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Abstract

This dissertation studies the prefetching technique applied to the World Wide Web
from a realistic and practical point of view. Web prefetching is a technique to reduce
users perceived latency by predicting and pre-processing next user accesses.

Until now the open research literature about web prefetching has focused on the-
oretical questions and has not taken into account some of the problems that arise
when implementing the technique in real conditions. Furthermore, previous works
have used simplified models for evaluation that do not consider how practical issues
really affect the implementation of a prefetching technique. Moreover, only few works
have considered performance indexes that are relevant to users when evaluating the
benefits that prefetching can achieve.

In order to overcome these three limitations, we developed Delfos, a web prefetch-
ing framework that implements web prediction and prefetching in a real environment,
and can be integrated into the web architecture without modifying the standard web
protocols and in a compatible way with the existing software products. Delfos can
also be used to evaluate and compare existing prefetching techniques and algorithms
and to assist in the design of new ones because it provides detailed statistics reports.
As an example, Delfos is used to propose, test and evaluate a new technique (Predict
at Prefetch, P@P) able to considerably reduce the users perceived latency with no
additional cost compared to the basic prefetch mechanism.

The prediction algorithms proposed in the research literature that achieve the
highest precision involve a high computational cost, which is an important drawback
for including them in real systems. To deal with this disadvantage, a novel low-cost
web prediction algorithm (Referrer Graph, RG) is proposed in this PhD dissertation.
This algorithm learns from users accesses and builds a Markov model that can dis-
tinguish between dependencies in objects of the same page and objects of different
pages by using the object URI and the referrer in each request. RG includes a prune
mechanism that controls the computational resource consumption while sustaining
the performance.

This dissertation also includes an empirical study to investigate the maximum ben-
efits that web users can expect from prefetching techniques in the current web. Unlike
previous theoretical studies, this work considers a realistic prefetching architecture us-
ing real and representative traces. In this way, the influence of real implementation
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constraints are considered and analyzed. The results obtained show that web pre-
fetching can improve page latency up to 52% in the studied traces, which encourages
researchers to focus future works on this direction.



Resum

Aquesta tesi estudia l’aplicació a la World Wide Web (WWW) de les tècniques de
prebusca des d’un punt de vista realista i pràctic. La prebusca s’aplica a la web per
a reduir la latència percebuda pels usuaris ja que, bàsicament, consisteix a predir i
preprocessar els següents accessos dels usuaris.

Fins ara, la literatura disponible sobre la prebusca web s’ha concentrat en qües-
tions teòriques i no ha considerat alguns dels problemes que apareixen en implemen-
tar la tècnica en condicions reals. D’altra banda, els treballs d’investigació existents
usen per a l’avaluació models simplificats que no consideren com els aspectes pràctics
afecten realment la implementació d’una tècnica de prebusca. A més, apenes uns
pocs treballs han usat ı́ndexs de prestacions que siguen rellevants per als usuaris en
l’avaluació dels beneficis que la prebusca pot aconseguir.

A fi de superar aquestes tres restriccions, s’ha desenvolupat Delfos, un entorn de
prebusca web que implementa predicció i prebusca en un Sistema real, pot integrar-se
a l’arquitectura web sense realitzar modificacions en els protocols web estàndard, i
és compatible amb els programes existents. Delfos també pot usar-se per a avaluar
i comparar tècniques de prebusca i algoritmes de predicció aix́ı com ajudar en el
disseny d’uns altres de nous ja que proporciona informació estad́ıstica detallada dels
experiments duts a terme. A manera d’exemple, Delfos s’ha usat per a proposar,
provar i avaluar una nova tècnica (Predir a la Prebusca, P@P) que és capaç de reduir
considerablement la latència percebuda per l’usuari sense costos addicionals respecte
al mecanisme de prebusca bàsic.

Els algoritmes de predicció proposats en la literatura d’investigació que acon-
segueixen la millor precisió incorren en un alt cost computacional, i açò representa
un problema per a incloure’ls en Sistemes reals. Per a minorar aquest inconvenient,
en aquesta tesi es proposa un nou algoritme de predicció de baix cost, (Referrer
Graph, RG). Aquest algoritme aprèn dels accessos d’usuaris i construeix un model de
Markov que distingeix entre dependències d’objectes de la mateixa pàgina i objectes
de distintes pàgines usant la URI i la informació de referència de l’objecte indicat
en la petició. RG inclou un mecanisme de poda que controla el consum de recursos
computacionals mentre manté el rendiment.

Aquesta tesi també inclou un estudi emṕıric que investiga els màxims beneficis
que els usuaris de la web poden esperar de les tècniques de prebusca en la web actual.
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Contràriament a altres estudis teòrics previs, aquest treball considera una arquitec-
tura de prebusca realista, usant traces reals i representatives. D’aquesta manera es
considera i analitza la influència de les restriccions d’implementació reals. Els resul-
tats obtinguts mostren que la prebusca web pot reduir la latència de pàgina fins en
un 52% en les traces estudiades, la qual cosa incentiva la realització d’un major esforç
investigador en aquesta direcció.



Resumen

Esta tesis estudia la aplicación a la World Wide Web (WWW) de las técnicas de
prebúsqueda desde un punto de vista realista y práctico. La prebúsqueda se aplica a
la web para reducir la latencia percibida por los usuarios ya que, básicamente, consiste
en predecir y preprocesar los siguientes accesos de los usuarios.

Hasta ahora, la literatura disponible acerca de la prebúsqueda web se ha con-
centrado en cuestiones teóricas y no ha considerado algunos de los problemas que
aparecen al implementar la técnica en condiciones reales. Por otra parte, los tra-
bajos de investigación existentes usan para la evaluación modelos simplificados que
no considera n cómo los aspectos prácticos afectan realmente a la implementación de
una técnica de prebúsqueda. Además, apenas unos pocos trabajos han usado ı́ndices
de prestaciones que sean relevantes para los usuarios en la evaluación de los beneficios
que la prebúsqueda puede lograr.

Con objeto de superar estas tres restricciones se ha desarrollado Delfos, un entorno
de prebúsqueda web que implementa predicción y prebúsqueda en un sistema real,
puede integrarse en la arquitectura web sin realizar modificaciones en los protocolos
web estándar, y es compatible con los programas existentes. Delfos también puede
usarse para evaluar y comparar técnicas de prebúsqueda y algoritmos de predicción aśı
como ayudar en el diseño de otros nuevos ya que proporciona información estad́ıstica
detallada de los experimentos llevados a cabo. A modo de ejemplo, Delfos se ha usado
para proponer, probar y evaluar una nueva técnica (Predecir en la Prebúsqueda, P@P)
que es capaz de reducir considerablemente la latencia percibida por el usuario sin
costes adicionales respecto al mecanismo de prebúsqueda básico.

Los algoritmos de predicción propuestos en la literatura de investigación que al-
canzan la mayor precisión incurren en un alto coste computacional, y esto representa
un problema para incluirlos en sistemas reales. Para aminorar este inconveniente,
en esta tesis se propone un nuevo algoritmo de predicción de bajo coste, (Referrer
Graph, RG). Este algoritmo aprende de los accesos de usuarios y construye un modelo
de Markov que distingue entre dependencias de objetos de la misma página y objetos
de distintas páginas usando la URI y la información de referencia del objeto indicado
en la petición. RG incluye un mecanismo de poda que controla el consumo de recursos
computacionales mientras mantiene el rendimiento.
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Esta tesis también incluye un estudio emṕırico que investiga los máximos beneficios
que los usuarios de la web pueden esperar de las técnicas de prebúsqueda en la web
actual. Contrariamente a otros estudios teóricos previos, este trabajo considera una
arquitectura de prebúsqueda realista, usando trazas reales y representativas. De esta
forma se considera y analiza la influencia de las restricciones de implementación reales.
Los resultados obtenidos muestran que la prebúsqueda web puede reducir la latencia
de página hasta en un 52% en las trazas estudiadas, lo cual incentiva la realización
de un mayor esfuerzo investigador en esta dirección.
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Chapter 1

Objectives of the Thesis

1.1 General Objective

The main objective of this thesis is to demonstrate that web prefetching is an effective
solution to reduce web latency perceived by the users, and that it can be implemented
easily and efficiently in the current real environment.

1.2 Motivation

Web prefetching has not been widely used in the real world until now due to three main
reasons. The first one is the limited user bandwidth that restricted the benefits of
prefetching in the early Web. The second reason is that some early proposals required
the modification of the standard web protocols in order to support web prefetching.
Finally, the third reason is that the most efficient prediction algorithms proposed to
predict next user accesses require a lot of computational resources in order to generate
precise predictions. This is because these algorithms work by capturing previous user
accesses in order to build a model of user patterns to predict future accesses.

Regarding the first reason, the ever-increasing bandwidth in the current Internet
opens a new window for exploiting web prefetching, thus becoming an interesting op-
tion for improving web performance. Web browsers based on Mozilla already support
the web prefetching technique.

This thesis focuses on solving the second and third mentioned drawbacks. In the
first part of this dissertation, we check how web prefetching can be implemented in a
real environment without modifying the standard HTTP 1.1 protocol, making it also
compatible with current web browsers and servers. Then, we design some efficient
web prefetching proposals that carefully consider resource consumption.

1
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1.3 Partial Objectives

In order to accomplish the main objective of this dissertation, and considering the
motivation previously outlined, several partial objectives have been proposed. These
partial objectives are listed below and are individually addressed in the next chapters.

1.3.1 To build a prototype that considers the client, the server
and the protocol

The first objective is to design and implement a framework to efficiently and easily
perform web prefetching techniques, integrated in a real web architecture.

The prototype must be fully compatible with HTTP, making it suitable to be used
with current browsers, web servers and protocols. It should also be able to serve as
a framework to investigate how web prediction and prefetching techniques can work
efficiently in a real environment without modifying the standard HTTP protocol.

1.3.2 To conduct a performance evaluation study of web pre-
fetching techniques considering real conditions

A lot of research works were published focusing on prediction and prefetching algo-
rithms, but few of them compare the performance of different proposals by using sim-
ulation or emulation tools. The main advantage of using these tools is their flexibility
and immediacy providing results. Unfortunately, simulators may present significant
result deviations since they are abstractions of the real world. As a consequence,
there is a need to develop a tool in order to gather results when running prefetching
algorithms in real environments.

To fill this gap, the prototype previously built can be extended to evaluate and
compare the performance of web prefetching techniques under real conditions.

1.3.3 To study real factors that affect the web prefetching lim-
its, and quantify their impact

The main goal is to explore the maximum benefits that web prefetching can achieve
when working in the real world, i.e., the objective is to quantify the upper bounds
in latency savings assuming real conditions. The experiments can be performed in
the prototype previously built by implementing a perfect prediction algorithm which
always provides accurate predictions. In this way, we can discern which performance
losses come from miss-predictions and which ones come from the prefetching tech-
nique. This work should serve as a guide for future research works aimed to improve
web prefetching.
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1.3.4 To explore how web prefetching techniques can be im-
proved

The aim is to design and test general web prefetching techniques that improve prefetch
performance. Then, they will be implemented in the prototype and tested in real
world conditions.

1.3.5 To propose a Low Cost Prediction Algorithm

Our objective is to design a new prediction algorithm that becomes a low-cost alter-
native to the existing ones, but capable of achieving precision values and web latency
savings similar or even better than those ones of the best proposals that can be found
in the open literature. The proposal will be carefully evaluated by using the prototype
framework, and the results will be compared against the proposals of the literature,
in the same conditions.



4



Chapter 2

Web Prediction and
Prefetching

2.1 Introduction

Today the massive use of the web has increased the traffic in the network as well
as the load that the web servers manage. Although nowadays web users have higher
bandwidth connections, they still perceive high latencies when navigating the web due
to overloaded elements (e.g., network, servers, switches, or intermediate hardware),
long message transference times, and the Round Trip Time (RTT). Consequently,
the reduction of the users perceived latency when browsing the web is still a crucial
research issue.

