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Possibilistic compositions and state functions: application to the order
promising process for perishables

(Received 00 Month 20XX; accepted 00 Month 20XX)

In this paper we propose the concepts of composition of possibilistic variables and state functions. While 
in conventional compositional data analysis, the interdependent components of a deterministic vector 
must add up to a specific quantity, we consider such components as possibilistic variables. The concept 
of state function is intended to describe the «state» of a dynamic variable over time. If a state function 
is used to model decay in time, it is called ageing function. We present a practical implementation of our 
concepts through the development of a model for a supply chain planning problem, specifically the order 
promising process for perishables. We use the composition of possibilistic variables to model the existence 
of different non-homogeneous products in a lot (sublots with lack of homogeneity in the product), and 
the ageing function to establish a shelf life-based pricing policy. To maintain a reasonable complexity and 
computational efficiency, we propose the procedure to obtain an equivalent interval representation based 
on α-cuts, allowing to include both concepts by means of linear mathematical programming. Practical 
experiments were conducted based on data of a Spanish supply chain dedicated to pack and distribute 
oranges and tangerines. The results validated the functionality of both, the compositions of possibilistic 
variables and ageing functions, showing also a very good performance in terms of the interpretation of a 
real problem with a good computational performance.

Keywords: Composition of Possibilistic Variables; State Function; Ageing Function; Order Promising 
Process; Perishability; Lack of Homogeneity in The Product; Uncertainty.

1. Introduction

There are many situations in mathematical modelling when is necessary to consider interdependent
data, i.e., where the variables or the restrictions are not free to behave themselves without having
a direct impact on each other. One example of such interdependence is the well-known case where
the components should add up to the total amount of a variable, representing for example, a raw
material or a finished product. Examples of this situation are the distribution of the components in
the chemical (Nureize and Watada 2010) or food (Kilic et al. 2013) industries, or the consistency of
the components of a determined material in the metallurgic industry (Slotnick 2011) that generate
different grades of it. If we analyse this situation in the industry of perishables, it is common to
have different “versions” of the same product in the same lot (for instance, different size, different
weight, colour, etc.) but all of the subgroups must add up to the total quantity of the lot.

In the area of mathematical modelling of supply chain planning problems (Mula et al. 2010;
Peidro et al. 2009), one can find several situations where determined quantities of products and/or
raw materials must be subdivided according to their components. We find the case of the order
promising process (OPP), which refers to a set of business activities triggered to provide a response
to customer order requests (Grillo et al. 2016a). The OPP bases its functionality on the concept of
Available-to-Promise (ATP). The ATP represents the uncommitted availability of product computed
by subtracting the already committed orders from the quantities in stock and planned supply
defined in the Master Production Schedule (MPS) (Ball et al. 2004). Based on the ATP quantities,
the OPP answers to each order with an acceptance/rejection decision. There are certain Supply
Chains belonging to sectors such as ceramic tile, furniture and agriculture in which products present



December 16, 2018 International Journal of Production Research tPRSguide

different characteristics among its units that, in some cases, can vary over time. Furthermore, such
characteristics are important and perceptible to the final customers and therefore, the OPP can
take these aspects into account when committing their orders. These sectors are affected by the
so-called Lack of Homogeneity in the product (LHP) (for more details on LHP, see Alemany et al.
(2015, 2013); Grillo et al. (2016a,b)). This is, in fact, the case of fresh fruit and vegetables that are
perishables.

Under these circumstances, the computation of the ATP must consider the sub-division of the
MPS into homogeneous sub-lots that will not be accurately known until the moment the product
is harvested and classified. For this type of supply chain, the lack of homogeneity in the product
refers to the existence of different units of the same product (subtype) that differ in characteristics
such as colour, weight, size or variety. The subdivision of the MPS lots into different subtypes (in
order to compute the ATP as a consequence of LHP) is the first issue addressed in this paper to
exemplify a situation in which there is interdependent data with several elements that must add
up to a determined total quantity.

The second issue in the modelling of ATP for perishables, is that it involves another source of
complexity, namely the product’s lifetime (Grillo et al. 2016a). In this case, the ATP is not just
affected by the conventional schema of the LHP in terms of the subdivision into subtypes, but also
in the way that the shelf life can be considered as another cause of LHP. Since most of the time,
customers request certain levels of freshness, it could itself be used to define a subtype. Literature
shows that, no models have been developed for this type of problems, specifically in supply chains
of perishables (Grillo et al. 2016a).

The distribution of a total quantity into several components is known as compositional data
and it has been extensively studied since Aitchison (1982). For reviews on the topic, we refer
to Aitchison and J. Egozcue (2005); Pawlowsky-Glahn and Buccianti (2011); Pawlowsky-Glahn
and Egozcue (2016). These researchs show that compositional data have mainly focused on the
deterministic case, i.e., not considering uncertainty in the elements of the composition. However,
there exist several situations in the real world where the composition is not precisely defined and
the distribution of the elements is varying in a certain range. As a consequence, the total quantity
to which they must add up to is also uncertain. An example of such a situation is the computation
of ATP per subtype as mentioned before.

There has been recent interest in the study of uncertainty in the elements of a composition from
a probabilistic point of view, under the name of joint mixability. A detailed description of joint
mixability can be found in the work of Puccetti and Wang (2015); Wang and Wang (2016) and the
references therein. However, the main disadvantage of the probabilistic approach is that it normally
uses long sets of historical data in order to identify suitable probability distributions. If there is not
enough representative data available in order to characterize the uncertainty, then the probabilistic
approach is not suggested as is highlighted by authors like Peidro et al. (2010) and Dubois et al.
(2003).

Grillo et al. (2016a) makes an extensive literature review where the authors highligh the need
of modelling ATP per subtype in the deterministic case (also called “crisp scene"), but they also
remarke that the case when there is uncertainty in the subdivision per subtype has not been studied
for perishables.

In order to analyse the uncertainty in the compositional data from a new point of view, we
introduce possibility theory (Dubois and Prade 2012) as a suitable tool to model it. We introduce
the special case when the elements of a composition are considered to be possibilistic variables. Up
to the authors’ knowledge the latter case has not been studied. In this work we will present the
composition of possibilistic variables in a general way, so that it can be applied in a wide range
of situations. We will exemplify its practical usefulness through the modelling of ATP under LHP
conditions.

As we mentioned in previous paragraphs, the supply chain of perishables has another challenging
feature: the subtypes will change some of its characteristics based on the ageing process (Haijema
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2013; Entrup et al. 2005). In order to face this issue, we introduce the state function, which is a 
continuous function whose domain is a determined window of time, and the co-domain represents 
a characteristic of the product, which we will call state, such as quality or value (price). The state 
function represents the state of a variable at each time. When the state function is used to model 
the product’s decay, it is called ageing function. Considering that the shelf life of a perishable is 
usually uncertain (there is just a vague idea of it), the ending time in the domain is represented 
with a possibilistic variable. Hence, the state itself is computed through a possibilistic variable.

The main contributions of this paper are twofold: to introduce the concepts of composition of 
possibilistic variables and state/ageing function, and to apply the new concepts in a practical ex-
ample of OPP under LHP for perishables. We model the quantity of homogeneous product through 
a composition of possibilistic variables and we propose to link the product’s price with an ageing 
function.

For both, compositions and state functions, we propose general procedures based on α-cuts in 
order to simplify the computations for linear mathematical modelling, a common tool used in 
applications due to its reasonable complexity and computational efficiency in the solution process.

Numerical experiments have been executed by applying the developed tools to a real case of a 
Spanish supply chain of the fruit sector, specifically t he p acking a nd d istribution o f o ranges and 
tangerines. We have used a data set based on real information of orders given by the supply chain. 
The results obtained validated the correct model’s functionality with a very good computational 
performance. We also presented some managerial insights in order to exemplify the usefulness that 
a tool like this has for decision makers.

The rest of the paper is organized as follows, Section 2 introduces and explains the concepts 
of composition of possibilistic variables. In Section 3 we describe the state function, meanwhile in 
Section 4 we describe how to apply both tools in the OPP process for perishables. In Section 5 the 
numerical experiments are presented. Finally Section 6 presents the main conclusions of this work.

2. Modelling compositions with possibilistic variables

In this section we will describe our main motivations for considering uncertainty in compositional 
data and our proposal to handle such uncertainty based on possibilistic variables.

2.1 Imprecision in compositional data

A wide variety of situations in mathematical modelling needs to take into account variables that 
are interdependent, for example, when certain values need to add up to another given value. Let us 
consider the data in Table 1, where the expected composition of a lot of oranges of 100kg coming 
from a field is described according to the subdivision of the product into its possible quality levels, 
1st, 2nd, 3rd and 4th.

Table 1.: Composition of a lot of oranges

Quality 1st 2nd 3rd 4th Total
(kg) 65 20 10 5 100
(%) 65% 20% 10% 5 % 100%

Clearly, the sum of the components should add up to the total quantity of the lot. Let x be
a vector in Rn whose components represent the contribution to the lot of oranges (sublots). If c
represents the total quantity of the lot, then we have

řn
i“1 xi “ c.

With the information in Table 1, it is easy to see that x1 “ 65, x2 “ 20, x3 “ 10, x4 “ 5, and c 
“ 100, hence, the vector x can be considered as a composition of c. The concept of compositional
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data was originally introduced by Aitchison (1982) and it has been oriented to exact data without 
considering imprecision. Now, let us consider the case where the values of Table 1 are not precisely 
known until the moment the analysis of its composition is made. Beforehand, there is just a vague 
idea regarding the values of the composition, for example about 65kg of the 1st quality type, about 
20kg of the 2nd quality type, about 10kg of the 3rd quality type and about 5kg of waste. All of them 
highlighted “about” since the exact quantities are not known, but they still have the restriction of 
adding up to the total quantity of 100kg. Even more complex, the case when they do not have the 
condition of adding up to 100kg and there is also just a vague idea that the lot will be about 100kg 
with the also vague composition mentioned. This would mean that both things involve imprecision, 
the values of the composition’s components, and the total quantity they must add up to. In the 
following, we introduce the concepts to model imprecision in compositions, based on possibility 
distributions.

