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Abstract 15 

Promoting sustainable urbanization and limiting land consumption is a local and regional priority policy target in 16 

Europe. Monitoring and quantifying urban growth supports decision-making processes for the prevention of 17 

ecological and socio-economic consequences. In this work, we present a methodology based on spatio-temporal 18 

metrics and a new index (PUGI), that quantifies the inequality of growth between population and urban areas, to 19 

analyze and compare urban growth patterns at different levels. We computed an exhaustive set of spatio-temporal 20 

metrics at local level in a testing sample of six urban areas from the Urban Atlas database, then uncorrelated metrics 21 

were selected and the data were interpreted at various levels. Results allow for a differentiation of growing patterns, 22 

discriminating between compact and sprawl trends. The index proposed complements the analysis by including 23 

demographic dynamics, being also useful for assessing the growing imbalance between the progression on residential 24 

areas and the population change at local level. The analysis at various levels contributes to a better understanding of 25 

urban growth patterns and its relation to sustainable policies not only within urban areas, but also for the comparison 26 

across Europe. 27 

 28 
Keywords: urban growth; spatio-temporal metrics; IndiFrag; LULC; Urban Atlas; Population and urban growing 29 

imbalance (PUGI) 30 

1. Introduction 31 

Land is a limited resource and cities are continuously growing. The insufficient planning control of fast-growing 32 

urban areas may result in ecosystem degradation and loss of quality of life (Kompil et al., 2015). In recent years, new 33 

planning initiatives and programmes have been developed to reconsider the urbanization process and promote 34 

sustainable land use in Europe. Two examples are the Informal Ministerial Meeting on Urban Development 35 

Declaration (2010) and the 7th Environment Action Programme (EC, 2013), which promote urban recycling, compact 36 

city planning, improve green infrastructure and soil protection as measures for a more sustainable development of 37 

cities. The Urban Agenda for the European Union (EC, 2017) also compiles several policy documents at European 38 

and national levels in relation to sustainable land use development. 39 
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Urban growth is understood as the expansion of built-up areas that implies changes in Land Use/Land Cover (LULC). 40 

Monitoring urban growth trends is important for land managers and decision-making (Patino and Duque, 2013). 41 

Generally, urban growth drivers are multi-dimensional forces influenced by local characteristics. According to 42 

Inostroza et al. (2010) population growth, income and transport improvements are underlying forces. Other authors 43 

included cultural believes in addition to the physical, political and economic drivers (Dale and Kline, 2013), while the 44 

EEA (2011) also covered housing preferences and regulations. Quantifying urban growth and its characterization in 45 

different spatial patterns is crucial for evaluating its environmental, economic, and social impacts, since the degree of 46 

compact or sprawl growth differs both, in causes and in consequences (Bhatta, 2010). Urban growth can be 47 

categorized as sprawl or compact according to the spatial arrangement of built-up areas, land uptake per inhabitant 48 

and the amount of built-up area in the landscape (EEA, 2016). 49 

The characterization of the spatial configuration and change patterns of LULC is based on methods that allow for 50 

multi-temporal assessment. Spatio-temporal metrics, those that combine spatial and multi-temporal metrics, measure 51 

landscape characteristics (i.e. spatial configuration, aggregation, diversity, shape, size, etc.) and describe landscape 52 

changes (Dale and Kline, 2013), and they are widely used to summarize the complexity of land use patterns into 53 

quantitative terms from LULC maps at specific scales (Llausàs and Nogué, 2012). When applied to urban areas, they 54 

contribute to characterize the urban growth process (Herold et al., 2005; Uuemaa et al., 2013). 55 

Spatio-temporal metrics do not account for the land uptake per inhabitant, which has been mentioned as a relevant 56 

variable to characterize the growth process. A joint analysis of urban growth and population distribution provides an 57 

overview of the human use of the landscape and its tendency to sprawl (EEA, 2016; Martinuzzi et al., 2007). Recent 58 

studies have combined spatial metrics with population data to categorize urban patterns. For instance, Arribas-Bel et 59 

al. (2011) used population density and distribution indices for an inter-city comparison and combined them with 60 

spatial metrics for clustering European cities according to their level of sprawl at a single date. Jaeger and Schwick 61 

(2014) introduced a metric that integrates urban expansion, dispersion, and the land uptake per inhabitant at intra-city 62 

level for a single date. Afterward, it was applied to the built-up area in Europe at various scales: national, regional 63 

and 1-km2-grid (EEA, 2016; Hennig et al., 2015). They found that the application at local scale eased the detection of 64 

changes, however, it was hardly comparable with socio-economic data at this level. Other studies revealed that 65 

population density combined with other drivers (i.e. spatial characteristics, socio-economic, policies, among others) is 66 

suitable for predicting urban growth and its type (Dubovyk et al., 2011; EEA, 2016). 67 

Besides the potential of their combined study, several studies have pointed out the large inequality between the 68 

growth pace of built-up areas and population in Europe. Kasanko et al. (2006) analyzed the difference between built-69 

up and population growth rates from the fifties to the nineties at inter-city level, and built-up grew faster in almost all 70 

of the 15 cities studied, presenting different growth patterns according to their geographical location. However, they 71 

did not propose a way to quantify this inequality. More recent studies obtained similar conclusions studying samples 72 

of 29 (Ribeiro-Barranco et al., 2014) and 188 European cities (Haase et al., 2013). They observed that even when 73 

population decreased built-up change was positive. This mainly occurred in Southern cities where a faster built-up 74 

growth was experienced in the studied periods, while lower rates were found in Eastern cities. However, these results 75 

obtained at broader scale (city level) cannot be assumed at local level (intra-city level). The dynamics of urban areas 76 
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are not homogeneous and they should be quantified independently to characterize the inherent heterogeneity of urban 77 

areas, but interpreted and analyzed together at various scales to obtain more accurate conclusions. 78 