The reduction of the web users perceived latency has been the subject of many
research efforts over the past few years. The most popular techniques proposed to
reduce this latency are web caching, geographical replication, and prefetching. Nowa-
days, caching techniques are widely implemented since they achieve important latency
savings. Big companies usually implement web replication by using CDNs (Content
Delivery Networks) [Rabinovich 02] to reduce their websites access time, but this solu-
tion is expensive and many small companies and organizations cannot afford it. Web
prefetching techniques are orthogonal to caching and replication techniques, so that
they can be applied together to achieve a better web performance. While caching and
replication techniques have been widely implemented in real world, far fewer studies
have investigated web prefetching in real environments.

This chapter presents a detailed description of the web prediction and prefetching
techniques. The chapter is organized as follows: Section 2.2 presents the concepts of
a generic web prefetching architecture, its components, how commercial web browsers
implement it and other related considerations. Section 2.3 surveys the existing pre-
diction algorithms. Section 2.4 outlines the published works related to performance

5
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evaluation of web prefetching techniques. Finally, section 2.5 lists the current com-
mercial products and prototypes that implement some kind of web prefetching.

2.2 Web Prefetching

The purpose of web prefetching is to preprocess object requests before the user ex-
plicitly demands those objects, in order to reduce the users perceived latency. Web
prefetching involves two main steps. First, it is necessary to accurately predict the
next user accesses. These predictions are usually made based on previous experience
about users’ accesses and preferences, and the corresponding hints are provided to
a prefetching engine. Second, the prefetching engine decides which objects from the
predicted hints are going to be prefetched.

The information that can be used by the prediction engine depends on the el-
ement of the web architecture (the client, the proxy or the server) at which the
prediction engine has been located. When it is located at the client, only one user
access pattern is used to perform predictions [Bestavros 95, Duchamp 99]. How-
ever, when the predictor is at the proxy server, it takes advantage of the multi-
user and multi-server information gathered at this element to perform the predic-
tions [Fan 99, Bouras 04, Teng 05]. If the engine is located at the server side, it
makes predictions based on multi-user accesses to the same website [Domènech 06a,
Schechter 98, Padmanabhan 96, Bestavros 96]. Finally, the predictions can be per-
formed by several elements in collaboration [Markatos 98, Domènech 06e].

The prefetching engine can be implemented in any of the elements that receive
the predictions results. The objects prefetched are stored in a cache waiting to be
demanded.

This work assumes that the web server performs the predictions and provides
the hints, and the web browser prefetches the objects during the browser idle time
[Crovella 98]. We use this architecture because this is how most commercial prod-
ucts work, it does not require changes in the protocols, and it is the easiest way to
implement it in practice.

We define page latency as the elapsed time from the time when the user demands
a page until all the objects in the page are received. This time finishes earlier if the
page download is canceled. We also define the browser idle time as the elapsed time
since the last embedded object of a page is received until the next page is requested.
Figure 2.1 illustrates these definitions in an example page.

The limitations on the available user’s bandwidth constrained the benefits of pre-
fetching in the past because prefetching can increase network traffic if its predictions
are not accurate enough. This fact together with the difficulty in implementing these
techniques without modifying the massively used protocols have left a gap between
academic results and available products. But the current user’s bandwidth opens
again new possibilities for prefetching to improve web performance with a reasonable
cost.
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Figure 2.1: Evolution in time of a user request with prefetching

Figure 2.2: Taxonomy of prediction algorithms

Although a requested web page can be the result of a dynamic request, many of the
objects that compose the page are usually static and, consequently, cacheable. More-
over, a dynamically generated object can be cached if it is properly labeled. As all the
cacheable objects can be prefetched (precached), this study covers, among other tech-
nologies, dynamic web server and application programming, and browser application
programming like AJAX, Java, Flash, and other Rich Internet Applications.

2.3 Web Prediction Algorithms

Prediction algorithms can be classified in two main groups according to the type of
information used to make predictions [Domènech 06e] (see Figure 2.2).

The first group includes algorithms that predict future accesses based on the pre-
vious access patterns. Two subgroups can be distinguished: one that consists of
algorithms that use Markov models [Padmanabhan 96, Palpanas 99, Domènech 06a,
Zhu 02], and the other with algorithms that use data mining techniques [Yang 03,
Gündüz 03, Nanopoulos 03]. Many prediction algorithms based on Markov models
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can be found in the literature, and some of them provide high precision predictions
but at the expense of intensive computation and memory consumption. The resource
consumption of data mining based algorithms is even higher.

The second group contains the algorithms that analyze the web content to make
predictions. Some authors propose to combine the analysis of the content with
usage profiles [Duchamp 99], others apply neural networks to keywords extracted
from HTML content [Ibrahim 00], and some others detect similarities in context
words around links in the HTML content [Davison 02]. The proposals [Ibrahim 00,
Davison 02] are based on the object popularity and the associated hyperlinks, but
they do not consider the relationship among objects.

Regarding the prediction algorithms based on Markov models, one of the most
widely used in the literature is the Dependency Graph (DG) proposed by Padman-
abhan and Mogul [Padmanabhan 96]. DG builds a dependency graph that depicts
the pattern of accesses to the objects. There is a node in the graph for each object
that has ever been accessed. Other well-known algorithm is the Prediction by Partial
Match (PPM), proposed by Palpanas and Mendelzon [Palpanas 99], which also uses
a Markov model to store the context of accesses. Both algorithms achieve a high
precision in the predictions, but unfortunately this fact is not directly related to high
latency savings for web users because the algorithms do not consider the structure of
current websites [Domènech 06a].

The Double Dependency Graph (DDG) algorithm, proposed by Domènech et al.
[Domènech 06a], is based on DG but it considers the structure of current websites by
differentiating between pages and embedded objects. DDG provides useful predictions
to effectively reduce the users perceived latencywhen downloading web pages.

The prediction algorithms mentioned above try to learn the user patterns from
the sequence of accesses. These algorithms consider that two objects are related if
they are requested by the same user closely in time.

Other Markov algorithms learn user patterns from the site structure. Zukerman
et al. [Zukerman 99] compare different prediction models. Some consider the order
in which documents are requested, and others the structure of the server site. But
the study does not present any algorithm in detail and any result about the actual
page latency savings. Zhu et al. [Zhu 02] propose to build a Markov model from
web log files and use it to make predictions. This work mainly concentrates on the
compression of the transition probability matrix. It does not present any algorithm
in detail, and does not study the performance of the prediction algorithm.

Using current prediction algorithms in the real world presents some problems
with the resource consumption. Several works have addressed this topic in order to
reduce the complexity of the prediction models and, consequently, their computational
and memory costs. In this sense, Deshpande et al. [Deshpande 04] focus on pruning
Markov models of web prediction algorithms. They present several techniques to
combine Markov models of different order to reduce the state-space complexity while
maintaining the prediction accuracy. They also propose three schemes for pruning
states: states with low frequency of occurrence; states with low confidence on state
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outgoing transition; and states with high error associated with a state (determined
by using off-line verification with a trace). They conclude that the Markov models
after pruning achieve similar or better accuracy than the original models.

2.4 Performance Evaluation

Many research efforts related to web prefetching focus on how to improve theo-
retical indexes of the prediction algorithm like precision and recall [Dongshan 02,
Nanopoulos 03]. Nevertheless, there are few works dealing with the reduction of
users perceived latency, traffic, and web server load increase that evaluate and com-
pare their proposals [Domènech 06c].

Moreover, few research works have been addressed to compare the performance
between different prediction algorithms mainly because of the difficulty in reproduc-
ing environments and workloads [Domènech 06b]. Two algorithms based on Markov
models, proposed by Zukerman [Zukerman 99] and by Bestavros [Bestavros 95], are
compared in [Albrecht 99]. The comparison is only performed at the algorithmic
level, without considering details related to the users perceived latency. Another
work [Bouras 04] compares two algorithms, one based on the idea of popular objects
of Markatos [Markatos 98] and the other based on a variation of the Prediction by
Partial Matching algorithm. These comparisons were made from the point of view
of the prediction and its precision, and to the knowledge of the author of this dis-
sertation, there is only a fair attempt to compare them from the user’s perspective
[Domènech 06d].

The first relevant study that analyzed the potential benefits of web prefetching
was carried out by Kroeger et al. [Kroeger 97]. They analyzed the limits on latency
savings that caching and prefetching reached in several scenarios. Experiments were
performed with a perfect off-line prediction algorithm and using traces obtained from
a proxy server in 1996. An interesting conclusion of that research work was that
prefetching doubles the latency reduction achieved by caching, which is limited by the
frequent update of objects in the web. However, their results are difficult to compare
due to the assumptions made about the environment and the workload characteristics.
In 1999, Li Fan et al. [Fan 99] investigated, using traces from 1996, the limits on the
benefits that a perfect prediction algorithm located at the proxy server could achieve.

Bouras et al. [Bouras 04] stated that the results obtained in web prefetching ex-
periments strongly depend on the architecture or model assumptions, and that the
parameters that influence web prefetching are closely related to the web architecture
itself.

Domènech et al. [Domènech 06e] studied the impact of the web architecture on
the limits of latency reduction. They identified that the main constraint to obtain the
upper bound in latency savings is due to the location in which a user access cannot
be predicted, e.g., the first access of a session and the first time the predictor sees an
object. Their results showed that latency reduction clearly depends on the location
of the predictor. They stated that latency can be reduced by 36%, 54%, and 67%
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when the predictor is located at the server side, client, or proxy, respectively. Latency
reductions higher than 90% could be obtained if the predictor worked collaboratively
at different elements of the architecture.

Finally, Balamash et al. [Balamash 07] proposed a mathematical model for a web
prefetching architecture. Their results showed that prefetching was profitable even
with the presence of a good caching system.

To sum up, the studies discussed above are quite theoretical either because they
use analytical models or because prefetching is not applied under real conditions and
scenarios. For instance, most of them assume that all the predicted objects will
be prefetched, which is far from real implementations because the prefetching is only
performed during the browser idle time, and only if the object is not already in the
browser cache. Another common problem is that most studies only model a part of
the web architecture, the prediction engine, and do not take into account the web
client and the prefetching engine. Furthermore, in the performance evaluation they
take into account the performance of the prediction engine, but not the results of
prefetching observed by the final user.

2.5 Software Implementations

This section reviews the previous attempts to implement web prefetching techniques.
These include both prototype implementations proposed in the research literature,
and commercial products available for production usage. The software products are
grouped in three categories: servers, proxies and clients, according to the element of
the architecture where the prediction or prefetching engines are located, as summa-
rized in Table 2.1.

Kokku et al. [Kokku 03] propose NPS, a system to perform non-interfering web
prefetching. The system monitors the network state and adapts the parameters of
the prediction and prefetching system to prevent saturation. It does not require
modifications either in the web browser or in the HTTP protocol since it includes
specific JavaScript code in the served pages to perform the actual prefetching. It does
not provide hints using HTTP standard headers, which is possible nowadays. The
learning process is done only in an initial step.

The results provided by Google search sometimes include the first page of the list
as a hint embedded in the HTML code. If the web browser is capable of prefetching,
it may request that page in advance.

