing it from learning. The source of
the problem are certain activation functions such as sigmoid, whose derivative will approach zero
when the input values are large. There are many popular solutions for this. The simplest approach
is to simply use a different activation function whose derivatives will not easily decrease, such as
ReLU. With time, other tricks such as using residual networks or batch normalization layers [48]
have also been popularized, allowing for the fast growth of Deep Learning networks in the past
decades.

Lastly, modular networks such as the one built for this project also address this issue by help-
ing the backpropagation operate locally, in shallower networks where the gradient values are less
likely to decrease excessively. Usually, neural networks use end-to-end or global backpropagation,
meaning that there are no modules and the differentiation process has to be performed from the
final layer to the first one for every optimization iteration. Even if trained for the same amount of
epochs, a modular network is expected to have way less computational overload per module since
only the gradients of a few layers will be stored simultaneously in memory. Note that the concept
of module can refer tom both a single layer or a combination of them and, overall, a modular
network can be seen as a combination of smaller networks, which will not necessarily be connected
in a sequential way —although this will be the case for Greedy InfoMax and the project’s model
architecture.

In Pytorch, backpropagation is completely automatic via Autograd (automatic differentiation).
This is handled by the backwards() operation, as long as the given function is differentiable and
has its gradient computation enabled (requires_grad=True).

4.3 Slow Feature Analysis

Usually, when features are mentioned in a Machine Learning context they refer to common
patterns found in static data. Take for instance a child who is learning what a dog is. There are
many different breeds of dogs, so their brain will have to find those common structures or patterns:
four legs, fur, waving tail, barking sounds... These characteristic traits o features will be the key to
differentiate them from a cat, a horse or a bird. Modern convolutional networks are designed learn
to find these features so that they are able to perform, for example, the traditional classification
task described in the previous section, just like the child learns to tell different species apart.

However, the so-called slow features are —mind the pun— a slightly different animal. As
defined by T. J. Sejnowski [6], they are “invariant features of temporally varying signals”. In order
to clarify this statement, the first example given by his article Slow Feature Analysis: Unsupervised
Learning of Invariances will be summarized.

Assume a bounded visual field, through which three objects in the shape of striped letters
are displaced in a straight line, each one of them in a different direction. Also assume that only
one object will be visible within the field at a time. The stimulus can be represented by three
variables changing over time: object identity, vertical location and horizontal location. These
stimuli are perceived by photoreceptors that detect grayscale changes, a kind of information that

17



Degree Final Project Manuel Roselló Oviedo

changes rapidly and thus is a low-level representation containing relevant information about the
variables. However, if the photoreceptors were to cover the entire visual field then a high-level
representation is obtained, which varies on a different timescale. The key fact is that “a slowly
varying representation can be considered to be of higher abstraction than a quickly varying one”.
While object translation induces quick changes in the primary sensor signal, object identity and
object location vary slowly and can therefore be expressed as slow features from such sensory
signal. The goal of Slow Feature Analysis (SFA) is to find a function that generates slowly varying
output signals for the given input, so that certain aspects of this output signal can be useful for a
high-level representation.

Figure 3: Relation between slowly varying stimulus and quickly varying
sensor activities. High-level representation of the stimulus in terms of
object identity and object location over time. From [6].

Mathematically, Slow Feature Analysis can be described as follows: given an I-dimensional
input signal x(t) = [x1(t), ..., xI(t)]

T , consider an input-output function g(x) = [g1(x), ..., gJ(x)]T ,
each component of which is a weighted sum over a set of K nonlinear functions hk(x) : gj(x) :=∑K
k=1 wjkhk(x). Usually K > max(I, J). Applying bfh = [h1, ...hK ]T to the input signal yields

the nonliearly expanded signal z(t) := h(x)). Thus, the problem is now linear. The weight vectors
are subject to learning, and the jth output signal component is given by yj(t) = gj(x(t)) =
wT
j h(x(t)) = wT

j z(t). Therefore, the function to be minimized by optimizing the weights is

∆(yj) = 〈ẏ2j 〉 = wT
j 〈żżT 〉wj , (4.3.1)

where the angle brackets indicate temporal averaging, that is,

〈f〉 :=
1

t1 − t0

∫ t1

t0

f(t)dt. (4.3.2)
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Moreover, the minimization must be performed under the constraints

〈yj〉 = wT
j 〈z〉 = 0 (zero mean), (4.3.3)

〈y2j 〉 = wT
j 〈zzT 〉wj = 1 (unit variance), (4.3.4)

∀j′ < j : 〈yj′ , yj〉 = wT
j′〈zzT 〉wj = 0 (decorrelation). (4.3.5)

The combination of the first two constraints avoids the trivial solution where yj(t) = const.. Note
that (4.3.4) will not achieve unit variance without (4.3.3) as the solution yj(t) = 1 would still be
possible. (4.3.5) guarantees both that the output components carry different information and a
strict order of optimality in the components such that ∆(yj′) ≤ ∆(yj) if j′ < j. The motivation for
this constraints is that the goal of SFA is to find features that vary over time and are uncorrelated,
so constant features must be avoided. Consequently, the target function will be able to select
those features which are non-trivial and present a low temporal-variation rate, that is, the slowest
features. A better understanding can be obtained by analyzing the effect these expressions have
on a simple time-varying signal x(t) = t. The solution will constitute a Fourier basis8 [18] with
the form sin(kx) or cos(kx) for k ∈ Z+.

All three constraints will be automatically fulfilled if hk are chosen such that z(t) has zero
mean and a unit covariance matrix; and also if and only if the weight vectors are constrained to
be an orthonormal set.

Therefore, for the ith component of the input-output function the optimization problem can be
expressed as finding the normed weight vector that minimizes ∆(yi). The solution is the normed
eigenvector of matrix 〈żżT 〉 that corresponds to the smallest eigenvalue [49]. The eigenvectors of
the next higher eigenvalues produce the next components of the input-output function with the
next higher ∆ values.

Note that the input signals are normalized to zero mean and unit variance, a process which
will be exact for training data. However, for test data only an approximate normalization can
be produced due to the variability of the samples, which will have slightly different means and
variances, while the offset and factor for the normalization are constant and obtained from the
training data.

In practice, an approximation via whitening was performed in order to translate the afore-
mentioned equations into a valid training method for convolutional neural networks such that the
constraints are fulfilled. This adaptation will be described in detail in Section 5.3. The main
difference resides in the fact that, while z values are considered to be constant for Slow Feature
Analysis as explained above, this is not the case when backpropagating the function h in a neural
network. Instead, an optimal value is sought.

4.4 Greedy InfoMax

This project is mostly based in the article Putting An End to End-to-End Gradient-Isolated
Learning of Representations [7], where Löwe et al. describe Greedy InfoMax (GIM), a novel
approach for Unsupervised Learning of unlabeled data. The idea and experiments were originally
the core of Löwe’s Master Thesis [50], but was later published as a paper and defended in the 33rd
Conference on Neural Information Processing Systems (NeurIPS 2019) at Vancouver, Canada.
This proposal advocates for local information preservation. The authors propose an alternative to
the omnipresent end-to-end backpropagation technique for Deep Learning by means of a modular
neural network, where each module is trained individually and implements local backpropagation
via a within-module loss function based on a InfoNCE [8]. As previously stated, the modules can
be composed of one or several convolutional layers. The output is then gradient-detached and can
be stored, allowing for an asynchronous optimization of the modules. The presence of slow features
in natural data as described in the previous section is one of the axioms for GIM.

