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Abstract

This paper describes an approach to improve the performance of the
distributed audio-processing functions for audio surveillance systems. In
order to increase portability, current distributed audio-processing uses the
default capacities o�ered by the underlying scheduling facilities of the operating
system. In this approach, a set of capacities are added to the distribution
software that enable the reduction of the distributed processing time of audio
frames at the server side by adding functions that utilize the underlying
hardware resources including exclusive core reservation. By loosing some
generality in the design of the distribution software, it is possible to increase
performance and provide better isolation to selected audio tasks in the presence
of other competing software tasks. The approach is designed and implemented
as well as analyzed on general purpose computers with a server-client architecture
using serial scheduling of the audio tasks and parallelizing the digital signal
processing computations. The proposed solution is implemented and analyzed
showing bene�ts in performance and robustness over single threaded audio
processing. The resulting system is signi�cantly more robust in the presence
of other competing software tasks (noise). These results directly yield the
possibility to manage more concurrent audio streams at the server side.
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1. Introduction

Surveillance systems are gaining popularity in very di�erent domains such
as safety in public and private spaces, eHealth, or industrial control for smart
factories; this popularity increase has been enabled by major technological
steps such as the transition from analog to digital systems over the Internet
Protocol [1] around the beginning of this millenium. Now, modern surveillance
systems are progressively moving towards (and becoming part of) the social
dispersed computing paradigm [2] as there is a need for providing smarter
solutions at the cost of boosting their computational complexity. For example,
industrial systems are rushing into the Industry 4.0 era in which the software
importance raises as it allows industries to provide richer though more
complex functionality in fully distributed environments over countless heterogeneous
computation nodes. Increased intelligent solutions will allow higher virtual
presence of the human-like (intelligent) functions at the factory �oor by
intensive real-time sensing, monitoring, and control of the industry operation.

Surveillance systems are applications with real-time requirements as they
have to detect anomalies and take mitigation actions immediately to avoid
problems such as asset destruction or even threat to humans, among other.
This implies reacting and handling the failure situation before a speci�ed
deadline. The logic run by such systems needs not only the appropriate
hardware that provides su�cient computation power such as multicore technology,
it also needs to integrate appropriate e�cient software layers like operating
systems, the distribution software, and even virtualization technology [3] and
application-level logic that result in a system with timely execution.

In audio-based processing for video surveillance, pattern matching for a
given set of collected audio samples has to be done in real-time to detect
anomalous situations. This is illustrated in Figure 1 for a factory �oor video
surveillance. On the other hand, it should always be considered that real-time
audio-processing activities have little tolerance to deadline misses as that
yields poor audio quality. Additionally, poor-quality audio will signi�cantly
delay the subsequent audio-processing functions and lower-quality anomaly
detections will be made. Therefore, in high-quality audio applications, processing
deadlines must be meet; having an e�cient execution framework that accelerates
audio-processing activities is highly desirable for this purpose.

More and more, the new functions need heavy processing of data of
di�erent nature, e.g., asset-monitoring data, video-surveillance media, or
audio-sampling data, among others. The distribution software layer is key
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Figure 1: Audio-based surveillance system for failure detection

for realizing these characteristics in a fully distributed and heterogeneous
environment, where veri�cation of the system properties [4] will also be
needed (especially in critical domains such as cyber-physical systems). Nevertheless,
still the design of intermediate distribution layers favors abstraction as opposed
to performance; the principles of high abstraction allow highly heterogeneous
computation nodes to interact through a common substrate; such a design
does not get the most out of the new computation platforms that are based
on powerful hardware like multicore processors which currently dominate
the market. Multicore processors o�er the possibility of speeding up the
execution of the software, o�ering dedicated cores to given greedy operations
that can be run in parallel.

Depending on the severity level of the timing constraints, the system will
have to include either real-time scheduling (i.e., typically for hard real-time
and safety-critical domains) or best-e�ort techniques (i.e., for soft real-time
domains). The complexity of the scheduling increases on multicore systems
which have more than one processing core, and di�erent approaches have
been proposed in order to take advantage of their higher computational
capabilities. Most of them rely on assigning tasks in the scheduling queue to
a single core based on availability.