Domènech et al. [Domènech 04a] propose a free available framework for prefetch-
ing. It is a hybrid implementation that combines both real and simulated parts in
order to provide flexibility and accuracy. It implements state-of-the-art prediction
algorithms to produce hints on the emulated web server. It also emulates web clients
that prefetch the objects and provides several performance results like precision, recall
and response time. This framework is very useful to test prediction and prefetching
algorithms, but it is not designed for a real world usage.
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Table 2.1: Software with prediction or prefetching capabilities
Type Name Description

NPS E Non-interfering Prefetching System (2003)
Server Google Search C Hints embedded on HTML search results

JosepDom E Benchmarking framework (2004)

Wcol E Prefetches all links (1997)
Squid-prefetch E Prefetches all links (small Perl script) (2004-2008)

Proxy AllegroSurf C Prefetches all links (2004-today)
Paketeer SkyX Accel. C Prefetches links (?-2007)
Robtex Viking Server C Prefetches links (1996-today)

Mozilla C Browser with prefetching capabilities (2002-today)
Google Web Accel. C Prefetches all links in HTML (2005-2008)

Client FasterFox C Prefetches all links in HTML (2005-2006)
PeakJet 2000 C Prefetches all or visited links (1998)

NetAccelerator C Prefetches all links (1998-2005)
Personalized Mozilla E Predicts and prefetches based on history (2003)

E: experimental implementations
C: commercial or productive implementations

There are several web proxies with prediction and prefetching capabilities. Some
of them (Wcol, Squid-prefetch and AllegroSurf) prefetch all the hyperlinks of a html
document, thus wasting bandwidth unnecessarily. This massive and indiscriminate
prefetching can be problematic, and has been criticized by system administrators,
web designers and users [Dornfest 05]. No information about the prediction algo-
rithms used in the other proxies is available, which leads to consider they use a
similar method. Packeteer SkyX Accelerator was a gateway designed to accelerate
connections in the local network using an undisclosed prefetching method (it was dis-
continued in 2007). Viking Server is a commercial product for Microsoft Windows
operating systems that is supposed to include a proxy with prefetching capabilities.

There are several products that provide prefetching capability to the end-user web
client, but all of them use the same method as the proxies: prefetching all hyperlinks.
In this case, not only the web servers’ bandwidth is wasted unnecessarily, but also
the client’s one. The only exception is Mozilla-based products, because they prefetch
only the hints provided by the web server during idle time.

Mozilla Firefox is a web browser with web prefetching capacity. Other web
browsers based on the same Mozilla Foundation technologies include this capacity,
for example SeaMonkey Netscape, Camino, and Epiphany. Web prefetching was first
available in Mozilla Suite 1.2 (published at the end of 2002).

Google Web Accelerator [Google 05] was a free web browser extension available
for Mozilla Firefox and Microsoft Internet Explorer on Microsoft Windows operating
systems between 2005 and 2008. It includes, among other features, web prefetching.
It prefetches hints included in the HTML body, but also prefetches all the links in
the pages that are being visited, even if no hints are provided.
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FasterFox is an open and free extension for Mozilla web browsers presented in
2005 that prefetches all the hyperlinks found in the current page during the browser
idle time.

PeakJet was a commercial product for the end user, available around 1998, that
included several tools to improve the user access to the web. It included a web browser
independent cache with prefetching capability, based either on history or on links. It
therefore could prefetch links on the current web page that were visited by the user
at some time in the past, or all the links on the current web page.

Another commercial product for the end user that prefetched all the links in
the page that are being visited, and stored the objects in the browser cache was
NetAccelerator. It was commercialized between years 1998 and 2005, and included
the possibility of refreshing the cache content in order to avoid obsolete objects.

Wei Zhang et al. [Zhang 03] present the design and implementation of a mod-
ified Mozilla web browser with prediction capability that includes two prediction
algorithms. The main one is based on history and uses the Prediction by Partial
Matching algorithm (PPM) [Palpanas 99]. If this one provides few hints, another
algorithm based on the page content is additionally used.

In summary, most prediction or prefetching implementations are proprietary or
do not even attempt to implement a smart prediction algorithm. The remaining
implementations are not ready for usage in a real environment, or do not take into
account both the web server and the web client overload.



Chapter 3

Delfos. Architecture
Prototype with Prefetching
Support

3.1 Introduction

Despite the research efforts focused on web prediction and prefetching techniques, the
field is short of studies dealing with the implementation and use of these techniques
in real environments, as mentioned above. The first partial objective we proposed
was to develop a prototype to demonstrate that web prefetching can be implemented
to be used usage in real-world conditions.

This chapter presents Delfos, the framework developed to perform web predictions
and prefetching in a real environment that tries to file the existing gap between
research and praxis. Delfos is the Spanish name of Delphi, the famous oracle of Apollo
perched on the sides of mount Parnassos where ancient Greeks went to know the
future. Delfos is integrated in the web architecture without modifying the standard
HTTP 1.1 protocol, which makes it suitable for being used with current browsers, web
servers and protocols. Delfos performs web predictions at the web server side, and
provides the hints in HTTP headers. Prefetches are carried out by the web clients in
a compatible way with current commercial browsers.

This chapter is organized as follows: Section 3.2 outlines the framework archi-
tecture. Section 3.5 describes how the web client works. Section 3.3 presents the
prediction server. Section 3.4 describes the web server. Section 3.7 shows the results
of the experiments performed in a real environment. Finally, Section 3.8 presents the
concluding remarks of this development.

13
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Figure 3.1: Framework architecture

3.2 Framework Architecture

As mentioned above, Delfos is a framework to perform prefetching in a real system.
Because of its flexibility, it can also be used to develop, test and evaluate prefetching
techniques. And these capabilities will be explained in the next chapter. The current
version of Delfos is integrated with Apache 2 web server and Mozilla web browser,
although any web server or web client is suitable for working with Delfos.

Fig. 3.1 depicts the framework architecture. It comprises three main parts: the
prediction engine, the web server, and the web client. The prediction engine (Eprefes)
performs predictions and provides hints to the web server. The web server (Apache
2) includes a module (Mod-prefetch) to query predictions and provide them to the
web client. The web client includes a web browser with prefetching support (Mozilla)
and a tool to capture and replay web navigation sessions, which is explained in detail
in the Appendix A (CARENA, [Niño 05]). Below we detail how these parts work.

3.3 Prediction Engine: Eprefes

Eprefes is a prediction engine designed to be used in a real environment. It runs
a prediction algorithm, gathers statistics and listens for TCP connections. When
Eprefes receives a prediction request, it executes the prediction algorithm and returns
the resulting hints. This process has a minor impact on the response time, being
currently around 1 millisecond.

To verify the Eprefes accuracy, experiments were run both on it and on the sim-
ulator proposed by Domènech et al. [Domènech 04a], obtaining negligible deviations.
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Figure 3.2: Architecture of the Eprefes prediction engine

3.3.1 Features

The main features of Eprefes are: it is independent of the web server; it can be
controlled externally, it is modular, different parameters of the modules can be recon-
figured dynamically and the code can be modified, compiled and reloaded at runtime
without restarting neither the entire engine nor any module. Let us discuss them in
more detail.

Eprefes is independent of the web server that queries it. The communication
between both is by means of a TCP socket. This design provides several advantages.
The prediction engine can be used with different models of web server. It is only
required to write a module for the web server that connects, queries and adds the hints
to the HTTP headers. The prediction engine and the web server can be implemented
on different languages. The web server and Eprefes can be located in the same or in
different machines, which sometimes is preferable due to security, stability or efficiency
reasons. A single prediction engine may be capable of serving several web servers,
and it is not required to install it in all of them.

All the functionalities available in Eprefes are distributed in different modules.
Table 3.1 gives a general view of the available modules and their purpose. Fig. 3.2
shows the server architecture, the relation among the different modules, the called
functions and parameters, and the results returned by them. The optional elements
used for training and performance evaluation experimentation are explained in detail
in the Section 4.3.

Most modules have configurable parameters, for example, the maximum number
of hints that can be provided as a response to a prediction request. They can be set
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Table 3.1: Modules in the Eprefes prediction engine
Function Module Description

Connectivity mod-socket Listens for TCP connections

Serving requests
mod-serve Manages requests depending on the request type

mod-trainer Optional. Reads log files and trains the predictor

Statistics
mod-stats Calculates statistics and performance indexes
mod-report Generates reports periodically

Prediction

mod-palmen Makes predictions using the Palpanas
and Meldelzon’s algorithm (PPM)

mod-padmog Makes predictions using the Padmanabhan
and Mogul’s algorithm (DG)

mod-ddg Makes predictions using the Domènech et al.
algorithm (DDG)

in the configuration file before start up, or modified at runtime by other modules, i.e.,
a new module that allows to modify such parameters using a web interface or shell
commands, which can be very useful for adaptive policies.

Eprefes is entirely written in Erlang/OTP [Armstrong 07, Armstrong 93], which
allows code swapping among other features. Runtime code swapping allows to add
new functionalities, improve performance, or fix bugs on the source code and reload
the newly compiled modules into memory without restarting the server or missing the
internal data.

3.3.2 Connectivity

The module mod-socket provides connectivity by using a TCP connection and binary
format messages. When started, this module opens a socket to listen for TCP con-
nections in the configured port number. Once a connection is established, it creates
a process that waits for requests. Each request will be parsed and submitted to the
mod-serve module. The response is conveniently packaged and sent back throughout
the TCP connection. The messages received include the client IP address, timestamp,
and object URI, MIME type and file size. The format of the accepted message is:

{Action, {ClientIP, Timestamp, URI, MIME, Size, ResponseCode}}.

where Action can be predict, prefetch or fetch. The response message is simply
a list of hints. The format of the final message sent is:

Options"Hint1"Hint2"...HintI"...HintN"end"
%

where Options can be Require-validation or empty and HintI is a string ready to
be included in the HTTP response headers.

An alternative module mod-xmlrpcwas also developed. This allowed communi-
cations using XML-RPC instead of TCP connections. But it was not used since it
consumes more CPU time than mod-socket.
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3.3.3 Serving requests

The module mod-serve manages each received request depending on the message type,
which can be a prediction, a prefetching or a fetching request. If the message is a
prediction request, it is redirected to the prediction module that will answer with
none, one or several hints. Finally, the hints are sent back to the calling module.
If the calling module is mod-socket, the hints are returned to the web server, which
returns the hints to the web client for prefetching them as described in the following
sections of this chapter. Besides, the hints are also notified to the statistics module
for evaluation purposes.

3.3.4 Prediction algorithms

In a first step and for performance evaluation purposes, we have implemented several
prediction algorithms widely referred to in the literature, although any prediction
algorithm using web server information can be implemented in Eprefes.

The algorithms are: Prediction by Partial Matching (PPM) proposed by Palpanas
and Mendelzon [Palpanas 99], Dependency Graph (DG) proposed by Padmanabhan
and Mogul [Padmanabhan 96], and Double Dependency Graph (DDG) proposed by
Domènech et al. [Domènech 06a].

These algorithms learn dynamically with each prediction request, so a special
training phase is not required, and this information will be updated with subsequent
changes in the web objects, web structure or users’ patterns. The prediction algo-
rithms include parameters to limit the growth of the data structures.

3.3.4.1 mod-palmen

The module mod-palmen implements the prediction algorithm proposed by Palpanas
and Mendelzon [Palpanas 99], which is based on Prediction by Partial Matching
(PPM). This algorithm uses Markov models to store the context of accesses, and
performs predictions by comparing the current context to each Markov model.

This algorithm builds a tree as long as it receives requests, and keeps a list of
contexts for each navigation session. To provide hints to a client it takes into account
both the tree and the mentioned client’s navigation session.

A prediction algorithm of order M keeps a maximum of M+1 elements in the
context lists and the maximum tree depth is also M+1. The context list of order M
for a given navigation session contains a maximum of M+1 node identifiers. The node
identifier in position I in the context list refers to a node of depth I on the tree, and
this node is called order I context for this navigation session. The context of order 0
for all navigation sessions is the root node of the tree.

When a request is received, a new child node is added to all the nodes in the
context list, or the occurrence is updated if the child node already exists. This node
has two attributes: the URI of the requested object and occurrence. Therefore,
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Figure 3.3: Example of a graph generated by the PPM algorithm

for each depth of the tree, one and only one node is added or updated. Those node
identifiers recently added or updated are the new contexts for that navigation session.

After a period of inactivity, the navigation session is declared obsolete and the list
of context is deleted.

When the list of contexts is updated, it points to the new recently visited nodes.
The parent nodes correspond to the ones visited immediately before. This way, the
branch that currently has node I in the context list is the concatenation of the last I
accesses carried out in this navigation session. If a given context node has children
nodes that were added by other navigation sessions in the past, those children are
potential new accesses and are candidates to be reported as hints. The probability of a
hint is calculated as the division of the potential hint probability and the parent node
occurrence. It is possible to give more probability to hints from higher contexts since
they come from longer branches where more steps match and hence the probability
of its future appearance is higher.