2.2 Compositions

Definition 1. Let n P N be such that n ą 1. An n-part composition of c P R` is a vector x P pR`qn
such that

řn
i“1 xi “ x.

Definition 2.

(i) A possibilistic variable X on a universe U is described by a possibility distribution πX , i.e.
a mapping πX : U Ñ r0, 1s such that pDu˚ P UqpπXpu˚q “ 1q.

(ii) A possibilistic vector pX1, . . . , Xnq on a product universe U1ˆ. . . Un consists of n possibilistic
variables Xi on Ui and is described by a joint possibility distribution πX1,...,Xn

, i.e. a mapping
πX1,...,Xn

: U1ˆ . . . Un Ñ r0, 1s such that pDpu˚1 , . . . , u
˚
nq P U1ˆ . . . UnqpπX1,...,Xn

pu˚1 , . . . , u
˚
nq “

1q. The marginal possibility distributions of the variables Xi are given by

πXi
puq “ suptπX1,...,Xn

pu1, . . . , unq | pu1, . . . , unq P U1 ˆ . . .ˆ Un ^ ui “ uu . (1)

Note that πXi
pu˚i q “ 1.

(iii) The components of a possibilistic vector are called non-interactive if the joint possibility
distribution can be written as

πX1,...,Xn
pu1, . . . , unq “ minpπX1

pu1q, . . . , πXn
punqq . (2)

Note that in any case, it holds that

πX1,...,Xn
pu1, . . . , unq ď minpπX1

pu1q, . . . , πXn
punqq . (3)

Possibilistic variables can be used to model epistemic uncertainty, the simplest case being that of
interval uncertainty. In particular, if a possibilistic variable X on R is used to model the knowledge
that X takes values in an interval ra, bs, then its possibility distribution is given by

πXpuq “

#

1 , if u P ra, bs ,
0 , if u R ra, bs .

(4)

Note that πX is nothing else but the characteristic mapping of the set ra, bs.
More refined and very popular possibility distributions are the so-called Triangular Fuzzy Interval

(TFI), which allow us to incorporate a possibility gradient (left, central or right), that we denote

4
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as X “ pa, b, cq (see Figure 1). Note that, for the case of a normal TFI πXpbq “ 1. The following
example gives a basic overview of the application of triangular possibility distributions to the
components of the lot in Table 1.

Example 1. If the composition’s components described in Table 1 are considered fuzzy intervals,
we have X1 « 65, X2 « 20, X3 « 10 and X4 « 5.

u

πXi
puqπXi
puq

0

1

ai bi ci

πXi
puq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 , if u ď ai,

u´ai

bi´ai
, if ai ă u ď bi,

ci´u
ci´bi

, if bi ă u ă ci,

0 , if u ě ci.

Figure 1.: Triangular fuzzy interval

For each fuzzy interval we consider Xi “ p0.75bi, bi, 1.25biq, where bi represents the central value.
In this case, b1 “ 65, b2 “ 20, b3 “ 10 and b4 “ 5. Hence, the first TFI is X1 “ p48.75, 65, 81.25q, the
second one is X2 “ p15, 20, 25q, and so on. In this way, the values p60, 23, 9.5, 6q are a specific tuple
for the composition and by computing their respective possibility distribution, we obtain πXi

puq “
p0.69, 0.40, 0.80, 0.20q which can be interpreted as the possibility degree that each value in the tuple
belongs to its respective fuzzy interval.

Computing with possibilistic variables is facilitated by Zadeh’s extension principle (Zadeh 1978).
Consider a function f : U1ˆ . . .ˆUn Ñ V and a possibilistic vector pX1, . . . , Xnq on U1ˆ . . .ˆUn,
then Y “ fpU1, . . . , Unq is the possibilistic variable on V with possibility distribution πY defined
by

πY pvq “ suptπX1,...,Xn
pu1, . . . , unq | fpu1, . . . , unq “ vu . (5)

Consider a possibilistic vector pX1, . . . , Xnq on Rn, then its sum
řn
i“1Xi is the possibilistic variable

Y with possibility distribution

πY pvq “ suptπX1,...,Xn
pu1, . . . , unq |

n
ÿ

i“1

ui “ vu . (6)

When treating the possibilistic variables as non-interactive, i.e. considering only their marginal

possibility distributions, then the corresponding sum will be denoted by Z “
n
À

i“1
Xi, with possibility

distribution

πZpvq “ suptminpπX1
pu1q, . . . , πXn

punqq |
n
ÿ

i“1

ui “ vu . (7)

Based on the concepts above, let us now introduce the compositions built on possibilistic
variables.

Definition 3. Let n P N be such that n ą 1. A possibilistic vector pX1, . . . , Xnq on pR`qn is called

an n-part composition of a possibilistic variable C on R` if
n
ř

i“1
Xi “ C.

5
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In the following discussion, we will develop a practical procedure to construct such n-part com-
positions. We start from the following situation. Suppose we have an imprecise description of the
quantities Xi, i “ 1, . . . , n, of certain products expressed in terms of possibility distributions πXi

and an imprecise description of their grand total C expressed in terms of a possibility distribution
πC . An important assumption is

C Ď
n
à

i“1

Xi , (8)

stating that C is included in the sum of the quantities Xi, i “ 1, . . . , n, when treated as being
non-interactive. This can be seen as a kind of coherence condition, expressing that C is indeed
realizable.

The aim now is to define a joint possibility distribution π˚X1,...,Xn
of the possibilistic vector

pX1, X2, . . . , Xnq satisfying the following conditions:

(i) it holds that
n
ř

i“1
Xi “ C (using π˚X1,...,Xn

), i.e. the possibilistic vector pX1, . . . , Xnq is an

n-part composition of C;
(ii) π˚X1,...,Xn

is the least specific (i.e. the largest) joint possibility distribution realizing (i).

Theorem 1. The joint possibility distribution of the possibilistic vector pX1, . . . , Xnq defined by

π˚X1,...,Xn
pu1, . . . , unq “ minpπCp

n
ÿ

i“1

uiq,
n

min
i“1

πXi
puiqq (9)

is the largest distribution such that
n
ř

i“1
Xi “ C. The proof can be found in Appendix A.

Remark 1. Obviously, it holds that the marginal distribution π˚Xi
of Xi obtained from π˚X1,...,Xn

satisfies π˚Xi
ď πXi

.

Example 2. Let n “ 2.

(i) Consider X1 and X2 with triangular distributions πX1
“ πX2

“ x0, 5, 10y. Clearly, X1‘X2

has the triangular distribution x0, 10, 20y as possibility distribution. Suppose that the grand
total C is described by the triangular distribution πC “ x8, 10, 12y. Consider the possibility
distribution

π˚X1,X2
pu1, u2q “ minpπCpu1 ` u2q,minpπX1

pu1q, πX2
pu2qqq ,

then the marginal distributions of X1 and X2 are given by π˚X1
“ πX1

and π˚X2
“ πX2

. This
joint possibility distribution is shown in Figure 2.

(ii) Consider X1 and X2 with triangular distribution πX1
“ πX2

“ x0, 8, 10y. Clearly, X1 ‘X2

has the triangular distribution x0, 16, 20y as possibility distribution. Suppose that the grand
total C is described by the triangular distribution πC “ x14, 16, 18y. Consider the possibility
distribution

π˚X1,X2
pu1, u2q “ minpπCpu1 ` u2q,minpπX1

pu1q, πX2
pu2qqq ,

then the marginal distributions of X1 and X2 are given by π˚X1
“ π˚X2

“ x4, 8, 10y. This joint
possibility distribution is shown in Figure 3.

6
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Figure 2.: Joint possibility distribution: case πX1
“ πX2

“ x0, 5, 10y.

Figure 3.: Joint possibility distribution: case πX1
“ πX2

“ x0, 8, 10y.

2.3 Using compositions in practice

Suppose we have an imprecise description of the quantities Xi, i “ 1, . . . , n, of certain products
expressed in terms of possibility distributions πXi

and an imprecise description of their grand total

C expressed in terms of a possibility distribution πC such that C Ď
n
À

i“1
Xi. We construct the joint

possibility distribution π˚X1,...,Xn
as explained in the previous section:

π˚X1,...,Xn
pu1, . . . , unq “ minpπCp

n
ÿ

i“1

uiq,
n

min
i“1

πXi
puiqq . (10)

7
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In the context of optimization, one usually adopts an α-cut approach. For a given α P s0, 1s, we
choose values ui of Xi such that π˚X1,...,Xn

pu1, . . . , unq ě α and πCpzq ě α with z “
řn
i“1 ui, in view

of the composition constraint. It is immediate that π˚X1,...,Xn
pu1, . . . , unq ě α if and only πCpzq ě α

and πXi
puiq ě α, i “ 1, . . . , n.

Hence, we obtain the following extremely simple procedure. For a given α P s0, 1s, select ui, i “
1, . . . , n, such that πXi

puiq ě α (i.e., select ui from the α-cut of the original possibility distribution
of Xi). Compute the sum z “

řn
i“1 ui; if πCpzq ă α, then reject the vector of values pu1, . . . , unq,

otherwise proceed. There is no need to compute the joint possibility distribution π˚X1,...,Xn
explicitly.

3. Modelling state functions

Let us consider the lot of oranges as described in Example 1. In this case, each composition’s com-
ponent represents a sub-lot of oranges depending on the quality conditions. In the previous section,
we explained how to model such composition using possibilistic variables. Now, what happens if
the quality conditions are not static and could change with time, as it is normal for perishable
products? Or even more, what happens if another characteristic like the orange’s price is linked
with the ageing process? We now aim to analyse how a situation like this can be modelled.