A number of solutions for distributed audio transmission exist, but these
mostly focus at the signal processing level, being rather silent about the

3



in�uence of the underlying communication middleware and the processor
characteristics. The e�ect of the hardware on the timeliness of the application
can overcome the (possible) performance drawbacks of the used middleware.
To bene�t from the computation power of multicore, it is needed also to
exploit the parallelization of the audio tasks with a parallelization framework
such as OpenMP. Although only partially applied to other domains such as
acceleration of eHealth services [5], to the best of our knowledge, there is not a
software framework that is highly aware of the hardware characteristics that
combines these three elements to improve the e�ciency and timeliness of
distributed audio-processing: a multicore hardware speci�cally controlled for
the actual processing, a communication middleware for the audio transmission,
and a parallelization framework for e�ectively assigning simultaneous tasks
to selected cores.

This paper presents a framework for distributed audio-processing that is
highly aware of the underlying multicore processor, improving the timeliness
of the processing as compared to the traditional approach, based on the
default kernel scheduling and core assignment. Our framework integrates the
parallelized signal processing functionality with the distributed communication
of the audio samples using o�-the-shelf middleware for a low cost (but reliable)
solution, and a�nities for mapping audio-processing tasks to speci�c cores.
We analyze the performance of a serial task scheduler parallelizing the internal
computations of the tasks to reduce their execution time and compare it
to the proposed parallelization framework, and we show that it leads to a
signi�cant improvement in processing time and robustness in the presence of
unrelated system load.

The document is organized as follows. Section 2 describes the baseline
technologies for this work. Section 3 presents the architecture and the
speci�c considerations for the distribution facilities. Section 4 describes the
design of the application and system for distributed audio processing in the
industrial surveillance scenario and describes the interesting details of the
implementation. Section 5 describes the evaluation. Section 6 presents a
summary of related work. Finally, section 7 concludes by reviewing the
improvements of our approach.

2. Parallelization and runtime support

This section provides a brief overview of di�erent technologies for parallelization
and scheduling control in Linux.
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2.1. Parallel processing infrastructures

OpenMP [6] is a parallelization infrastructure that provides an application
programming interface (API) consisting on a set of compiler/preprocessor
directives, library routines, and environment variables for shared memory
parallel programming [7], which constitutes a language for multi-threaded
applications. It uses Pthreads on some operating systems, which favors the
development of portable solutions.

Multi-threading may increase signi�cantly the performance of an application
with concurrency, as several computations are performed at the same time
on di�erent processors. Threads are like processes for the system in terms
of execution, they have their own stack and program counter, but they have
access to the same virtual memory address space of its parent process. A
process can be either single- or multi-threaded. Our system uses threads as
they result in more e�cient execution given their reduced context switch cost
[8]. As threads of a same parent process have a shared memory space, they
can communicate through shared memory (global variables); this come at the
cost of incurring in potential race conditions. Consequently, the concurrency
and parallelization of our framework requires that synchronization constructs
are used in order to prevent race conditions and synch errors in general.

An advantage of OpenMP over other parallel programming paradigms is
that it can be easily integrated on existing code and some studies suggest that
using OpenMP over threads with Pthreads increases the robustness without
sacri�cing performance [9]. The fork-join model for parallelizing tasks used
in OpenMP allows to spawn multiple threads to run a give code block in
parallel. In our speci�c target system, the tasks are parts of the Digital
Signal Processing (DSP) that our real-time audio application runs.

OpenMP has three main constructs: compiler directives; run-time library
functions; and environment variables. Compiler directives enforce a number
of behaviours such as spawning a parallel region; division of blocks of code
among threads; distribution of loop iterations among threads; serialization
of code blocks; or synchronization of work among threads. Run-time library
functions provide a number of useful operations such as setting and querying
the number of threads at a given instant; getting a thread's id; querying if
the control �ow is in a parallel region and at what level; etc. An example
of a C/C++ run-time library function is int omp_get_num_threads(void);.
Environment variables control the execution of parallel code at run-time
such as: setting the number of threads (setenv OMP_NUM_THREADS
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8 ); indicate how loop iterations are split or divided; enabling and disabling
nested parallelism; binding threads to processors; etc.

The most attractive feature of OpenMP for our audio-processing framework
is the magic loop parallelization. Element-wise operations on arrays can be
performed simultaneously on di�erent processors, and this can be indicated
with a compiler directive. The syntax of a compiler directive is sentinel

directive-name [clause, ...], such that the sentinel varies with the
programming language, e.g., for C/C++ it is #pragma and for Fortran it
is $OMP. Code 1 shows the basics of loop parallelization with OpenMP. In
the example, all the variables are shared, except the iteration index i. The
reduction directive indicates that each processor maintains a private copy of
the shared variable x, and that these private copies are combined with the
indicated operation at the end of the parallel execution area.