As an example, Figure 3.3 illustrates the graph built by PPM given a hypothetical
sequence of requests. The sequence consists of two user sessions: the first requests
the objects HTML1, IMG1, HTML2, IMG2; and the second requests HTML1, IMG1,
HTML3, IMG2. Note that IMG2 is an object linked both by HTML2 and by HTML3.
Each node represents a context, where the root node is in the first row, the order-0
context is in the second, and the order-1 context is in the third. The label of each
node also includes the counter of times a context has appeared, so one can obtain
the confidence of a transition by dividing the counter of a node by the counter of
its parent, i.e., the node in the previous context. The arcs indicate the possible
transitions. For instance, the label of the IMG2 in order-0 context is 2 because IMG2
appeared twice in the training; once after HTML2 and another after HTML3; IMG2
has two nodes in the order-1 context, i.e., one per each HTML on which it depends.

The configurable parameters for this module are the maximum order of the tree
(maxo), the minimum order in which hints will be reported (mino), the probability
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Figure 3.4: Example of a graph generated by the DG algorithm

threshold required to report a hint (threshold), the threshold reduction in subsequent
tree orders (thred), the maximum number of hints that can be reported in a request
(mnh) and the duration of a navigation session (sessiondur).

3.3.4.2 mod-padmog

This module implements the prediction algorithm Dependency Graph (DG) described
by Padmanabhan and Mogul [Padmanabhan 96]. It is based on a Markov model and
considers that two objects are more related when they are requested more frequently
one after the other in a window containing the last accesses of that client.

The algorithm builds a dependency graph that represents the access patterns of the
objects. This graph keeps a node for each single object that has ever been accessed.
There is an arc from node A to node B, if and only if, at any time node B was accessed
after node A in a timeframe not longer than W accesses. W is the lookahead window
size. The weight of an arc is the relation between the occurrence of the arc that goes
from A to B and the occurrence of A.

Each navigation session is associated with a window of the last W accesses. When
a new request arrives, a node is included in the graph with the corresponding URI. In
addition, arcs linking that node with the other nodes in the window of last accesses
are updated.

Given an access to the object A, the URIs of all the nodes that receive an arc
from that node will be reported as hints, being the weight of each arc considered as
the probability that this node will be requested.

As an example of this, Figure 3.4 illustrates the graph built by DG when config-
ured a lookahead window of 2 accesses, and given the same hypothetical sequence of
requests previously mentioned for the PPM algorithm (section 3.3.4.1). A node in
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Figure 3.5: Example of a graph generated by the DDG algorithm

the graph represents a web object, and the weight of an arc indicates the confidence
level of the transition from the arc’s predecessor node to the arc’s successor node.

The configurable parameters in the algorithm are: the size of the last accesses
window (sizew), the threshold applied to hints’ probability to be included on the pre-
diction response (threshold), and the duration of the navigation session (sessiondur).

3.3.4.3 mod-ddg

The module mod-ddg implements the Double Dependency Graph (DDG) prediction
algorithm proposed by Domènech et al. [Domènech 06a].

The DDG prediction algorithm is based on a graph that keeps track of the de-
pendences among the objects accessed by the user. It distinguishes two classes of
dependences: to an object of the same page and to an object of other page. Like DG,
the graph has a node for every object that has ever been accessed. There is an arc
from node A to B, if and only if, at some point in the time a client accessed to B
within W accesses to A, where W is the lookahead window size. The arc is a primary
arc if A and B are objects of different pages, that is, either B is an HTML object or
the user accessed one HTML object between A and B. If there are no HTML accesses
between A and B, the arc is secondary.

The predictions are obtained by firstly applying a cutoff threshold to the weight
of the primary arcs that leave from the node of the last user’s access. In order to
predict the embedded objects of the following page, a secondary threshold is applied
to the secondary arcs that leave from the nodes of the objects predicted in the first
step.

The DDG algorithm has the same order of complexity as DG, since it builds a
similar graph but distinguishing two types of arcs.
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As an example of this, Figure 3.5 depicts the graph built by DDG when configured
a lookahead window of 2 accesses, and given the hypothetical sequence of requests
mentioned previously on page 18. In the figure, primary arcs are displayed with solid
lines, and secondary arcs with dashed lines.

3.4 Web Server: Mod-prefetch for Apache 2

Mod-prefetch is a module developed for the Apache 2 web server that permits this
web server to act as a predicting server. This module requests hints to the prediction
engine and submits them in the HTTP response headers to the web browser. See
section 3.3.2 for more details.

First, when the user clicks on a URI, the web browser requests the object to the
web server. When the web server receives the request, Mod-prefetch establishes a
TCP socket connection to the prediction engine and sends a message to it depending
on the HTTP request: if it is a standard GET request, Mod-prefetch sends a predict
message request. Then the prediction engine performs a prediction based on the URI
of the requested object. The result of the prediction is a list of hints, which are
added to the HTTP response as HTTP response headers, as described in HTTP/1.1
[Fielding 97] (e.g.: Link: /news/190309; rel:prefetch). The HTTP response is
sent to the web browser.

This dissertation assumes that the prefetching engine, located at the browser,
prefetches, during the browser idle time, the hints received as mentioned previously,
and this is how Mozilla-based browsers work [Fisher 03b]. Once prefetched, the web
browser stores the objects in its local cache. In this way, if the user demands any
of these objects later, they will be served without any network latency. Only those
objects that can be stored at the web client can be predicted and prefetched, and it
is important to use prefetching in well-designed websites where GET requests only
trigger idempotent actions.

3.5 Web Client: Web Prefetching in Mozilla

Mozilla Firefox is a web browser with web prefetching capabilities. Web prefetching
was available for the first time in Mozilla Suite 1.2 (published at the end of 2002).
Other web browsers based on the same Mozilla Foundation technologies include this
capability, e. g., SeaMonkey Netscape, Camino, and Epiphany.

We use Mozilla Firefox in our work since it already implements all the required
features regarding prefetching, that is: it is widely used by both casual and expert
users, it is published with a free and open source license and its source code is freely
available.

Mozilla is able to prefetch hints if they are included in the response HTTP head-
ers or embedded on the HTML file [Fisher 03a]. This prefetching mechanism was
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first proposed by Padmanabhan and Mogul [Padmanabhan 96], and standardized in
HTTP/1.1 RFC 2068 [Fielding 97].

The hints can be provided in three different ways:

• in a response HTTP header:

Link: <ch3.html>; rel=prefetch

• in a ‘meta’ tag on the HTML header:

<meta HTTP-EQUIV="Link"
CONTENT="<ch3.html>; rel=prefetch">

• in a ‘link’ tag on the HTML body:

<link rel="prefetch" href="ch3.html">

The implementation of web prefetching in Mozilla features some interesting as-
pects that are outlined below. Only the provided URIs using the HTTP protocol
are prefetched, without embedded objects. URIs that contain parameters (the query
part of the URI) will not be prefetched. Prefetching will only occur when the web
browser is idle. Web requests sent by Mozilla when prefetching include an additional
HTTP request header in prefetching requests: X-moz:prefetch. Mozilla does not
require those prefetching requests to be responded, so web servers can filter them, for
example, in case of overload conditions. Hints are only prefetched when the object
that includes the hints is demanded by the user. If the user clicks on a link while
the browser is prefetching, the prefetch process is interrupted to satisfy the user’s
real request. If there is any prefetching queue, it is discarded. The object partially
downloaded will be kept on cache and completed if the user demands it. Later, when
the browser is idle again, new hints can be prefetched.

A web page consists of a main object (the one demanded by the user) referred
to as primary and many embedded objects called secondary objects. When the user
demands a web page identified by its URI, the web browser firstly requests the pri-
mary object of the page. Once this primary object is received, the browser processes
it to get the secondary objects from the network or from the local cache. Although
the requested web page can be the result of a dynamic request, many of the objects
that compose the page are usually static and, consequently, cacheable. Moreover,
a dynamically generated object can be cached if it is properly labeled. As all the
cacheable objects can be prefetched (precached), this study covers, among other tech-
nologies, dynamic web server and application programming, and browser application
programming like AJAX, Java, Flash, and other Rich Internet Applications. Two
HTTP 1.1 persistent connections with no pipelining are assumed, since that is the
maximum number of connections that the standard recommends [Fielding 97]. So,
the secondary objects are requested using two independent parallel network threads.
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When all the secondary objects are available in the browser, the download ends, since
the whole page has arrived to the client. Our experimental environment, based on
the mentioned architecture, assumes that secondary objects are retrieved once the
primary object of the page is completely received. This assumption overestimates the
page latency in all cases, but it is made in all the experiments both with and without
prefetching, so its comparative impact on the page lattency saving is negligible.

The hints received by the web browser in an object response are added to the
hints queue of the page that contains that object. When the browser is idle (i.e., it is
not downloading any object), it prefetches the objects referenced in the hint queue.
This structure is handled as a FIFO queue, thus, it is important that the prediction
engine provides the hints sorted according to the associated probability. In this way,
if only a subset of the provided hints is going to be prefetched, these hints will be the
most useful ones. Remark that if a hint is already in the browser cache, it will not
be prefetched.

The prefetching process is canceled and its hints queue is flushed if the user de-
mands another page while the browser is prefetching. In such a case, the prefetch
process is aborted to satisfy the user’s current demand. When a prefetch cancellation
occurs, those objects that have been partially predownloaded (i.e., a part of them has
already been received and stored in cache) are allowed to reside in the cache. Those
parts can be reused if the objects are demanded later.

3.6 Interrelation Between the Components

As mentioned above, the web prefetching architecture consists of in two main compo-
nents: a predictor engine that we locate in the web server, and a prefetching engine
that we locate in the web client.

Fig. 3.6 shows the communication between the web browser, the web server with
the module Mod-prefetch and the prediction engine. In this example, the user first
demands the object A, and consequently the web client sends an HTTP request to
the web server. Then, the server requests a prediction to the prediction engine given
the access to A. The prediction engine predicts that the user will demand objects B
and H in the near future. The web server returns the requested object A with two
HTTP response headers indicating the predicted hints. The web browser prefetches
the object B in its idle time, and stores it in the browser cache. If the user later
demands the object B, the web browser will show it to the user with zero service time
because the object is in the browser cache.

3.7 Experiments in real environment

We ran two experiments to verify that Delfos is ready for real usage. The first one
analyzed how the number of objects in the browser cache increases due to the prefetch
actions performed, and the second one dealt with page latency saving achieved due to
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Figure 3.6: Communication between the web browser, the web server and the predic-
tion engine when using web prediction and prefetching



3.7. Experiments in real environment 25

Figure 3.7: Latency of documents in a navigation session

prefetch. To accomplish this, the Mozilla web browser navigated a web server where
we previously inserted the prediction module, and this module requested predictions
to the prediction engine. The documents were simple HTML files with one or two
embedded image files. The prediction engine had conveniently been trained before.
The PPM prediction algorithm was used in this test.

A specifically developed tool (CARENA, see Appendix A of this dissertation) was
launched on the web browser in order to capture the navigation session, including
object headers and accurate document latencies as perceived by the user. With this
information it is possible to replay exactly the same navigation session several times.

For the first experiment, a navigation session consisting of 14 documents was
captured. If prefetching is not used, 60 objects are requested, while if prefetching
is enabled, that number rises to 67. The number of hits in the browser cache when
using prefetching increases from 39 to 45. That means that 6 of the 7 (i.e., 67− 60)
prefetched objects were later required by the user, which results in a precision of
85.7%. In summary, this small and limited experiment illustrates how prefetching is
able to reduce the users perceived latency in a transparent way.

Results of the second experiment are presented in Fig. 3.7. In this case, the
navigation session consisted of five document requests. It was repeated twice, the first
time without prefetching and the second time with prefetching enabled. The client
and the server were in different networks so the network latency was not negligible.