3.1 State functions

The state of a product with a finite life span rti, tes is modelled by a state function h : rti, tes Ñ R
representing the state hptq of the product at time t. State functions can, for instance, be used
to model the decaying quality of a perishable product over time; such state functions will be
called ageing functions. An ageing function then is a decreasing function h : rti, tes Ñ rsi, ses with
hptiq “ si and hpteq “ se.

In particular, for a perishable product, the ending time te is usually not precisely known and one
has only a vague idea about it. Similarly as before, such an imprecise ending time will be modelled
as a possibilistic variable Te with possibility distribution πTe

satisfying πTe
pteq “ 1. We suppose

that the (closure of the) support of Te (i.e. the closure of the set where πTe
is not zero) is the

interval r`e, ues, with a length that is relatively small compared to that of the life span rti, tes. The
latter assumption implies that if the real ending time would be a value t˚ in r`e, ues, then the given
ageing function could be adapted by linear rescaling to obtain an ageing function hpt

˚q for a life
span rti, t˚s. For any t P rti, t˚s, it then holds that

hpt
˚qptq “ h

ˆ

ti `
t´ ti
t˚ ´ ti

pte ´ tiq

˙

. (11)

Obviously, it holds that hpt˚qptiq “ si and hpt
˚qpt˚q “ se.

In case the ending time te is described by a possibilistic variable Te, it is obvious that the state
time t is not known precisely either and is described by a possibilistic variable St with possibility
distribution πSt

on rti, ues defined by

πSt
psq “ suptπTe

pt˚q | hpt
˚qptq “ su . (12)

In case no t˚ exists such that hpt˚qptq “ s, then it obviously holds that πSt
psq “ 0. The underlying

principle is again Zadeh’s extension principle, this time not used to extend a function allowing for
fuzzy inputs, but to extend a function allowing for a fuzzy parameter (the ending time). In words,
the Eq.(12) states that the degree of possibility of s being the state at time t is determined by the

8
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most possible ending time t˚ for which it holds that the state at time t, according to the ageing
function corresponding to t˚, equals s.

In case the ageing function is strictly decreasing, there exists at most one t˚ and Eq.(12) reduces
to πSt

psq “ πTe
pt˚q if hpt˚qptq “ s, and πSt

psq “ 0 if no such t˚ exists. In case the ageing function
is constant on some subinterval, then this uniqueness is not guaranteed.

Example 3. Let us illustrate the above procedure on a simple example. Let the ageing function be
linearly decreasing and πTe

be a TFI with parameters ple, te, ueq. Then πSt
is a TFI as well with

parameters pat, bt, ctq given by at “ hp`eqptq, bt “ hpteqptq “ hptq and ct “ hpueqptq.
Obviously, the α-cuts of πSt

can be easily found. Figure 4 graphically illustrates this procedure.

Example 4. As a second example, we consider an ageing function that remains constant on part
of its domain, and illustrate the impact of an imprecise ending time. Consider the piecewise linear
ageing function h : r0, 10s Ñ r0, 2s with hp0q “ 2, hp2q “ 1, hp8q “ 1 and hp10q “ 0.

Let πTe
be the TFI with parameters p8, 10, 12q. We give some examples of St for different values

of t:

(i) the state at t “ 1.6 is the TFI with parameters p1, 1.2, 1.33q;
(ii) the state at t “ 2 is the TFI with parameters p1, 1, 1.17q;
(iii) the state at any time t P r2.4, 6.4s is the crisp value 1 (TFI with parameters p1, 1, 1q);
(iv) the state at time t “ 10 is the TFI with parameters p0, 0, 0.83q.

ti

si

se
le ue

πTe Ñ TFI ple, te, ueq

te

hptq

t

ct
bt
at

Figure 4.: Example of linear ageing function.

4. Application to the order promising process for perishables

In this section the application of the previous concepts of compositions and state functions to the 
OPP modelling for perishables, such as fresh fruit and vegetables, is presented.

4.1 Problem description

The problem consists on deciding the acceptance/rejection of the customer order proposals and the 
assignation of the ATP per subtype while maximizing profits. The model presented here is a 
synthesized version of the one presented in Grillo et al. (2017a). In the previous paper, the authors 
developed a complete model for the OPP for fruit supply chains. They considered the LHP effect 
when the lots are classified and separated into several subtypes, which are defined by characteristics 
of the product like size, colour, quality, calibre, etc. They also presented an extended multi-objective 
crisp MILP model with which they modelled the LHP’s effect in the ATP quantities for fruit supply 
chains. Furthermore, they expressed the price of the product as a function of its remaining shelf life at 
the moment of delivery to the customers. The price values were considered to be decreasing over 
time, due to the shelf life consumption. Both topics, the LHP’s effect and the pricing policy

9
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related to freshness, were considered deterministic. The model included other novel aspects, such 
as allowing for partial orders, i.e., orders of which not all of its lines (each line in an order asks 
for a specific quantity of a subtype) could be served as requested. In such case, they assumed that 
the order could be partially served with a penalization cost, and that the lines that could not 
be served can be renegotiated. They also considered transportation, holding, and expired product 
costs. Another considered aspect was the possibility of directly sending the remaining product to 
produce by-products in the case that such product does not belong to any of the subtypes allowed 
to fulfill orders.

As previously mentioned, the main objective of this section is to exemplify how we can implement 
compositions of possibilistic variables in a real problem of a supply chain. Specifically, we model the 
LHP’s effect by using the compositions. We also exemplify how to use state functions in the specific 
case where they can be applied jointly with compositions. The state/ageing functions replace the 
original deterministic pricing policy based on the ranges of freshness and the associated price. The 
main novelty is that we consider the uncertainty propagated to the price from the original 
uncertainty in the product’s lifetime.

In order to do this, we simplify the model of Grillo et al. (2017a), to focus on the implementation of 
the already mentioned tools. To perform such simplification, a set of considerations and assumptions 
must be taken into account based on the original model.

The following assumptions are made about the order proposals of the customer:

(1) Each order is composed by one or several lines. Each line specifies the subtype and the quantity 
requested of it.

(2) The order’s due date (asked date to deliver the order) is assumed to be the same for all its 
lines.

(3) Customers require homogeneous units of the same subtype (each line must be exactly fulfilled 
with the asked subtype). It is also not possible to accumulate different subtypes in order to 
fulfil future orders.

(4) Customers need to be served on time. Any delay is allowed for the delivery of the product.
(5) The orders are promised in batching mode (Grillo et al. 2017a), i.e., they are accumulated for 

a given window of time known as batching interval. The orders are promised at the beginning 
of each batching interval with the expected quantities of ATP.

The following assumptions are made about the product:

(1) Units of the same subtype have the same characteristics. Different subtypes of the same 
product can differ in attributes such as quality, color, size and weight, among others.

(2) The total MPS per product and time period are uncertain in supply chains of perishables due 
to multiple uncontrollable factors, such as weather, temperature, humidity, etc, that impact 
in the maturation process.

(3) Planned lots in the MPS are assumed to be composed by different sublots of homogeneous 
subtypes as an effect of the LHP.

(4) The exact amount of each subtype in the MPS is also uncertain until production and classifi-
cation activities have been performed. Beforehand, it is only possible to have an estimation.

(5) The ATP per subtype is calculated based on the previous division of the MPS in homogeneous 
sublots of the same subtype, and subtracting the orders already committed (see details of this 
definition in Ball et al. (2004)).

(6) The product is perishable. It deteriorates over time and becomes waste when it expires.
(7) For perishables, the product’s shelf life can be used as another homogeneity criteria, because 

customers normally require minimum levels of freshness (which is not necessarily of the same 
quality).

(8) Since deterioration depends not only on the harvesting time but also on additional factors, 
the maximum product’s shelf life involves uncertainty. If another product’s attribute is linked

10



December 16, 2018 International Journal of Production Research tPRSguide

with ageing process, e.g., the selling price, it will also inherit such uncertainty.

From the characteristics mentioned before, in Subsection 4.2 we will explain how to model ho-
mogeneous ATP through the concepts of compositions with possibilistic variables and an ageing-
dependent pricing policy for products with ageing functions.

4.2 Notations

The notation follows the convention: i) indices are represented as single italic letters; ii) sets are
represented with single italic capital letters with the indices they refer to; iii) input data (given
parameters and parameters computed from other inputs) are represented as single boldface letters
with their respective indices; iv) the model’s decision variables are represented as single boldface,
non-italic capital letters; and finally, v) the computed variables (calculated from the model’s decision
variables through equations) are represented as single-capital letters.

Indices

i Products, i P t1, ¨ ¨ ¨ , Iu.
h Harvesting time, h P t´SL, ¨ ¨ ¨ , T ´ 1u.
s Subtypes, s P t1, ¨ ¨ ¨ , Su.
t Time buckets, t P t0, ¨ ¨ ¨ , T u.
o Customer order proposals, o P t1, ¨ ¨ ¨ , Ou.

Sets

Ois Set of subtypes s of product i requested in the customer
order proposal o in the current model’s execution.

Is Set of subtypes s in which each product i can be classified.

Input data

do Due date of the order proposal o.
chtis Total committed quantity from previous execution of sub-

type s of product i, in period t, and harvested in h.
fois Fending unitary cost if rois is rejected.
his Holding unitary cost of subtype s of product i per time pe-

riod.
khis Initial stock of subtype s of product i harvested in h, avail-

able at the beginning of each execution.
no Total number of lines in each order o.
rois Requested quantity of the subtype s of product i, in order o.
ρo Unitary transport cost of order o.
to Transporting time to the delivery place of order o.
wis Waste unitary cost per unit of the subtype s of product i.
τ Length of the batching interval in time periods.

Computed intervals

Ahtis The homogeneous Available-To-Promise of subtype s of
product i, harvested in h and available in t, after classifica-
tion activities and after taking into account the committed
quantities once the model has been executed.