Code 1: Parallelized loop with OpenMP

#pragma omp p a r a l l e l for r educt i on (+:x )
for ( i =0; i < n ; i++) {

c [ i ] = a [ i ] + b [ i ] ;
x += a [ i ] ;

}

The other main infrastructure used for parallelization is MPI [10], which is
a language independent speci�cation for interprocess message passing. MPI
is designed for systems with distributed memory, cluster environments of
single-processor machines; and since version 3, it incorporates an extension
for shared memory processing. It has several implementations that comply
with the speci�cation, like IntelMPI [11] and OpenMPI [12].

Although the current version of MPI is suitable for shared memory applications,
OpenMP has a simpler syntax, being easier to use and to debug for shared-
memory systems like the current symmetric multiprocessor computers.

Hybrid systems with di�erent memory spaces, with any of them associated
with several processors, are a challenge to application design. Existing
applications using either OpenMP or MPI may implement the extensions
of their current infrastructure to scale to the new scenario. Nevertheless,
both platforms are compatible and can be used together carefully to increase
the performance [13].
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2.2. Execution control and instrumentation

The fundamental functions for controlling the processor are provided by
the operating systems and they are: process scheduling and memory management.
The default scheduling policy for some operating systems (e.g. Linux) can
be customized to suit di�erent applications targets such as real-time. Our
framework relies on the kernel supporting functions to control the execution
of the audio tasks and to map them to given cores when possible. Table 1
shows the main facilities used for controlling the distributed audio processing.

Table 1: Audio processing support functions

Function Purpose

Scheduling, process management Prioritize audio processing tasks
Threading and concurrency Prevent shared audio race conditions
Priorities and processor a�nity Core assignment to audio tasks
Signals Handle communication interrupts
File I/O Log of audio tasks operations
Transport level transmission Audio packets communication
Real-time clocks Precision delay measurements
Memory management E�cient consumption avoiding leaks

The proposed audio processing framework uses standard runtime support
functions by means of Posix threads (Pthreads) and through OpenMP for
parallelizing the audio processing computations. Posix is also used in the
core distribution software (Ice) to handle the concurrency when accessing
the queue of received packets.

The required high-precision execution-time measurement is performed through
clock_gettime(clockid_t clk_id, struct timespec *tp)method, selecting
a high resolution clock (real time, wall time, or process time) with nanoseconds
precision (typically 1ns resolution) to obtain the requested timestamp (timespec).

The parallelization library and the networking middleware allow us to
implement a more e�cient and robust application, but these libraries only
provide a higher level of abstraction to interact with the operating system.
In the end, the operating system is in charge of handling the system calls
either of the application or of the libraries to modify the scheduling policies
or interact with the hardware.
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3. Distributed audio surveillance framework

This section presents the approach for improvement of the timeliness in the
audio-surveillance system with a previous description of the core distribution
layer that is used to enable the remote interaction across the system nodes.

3.1. Architecture

The proposed system follows a controlled client-server architecture that
contains: cell nodes which are those in charge of performing the initial
audio pattern assessment to detect failures; central nodes which perform
�ner grain and more heavy computations on the audio samples over a much
larger audio historic data to detect and anticipate possible failures based on
noise patterns; and audio sensors which are small embedded computers with
microphones to collect data samples (e.g. [14]). This is illustrated in �gure
2.
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Figure 2: View of the the software layers of a node; Interaction across nodes and
software functions.

In this architecture, both the cell nodes and the central node play the role
of servers; whereas the audio sensors are clients that collect audio samples
and transmit it to the cell node. Cell nodes merge the audio data comming
from a number of audio sensors to detect posible failures. It is also the case
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that cell nodes act as clients to the central server side when they transmit
the collected audio samples.

The software stack of the di�erent nodes di�ers. As all nodes are distributed,
they all run a version of the lightweight distribution software (Distrib. SW
module on the node view part of �gure 2). For those acting as servers (central
and cell nodes), they also run the hardware-aware logic (CAL module �
Core Assignment Layer� in �gure 2) that provides the parallelization of the
audio processing functions to speed up the computations using the available
processing cores. This will result in shorter response times in the output
generation; outputs may be either the detection of an alarm/anomaly (alarm)
or a sucess operation (ok).

