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Abstract Nowadays, many data centers use virtual
machines (VMs) in order to achieve a more efficient
use of hardware resources. The use of VMs provides a
reduction in equipment and maintenance expenses as
well as a lower electricity consumption. Nevertheless,
current virtualization solutions, such as Xen, do not
easily provide graphics processing units (GPUs) to ap-
plications running in the virtualized domain with the
flexibility usually required in data centers (i.e., man-
aging virtual GPU instances and concurrently sharing
them among several VMs). Therefore, the execution of
GPU-accelerated applications within VMs is hindered
by this lack of flexibility. In this regard, remote GPU
virtualization solutions may address this concern.

In this paper we analyze the use of the remote GPU
virtualization mechanism to accelerate scientific appli-
cations running inside Xen VMs. We conduct our study
with six different applications, namely CUDA-MEME,
CUDASW++, GPU-BLAST, LAMMPS, a triangle count
application, referred to as TRICO, and a synthetic bench-
mark used to emulate different application behaviors.
Our experiments show that the use of remote GPU vir-
tualization is a feasible approach to address the current
concerns of sharing GPUs among several VMs, featur-
ing a very low overhead if an InfiniBand fabric is already
present in the cluster.
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1 Introduction

Virtual machines (VMs) have demonstrated to provide
economic savings to data centers, the main reason be-
ing that several VMs can be concurrently executed in
a single cluster node thus sharing its CPUs as well as
other subsystems and, therefore, increasing overall re-
source utilization. Acquisition and maintenance costs
are therefore reduced because a smaller amount of servers
is required to address the same workload, thus reducing
also energy consumption needs. In this way, the use of
VMs is the basis for cloud computing services like the
ones provided by Amazon and other PaaS (Platform as
a Service) providers.

The benefits provided by VMs have caused that vir-
tualization solutions such as KVM [3], Xen [9], VMware [8],
or VirtualBox [5] become very popular. Actually, the
benefits reported by the use of VMs have motivated
that leading processor manufacturers such as Intel or
AMD have increasingly incorporated more support for
virtualization into their chip designs [38]. Moreover, al-
though VMs were known in the past for reducing ap-
plication performance with respect to executions in the
native (or real) domain, the virtualization features in-
cluded in current CPUs allow VMs to execute applica-
tions with a negligible overhead [11]. This has led some
authors to suggest using VMs in the context of high-
performance computing (HPC) [48].

However, despite the many advances accomplished
in the field of VMs, they still do not support efficiently
the current trend of using the CUDA1 compute plat-

1 CUDA (Compute Unified Device Architecture) is a tech-
nology created by NVIDIA which comprises a parallel com-
pute platform (CUDA-enabled graphics processing units) as
well as an application programming interface (API) and a
compiler.
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form to use the graphics processing units (GPUs) as ac-
celerators, which allows significantly reducing the time
required to execute applications from areas as different
as data analysis (Big Data) [44], chemical physics [31],
computational algebra [45], image analysis [47], finance [41],
biology [10], and artificial intelligence [20], to name just
a few. In this regard, there have been several recent
achievements in order to virtualize GPUs, like the new
GRID K1 GPU by NVIDIA [4], which can be shared
among up to eight VMs and is mainly intended for desk-
top virtualization, although it can also be used for ex-
ecuting CUDA programs. Nevertheless, given that this
device only features 192 CUDA cores per GPU, its
applicability to scientific computing is very limited2.
Other examples of including virtualization support into
GPUs are the recent KVMGT3 technology by Intel [40]
and the new Multiuser GPU by AMD [1], which pro-
vide virtualization support for Intel and AMD GPUs,
respectively. Unfortunately, these solutions do not sup-
port CUDA acceleration. Therefore, the lack of efficient
support for CUDA-compatible GPUs in current virtual-
ization solutions makes that applications running in the
virtualized domain cannot easily access these GPUs for
acceleration purposes. From the point of view of cloud
computing providers such as Amazon, this means that
the investment made in GPUs cannot be amortized as
fast as possible as it will be further described in next
section.

In this paper we explore the use of the remote GPU
virtualization mechanism in order to provide CUDA ac-
celeration to applications running inside Xen VMs. The
main motivation is that GPU virtualization solutions
such as V-GPU [7], DS-CUDA [29], rCUDA [37, 36],
vCUDA [39], GridCuda [16], GVirtuS [12], GViM [13],
Shadowfax [24], or Shadowfax II [6] may be used in VM
environments in order to address their current limita-
tions with respect to GPUs. These GPU virtualization
frameworks detach GPUs from nodes, thereby allow-
ing applications to access virtualized GPUs regardless
of the exact computer where they are being executed.
Thus, the detaching features of remote GPU virtualiza-
tion solutions may turn them into an easy and efficient

2 In addition to the GRID K1 GPU, NVIDIA has also
brought to market the GRID K2 model, which features 1536
CUDA cores per GPU and 4 GB of memory. However, this
amount of resources per GPU is still noticeable smaller than
the ones available in current NVIDIA Tesla K20 and K40
GPUs, featuring, respectively, 2496 and 2880 CUDA cores
and 5GB and 12GB of memory. Therefore, using the GRID
K2 device for providing acceleration to scientific applica-
tions instead of providing desktop virtualization would deliver
a significantly lower performance than current mainstream
GPUs used in HPC servers, such as the K20 or K40 GPUs.

3 KVMGT is the open source implementation of Intel’s
GPU Virtualization Technology for KVM VMs.

way to overcome the current limitations of VMs regard-
ing the use of GPUs as accelerators.

The aim of this study is to assess the overhead that
applications experience when accessing GPUs outside
their Xen VM by using the remote GPU virtualization
approach. To that end, we investigate two different sce-
narios. In the first one, an application within a VM
accesses a GPU located in the same computer host-
ing it. In the second scenario we assume that a high
performance network fabric such as InfiniBand (IB) is
available in the cluster and the application running in-
side the VM accesses a GPU located in another cluster
node. In this study we use the rCUDA remote GPU vir-
tualization middleware because it was the sole solution
able to run the applications considered in our analy-
sis. As can be seen, the main contribution of this paper
is testing the performance of the rCUDA remote GPU
virtualization middleware in the context of Xen VMs.

The rest of the paper is organized as follows. Sec-
tion 2 thoroughly reviews previous efforts to provide
GPU acceleration to applications being executed inside
VMs and further motivates the use of general GPU vir-
tualization frameworks to provide CUDA acceleration
to VMs. Later, Section 3 introduces rCUDA in more de-
tail whereas Section 4 presents the experimental setup
used in this paper. Section 5 analyzes the network per-
formance observed by Xen VMs when making use of
the virtual network connecting VMs within a host as
well as the performance of the InfiniBand interconnect.
Section 6 uses these results to analyze the performance
of rCUDA when used from the inside of Xen VMs.
Next, Section 7 addresses the main goal of this paper:
studying the throughput of real GPU-accelerated ap-
plications when executed within Xen VMs. A synthetic
benchmark is also leveraged in order to emulate several
interesting features of application behaviour. Finally,
Section 8 summarizes the main conclusions of our work.

2 Providing CUDA GPUs to Virtual Machines

Providing CUDA acceleration to VMs can be accom-
plished by making use of the PCI passthrough tech-
nique [43, 46]. This mechanism is based on the use of
the virtualization extensions widely available in current
HPC servers, which allow assigning a GPU, in an ex-
clusive way, to one of the VMs running at the host.
Furthermore, when making use of this mechanism, the
performance attained by accelerators is very close to
that obtained when using the GPU in a native domain.
Unfortunately, as this approach assigns GPUs to VMs
in an exclusive way, only one of the VMs can access the
GPU. This means, for instance, that for the CG1 VM
instances of Amazon, which make use of the M2050
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NVIDIA GPU, only one of the VMs being executed
in a given host can be assigned the GPU at the same
time. This exclusive assignment of the GPU to a single
VM causes an underutilization of resources because the
computation capabilities of the GPU cannot be lever-
aged by other VMs when the VM that owns the GPU
does not use it. Furthermore, this exclusive assignment
means that the amount of CG1 VM instances that can
be concurrently in execution in a given node is limited
by the amount of GPUs installed in that node. This
limits the economic profit that a data center can ob-
tain from the underlying hardware, causing that the
initial investment requires more time to be amortized.