Ght
is Quantity of Ahtis becoming waste (garbage) due to expiration.
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Possibilistic variables

Eois Possibilistic variable representing the price (earning) as-
signed to the subtype s of product i in order o, considering
its harvesting time and the due date do when is asked to
be delivered. It is computed from an ageing function whose
maximum time (representing the product’s shelf life) is de-
scribed by a possibilistic variable.

Lis Possibilistic variable representing the maximum lifetime
(shelf-life) for subtype s of product i.

Mht
is Possibilistic variable representing the MPS per subtype s of

product i, harvested in period h and available in t.
Pht
i Possibilistic variable representing the MPS of product i, har-

vested in period h and available t.

Decision variables

Yoht
is Binary variable that takes the value of 1 if the requested

quantity of subtype s of product i in order o is completely
served by the corresponding Ahtis and the value of 0 otherwise.

Uo Binary variable that takes the value of 1 if all subtypes s
in order o are finally fulfilled and consequently the order is
promised.

4.3 Mathematical modelling

Objective function: Profits generated as the difference between the incomes of the promised
orders and the total cost of inventory holding, rejecting orders, wasted product due to expiration
and transport cost. Eq. (13) computes the objective.

SI:
ř

po,i,sqPOis

roisE
o
is Ñ Selling income.

HCO:
ř

po,i,sqPOis

hisroispd
o ´ to ´

ř

h,t

tYoht
is q Ñ Holding cost of committed orders.

HCA:
ř

pi,sqPIs

ř

h,tďτ

pτ ´ tqhisAhtis Ñ Holding cost of the remaining ATP.

RC:
ř

po,i,sqPOis

ř

h,t

foisp1´Yoht
is q Ñ Rejected order’s cost.

WC:
ř

pi,sqPIs

ř

h,t

wisGht
is Ñ Wasting cost due to expiration.

TC:
ř

po,i,sqPOis

ř

h,t

ρoroisY
oht
is Ñ Transporting cost.

Maximize Profits: Z “ SI´ HCO´ HCA´ RC´WC´ TC. (13)

Crisp constraints: The set of constraints in Eq. (14) guarantees that an order will be served 
only if all its lines are served. On the other hand, the order will not be served and any of its order
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lines will be reserved.

ÿ

pi,sqPIs

ÿ

h,t

Yoht
is “ noUo @o P Ois. (14)

The set of constraints in Eq. (15) guarantees that each subtype requested in each order line can 
only be fulfilled with ATP harvested in the same h  and reserved in only one t . It is not possible to 
accumulate subtypes to fulfil order lines.

ÿ

h,t

Yoht
is ď 1 @po, i, sq P Ois. (15)

The set of constraints in Eq. (16) states that no tardiness is allowed for any promised order. The 
reservation time must take place before the order’s due date less the required transporting time.

ÿ

h,t

tYoht
is ď do ´ to @po, i, sq P Ois. (16)

Possibilistic constraints: The set of constraints in Eq. (17) represents the balance between 
the total MPS and the production schedule per subtype. This constraint is modelled through a 
composition of possibilistic variables.

Pht
i “

ÿ

sPIs

Mht
is @i P Is, h, t. (17)

The set of constraints in Eq. (18) establishes that the Ahtis can not be negative. This ensures that
promised quantities cannot be higher than the existing MPS.

Ahtis ě 0 @pi, sq P Is, h, t. (18)

Where: The Available To Promise Ahtis is calculated in Eq. (19). By definition (Alemany et al.
2015), the ATP is obtained as the difference between the MPS in each period of time, less the
quantities already promised in previous executions and the quantities promised during the current
execution.

Ahtis “

$

’

’

&

’

’

%

khis ´ chtis ´
ř

oPOis

roisY
oht
is , @pi, sq P Is, h, t “ 0,

Mht
is ´ chtis ´

ř

oPOis

roisY
oht
is , @pi, sq P Is, h, t ą 0.

(19)

Furthermore, Eq. (20) calculates the part of the ATP becoming waste in each period, because of
ageing effect. It is important to remark that the latter quantity depends on the condition of t´ h
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to be higher than the maximum shelf life, which would imply the expiring.

Ghtis “

$

&

%

Ahtis , if t´ h ą Lis, @pi, sq P Is, h, t,

0 , otherwise.
(20)

4.4 Equivalent MILP model

In this subsection we describe the required computations on possibilistic variables and computed
intervals of the model, in order to represent it with an equivalent MILP model. We consider all the
possibilistic variables as TFI; for example Pht

i “
`

p1hti , p2hti p3hti

˘

. A possible value in such TFI is
represented as a single italic letter with the respective indices, for example, phti is a possible value
of Pht

i . This same logic also applies for all the computed intervals.

4.4.1 Interval representation based on an α-cut

First, we exemplify how the possibilistic approach works when compared to the crisp one. We analyse 
the example of Grillo et al. (2016b). They stated that a determined perishable product can be 
subdivided into different subtypes (that could be based on quality, size, colour, etc). If the 
composition of such lot is not certainly known until the classification activities have been performed, 
the planification of the orders to be accepted can only be based on an approximation. They used a 
parameter representing the proportion to approximate the subdivision. For example they consider a 
lot of 350kg that is subdivided in the following way: 50% of first subtype, 30% of the second one and 
20% of the last one. Then, the final quantities are 175kg (350*0.5), 105kg (350*0.3) and 70kg 
(350*0.2); the parameter of proportion for each subtype is 0.5, 0.3 and 0.2 respectively. Figure 5 
illustrates the general idea of the LHP: the subdivision of lots into subtypes.

Subtype 3

Subtype 2

Subtype 1

Original
production
lot

Natural 
factors in 

raw materials

Specific 
factors of 

processes of 
the supply 

chain

Original causes Finished product Required by customers

Units of the same FG 
classified in subtypes

Units of the same finished good (FG) 
affected by LHP Customer order 1

Customer order 2

Customer order n

Figure 5.: LHP working logic. Adapted from Grillo et al. (2016a)

In the cases when customers do not care about a specific subtype, and only require an homo-
geneous product, an order of 150kg could only be served with product of subtype 1; an order of 
100kg could be served with subtypes 2 and 3, and an order of less than 70kg could be served with 
any of the subtypes in the example. On the other hand, if the customer specifies the subtype, an 
order of 200kg of subtype 1 could not be served. The risk of shortage (Grillo et al. 2015) is high if 
the resulting quantity of each subtype is not enough to fulfill all the customer orders. This example 
decribes how the crisp case of the model works. For more details on how to handle this problem 
using a crisp approach, readers are referred to Grillo et al. (2017a).
It can be noted that the values 175, 105 and 70 add up to 350, then the vector p175, 105, 70q is a 
composition of 350. In our case, we consider the values of the vector to be possibilistic variables
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given the inherent epistemic uncertainty as a consequence of the LHP. We use possibilistic variables 
because there is not much available information prior to the classification activities of the final 
quantities of the subtypes.

Now, for simplicity, we only analyse the first subtype for which the crisp case has the value of 
175kg. We consider the quantity of the first subtype to be represented by a possibilistic variable 
described by the TFI p150, 175, 200q. In this case a possible value is u “ 160; this value evaluated 
in the possibility distribution of the TFI (as explained in Example 1) gives a possibility degree of 
0.4. Then, we say that the possibiltity degree of having 160kg of subtype 1 in the lot is 0.4. It can 
be noted how the value of 190 would also have the same possibility degree of 0.4 according to the 
formula given in Example 1. Figure 6-(A) illustrates this idea.

u

πXpuqπXpuq

0

1

150 175 200160 190

0.4

(A) TFI (150, 175, 200).

u

πXpuqπXpuq

0
150 175 200160 190

0.4

(B) alpha-cuts over TFI (150, 175, 200).

165 185

0.6

170 180

0.8

1.0

Figure 6.: The possibilistic variables and α-cuts

The idea illustrated in Figures 6-(A) and 6-(B) is a key element of the representation theorem 
(Zeng et al. 2006): if we consider an α-cut in a possibility distribution, we obtain an interval of values 
in its support that ensures a level of the possibility degree (the α-cut) as a minimum value. In the 
example given in Figure 6-(A), if α “ 0.4 for the possibility distribution of the TFI p150, 175, 200q, we 
can ensure that πXpuq ě 0.4 @u P r160, 190s. The α-cut approach allows us to compute the equivalent 
interval representations of the possibilistic variables of the model described in Subsection 4.3.

It is important to highlight that the greater the value of α is, the higher the possibility degree. 
Consequently, the amplitude of the resulting interval of such α in the support of the possibility 
distribution will be smaller. In the previous example, if α “ 0.6, the resulting interval will be r165, 
185s, if α “ 0.8 the interval will be r170, 180s and so on. Finally, if α “ 1, we obtain the case when the 
α-cut considers the highest possibility degree in the possibility distribution. In this case we recover 
the original crisp counterpart, since the resulting interval is r175, 175s which only contains one 
possible value. The latter statement is shown in Figure 6-(B).