Figue 3 shows the software layers that are present at the nodes (both at
the server and client sides) of the audio-surveillance deployed nodes.

Data 
Proc. Task 

Audio data 

Data 
Proc. Task 

Data 
Proc. Task 

Interface 
Task 

          CAL 
schedules 

 Distrib. SW 

uses 

Server side node 

Data  
Pre-proc. 

Task 

Audio data 

Data 
Sample 

Task 
Interface 

Task 

 Distrib. SW 

uses 

Client side node 

Figure 3: Task interaction through the framework modules.

The distribution layer is present for all node types; the hardware assignment
module is only present at the processing side of nodes having a server role.

CAL module uses the standard POSIX runtime support functions of the
underlying operating system. The priorization of tasks and the assignment
of tasks to speci�c cores use the processor bitmasks through a�nities. CAL
hooks to OpenMP for parallelizing the audio processing computations. CAL
arbitrates the assignment of the audio processing tasks, enforcing their allocation
to speci�c cores. Where CAL is present, it provides hardware core reservations.

The Distrib. SW module is available at all the participating nodes as
they are part of a fully distributed system where all nodes need to exchange
data. This distribution module handles the server incoming concurrency by
restricted access to received-packets queue. It provides the communication
facilities through remote invocations through the Internet Communications
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Engine (Ice), used as the core distribution software. The design details of
both modules, CAL for hardware awareness and Distrib. SW based on
Ice, are presented in the next sections. The communication across nodes
is performed by speci�c interface tasks that use the Distrib. SW module.

3.2. Core distribution software

The distribution module uses Ice [15] as core distribution software because
of its lightweight structure that uses standard operating system facilities and
has operating system standard compliance (e.g. it has a POSIX compliant
runtime). Its lightweight design and performance has been evaluated extensively
in di�erent works such as [16] and its adaptation facility has been shown in
[17], among others.

Each node of a system can take the role of client and/or server. The
communication among nodes is agreed through the speci�cation of remote
interfaces in an IDL (Interface De�nition Language) named Slice, that is
independent from the programming languages. This is done through modules
that are the means to control name spaces and interfaces to de�ne the server
functions that are available for clients. Code 2 shows an interface de�nition
(of name AudioProcessing) that, in this case, receives an input parameter of
type audiostream which is a sequence of bytes that are indeed the collected
audio samples transmitted by the audio sensors. The interface also shows
the posibility of requesting a priority audio processing activity through the
prio parameter. Priority requests will be handled accordingly by the server,
through core reservation.

Code 2: Interface de�nition for a data process function

module ServerOp {
sequence<byte> AudioData ;
i n t e r f a c e AudioProcess ing {
void audio_process (AudioData audiostream , int pr i o ) ;

} ;
} ;

Establishing the communication between nodes requires the de�nition
of a communicator object; this object is the entrance point to the core
distribution software that enables access to communication resources, including
the available thread pool to handle the connections asynchronously. The
communicator allows to create adapter objects that handle the interfaces of
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the remote objects at the server. An adapter is bound to a port where it
listens for incoming requests. Finally, a servant object of the interface needs
to be instantiated to process the requests handled by the adapter. Figure
4 illustrates the design of the audio processing interfacing through the core
distribution software.

Communicator creates Adapter 

enables 

port 

Servant supports Audio 
processing 
Interface 

Incoming 
requests 

Adapter port 

creates 

Figure 4: Design of the audio interfacing scheme.

The distributed services at the server side are two functionalities that are
remotely accesible: the audio service for processing the streams received from
the clients; and a noise service for noise generation upon request of a client.
The service that generates noise is used to introduce varying load conditions
on server machines; it is an internal hook for instrumenting di�erent possible
conditions at the server side (that can later map to di�erent validation
conditions) in order to derive the degree of robustness of the system; this
can be done by varying the noise level and processing times without a�ecting
the server. The servant supports the execution of the operations listed in the
interface provided in Code 2 that contains audio_process function. Also, this
servant supports the execution of an additional interface named ServerHook
which contains an additional function noise_condition_generation.