To address the concern about the exclusive assign-
ment of GPUs to VMs, there have been several at-
tempts, like the one proposed in [14], which dynamically
changes on demand the GPUs assigned to VMs. How-
ever, these techniques present two important concerns:
(1) a high time overhead is generated given that, in the
best case, two seconds are required to change the assign-
ment between GPUs and VMs; (2) These techniques do
not address the impossibility of sharing GPUs among
several VMs simultaneously.

For these reasons, several software-based GPU shar-
ing mechanisms have appeared, such as, for example,
V-GPU, DS-CUDA, rCUDA, vCUDA, and GridCuda.
Basically, these middleware proposals share a GPU by
virtualizing it, so that these middleware systems pro-
vide applications (or VMs) with virtual instances of the
real device, which can therefore be concurrently shared.
Usually, these GPU sharing solutions place the virtual-
ization boundary at the API level4 (CUDA [26] in the
case of NVIDIA GPUs). In general, CUDA-based vir-
tualization frameworks aim to offer the same API as
the NVIDIA CUDA Runtime API [27] does.

Figure 1 depicts the architecture usually deployed
by these GPU virtualization solutions, which follow a
distributed client-server approach. The client part of
the middleware is installed in the domain (either native
or virtual)5 executing the application requesting GPU
services, whereas the server side runs in the domain
owning the actual GPU. Communication between client
and server may be based on shared-memory mecha-

4 In order to interact with the virtualized GPU, some kind
of interface is required so that the application can access the
virtual device. This interface could be placed at different lev-
els. For instance, it could be placed at the driver level. How-
ever, GPU drivers usually employ low-level protocols which,
additionally, are proprietary and strictly closed by GPU ven-
dors. Therefore, a higher-level boundary must be used. This
is why the GPU API is commonly selected for placing the
virtualization boundary, given that these APIs are public.

5 The native domain refers to a scenario where virtualiza-
tion is not used, that is, a real computer is leveraged. On the
other hand, the virtual domain refers to the virtual machine.

Application

Client middleware
CUDA libraries 

Server
middleware

Hardware

Software

Client side Server side

GPU

CUDA Runtime API

Communication
Channel

GPU

Fig. 1 Typical architecture used by GPU virtualization so-
lutions.

nisms or on the use of a network fabric, depending on
the exact features of the GPU virtualization middle-
ware and the underlying system configuration.

The architecture depicted in Figure 1 is used in the
following way: the client middleware receives a CUDA
request from the accelerated application and appropri-
ately processes and forwards it to the server middle-
ware. In the server side, the middleware receives the re-
quest and interprets and forwards it to the GPU, which
completes the execution of the request and returns the
execution results to the server middleware. Finally, the
server sends back the results to the client middleware,
which forwards them to the accelerated application. No-
tice that GPU virtualization solutions provide GPU ser-
vices in a transparent way and, therefore, applications
are not aware that their requests are actually serviced
by a virtual GPU instead of by a local one. The follow-
ing piece of code shows an example of a CUDA program
that we will use to further explain how the architecture
in Figure 1 works.

1 #include <cuda . h>
2 #include <std i o . h>
3 const int N = 8 ;

5 // Function tha t w i l l be executed in the GPU
6 __global__ void my_gpu_function ( int ∗a , int ∗b)
7 {
8 b [ threadIdx . x ] = a [ threadIdx . x ] ∗ 2 ;
9 }

11 int main ( )
12 {
13 int a [N] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7} ;
14 int ∗ad , ∗bd ;
15 const int i s i z e = N∗ s izeof ( int ) ;

17 // Perform some computations in the CPU
18 CPU code 1
19 CPU code 2
20 . . .

23 // Al locate GPU memory
24 cudaMalloc ( (void∗∗)&ad , i s i z e ) ;
25 cudaMalloc ( (void∗∗)&bd , i s i z e ) ;

27 // Copy data to GPU memory
28 cudaMemcpy( ad , a , i s i z e ,

cudaMemcpyHostToDevice ) ;
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30 // Run funct ion in the GPU
31 my_gpu_function<<<1, N>>>(ad , bd) ;

33 // Copy r e s u l t s from GPU memory
34 cudaMemcpy( b , bd , i s i z e ,

cudaMemcpyDeviceToHost ) ;

36 // Free GPU memory
37 cudaFree ( ad ) ;
38 cudaFree ( bd ) ;

40 return 0 ;
41 }

When the previous program is executed, not using
a GPU virtualization framework, the CUDA library
is loaded. However, when the program is executed to
make use of a virtual GPU, the original CUDA library
by NVIDIA is not loaded but another library with the
same name is loaded. This other library contains a set
of wrappers to the original CUDA functions that take
care of the virtualization process. In this way, all the
CPU code is executed in the same way as before but
as soon as a call to a CUDA function is performed, the
appropriate wrapper in the second library is called. For
example, when the cudaMalloc function in line 24 is
called, the wrapper for that function receives the ar-
guments and forwards them to the middleware server,
along with the function code assigned to the cudaMal-
loc function. Once the function code and the arguments
arrive at the middleware server, the actual cudaMalloc
function is executed in the real GPU by making use of
the received arguments and the result of the call (status
code) is collected. This status code is sent back to the
client middleware, which is waiting for it. Upon recep-
tion of the status code, the client middleware delivers
it to the application which continues with the execu-
tion of the program. The rest of CUDA calls shown in
the example code in lines 25, 28, 31, 34, 37, and 38 are
processed in a similar way.

CUDA-based GPU virtualization frameworks may
be classified into two types: (1) those intended to be
used in the context of VMs and (2) those devised as
general purpose virtualization solutions, to be used in
native domains (notice that these latter solutions may
also be used within VMs). Middleware systems in the
first category usually make use of shared-memory mech-
anisms in order to transfer data from main memory in-
side the VM to the GPU in the native domain, whereas
the general purpose virtualization solutions in the sec-
ond type make use of the network fabric in the cluster
to transfer data from main memory in the client side
to the remote GPU located in the server. This is why
these latter solutions are commonly known as remote
GPU virtualization middleware systems.

Regarding the first type of GPU virtualization so-
lutions mentioned above, several frameworks have been

developed, as for example vCUDA, GViM, gVirtuS, and
Shadowfax. The vCUDA technology, intended for Xen
VMs, only supports the old CUDA version 3.2 and im-
plements an unspecified subset of the CUDA Runtime
API. Moreover, its communication protocol presents a
considerable overhead, because of the cost of the encod-
ing and decoding stages, which causes a noticeable drop
in overall performance. GViM, targeting Xen VMs, is
based on the obsolete CUDA version 1.1 and, in prin-
ciple, does not implement the entire CUDA Runtime
API. gVirtuS is based on the old CUDA version 6.5
and implements only a small portion of its API. De-
spite being designed for VMs, it also provides TCP/IP
communications for remote GPU virtualization, thus al-
lowing applications in a non-virtualized environment to
access GPUs located in other nodes. Regarding Shad-
owfax, this solution allows Xen VMs to access the GPUs
located at the same node, although it may also be used
to access GPUs at other nodes of the cluster. It supports
the obsolete CUDA version 1.1. Notice that among the
virtualization frameworks decribed in this group, only
the gVirtuS solution is publicly available.

In the second type of virtualization solutions men-
tioned above, which provide general purpose GPU vir-
tualization, one can find rCUDA, V-GPU, GridCuda,
DS-CUDA, and Shadowfax II. rCUDA, further described
in Section 3, features CUDA 8.0 and provides specific
communication support for TCP/IP compatible net-
works as well as for InfiniBand and RoCE fabrics. V-
GPU is a recent tool supporting CUDA 4.0. Unfortu-
nately, the information provided by the V-GPU authors
is fuzzy and there is no publicly available version that
can be used for testing and comparison. GridCuda also
offers access to remote GPUs in a cluster, but supports
the old CUDA version 2.3. Moreover, there is currently
no publicly available version of GridCuda that can be
used for testing. Regarding DS-CUDA, it integrates an
old version of CUDA (4.1) and includes specific commu-
nication support for InfiniBand. However, DS-CUDA
presents several strong limitations, such as not allowing
data transfers with pinned memory. Finally, Shadowfax
II is still under development, not presenting a stable
version yet and its public information is not updated
to reflect the current code status. Among these remote
GPU virtualization solutions, only the DS-CUDA and
rCUDA frameworks are publicly available.