What we need to do to obtain equivalent interval representations and executing MILP is to apply 
α-cuts as described in the previous paragraphs while ensuring that the rules explained in Subsection 
2.3 hold. With the aim of obtaining a suitable formula for the resulting intervals from possibilistic 
variables, we consider the same example of TFI pa, b, cq and the possibiliy distribution given in 
Example 1. Clearly πXpuq ě α if and only if

u P ra ` αpb ´ aq, c ´ αpc ´ bqs, (21)

The calculations to obtain Eq. (21) also work in a similar way for other type of possibility 
distri-butions, e.g., trapezoidal.
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Finally we need to extrapolate this same idea to an interval implementation for the state func-
tions. To do so, we base our explanation on Figure 4 used in Examples 3 and 4 of Subsection 3.1. We 
now include in Figure 7 the illustration of the α-cut for a linear state function.

ti

si

se
le ue

πTe Ñ TFI ple, te, ueq

πSt Ñ TFI pat, bt, ctq

α-cut

tet

ct

bt

at

Figure 7.: Possibilistic variables and and α-cut for state functions

In Figure 7, we consider that the price of a product (green linear ageing function) is linked to its 
imprecise lifetime. The product’s lifetime is modelled by using a possibilistic variable Te whose 
possibility distribution πTe is described by the TFI ple, te, ueq. As explained in Subsection 3.1, the 
rescaling of the ageing function with ending time te to the points le and ue (green dotted linear 
functions) allows us to project another possibilistic variable πSt (see y-axis in Figure 7). An α-cut 
approach can easily be used for the possibility distributions πTe and πSt by applying the same idea 
described in Eq. (21). The resulting interval for one α value in the support of the respective 
possibility distribution can be projected to the other possibility distribution as shown in the brown 
dotted lines in Figure 7. In our example, we consider an α-cut for the possibility distribution of the 
price, i.e., πSt . Considering a low value of α (near to 0) means that we consider a wider interval in the 
support of πSt (more possible values for the price). It also means that we consider a wider interval in 
the support of the possibility distribution modelling the lifetime. For example, if the maximum 
lifetime is the TFI p8, 12, 14q, making the interval of the final price narrower (through a greater α 
value) means that we take into account less possible values of the lifetime, for example r10, 13s. This 
also means that for α “ 1 we recover the crisp counterpart, because the lifetime will be exactly 12 and 
only one price is possible for such case.

In the following subsections we will describe the required computations in order to obtain interval 
representations for the possibilistic price and compositions in the OPP model, using the approach 
explained in the previous paragraphs.

4.4.2 Computations with the possibilistic product price

We use a piecewise linear ageing function fptq describing the price state in the time. It is based 
on the information of the pricing policy given in Grillo et al. (2017a) where deterministic price 
ranges were applied. Based on the information given in the latter study, we consider a decreasing 
linear change from one price to another. Hence, the resulting curve has a piecewise linear form. 
It is important to highlight that other types of functions (all the ones satisfying the conditions 
explained in Subsection 3.1) can also be applied in a similar way. The form of the ageing function 
depends on the behaviour of the variable described by it. In our specific case, the piecewise linear

ǹfunctio was a 
˘

suitable option. The maximum time value of such ageing function is described by
Lis “ l1is, l2is, l3is . It considers 4 ranges of price, as shown in Figure 8, with a linear decreasing
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transition time between consecutive ranges. This function is used for each subtype s of product
i. The number of constant intervals of the function and the parameters of Lis should be given,
according to the normal behaviour of the product and the decision maker’s need.

t

πLplq

h

0

Normal price

Non-collectable
l1is l3isl2is

1

Lis

t1 t2 t3 t4 t5 t6 t7

Smooth discount

High discount

Rescue value

Figure 8.: Price-ageing function
` ˘

The price’s state over time is represented by Eois “ e1is
o, e2iso, e3iso where e1iso “ f pl1isqptq, e2iso “ 

f pl
2
isqptq and e3iso “ f pl3isqptq.
Now we can easily compute a conventional interval for the product’s price by applying an α-cut on 

Eois, as exemplified in Subsection 4.4.1. We obtain pEoisqα “ reois
(a), eois

(b)s, where:

eois
(a)
“ e1ois ` αpe

2o
is ´ e

1o
is q, e

o
is

(b)
“ e3ois ´ αpe

3o
is ´ e

2o
is q. (22)

Note that in order to compute the price of each subtype requested in rois, it is required to evaluate
eois

(a) and eois
(b) in t “ do

ř

h,t

Yoht
is if it is promised to be delivered in its due date do.

Now, the model’s objective function becomes a matter of limits, lower and upper profit as if each
subtype in each order earns the minimum and maximum values of the interval of shelf life-based
price respectively.

SI(Low):
ř

po,i,sqPOis

roise
o
is

(a) Ñ Lower bound of selling income.

SI(Up):
ř

po,i,sqPOis

roise
o
is

(b) Ñ Upper bound of selling income.

HCO:
ř

po,i,sqPOis

hisroispd
o ´ to ´

ř

h,t

tYoht
is q Ñ Holding cost of committed orders.

HCA:
ř

pi,sqPIs

ř

h,tďτ

pτ ´ tqhisahtis Ñ Holding cost of the remaining ATP.

RC:
ř

po,i,sqPOis

ř

h,t

foisp1´Yoht
is q Ñ Rejected order’s cost.

WC:
ř

pi,sqPIs

ř

h,t

wisg
ht
is Ñ Wasting cost due to expiration.

TC:
ř

po,i,sqPOis

ř

h,t

ρoroisY
oht
is Ñ Transporting cost.

Lower profit:

Za “ SI(Low)´ HCO´ HCA´ RC´WC´ TC. (23)

Upper profit:

Zb “ SI(Up)´ HCO´ HCA´ RC´WC´ TC. (24)

Note that HCA and WC now depend on possible values of their possibilistic variables respectively.
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The optimization strategy will rely on the decision maker’s needs, for example, maximize the lower 
profit, maximize the upper profit or  maximize the average of  both (balanced).

4.4.3 Computations with the possibilistic constraints

We start by describing the computations on the constraint in Eq. (17) modelled as a composition of 
possibilistic variables. We now follow the α-cut approach explained in Subsection 2.3 and exemplified 
in Subsection 4.4.1. Since we have already used an α-cut for the computations in the product’s price, 
in this part we use a γ-cut to differentiate them. We must include the following equations according 
to the procedure; Eq.(25) ensures the key condition for the joint possibility distribution given in Eq. 
(10):

phti “
ÿ

sPIs

mht
is @i P Is, h, t. (25)

Equations (26) and (27) implement the logic explained in Eq. (21) in order to define equivalent 
intervals for each composition’s component, that in our case represents the MPS per each subtype:

mht
is ě m1ht

is ` γpm2ht
is ´m1ht

is q @pi, sq P Is, h, t. (26)

mht
is ď m3ht

is ´ γpm3ht
is ´m2ht

is q @pi, sq P Is, h, t. (27)

Equations (28) and (29) have a similar interpretation but for the equivalent intervals of compositions 
adding up to the grand total, that in our case represents the total MPS per product (the sum of 
the quantities of the subtypes):

phti ě p1hti ` γpp2hti ´ p1hti q @i, h, t. (28)

phti ď p3hti ´ γpp3hti ´ p2htis q @i, h, t. (29)

And the remaining constraints will now turn now into:

ahtis ě 0 @pi, sq P Is, h, t. (30)

Where:

ahtis “

$

’

’

&

’

’

%

khis ´ chtis ´
ř

oPOis

roisY
oht
is , @pi, sq P Is, h, t “ 0,

mht
is ´ chtis ´

ř

oPOis

roisY
oht
is , @pi, sq P Is, h, t ą 0.

(31)
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and

ghtis “

$

&

%

ahtis , if t´ h ą l3is, @pi, sq P Is, h, t,

0 , otherwise.
(32)

The crisp constraints remain the same.

4.4.4 Equivalent MILP model

Summarizing, the MILP equivalent model will be
Maximize:

(1) Eq. (23) for the profit’s lower bound maximization,
(2) Eq. (24) for the profit’s upper bound maximization,
(3) Za`Zb

2 for a balanced optimization strategy.

Subject to:

‚ Eq.(14) to Eq.(16)
‚ Eq.(25) to Eq.(30)

Considering:

‚ Eq.(31) and Eq.(32)

4.4.5 Implementing dynamic batching mode

In order to implement the model in a batching mode, it is required to update the input data between
consecutive executions. Specifically, the parameters khis and chtis should be updated according to the
procedure explained in Grillo et al. (2017a). The main difference in this case is that we consider the
orders are served at the beginning of each period. Then, it is expected that any quantity of the initial
stock is previously committed because it is the remaining product after serving orders. Considering
e as the current execution in the batching mode, the update is computed in the following Eqs. (33)
and (34)

cpe` 1qhtis “ cpeqhtis `
ÿ

oPOis

roisY
oht
is , @pi, sq P Is, h, t ą τ . (33)

kpe` 1qhis “
ÿ

tďτ

´

ahtis ´ g
ht
is

¯

, @pi, sq P Is, h. (34)

Finally, once the parameters cpe ` 1qhtis and kpe ` 1qhis have been computed, it is required to
execute for both of them an update of the indices t and h. This is because, from one execution to
the next one, the product aged τ periods. This is achieved with the following Eq. (35)

indpe` 1q “ indpeq ´ τ , @ind “ h_ ind “ t. (35)
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Note that for the case of the parameter cpe ` 1qhtis with its indices h and t updated, it should
coincide with enough supply in the possibilistic variables Pht

i and Mht
is in the execution e ` 1;

otherwise the model would go infeasible.

5. Experimental design: application to an orange and tangerine supply chain

In this section we will validate the model with an application to a real case of a Spanish supply 
chain of the fruit sector, specifically t he p acking a nd d istribution o f o range a nd t angerine. The 
implementation was carried out using the CMPL mathematical programming language (Steglich 
and Schleiff 2010) to code the model, and an algorithm of execution to implement the batching 
mode and different instances of evaluation developed in Java. CMPL supports different commercial 
and non commercial optimizers available in the market. In our case, the Gurobi 7.2 solver was used. 
Experiments were executed by an Intel (R) Core (TM) i7-4510 CPU 2.60 GHz processor, with 
8GB RAM under a Ubuntu 16.04 - Linux operative system.

5.1 Input data overview

In order to test the model, we have based our data set in the one presented in Grillo et al. (2017a). 
It comes from a Spanish supply chain dedicated to pack and distribute oranges and tangerines. 
The scenario includes one packing plant with two products (oranges and tangerines) that can be 
subdivided in 8 and 7 subtypes respectively. Transporting costs and times are considered as well 
as inventory holding cost and wasting cost due to the product’s decay. The orders from customers 
have between one to ten lines. A total of eighty-eight incoming orders are considered as in Grillo 
et al. (2017a). The orders are promised twice a week by considering a 3-day batching interval and a 
6-day horizon length. The global horizon for the experiments includes seventeen periods subdivided 
into four executions. The complete data set for the model can be consulted in Applendix B.