Analysis at multiple scales is essential for different reasons. On the one hand, the analysis at broad scale shows an 79 

overall value of the actual trends, while detailed scales are more informative (EEA, 2016). On the other hand, policies 80 

are applied at national, regional and local levels causing different growth trends (DG REGIO, 2011). Previous studies 81 

have reported that the degree of compactness or sprawl of the urban land and its interpretation differs widely 82 

depending on the scales employed (Altieri et al., 2014; Hennig et al., 2015). The imbalanced development of 83 

population and built-up areas previously detected in European cities may also vary if analyzed at various scales. A 84 

concurrent multi-scale analysis of the population and urban growth rates combined with LULC spatio-temporal 85 

metrics may help to the characterization of the urban growth process, moreover, the use of several land uses and 86 

metrics would be useful for the selection of the most suitable ones to identify growing patterns. In this framework, the 87 

main objectives of this study are: to present a methodology based on spatio-temporal metrics that allows to analyze 88 

and compare urban growth at inter-city and intra-city levels and to interpret its relation with urban sustainability 89 

policies, and to propose a population and urban growing imbalance index, assessing its added value for interpretation 90 

of urban growth. 91 

2. Methods 92 

2.1 Description of datasets 93 

The study was performed using the Urban Atlas database, which is part of the local component of the Copernicus 94 

Land Monitoring Services (EEA, 2010). It provides harmonized, inter-comparable and high-resolution LULC maps 95 

from 305 Functional Urban Areas (FUAs) with more than 100,000 inhabitants for the year 2006 (UA2006), and 697 96 

FUAs above 50,000 inhabitants for 2012 (UA2012). The term FUA represents the city and its commuting zone 97 

(Poelman and Dijkstra, 2015). The minimum mapping unit is 0.25 ha for urban and 1 ha for rural areas, and the 98 

minimum overall accuracy is 85% in urban and 80% in rural areas. Since our purpose was to assess a methodology 99 

rather than the in-depth analysis of specific urban areas, a sample testing dataset composed of six FUAs was selected 100 

attending to the following criteria: the availability of population data and administrative unit boundary datasets to 101 

calculate the metrics, the existence of high LULC change to test temporal indices, and the geographic diversity to 102 

cope with different urbanization contexts. As a result, the FUAs selected were Berlin, Paris, Rome, Krakow, Lisbon 103 

and Valencia (Figure 1). 104 
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105 
Figure 1. Testing sample areas. Location in Europe (center); UA2012 maps, FUA, urban sector and administrative 106 
unit boundaries (municipalities or equivalent local administrative units and city districts), and urban centers. 107 

The UA2006 was initially focused on urban and peri-urban areas represented by twenty classes, seventeen urban and 108 

three rural. The UA2012 was extended from three to ten rural classes to allow for a better understanding of the urban 109 

fringe. This led us to a legend adaptation before comparing UA2006 and UA2012, harmonizing and simplifying the 110 

legend for our urban analysis purpose. We reclassified the legend to nine aggregated land use classes following the 111 

criteria of class similarity, thematic coherence and simplification of processing and interpretation tasks. The legend 112 

adaptation can be consulted in Appendix A (Table A.1). 113 

Since disparities in urbanization trends within FUAs and cities are expected, according to the EEA (2016) report, 114 

more detailed levels were also considered in our analysis. Thus, the FUA level was subdivided into Local 115 

Administrative Units (LAU), dividing the territory into municipalities or equivalent units. According to Salvati and 116 

De Rosa (2014), this territorial unit is relevant for the purpose of planning and statistical analyses at local level. Cities 117 

were also subdivided into districts, which are zones defined according to population criteria (EU, 2016). Both levels 118 

are referred henceforth to as administrative units. Administrative unit boundaries were obtained from official 119 

institutions, as well as population data from 2006 and 2012 (Appendix A, Table A.2). 120 

Since different growth patterns are expected in urban and peri-urban areas the FUA level was further subdivided into 121 

sub-areas or sectors: (i) Urban, and (ii) peri-urban areas, defined as those areas around urban settlements which blend 122 

into the rural landscape, where usually low-density urban growth is present (EC, 2012). These sectors were delimited 123 

following a dominant land use density criteria in the administrative units of classes forest, agricultural and urban 124 

(artificial surfaces, Table A.1). Thus, the urban sector corresponds to those areas where the urban density overpasses 125 

agricultural and forest densities, and the peri-urban sector comprises the rest. 126 
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2.2 Description and extraction of land use spatio-temporal metrics 127 

The IndiFrag software (Sapena and Ruiz, 2015a, 2015b) was used to compute the spatio-temporal metrics. This 128 

software compiles an exhaustive set of indices to quantify urban dynamics from LULC vector maps, allowing to 129 

work with different land uses independently and for each territorial unit in the same process, is a suitable tool for 130 

comparative urban studies. There are two types of metrics extracted at administrative unit level: those that consider 131 

all land uses within the administrative unit (administrative unit metrics), and metrics referred to one land use within 132 

an administrative unit (class metrics). A complete list of the computed metrics is included as supplementary material 133 

(Appendix A, Table A.3). 134 

In order to analyze and compare LULC changes and to highlight growth patterns in FUAs, administrative units and 135 

land use classes, we computed: (i) spatial metrics for two dates (years 2006 and 2012) and their derived changes, and 136 

(ii) multi-temporal metrics. As a result, a collection of spatio-temporal metrics was obtained for each administrative 137 

unit and class (Figure 2). 138 

 139 
Figure 2. Workflow. Legend adaptation of Urban Atlas; population data and residential areas for 2006 and 2012 and 140 
their changes are extracted; spatial metrics for 2006 and 2012, their derived changes, multi-temporal metrics and 141 
PUGI index are computed at administrative unit level; uncorrelated metrics are selected using PCA; One-date and 142 
change pattern analyses are interpreted at three levels: FUA (L1), sectors (L2) and administrative unit (L3). 143 

Duplicity and redundant information are usually present when working with such a large set of spatial metrics 144 

(Cushman et al., 2008), therefore a selection of metrics was applied to avoid redundancies and increase the efficiency 145 

of the process. We computed 167 single-date spatial metrics (23 per administrative unit, plus 18 per class, except for 146 

roads) and 248 two-date metrics (167 changes from the spatial metrics, plus one per administrative unit and 10 multi-147 

temporal metrics per class) for 833 administrative units. The objective selection of the most relevant metrics was 148 

achieved by applying the Principal Component Analysis (PCA) method using R statistical software (R Team Core, 149 