The prediction engine provides twenty hints, but only five of them are prefetched
since the other ones were already in cache or being requested. The prefetchs are
requested during idle time, so they do not increase the document latency as perceived
by the user. Only two of the five prefetched objects are later requested by the user.
A prefetch from the first document was a hit on the second document, which explains
the 70 ms latency saving. A prefetch from the fourth document was a hit on the fifth
document, which explains the 50 ms latency saving.
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3.8 Conclusions

This chapter presented Delfos, a framework that provides web prefetching capabilities
in real environments. To the knowledge of the author, it is the first implementation
for real usage that features smart prediction algorithms and provides hints by using
the method described on HTTP 1.1.

The prediction engine is an independent program that connects to the web server
to provide hints, and a module for Apache 2 is available for this purpose. Mozilla
web browser is used since it already includes the required support for prefetching.
An important novelty of the proposed framework is that it does not require any
modification in the standard HTTP 1.1 protocol.

Partial results of the work presented in this chapter were published in [de la Ossa 07a,
de la Ossa 07c, de la Ossa 06].



Chapter 4

Delfos: Evaluation
Environment

4.1 Introduction

Delfos is not only a prototype of web prefetching in a real scenario, as described
in the previous chapter; but also an evaluation environment, as is described in this
chapter. In this way, Delfos can be used as a flexible framework to evaluate and
compare existing prefetching techniques and algorithms, and to assist in the design of
new ones because it provides detailed statistics reports. Those statistics reports also
permit to evaluate the performance of either the prediction engine, the prefetching
engine or both, thus contributing to the design of new and more efficient algorithms
and structures.

This chapter is organized as follows. Section 4.2 describes CARENA, a Mozilla ex-
tension to capture and replay navigation sessions. Section 4.3 describes the additional
modules developed to support the new usage. Section 4.4 explains the evaluation me-
thodology used in the remaining experiments of this dissertation. Section 4.5 shows an
example of evaluation, including performance indexes and system statistics. Finally,
Section 4.6 summarizes the conclusions.

4.2 CARENA

CARENA is a Mozilla extension to capture and replay user navigation sessions.
CARENA captures information about the user session, which can be used later to
replay or mimic the gathered user navigation. CARENA emulates the original user
think times as these times are very important to obtain precise and reliable per-
formance results. CARENA is a multiplatform, open source, lightweight, standards

27
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Figure 4.1: Eprefes architecture for experimentation

based, easily installable and usable application, programmed in JavaScript and XUL.
We use it to test the correct behaviour of Delfos.

Details about the implementation and use of CARENA can be consulted in Ap-
pendix A.

4.3 Modules for Evaluation

This section describes the modules implemented in Delfos to perform automated ex-
periments in the prediction engine and to obtain statistical results. These modules
were already mentioned in Table 3.1, and are included in the Eprefes extended archi-
tecture, as shown in Figure 4.1.

4.3.1 Client Pool with mod-trainer

The mod-trainer module emulates web clients behaviour by reading a trace file and
by generating load to the prediction engine, thus making it suitable for training the
prediction algorithm or for performing controlled experiments.

The trace file uses a customized Common Log Format or Combined Log Format:
a set of time-ordered lines, being one line for each HTTP request received by the web
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server. The information of each line includes the web client IP address, the object URI,
the timestamp when the HTTP response is sent, and the size of the requested object.
Trace files are slightly customized before being read by the module. Additionally,
trace files are filtered to select the appropriate HTTP method (i.e., GET ) and the
HTTP response code (i.e., 200 OK, 304 Not Modified and 206 Partial Content).

The module reads the trace file sequentially and sends object fetch requests to the
prediction module. When hints are received, the module sends prefetch requests in
the browser idle time as indicated in the trace file. If the legitimate user, later in the
trace, requests an object that was virtually prefetched, the module sends a fictitious
fetch request.

This module is useful to gather statistics when using web server log files as input
for the prediction engine instead of real web clients with prefetching capability.

4.3.2 Statistics gathering with mod-stats and mod-report

The mod-stats module maintains variables and calculates performance indexes that
can be used for comparison purposes, e.g., to evaluate the prediction accuracy and
usefulness or the resources consumed by the prediction algorithm. These data are cal-
culated and written to disk periodically without stopping the process, so all statistics
are available immediately.

Some statistics available are: the received requests, fetched objects, hints sent to
the web server, objects that were prefetched, prefetchs that were later fetched (pre-
fetch hits), hints that were later proved right (good predictions). All these variables
are measured both in number and byte size.

This module also calculates different performance indexes, which are described in
the next section.

For all the performance indexes, the mean value and the confidence interval are
calculated. Performance indexes are measured using two methods. The standard one,
called EXP, measures the values from the beginning of the measurement session. The
method called INT calculates the indexes using only information of the last measure-
ment interval. Proceeding in this way, the evolution of the performance indexes is
shown without the interference of very old values.

All performance indexes are obtained with a confidence interval of 95%. Neverthe-
less, for the sake of clarity, only average values are shown in the figures, as the interval
lengths are always lower than 15% the average value for latency related indexes, and
lower than 5% for recall related indexes. In order to calculate average values with
confidence intervals, each experiment is splitted in shorter successive runs. The run
length for each single experiment is 120K-user requests and each run consists of 20
intervals equally sized. On the other hand, for each single experiment a preliminary
warming up phase of 70 intervals (420, 000 object requests) that use the initial part
of the trace was carried out before collecting statistics. This represents 7.43% and
12.31% of the total requests of Trace A and Trace B, respectively. The remaining
part of the trace was used to continue the experiment and obtain the results.
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Finally, the mod-report module generates periodic statistic reports provided by
the statistics module and writes them to data files for later usage by specific tools
such as Gnuplot.

4.4 Evaluation

This section describes the evaluation used to carry out the experiments in this chapter
and the following ones. We are going to use the cost-benefit evaluation methodology
described by Domènech et al. in [Domènech 06d].

4.4.1 Performance indexes

The most useful performance indexes for evaluating web prefetching techniques were
identified and described in [Domènech 04b]. According to that study, in this disser-
tation we use the indexes described below.

Most research works found in the literature use the precision and recall as the
main and only performance indexes. They can be measured per object or per byte.

The precision measures the ratio of objects that were predicted, prefetched and
then finally requested by the user (prefetch hits) versus the total number of objects
that were predicted and prefetched. The precision per byte, or byte precision, is
calculated using the objects size.

Pc =
Prefetch hits

Prefetchs
(4.1)

PcB =
Size of Prefetch hits

Size of Prefetchs
(4.2)

The recall measures the ratio of user requested objects that were previously pre-
dicted and prefetched.

Rc =
Prefetch hits
User requests

(4.3)

RcB =
Size of Prefetch hits
Size of User requests

(4.4)

The object latency is obtained from the service time reported by the web server,
or it is zero if the object is already in the browser cache. Thus, the object latency
saving is the ratio of the latency perceived using prefetching to the latency without
prefetching.

∇OL =
Average Object Latency with Prefetch
Average Object Latency no Prefetch

(4.5)
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The page latency is obtained by performing an experiment without prefetching,
and these values are used as a baseline for comparison purposes in the experiments.

The page latency saving (∇PL) is calculated as:

∇PL =
Average Page Latency with Prefetch
Average Page Latency no Prefetch

(4.6)

Similarly, the page latency saving percentage (∇PL(%)) is calculated as:

∇PL(%) = (1− Average Page Latency with Prefetch
Average Page Latency no Prefetch

) ∗ 100 (4.7)

This work uses the page latency saving as the main performance index for measur-
ing prediction and prefetching effectiveness because our aim is to study the maximum
benefit perceived by web users.

The traffic increase quantifies, in bytes, the extra traffic incurred by the prefetched
objects that are never requested by the user. We do not take into account the network
overhead introduced by the transmission of hints on HTTP headers, as its size can be
assumed negligible when compared to the objects size. We show the traffic increase
as a ratio of the traffic generated with and without prefetching enabled.

∆TrB =
Objects not usedB + Network overheadB + User requestsB

User requestsB

(4.8)

The object traffic increase quantifies the percentage in which the number of objects
that a client gets increases when using prefetching, compared to not using prefetching.

∆Trob =
Objects not used + User requests

User requests
(4.9)

4.4.2 Workload Description

The prediction engine could be fed by a real web server that receives real requests
from real users. However, in order to compare the performance with different config-
urations, a reproducible workload must be used.

For this purpose, the experiments were performed using two web traces (A and B)
from different websites. The initial trace files were logged by Apache 2 web servers in a
custom format that included, among other request information, the referrer, the user
agent, and the object latency. But not all the captured HTTP requests were or could
be used by real prediction algorithms and prefetching engines, so they were filtered by
request type and response code: the request protocol is HTTP (neither HTTPS nor
any other); the request method is GET; the request URL does not contain any query
string; and the response code is 200, 206 or 304. The requests that meet this filtering
criteria are considered cacheable for the purpose of this work. Table 4.1 summarizes
the main characteristics of these traces.
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Table 4.1: Trace characteristics

Characteristic Trace A Trace B
Starting date Sept, 27th 2007 Mar, 21st 2005
Ending date Jun, 18th 2008 Nov, 22nd 2006
Unique IP addresses 131, 668 48, 283
Browsing sessions 317, 268 271, 736
Page requests 992, 037 1, 159, 191
Avg. page latency (sec-
onds)

0.877± 0.117 2.075± 0.378

Unique objects 6, 790 1, 330
Object requests 5, 654, 371 3, 411, 307
Requests of objects
smaller than 10 kB

77% 70%

Bytes transferred (MB) 28, 135 42, 910

Trace A was obtained from a dynamic website that acts as the home page of an
open source project, which mainly contains news posts, documentation, and forums.
Most of the content is generated dynamically by PHP scripts that query a database.
However, the dynamic URIs are persistent, since they are written using an Apache 2
feature that does not use URI query strings. The site is visited by worldwide users
using a wide variety of web browsers.

Trace B is from the website of the School of Computer Science at the Universi-
dad Politécnica de Valencia. This site mainly contains news posts, and information
addressed at students, staff, and visitors. Unlike the previous website, the content
of this site is not dynamically generated and its visitor community is much more
constrained.

A web session is a group of page requests made by the same web browser (identified
by its IP address). The trace file does not indicate when a session finishes, so we
assume that a browser idle time longer than 15 minutes represents the end of the web
session.

Since it is not possible to know the browser idle time of the last page in a session,
in the experiments we assume it to be 30 seconds long.

The experiments do not include a preliminary training phase. Instead, the pre-
diction algorithm constantly learns the user’s patterns during the experiments. This
guarantees that the knowledge of the prediction algorithm about user patterns is
updated at the time that the patterns change [Domènech 05]. The length of the
experiments is long enough so the experiments do not end in a transitional phase.
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4.5 Performance Evaluation Using Delfos

The purpose of the experiments presented in this section is to show how Delfos can
implement prefetching techniques and how it permits to evaluate the performance
obtained.

To allow fair comparisons, the configuration of Delfos was the same in the different
experiments. Common configuration options were: maximum of 100 hints allowed in
a HTTP response, interval length of 100000 user requests and subinterval length of
5000. Regarding mod-palmen (PPM) specific options: threshold 0.2, maximum order
1, minimum order 1 (see section 3.3.4 for references). And mod-padmog (DG) specific
options: lookahead window size 1. A previous work [Domènech 06d] demonstrates
that those values provide relatively good cost-benefit ratio.

4.5.1 Experiments

In this section we show how Delfos can be used for performance evaluation of prefetch-
ing techniques using trace-driven experiments. The PPM prediction algorithm was
used in the first experiment. It was configured to produce reasonably good results.
Our prediction engine can be fed by a real web server that receives real requests from
real users. However, in order to compare the performance of prediction algorithms
with different configurations, a reproducible workload must be used.