5.2 Definition o f e valuation instances

Here we define t he c ases t hat w ill b e e valuated i n t he n umerical e xperiments. We f ocus o n the 
elements that need to be given by the decision maker beforehand the execution.
Optimization strategy: Given the three possibilities mentioned in Subsection 4.4.4, for sim-

plicity, we use the profit’s average maximization as the objective function (which is one of the most 
common strategies used in this type of optimization).
The α-cut and γ-cut: As we have previously described in Subsections 4.4.2 and 4.4.3, the α-cut 

and γ-cut are used in order to find equivalent crisp intervals in the computations of the possibilistic 
price and the possibilistic composition modelling the master plans. Both parameters must be in 
the interval [0, 1]. We will discretise both parameters starting in 0.2 with steps of 0.2 until 1. Thus we 
will evaluate the values t0.2, 0.4, 0.6, 0.8, 1.0u. We will use such values because they are 
representative in order to explore the trend of the model as both parameters increase their values. In 
the case under study, the α-cut regulates the uncertainty degree in the product’s shelf life; the closer 
α is to 1, the less uncertainty in the extension of the shelf life, and as a consequence, the price of the 
product resembles more to the one determined by the piecewise linear ageing function used in our 
case. Meanwhile, the γ-cut has the same role, but in the total MPS and the MPS per subtype. It is 
very important to highlight that the case α “ 1 and γ “ 1 is the equivalent to the crisp counterpart of 
the model (as explained and exemplified in Subsection 4.4.1). We consider this case in order to 
compare it to all the other cases (i.e. α, γ P t0.2, 0.4, 0.6, 0.8u).
Summarizing, we will execute the model 5 times per each case of the α-cut and 5 times per each case 

of the γ-cut. Since the model will be executed in batching mode, a full run is composed by

20



December 16, 2018 International Journal of Production Research tPRSguide

4 executions given the batching window considered and the planning horizon. This brings a total
amount of 5 ˚ 5 ˚ 4 “ 100 executions.

5.3 Results

5.3.1 Committed orders and generated profits

In terms of practical application, the decision maker’s main interest of our model is the resulting
values of the binary variables Yoht

is and Uo (as well as the profit generated by them) since they
answer to the questions of what orders to accept, and what ATP to use in order to fulfil the orders.
The model returns the values of Yoht

is and Uo, considering that the supply remains within the
intervals established by the γ-cut in the TFI describing the possibilistic variables Pht

i and Mht
is .

Additionally, the limits of profit in the objective function should be seen as the lower and upper
possible values that can be earned if such configuration of the variables Yoht

is and Uo was executed
in reality. This is, the selling incomes achieved if the set of accepted orders are paid based on the
lower and upper price respectively resulting from the α-cut in Eois. Note that the parameters of the
TFI used to describe Eois depend on the product’s maximum shelf life, i.e., the TFI describing Lis.
This is the key point of our shelf-life based pricing policy.

Regarding the expected behaviour of the results in relation to the parameters α and γ, we can
say that the lower and upper limits of the profit should get closer in the way that both parameters
increase their value. This is because both the master plan and the shelf life get closer to the central
values of their respective TFI. The greater the value of γ, the smaller the crisp interval for the MPS.
Regarding to the shelf life, since the product’s price is linked with its ageing process, the greater
α, the smaller the difference between bounds of the product’s price in the same expected delivery
date. The results of the profit obtained are shown graphically in Figure 9.
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Figure 9.: Experimental results

It can be observed how the expected trend is properly achieved. In the cases when the same value
of alpha is maintained, the limits of the profit get farther away when the value of gamma is near
to 1. This behaviour is expected, since for one same value of alpha, the lower and upper product’s
price remains the same, while the supply varies within the intervals defined by the γ-cut. Hence,
if more or less supply are available according to gamma’s variation, then more or less orders are
accepted (see orange curve in Figure 5). Those orders will be paid within the same upper and lower
price if alpha stays constant. Otherwise they will be paid with a smaller upper price and with a
bigger lower price if alpha gets near to 1. This is why, in the way that alpha gets near to one, the
lower and upper limits of profit (curves blue and red in Figure 5) get closer independently of the
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value of gamma.
It is important to remark that when gamma is near to 0, the supply has a very open range of

variation, and the model has more solution spaces to find better combinations. This fact can also be
confirmed in Figure 5; by the way that the value of gamma increases, both lower and upper limits
of profit, and the total quantity of committed orders lower. As we mentioned before, this is because
the possible values of supply, mht

is and phti , have less possible combinations, and they get closer to
the crisp values m2ht

is and p2hti respectively. The negative part of gamma near to 0 is that such open
solution space implies a huge level of uncertainty. Then, there is a proportional risk level in the final
solution, i.e., the resulting accepted orders cannot be served when the real quantities of supply are
available due to shortages. If the orders finally served with real supply are considerably different of
those accepted with planned supply, the real profit could go out of the interval established by the
respective lower and upper planned bounds. Take a special look at Figure 5 for the gamma values
0.2 and 0.4. The orders accepted and the profits achieved are considerably higher than the rest of
the tested cases. This is because of the already explained opened solution space in the possibilistic
composition applied. See how variations in the supply limits can critically affect the possibility to
accept or reject an order. But in term of practical implementations, such solutions will involve high
uncertainty and the orders could not finally be served. On the other hand, for combinations of
gamma near to 1, it is expected that the planned supply has less uncertainty involved and will be
near to the real quantities. Then, the accepted orders have considerably more probability to finally
be served. The decision of what case is better or not will be briefly described in Subsection 5.3.2.

These results validate the proper functionality of the model. The composition of possibilistic
variables applied to model the LHP’s effect has worked in a very good way in terms of the inter-
pretation of the situation and the complexity in the modelling approach achieved. For its part, the
state functions and ageing functions have worked adequately and have a very good performance in
terms of the usefulness they have when linking related variables to the product’s ageing process.

5.3.2 Managerial insights

From the managerial point of view, it is required to analyse in detail the objective function, in order
to evaluate the suitability of the different instances of α and γ tested. Table 2 shows the different
results of the profit’s components.

Table 2.: Objective function components

α γ SI(Low) SI(Up) HCO HCA RC WC TC
0.2 0.2 1,444,992 1,439,689 21,771 21,155 56,553 19,787 175,700

0.4 1,370,322 1,368,980 24,003 23,647 88,269 22,584 167,087
0.6 1,235,201 1,227,720 28,632 28,362 132,532 23,672 153,747
0.8 1,209,038 1,198,515 30,226 29,248 146,114 22,928 148,652
1 1,191,265 1,172,360 31,577 29,933 151,126 19,795 146,453

0.4 0.2 1,444,686 1,439,725 21,771 21,155 56,553 19,787 175,700
0.4 1,370,051 1,369,189 24,003 23,647 88,269 22,584 167,087
0.6 1,233,460 1,229,472 28,810 28,184 132,532 23,672 153,747
0.8 1,205,819 1,198,973 30,273 29,201 146,114 22,928 148,652
1 1,189,421 1,174,529 31,383 30,061 151,348 20,274 146,453

0.6 0.2 1,444,187 1,440,738 21,808 21,118 56,553 19,787 175,700
0.4 1,369,729 1,369,189 24,003 23,647 88,269 22,584 167,087
0.6 1,232,774 1,229,871 28,691 28,303 132,532 24,151 153,747
0.8 1,204,386 1,199,804 30,194 29,280 146,114 23,408 148,652
1 1,187,666 1,176,863 31,383 30,061 151,348 20,274 146,453

0.8 0.2 1,443,730 1,442,174 21,835 20,999 56,553 19,787 175,700
0.4 1,369,505 1,369,189 24,003 23,647 88,269 22,584 167,087
0.6 1,232,024 1,230,515 28,731 28,263 132,532 24,151 153,747
0.8 1,203,795 1,201,493 30,194 29,280 146,114 23,408 148,652
1 1,186,864 1,181,896 31,372 30,072 151,348 20,274 146,453

1 0.2 1,430,974 1,430,974 22,718 20,002 63,891 17,641 174,014
0.4 1,367,529 1,367,529 24,543 22,292 88,269 17,350 167,087
0.6 1,215,756 1,215,756 30,161 27,915 140,546 19,408 151,108
0.8 1,199,473 1,199,473 31,094 28,707 150,070 19,372 147,333
1 1,180,333 1,180,333 32,199 30,354 156,221 17,198 145,427
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For supply chain planning problems, in this type of optimization based on possibility distributions 
and α-cuts, it appears as a common practice to discard values of alpha less than 0.5 because they are 
considered as a very high level of uncertainty (Alemany et al. 2015). Then, in order to analyse the 
data of Table 2, let us consider the values of α and γ larger than 0.5 (0.6 and 0.8 in the evaluated 
cases) compared to the case when α “ γ “ 1 (the crisp case). Table 3 shows the resulting variation 
percentages of such comparison.

Table 3.: Variation percentage (%) vs crisp case

α γ SI(Low) SI(Up) HCO HCA RC WC TC Za Zb

0.6 0.6 4.20 4.44 -10.89 -6.76 -15.16 40.44 5.72 7.95 8.31
0.8 1.65 2.04 -6.23 -3.54 -6.47 36.11 2.22 2.91 3.48

0.8 0.6 4.25 4.38 -10.77 -6.89 -15.16 40.44 5.72 8.03 8.22
0.8 1.79 1.99 -6.23 -3.54 -6.47 36.11 2.22 3.12 3.41

From the pricing policy side, it is clear that better results are achieved when α “ 0.8 for both,
the selling incomes and cost performance. One can think that better results should be achieved for
α “ 0.6 because this means more variability in the products’ shelf life. This is not necessarily true
because of the conflicting situation with wasting costs at expense of selling more fresh product, and
the interaction with the uncertainty in the supply. Hence, for this specific case, with this data set
in the evaluated instances, it would be a better option to consider α “ 0.8 given the results in the
profit for both cases of gamma.