2015). The selection of class metrics was divided into two processes according to the sector. In the urban sector 150 

analysis, we focused on the residential class for its particular interest, but also on the most dynamic classes in this 151 

sector: commercial and industrial, referred henceforth to as commercial, leisure and green urban areas. The peri-152 
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urban sector was focused on forest class and its modification in response to urban growth. Metrics at administrative 153 

unit level were included in both sectors. 154 

PCA is a multivariate statistical method allowing for the transformation of a large number of correlated variables into 155 

uncorrelated variables (Jolliffe, 2002). Four different PCAs were performed: in urban and peri-urban sectors, and 156 

using single-date and two-date metrics. The indices were grouped according to the weights of the first and second 157 

components discarding those indices with similar weights in both components and preserving only one per group, 158 

ensuring non-correlation between the selected indices. Figure 3 shows the final subsets of indices selected for the 159 

analyses.  160 

 161 

Figure 3. Graphs of spatial distribution of the final uncorrelated metrics selected in the space defined by the first and 162 
second principal component weights. Four independent PCAs, where: (a) Single-date metrics for urban and (b) peri-163 
urban sectors, and two-date based metrics for (c) urban and (d) peri-urban sectors. See Table 1 for abbreviation 164 
meanings. 165 

Table 1 shows and describes the final set of indices selected for analysis. The results obtained per administrative unit 166 

can be found in supplementary material (Appendix A, Table A.4). 167 

Table 1. Description of the spatio-temporal metrics extracted from IndiFrag and selected using PCA. The name, 168 
abbreviation, description, units, time: single-date (1t) and two-date (2t), and level of metric: administrative unit or class, 169 
are reported. Detailed information on metrics can be consulted in Appendix A (Table A.3). 170 
 171 

Name Definition Unit Time Level 
Spatial metrics     
Urban density (DU) Ratio between urban area and the total 

admin.unit area. 
 % 1t Administrative unit (LAU) 

2t LAU 
Object mean size (TM) Average of the size of the patches from a 

class.  
ha 1t Green, residential 

2t Residential 
Edge density (DB) Sum of lengths of patches from a class 

divided by its area. 
m/m2 1t Forest 

Area-weighted mean fractal 
dimension (DFP) 

Average of fractal dimension of patches in 
a class, weighted by patch’s area. 

None 2t Residential 

Object density (DO) Number of patches divided by the area of 
the admin.unit. 

nº/km2 1t LAU, commercial, leisure, 
residential 
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2t Forest 
Weighted standard distance 
(DEP) 

Average of distances from patches to the 
centroid of the class. 

km 1t Green, forest 

Euclidean nearest neighbor 
mean distance (DEM) 

Average of the distances between nearest 
patches of a class  

m 2t Residential 

Effective mesh size (TEM) Size of patches dividing the admin.unit 
into n areas with the same degree of 
division. 

km2 1t 
2t 

Forest 
Forest 

Cohesion (COHE) Connectedness of the patches from a class. 
It increases as the class becomes more 
aggregated. 

% 1t Forest 
2t Forest 

Splitting index (IS) Number of patches dividing admin.unit 
into equal parts, with the same degree of 
division. 

None 2t Forest 

Shannon diversity 
(DSHAN) 

Minus the sum of proportional abundance 
of each class multiplied by its proportion. 

None 1t LAU 
2t LAU 

Density-diversity (DD) Sum of the amount of a class as proportion 
of the largest class. 

None 2t Commercial 

Absolute functional 
fragmentation index (IFFA) 

Ratio between the admin.unit and the sum 
of every class perimeter. 

None 1t LAU 

Multi-temporal metrics     
Change proportion (CP) Ratio between the change area of a class 

and the area of the admin.unit. 
% 2t Green, residential 

Landscape expansion index 
(LEI) 

Categorizes new patches in: infilling 
(≥50% adjacent to its class), edge-
expansion (0>50%), and outlying (=0%) 
types by comparing perimeters between 
new and old patches. 

% 2t Residential, commercial, 
leisure 

Area-weighted mean 
expansion index (AWM) 

Sum across all new patches of the 
percentages of adjacencies weighted by 
the area of the new patch. 

None 2t Forest 

Change rate (RC) Annual rate of class change using the 
compound interest formula. 

% 2t Forest 

In order to compare overall results among FUAs, we conducted two sub-analysis. For inter-city analysis and once 172 

metrics were calculated for each administrative unit, we computed their mean and coefficient of variation for each 173 

FUA and sector (urban and peri-urban) within FUAs. This allows for the comparison of metrics and their 174 

homogeneity between different FUAs, which provides useful information when comparing values at broad scales. In 175 

addition, we used global growth graphs, concentric circle and sector analysis extracted from IndiFrag software. These 176 

graphs are useful to quantify changes and analyze their spatial distribution at different distances and orientations from 177 

a central point. We used central points defined by Urban Audit and based on GISCO settlement layer dataset (Data 178 

source: GISCO - Eurostat, European Commission). 179 

2.3 Population and urban growing imbalance index (PUGI) 180 

Inequality of urban dynamics regarding the increase of built-up area with respect to population is related to the type 181 

of evolution experimented by urban areas over time and it can be especially relevant to monitor the sustainability of 182 

urban development (Ribeiro-Barranco et al., 2014). In order to quantify how urban growth outpaces population 183 

increase or vice versa and based on the assumption that the distance of the population and urban growth rates -if they 184 

are plotted on two axes- to the line of equal growth is related to the imbalance of both rates (Kasanko et al., 2006), we 185 

propose a multi-temporal index for a better understanding of the balance in urban growing and population increase in 186 
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urban dynamic areas: The Population and Urban Growing Imbalance index (PUGI). This index quantifies the 187 

inequality between two variables, population and residential land use relative growths extracted at two different dates. 188 

We used the area of residential land use, since this is more related and comparable to the actual increase of 189 

population, as suggested by Kasanko et al. (2006). 190 

In order to define the index, the increase/decrease of population and the increase of residential area are converted to 191 

relative terms as relative change to the first year:  192 

rcr = (rt2 − rt1)/rt1 ∗100  (1) 193 

rcp = (pt2 − pt1)/pt1 ∗ 100  (2) 194 

where, rt1 and rt2 represent the areas of residential class, and pt1 and pt2 the population at the beginning and end of 195 

the studied period. 196 

Administrative units are plotted in a four-quadrant scatterplot with (1) and (2) in the axes (Figure 4). Similar 197 

scatterplots have been previously used to represent urban sprawl by plotting the compactness degree against urban 198 

proportion at a single date (Altieri et al., 2014), to analyze the relation between economic development and urban 199 

growth (Chen et al., 2013), to compare urbanization and population growth rates (Kasanko et al., 2006), and to 200 

classify the development of cities according to their position in the plot (Ribeiro-Barranco et al., 2014). Here, we 201 

propose the quantification of the mentioned distance as a measure of the disproportion between rates. 202 