In order to provide a comprehensive comparison among
the different GPU virtualization solutions described in
this section, Figure 2 presents a performance compari-
son of the three publicly available GPU virtualization
solutions: DS-CUDA, rCUDA, and gVirtuS. This figure
also shows the performance of CUDA as the baseline
reference. The widely used bandwidthTest benchmark
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(a) Copies from host pinned memory to device memory.
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(b) Copies from device memory to host pinned memory.

0 

1000 

2000 

3000 

4000 

0 10 20 30 40 50 60 

B
an

d
w

id
th

 (
M

B
/s

) 

Transfer Size (MB) 

CUDA rCUDA GVirtuS  DS-CUDA 

(c) Copies from host pageable memory to device memory.
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(d) Copies from device memory to host pageable memory.

Fig. 2 Performance comparison among three different GPU virtualization solutions: gVirtuS, DS-CUDA, and rCUDA. The
comparison is performed in terms of attained bandwidth. The performance of CUDA is also depicted. Tests have been carried
out in native domains with the hardware and software settings described in Section 4.

from the NVIDIA CUDA Samples [25] has been em-
ployed. The reason for using bandwidth for measuring
performance is that, when transferring data between
main memory and GPU memory, data copy sizes are,
in general, large (in the order of MB) as it will be shown
in Section 7. These large data transfers are mostly influ-
enced by attained bandwidth, which turns out to be the
most limiting factor regarding the performance of these
solutions. Consequently, other metrics such as latency
are less relevant in this context.

The testbed employed for carrying out the perfor-
mance experiments is the one described in Section 4,
although no virtual machine has been used in order to
simplify the experiments. In this way, the bandwidth
test was run in a native domain whereas the server
side of the middleware systems was executed in a re-
mote computer. The InfiniBand FDR network technol-
ogy was used to connect both computers. Therefore,
both the rCUDA and DS-CUDA middleware systems
made use of the InfiniBand Verbs API. In the case of
gVirtuS, given that it is not able to take advantage of
the InfiniBand Verbs API, TCP/IP over InfiniBand was
used.

One additional consideration to be made regarding
the experiments shown in Figure 2 is that the three
GPU virtualization middleware systems analyzed sup-
port different versions of CUDA. Thus, each of the
frameworks has been analyzed with the respective ver-
sion of CUDA supported. In this regard, it is important
to remark that, in order to avoid introducing additional
noise in this particular test, we have previously com-
pared the bandwidth achieved by the three versions of
CUDA used and the result is that differences in perfor-
mance for the bandwidth test are negligible from one
CUDA version to another.

Results in Figure 2 deserve some discussion. First,
it can be seen that CUDA achieves the highest per-
formance when pinned memory is used (Figures 2(a)
and 2(b)), attaining a bandwidth around 6000 MB/s.
Notice that this bandwidth is reduced for copies using
pageable memory (Figures 2(c) and 2(d)). Second, Fig-
ure 2 shows that rCUDA outperforms the other two re-
mote GPU virtualization solutions. Actually, for copies
from host to device memory using pageable memory
rCUDA also performs better than CUDA. This is a well-
known effect thoroughly described in previous works
on rCUDA [36] and is due to the use of an efficient
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pipelined communication based on the use of internal
pre-allocated pinned memory buffers. On the other hand,
notice that both rCUDA and DS-CUDA make use of
the InfiniBand Verbs API, thus having access to the
large bandwidth available in this interconnect. How-
ever, although rCUDA is able to struggle an important
fraction of the available bandwidth, DS-CUDA presents
a relatively poor performance. Therefore, it must be
assumed that the difference in bandwidth is due to
the different way that both GPU virtualization solu-
tions manage the InfiniBand interconnect. Also notice
that DS-CUDA supports neither memory copies larger
than 32MB nor the use of pinned memory. Futher-
more, notice that the performance of gVirtuS is ex-
tremely low. One may think that this is due to the
fact that gVirtuS is using TCP/IP over InfiniBand,
which clearly achieves lower performance than the In-
finiBand Verbs API. However, according to our mea-
surements with the iperf tool [2], when TCP/IP is used
over InfiniBand FDR, a bandwidth around 1190 MB/s
is achieved, which is a noticeably larger bandwidth than
the one attained by gVirtuS. Hence, the low perfor-
mance of this middleware is not only due to the use of
TCP/IP over InfiniBand but also to the way it inter-
nally manages communications.

As a final consideration for this review section, it is
important to remark that although remote GPU virtu-
alization has traditionally introduced a non-negligible
overhead, given that applications do not access GPUs
attached to the local PCI Express (PCIe) link but rather
access devices that are installed in other nodes of the
cluster (traversing a network fabric with a lower band-
width), this performance overhead has significantly been
reduced thanks to the recent advances in networking
technologies. For example, the rCUDA middleware is
able to achieve 98% [34] of the native bandwidth of the
Tesla K40 GPU when making use of FDR dual-port net-
work adapters (providing 12.5GB/s of effective band-
width) [22]. In the case of using the previous generation
of these technologies, NVIDIA Tesla K20 GPUs and
InfiniBand FDR single-port network adapters (6GB/s
of effective bandwidth) [21], Figure 2 shows that band-
width attained by rCUDA is very close to that of CUDA,
except for copies from device to host memory using
pageable memory, which still need some refinement.
Therefore, when using remote GPU virtualization so-
lutions, the path communicating main memory in the
computer executing the application and the remote ac-
celerator presents, in general, a bandwidth similar to
that initially attained by the original CUDA approach
of using local GPUs.

3 rCUDA: Remote CUDA

As already mentioned in the introduction section, we
use in this study the rCUDA middleware given that
it was the only one able to run the applications ana-
lyzed in this paper, as well as being the most up-to-date
solution, providing also the best performance among
the different publicly available GPU virtualization so-
lutions. In this section we introduce rCUDA in more
detail.

The rCUDAmiddleware supports version 8.0 of CUDA,
being binary compatible with it, which means that CUDA
programs do not need to be modified for using rCUDA.
Furthermore, it implements the entire CUDA Runtime
API (except for graphics functions). rCUDA also pro-
vides support for the CUDA Driver API. Additionally,
is also supports the libraries included within CUDA,
such as cuFFT, cuBLAS, or cuSPARSE. Moreover, the
rCUDA middleware allows a single rCUDA server to
concurrently deal with several remote clients that si-
multaneously request GPU services. This is achieved
by creating independent GPU contexts, each of them
being assigned to a different client [37]. These indepen-
dent GPU contexts also provide robustness against the
failure of one the clients.

rCUDA additionally provides specific support for
different interconnects [37]. Support for different un-
derlying network fabrics is achieved by making use of
a set of runtime-loadable, network-specific communica-
tion modules, which have been specifically implemented
and tuned in order to obtain as much performance as
possible from the underlying interconnect. Currently,
three modules are available: one intended for TCP/IP
compatible networks, another one specifically designed
for InfiniBand, and a third one intended for RoCE net-
works.

Regarding the InfiniBand and RoCE communica-
tions modules, they are based on the InfiniBand Verbs
(IBV) API. This API offers two communication mech-
anisms: the channel semantics and the memory seman-
tics. The former refers to the standard send/receive op-
erations typically available in any networking library,
while the latter offers RDMA operations where the ini-
tiator of the operation specifies both the source and des-
tination of a data transfer, resulting in zero-copy trans-
fers with minimum involvement of the CPUs. rCUDA
employs both IBV mechanisms, selecting one or the
other depending on the exact task to be carried out [37].