One of the main arguments in favor of this method is the biological discordance of global
backpropagation and brain connections for optimization [51], being modularity based on local
information a more realistic approach [52]. Biological synapses are mostly adjusted based on local
information, that is, their immediate neighboring neurons, without having to wait for a global
signal. Different areas of the brain can learn highly asynchronously and in parallel.

8 The Fourier Basis. Brown University, Providence RI. Source
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However, while actual neurology can be seen once again as inspiration for Deep Learning,
Greedy InfoMax also has algorithmic and mathematical motivations. Avoiding end-to-end back-
propagation and not requiring labeled inputs are great advantages that can save computational
and temporal resources. Local losses are backpropagated within each individual module, allowing
for the whole process to be much faster and require less memory to store intermediate values. This
loss is inspired by the log-bilinear model used by Öord et al. in their Contrastive Predictive Coding
(CPC) work [26], known as InfoNCE :

LN = −
∑
k

E
X

log
exp

(
zt+k

TWkct
)∑

xj∈X
exp

(
zTj Wkct

)
 . (4.4.1)

This is an expectation over the samples in a set X = {x1, . . . , xN} of N random sample
containing one positive sample from p (xt+k|ct) and N−1 samples from p (xt+k). Where a sequence
of observations xt is encoded as zt = genc(xt) and xt+k are its future observations, modelled a the
density ratio

fk(xt+k, ct) ∝
p(xt+k|ct)
p(xt+k)

, (4.4.2)

being fk(xt+k, ct) = exp
(
zTt+kWkct

)
a log-bilinear model used as a positive scoring function, where

Wk is a linear transformation matrix.

In order to explain the relevance of InfoNCE and its application in Greedy InfoMax, let us
first define the concept of mutual information, which refers to the information shared between the
data x and its context c as

I(x; c) =
∑
x,c

p(x, c) log
p(x|c)
p(x)

. (4.4.3)

When using Greedy InfoMax, an input signal x is encoded at a given instant of time t, producing
genc(xt) = zt. For each module, the contextual information genc(xt) = ct is a representation of
the aggregated patches up to time-step t, that is, zmt . Each zt+k is the representation of such
encoding for a given delay k. These representations are considered “positive” samples while the
other N − 1 samples zjn are drawn from a bag X = zt+k, zj1 , zj2 , . . . , zjN−1

existing for each delay
k and are considered as “negative” samples, following the negative sampling methodology of NCE
(Noise Contrastive Estimation) [8, 9]. The goal is to maximize the lower bound of nearby patches
representations, such that the so-called future representation, a neighboring encoding zmt+k, keeps
as much information from zmt as possible. First, using the previous equation we redefine the mutual
information as

I(zmt+k; zmt ) =
∑

zmt+k,z
m
t

p(zmt+k, z
m
t ) log

p(zmt+k|zmt )

p(zmt+k)
. (4.4.4)

In the same way, it is also desired to maximize the mutual information between the future input
of a module and its current representation I(zm−1t+k ; zmt ). It is considered that, in some cases, a
broader context might be necessary and the authors propose the addition of an optionally appended
autoregressive module. However, this module was not included in the experiments of this project
since the chosen tasks did not seem to require so much contextual information.

Before proceeding any further, there are a couple of assumptions that must be clarified. Both
CPC and GIM are based on the estimations of the form described in [8], that is,

p(y|x; θ) =
exp (s(x, y; θ))

Z (x; θ)
; (4.4.5)

where s(x, y; θ) is an unnormalized score for a given label y and an input x under parameters θ.
The denominator is a partition function for a given input x and a set of labels Y under θ such
that Z (x; θ) =

∑
y∈Y exp (s(x, y; θ)). This denominator is considered to operate a normalization
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constant as long as it is finite. In the case of Greedy InfoMax —omitting the parameters for an
easier notation—, and adapting the score function previously defined for InfoNCE:

p(zmt+k|zmt ) =
exp

(
zmt+k

TWkz
m
t

)
Z (zmt ; θ)

; Z (zmt ; θ) =
∑
zmt ∈X

exp
(
zmt+k

TWkz
m
t

)
, (4.4.6)

where Z (zmt ) =
∑
zmt ∈X

exp
(
zmt+k

TWkz
m
t

)
, being X a bag containing N contrastive samples. In a

similar way to CPC, GIM assume a proportionality between the log-bilinear score function and a
density ratio to preserve the mutual information such that

exp
(
zmt+k

TWkz
m
t

)
∝
p(zmt+k|zmt )

p(zmt+k)
. (4.4.7)

Now, under the assumption that the input sequence is time-stationary and therefore p(zmt+k) =
p(zmt ); and assuming a finite set of samples, an unbiased estimate of p (zmt ) can be considered as

p(zmt+k) =
∑
zmt ∈X

p(zmt+k|zmt )p(zmt ) ≈
∑
zmt ∈X

p(zmt+k|zmt )

N
(4.4.8)

Then, (4.4.4) can be rewritten and then reduced using (4.4.6) and (4.4.8) as follows:

I(zmt+k; zmt ) =
∑

zmt+k,z
m
t

log
p(zmt+k|zmt )

p(zmt+k)
,

=
∑

zmt+k,z
m
t

log
exp

(
zmt+k

TWkz
m
t

)
Z (zmt ; θ)

:

∑
zmt ∈X

p(zmt+k|zmt )

N

=
∑

zmt+k,z
m
t

log
exp

(
zmt+k

TWkz
m
t

)
Z (zmt ; θ)

:

∑
zmt ∈X

exp(zmt+k
TWkz

m
t )

Z(zmt ;θ)

N
,

=
∑

zmt+k,z
m
t

log
exp

(
zmt+k

TWkz
m
t

)∑
zmt ∈X

exp
(
zmt+k

TWkzmt
) + log(N),

= E
zmt+k,z

m
t ∈X

[
log

exp
(
zmt+k

TWkz
m
t

)∑
zmt ∈X

exp
(
zmt+k

TWkzmt
)]+ log(N).