Having the proportion of population change in the abscissas, the proportion of residential increase in the ordinates, 203 

and considering the quadrants delineated by the mean values of the two variables, administrative units can be 204 

classified into four groups according to the type of change experimented (Ribeiro-Barranco et al., 2014):  205 

 The upper right quadrant indicates a high change (HC) in both variables. 206 

 The lower left quadrant represents a more stable and low change (LC). 207 

 The upper left quadrant corresponds to a high residential growth complemented by a low or negative population 208 

change (Partial residential change, PR). 209 

 The lower right quadrant corresponds to a high increase in population followed by a low or null residential 210 

growth (Partial population change, PP). 211 

The even growth line represents the same pace of growth rate in both variables, as an ideal or balanced development 212 

situation (Figure 4). Administrative units above this line have undergone faster growth of residential areas with 213 

respect to population, and in those below the line, the population has exceeded residential growth. The farther the 214 

administrative unit is from this line, the larger the difference between the two growth rates. This magnitude is 215 

represented by the PUGI index, shown in equation (3), defined as the minimum distance between the location in this 216 

bi-variate space and the even growth line. It is computed as the Euclidean distance from a point to a line and 217 

measured along a perpendicular line to the even growth line (Figure 4). The sign of the index represents whether the 218 

administrative unit is located above or below the line. Thus, a negative value means that the point is below, and the 219 

population growth is higher than residential increase. A positive value indicates that the residential area grows faster 220 

than population. The administrative unit coordinates are: relative change of population (rcp as x-coordinate) and 221 

relative change of residential (rcr as y-coordinate). Considering that the equation of an even growth line is an identity 222 

function, and knowing the formula of the Euclidean distance from a point to a line, the PUGI index is obtained as:  223 

PUGI = (rcr − rcp)/√2  (3) 224 
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 225 

Figure 4. Example of four-quadrant scatterplot. Calculation of the minimum distance from a point to the even growth 226 
line (PUGI) and classification of administrative units according to the quadrant delineated by means: high change 227 
(HC), low change (LC), partial population (PP), and partial residential (PR). 228 

3. Results 229 

The results of metrics computed in 2012 and from 2006 to 2012 are interpreted at three scales (i.e. FUA, sector and 230 

administrative unit). First, we analyze them at FUA and sector levels, then we focus on each FUA at administrative 231 

unit level. All metric values can be consulted in Appendix A (Table A.4). 232 

3.1 Analysis at inter-city level 233 

Attending to the spatial metrics from 2012 at FUA level, Paris and Valencia present the highest values of mean Urban 234 

density (DU) and the lowest coefficients of variation (CV), showing a compact and homogeneous spatial distribution 235 

of built-up areas (Table 2). By contrast, Berlin and Rome present lower mean values and the highest CV, showing a 236 

more heterogeneous distribution of urban density than the rest of the FUAs. However, focusing at sector level, the 237 

DU in the urban sector is consistently more uniform than in the peri-urban, which presents a higher CV and, as unlike 238 

at FUA level, Valencia doubles the density of Paris in the peri-urban sector and has lower CV, while in the urban 239 

sectors the values are quite similar. 240 

Analyzing the mean values of Shannon diversity (DSHAN) at FUA level, Lisbon and Paris are significantly more 241 

diverse than the rest of the FUAs and present an even distribution (Table 2), while Rome presents low mean DSHAN 242 

and CV values. In contrast, when analyzed at sector level, Rome is not the least diverse FUA. Instead, Valencia 243 

presents less diversity in both sectors, having an intermediate CV. Berlin and Krakow have similar responses in both 244 

sectors. 245 

Class metrics show that Object density of commercial (DOCommercial) is variable among FUAs. For instance, Valencia 246 

and Paris present high mean values and they are significantly denser than Berlin, Krakow and Rome. However, in the 247 

urban sector the differences and CV are much lower, showing uniformity in the distribution of commercial use, 248 

especially in Lisbon. Object mean size of residential (TMResidential) in urban sectors shows significant differences in 249 
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buildings size between Berlin and Valencia. Another example of discrepancies among FUAs is the mean values of 250 

the effective mesh size index of forest (TEMForest) in the peri-urban sector, with lower fragmentation values of forest 251 

in Berlin and Rome (larger patches and less fragmented) compared to Paris and Krakow, that present more 252 

fragmentation (Table 2). 253 

Table 2. Examples of mean values and coefficients of variation (in parentheses) of some spatial metrics for 2012 at 254 
FUA and sector levels (urban and peri-urban). 255 

 Urban density 
 

Shannon diversity 
 

Object density of 
commercial 

Object mean size 
of residential 

Effective mesh 
size of forest  

DU DSHAN DO Commercial TM Residential TEM Forest  
FUA Urban Peri-urban FUA Urban Peri-urban FUA Urban Urban Peri-urban 

Berlin 0.16 (1.23) 0.67 (0.29) 0.1 (0.82) 0.98 (0.3) 1.43 (0.18) 0.93 (0.27) 1.12 (1.26) 4.38 (0.56) 2.13 (0.14) 1.51 (1.11) 

Krakow 0.31 (0.92) 0.77 (0.23) 0.17 (0.53) 1.03 (0.34) 1.47 (0.1) 0.9 (0.32) 2.63 (1.29) 7.94 (0.43) 1.64 (0.16) 0.39 (1.83) 

Lisbon 0.36 (0.69) 0.63 (0.16) 0.18 (0.5) 1.2 (0.24) 1.48 (0.11) 1.02 (0.17) 3.44 (0.64) 5.7 (0.2) 1 (0.12) 0.82 (1.94) 

Paris 0.71 (0.44) 0.84 (0.22) 0.22 (0.7) 1.22 (0.26) 1.25 (0.26) 1.14 (0.23) 7.28 (0.68) 8.78 (0.51) 1.26 (0.29) 0.53 (1.2) 