Moreover, regardless of the exact network used, data
exchange between rCUDA clients and GPUs managed
by rCUDA servers is pipelined so that higher band-
width is achieved, as explained in [36]. Internal pipeline
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Fig. 3 Typical configuration of a Xen-based system showing
how the Ethernet adapter and the GPU available in the host
are provided to VMs. The GPU is exclusively assigned to a
single VM by making use of the PCI passthrough mechanism.
Network connectivity among VMs and between VMs and the
external network is provided by means of a software bridge
that connects the internal virtual network to the real Ethernet
adapter.

buffers within rCUDA use pre-allocated pinned mem-
ory given the higher throughput of this type of memory.

Finally, notice that previous works such as [36, 34]
have already measured the bandwidth attained by rCUDA.
However, the results presented in this paper are new,
mainly because the context of the performance mea-
surements is different. In previous works the focus was
on assessing the performance of rCUDA on native do-
mains, whereas in this work the focus is on stating the
throughput of rCUDA on Xen VMs. Notice also that
the analysis presented in Section 7 regarding real appli-
cations is, again, focused on the use of rCUDA within
Xen VMs, what was not previously studied in other
works. Finally, notice that although in this paper we
focus on analyzing the effect of using rCUDA in Xen
VMs, rCUDA can also be used with other hypervisors.
For instance, in [30] the rCUDA middleware was used
in the context of the KVM hypervisor. Other VM envi-
ronments such as VMware or VirtualBox could also be
leveraged.

4 Testbeds Used in The Experiments

In this work we consider several scenarios in order to
provide Xen VMs with access to CUDA accelerators by
using the rCUDAmiddleware. Figure 3 depicts a typical
Xen configuration, showing a computer hosting several
VMs. It can be seen in the figure that the host hardware
comprises, among other devices, an Ethernet network
adapter and a GPU. On top of the hardware, a thin soft-
ware layer (the Xen hypervisor) is installed. Above the
hypervisor we can find the VMs (Dom0 and DomUi).
Notice that the Dom0 VM is a predefined VM using
the Xen Linux kernel and behaves as the configuration
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vETH vETH vETH

ETH0

P
C

I P
T

GPU

rCUDA server

vGPU vGPU

GPU

TCP TCP TCPToolstack

Control Domain

Scheduler, MMU

SW BRIDGE

rCUDA client rCUDA client

(a) Testbed using the virtual network within Xen.
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(b) Testbed using InfiniBand to access a remote GPU.

Fig. 4 Testbeds used in the experiments presented in this
paper, which make use of rCUDA to provide GPU access to
VMs. (a) In a single-node testbed, VMs employ the virtual
network to access the rCUDA server by means of the TCP/IP
protocol stack. (b) When an InfiniBand fabric is available,
VMs use such interconnect to access a remote rCUDA server.

and management interface to the hypervisor. The rest
of VMs (from DomU1 to DomUn) are unprivileged VMs
that can be provided to users. Figure 3 shows how the
Ethernet adapter and the GPU are provided to VMs.
On the one hand, the Ethernet adapter is owned by the
Dom0 VM, which provides connectivity to the rest of
VMs by using a software Ethernet bridge, thus creating
a virtual network among the VMs. On the other hand,
the GPU is assigned, in an exclusive way, to one of
the VMs by making use of the PCI passthrough (PT)
mechanism. In this manner, this VM is the only one
that may access the GPU, as mentioned in Section 2.
It is noteworthy the small flexibility that this configu-
ration provides regarding the use of GPUs, given that
only one of the VMs can access the GPU.

Once revisited the typical configuration of a Xen-
based system, we can describe the testbeds used in the
experiments presented in this paper. Notice that we are
considering the use of the rCUDA remote GPU virtu-
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alization solution in two different scenarios: one where
VMs access a GPU located at the same host executing
the VMs and another one where the InfiniBand fabric
is already present in the cluster and therefore VMs ac-
cess a GPU installed in another cluster node by making
use of this high performance interconnect. Figure 4(a)
depicts the first scenario whereas Figure 4(b) presents
the second one.

In the first scenario, one of the VMs will have ex-
clusive access to the GPU by making use of the PCI
passthrough mechanism. This VM will grant GPU ac-
cess to the other VMs by using the rCUDA middle-
ware: the rCUDA server will be executed in the VM
owning the GPU whereas the other VMs will use the
rCUDA client to access the GPU across the virtual
Xen network. TCP/IP based communications will be
used in this scenario to communicate the rCUDA clients
with the rCUDA server. Accordingly, VMs running the
rCUDA client will have one or several virtual instances
(vGPU) of the real GPU, which is physically connected
to the VM DomU1. Moreover, the VM DomU1 will be
able to use either the real GPU or its virtual instances.
Finally, notice that the real GPU can only be assigned
to a DomUi VM because NVIDIA does not provide sup-
port for the Xen Linux kernel used in the Dom0 VM.

Regarding the second scenario, shown in Figure 4(b),
which uses the InfiniBand fabric already present in the
cluster to access a GPU in another node, the firmware
in the InfiniBand adapter has been changed, accord-
ing to the directions in Mellanox User’s Guide [23], in
order to provide several virtual instances (virtual func-
tions, VF) of the InfiniBand adapter, in addition to the
real instance (physical function, PF). Each of these vir-
tual functions will be provided, in an exclusive way, to
a Xen VM by using the PCI passthrough mechanism.
Moreover, given that an InfiniBand network is avail-
able, communication between the rCUDA clients in the
VMs and the remote rCUDA server will be based on
the use of the high performance InfiniBand Verbs API.
Notice that in all the experiments involving the Infini-
Band fabric, the remote GPU server is executed in a
remote computer which has not been virtualized and
also whose InfiniBand network adapter makes use of the
original firmware which does not provide virtualization
features. Similarly to the scenario shown in Figure 4(a),
VMs will have one or several virtual instances of the
real GPU, which is physically located in the remote
node. Finally, it is important to remark that, although
in this work we only consider sharing a single GPU, the
rCUDA middleware also allows sharing multiple GPUs.

In addition to the two scenarios depicted in Figure 4,
a third scenario that could also be considered would
consist of a remote rCUDA server accessed through the

1Gbps Ethernet network usually available in the cluster
instead of leveraging the InfiniBand interconnect. No-
tice, however, that although this configuration is also
valid, and VMs would have access to GPUs, the low per-
formance of the 1Gbps Ethernet network would signif-
icantly increase the execution time of applications be-
ing executed inside VMs. Actually, as shown in [35], the
performance of applications using remote GPUs across
the 1Gbps Ethernet interconnect is noticeably reduced
with respect to the use of a local GPU with CUDA.
Therefore, in this work we will not consider this third
scenario.

The testbed used in this paper to explore the use of
the remote GPU virtualization mechanism inside Xen
VMs is composed of three 1027GR-TRF Supermicro
nodes. One of them will host the Xen VMs whereas the
other two nodes will not make use of VMs. In one of
the native domains we will execute the rCUDA server
as shown in Figure 4(b) and the other native domain
will be used for several comparison purposes. Each of
the servers includes two Intel Xeon E5-2620 v2 proces-
sors (six cores with Ivy Bridge architecture) operat-
ing at 2.1 GHz and 32 GB of DDR3 SDRAM memory
at 1600 MHz. They also have a Mellanox ConnectX-3
VPI single-port InfiniBand adapter connected to a Mel-
lanox Switch SX6025 (InfiniBand FDR compatible) to
exchange data at a maximum rate of 56 Gb/s. Further-
more, an NVIDIA Tesla K20 GPU is installed at each
node.

Regarding the software configuration, SUSE Linux
Enterprise Server 11 SP3 (x86_64) was used in the
three servers, with kernel version 3.0.76-0.11. Addition-
ally, in the node hosting the VMs, Xen version 4.2.2 was
used. The same kernel version was used in the Dom0
and all the DomU domains, although for Dom0 the ker-
nel was recompiled in order to activate the Xen options.
Moreover, the Mellanox OFED 2.3-1.0.1 (InfiniBand
drivers and administrative tools) was used, along with
CUDA 6.5 and NVIDIA driver 340.29. Finally, VMs
were configured to have 4 cores and 12 GB of RAM
memory.