(4.4.9)

In the Appendix A.1 of [8], it is proved how I(xt+ k, ct) ≥ log(N)−LoptN for the optimal loss.
This is also the case of Greedy InfoMax since LN ≈ −I(zmt+k; zmt ) + log(N) and therefore Greedy
InfoMax can be expressed as a per-module variant of (4.4.1), where each module m performs the
encoding zmt = gmenc(GradientBlock(zm−1t )), being GradientBlock a gradient blocking operator
applied in between modules to guarantee the absence of a global backpropagation. The custom
module-local InfoNCE is then given by using (4.4.6) to minimize the mutual information such that,
for a delay k,

LNk
= −

(
E

zmt+k,z
m
t ∈X

[
log

exp
(
zmt+k

TWkz
m
t

)∑
zmt ∈X

exp
(
zmt+k

TWkzmt
)]+ log(N)

)
+ log(N),

= − E
zmt+k,z

m
t ∈X

[
log

exp
(
zmt+k

TWkz
m
t

)∑
zmt ∈X

exp
(
zmt+k

TWkzmt
)] ;

(4.4.10)

and finally

LN = −
∑
k

E
zmt+k,z

m
t ∈X

[
log

exp
(
zmt+k

TWkz
m
t

)∑
zmt ∈X

exp
(
zmt+k

TWkzmt
)] . (4.4.11)

The goal of this function is to measure the similarity between a sample xt and its “future” or
predicted patch xt+k, as well as the dissimilarity with other patches from different patches (negative

21



Degree Final Project Manuel Roselló Oviedo

samples). In other words, the mutual information I(zmt+k, z
m
t ) is maximized between nearby patch

representations, aiming to extract slow features (described in the next section). The function
basically compares the quality of a prediction of the future patch Zt+k based on an observation
of the current patch zt with the quality of such prediction without having information about zt.
Therefore, the mutual information is measured in regard to the amount of information gained in
zt+k by observing zt. Although similar to Slow Feature Analysis, this method could also easily
predict fast changing signals, while SFA enforces slowness by means of MSE:

p(zmt+k|zmt ) =
exp(−||zmt+k − zmt ||)

Z ′
(4.4.12)

where Z ′ is the standard normalizing constant of a normal distribution and and the constraints
(4.3.3, 4.3.4, 4.3.5) must be fulfilled for zt+k.

The first original experiment by Löwe et al. focused on image classification. A ResNet-50 v2 [53]
model was split into three gradient-isolated modules and then fed with 16× 16 patches of images.
An accuracy of 81.9 ± 0.3% was obtained, the best result when compared with other methods
such as the aforementioned CPC or some other supervised models. The memory consumption
might not seem too low when accumulating all modules, but the key strength of this method is
the possibility of training modules asynchronously. Unlike for classic, single-module architectures,
only the backprop data for the module (layers) that is currently being trained needs to be loaded in
the GPU. After training, the results are frozen, that is, stored locally to simply load a pre-trained
module that the following modules can use. Therefore, the memory consumption at a time will
always be bounded by the most demanding module, thus reducing simultaneous consumption by
a factor of up to 2.8 in their experiment.

A second experiment was performed, this time in the audio domain. Both speaker (global task)
and phone (phonetics of the words, local task) classifications were attempted, with quite different
results: speaker classification had a great performance with a 99.4% accuracy, only falling behind
of CPC (99.6%) but still ahead of the supervised alternatives; while phone classification obtained a
62.5% accuracy, lower than both CPC and the supervised models. This difference clearly indicates
that Greedy InfoMax is a better solution for downstream tasks where a bias towards sequence-
global feature extraction is desired.
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5 Implementation

This section is devoted to the explanation of the implementation details of the project’s code.
Namely, the description of the preprocessing operations applied to both datasets, as well as the
step-by-step code translation of the mathematical formulas for both Slow Feature Analysis and
Greedy InfoMax, and the analysis of the model architectures will be complemented with Figures
and pseudocode algorithm snippets to provide an insightful report on the programming specifics
of the three experiments.

5.1 Preprocessing

Two image datasets have been employed in the experiments, both of which will be further
explained in the next subsections. The first one is CIFAR-10, which is a collection of RGB images
representing different classes of animals and vehicles; while the second one is the NORB-small
dataset, comprising grayscale images of several toys with variations in the pose and lighting. In
order for the network to properly handle the data, preprocessing techniques were applied to the
images. Most of these techniques are quite common and can be found in most ML libraries and
frameworks nowadays: resizing, normalization, center-cropping, etc. However, an extra step was
taken by means of a custom patch selection function for each dataset.

5.1.1 CIFAR-10

CIFAR-10 is a labeled subset of the 80 million tiny images dataset [54]. It consists of 6000
32×32 color images divided into 10 equally-sized, mutually exclusive classes: airplanes, automo-
biles, birds, cats, deer, dogs, frogs, horses, ships and trucks. These images were collected from the
web by groups from MIT and NYU.

Figure 4: 10 random images from each category in the CIFAR-10 dataset,
by rows. From CS Toronto.
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Python’s libraries torch and torchvision include predefined functions that allow easily down-
loading CIFAR-10 and creating data loaders for it. Inspired by Löwe’s [7] vision experiment, a
batch size of 16 was used and the images were reshaped to 64×64 pixels. Then, they were nor-
malized and a two random 16×16 patches were extracted: the first one acts as the sample xt,
while the second one is the future sample or prediction xt+k, extracted randomly among the four
possible overlapping patches at a vertical or horizontal distance k, thus having an overlapping area
of 16× (16− k) pixels with the original patch. This is based on the intuition that natural data is
ordered, and neighboring patches can be used as predictions of the current information.

Algorithm 1: Patch extraction for CIFAR-10
Input: sample image s, patch size p, distance k
Output: patch of the sample and its future patch

x, y ← random_coordinates(sample) // Top-left corner of the patch
patch ← s[:, x:x+p, y:y+p]
do

sign_x, sign_y← random_directions() // Direction signs can be -1 or 1
xf, yf ← x + k*sign_x, y + k*sign_y

while xf, yf are not valid coordinates
future ← s[:, xf:xf+p, yf:yf+p]

return patch, future

Note that, in the algorithm, a pair of coordinates is considered valid if it is within the image
and a patch can be built within the image limits taking those coordinates as its top-left corner
pixel. Consequently, no padding is required for patch extraction.

An example of the resulting patches can be observed in the next Figure, which depicts the
extracted patches and original images for half of the samples in a random batch. The first and
fourth columns show the original image and the following two columns show the current patch xt
and the future patch xt+k, respectively. Again, note that the patch has been extracted after an
enlargement of the original image to 64×64 and thus the relative sizes in the Figure are 1 : 16.

Figure 5: Patch extraction examples for CIFAR-10.
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5.1.2 NORB-small

The NORB Dataset [30] comprises images of 50 uniform-colored toys belonging to 5 generic
and mutually exclusive categories: four-legged animals, human figures, airplanes, trucks, and cars.
For each category, there are 10 different instances (toy models); for each instance, there are several
stereo image pairs with some variations. For the small version that is used in this experiment,
they can vary under 18 different azimuths (0 to 340 degrees every 20 degrees), 9 elevation angles
(30 to 70 degrees every 5 degrees) and 6 lighting conditions. In total, the dataset is formed by
48600 grayscale images. By design, five instances of each category (4, 6, 7, 8, 9) are designated for
training, and the other five (0, 1, 2, 3 and 5) for testing.

Figure 6: The 50 object instances in the NORB dataset. For each of the
5 categories (rows), the training instances are on the left side and the
testing instances are on the right side. From [30].

The dataset is first loaded and grouped by category and instance thanks to Andrea Palazzi’s
auxiliary functions9. Then, both the normal and the grouped versions are saved via pickle in
order to save time for upcoming executions. The loaders use drop_last=True so that the last
batch is ignored when the number of samples is not divisible by the batch size (16).

Note that each feature φ is stored as a value vφ ∈ [0, Nφ − 1], where Nφ is the total amount of
possible values for the feature. The real elevation angle ε can be computed as ε = 30 + 5vε, and
the real azimuth α as α = 10vα. In the example Figures, the lighting value is represented by l.