In regard to the uncertainty in supply, based on the configuration of the data set for the possi-
bilistic variable Mht

is , a value of γ equal to 0.6 would imply a range of variation from 0 to 0.9 truck
(one truck includes around 30 pallets, 750 Kg) of the product at most, depending on the subtype. 
Meanwhile, a value of γ equal to 0.8 would imply a range from 0 to 0.4 truck. Based on this, both 
cases are relatively reasonable, and it will depend on the decision makers to choose the option. If 
they are able to risk more, γ “ 0.6 would be the option with the aim to earn about 5% more than 
if they consider γ “ 0.8. Otherwise if they prefer to handle a less risky solution, with less profit 
(about 3% more than the crisp case), but with a relatively small risk, γ “ 0.8 would be the option. 
There are other approaches used to evaluate the suitability of the α-cuts, for example in Alemany et 
al. (2015) where an interactive procedure is applied to compute a fuzzy decision vector based on the 
decision maker’s requirements, or in Grillo et al. (2017b) where another interactive procedure based 
on fuzzy TOPSIS is applied. These types of analysis are out of the scope of this work, but readers are 
refereed to them in order to see practical examples. The work of Grillo et al. (2017b) provides an 
example of OPP modelling for non perishables. Readers are referred to this work for more details on 
how non-perishable products behave in the presence of LHP. The authors conducted a study for a 
ceramic tile supply chain. In general terms, the perishability exposes a considerably higher level of 
complexity since the subtypes change through time. The perishability itself can also be used to define 
the subtype. By comparing both studies, the case of perishables increases the risk of shortages, since 
the causes of the uncertainty are more complex to describe and control, for example the weather. The 
case of perishables requires greater attention on the LHP management, not just for the risk of 
shortage itself, but also for the profitability of the supply chain; it could be highly affected due to the 
wasting cost and the variation of the product’s price.

5.3.3 Computational efficiency

Finally, Table 4 shows the computational efficiency data of the model executions. It can be seen 
how the model has a very good performance in terms of resolution time with the solutions matrix’s 
size considered in this case.
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Table 4.: Computational efficiency

Execution Constraints Binary
variables

Continuous
variables Non-zeros Aver. sol.

time (s) % Gap

e1 12,194 13,246 7,438 130,718 2.08 0.001
e2 12,188 12,790 7,438 126,923 2.09 0.001
e3 12,192 13,094 7,438 129,453 2.09 0.001
e4 12,174 11,726 7,438 118,106 1.96 0.001

6. Conclusions and future research lines

Compositions of possibilistic variables are based on the concept of compositional data where dif-
ferent elements of a vector should add up to a specific resulting quantity. We considered not only the 
case when the elements are possibilistic variables, but also the case when the resulting quantity is 
another possibilistic variable. This type of compositions can be applied to a wide open variety of 
situations when the conventional compositional data is not recommended due to the existence of 
epistemic uncertainty in the composition’s components. The α-cut approach is applied in order to 
simplify the application of compositions into linear mathematical programming, obtaining more 
computational efficient models.

Furthermore, we introduced the concepts of state functions, which describe the “state” of a 
variable over time. If a state function is used to model product’s decay, it is called ageing function. 
This type of functions are defined from an initial time until an uncertain ending time represented by 
a possibilistic variable. Ageing functions allow to link related shelf life-based variables, for example 
price, and also describe them as possibilistic variables. This modelling approach has the advantage 
of being an easy and good performing option to be applied in several types of situations when 
dealing with perishables.

In order to exemplify the application of compositions with possibilistic variables and ageing func-
tions into linear mathematical modelling, we have developed a model of a supply chain planning 
problem, specifically t he o rder p romising p rocess, where b oth c oncepts c an b e applied simultane-
ously. The compositions are used to represent the effect of the so called Lack of Homogeneity in 
Product, LHP, in the master production schedule when the handled product is perishable and as 
a consequence it must be classified i nto s ubtypes. T he t otal master p roduction s chedule a nd its 
corresponding quantities per subtype are represented as a composition of possibilistic variables. 
Moreover, since the product is perishable, some of its characteristics can change within time. We 
use an ageing function to link the product’s price. Hence, this application includes both concepts, 
the compositions of possibilistic variables to model the master production schedule from which the 
orders must be promised, and the ageing functions to model product’s price at the delivery time.

Practical experiments have been executed by applying the model to a real case of a Spanish 
supply chain of the fruit sector, specifically the packing and distribution of oranges and tangerines. 
We have used a data set based on real information given by the supply chain, and we have executed 
different instances in a batching ordering mode in rolling horizon. The results obtained validated the 
model’s correct functionality with a very good computational performance. We also presented some 
managerial insights in order to exemplify the usefulness that a tool like this has for decision makers.

Finally, the following future reseach lines are identified: regarding to the compositions of possi-
bilistic variables, it is required to generalise the approach of using possibilistic variables from the case 
where the variables add up to a determined total, to the case where other operations (such as 
multiplication, subtraction, etc.) are considered. Such study will allow us to compute the epistemic 
uncertainty in diffent types of problems where the uncertainty has an interdependent nature.

For state functions, it is required to investigate the performance of other types of curves, not only 
linear functions or decreasing piecewise linear functions. Also, special attention should be given to
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extend these notions to the case when the curve is not necessarily a decreasing function. Such case 
would apply to situations when the state increases within time, e.g. the price of wine.

Compositions of possibilistic variables and state functions can be applied to other type of prob-
lems, i.e., not just supply chain problems, but to other areas like technology, mathematics and 
other problems in the engineering field. Regarding to the order-promising processes, we recommend 
to apply them in an extended model, considering additional features like different manufacturing 
strategies, renegotiation processes for the rejected orders, advance and delays, etc. We also recom-
mend the application of these tools to problems of more operative level for perishables, where the 
changes of state can occur in very short periods of time, for example, operations of transformation of 
a row material, freezing or holding of finished products, transportation under controlled conditions, 
etc. Another interesting case would be the application to the handling of by-products.
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Appendix A. Proof of theorem 1.

Note that the assumption C Ď
n
À

i“1
Xi implies that

πCpvq ď suptminpπX1
pu1q, . . . , πXn

punqq |
n
ÿ

i“1

ui “ vu .

Let Y “
n
ř

i“1
Xi, then

πY pvq “ suptminpπCp
n
ÿ

i“1

uiq,minpπX1
pu1q, . . . , πXn

punqqq |
n
ÿ

i“1

ui “ vu

“ suptminpπCpvq,minpπX1
pu1q, . . . , πXn

punqqq |
n
ÿ

i“1

ui “ vu

“ minpπCpvq, suptminpπX1
pu1q, . . . , πXn

punqq |
n
ÿ

i“1

ui “ vuq

“ πCpvq .

Moreover, consider another possibility distribution π#X1,...,Xn
such that

π#X1,...,Xn
pu1, . . . , unq ą π˚X1,...,Xn

pu1, . . . , unq

for some point pu1, . . . , unq, while still
n
ř

i“1
Xi “ C (using π#X1,...,Xn

). Since minpπX1
, . . . , πXn

q is

an upper bound to the joint possibility distribution, it must hold that π#X1,...,Xn
pu1, . . . , unq ą
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πCp
řn
i“1 uiq. However, this implies that for v “

n
ř

i“1
ui, it holds that π

#
Y pvq ą πCpvq, a contradiction.

Appendix B. Input data

We have based our data set in the one presented in Grillo et al. (2017a) with the required modi-
fications in order to implement the compositions of possibilistic variables and the state functions.
The global horizon length includes 17 periods (in order to consider two weeks of incoming orders
at least), subdivided into four OPP executions with a planning horizon of six periods each. The
orders are promised twice a week, considering a 3-day batching interval. The executions occur in
periods 1, 4, 8 and 11 simulating real dynamics.

Two products (i) are contemplated (oranges and tangerines) with subtypes (s) defined according
to the quality level, the calibre and the packaging type. Table B1 shows the products with their
respective subtypes and the parameters of the possibilistic variable Lis.

Table B1.: Products, subtypes and shelf-life values

Lis (days)
Product (i) Subtypes (s) l1is l2is l3is

i1 (Orange) s1 (First quality, calibre 1, Box-paperboard 10kg)

8 10 12

s2 (First quality, calibre 1, Net 1.2kg)
s3 (First quality, calibre 1, Bulk)
s4 (First quality, calibre 2, Box-paperboard 10kg)
s5 (First quality, calibre 3, Box-paperboard 10kg)
s6 (First quality, calibre 4, Box-paperboard 10kg)
s7 (Second quality, calibre 1, Bulk) 7 9 11
s8 (Second quality, calibre 4, Box-wood 15kg)

i2 (Tangerine) s9 (First quality, calibre 5, Box-paperboard 10kg)

8 10 12

s10 (First quality, calibre 5, Net 750g)
s11 (First quality, calibre 5, Net 1.2kg)
s12 (First quality, calibre 6, Box-paperboard 10kg)
s13 (First quality, calibre 7, Box-paperboard 10kg)
s14 (First quality, calibre 8, Box-paperboard 10kg)
s15 (Second quality, calibre 8, Box-paperboard 10kg) 7 9 11

Table B2 shows the price data required to build the piecewise linear ageing function of each sub-
type as presented in Figure 8. Regarding the different time points presented in Figure 8, where there
are changes in the price value, the following procedure is considered (depending on the harvesting
time h of the ATP reserved for the orders of each subtype):

‚ t1 “ h` l2is ˚ 0.40
‚ t2 “ h` l2is ˚ 0.45
‚ t3 “ h` l2is ˚ 0.60
‚ t4 “ h` l2is ˚ 0.65
‚ t5 “ h` l2is ˚ 0.80
‚ t6 “ h` l2is ˚ 0.85
‚ t7 “ h` l2is ˚ 0.90

Table B3 shows the inventory holding and wasting costs for each subtype. The fending unitary
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Table B2.: Price data

i s Normal price Smooth discount High discount Rescue value
i1 s1 1.19 0.833 0.595 0.357

s2 1.17 0.819 0.585 0.351
s3 1.15 0.805 0.575 0.345
s4 1.13 0.791 0.565 0.339
s5 1.07 0.749 0.535 0.321
s6 1.01 0.707 0.505 0.303
s7 0.92 0.644 0.46 0.276
s8 0.95 0.665 0.475 0.285

i2 s9 1.21 0.847 0.605 0.363
s10 1.18 0.826 0.59 0.354
s11 1.24 0.868 0.62 0.372
s12 1.12 0.784 0.56 0.336
s13 1.06 0.742 0.53 0.318
s14 1.01 0.707 0.505 0.303
s15 0.81 0.567 0.405 0.243

(*) Data in AC

cost fois was obtained as 50% of the maximum income generated for the order line if it was served
with the maximum possible price.