5 Network Performance Observed by Xen VMs

When making use of remote GPU virtualization solu-
tions, the bandwidth characteristics of the communica-
tion path between main memory, in the client computer,
and GPU memory, in the GPU server, greatly influence
the performance of data transfers between them. In this
section we present the bandwidth numbers achieved by
the interconnects used in our study. These results will
help us to better understand the behavior of rCUDA
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Fig. 5 Bandwidth attained by the virtual network among
Xen VMs.

within Xen VMs when used in conjunction with GPU-
accelerated applications, later analyzed in Sections 6
and 7.

In this paper we consider the two scenarios shown
in Figure 4. In the first one, see Figure 4(a), the virtual
network among VMs is used to exchange data among
rCUDA clients and servers using TCP/IP. We have an-
alyzed the performance of this network by using the
iperf tool [2]. Figure 5 shows the bandwidth attained
by this network as transfer size increases. The figure
also includes, for comparison purposes, the performance
of the widely available 1 Gbps Ethernet when used from
the inside of a VM. In this case, the virtualization fea-
tures included in the Xen framework have been lever-
aged in order to provide the Ethernet adapter to the
VM. It can be seen in the figure that the virtual net-
work provides much higher bandwidth than the Eth-
ernet one, achieving even higher bandwidth than the
10Gbps Ethernet. In this regard, notice that starting
from transfer sizes equal to 32KB, the performance of
the virtual network almost reaches 1600 MB/s.

With respect to the second scenario, shown in Fig-
ure 4(b), a wider analysis is required, given the different
possibilities that the use of the InfiniBand cards brings
in this context. In this scenario, InfiniBand Verbs are
used over virtual instances of the InfiniBand network
card in order to communicate the rCUDA client and
server. For this reason, the performance of the virtual-
ized InfiniBand network card is next compared to the
performance of the non-virtualized one. The ib_read_bw,
ib_write_bw, and ib_send_bw benchmarks from the
Mellanox OFED software distribution were used in or-
der to mimic the use that the rCUDA framework makes
of the InfiniBand fabric [36]. In this regard, the ib_read_bw
and ib_write_bw tests use the memory semantics (i.e.,
RDMA read and RDMA write, respectively), whereas
the ib_send_bw test makes use of the channel semantics
(i.e., send/receive).

Figure 6 shows the bandwidth achieved by the In-
finiBand card for different transfer sizes in the scenario
depicted in Figure 4(b). The behavior of the memory
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Fig. 6 InfiniBand bandwidth tests using ConnectX-3 net-
work cards executed in the different scenarios under study.

semantics (RDMA) is shown in Figure 6(a), where only
results for the RDMA write case are presented, given
that the RDMA read benchmark provided very similar
performance. Figure 6(b) shows the channel semantics
bandwidth (non-RDMA) when using the ib_send_bw
benchmark. For comparison purposes, in the experi-
ments carried out with this scenario, we have also con-
sidered the performance attained when the tests are
executed in the Dom0 VM using both the physical func-
tion of the InfiniBand adapter, labeled as “PF Dom0”,
and also one of the virtual functions, labeled as “VF
Dom0”. In a similar way, results labeled as “VF DomU”
refer to the use of a virtual function of the InfiniBand
adapter card from the inside of a regular DomU VM.
Finally, results labeled as “No SR-IOV” have been in-
cluded for comparison purposes and refer to the use
of a non-virtualized InfiniBand card from a native do-
main. Notice that the bars shown in the figure rep-
resent the average of 10 executions of the bandwidth
tests configured to perform 20,000 repetitions at each
run. Furthermore, this information is complemented,
for each transfer size, with the 95% confidence inter-
vals (although these intervals are quite small and can
be only distinguished for some of the transfer sizes).

As we can see in Figure 6, the shapes of the band-
width attained in all the cases under study are, in gen-
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Fig. 7 Bandwidth tests for copies between host and device memory, using CUDA and the rCUDA middleware. Tests have
been carried out in the different scenarios depicted in Figure 4 as well as in native domains.

eral, quite similar. Therefore, we can conclude that both
the verbs using channel semantics (non-RDMA) and
the ones using memory semantics (RDMA) provide sim-
ilar bandwidth regardless of whether the network card
is virtualized or not and also regardless of whether the
network card is used from a Dom0 VM or from a DomUi

VM.

6 Performance of rCUDA within Xen VMs

In this section we explore the performance of the rCUDA
middleware when used in the context of Xen VMs.

We employ the performance of CUDA as the base-
line reference in this analysis, since minimizing the over-
head with respect to the performance of CUDA is the
goal of any remote GPU virtualization solution. There-
fore, we will make use of the bandwidthTest benchmark
from the NVIDIA CUDA Samples [25] to transfer data
from main memory in the client VM to the Tesla K20
GPU (located either in other VM or in a remote real
server). In order to use the proper hardware configura-
tion for the baseline CUDA reference, we made use of
a configuration which uses the GPU local to the node
executing the benchmark, in the traditional way and
within a native domain (no Xen VM). Results for this
case are referred to as “CUDA non-VM” in Figure 7. In

a similar way, when CUDA is used in DomU1 in the sce-
nario depicted in Figure 3 by using the PCI passthrough
mechanism, the label “CUDA VM PT” is used. Regard-
ing the performance of rCUDA, the label “rCUDA non-
VM” refers to the performance of the rCUDA middle-
ware when used between native domains (no Xen VM
involved) making use of the InfiniBand network. These
curves are included for comparison purposes. When Xen
VMs are involved in the tests, the label “rCUDA VM
IB” refers to the performance of rCUDA when used in
the scenario shown in Figure 4(b). Finally, the perfor-
mance of rCUDA in the scenario depicted in Figure 4(a)
is denoted by the label “rCUDA VM Local”.

Figure 7 presents bandwidth results for copies in the
host-to-device6 direction and also for the opposite di-
rection, using both pinned and pageable host memory.
Results in Figure 7 are the average from 10 executions
of the CUDA bandwidthTest test configured to per-
form 1000 repetitions at each execution. The 95% con-
fidence intervals were also computed, although in this
case the variability is very small and thus the value
of these intervals is, in average, 1.95%, what suggested

6 In this work, we will refer to main memory as host mem-
ory or just host, while GPU memory will be referred as device
memory or simply device, according to the well-established
usage defined in the CUDA ecosystem.
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not to include them in the figures given that these small
confidence intervals were going to be hardly visible.

The bandwidth results for pinned memory, presented
in Figures 7(a) and 7(b), show that the bandwidth at-
tained for CUDA copies in the native domain and in
the Xen VM using PCI passthrough present almost the
same performance. In the case of rCUDA using Infini-
Band to communicate with a remote GPU server, a
slightly smaller bandwidth is achieved. Finally, when
rCUDA is used employing the virtual network among
VMs, maximum bandwidth for the CUDAmemory copies
is slightly lower than the one obtained when using the
iperf tool, shown in previous section.

Regarding the use of pageable memory, it can be
seen in Figures 7(c) and 7(d) that in the case of copies
from host memory to device memory, there is an im-
portant difference between the performance achieved
by CUDA in the native domain and that obtained in
the Xen VM using the PCI passthrough mechanism,
since performance in the former doubles the bandwidth
in the latter. Nevertheless, this effect does not appear in
the opposite direction (Figure 7(d)), where both cases
present almost the same performance. Regarding the
use of rCUDA when the InfiniBand network is lever-
aged, the ratio between the performance obtained in
the native domain and that in the VM follows the same
trend as for CUDA: the native domain attains twice
the performance achieved in the VM. With respect to
the performance of rCUDA when the virtual network is
used along with TCP/IP based communications, Fig-
ure 7(c) shows that this scenario achieves the lowest
bandwidth, as it was expected from the results shown
in Figure 5. On the other hand, when the device-to-host
direction is considered, results are quite different. First,
the performance of the baseline CUDA and that of
CUDA when used within a VM with PCI passthrough
are very similar. Second, the performance of rCUDA
in the native and virtualized domains follow the same
trend as for the host-to-device direction, but now per-
formance is noticeably reduced. Third, the bandwidth
results of rCUDA when the virtual network is used are
similar to the performance achieved in the opposite di-
rection.