In the remaining experiments the prediction engine receives requests from a special
trainer program that reads preprocessed web server logs. The module mod-trainer
(described on Section 4.3.1) is enabled to generate prefetchs based on the predictions
and hits based on the real user requests logged. These results were obtained using the
particular behaviour of mod-trainer, therefore they are an upper bound of the results
expected in real world conditions. An experiment with five million user requests takes
around ten hours to complete in a standard PC (Intel Pentium 4 3.4 GHz, 1 GB of
RAM).

The length of the experiments is measured in processed user requests. Trace B
is used to perform those experiments. In order to allow the observation of all the
learning process, no previous training phase is carried out prior to the experiment.

Fig. 4.2 shows the evolution of the precision and the recall, both of them measured
per object and per byte. Decreasing the prediction algorithm threshold increases
the prediction (and hence the prefetching) aggressiveness, which also increases the
cost measured in bandwidth usage, and also the benefit on latency savings. Since
no training phase was used, the confidence intervals are considerably large at the
beginning, but decrease slowly and consistently over the experiment. As this figure
shows, the possibility of seeing not only average values but also confidence intervals
helps to detect transitional phases.

Fig. 4.3 shows the evolution of recall and recall per byte through time. In addition
to the standard accumulated indexes shown before (labeled EXP), this figure includes
the INT indexes that only consider the values of the last interval to calculate the
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Figure 4.2: PPM: precision and precision per byte, recall and recall per byte

Figure 4.3: PPM: recall and recall per byte, both of them EXP and INT
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Figure 4.4: DG: precision and precision per byte, recall and recall per byte

indexes. Each interval includes 100, 000 user requests. As expected, the indexes that
do not consider old values (INT ) are more variable than the indexes that consider
all the values from the beginning of the experiment (EXP). This is clearly observed
around 2.7 million user requests after the start, when the trace used in our experiments
produces an important reduction on recall indexes. Those unexpected variances in
indexes are common and reasonable when using real traces instead of synthetically
generated ones.

Another experiment was run using the DG prediction algorithm. Fig. 4.4 shows the
precision and recall indexes obtained in this experiment. Since the same environment
with similar characteristics was used to run this and the previous experiment, the
results can be compared side by side to detect differences in the performance indexes
results due to the prediction algorithm. For example, both algorithms achieve almost
identical precision indexes. With respect to recall indexes, PPM achieves almost
identical mean values but slightly smaller confidence intervals.

Other performance indexes measure the latency saving and bandwidth consump-
tion. Fig. 4.5 depicts the object latency saving as a mean value and the confidence
interval. On the other hand, Fig. 4.6 depicts the object traffic increase. Comparing
the results of these figures, the PPM prediction algorithm configured in this exper-
iment required 20% of object traffic increase to provide 10% of latency saving per
object.
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Figure 4.5: PPM: Object latency saving

Figure 4.6: PPM: Object traffic increase
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4.5.2 System statistics

In addition to the performance indexes, Delfos allows the modules that implement
prediction algorithms to report statistics that may be interesting in each case, for
example, those related to data structures: number of registers in a database table,
nodes and arcs in a graph, total memory consumption, etc.

Some statistics are equally defined for all prediction algorithms and hence can be
used to compare how the algorithms operate. For example, Fig. 4.7(a) shows the
total memory consumption of data structures in the experiment using PPM, and Fig.
4.7(b) shows the same but using DG. Memory consumption is important in real world
implementations, since an algorithm providing great precision and recall may not be
suitable for real world conditions if it has high memory or computation requirements.

Fig. 4.9 shows how the service time required by the prediction algorithms increases
as the experiment progresses. This figure clearly shows the learning process of the
prediction algorithms and how the increase in their data structures has a negative
effect on the resulting service time. Please note that the values obtained depend on
the hardware used to run the experiments and the particular implementations of the
prediction algorithms.

Other general system statistics are illustrated in Fig. 4.8. Database operations
(Fig. 4.8(a)) provide an approximate number of operations performed in the database.
An approximation to the CPU consumption is depicted in Fig. 4.8(b), since each
reduction (term related to functional programming) involves a function call.

Other statistics are specific to the used algorithm, but even if they cannot be
used to compare different algorithms, they are interesting to observe how different
configuration and workloads affect the algorithm performance. Example of statistics
on a tree-based data structure as used by mod-palmen (PPM) are: the mean number
of children (Fig. 4.10(a)), and the number of nodes of order 0 and 1 (Fig. 4.10(b)).

Fig. 4.11 shows examples of statistics on a graph-based data structure, in this
case the one used by mod-padmog (DG): total number of nodes and arcs, mean nodes
occurrence, mean arcs occurrence, and mean arcs probability.

Delfos can be used to discover new insights into prefetching thanks to the detailed
statistics. As an example, let us briefly observe the relation between performance
indexes and resource consumption (memory and CPU). The figures show that data
structures are still growing when the experiments end. Instead, performance indexes
like precision and recall were mostly invariant during the last part of the experiments,
when using both mod-palmen and mod-padmog. This means that the prediction algo-
rithm did not improve performance indexes after an initial learning phase. Allowing
unlimited learning and size of data structures did not improve precision or recall, but
data structures grew, making the algorithm slower.
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(a) mod-palmen (PPM)

(b) mod-padmog (DG)

Figure 4.7: Memory consumed by data structures
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4.6 Conclusions

This chapter described the enhancements added to Delfos to make it not only a web
prefetching framework suitable for real environments, but also a flexible tool that can
be used either for research purposes or performance evaluation analysis.

To this end, Delfos provides detailed statistic reports and allows easy implementa-
tion and replacement of prediction algorithms, since they are isolated on independent
modules in the prediction engine. Statistics include both performance indexes like
precision and recall (both per byte and per object) and resource utilization.

The possibility of seeing the confidence interval in a graph permits us to clearly
see if the measured index converges to a value at the end of the experiment, and
to detect which prediction algorithms converge faster. The possibility of seeing not
only the index value accumulated during the experiment, but also the instantaneous
index value in a short period of time, permits us to see the general behaviour of
a prediction algorithm, and the sporadic changes localized in time. Finally, having
resource consumption indexes allows to evaluate and compare the algorithms benefits
as well as the cost.

Some results of the work presented in this chapter were published in [de la Ossa 07a,
de la Ossa 07c, de la Ossa 06, Niño 05, de la Ossa 04].
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Chapter 5

Predict at Prefetch: a
Technique to Improve
Prefetching

5.1 Introduction

This chapter proposes Predict at Prefetch (P@P), a technique for the prediction engine
to improve web prefetching performance. A conventional prediction technique can be
extended to include the P@P proposal in real world conditions without changes in
the web architecture or HTTP protocol. To show how this proposal can improve
prefetching performance, an extensive performance evaluation study has been carried
out and the results show that P@P can considerably reduce the users perceived latency
with no additional cost over the basic prefetch mechanism.

The Predict at Prefetch (P@P) technique allows the prediction algorithm located
at the web server to provide hints not only in standard object requests, but also in
prefetching requests. That is, this technique allows the prediction engine to provide
more hints to the client. In this sense, this proposal is orthogonal to the prediction
algorithm, that is, it and can be used with any prediction algorithm without any
modification.

The technique Predict at Prefetch has been implemented on Delfos and tested
in real world conditions. An important feature of the technique is that it does not
require changes in the web architecture, the HTTP standard protocol or the web
browser.

The remainder of this chapter is organized as follows. Section 5.2 describes Predict
at Prefetch. Then, Section 5.3 details the experiments and results. Finally, Section
5.4 presents some concluding remarks.
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Figure 5.1: Communication with Predict at Prefetch enabled

5.2 Predict at Prefetch (P@P)

The proposed technique to improve prefetching performance, Predict at Prefetch
(P@P), is a simple and effective technique that allows web clients to receive more
hints without negatively affecting the precision of the prediction algorithm.

Predictions are provided not only for objects requested by demand, but also for
prefetched objects. Any web request received by the web server, either a fetch or
a prefetch request, triggers a prediction and the resulting hints are included in the
corresponding response.

Notice that when the P@P technique is used, more hints are reported to the web
browsers than when using the basic prediction. Therefore, more objects are expected
to be prefetched. As a consequence, the traffic will increase, but if the prediction
algorithm is accurate enough, the users perceived latency will be reduced. By properly
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configuring the aggressiveness of the prediction algorithm, both for fetch and prefetch
requests, it is possible to reduce the latency in a higher ratio than the traffic increase.

Fig. 5.1 shows an example of communication among the web browser, the web
server and the prediction engine when working web prediction, prefetching and Predict
at Prefetchtogether. First, the user demands the object A. After this request, the
prediction engine predicts that the user will demand objects B and H in the near
future. The web browser, while idle, prefetches object B. The response to that prefetch
request includes another hint, this time for object C. However, the web browser does
not prefetch that hint, since it was provided in a prefetch request. If the user later
demands object B, as the browser already has it on its cache, it will be provided to
the user with zero service time. Now the prefetched object B is considered as an
object demanded by the user, so the hints included in its response can be prefetched:
object C is finally prefetched.

The hints provided to the browser in a prefetch request are prefetched only if the
prefetched object is finally requested by the user. This ensures that those hints are
as accurate as the hints provided together with objects requested by demand.

The predictions performed during a prefetch request should not update the infor-
mation gathered by the prediction algorithm about the user’s behaviour and naviga-
tion patterns. The reason is that prefetched objects are not requested by the user,
but by the web browser based on a prediction that might or might not be successful.
If the prediction algorithm wrongly assumed that a prefetch request is equivalent to
a user request, it would produce an unrealistic learning of user’s navigation patterns.

Notice that no modification on the web browser is required, but the web server
that provides hints must be updated to conveniently handle the prefetch requests.
Any existing prediction algorithm can be used with P@P without any modification.

5.3 Experimental results

Trace-driven experiments were performed to show the impact of the proposed tech-
nique on the users perceived latency and what traffic increase is required to accomplish
it. To this end, several experiments were run both enabling and disabling our pro-
posal, and varying the threshold of the prediction algorithms, because it affects the
prefetching aggressiveness.

Two prediction algorithms were used in the experiments: the DG algorithm pro-
posed by Padmanabhan and Mogul [Padmanabhan 96], which has been widely ref-
erenced in the literature; and the DDG algorithm proposed by Domènech et al.
[Domènech 06a], which is an improvement over DG, as it provides better performance
with similar cost. The evaluation methodology used to carry out the experiments was
described in detail in the previous chapter, as the characteristics of the trace B that
is used as workload.
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Figure 5.2: Page latency saving versus byte traffic increase with the DDG prediction
algorithm

5.3.1 Cost-Benefit

Fig. 5.2 shows the page latency saving versus the byte traffic increase results for two
different prediction methods. The basic method, which performs predictions only
for user requests, as described in Section 3.6, and the P@P method which performs
predictions also in prefetch requests as described in Section 5.2. In both cases the
prediction algorithm used is DDG. The curves shown in the figures have been obtained
by varying the algorithm threshold (aggressiveness) from 0.1 to 0.8.

As it is known and also showed by our results, there are some configurations that
allow the basic prefetching technique to reduce the page latency in a higher percent-
age than the traffic increase. So, prefetch is an interesting technique to reduce the
users perceived latency if there is available bandwidth and the prediction algorithm
is properly configured for the target workload.

When using the P@P method, the threshold for those additional predictions can
be set independently of the standard prediction requests. In the experiments, P@P is
evaluated with different thresholds ranging from 0.5 to 0.1 (P@P.5 down to P@P.1).
The objective of this study is not to find the optimal configuration of the P@P tech-
nique, because it strongly depends on the environment conditions (bandwidth, server
load, traffic,...), but to demonstrate that we can always find a P@P configuration that
outperforms the results of the basic prefetching technique.
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Figure 5.3: Page latency saving versus byte traffic increase with the DG prediction
algorithm

As observed, the prediction algorithm aggressiveness has a two-side effect on the
results, as it achieves a reduction on the users perceived latency but at the expense of
a higher byte traffic increase. The P@P configurations for a given byte traffic increase
can achieve higher page latency savings than the basic prefetching technique. That
means that for the same or similar latency saving obtained using the basic prefetch
mechanism, there is always a P@P configuration that requires less byte traffic and
obtains a similar benefit. P@P.1 and P@P.2 are particularly interesting, since they
provide the best cost-benefit ratio. Moreover, in some situations, P@P.2 provides a
latency saving up to 12% while increasing the byte traffic by about 10%.