Resource e�ciency is achieved in di�erent axes. On the one hand, the
distribution module performs memory management collection by reference
counting to object instances. Objects with no remaining active references are
garbage collected. On the other hand, the resource allocation in initialization
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pattern is used for e�ciency reasons, e.g., deadlocks due to unlocked mutexes
can be easily avoided with a Lock class that receives the mutex variable on
the constructor and automatically acquires the lock; by the same token, it
automatically releases the lock on destruction when the scope of the variable
terminates.

4. Hardware-aware execution enforcement

4.1. Audio data considerations

The digital audio samples are sent over the network in data packets. The
continuous channel of analog systems can be implemented by sending samples
at the appropriate high rate. It should also be considered that the design
of data networks introduces a �xed size overhead to every packet due to the
headers of the protocols at the di�erent network layers. Another important
consideration is the damage that can be derived from the loss of a packet
with a number of audio samples. In this situation, there is a tradeo� between
e�ciency and robustness, and the di�erent coding schemes choose various
con�gurations. For instance, the Advanced Audio Coding (AAC) standard
uses 1024 frames per packet. A frame has an audio sample per audio channel;
in a stereo con�guration, it has 2 samples.

The proposed system will use the same number of frames per packet than
AAC for a Pulse-Code Modulation (PCM) stereo signal of 16 bits depth
and a sampling rate of 44.1 kHz. The communication will be unidirectional,
where several clients can send their audio data to the server. The server will
handle the concurrent connections, and it will process the scheduling of the
audio samples e�ciently to guarantee a bounded delay on the audio streams.
The audio streams connected to the system are the tasks, and each packet
of frames received releases a job of the sender stream task.

4.2. Distributed setting

All participating nodes use the g�ags library [18] for activation. This
results in a �exible design that allows the nodes execution environment to be
easily parametized at runtime. The speci�c entry ports (as shown previously
in �gure 4) as well as the core enforcement for the audio tasks and their
parallelization is set at runtime. The server side can then specify:

• The listening port with the --port �ag.
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• Parallelize the DSP using the --openmp �ag. The default is single
threaded DSP.

Similarly, the client uses the following �ags:

• The server host and port with the --host and --port �ag, respectively.
The default server is localhost.

• The audio sampling frequency of the audio stream, that defaults to
44100 Hz, can be speci�ed with the --freq �ag.

• The --noise �ag to generate noise in the server at di�erent levels for
a number of seconds at each level (the default value is 10 seconds).

The distributed processing of the audio streams is deployed as follows.
The audio processing service is implemented by the server application, and
there is a client side that generates the audio samples sent to the server. The
client sends CD quality stereo stream generating vectors of 1024 frames every
0.0232 seconds, that maps to a rate of 44100 frames per second. A frame
contains a 16 bit PCM sample of each audio channel, codi�ed for the stereo
system as a 32 bit integer.

4.3. Distributed audio processing services

Audio is collected by clients that periodically send the sampled audio
packets as a byte stream of audio frames and a unique identi�er of the
stream. As di�erent audio streams can be sent to a server, an identi�er
of client and stream is used to di�erentiate streams. Also, di�erent streams
from the same client can be supported in this way. This is easily enhanced
to obtain a universally unique identi�er by adding the machine IP address.
The server handles the requests asynchronously. The processSamples(int

client_id, std::vector<int32_t> audio_frames)method creates a tuple
with the client identi�er and the vector of audio frames and appends it on a
FIFO (First-In First-Out) queue.

The audio-processing server node runs as a daemon application listening
at a port where the clients send the audio samples. In order to provide real-
time audio processing, the server exploits the resource management functions
of the kernel to control the execution on the multicore processor.

The AudioServiceI is the interface created for the server that extends the
IceUtil::Thread class (the class that Ice libraries de�ne that is a wrapper
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to the type POSIX thread). Hence, upon the creation of an instance of
this class on the server, the thread has to be started. The class uses an
IceUtil::Monitor variable (the class that Ice libraries de�ne that is a
wrapper to a POSIX condition variable) that makes the thread sleep while
the queue of pending packets to be processed is empty. Upon enqueuing a new
tuple, the queue monitor is signaled to wake up the thread. Race conditions
on the access to the queue are avoided with a mutex that is acquired before
accessing to ensure mutual exclusion is preserved.