For the NORB classification experiment, the concept of patch was simplified to a simple 64×64
center crop of the original sample. The key difference is that in this case the future patch will
be another image of the same toy instance, but it will have a different elevation and/or azimuth
and/or lighting —at least one of them will be different from the sample’s corresponding value.
This selection is based on the the main aim of working with the NORB dataset, which is no other
than finding a way to learn despite object pose and setting lighting. The positive samples will
therefore be those representing the same toy, regardless of possible variations; while the negative
samples will be those belonging to different toys.

9 Andrea Palazzi (2018). Small NORB. GitHub repository: https://github.com/ndrplz/small_norb
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Algorithm 2: Patch extraction for NORB-small (classification)
Input: random sample image xt, dataset d
Output: patch of the sample and its future patch

d ← sort_dataset(d) // sort by class and instance
candidates ← d[xt.class][xt.instance // use only images of the same toy
do

xt+k ← candidates[randrange(0, len(candidates)-1)] // random pick
while xt == xt+k // avoid using the same image

return xt, xt+k

Figure 7: Patch extraction example for NORB-small (classification).

However, a different modus operandi was adopted for the feature experiment: the future patch
will have either a immediately higher or lower (neighboring) azimuth or elevation. For instance, if
a sample has an azimuth of 280 degrees and an elevation of 55 degrees, the future sample will have
one of the following (azimuth, elevation) combinations: (280, 50), (280, 60), (260, 55), (300, 55).
The lighting of the future patch can have any value, including the same as the original sample.
This modification aims for a better detection of the angle variations as slow features.

Algorithm 3: Patch extraction for NORB-small (feature extraction)
Input: random sample image xt, dataset d
Output: patch of the sample and its future patch

d ← sort_dataset(d) // sort by class and instance
candidates ← d[xt.class][xt.instance] // use only images of the same toy
do

xt+k ← candidates[randrange(0, len(candidates)-1)] // random pick
while not_neighboring(xt, xt+k) // force neighboring angles

return xt, xt+k

The neighboring condition is easy to check by applying Boolean comparisons to the parameters
of both samples. The center cropping is performed by the dataloader after selecting the patches,
along with normalization. One may argue that the term patch is not appropriate given this
new approach, unlike with the initial CIFAR-10 algorithm. Nevertheless, the nomenclature was
maintained in order to be consistent with the CIFAR experiment and the terminology used by
Löwe et al. [7]. Note that in both algorithms xt has been simplified as a single sample, while in
the actual model this corresponds to a full batch of samples and the algorithm will be applied to
each one of them.
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Figure 8: Patch extraction example for NORB-small (feature extraction).

The same toy plane has been used for both examples, so as to allow for an easier visual
comparison of the results. Despite this, it is worth reminding that, while the patches extracted
for classification use all the toys, the ones meant for feature extraction use only the images of this
exact toy plane.

5.2 InfoNCE-based loss

An slightly simplified version of the InfoNCE-based loss from Greedy InfoMax was implemented
and used for each module, relying on PyTorch’s backward() method for backpropagation. For
CIFAR-10, only a single value of k was considered —it was set to 2 for all executions—, while
this parameter was not necessary for the CIFAR experiments since the patch pairs were based on
a pose criteria and did not belong to the same image. The linearization matrix Wk was omitted
in the implementation for simplicity since the last layer for the models is linear and acts as a
replacement for a symmetric Wk, which is suitable for the experiments since a non-symmetric
matrix would only allow rotations from zt to zt+k due to the polar decomposition W = CU , where
C is a positive definite symmetric matrix and U is an orthogonal matrix. Since the patch pairs
in the dataloaders are random and both a rotation from zt to zt+k and its inverse can occur, this
type of transformation is undesired. Note that, Finally, the whole expression was adapted into a
subtraction in order to avoid potential numerical errors coming from the division.

LN = − log
exp

(
zmt+k

T zmt
)∑

zmj ∈X
exp

(
zmj

T zmt
) = −

(
zmt+k

T zmt

)
+ log

∑
zmj ∈X

exp
(
zmj

T zmt

)
. (5.2.1)

It is stated in [7] that including the current patch in the bag of negative samples had no
noticeable effects on the performance. For this reason, from this point on it will be assumed that
zmt+k ∈ X and all the future samples are used to for all patches in the batch and thus the generalized
notation zmj .

Although not included in the early implementations, an auxiliary value ζ = max
zmj ∈X

(zmj
T zmt ) is

used in order to normalize the values of the second term and avoid numerical anomalies in the
log operation. After some initial experiments it became evident that a direct implementation of
(5.2.1) was numerically unstable and the loss would often end up either becoming too small to fit
in the range of values representable by floating-point variables due to the logarithmic operations
or non-decreasing due to small values of the first term in comparison with the second.

LN = −
(
zmt+k

T zmt

)
+ log

∑
zmj ∈X

exp
(
zmj

T zmt + ζ − ζ
)

= −
(
zmt+k

T zmt

)
+ log

∑
zmj ∈X

exp(ζ) exp
(
zmj

T zmt − ζ
)

= −
(
zmt+k

T zmt

)
+ ζ + log

∑
zmj ∈X

exp
(
zmj

T zmt − ζ
)
.

(5.2.2)
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Now, in order to fully optimize the computation, all the data was vectorized to take advantage
of the broadcast operations available in PyTorch. Loops are avoided by using multi-dimensional
tensors for the data batches, which then are split into two matrices corresponding to all the current
samples and its corresponding future samples in a per-column fashion for a given batch:

(zmu )′ =


sm1,1 sm1,2 sm1,3
sm2,1 sm2,2 sm2,3
. . . . . . . . .
smB,1 smB,2 smB,3

 ; u ∈ {t, t+ k}, (5.2.3)

where smi,j represents the output value j for sample i in the batch. The loss per sample s is then
computed as

N = diag
(

(zmt )′
T

(zmt+k)′
)
, (5.2.4)

ζ ′ = maxc

(
(zmt )′

T
(zmt+k)′

)
, (5.2.5)

D = logw

(
sumc

(
expw

(
(zmt )′

T
(zmt+k)′ − ζ ′

)))
, (5.2.6)

LN (si) = (−N + ζ ′ +D)i , (5.2.7)

where diag returns a vector containing the elements from the main diagonal of a matrix, max c
returns a vector after computing the column-wise maximum of a matrix, sumc computes a vector
resulting from a column-wise sum, logw is the element-wise logarithm and expw is the element-wise
exponential. Note that the additions and subtractions also take place in a broadcasting method,
either element or column-wise, depending on the case. Note that the i subscript at (5.2.7) denotes
the ith element of the vector, and also that (zmt+kz

m
t ) is computed in the opposite order due to

the dimensions of the samples in the experiment. The final loss is an averaged sum of the loss per
sample in every batch b of size B:

LN (b) =
sumc (−N + ζ ′ +D)

B
=

∑B
i=1 LN (si)

B
. (5.2.8)

When coding, the expression (zmt+kz
m
t ) is nicknamed mul. The first term, originally the numer-

ator (num) is then computed as the values in the main diagonal of that matrix, thus providing one
scalar value per patch within a given batch. The value of ζ is calculated per-column (per-sample)
and then subtracted to mul and added to the logarithm of the sum to obtain the second term den
(denominator). Since the result is a 1 × B vector, an average value is computed to be the result
for the loss of the whole batch (5.2.3).