Fig. 5.3 depicts the latency saving versus byte traffic increase obtained when using
DG. Notice that this algorithm is much more aggressive than DDG, as it generates
by about five times more byte traffic. As observed, the results show that the use
of the Predict at Prefetch technique provides a similar benefit on both algorithms.
That is, the maximum distance between the best P@P curve and the basic prefetch,
measured in absolute values, is similar when using the DDG (see Fig. 5.2) and the DG
algorithms (see Fig. 5.3). Nevertheless, the DG algorithm is less suitable for working
with bandwidth restrictions because, for a reasonable latency saving, it generates 20%
more traffic than DDG.
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Figure 5.4: Precision per byte versus byte traffic increase with the DDG prediction
algorithm

5.3.2 Prediction related performance indexes

In this section we show the impact of our technique on the prediction-related perfor-
mance indexes, i.e., from the prediction algorithm point of view.

The experiments performed using both prediction algorithms show similar be-
haviour. Nevertheless, as showed in the previous section, the DDG algorithm is more
efficient than DG because it requires less traffic increase to achieve the same latency
saving, so we only present the results for the DDG algorithm.

Fig. 5.4 shows how the prediction method affects the precision per byte of the
prefetched objects versus the byte traffic increase. The precision is reduced as the
prediction algorithm becomes more aggressive, which is the usual behavior of the
prediction algorithms. In general, the precision obtained with Predict at Prefetch
is better than the obtained with basic prefetching because the prediction algorithm,
which is quite accurate, has more opportunities to provide hints and alleviate the
precision reduction caused by sporadic wrong predictions. This fact becomes more
noticeable with the most aggressive configurations. In these cases, the recall per byte
also increases, as shown in Fig. 5.5. This plot has similar shape to the one in Fig. 5.2
because the represented indexes are directly proportional (recall and latency saving).

The P@P technique generally gets better cost-benefit ratio than the basic pre-
fetching, being the configuration called P@P.1 the one providing the best value.
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Figure 5.5: Recall per byte versus byte traffic increase with the DDG prediction
algorithm

The maximum latency saving and recall achievable by our proposal can be ob-
served in Fig. 5.2 and 5.5, respectively. Neither the latency saving nor the recall
can be improved beyond a certain threshold (about 35% and 20%) when allowing a
reasonable traffic increase (about 22%).

5.3.3 Algorithm Storage Usage

Fig. 5.6 gives an overview of the amount of information stored by the prediction al-
gorithm with different configurations. Each individual object requested to the web
server is represented by a node on the prediction algorithm data structure, and each
time a client requests an object, its node occurrence is increased. When the prediction
algorithm is more aggressive, it provides more hints, and consequently the clients pre-
fetch more objects. That means less objects requested to the web server by the client
on behalf of a direct user demand. The prediction algorithm learns the user patterns
from user requests, not from prefetch requests, since these are speculative. When
using more aggressive configurations the algorithm gathers less information, and this
fact becomes a problem if the prediction algorithm receives so few requests that it
is unable to appropriately learn user patterns. Experimental results obtained for a
wide range of threshold values show that an excessive aggressiveness largely reduces
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Figure 5.6: Mean nodes occurrence versus algorithm threshold (aggressiveness) with
the DDG prediction algorithm

the precision and does not improve the recall and users perceived latency, thus it is
not necessary to implement aggressive policies to improve prefetching performance.

Fig. 5.7 depicts the amount of database operations performed by the prediction
algorithm during the experiment. As it is directly proportional to the algorithm
complexity, it gives us an idea of the CPU consumption required by the different con-
figurations. Obviously, P@P requires more database operations, since the prediction
algorithm makes more predictions. However, each prediction requires a similar pro-
cessor time and similar database operations, whether the proposed P@P technique is
used or not.

5.4 Conclusions

Predict at Prefetch is a technique that pursues to improve web prefetching in real en-
vironments, permitting the prediction algorithm located at the web server to provide
hints not only in normal fetch requests, but also in prefetch requests.

We discussed, in detail, what characteristics are required in the web browser and
the prediction engine in order to perform Predict at Prefetch in a safely way. Mozilla
is a well-known web browser that satisfies all the requirements, thus it can be used
without any modification. Regarding the web server and the prediction engine, we
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Figure 5.7: Total database operations versus algorithm threshold (aggressiveness)
with the DDG prediction algorithm

proposed and implemented Predict at Prefetch on Delfos, and tested it with Mozilla
in real world usage.

The additional aggressiveness allowed by the prediction engine when using the
proposed technique reduces the users perceived page latency at the expense of in-
creasing the traffic. The effectiveness of Predict at Prefetch with different prediction
algorithms and thresholds has been checked. The results of the experiments show that
a properly configured prediction engine provides a good cost-benefit ratio. A latency
saving up to 12% was achieved while increasing the byte traffic by about 10%.

It was observed that using a very aggressive configuration the algorithm gathers
less information, the prediction algorithm receives less requests, and it is unable to
appropriately learn user patterns.

A summary of the results of this chapter was presented in [de la Ossa 07b,
de la Ossa 07d].
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Chapter 6

Theoretical limits of Web
Prefetching in a real
environment

6.1 Introduction

This chapter presents an empirical study to investigate the maximum benefits that
web users can expect from prefetching techniques in the current web. Unlike previous
theoretical studies, this work considers a realistic prefetching architecture using real
and representative traces. In this way, the influence of real implementation constraints
are considered and analyzed. The results obtained show that web prefetching can
improve page latency up to 52% in the studied traces.

Many published research works focus on prediction and prefetching algorithms
to improve web performance, as summarized in chapter 2.3. However, few stud-
ies [Kroeger 97, Fan 99, Domènech 06e, Balamash 07] focus on the maximum perfor-
mance achievable through web prefetching and the main constraints to reach it. Some
of these works study the upper bounds in performance of web prefetching from a the-
oretical point of view but, to the best of our knowledge, none of them has empirically
analyzed how real restrictions affect the benefits of prefetching.

The main goal of this chapter is to explore the maximum benefits that web pre-
fetching can achieve when working in the real world. To this end, a simulation frame-
work based on a realistic prototype of web prefetching architecture has been used.
We present and study the potential on performance of a perfect prediction algorithm
which always provides accurate predictions. In this way, we can discern which perfor-
mance losses come from miss-predictions and which ones come from the prefetching
technique. Latency saving achieved by such algorithm is explored by varying the
maximum number of provided hints.
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The remainder of this chapter is organized as follows. Section 6.2 discusses the
characteristics of the perfect prediction algorithm. Section 6.3 analyzes some key con-
ditions in web prefetching and how they affect performance improvements. Section
6.4 analyzes other proposed techniques for improving web prefetching performance.
Section 6.5 provides comparative experimental results with real web prediction algo-
rithms. Finally, Section 6.6 presents some concluding remarks.

6.2 The Perfect Prediction Algorithm

This section discusses the perfect prediction algorithm used in this work to study
upper bounds in latency savings.

We define a perfect prediction algorithm as a predictor having four main proper-
ties: i) it never provides wrong hints, ii) it provides at least as many hints as they
can be prefetched during the browser idle time, iii) it only provides hints for those
objects that have been demanded before at least once by any user, and iv) it has no
adverse impact on the server functionality.

Property i) means that it provides a precision rate of 100%, and implies that
this algorithm does not inject additional traffic with respect to non-prefetching tech-
niques, since the objects prefetched according to the provided hints will always be
later demanded by the user.

According to property i), the more provided hints the more latency savings. How-
ever, this number cannot be unbounded since browsers have limited slots of time to
prefetch (browser idle time). This time ranges from a few seconds to several minutes
in the traces. In other words, there is no way to guarantee that there will always be
enough time to prefetch all the provided hints. That is why property ii) is defined.
Notice that a provided hint means that the user will request that object, but this will
not necessarily be prefetched since its request may result in a cache hit.

Property iii) is introduced because any real predictor requires to be informed of
the existence of an object before that object can be predicted as a hint.

Finally, property iv) is defined because the algorithm consumes computational
resources and this fact could affect the web server response time. Obviously, if the
algorithm has to provide responses in real time, it must be fast enough to avoid
delaying the normal web server functionality. There are different ways to avoid or
alleviate them, for instance, locating the prediction engine in a computer different to
the web server, or implementing the prediction algorithm in a custom hardware.

In summary, we define the perfect algorithm as the best algorithm that can be
designed by exploring the trace file at simulation time in advance. The next sections
analyze how limitations in the current real web prefetch architecture impact on the
latency savings.
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6.3 Conditions to Prefetch

This section analyzes critical issues (or factors) which can reduce the benefits on
latency savings that prefetching could provide.

The evaluation methodology used to carry out these experiments is described
previously in Section 4.4.

6.3.1 Maximum Number of Hints per Prediction

This section is aimed at determining the optimal number of hints to be sent to the
prefetching engine in order to find the trade-off between bandwidth consumption and
number of prefetched objects. The perfect prediction algorithm reports three main
types of hints for a page: the primary object of the next page to be requested by the
user, the secondary objects of that next page, and the next pages.

When the prediction algorithm makes a prediction, it may provide one, several or
no hints at all. The resulting hints are sent from the web server to the web browser
in HTTP response headers. Those headers consume extra bandwidth, fact that can
be considered negligible when the number of hints is low. As a simple estimation,
let us assume that each HTTP header hint is 32 bytes long, and a prediction always
provides 10 hints; the traffic overhead caused by the hint header transference is about
1.08% in trace A and about 0.83% in trace B. If the response includes a high number
of hints, for example a thousand hints, the web browser usually prefetches only a
small subset of them. The reason is that a hint is neither prefetched when there is
not enough time nor when the corresponding object is already in the browser cache.

Figure 6.1 illustrates how the number of provided hints affects the page latency
saving for traces A and B. Experiments were run by varying the maximum number of
hints (1, 5, 10, and 30) that the prediction algorithm can provide in each prediction.
Each point in the figure is labeled with the average number of hints provided per
response in the different experiments. Notice that this value widely differs from the
number of allowed hints (with the only exception of one hint). As expected, the
higher the number of allowed hints the higher the relative difference. For instance,
there is no difference when allowing just one hint; however, when allowing 30 hints,
the perfect prediction algorithm provides, on average, 9.66 hints (about one third
of the allowed hints) in trace A. An interesting observation is that by allowing only
one hint, the users perceived page latency is reduced by 34%, and when providing 10
perfect hints per prediction, the page latency is reduced by half. This means that
all hints have not the same impact on latency savings, but the first ones have much
stronger impact.

Regarding trace B, page latency savings are lower than in trace A although the
number of provided hints is slightly higher. As the prediction algorithm is perfect,
we can affirm that trace A is more predictable than trace B. However, even in this
trace, important latency savings ranging from 30% to 39% (depending on the number
of allowed hints) are achieved. Providing more than 30 hints does not save additional
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Figure 6.1: Page Latency Saving with different number of maximum hints permitted
per response

page latency, which means that the raw amount of hints cannot be the only concern
of a prediction algorithm.

Table 6.1 extends the results presented in Figure 6.1 to analyze, in depth, the
effect that constraining the number of hints per response has on performance.

Experiments assume that the prefetching of hints ends when a new page is re-
quested by the user. When this happens, three situations related to the provided
hints can occur: i) there are hints that are still in the hint queue, waiting to be pref-
etched (labeled as PCRH, Prefetch Canceled with Remaining Hints in Table 6.1); ii)
all the hints have been prefetched, and the browser is waiting for a new click (labeled
as PERIT, Prefetch Ends with Remaining Idle Time in the aforementioned table); iii)
it is the last page of the session so no more objects will be prefetched. The latter case
is not shown in the table because its value always remains constant (i.e., 32.43% of
the total pages in trace A, and 24.68% in trace B). Notice that even when the perfect
prediction algorithm is allowed to provide as many hints as possible, barely 2.61% of
the page requests have remaining hints. This fact means that the browser idle time
in the trace is long enough to prefetch the hints provided by the perfect prediction
algorithm.