The thread of the audio processing is scheduled with priority; it is, in
fact, the thread that executes the servant code. After it starts execution, the
AudioServiceI function starts processing audio samples. Audio processing
is performed in a loop over the queued audio packets until it is stopped.
Stopping is implemented by an additional function stop() of the same interface.
Initially (at the �rst execution of the loop), the queue is expected to be empty.
Then, the thread will sleep until the �rst packet of audio frames arrives that
will automatically wake the thread up. To avoid abrupt termination after
calling stop(), the thread loops to process the already queued packets and
then joins the server main thread. Similarly, in order to avoid enqueuing
packets when the thread is not active, method processSamples checks an
internal variable that controls the frame processing loop before a new packet
is queued.

The DSP of the audio frames runs a nested loop. The outer loop updates a
control variable that executes the part of the DSP that is not parallelizable.
The inner loop performs element-wise operations on the frames vector as
these are parallelizable regions. This inner loop is parallelized with a OpenMP
pragma directive like the one showed in Code 1.

Code 3 partially shows the logic to perform core assignment for evaluating
the robustness in the presence of di�erent load conditions. The pool of
threads that are created as per the internal server hook are assigned core
a�nities to measure the actual execution times and interference for the audio
processing tasks. Di�erent load conditions due to external activities running
in the processor are simulated with a noise control function that runs a set of
synthetic activities for the sole purpose of generating interference as would
happen in a real deployment. These di�erent load conditions are controlled
through explicit activation and deactivation and are generated in given cores
as sketched in Code 3.

Code 3: Robustness validation through controlled noise generation and corresponding
core assignment
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no i s eLeve l = loadLeve l ;
for ( int i = 0 ; i < sy s con f (_SC_NPROCESSORS_ONLN) ; ++i )

{
cpu_set_t cpuset ;
CPU_ZERO(&cpuset ) ;
CPU_SET( i , &cpuset ) ;
NoiseThreadPtr t = new NoiseThread ;
pthread_t t_id = t−>s t a r t ( ) . id ( ) ;
pthread_seta f f in i ty_np ( t_id , s izeof ( cpuset ) , &cpuset )

;
}

Di�erent load conditions at the server are created by designing an internal
hook that can dynamically activate a service DummyService to validate
di�erent execution conditions that a�ect the processor load; this is done
by creating a pool of threads with a doNoise() method inside the former
service. One thread per core is created and started in the system and the
core a�nity binding is set for all the threads to di�erent processors. Threads
perform operations that merely consume processor cycles with a microsecond
idle time in between consecutive repetitions of the same set of operations.
The complexity of the generated load is controlled with a parameter to set
the noise level; this parameter can be modi�ed by any client with a call to
doNoise(int noise_level). When the maximum speci�ed noise level is set
the voluntary waiting of the noise threads is skipped and they consume all
its time slice on the processor before being preempted. Similarly, if the noise
level is set to zero, the threads exit the noise generation loop and terminate
their execution.

5. Evaluation

This section presents the performance evaluation and analysis of the proposed
framework for distributed audio processing that is highly aware of the underlying
hardware based on multi-core and the usage of parallelization software for
execution of selected operations in speci�c cores.

The execution environment for the multi-core audio processing is based
on a computer equipped with an Intel i7-5600U processor at 2.60 GHz with
2 cores and hyperthreading, meaning that 4 threads can run in parallel. The
operating system is the 64 bits version of Debian 8 "Jessie" with the version
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3.16 of the Linux kernel. In this paper, we focus on evaluating the processing
time.

Our validation scenario uses the same number of frames per packet than
AAC for a Pulse-Code Modulation stereo signal of 16 bits depth and a
sampling rate of 44.1 kHz. The communication will be unidirectional, several
clients can send its audio to the server side that will have to handle the
concurrency of the connections and process the scheduling of the audio
samples e�ciently to guarantee a maximum delay on the audio streams.
The audio streams connected to the system are realized with active tasks
and each packet of frames received releases a job of the sender stream task.
The delay of audio processing introduced by the network or by the queuing
of incoming packets on the server is not considered. The network delay is
mostly related to factors not directly involving the system design; therefore,
we analyze the actual performance of the server software stack.

The parallelization can be con�gured either dividing the computations
statically or dynamically, and with di�erent number of threads. The most
straightforward solution is to split the computations in equal parts with
one thread per CPU in order to maximize the utilization of the system and
load balancing. We have found experimentally that there is no signi�cant
di�erence between static or dynamic splitting and the best performance
is achieved with one thread per CPU. Although this is true for the best
case, we found that dynamic splitting leaving one core free is a more robust
con�guration that leads to a better worst-case processing time for all noise
levels with a minimum di�erence in the best case performance.