Rome 0.19 (0.94) 0.75 (0.27) 0.16 (0.79) 0.96 (0.25) 1.32 (0.09) 0.94 (0.24) 1.47 (1.38) 7.99 (0.55) 1.25 (0.31) 1.73 (1.67) 

Valencia 0.56 (0.51) 0.82 (0.2) 0.39 (0.53) 1.03 (0.28) 1.25 (0.21) 0.89 (0.24) 10 (1.09) 10.7 (0.49) 0.64 (0.26) 0.002 (4.1) 

According to the evolution of DU from 2006 to 2012 (Table 3), the FUAs of Krakow, Lisbon and Valencia are very 256 

dynamic and homogeneous in terms of built-up surface. Moreover, the population and urban growing imbalance 257 

index (PUGI) shows high positive values in Krakow and Lisbon, especially Lisbon in the peri-urban sector and 258 

Krakow in the urban sector, evidencing the rapid increase of residential areas with respect to the population growth, 259 

probably related with a sprawl development (Table 3). Valencia presents a more balanced development with a 260 

negative PUGI value at the FUA level, while the peri-urban sector has a high negative PUGI value, evidencing a 261 

densification process in this sector. Berlin and Paris experimented less DU changes but with more spatial variability, 262 

accompanied by low and negative PUGI values, meaning that population grew slightly faster than residential land 263 

use. Berlin, where the variability of ΔDU is particularly high, increases its CV and has a positive PUGI value in the 264 

peri-urban sector. Rome presents an intermediate ΔDU and CV compared to the rest of the FUAs and sectors, with a 265 

global negative PUGI that is higher in the peri-urban sector, meaning higher inequality of growth in this sector. 266 

Regarding the changes in DSHAN (Table 3), all FUAs increase their diversity except Lisbon. Paris shows a low 267 

change in diversity, but this is heterogeneously distributed (high CV value) along the FUA. However, at sector level 268 

all, except Lisbon, present two different patterns: Urban areas reduce their diversity, whereas peri-urban interfaces 269 

increase it, showing a high variety of land uses with a homogeneous distribution in the peri-urban sectors. 270 

Table 3. Examples of mean values and coefficients of variation (in parentheses) of two spatio-temporal metrics and 271 
the PUGI index for the period 2006-2012 at FUA and sector levels (urban and peri-urban). 272 

 
Urban density change Shannon diversity change Pop. and urban growing imbalance  
ΔDU ΔDSHAN PUGI  
FUA Urban Peri-urban FUA Urban Peri-urban FUA Urban Peri-urban 

Berlin 0.002 (3.34) 0.004 (1.18) 0.002 (3.87) 0.003 (3.71) -0.008 (1.58) 0.005 (2.5) -0.982 -1.629 0.993 

Krakow 0.01 (0.74) 0.011 (0.95) 0.01 (0.65) 0.013 (1.86) -0.019 (0.98) 0.022 (0.7) 2.355 3.132 0.678 

Lisbon 0.016 (0.72) 0.026 (0.3) 0.009 (0.88) -0.003 (18.7) -0.004 (9.33) -0.002 (30) 3.331 1.050 5.763 

Paris 0.003 (1.93) 0.003 (2.33) 0.005 (1.06) 0.001 (38.1) -0.002 (13.6) 0.01 (1.37) -1.115 -1.211 -1.883 

Rome 0.007 (1.24) 0.005 (1.07) 0.007 (1.25) 0.016 (1.54) -0.001 (8.28) 0.017 (1.48) -1.728 0.263 -3.085 

Valencia 0.012 (1.47) 0.012 (1.74) 0.013 (1.32) 0.004 (9.57) -0.013 (2.42) 0.015 (2.86) -0.697 1.099 -5.083 
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The global growth graphs of the residential land use close to the city centers present a compact built-up area with 273 

permanent land use in some FUAs (Figure 5).  In Berlin, Rome, Krakow, Lisbon and Valencia there is a peak in 274 

residential land use growth at approximately 16 km away from the urban center, and Rome has a second peak farther 275 

from the center. Paris reaches its maxima in the development of residential land use around 35 km away from the 276 

center and focused in the West, East and less in the South area. The growth directions in Berlin, Lisbon, Rome and 277 

Valencia are different, mainly due to physical and topographic constraints (e.g. the sea or rivers). Furthermore, partial 278 

losses of residential areas are present, for example, in Lisbon due to the extension of the road network; or the 279 

construction of an airport in Berlin. 280 

 281 

Figure 5. Global growth graphs. (Radar chart above) The sector analysis represents the spatial orientation of 282 
residential class changes in the six FUAs, the radius means the change in residential area in square kilometers by 283 
orientation, and (area chart below) the concentric circles analysis show the variation of residential area with respect to 284 
their central point. Green colour means residential growth, while red shows lost patches. 285 

Analyzing the results of the landscape expansion index (LEI) for residential, commercial and leisure land uses, in 286 

general, the expansion process has been mainly edge-expansive and outlying in the six FUAs (Figure 6). Considering 287 

the compact growth as a combination of infilling and edge-expansive growths and the dispersed growth as outlying, 288 
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the urban growth at FUA level in Berlin, Paris, Rome and Krakow tend to be mainly compact, resulting in a more 289 

continuous urban cover. However, Lisbon and Valencia have a more disperse growth. 290 

Figure 6 shows the loss of natural and semi-natural vegetation in each FUA as a consequence of urban growth. 291 

Despite the double loss of forest in Berlin with respect to Rome, the mean change of the Splitting index in the peri-292 

urban sector in Rome (ΔISForest=185, CV=12) is much higher than in the rest of the FUAs (e.g. Berlin, with 293 

ΔISForest=1, CV=9), showing a stronger trend of forest fragmentation in Rome. 294 

 295 
Figure 6. Growth and loss per land use at FUA level. Above, area of growth type in square kilometers (infilling, 296 
edge-expansive and outlying) of each FUA by class: residential, commercial and leisure. Below, gain and loss in 297 
square kilometers, of each FUA by class: green urban areas, forest and agricultural. 298 