Table B3.: Inventory holding and waste costs

i s his

´

AC
kg¨day

¯

wis

´

AC
kg

¯

i1 s1 0.018 0.3221
s2 0.018 0.322
s3 0.017 0.322
s4 0.017 0.322
s5 0.016 0.322
s6 0.015 0.322
s7 0.014 0.322
s8 0.014 0.322

i2 s9 0.018 0.327
s10 0.018 0.327
s11 0.019 0.327
s12 0.017 0.327
s13 0.016 0.327
s14 0.015 0.327
s15 0.012 0.327

Regarding the configuration of the incoming orders, we also follow the description given in Grillo
et al. (2017a). Each customer usually places four orders per week. The due date (do) of each order
usually occurs 4-5 days after the arrival date. Customer orders are composed by several order lines
randomly varying between 1 to 10. The authors presented a total of 88 orders following the rule
that the sum of the subtypes requested in all the lines in the same order usually equals to 30 pallets
(realistic quantity which is the equivalent to one truck). They used such rule based on samples of
real orders. Since in this case we have considered the existence of just one packing plant, and the
authors originally considered two plants, we have made corrections in the transporting time and due
date of the orders, maintaining the general rules they presented. Table B4 shows the configuration
of each order with the due date, number of order lines, transporting time and transporting cost.

Concerning to the supply data required to implement the compositions of possibilistic variables, it
was necessary to make some additional considerations. First, in Grillo et al. (2017a) they considered
the possibility to reserve lines even when the entire order could not be served. They also considered
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Table B4.: Order’s data

Exec. o do no to ρo Exec. o do no to ρo

e1 o1 3 9 1 0.10 e3 o45 3 9 1 0.10
o2 4 2 2 0.10 o46 2 2 1 0.10
o3 3 4 1 0.10 o47 4 4 1 0.10
o4 4 1 2 0.15 o48 3 1 1 0.15
o5 3 1 1 0.10 o49 4 1 1 0.10
o6 4 7 2 0.15 o50 5 7 2 0.15
o7 5 3 2 0.15 o51 5 3 2 0.15
o8 5 1 2 0.15 o52 5 1 2 0.15
o9 2 1 1 0.10 o53 3 1 1 0.10
o10 6 7 2 0.15 o54 4 7 2 0.15
o11 6 6 2 0.15 o55 6 6 2 0.15
o12 3 4 1 0.10 o56 2 4 1 0.1
o13 5 6 1 0.15 o57 6 6 1 0.15
o14 4 4 2 0.15 o58 3 4 1 0.15
o15 6 1 2 0.15 o59 6 1 2 0.15
o16 5 5 2 0.15 o60 4 5 2 0.15
o17 4 3 2 0.15 o61 5 3 2 0.15
o18 6 2 2 0.15 o62 6 2 2 0.15
o19 6 5 2 0.15 o63 6 5 2 0.15
o20 6 1 2 0.15 o64 6 1 2 0.15
o21 6 10 1 0.15 o65 6 9 1 0.15
o22 6 4 2 0.15 o66 6 4 2 0.15

e2 o23 4 9 1 0.10 e4 o67 5 7 1 0.1
o24 2 2 1 0.10 o68 3 2 1 0.10
o25 2 1 1 0.10 o69 3 1 1 0.10
o26 5 1 2 0.15 o70 5 1 2 0.15
o27 3 4 1 0.10 o71 2 4 1 0.10
o28 3 1 1 0.15 o72 4 1 2 0.15
o29 5 1 2 0.15 o73 6 1 2 0.15
o30 5 6 2 0.15 o74 5 5 2 0.15
o31 2 3 1 0.10 o75 4 3 1 0.10
o32 5 6 2 0.15 o76 4 5 2 0.15
o33 6 4 2 0.15 o77 6 4 2 0.15
o34 2 5 1 0.10 o78 2 5 1 0.10
o35 6 7 2 0.15 o79 6 7 2 0.15
o36 4 5 1 0.15 o80 3 5 1 0.15
o37 6 4 2 0.15 o81 6 4 2 0.15
o38 3 1 1 0.15 o82 4 1 2 0.15
o39 3 2 1 0.15 o83 4 2 1 0.15
o40 6 10 1 0.15 o84 6 8 1 0.15
o41 6 3 2 0.15 o85 6 3 2 0.15
o42 6 4 2 0.15 o86 6 3 2 0.15
o43 6 1 2 0.15 o87 6 1 2 0.15
o44 6 4 2 0.15 o88 6 4 2 0.15

(*) ρo is expressed in
´

AC
unit¨day

¯

, do and fo are expressed in days

a percentage of about 8% to 10% of the incoming production lots as non-usable to fulfil orders.
That product was intended to be used for the production of by-products or directly wasted. It is
also required to consider that it is worth to use compositions of posibilistic variables in presence
of epistemic uncertainty, i.e., when there is just a vague idea of the real value. This means a
considerable high level of uncertainty that in our case should be reflected in the parameters of the
possibilistic variables Pht

i and Mht
is . Due to all the previous reasons, in order to define our supply

data, we have taken the master production schedule presented in Grillo et al. (2017a) and we
have cut the quantities in 30%. The resulting quantities will be the central value of the triangular
fuzzy set representing Pht

i . In order to define the limits of such triangular fuzzy set, we consider a
variation of ˘50% from the central value, with the aim to reflect a very high level of uncertainty.
The resulting inputs are shown in Table B5. The harvesting time (h) can take negative values
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because it is assumed that the product can be harvested before the first period in the planning
horizon.

The parameters of the possibilistic variable Mht
is are obtained based on the values of Pht

i given
in Table B5 and considering the proportional subdivision originally used in (Grillo et al. 2017a).
According to them, the proportional subdivision was obtained based on the sum of the subtypes
requested in the order lines with the same due date during each period. The total sum was set as
MPS 2-3 periods randomly before the due date in order to confer the model the possibility of taking
a wide open window of time in transportation once the product is packed.

Table B5.: Master Production Schedule

Pht
i (kg)

Exec. i h t p1hti p2hti p3hti
e1 i1 -1 1 14,013 28,026 42,039

1 2 22,129 44,258 66,387
2 3 54,829 109,659 164,488
2 4 20,619 41,239 61,858
3 5 23,249 46,499 69,748
5 6 21,896 43,792 65,688

i2 -1 1 10,650 21,301 31,951
1 2 9,788 19,576 29,363
2 3 28,506 57,012 85,517
3 4 23,887 47,775 71,662
3 5 34,917 69,834 104,750
4 6 30,226 60,453 90,679

e2 i1 -1 1 20,619 41,239 61,858
0 2 23,249 46,499 69,748
2 3 21,896 43,792 65,688
3 5 32,106 64,211 96,317
5 6 36,846 73,692 110,538

i2 0 1 23,887 47,775 71,662
0 2 34,085 68,170 102,255
1 3 30,982 61,965 92,947
3 5 27,608 55,216 82,824
4 6 16,983 33,966 50,949

e3 i1 0 2 32,106 64,211 96,317
2 3 36,846 73,692 110,538
2 4 36,284 72,568 108,852
3 5 28,881 57,763 86,644
5 6 14,392 28,785 43,177

i2 0 2 27,608 55,216 82,824
1 3 16,983 33,966 50,949
2 4 26,482 52,964 79,446
4 5 23,604 47,207 70,811
4 6 14,968 29,936 44,904

e4 i1 -1 1 36,284 72,568 108,852
0 2 28,881 57,763 86,644
2 3 14,392 28,785 43,177
2 4 14,105 28,209 42,314

i2 -1 1 26,482 52,964 79,446
1 2 23,604 47,207 70,811
1 3 14,968 29,936 44,904
3 4 7,772 15,544 23,316

Finally, the initial stock khis is presented in Table B6 and it coincides with the one given in Grillo
et al. (2017a).

If readers are interested in reproducing the numerical experiments, they can easily follow the
description given here. Otherwise they can ask us the exact data we have used by e-mail.
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Table B6.: Initial stock

i s h kh
is (kg)

i1 s1 -3 1300
s1 -2 2500
s2 -2 8500
s2 -1 7500
s3 -3 902
s3 -2 7500
s4 -3 1600
s4 -1 9000
s5 -3 6000
s5 -2 2500
s6 -2 733
s6 -1 4000
s8 -2 2300
s8 -1 7000

i2 s9 -2 4000
s9 -1 5000
s10 -2 33000
s10 -1 15000
s11 -2 4000
s11 -1 3800
s12 -2 1500
s12 -1 1500
s13 -2 7000
s13 -1 3000
s14 -2 7000
s14 -1 6800
s15 -2 3000
s15 -1 2300
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