Algorithm 4: InfoNCE-based custom loss function
Input: batch of processed samples zt, batch of processed future samples ztk, batch size B
Output: current loss value

mul ← matrix_multiplication(zt.transpose(), ztk)
num ← mul[diagonal_indices(B)] // Main diagonal
ζ ← max(mul, axis=0) // Per sample
den ← log(sum(exp(mul-ζ), axis=0)) // Per sample

return mean(-num + ζ + den)

5.3 Slow Feature Analysis

The Slow Feature Analysis is not focused on a custom loss function, but rather a combination
of operations appended to the model’s outputs. After the linear layer at the end of the network, a
custom approximate whitening normalizer function is applied. Whitening is necessary so that the
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data fulfills the SFA constraints of zero-mean (mean-free), having unit variance if projected onto
any unit vector and having decorrelated projections onto orthonormal vectors.

An approximation to mean-free data is obtained by subtracting the mean from the values such
that

x′i = xi −
∑N
i=1 xi
N

. (5.3.1)

Then, a whitening matrix W must be found so that yi = Wxi is a whitened version of xi, that
is, mean-free and with unit covariance. Note that having unit covariance matrix fulfills the last
two constraints simultaneously. A covariance matrix C =

∑N
i xix

T
i

N can be applied an eigenvalue
decomposition such that

C = UDUT , (5.3.2)

where U is a orthogonal matrix and D a positive diagonal matrix. In the paper by Wiskott et
al. [22], the data is whitened and then projected onto the minor components of the difference
time-series {ẋt = xt+1 − xt}t=0...τ−1. In order to do so, an algorithm performs the calculation
of the eigenvalues and eigenvectors via power iteration, which is costly and poses a handicap on
the differentiation process. To justify the alternative approach that was used in this project’s
implementation, let us first have a whitening with the form yi = D−1/2UTxi, whose covariance
matrix C ′ can be reduced as follows:

C ′ =

∑N
i

(
D−1/2UTxi

) (
D−1/2UTxi

)T
N

= D−1/2UT
∑N
i xix

T
i

N
(D−1/2UT )T

= D−1/2UTCUD−1/2

= D−1/2UTUDUTUD−1/2

= D−1/2DD−1/2

= I.

(5.3.3)

First, D−1/2 and UT are non-dependent on i and therefore can be extracted from the sum so
that the definition of C is applied and later substituted by (5.3.2). Note that, due to the nature
of the matrices,

(
D−1/2UT

)T
= UD−1/2 since (AB)

T
= BTAT for any pair of matrices A and B,

and DT = D because it is diagonal. Finally, the expression is reduced to the identity matrix INxN
by means of the inherent properties of the orthogonal matrix U and the diagonal matrix D.

The power iteration computations can be avoided by employing different decompositions, such
as the Cholesky Factorization10 C = LLT with L = UD1/2E, where E is chosen so that L is a
lower triangular matrix. Therefore, the final transformation can be expressed as

yi = L−1xi (5.3.4)

since

C ′ =

∑N
i

(
L−1xi

) (
L−1xi

)T
N

= L−1
∑N
i xix

T
i

N
(L−1)T

= L−1C(L−1)T

= L−1LLT (L−1)T

= I2

= I.

(5.3.5)

10 Cholesky Factorization. Reference: L. Vandenberghe (2019). Applied Numerical Computing - Lecture
12. UCLA. Source
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Note that
(
L−1

)T
=
(
LT
)−1. With this implementation, the simple triangular matrix can

be solved to obtain the final 3-dimensional outputs for each sample in the batch. However, the
Module must be watched so that the values are coherent, since L will only be invertible as long as
there are no zero-values on its main diagonal.

Algorithm 5: Approximate whitening normalization
Input: network outputs y, batch size B, output dimension d
Output: whitened values z

m ← mean(y, dim=0) // Per output dimension
y′ ← y - m // Per output dimension
C ← matrix_multiplication(y′.transpose(), y′) / (B - 1) // Bessel’s correction
C ← C + eye(d) // Add identity matrix
L ← C.cholesky() // Cholesky decomposition, lower triangular
z ← triangular_solve(y′.transpose(), L, upper=False) // Find system’s solutions

return z.transpose()

Note that in this case zmt and zmt+k correspond to the outputs of the algorithm instead of being
the direct outputs of the network. After this process, the loss is finally calculated as a mean
squared error (MSE):

LN = mean
((
zmt − zmt+k

)2) (5.3.6)

5.4 Model architecture

Initially, a simple architecture based on the popular VGG-16 [55] architecture was built, since
the network was intended to be small but effective. The early versions contained six convolutional
layers producing up to 512 output features for a final fully-connected (linear) layer. These were
meant to be divided into three modules of two layers each. However, the training process for this
model was slow and the Colab usage limits were often exceeded and the whole process was slowed
down since there is a cooldown of several hours before the usage count is restarted.

So as to address this issue, the network was reduced after testing and confirming that the main
NORB-based experiments did not require such a high amount of features to obtain proper results
for neither classification nor feature extraction. Thus, the number of convolutional layers was
reduced to four and only two modules were included for the Multi-Module version. The amount
of features was initially set to 128 but the results were almost identical as those obtained with 64,
which was the final choice for the eventual choice for the definitive versions of the models. The
kernel size was arbitrarily set to 5 for all layers, taking inspiration from [7], with a stride of 1 and
a padding of 2. A flattening function is applied to the result of the last Max-Pool layer before
the data is fed into the Linear layer, which outputs three-dimensional values so that they can be
interpreted as coordinates and plotted to both visualize the class clusters in the classification tasks
and making possible the study of the results for the feature extraction in a similar way to the
graphs from [22] that were shown in Section 2.2. Note that the flattening has been omitted from
the Tables since it was not implemented as a layer but rather as an auxiliary function.

Layer Input Size Output Size Kernel Size

Conv2D 1x64x64 32x64x64 5x5
Conv2D 32x64x64 32x64x64 5x5
Max-Pool 32x64x64 32x32x32 2x2
Conv2D 32x32x32 64x32x32 5x5
Conv2D 64x32x32 64x32x32 5x5
Max-Pool 64x32x32 64x16x16 2x2
Max-Pool 64x16x16 64x8x8 2x2
Linear 4096 3 -

Table 1: Single-Module network architecture.
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Figure 9: Layer architecture for the Single-Module model (NORB).

The conversion to a Multi-Module architecture was achieved by splitting the model after the
first Max-Pool layer. The kernel size, stride and padding are the same as in the Single-Module
architecture and in the experiments they were trained for the same amount of epochs so that the
comparison would be as fair as possible. Again, the data was flattened in both modules before
reaching the linear layer.