In summary, we can conclude that the bandwidth
attained by PCI passthrough is almost identical to the
one achieved by CUDA, except for copies from host
pageable memory to device memory, where the band-
width is reduced to the half. On the other hand, rCUDA
over the Xen virtual network results in a very stable be-
havior in all the scenarios, the bandwidth being limited
by the network performance (see Figure 5). Finally, the
bandwidth obtained by rCUDA over an InifiniBand net-
work is very close to that of CUDA when using pinned

host memory, regardless of whether accessing the re-
mote GPU from a VM or from a native domain. In the
case of pageable host memory, the bandwidth when ac-
cessing the GPU from a VM is reduced to the half of
the one obtained by rCUDA without using VM. This
reduction in the performance when involving the VM
is more evident in the case of copies from device mem-
ory to host memory, where the bandwidth obtained by
rCUDA using the VM is the same, regardless of using
the Xen virtual network or the InfiniBand one.

Next we analyze the effect of using rCUDA within
Xen VMs by making use of a synthetic application. The
purpose of using a synthetic application is to be able to
modulate the amount of data transferred between host
and device as well as controlling the amount of compu-
tations carried out in the GPU. In this way, it is possi-
ble to analyze the effect of rCUDA on application per-
formance when the application features different per-
centages of communications and computations. For in-
stance, it is possible to mimic communication intensive
applications by setting the amount of data transfers to
last 90% of the application execution time while keep-
ing computations to only 10% of execution time. On the
contrary, it is feasible to model compute intensive ap-
plications by setting the percentage of time devoted by
the application to data transfers to only 10% whereas
setting the percentage of time used for computations
to 90% of execution time. An intermediate case where
35% of the execution time is devoted to computations
in the GPU whereas 65% of the execution time is used
for data transfers is also possible. The opposite case,
with 65% of execution time used for computations and
35% of execution time employed in data transfers would
complete a thorough analysis with such a synthetic ap-
plication.

Figure 8 shows the performance results when the
synthetic application is used with several computation
and transfer percentages in the same scenarios previ-
ously described for Figure 7 (namely, “CUDA non-VM”,
“CUDA VM PT”, “rCUDA non-VM”, “rCUDA VM IB”,
and “rCUDA VM Local”). Figure 8(a) depicts the per-
formance results when the data transfers performed by
the application follow the host-to-device direction. Fig-
ure 8(b) shows the results when data transfers are car-
ried out in the opposite direction. Figure 8(c) presents
results when data transfers in both directions are used.
Furthermore, results in Figures 8(a), 8(b), and 8(c) take
into account the size of the data transfer, given that,
as shown in Figure 7, attained bandwidth depends on
the exact data transfer size. This is why different size
intervals are used for each figure. Each of the size in-
tervals shown in the figures (each of the bars) is the
average of 5 repetitions. Each of the repetitions makes
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a = "CUDA non-VM"
b = "CUDA VM PT"
c = "rCUDA non-VM"

d = "rCUDA VM IB"
e = "rCUDA VM Local"

(a) Data transfers are carried out from host pageable memory to device memory.

a = "CUDA non-VM"
b = "CUDA VM PT"
c = "rCUDA non-VM"

d = "rCUDA VM IB"
e = "rCUDA VM Local"

(b) Data transfers are carried out from device memory to host pageable memory.

a = "CUDA non-VM"
b = "CUDA VM PT"
c = "rCUDA non-VM"

d = "rCUDA VM IB"
e = "rCUDA VM Local"

(c) Data transfers are carried out in both directions: host to device and device to host using host pageable memory.

Fig. 8 Performance of a synthetic application where the percentage of execution time devoted to data transfers to/from the
GPU and the percentage of execution time used for computations in the GPU are set by the user. Notice that these percentages
are initially established for the executions using CUDA with a local GPU (case “a”) by defining the amount of data to be
transferred. For the rest of scenarios, this initial amount of data to be transferred is kept constant, thus producing a deviation
of the initial percentages. Furthermore, for each size interval, the exact size of data transfers is randomly set.

use of a randomly chosen data transfer size. Finally, no-
tice that the percentages of application execution time
devoted to data transfers and GPU computations are
initially set for the native CUDA scenario using a local
GPU (case “a” in the figures). This is achieved by set-
ting the amount of data to be transferred to/from the
GPU. In the rest of scenarios, that very same amount of
data is transferred. However, given that the underlying
communication channel to/from the GPU is different,
a deviation from the initial percentages is produced.
This deviation will allow us to determine the overhead
introduced by each scenario.

It can be seen in Figures 8(a), 8(b), and 8(c) that
the overhead of rCUDA greatly depends on the percent-
age of data transfers carried out during the execution
of the application. In this regard, the overhead intro-
duced by rCUDA when the application devotes 90%
of its execution time to data transfers is much higher
than when only 10% of the execution time is devoted

to data transfers. Additionally, as transfer sizes become
larger, the overhead introduced by rCUDA is reduced.
This result is consistent with the results shown in Fig-
ure 7. In a similar way, Figure 8(a) shows the effect
of having less bandwidth in the “CUDA VM PT” sce-
nario than in the “CUDA non-VM” configuration, as
already pointed out in Figure 7(c). Another interesting
remark about Figure 8(a) is that application perfor-
mance is better for the “rCUDA non-VM” case than
for the “CUDA non-VM” scenario. The reason is that
rCUDA achieves higher bandwidth than CUDA in the
native domains, as already shown in Figure 7(c). Fi-
nally, the lower bandwidth of rCUDA for the device-to-
host data copies, shown in Figure 7(d), is also visible
in Figure 8(b).
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(a) LAMMPS application.
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(b) CUDA-MEME application.
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(c) CUDASW++ application.
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(d) GPU-BLAST application.

Fig. 9 Execution time of several applications when executed in different local and remote scenarios. Execution time is broken
down into three components: GPU computation, GPU data transfer, and Other.

7 Impact of Xen VMs on Real Applications

In previous sections we have studied how the perfor-
mance of the Xen virtual network and that of the In-
finiBand ConnectX-3 network cards, when used from
the inside of Xen VMs, influence the performance of
the rCUDA remote GPU virtualization middleware. In
order to do so, we used synthetic benchmarks that al-
lowed us to focus on specific characteristics of the vir-
tualization solution. In this section we study how the
performance of these interconnects, along with the use
of Xen VMs, influence the execution time of real appli-
cations. Remember that this is the actual goal of our
work: to explore the use of the remote GPU virtualiza-
tion mechanism in order to provide CUDA acceleration
to applications running inside Xen VMs, and charac-

terizing such exploration by using as a metric the over-
head that applications experience when accessing GPUs
outside their Xen VM by using a remote GPU virtual-
ization framework. We consider two different types of
applications in this section: those making use of a single
GPU and those that offload computations to more than
one GPU. In next section we analyze the first kind of
applications. In Section 7.2 we will present performance
results for the second type of applications.

7.1 Applications Using One GPU

The applications analyzed in this section are LAMMPS [15],
CUDA-MEME [18], CUDASW++ [19], and GPU-BLAST [42],
listed in the NVIDIA GPU-Accelerated Applications
Catalog [28]:
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– LAMMPS is a molecular dynamics simulator that
can be used as a parallel particle simulator at the
atomic, mesoscopic, or continuum scale. For our tests
we use the release from Dec. 9, 2014, and bench-
marks in.eam and in.lj, with a factor scale of 5 in
all three dimensions.

– CUDA-MEME is a parallel formulation and imple-
mentation of the MEME motif discovery algorithm
using the CUDA programming model. In particu-
lar, we have used its latest release, version 3.0.15,
for our study, along with the test cases available in
the application website [17].