3.2 Analysis at intra-city level 299 

As previously commented in the sector analysis, in 2012 high values of urban density (DU) are mainly located in the 300 

urban centers of the FUAs, however, there are variations within FUAs and sectors (Figure 7). For instance, in Berlin, 301 

there are some isolated units with high-density values located in the southern half of the FUA. Paris, Rome and 302 

Valencia also present scattered administrative units with high DU out of the urban centers in different directions. 303 

Krakow and Lisbon show a gradual degradation of DU from the urban sector towards the peri-urban reaching their 304 

lowest values in the boundary of the FUA. With regard to Shannon diversity (DSHAN), high and medium values are 305 

located not only in the urban sector, but also in the contiguous administrative units, as the mix of land uses is usually 306 

higher along the boundary of the urban and peri-urban areas. The lowest values of DSHAN are found in the North-307 

East of several FUAs: Berlin, Rome, Krakow and Valencia. 308 
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 309 

Figure 7. Urban density (DU) in 2012. DU quantitative maps of the administrative units in 2012 for the six FUAs. 310 
Bold lines separate urban from peri-urban sectors. 311 

When interpreted together, the object density (DOResidential) and object mean size (TMResidential) of residential class 312 

inform about the quantity and type of the residential patches in each administrative unit. Results show that Berlin, 313 

Krakow and Lisbon present more uniform values of DOResidential and TMResidential than the rest of the FUAs. In Paris, 314 

Rome and Valencia a more variable response is observed, DOResidential varies along the urban sector, as well as their 315 

TMResidential. On the other hand, regarding the weighted standard distance of green areas (DEPGreen), that shows the 316 

aggregation of these elements, different compactness degrees are observed in the urban sector of Berlin, where 317 

administrative units differ widely. 318 

The analysis of temporal metrics at administrative unit level revealed significant changes during the analyzed period 319 

(2006-2012). In Berlin and Paris, slight increases of DU took place at transition areas between urban and peri-urban 320 

sectors. A few administrative units present a slight loss of urban areas, but this effect is mainly due to the transition 321 

from barren land (included in artificial land uses in UA legend) to non-urban land uses. Berlin presents also the 322 

highest value of DU in the southern part of the urban sector (DU=0.1). Rome and Valencia, in general, increase 323 

their artificial surface in specific administrative units, while main changes are located in the peri-urban sector in 324 

different directions. DU in Lisbon and Krakow follows a gradient growth pattern from the urban center, reducing its 325 

intensity in the periphery, while in the rest of the FUAs presents a more random and scattered distribution (Figure 8). 326 
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 327 

Figure 8. Urban density change (DU). DU change quantitative maps of the administrative units from the six FUAs. 328 
Green values mean urban growth in this period, while maroon values show a partial loss of urban areas. 329 

Negative variations of DSHAN are mostly located in the urban sectors of these FUAs, with some exceptions. 330 

However, in those areas where there has been an urban growth process, there is an increase of DSHAN and the 331 

diversity of land uses. Analyzing the change of per-class indices, we observed a greater occurrence of density-332 

diversity of commercial (DDCommercial) in those administrative units along the border between sectors, reaching a 333 

maximum in Berlin (ΔDDCommercial= 0.19). The administrative units with an increase of the DDCommercial in Valencia 334 

presented a scattered spatial distribution, while in Rome were concentrated along the coast. In addition, the tendency 335 

of most FUAs in green areas growth is negative, as in the inter-city analysis, except for Rome, where only one has 336 

negative change proportion of green areas (CPGreen), and Valencia, with null or positive values (there is a maximum 337 

of CPGreen=4.35). With respect to residential areas, TMResidential variation shows a tendency to smaller patches, except 338 

in some administrative units located on West Rome, South-East Lisbon, and inside and around the urban center of 339 

Valencia, where the overall increase of TMResidential implies larger new patches. The residential class in the peri-urban 340 

sector of Rome has a compact growth pattern according to the changes of the Euclidean nearest neighbor mean 341 

distance of residential class (DEMResidential), that reaches the maximum negative change value (ΔDEMResidential =-51.48 342 

m), meaning that the residential class is more clustered than others, especially in the North. In Krakow, residential 343 

patches are more aggregated, mainly in the South-East (maximum negative value of ΔDEMResidential=-9.17m). High 344 

positive values of ΔDEMResidential may evidence that previous residential class is suffering a sprawl process since the 345 

mean value of the distances between patches is increasing. Regarding forest class, variations in the TEMForest show a 346 

general reduction of forest patches, decreasing in peri-urban sectors mainly due to the general urban growth 347 

dynamics. The most affected FUAs are those with more presence of forest. Berlin, for example, presents a maximum 348 

(ΔTEMForest = -0.9 km2) but also has a general decrease in the North and South. In Rome, fragmentation increases in 349 
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the administrative units from the North and North-West (maximum ΔTEMForest = -0.3 km2). Paris and Krakow show 350 

reduced forest patch sizes in South-West and South-East, respectively. 351 

Administrative units were also classified based on population and residential paces of growth, providing a 352 

quantitative measure of their imbalance (PUGI) (values and scatterplots are in Appendix A, Table A.4 and Figure 353 

A.1). As an example, administrative units inside and along the border of the urban sector in Berlin are characterized 354 

by high change and partial population change, with low and negative PUGI values (Figure 9), accompanied by low 355 

and partial residential changes in the limit of the FUA, along with positive PUGI values. There is an exception in the 356 

peri-urban sector, where an administrative unit presents a high negative value (PUGI = -30.17), where population 357 

grew a 43% and the residential class remained unchanged, meanwhile, spatio-temporal metrics showed a unique 358 

slightly positive value of ΔDDCommercial. As opposite, Paris presents low change and partial population changes in the 359 

administrative units of the urban sector, with almost no residential increase but a significant population increase. In 360 

the peri-urban sector, population increase exceeds residential growth, accompanied mostly by negative 361 

ΔDEMResidential, which evidences the densification and transition to more compact administrative units. Rome has a 362 

more random distribution of growth classes. Small and balanced changes are located not only in the urban sector but 363 

also in the South and East of the peri-urban sector. Partial population change is located at the interface of peri-urban 364 

and urban sectors and near the coast, with high negative PUGI values showing a prominent population increase, while 365 

spatio-temporal metrics show a slight increase in DDCommercial and CPGreen, and a reduction in DEMResidential. Partial 366 

residential change occurs in the North and North-East, with high and positive PUGI, showing an increase in 367 

residential class despite the loss of population in these areas, along with a general decrease of ΔDEMResidential, 368 

meaning a more compact distribution. However, there is also an increase of forest fragmentation (maximum 369 