The first Module requires a linear layer of its own during training, but its weights are not
stored since the training process for Module 2 plugs the output of the Max-Pool layer directly into
its first convolutional layer. The training process can be summarized as:

1. Load an empty Module 1 and append a Linear layer to it.

2. Train Module 1 and store its weights, discarding the Linear layer.

3. Load the stored weights for Module 1 and an empty Module 2.

4. Pass the data through Module 1 and then use it as an input for Module 2.

5. Store Module 2 in its entirety for the testing phase.

Module 1

Layer Input Size Output Size Kernel Size

Conv2D 1x64x64 32x64x64 5x5
Conv2D 32x64x64 32x64x64 5x5
Max-Pool 32x64x64 32x32x32 2x2
Linear 32768 3 -

Module 2

Layer Input Size Output Size Kernel Size

Conv2D 32x32x32 64x32x32 5x5
Conv2D 64x32x32 64x32x32 5x5
Max-Pool 64x32x32 64x16x16 2x2
Max-Pool 64x16x16 64x8x8 2x2
Linear 4096 3 -

Table 2: Multi-Module network architecture
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Figure 10: Layer architecture for the Multi-Module model (NORB).

Even if the Modules need to be trained in a pseudo-sequential fashion, it was practical to
have them stored separately so that modifications on one module would not force repeating the
training of the whole model. However, the execution times were lower for the classification task
when dealing with two modules as each of them took the same amount of time to train than the
Single-Module version, probably due to the big size of the dataset which dominated over the lack
of layers, or perhaps because of Colab limits. Fortunately this was not the case for the feature
extraction task, which was executed locally and the training time per individual module was lower
than for the Single-Module version, although the total addition of the times was logically greater.
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6 Experiments

This section will first present the first experiment based on a classification task with the CIFAR-
10 dataset using the custom InfoNCE loss function, for both architectures. This will be followed by
the two main experiments performed in the NORB dataset: classification with pose and lighting
independence and pose feature extraction with lighting independence.

6.1 Classification of RGB images

As a first contact with Greedy InfoMax and PyTorch, a toy model was built in order to
experiment with the custom loss and patch extraction. To this end, the CIFAR-10 dataset described
in section 5.1.1 was used to train both the Single-Module and the Multi-Module versions of the
network for a simple classification task. The decision of using CIFAR-10 was based on the fact
that the original GIM experiment also operated with patches for RGB image classification and this
specific dataset is easily accessible in PyTorch —in fact, it is currently being in their official tutorial
page for neural networks. Löwe et al. [7] used the STL-10 dataset [56], which is similar to CIFAR-
10 but uses a higher resolution for the images (96x96) and has less training examples in exchange
for a large set of unlabeled test images, which makes it ideal for unsupervised experiments. The
patch and batch sizes were set to 16 as in the original GIM experiment.

The purpose of this initial work was to serve as a blueprint for the later experiments. Many
different architectures and combinations of parameters were tested during the first weeks, while
configuring the custom loss. The results of the classification were always poor, due to the com-
plexity of the task: the dataset was large and used RGB images with 3 information channels,
there were many classes and the model was quite modest due to the hardware and Colab usage
limitations. However, the accuracy was not so important in this case since the experiment was
merely instructional. Eventually, when the final model was finished both models were trained for
300 epochs —for the Multi-Module architecture, when the number of epochs is mentioned in any
experiment it is meant to be epochs per-module, that is, both modules are trained for the same
amount of epochs— via batches of 16 patch pairs. The optimization was performed via PyTorch’s
in-built Adam optimizer, using the default parameters for the betas and epsilon while testing dif-
ferent learning rates. As per default in CIFAR-10, 5000 images of each class were used for the
training set and the other 1000 were used for testing.

Initially, the classification was carried by a simple linear classifier, which was of course not
enough for such a demanding task, so this method was replaced with a Nearest Centroid classi-
fier from slklearn.neighbors, which significantly boosted the accuracy, specially for the NORB
experiment.

There were no noticeable differences between both architectures in this experiment and vari-
ations in the number of epochs or learning rates didn’t have a great impact. Although the trend
might seem to be that of an increasing accuracy for smaller learning rates, values lower than 1e−5
were observed to produce overfitting.

Learning Rate Single (Train) Single(Test) Multi (Train) Multi (Test)

1e-5 19.1% 19.4% 19.1% 19.3%
1e-7 17.2% 17.3% 17.6% 17.8%
1e-9 13.1% 13.5% 16.2% 16.3%

Table 3: Global accuracy of the models for the RGB classification experiment.

Although they might seem low, these accuracy values are an improvement with respect to the
first versions of the model where no more than 13% was achieved, even with a deeper network. In
spite of this improvement, the results above are averaged and the variation in global accuracy had
strong variations depending on the execution, ranging between 14− 21%. The accuracy per class
also suffered from this inaccuracy, and it was often not much better than a random assignment.
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Figure 11: Train (left) and test (right) accuracy per class for the Single-
Module architecture (CIFAR).

Figure 12: Train (left) and test (right) accuracy per class for the Single-
Module architecture (CIFAR).

The point clouds per class can be observed in the next two Figures, which show the completely
chaotic outcome. No clear clusters can be distinguished and most data is mixed and overlapping.
Even if three features were good for visualization as it will be seen in the next sections, it might
be too low for the given dataset. In the next section, the models prove their potential with much
better results with a different dataset. Those results, along with the competitive outputs obtained
by Löwe et al. [7] demonstrate that the approach is valid for larger learning tasks, given a different
configuration of the models more targeted for this specific problem.

Figure 13: Train (left) and test (right) accuracy per class for the Single-
Module architecture (CIFAR).
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Figure 14: Train (left) and test (right) accuracy per class for the Single-
Module architecture (CIFAR).

Note that the general orientation is random for every execution, but the overall structure and
distribution is always similar. The colors for these plots might also be misleading since the classes
are interleaved, rendering the nearest centroid classification almost useless.

6.2 Pose-and-lighting-invariant classification of grayscale images

The main experiments were performed on the NORB-small dataset (see section 5.1.2). For the
classification task, image pairs produced with the Algorithm 2 were fed into the models in batches
of size 32. Initially, the size was set as 16, inspired by the Vision experiment in [7]. However, as
explained in Section 5.3, Slow Feature Analysis would perform better with 32 elements and, after
some tests, Greedy InfoMax showed the same performance with both amounts so 32 was used as
a global parameter for all NORB experiments.

For Greedy InfoMax, the models were trained for 300 epochs and the learning rate for Adam
that obtained the highest accuracy for both architectures was 1e− 4. The same amount of epochs
were used in the Slow Feature Analysis versions, with the best learning rates also being approxi-
mately in the range between 1e− 4 and 1e− 5.

After training, classification was once again done via Nearest Centroid, which in this case
proved to be much more successful due to the lower amount of classes and the overall better
performance with the dataset. The output features were much more clustered in space than in the
initial experiment and allowed for testing accuracy values over 80% for all four models.

Method Learning Rate Single (Train) Single (Test) Multi (Train) Multi (Test)

GIM
1e-3 93.2% 79.3% 93.5% 81.2%
1e-4 94.3% 88.7% 99.5% 82.9%
1e-5 91.9% 81.7% 93.2% 80.9%

SFA

1e-3 92.7% 82.8% 94.9% 75.3%
1e-4 93.4% 84.9% 92.9% 82.3%
1e-5 93.3% 76.3% 95.4% 83.6%
1e-6 90.8% 78.5% 90.5% 78.2%

Table 4: Global accuracy of the models for the NORB classification experiment.