– CUDASW++ is a bioinformatics software for Smith-
Waterman protein database searches that takes ad-
vantage of the massively parallel CUDA architecture
of NVIDIA Tesla to perform sequence searches. In
particular, we have used its latest release, version
3.1, with the latest Swiss-Prot database and the ex-
ample query sequences available in the application’s
website.

– GPU-BLAST has been designed to accelerate the
gapped and ungapped protein sequence alignment
algorithms of the NCBI-BLAST implementation us-
ing GPUs. It is integrated into the NCBI-BLAST
code and produces identical results. We use the re-
lease 1.1 in our experiments, where we have followed
the installation instructions for sorting a database
and creating a GPU database. We then use the
query sequences that come with the application pack-
age to search the database.

Figure 9 shows the execution time of these four ap-
plications when executed in the same scenarios as in
the previous section: execution with CUDA with a lo-
cal GPU in a native domain (“CUDA non-VM”) and
within a Xen VM accessing the GPU in the host by
making use of PCI passthrough (“CUDA VM PT”).
In the case of rCUDA, the three scenarios considered
(“rCUDA non-VM”, “rCUDA VM IB”, and “rCUDA
VM Local”) refer to the ones already described in the
previous section. Every experiment has been performed
10 times, so that the figures show the averaged results.
Furthermore, the 95% confidence intervals were com-
puted, but they are so small that their inclusion in the
figures provided no additional important information.
In addition to execution time, the plots in the figure
also include a breakdown of the execution time, which
is split into three different components: (1) time re-
quired to transfer data to/from the GPU (“GPU Data
Transfer”), (2) time spent carrying out computations
in the GPU (“GPU Computation”), and (3) time spent
in tasks not involving the GPU, such as CPU compu-
tations and I/O (“Other”).

0%

2%

4%

6%

8%

10%

12%

O
ve

rh
ea

d
 P

er
ce

n
ta

g
e

GPU Computation

GPU Data Transfer

Other

C
U

D
A

 V
M

 P
T

rC
U

D
A

 n
o
n

-V
M

rC
U

D
A

 V
M

 I
B

rC
U

D
A

 V
M

 L
o
ca

l

C
U

D
A

 V
M

 P
T

rC
U

D
A

 n
o
n

-V
M

rC
U

D
A

 V
M

 I
B

rC
U

D
A

 V
M

 L
o
ca

l

C
U

D
A

 V
M

 P
T

rC
U

D
A

 n
o
n

-V
M

rC
U

D
A

 V
M

 I
B

rC
U

D
A

 V
M

 L
o
ca

l

C
U

D
A

 V
M

 P
T

rC
U

D
A

 n
o
n

-V
M

rC
U

D
A

 V
M

 I
B

rC
U

D
A

 V
M

 L
o
ca

l
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Fig. 10 Average overhead with respect to executions with
CUDA in a native domain for the four applications depicted
in Figure 9.

Execution times presented in Figure 9 show that
the four applications have a similar behavior, spending
a very small portion of time for transferring data to
the GPU, and spending the rest of the time performing
computations either in the CPU or in the GPU. More
specifically, in the case of GPU-BLAST and CUDA-
MEME applications, they present periods of time in
which the GPU is not used. On the contrary, both
LAMMPS and CUDASW++ keep the GPU busy for
almost all the execution time.

Figure 10 shows the average overhead with respect
to executions with CUDA in a native domain for the
four applications. This figure shows that rCUDA over-
head in LAMMPS, CUDASW++ and GPU-BLAST
applications is mainly due to data transfers between
main memory and GPU memory. Additionally to the
overhead of transfers, the CUDA-MEME application
also presents a performance decrease when using a VM
that makes use of the PCI passthrough technique. As
we can see, this additional overhead is not due to the
increase of GPU data transfer time, but to the time
spent in other tasks by the PCI passthrough technique
(referred to as “Other” in the figure), which are out of
the scope of this paper.

In general, the overhead of rCUDA is mainly due to
data transfers between main memory and GPU mem-
ory. This was expected because once data is in the GPU
memory, GPU computations require the same amount
of time to be completed as in a native environment.
In average, in our experiments, the overhead of run-
ning GPU-accelerated applications in a Xen VM with
respect to a native domain is 2%, 2.8%, and 5.8% when



On the Effect of using rCUDA to Provide CUDA Acceleration to Xen Virtual Machines 15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(0MB-T2MB) [2MB-4MB) [4MB-8MB) [8MB-16MB) [16MB-32MB) [32MB-inf)

G
P

U
 D

at
a 

Tr
an

sf
e

r

LAMMPS

CUDASW++

GPU-BLAST

CUDA-MEME

(a) Copies from host pageable memory to device memory.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(0MB-T2MB) [2MB-4MB) [4MB-8MB) [8MB-16MB) [16MB-32MB) [32MB-inf)

G
P

U
 D

at
a 

Tr
an

sf
e

r

LAMMPS

CUDASW++

GPU-BLAST

CUDA-MEME

(b) Copies form device memory to host pageable memory.

Fig. 11 Histograms showing the percentage of transferred
data according to message size.

using PCI passthrough, rCUDA over an InfiniBand fab-
ric, and rCUDA over the Xen virtual network, respec-
tively.

Once the main cause of the overhead has been stud-
ied, a deeper analysis is necessary to characterize the
behavior of each application. In this regard, as shown
in Figure 7, time required for data transfers varies de-
pending on the copy direction (to or from GPU mem-
ory) and the memory type (pageable or pinned mem-
ory). In order to analyze the influence of these different
transfer bandwidths on application execution time, Ta-
ble 1 presents the total amount of data transferred in
each direction, as well as the memory type. As we can
observe, none of the applications uses pinned memory.
Additionally, given that bandwidth attained for data
copies also depends on transfer size, Figure 11 depicts
how the total amount of transferred data shown in Ta-
ble 1 is split into different message sizes in order to
be actually transferred. Putting all this information to-
gether, Table 1 shows that CUDASW++ and GPU-

Applications HtoD pageable DtoH Pageable
GB % GB %

LAMMPS 3 59 2 41
CUDASW++ 0.195 98 0.004 2
GPU-BLAST 1.3 79 0.356 21
CUDA-MEME 0.048 0 100 100

Table 1 Data transfers in the applications under analysis
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Fig. 12 Average overhead experienced by applications with
respect to executions with CUDA using the PCI passthrough
from the inside of a VM.

BLAST mainly copy data from main memory to GPU
memory, more than 90% of these transfers being done
with messages greater than 32MB, as depicted in Fig-
ure 11(a). On the other hand, according to Table 1,
the majority of the transfers in the CUDA-MEME ap-
plication are from GPU memory to main memory, and
almost 90% of the transferred data is copied in message
sizes between 4 and 16MB, as shown in Figure 11(b).
Finally, the LAMMPS application presents similar per-
centage of transfers in both copy directions, with 80%
of data transferred in messages of size larger than 2MB.

With the data gathered in this analysis, we can com-
plete our study and conclude that when comparing the
overhead of PCI passthrough and rCUDA (used from
the inside of a VM), their behavior with respect to
each other mainly depends on the type of data trans-
fers they mostly perform (pageable host-to-device or
pageable device-to-host), which present a very different
performance as shown in Figures 7(c) and 7(d). In this
regard, for applications in which copies from host to
device have a bigger weight, PCI passthrough performs
worse. On the contrary, for applications that mainly
transfer data from device to host, then rCUDA per-
forms worse. That is, there is a direct dependency of
application performance on the bandwidth attained for
each copy direction. This result points out the impact
on application performance of the bandwidth attained
by the underlying network connecting main memory
and GPU memory.