ΔISForest=12). Lisbon presents a significant residential increase, with positive PUGI and ΔDEMResidential values in the 370 

urban sector and surroundings, evidencing a sprawl trend as previously detected in LEIResidential. However, the 371 

westernmost administrative unit in the urban sector presents not only negative PUGI and ΔDEMResidential, but also 372 

positive DDCommercial and CPGreen. Krakow has low change but positive PUGI values in the North, due to the loss of 373 

population in these areas. Higher change is focused on the interface of urban and peri-urban sectors, presenting more 374 

population increase, while in three administrative units of the urban sector there is a general decrease of DEMResidential 375 

and a reduction of CPGreen. In general, Valencia has a prominent population increase, particularly in the North. Most 376 

of the administrative units in the urban sector suffered low changes (low positive PUGI values, slight or null 377 

residential increase accompanied by population loss). However, spatio-temporal metrics in Valencia reveal that 378 

negative PUGI values are generally together with a more compact residential growth and the increase of green urban 379 

areas (negative DEMResidential and positive CPGreen). 380 
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 381 

Figure 9. Graphical representation of the administrative units classified in change types and their associated PUGI 382 
values. Positive PUGI mean more residential than population increase (blue bar), negative values show the opposite 383 
(red bar). The size of the PUGI bar is related to the imbalance between both variables. 384 

4. Discussion 385 

The proposed methodology and the metrics analyzed provide useful information of the multi-temporal processes of 386 

urban growth between and within FUAs (inter- and intra-city). However, the extrapolation of these tendencies to 387 

other urban areas or periods should be taken carefully since only a 6-year interval of a reduced sample of urban areas 388 

was considered. 389 

The interpretation of results at FUA level provides an overview of the state of urban areas and their evolution, 390 

allowing for the comparison of different FUAs. The analysis of sectors, urban and peri-urban, increases the level of 391 

detail and allows for a better differentiation of the type of urban expansion, compact or scattered, and the intra-city 392 

analysis complements the spatial distribution of the growth patterns and allows for a local analysis of the evolution of 393 

cities. This information is complementary. In some of the examples presented, the analysis provided a uniform 394 

response of metrics in a sector, but a variable response at the different administrative units within that sector, 395 

reflecting different behavior at different scales of analysis. This is useful for the comparison of FUAs and the analysis 396 

of their internal spatial variability. The definition of urban and peri-urban sectors has an evident influence on the 397 

results obtained, and this should be properly defined attending to the final aim of each particular study. 398 

The LEI index allows for the classification of the new patches in three growth types, which is useful in order to 399 

assign the compactness and sprawl degree of each FUA and land use. Our results are in consonance with a previous 400 

report (EEA, 2016) that quantified urban sprawl from 2006 to 2009 in similar urban areas, showing a decrease of the 401 

degree of urban sprawl for NUTS-2 (i.e. basic regions for the application of regional policies) of Berlin and Paris, 402 

remaining the same in Rome, rising slightly in Krakow and Lisbon regions, and increasing sharply in Valencia. The 403 

LEI index might reveal the effect of the compact growth policies supported by the European Communities (1999), 404 
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encouraging regional authorities to seek the development of sustainable, polycentric, balanced and compact urban 405 

systems. When applied at FUA level, this index provides an overview of the growth process, but at the administrative 406 

unit level, it allows for the detection of isolated sprawled areas. 407 

On the one hand, in this period only two FUAs presented an increase of green areas in the FUA and urban sector 408 

levels. This seems to contradict the current idea of green cities in Europe (DG REGIO, 2011), and the Green 409 

Infrastructure Strategy and policies developed by the European Commission (EC, 2016). In this sense, monitoring the 410 

change proportion of green areas (CPGreen) would allow for the evaluation of the effectiveness of past and present 411 

policies. On the other hand, the variation in size of residential patches suggests a change in the typology of new 412 

buildings, such as detached houses or large buildings. The Euclidean nearest neighbor mean distance of residential 413 

class (DEMResidential) represents the restructuring of the class into less or more dispersed, its alteration through the 414 

time emphasizes potential areas where residential growth process is being sprawled (a positive variation). This metric 415 

may detect, for instance, the variation of distances between residential areas and services. In this sense, the Urban 416 

Agenda reports that a compact city model benefits from the reduced distances between services (EC, 2017), and this 417 

can be quantified and monitored using this metric. 418 

The classification of administrative units based on population and residential paces of growth, and the values of the 419 

PUGI index, provide additional information for the study of growth patterns in the dynamics of urban areas. Similar 420 

classification methods have been applied without using population data (Altieri et al., 2014; Chen et al., 2013) and 421 

including this variable (Kasanko et al., 2006; Ribeiro-Barranco et al., 2014), but inequality of both variables had not 422 

been quantified. The increase in residential class and urban areas do not necessarily have a linear relation with the 423 

increase of population at different scales, and the proposed PUGI index quantifies this potential asymmetry. Some 424 

authors (EEA, 2011; Haase et al., 2013; Kabisch and Haase, 2013; Ribeiro-Barranco et al., 2014) have stated that, in 425 

general, European cities tend to grow faster in built-up than in population when studied at broad scales. However, 426 

when this phenomenon is analyzed at local scale, results may vary. According to our results, population relative 427 

change outpaced residential relative increase from 2006 to 2012 at FUA level in Berlin, Paris, Rome and Valencia, 428 

and higher disparities were found at the intra-city level. In this sense, the PUGI index proposed quantifies the 429 

growing imbalance between the progress of the new residential areas and the population, allowing for the 430 

identification of differences of growth patterns and such behaviors may reflect differences in local policies or 431 

economic models. The PUGI index adds demographic information to the spatial metrics traditionally used in 432 

landscape ecology. The high land consumption per inhabitant is considered one of the contributing drivers of urban 433 

sprawl (EEA, 2016; Jaeger et al., 2010b; Martinuzzi et al., 2007), thus the use of this metric may assist in the 434 