The best performing model was the Single-Module, Greedy InfoMax version, with almost a 4%
difference with respect to its Slow Feature counterpart and over a 5% improvement when compared
to the best results obtained by the Multi-Module models. Again, all accuracies in the table were
averaged, but the variance among executions was much smaller (about ±0.4%) than in the CIFAR

35



Degree Final Project Manuel Roselló Oviedo

experiment. Note how, in most cases, the accuracy for the training set is always high even for lower
values of the testing accuracy, implying that a cerain degree of overfitting probably took place in
those executions.

In most cases, the sequential architecture displayed a better performance than the modular
version, although this highly depends on the learning rate —the same learning rate was always used
for training both of the modules— and the difference is usually small. On the one hand, this can
be considered as a failure since Greedy InfoMax was expected to seize the greedy optimization of
information while giving up global backpropagation. On the other hand, the original experiments
by Löwe et al. involved more modules and a deeper network that could potentially take further
advantage of this approach. In any case, the results demonstrate that GIM is indeed comparable
to Slow Feature Analysis, even showing better accuracy values for the same task.

These results show how a different dataset can radically change the performance of a model,
even for a similar task. The lower amount of channels, images and classes allowed for a boost of
over 60% with respect to the initial experiment. Nonetheless, the models were not flawless and, as
it can be seen on Figure 16, the per-class accuracy was not always balanced. In many executions,
objects belonging to the “car” class were often mistaken as “truck” and even if the overall accuracy
was high, it was at the cost of misidentifying one of the toys.

Figure 15: Train (left) and test (right) output visualization for the CI-
FAR experiment with the Single-Module architecture.

Figure 16: Train (left) and test (right) output visualization for the CI-
FAR experiment with the Multi-Module architecture.
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Figure 17: Train (left) and test (right) accuracy per class for the Single-
Module architecture (SFA).

Figure 18: Train (left) and test (right) accuracy per class for the Multi-
Module architecture (SFA).

The linear layer was purposely set to output three values so that they could be plotted in
order to visualize the classification. Figures 19 and 20 can be found on the following two pages.
They show the position in space for each sample after using the output of the model as a coordi-
nate. The plots for the CIFAR-10 experiment showed its poor output, with the high amount of
misclassification resulting in an almost meaningless depiction. That is not the case for the NORB
experiment, since the plots perfectly show the clusters belonging to each class and, in the case of
the Greedy InfoMax training models, even for each individual toy. This behavior might be seen
as overfitting, but the best performing model when testing was in fact the one were the individual
object clusters show a greater separation among themselves, implying that this kind of output does
not necessarily imply that the network has overlearned.
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Figure 19: Output visualization per class for the Greedy InfoMax ver-
sions of the Single-Module architecture (top) and the Multi-Module ar-
chitecture (bottom). The plots on the left depict the outputs of the
training set, while those on the right side belong to the testing set.
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Figure 20: Output visualization per class for the Slow Feature Analysis
versions of the Single-Module architecture (top) and the Multi-Module
architecture (bottom). The plots on the left depict the outputs of the
training set, while those on the right side belong to the testing set.
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6.3 Lighting-invariant pose feature extraction on grayscale images

The last entry belongs to, perhaps, the most interesting experiment. The objective was for the
network to learn the variations in the pose (azimuth and elevation angles) of a single toy. The idea
comes from the NORB experiment by Wiskott et al. [22], where a color map was applied to the
output points of a model trained with Slow Feature Analysis. Their plots can be seen in Section 2.2.
Since the models are based on Unsupervised Learning, extracting meaning out of the outputs is a
task of which that the analyst must take charge. The intelligent mapping from the aforementioned
paper achieves exactly this goal: the fact that the network has learnt to detect those pose variations
that it was given, and they can be visualized in a meaningful way. In a similar fashion, the models
were fed with image patches based on Algorithm 3, that is, belonging to a single toy and having
only a neighboring difference in either their azimuth or elevation parameters. The results can be
seen in Figures 22 to 25, which show the outputs with a similar color mapping depending on the
elevation and azimuth of the samples for all 4 variations: Single-Module and Multi-Module, each
with both Greedy InfoMax and Slow Feature Analysis.

This experiment was much lighter since only one object was used for both training and testing,
and therefore it was possible to train the model locally with a 3GB NVIDIA GTX 1650 card in
parallel with the remote Colab executions. For Greedy InfoMax, the models were trained for 400
epochs since longer training sessions didn’t display any significant differences, while 500 epochs
were used for Slow Feature Analysis.

Even though the learning rate did not seem to affect Greedy InfoMax, variations of its value
were visually noticeable for Slow feature Analysis as it can be seen in the Figure below. Since the
plots for smaller learning rates seem to indicate overfitting, only those with a lower value were used
as the final results of the experiment, being 1e−5 for GIM and 5e−7 for SFA. For the later, smaller
learning rates did not seem to fully capture the ideal circular (cylindrical) shape. Such shape is
considered ideal since, thanks to the color-map, it can show how the original relation between data
is maintained in the network’s interpretation. As stated in Wiskott’s work, the circumference of
the cylinder is encoding the rotation of the plane toy. Neighboring angles become neighboring
points in the plot in a symmetrical, radial way.

Figure 21: Top-view of color-mapped azimuth values for the outputs
obtained in the Single-Module architecture with different learning rates
for both GIM (top: 1e-3, 1e-4, 1e-5) and SFA (bottom: 5e-5, 1e-6, 5e-7).

Even if the constructed models were not able to fully capture the circularity with SFA,Wiskott’s
experiment serves as evidence that it is indeed attainable and it should be possible to come closer to
their results by improving the model and the training process, or using a different ratio of training
and testing data, as they used 70-30 instead of 50-50. In any case, Greedy InfoMax displayed a
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more defined and coherent shape than Slow Feature Analysis, specially for the training data. The
consistency between Single and Multi-Module architectures was also much higher for the former,
resulting in almost identical shapes, with the exception of a reversed relation between the spatial
mapping of elevation and azimuth. This is mainly due to the non-fully-deterministic learning
process of the unsupervised model. The outputs are learnt features, but the model was never told
how to learn them, and therefore it is not surprising that the colors for some outputs differ in
their clockwise or counter-clockwise relation. This can be observed in the plots, which also were
positioned manually via pyplot’s interactive plotting and the equivalence between Figures might
not be exact, but the 30 degrees value for the elevation was always placed on the bottom for the
Top and Side views to make visualization easier. For the same reason, 0/360 degrees of azimuth
were attempted to be placed always on one side for those views. Finally, and due to the process of
image capturing being manual, a loop that switched between color maps was implemented so that
capturing the same perspective for both azimuth and elevation was possible.