Figure 5 shows the boxplots for di�erent OpenMP con�gurations for parallelization.
In �gure 5, for each noise level in the x axis, each con�guration expressed in

the legend is provided: the left most box corresponds to the static con�guration;
the middle box presents the dynamic (all processors) con�guration; and the
right most box provides the dynamic (1 processor) con�guration. The
distribution of the processing times with dynamic splitting and leaving one
core free is signi�cantly narrower and hence, more robust to noisy environments.
The introduced noise is realized by activation of unrelated tasks competing
with the audio tasks for the hardware resources as consumption of processor
cycles.

A �le log is used for storing the temporal time taken by the server to
process audio packets within the stream ID and the noise level (i.e., the
actual load) at the server. Precision measurements are obtained by collecting
timestamps before and after frame processing using the POSIX clock API
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Figure 5: Packet processing time (in milliseconds) for di�erent DSP con�gurations with
two concurrent audio streams. Noise level is expressed in percentage.

(clock_gettime()method, described in section 2.2), using CLOCK_MONOTONIC.
Performance results and analysis is shown in the following section for the
collected processing costs.

The capacity of the system (i.e., the maximum number of streams that the
server can process simultaneously) is now analyzed from the processing-time
measurements. Using a notation compatible with that of real-time systems,
each stream is a task and its packets are the jobs. Therefore, the system
is schedulable if all the tasks can be completed within their deadline, that
may coincide with their period. This depends on the quality of the streams
and the actual audio processing of the streams. In a system where all the
streams have the same audio quality and the DSP to perform on them is the
same (i.e., meaning their processing times and period of the streams are the
same), the capacity is given by the equation that is given as follows.

N ≤ 1024

faudio · tpacket
(1)
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Figure 6: Comparison of the packet processing time (in milliseconds) with serial and
parallelized DSP with one and two concurrent audio streams. Noise level corresponds to

overall processor load and is expressed in percentage.

where N is the capacity in streams of the system, faudio is the audio stream
frequency (44100 Hz by default), and tpacket is the time taken by the server
to process a packet of audio frames. A stream generates an audio frame
every 1/faudio seconds and are sent to the server in groups of 1024 frames per
packet.

Experimentally, as the processing time is not deterministic on general
purpose systems, we can use the (100−δ) percentile, where δ is the tolerance
of the system to packet losses. For stereo audio of 44100 Hz and 16 bit
PCM/channel with the DSP of the test application and a tolerance to losses
of 25%, we estimate a capacity of 6 streams for the serial DSP and up to 17
when parallelizing the DSP, depending of the parallelization scheme. We use
the higher value of the 75-percentile among the di�erent noise levels.

Figure 6 compares the serial and parallel DSP performance for di�erent
noise levels, numbers are provided in table 2. We measure the processing
times for one and two concurrent streams showing that there is no di�erence
in the processing times between concurrent streams due to the serial scheduling.
The �gures show that parallel processing, with the proper con�guration, is
more robust to the noise produced by unrelated system load. The experiments
report true values to expose the real e�ect over thousands of the executions
(precisely, 4000 runs). Under very low load conditions and absence of noise,
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Table 2: Processing times of the audio packets in milliseconds

Noise level 0 50 100

DSP Serial Parallel Serial Parallel Serial Parallel
mean 1.77 1.22 1.94 1.56 3.60 1.18
std 0.47 0.24 0.05 1.27 0.21 0.97
min 1.36 0.94 1.87 1.03 3.14 1.13

25-perc. 1.59 1.15 1.91 1.08 3.67 1.15
median 1.64 1.17 1.94 1.15 3.68 1.16
75-perc. 1.67 1.21 1.96 1.18 3.69 1.28
max 5.43 4.40 2.50 19.99 4.12 19.20

Number of
measures

925 1150 1262 1207 1268 1269

the kernel runs all active tasks in the same core as it reduces data dependency
e�ects. This results in situations with higher context switch e�ects and the
overall time is typically larger than when execution is bound to given cores.
When tasks start to be con�ned to selected cores, interference decreases and
the overall processing times improve. This shows the set of outliers in both
cases, for the serial and the parallel case. The important aspect here is to
show the robusness of the approach. In this case, the 75 percentile of average
times is low (1.18ms for 50% interference and 1.28ms for 100%) which shows
the real bene�t of the approach. As we show real numbers, the maximum
times are also shown (19.99 and 19.20ms, respectively) but the statistical
study of the system behavior shows that they are simply a few outliers out
of the thousands of measurements that are reported for each experiment.