categorization of the urban growth as compact or sprawl, and even estimate the degree of both, being relevant in the 435 

context of urban sustainability. Moreover, the combination of this index with changes of spatio-temporal metrics, 436 

such as urban density, commercial density-diversity, Euclidean nearest neighbor mean distance of residential, 437 

proportion of green areas, and splitting index of forest, allows to identify the type of growth pattern and may help to 438 

assess the effect of past or current policies in the development of land uses and the subsequent impact in life quality 439 

of urban areas. Furthermore, with detailed information about the urban area and its background, this metric 440 

combination may assist in the interpretation of drivers of the urban growth process. For instance, in Valencia, the 441 
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collapse of the construction and real estate sectors that took place during the studied period had economic 442 

consequences. Concurrently, the migration of rural population to coastal and inland municipalities close to urban 443 

areas, due to the extension of residential areas as a mean of decongesting the urban core, harmed the territorial and 444 

social cohesion (IVIE, 2013). These processes were revealed with local values of PUGI in Valencia (mostly negative 445 

in coastal and peri-urban administrative units and low positive in the urban sector), quantifying population 446 

movements and a deceleration of housing construction. 447 

The interpretation of the PUGI index is quite intuitive, as the combination of class and magnitude outlines if the 448 

change process is balanced at the level of the administrative units. Positive values mean low-dense growth, while 449 

negative values reflect the reduction in the land consumption, and hence a densification process. A constraint of this 450 

index is the possibility to get a high positive value when there is not relative residential change but population has 451 

deeply decreased (since land consumption per inhabitant increases, this case is also a low-dense growth). However, 452 

the identification of these cases is straightforward, since the class assigned is usually low change. Another possible 453 

limitation is related to the definition of the index. Since the variables involved have relative values its interpretation 454 

may lead to confusion, i.e. a slight increase in a small administrative unit will show a great relative change, affecting 455 

the mean value used as classification threshold. In this case, different statistics (median, mode, etc.) should be used to 456 

avoid possible outliers. The integrated analysis approach based on the use of PUGI, its class and the spatio-temporal 457 

metrics is useful to overcome these limitations. 458 

In addition to the potential of the PUGI index itself, analogous indices, obtained by simply modifying its variables, 459 

may be applied with different goals and scenarios. For instance, Kabisch and Haase (2013) did not find correlation 460 

between population change and the development of new green urban areas, but the application of a modified version 461 

of the PUGI index, using the relative population change and the relative green areas change as variables, could 462 

provide deeper insight and more specific conclusions at local level. Nowadays, variables related to the dynamics of 463 

the landscape (residential areas, green areas, etc.) can be updated using remote sensing techniques (Gil-Yepes et al., 464 

2016). 465 

Finally, some limitations related to the data and methods proposed in this study should be pointed out. The first is 466 

related to the scale effect, some spatial metrics vary in response to changes in the spatial extent and scale of the 467 

analysis (Šímová and Gdulová, 2012), and hence the conducted metrics might be affected by the minimum mapping 468 

unit and the administrative unit size. This constraint could be reduced by including a parameter that specifies the 469 

scale, as previously seen in Jaeger et al. (2010a) or by conducting a grid cell based analysis to improve comparability. 470 

Another limitation is the quality and thematic accuracy of the dataset, as discussed by Šímová and Gdulová (2012). In 471 

our particular test, the overall accuracy of Urban Atlas database was 85% in urban and 80% in rural land uses. 472 

However, according to the validation report of the UA2006-2012 change map, the overall accuracy of the transition 473 

from artificial to agricultural land uses is 50% in the selected testing sample. Therefore, the decrease of the urban 474 

density at local level found in a few administrative units may be related to the poor classification accuracy of these 475 

particular classes. Moreover, classification errors are not balanced when working with temporal datasets. For this 476 

reason, the interpretation of changes should be done cautiously when working with LULC databases.  477 
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5. Conclusions 478 

We explored the application of spatio-temporal metrics and the PUGI index extracted from the Urban Atlas and 479 

demographic databases at two dates to compare and analyze urban growth patterns from a testing sample of six FUAs 480 

across Europe. 481 

From an objective selection of spatio-temporal metrics quantifying land use variations, we performed a three-fold 482 

analysis: an inter-city comparison at FUA level, a sector level analysis between FUAs, and an intra-city analysis at 483 

administrative unit level. Discrepancies between patterns observed in the urban and peri-urban sectors were 484 

evidenced. Working at administrative unit level presented advantages over the FUA and sector levels since a more 485 

specific and spatially explicit identification of urban growth type is feasible. Moreover, it is closer to the boundaries 486 

employed by local authorities responsible for spatial planning, and it may be potentially used for monitoring the 487 

effect of local and regional policies implemented. 488 

Our results showed that the spatio-temporal metrics are useful for comparison of growth patterns at different scales. 489 

Nevertheless, a single metric is not sufficient to properly describe the urban growth process, but the combined 490 

analysis of a selection of spatio-temporal metrics and the proposed PUGI index, a qualitative and quantitative metric 491 

that relates built-up areas and population dynamics, enables a deeper analysis of urban growth patterns. Its integration 492 

into the analysis emphasizes the imbalance between residential land use and population growth rates, providing 493 

complementary information related to the per-person land consumption and supporting the characterization of the 494 

degree of sprawl in the urbanization process, a relevant issue in the context of urban sustainability. The input data for 495 

the PUGI index are affordable and frequently made available by local agencies, and its representation allows for the 496 

straightforward interpretation of population and residential dynamics and its balance. 497 

LULC multi-temporal databases allow for more precise urban dynamic studies. Currently, the Urban Atlas dataset has 498 

only one period of time available (2006-2012), which is still insufficient for detecting reliable growth trends. Longer 499 

and more frequent time-series would allow for more accurate and comprehensive urban dynamic studies. In this 500 

sense, Urban Atlas is expected to be updated every six years, progressively increasing possibilities of analysis in the 501 

near future. 502 

The present study highlights the suitability of LULC databases for urban growth studies and their potential for 503 

analyzing urbanization trends. Future research will be focused on the application of spatio-temporal metrics based on 504 

simulated LULC development scenarios, in an attempt to identify and categorize urban sprawl patterns and to 505 

preview unsuitable evolution trends. 506 
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