It is important to quote the following statement from [30]: “Note that each object instance was
placed in a different initial pose, therefore “0 degree angle” may mean “facing left” for one instance
of an animal, and “facing 30 degree right” for another instance.” In addition to this, and also due
to the small size of the dataset —less than 1000 samples since it is just one toy—, the plots for the
test set are particularly chaotic, even though the dominant pattern is still that corresponding to the
expected color gradient —even though the colors (angles) for the testing set might not correspond
to those from the training set. However, the goal was not to output any specific number for a pose
variation, but rather figure out whether the model was able to learn those variations in such a
way that the results of that learning process could be understood. In order to take the alternative
approach of predicting or classifying the angles, all data samples should be labeled according to a
common reference.
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Figure 22: From left to right: Oblique, Top and Side views of color-
mapped azimuth (top group) and elevation (bottom group) angles for
the outputs obtained in the Single-Module architecture with GIM. For
each group, the top row depicts the training data and the bottom row
corresponds to the testing data.
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Figure 23: From left to right: Oblique, Top and Side views of color-
mapped azimuth (top group) and elevation (bottom group) angles for
the outputs obtained in the Multi-Module architecture with GIM. For
each group, the top row depicts the training data and the bottom row
corresponds to the testing data.
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Figure 24: From left to right: Oblique, Top and Side views of color-
mapped azimuth (top group) and elevation (bottom group) angles for
the outputs obtained in the Single-Module architecture with SFA. For
each group, the top row depicts the training data and the bottom row
corresponds to the testing data.
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Figure 25: From left to right: Oblique, Top and Side views of color-
mapped azimuth (top group) and elevation (bottom group) angles for
the outputs obtained in the Multi-Module architecture with SFA. For
each group, the top row depicts the training data and the bottom row
corresponds to the testing data.
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7 Conclusion

This project presented a comparative implementation of the Greedy InfoMax and Slow Feature
Analysis algorithms for both the unsupervised extraction of angle variation features and the super-
vised classification of images after unsupervised model training. The experiments were performed
for both a Single-Module and a Multi-Module architectures for a simple convolutional neural net-
work coded with the Machine Learning tools provided by the PyTorch library in Python.

Unsupervised Learning is nowadays a promising field of research, with the potential of keeping
up with its supervised counterpart and even surpassing its achievements for certain tasks, while
having the right to flaunt its lack of necessity for manual labeling. Methods such as Greedy InfoMax
or Slow Feature Analysis prove this capability and the experiments performed during this project
provide clear evidence of its versatility.

For a task as common and overexploited as classification, both methods were proven viable,
albeit neither excelled in its performance. Greedy InfoMax, even if not observed to take as much
advantage of the Multi-Module architecture as expected, has demonstrated how InfoNCE and its
variations can be a smart and effective way to compute the loss in unsupervised models. The
results, even if not close to the state-of-the-art due to setup limitations, show how all versions of
the model accomplished the objective of surpassing 80% accuracy and serve as a proof that both
Greedy InfoMax and Slow Feature Analysis variations can be the core of valid and competent
Self-Supervised Learning models. There is room for improvement and experimentation, especially
with regard to the methods employed for the final classifier and the amount of extracted features.
Löwe et al. [7] demonstrated how even classification tasks based on RGB imagery are viable with
similar approaches.

The feature extraction experiment was the main highlight due to its fully-unsupervised nature,
and it can be considered a success based on the initial goal of achieving meaningful visual informa-
tion to show that the model is completely capable of learning pose variations in an unsupervised
way and with independence to the lighting conditions. For the given architectures, this was spe-
cially noticeable for the Greedy InfoMax implementation, establishing itself again as a noteworthy
alternative to traditional Slow Feature Analysis. The results demonstrate how the features result-
ing from the unsupervised training process were logical and informative. It is a fact that Slow
Feature Analysis performed worse, but this should not be interpreted as a general truth since the
experiments by Wiskott et al. [22] prove otherwise. Implementing and tuning a model based on
SFA turned out to be a more difficult task than doing so for Greedy InfoMax. The later seemed
to adapt with ease to the architecture and was consistent in its good performance for different
hyperparameter combinations, while SFA did not quite operate as nicely with the models. This
might perhaps be caused by its requirement of having greater batch-sizes for a proper estimation
of the covariance matrix, an issue of which Greedy InfoMax can presume to lack and that sets
limitations on the dimensionality of the final features. Overall, Greedy InfoMax seemed more ac-
cessible and reliable for small and simple models. Although out of the experiment’s scope, this task
could be pushed further so that the variations are interpreted live and even prompted explicitly
for a moving target. Following the theme of the dataset, a similar model could for instance detect
incorrect poses for toy pieces in an assembly line so that they can be corrected on time to help
avoid the manufacturing of defective products.

In terms of computation time, even if unfortunately the dynamic and traffic-dependent varia-
tions of Colab did not allow for the computation of exact and deterministic measurements, both
methods displayed a similar performance. Other factors, such as the amount of layers used in the
models or the number of training epochs had a much greater impact on the time consumption for
the training stage. On average, a complete training with the final architecture would usually take
between 70 and 120 minutes for the whole NORB dataset (24300 images), independently of the
employed algorithm, and given the remote hardware allowances currently offered by Colab as of
2020.

Despite the above-mentioned aspects, the key comparison lies perhaps in the abstract concept
of slowness. Even though difficult to asses, the capability of the models to capture slow features
is paramount to the experiments. The classification task might not be the best choice for this
specific study, although slowness comprehension is intrinsic to the employed methods. For this
problem, the models were fed pairs of images corresponding to the same class, in which case the
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slow features would be expected to represent information related to the shape of the object, as the
pose and lighting will randomly vary from pair to pair but the general shape will remain similar for
those toys belonging to the same class. However, in light of the accuracy results, one may argue
that these features were not optimally captured, probably due to the reduced amount of samples
and the variety present among different toy instances, for which certain classes such as animals
might display different shapes. Moreover, using the shape as the reference slowest feature might be
counterproductive for cases in the likes of the car/truck issue observed in some executions (Figure
16).

On the other hand, slowness detection can be better evaluated with the feature extraction
experiment, for which the target features were those corresponding to the angle variations. Only
images belonging to a single toy instance were used, and the pairs were forced to display contiguous
angles, such that the model will learn to interpret the slowest features to be those corresponding
to the slow variations in position of an object with an overall constant shape over time. Other
features such as lighting vary much more quickly and the algorithms will disregard them in favor
of other subtly changing information sources as the azimuth and elevation poses. The results
show a good proof of this behavior, as it can be easily observed how neighboring angles are fully
represented in the cylindrical shapes, being Greedy InfoMax particularly accurate for the given
model configurations and data. Figures 22 to 25 show that both the azimuth and the elevation are
captured and represented in the different axes for all cases, which indicates that learning two main
features at the same time is not an issue for either method as long as such features vary with equal
or similar slowness over time. The downside of this approach is that pose evaluation requires the
test data to be measured with the same references to ensure consistency, which was not the case
for the NORB dataset but should not be an issue for unlabeled data since, in theory, it is expected
that the learned references will be used by default.

Overall, both methods are presented to be comparable at least in terms of slow feature detec-
tion, with the novel Greedy InfoMax outshining its veteran adversary for the conducted experi-
ments, and within the limits of the chosen setup. The outcome of this project leads to a positive
vision regarding the future and potential of InfoNCE-based learning algorithms and unsupervised
methods inspired by Slow Feature Analysis; advocating for the inherent possibilities offered by the
unsupervised paradigm, of which Machine Learning will likely benefit in the upcoming years.
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