Finally, notice that current cloud computing providers
use the PCI passthrough mechanism to provide appli-
cations with CUDA acceleration. However, the average
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Fig. 13 Configuration of a Xen-based system showing two
GPUs assigned to one of the VMs. The GPU assignment is
carried out by making use of the PCI passthrough mechanism.
Therefore, both GPUs can only be used by the VM owning
them.

overheads shown in Figure 10 are computed with re-
spect to executions with CUDA in a native domain.
Therefore, in order to provide the right perspective, it
is advisable to use as the baseline reference the perfor-
mance of applications when using the PCI passthrough
from the inside of a VM instead. In this regard, Fig-
ure 12 shows the average overhead experienced by ap-
plications when using the rCUDA middleware using as
the baseline reference their performance when executed
using the PCI passthrough mechanism in order to ac-
cess the GPUs. As can be seen the overhead is very low
when an InfiniBand network is available. In the cases of
CUDA-MEME and CUDASW++ the execution time is
even lower than the obtained with the PCI passthrough
mechanism. In the case that rCUDA is used through the
virtual network, we can see that the overhead increases
with respect to the previous scenario but this overhead
remains low, less than 4% on average.

7.2 Applications Using Multiple GPUs

In the previous section we have presented an analysis
of four different applications that offloaded their com-
putations to one GPU. However, there are applications
that can make use of several GPUs in order to further
reduce their execution time. In this section we present
performance results for applications using two GPUs.

Several system configurations can be used when sev-
eral GPUs are leveraged in the context of Xen VMs and
rCUDA. Figures 13 and 14 show four of these configura-
tions. Figure 13 depicts the simplest one, where a Xen
VM is assigned two GPUs by making use of the PCI
passthrough mechanism and the GPUs are accessed by
means of CUDA. This configuration is similar to that
depicted in Figure 3 although two GPUs are used now.
On the other hand, Figure 14 shows the configurations
when rCUDA is used within Xen VMs in order to ac-
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(b) Testbed using the InfiniBand fabric to access two re-
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Xen Hypervisor

Dom0 DomU1 DomU2 DomUn

Control Domain

Toolstack

Control Domain

SW BRIDGE

vETH vETH vETH

Scheduler, MMU

P
C

I 
P

T

IB

rCUDA client IB

IB IB

rCUDA client IB rCUDA client IB

vGPUvGPU vGPUvGPU vGPUvGPU

P
C

I 
P

T

P
C

I 
P

T

InfiniBand Fabric

Host HW

ETH0 IB PF IB VF IB VFIB VFIB VF

rCUDA server IB

GPU

rCUDA server IB

GPU

(c) Testbed using the InfiniBand fabric to access two re-
mote GPUs located in two remote nodes.

Fig. 14 Testbeds used with rCUDA. Two GPUs are provided
to VMs. (a) In a single-node scenario, VMs use the virtual
network (TCP/IP) to access the rCUDA server running in
one of the VMs. (b/c) When an InfiniBand fabric is available
in the cluster, VMs use such interconnect in order to access
the remote GPUs, which can be located either in the same
(b) or in different (c) remote nodes.
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cess two GPUs. Figure 14(a) shows the scenario where
rCUDA is used to access the two GPUs located at the
same host that executes the VMs. This configuration is
similar to that presented in Figure 4(a) but two GPUs
are leveraged now. Notice that the two GPUs are as-
signed, by making use of the PCI passthrough tech-
nique, to one of the VMs, where the rCUDA server is
being executed. Furthermore, when the InfiniBand net-
work is present in the cluster, two additional configu-
rations are feasible: (1) both GPUs are located in the
same remote node and (2) two remote nodes are used,
each with one GPU. Figures 14(b) and 14(c) depict,
respectively, these configurations, which are similar to
the one shown in Figure 4(b) although two GPUs are
used now. Finally, in the experiments carried out in this
section, GPUs are also used in native domains. In the
case of CUDA, the two GPUs are installed at the node
running the application. In the case of rCUDA the two
GPUs can be located in one remote node or in two re-
mote nodes. All these scenarios will be considered in
the performance tests carried out in this section.

Two applications will be used as test cases in this
section: the CUDASW++ application already used in
the previous section and the TRICO (TRIangle COunt)
application [32]. TRICO is a CUDA implementation
of a parallel algorithm for counting triangles (i.e. 3-
cycles) in large graphs which additionally is able to take
advantage of all the GPUs available in the node where
it is being executed.

Figure 15(a) shows the performance results of the
CUDASW++ application when executed using two GPUs.
Label “CUDA non-VM” refers to the execution with
CUDA with two local GPUs in a native domain whereas
the case for the application being executed within a Xen
VM and accessing the GPUs in the host by making use
of PCI passthrough is referred to as “CUDA VM PT”.
In the case of rCUDA, executions in a native domain
(no VM involved) are referred to as “rCUDA non-VM
a)” when both GPUs are located in the same remote
node. When both GPUs are located in different remote
nodes, the label “rCUDA non-VM b)” is used. In a sim-
ilar way, when using rCUDA within a Xen VM, label
“rCUDA VM Local” refers to the scenario depicted in
Figure 14(a) where the virtual network provided by Xen
is used to access the GPUs located at the same host ex-
ecuting the VM. Finally, labels “rCUDA VM IB a)” and
“rCUDA VM IB b)” refer to the scenarios depicted in
Figures 14(b) and 14(c), respectively, where the Infini-
Band fabric is present in the cluster and therefore one
or two remote GPU servers are used. It can be seen
in Figure 15(a) that the performance of rCUDA when
two GPUs are used is similar to that of CUDA in all the
scenarios considered. On the other hand, Figure 15(b)
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Fig. 15 Performance of two applications when executed in
different local and remote scenarios involving Xen VMs.

presents the performance results for the TRICO appli-
cation when two GPUs are used. In this case, a higher
variability in the execution time of the application is
observed, being the worst case the execution for 8800
millions of triangles with rCUDA when the virtual net-
work provided by Xen is used with TCP/IP (scenario
depicted in Figure 14(a)).

8 Conclusions

In this paper we have analyzed the use of the remote
GPU virtualization mechanism in order to provide ac-
celeration services to scientific applications running in-
side Xen VMs. We have considered two different scenar-
ios: (1) in those clusters not leveraging an InfiniBand
interconnect, a VM grants GPU access to the other
VMs concurrently running in the same host, and (2)
in those clusters were an InfiniBand fabric is already
present, VMs access a remote GPU located in another
node of the cluster.

First, we have used synthetic benchmarks to char-
acterize the performance attained when using different
underlying network fabrics. Afterwards, we have stud-
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ied the impact on execution time of running scientific
applications inside the virtualized domain.

The main conclusion from our exploration is that re-
mote GPU virtualization solutions are a feasible option
to provide CUDA acceleration services to Xen VMs.
Our experiments showed that the overhead of executing
accelerated applications within Xen VMs with respect
to currently available approaches (i.e., PCI passthrough)
greatly depends on the internals of each application,
being negligible (0.92% on average) when the cluster
already includes an InfiniBand interconnect and very
low (3.84% on average) in the case of using the internal
virtual network within Xen.

Nevertheless, overhead percentages are not the only
result to keep from this exploration. Another impor-
tant conclusion is that remote GPU virtualization solu-
tions provide to data center managers the configuration
flexibility that Xen currently lacks. In this manner, re-
mote GPU virtualization frameworks not only provide
the possibility to concurrently offer GPU acceleration
services to several VM instances being executed in the
same host, but they also provide the possibility of offer-
ing differentiated services to different data center users,
given that cluster administrators keep complete control
on how GPUs are shared among users. For example,
it could be possible to create two groups of users for a
given application: a smaller group including those users
willing to pay more money in order to achieve higher
application performance (i.e., not sharing GPUs) and a
bigger group composed of those users preferring to wait
some more time for their application to complete exe-
cution but at a lower economic cost (i.e., sharing GPUs
among VMs).

As for future work, we plan to analyze the effect on
application performance of sharing the available GPUs
among several VMs. In this regard, it is necessary to
develop a scheduler that coordinates the use of GPU
memory among the several VMs sharing the GPUs.
This scheduler is required in order to ensure that appli-
cations do not experience out-of-memory issues due to
the fact that several of them are allocating GPU mem-
ory at the same time. Migrating GPU jobs [33] will be
a useful technique in order to better coordinate the use
of GPU memory resources among VMs. Finally, a new
communication layer within rCUDA based on the use
of shared memory will also be investigated. The pur-
pose of this new shared-memory based communication
layer is to avoid using the virtual network provided by
the Xen hypervisor, thus attaining higher performance.
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