The presence of outliers is considerably small as compared to the general
execution results. Alghough this would not be suitable for hard real-time
systems (in which every deadline must be ful�lled), it is suitable for this
type of systems that are soft real-time: it is possible to obtain a statistical
analysis that concludes supports the claim of increased robustness. We
explain this increase in robustness with the fact that the engineered system
is based on a parallelizing infrastructure that helps to reduce the waiting time
of tasks, i.e., the time that tasks are waiting to be dispatched into a core.
Even the parallel threads altogether su�er a total number of preemptions
equal to those of a single process performing the same task. The waiting
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times caused by the preemptions can be dramatically reduced with a �exible
parallelization con�guration as the one provided by our proposed system.

6. Related work

Highly e�cient audio processing frameworks have mostly targeted on
improvements to the digital signal processing aspect as evidenced by a recent
survey on audio surveillance [19]; this is the case of [20] where improvements
on mix channel signal separation for audio improvement are presented; [21]
that provides a system for localization of people through speech signal recognition
based on microphone arrays; or [22] for detection of human audio signals in
noisy environments. Another important path for audio surveillance contributions
focused on its combination with images to track people in mobile deployments
such as [23] for passenger elevators surveillance, or [24] for audio and video
surveillance over mobile communications. Consequently, it can be said that
the design and development of audio surveillance systems has not focused
su�ciently on the improvement of the software stack and its e�cient execution
over the general purpose computer platforms. The audio processing frameworks
that have in deed considered the software stack are mostly related to our
proposed framework. However, these have typically been silent about response
time improvements, and have not su�ciently considered the mechanisms for
controlling the execution over the hardware resources.

It should be noted that some audio processing such as [25] have provided
platform-independent libraries for facilitating the implementation of multi-
threaded real-time audio applications for multiple input/output audio channels.
In such a contribution, a simple though static number of threads for audio
processing, supporting both real-time and non real-time requirements is provided.
Other Java-based contributions such as [26] and [27] have been directly based
on the contributed Linux audio drivers. Other media-centric approaches
are also available in the literature such as [28] that o�ers a framework for
functional composition of di�erent media streams.

To the best of our knowledge, there are no contributions that aim at
integrating the distribution software side with the logic to achieve control
over the assignment of the processing resources of the available multicore
processors. Although there are some very e�cient distribution software
designs such as [29] (that supports real-time video transmission over dynamic
distributed service-oriented systems) and has been applied in video-surveillance
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[30] as well as eHealth [31], etc., it is unaware of the underlying structure of
nowadays multicore processors.

7. Conclusions

In this paper, we have presented the design, implementation, and evaluation
of a distributed audio-processing system for surveillance.The design of the
distribution software is provided with a client-server architecture that is
highly aware of the underlying multicore nature of the processor. The system
performs a serial scheduling of the audio tasks, parallelizing the digital signal
processing computations by integrating a parallelization infrastructure like
OpenMP with distribution middleware for the remote transmission of the
audio packets across the �oor shop nodes and to the central server nodes.
The obtained performance evaluation of the proposed system integrates the
temporal cost of the audio processing and the actual software stack (i.e., the
operating system and the distribution software). The obtained performance
is compared with the traditional approach of single threaded audio processing
on monocore. Results show that our framework (which integrates the parallelized
signal processing functionality with the distributed communication of the
audio samples and a�nities for audio-processing tasks over speci�c cores)
leads to a signi�cant improvement in processing time and robustness to
unrelated system load.

Parallelizing with a dynamic threading scheme and leaving some of the
system resources available for unrelated tasks results in the best con�guration
to improve the worst case processing time. We explain these results by the
fact that this con�guration better reduces the waiting time of threads, i.e.,
the time that threads are idle waiting for the dispatcher to assign them a
core.

With the obtained results, we prove the processor intensive task of distributed
audio-based surveillance, and digital signal processing in general, can bene�t
from the speed up e�ect of modern multicore CPU architectures. The improvements
translate into a signi�cant increase of the system capacity.
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