The obtained recall is not higher than 30% in trace A, even when allowing the
perfect prediction algorithm to provide all the possible hints. The reason is that many
pages in the website used in the experiments share most of their secondary objects.
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Table 6.1: The effect of the maximum number of hints per response
Trace Max

hints
Provided
hints

PCRH
(%)

PERIT
(%)

Recall
(%)

∇PL(%)

A

01 1.00 0.02 67.55 6.80 34.24
05 3.46 1.69 65.88 13.66 46.92
10 5.41 2.18 65.39 17.70 49.32
30 9.66 2.57 65.00 25.90 51.41
∞ 12.20 2.61 64.96 25.50 51.77

B

01 1.00 0.17 75.15 14.58 30.33
05 4.04 3.47 71.85 35.21 35.99
10 6.80 5.06 70.26 44.40 37.76
30 12.80 5.29 70.02 46.26 38.60
∞ 19.37 5.14 70.17 46.27 38.56

PCRH: Prefetchs that are canceled with remaining hints
PERIT: Prefetchs that end with remaining idle time

That is, the first page requested in a session requires many secondary objects to be
fetched, and the subsequent pages reuse most of these secondary objects. When those
secondary objects are required again, they are considered cache hits, not prefetch hits,
and the recall does not increase. Since the objects of the first page in a session cannot
be predicted, the prediction algorithm, even when it is perfect, can consider as hints
only the objects of the second page visited as well as of the following ones. As these
pages have few different secondary objects, the amount of prefetch hits is very low
compared to the total amount of objects requested by the web browser. Consequently,
the recall in trace A is rather low. Despite the low recall, the page latency saving is
important in all cases, being higher than 51% when the number of hints allowed is
over 30. This saving is much greater than the recall because the recall increases due to
the secondary objects requested in the first page of a session. However, those objects
represent a small amount of the users perceived page latency. As a consequence, the
initial secondary objects prevent the increase of recall, but do not impede the increase
of latency saving.

Results for trace B show a higher recall, which almost doubles the recall obtained
by using trace A. This happens because the algorithm provides, on average, more hints
per prediction than in trace A. Nevertheless, this fact does not result in a higher page
latency saving. This situation is the opposite of the observed in trace A: there are
many hints that are prefetched and later required by users, so they are prefetch hits
that increase the recall but barely reduce the overall page latency.

6.3.2 Browser Idle Time

The browser idle time required to run the experiments is taken from the collected
traces. This time widely differs from one request to another across the trace. Thus,
depending on its value, the web browser can have enough time to prefetch all the
hints either provided or not.
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Figure 6.2: Page Latency Saving with different number of maximum hints permitted
per response and idle time

This time depends on the user behavior when navigating through the website, that
is, if the user navigates too fast then the web browser may not have enough time to
prefetch all the hints. This happens even if the prediction algorithm provides accurate
hints that permit to reach the upper bound in latency savings. If the web browser
does not have enough time to prefetch those hints, the latency saved in practice will
not reach the upper bound. For this reason, it is important not only to provide good
hints, but also to provide them in the order in which the user will request them.
Then, the web browser will prefetch them according to this order. In this way, if the
browser is not able to prefetch all the provided hints, at least it will prefetch the most
useful ones.

Figure 6.2 shows how the idle time affects the page latency saving in trace A and
trace B. For this purpose, browser idle times are fixed to 1, 2, 5, and 30 seconds in
this experiment. Results show that values longer than 30 seconds (not shown) do not
further benefit latency savings. This makes sense because although the algorithm is
able to provide up to 30 hints per prediction, it only generates around 10 and 13 hints
on average in traces A and B, respectively. When the perfect prediction algorithm
is allowed to provide only one hint, an idle time of one second is enough to prefetch
the hint. This can be observed in the figure, since all curves draw the same point for
abscissa 1, regardless of the assumed idle time. With the only exception of this point,
the longer the idle time the higher the latency savings.
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Table 6.2: The effect of the browser idle time
Trace Idle

time
(s)

Provided
Hints

PCRH
(%)

PERIT
(%)

∇PL(%)

A

1 13.50 8.84 58.73 46.04
2 12.96 4.20 63.37 49.43
3 12.58 2.49 65.08 51.02
4 12.32 1.65 65.92 52.12
5 12.15 1.18 66.39 52.65
10 11.77 0.43 67.15 53.98
15 11.66 0.26 67.31 54.27
20 11.62 0.20 67.37 54.40
30 11.59 0.14 67.43 54.57

B

1 20.54 9.16 66.15 35.61
2 20.07 5.15 70.16 36.86
3 19.81 3.64 71.67 37.45
4 19.64 2.80 72.51 37.85
5 19.52 2.28 73.03 38.06
10 19.26 1.14 74.17 38.60
15 19.17 0.74 74.57 38.82
20 19.12 0.53 74.78 39.03
30 19.09 0.34 74.98 39.35

PCRH: Prefetchs that are canceled with remaining hints
PERIT: Prefetchs that end with remaining idle time

Table 6.2 shows the results without constraining the number of hints per response.
It can be observed that increasing the idle time by 1 second reduces the amount of
pages with remaining hints by half. This amount drops to 0% when the idle time is
30 seconds. However, when the number of hints per response is limited (e.g., to 5),
the number of pages having remaining hints widely decreases by just providing an
idle time 1 second longer. For an idle time of 3 seconds, the number of pages having
remaining hints is about 1%.

6.3.3 Type of Hints

A prediction algorithm provides hints that can be primary objects or secondary (em-
bedded) objects of web documents. It is unclear if it is appropriate to restrict the
type of hints that can be provided by the prediction algorithm, as discussed below.
By default, we allow the prediction algorithm to provide hints of any type, that is,
both primary and secondary.

To explore if the hints type has an impact on the prefetching benefits, experiments
are run by providing only primary hints, only secondary, or both types. The object
latency savings and page latency savings are measured, and Table 6.3 shows the
results. As one can observe, the page latency is substantially reduced by just providing
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Table 6.3: The effect of the type of hints permitted
Trace Hint

type
Max
hints

Provided
Hints

∇OL(%) ∇PL(%)

A

both

01 1.00 31.55 34.24
05 3.46 43.77 46.92
10 5.41 46.42 49.32
30 9.66 49.27 51.41

primary

01 1.00 31.60 34.30
05 2.90 43.34 46.88
10 3.94 44.85 48.49
30 5.19 45.04 48.72

secondary

01 1.00 1.58 1.46
05 3.10 2.69 2.24
10 4.95 3.73 2.67
30 9.41 5.32 3.62

B

both

01 1.00 27.46 30.33
05 4.04 35.96 35.99
10 6.80 38.56 37.76
30 12.80 39.58 38.60

primary

01 1.00 27.28 30.13
05 3.28 30.40 33.26
10 4.95 30.51 33.37
30 7.91 30.55 33.39

secondary

01 1.00 2.96 1.66
05 4.27 9.09 5.09
10 7.02 10.06 5.81
30 12.22 10.12 5.89

as hint the primary object of the next page. This reduction is about 49% in trace
A and 33% in trace B. Nevertheless, prefetch hits of secondary objects only provide
about 4% and 6% of page latency savings in traces A and B.

There are three main reasons why primary objects provide much more page latency
savings. The first reason is that the service time of primary objects is much longer
than the one of secondary objects. Nowadays, primary objects in most websites are
dynamic files generated with PHP or other real-time programming languages, which
often involve queries to a database. This is the case of the website in which the studied
traces were collected. Secondary objects are usually plain binary files like images, or
text files that only need to be read from disk, such as JavaScript code or Cascade
Style Sheets. In addition, the size of HTML files in most current websites is far larger
than that of secondary objects, as discussed in [Changa 08]. The second reason is
that primary objects are requested by web browsers using a single connection, while
secondary objects are requested simultaneously using two parallel connections. The
third reason is that the browser requests the secondary objects of the page only after
the primary object has been received and parsed. This makes the primary object
even more relevant in the page latency.
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6.4 Enhancing Web Prefetching

From previous sections one can conclude that the more provided hints the higher la-
tency savings. This section analyzes the impact on latency savings of two techniques
aimed at acting as a catalyst to enable the predictor to provide more hints than the
baseline predictor explained above. The former technique, namely Predict On Sec-
ondary (POS), allows the perfect predictor to provide hints both in primary and in
secondary objects, and is described in more detail below. In the latter technique, Pre-
dict at Prefetch (P@P) described in chapter 5, the predictor performs predictions not
only when the user explicitly requests objects, but also when the browser prefetches
hints.

6.4.1 Predict on Secondary

In general, a web document consists of a primary object and many secondary objects
(images, background, style sheet, etc). In the analysis presented above, we assumed
that no prediction is performed when the browser requests a secondary object. Below
we discuss the reason of this assumption.

In most web prefetching research works it is assumed that a prediction is performed
for each object requested to the web server. This means that the web browser receives
hints in any of the requested objects. However, this does not reproduce the real user
navigation pattern for two main reasons: i) the user visits web documents and not
individual objects; and ii) the user visits web documents, including those that are in
the cache and, consequently, are not requested to the server. In this context, Mozilla
web browsers do not prefetch hints provided in secondary objects.

In a typical web prefetching architecture only the web browser is aware of which
requests refer to primary objects and which ones to secondary objects. Nevertheless,
predictions are made at the server side. We extend this model so that the prediction
algorithm firstly receives all the object requests, and then considers if an object is pri-
mary or secondary. The perfect prediction algorithm, by definition, knows in advance
which objects requested by a browser are primary and which ones are secondary. In
this way, we also study the effect of making predictions in secondary objects. The
hints provided with secondary objects are prefetched during the browser idle time
while the object is being displayed. We refer to this technique as Predict On Sec-
ondary objects (POS).

6.4.2 POS and P@P Experimental Results

This section evaluates to what extent the techniques described above can help to
reduce users perceived latency.

As both techniques are orthogonal to each other, we measured the page latency
savings that both techniques provide when working in an isolated way and when
working together. Figures 6.3(a) and 6.3(b) show the results for the traces A and B,
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(a) Trace A

(b) Trace B

Figure 6.3: Page Latency Saving with different number of maximum hints permitted
per response, POS and P@P



6.5. Performance Comparison With Real Prediction Algorithms 63

respectively. For comparison purposes, the figures show the latency savings obtained
with a baseline web prefetch system (that is, without P@P or POS techniques).

P@P always achieves about an additional 6% of page latency savings in trace A,
regardless of whether POS is enabled or not. P@P allows the prediction in prefetch
requests by providing the hints jointly with the prefetched objects. This technique
exploits the browser idle time better and permits to increase the number of prefetch
requests. In this way, when using a perfect prediction algorithm, the browser always
has a pool of hints ready to be prefetched. For this reason, when using this technique,
the perfect prediction algorithm permits to prefetch almost all the pages except the
first one in the session. The benefit of P@P grows in trace B up to 12%.

As expected, POS provides scarce page latency savings (about 1%) when it works
either combined with the baseline or in conjunction with the P@P technique. POS
obtains more benefits when the number of hints that can be predicted is restricted
(MaxHints). The reason is that POS allows the prediction algorithm to make more
predictions when the number of hints per prediction is severely limited, or when few
primary objects are requested in comparison to secondary objects. Thus, providing
more predictions makes it possible to increase the total amount of hints provided.

Giving hints in responses of secondary objects consumes additional computational
resources to perform those additional predictions. These hints consume bandwidth
when they are sent to the browser, but they are not more valuable than the hints
already provided when predicting for the primary object in the document. The results
suggest that the prediction algorithm should not provide hints for secondary objects,
because these hints will not significantly improve the latency saving.

6.5 Performance Comparison With Real Prediction
Algorithms

This section compares the page latency savings of several real prediction algorithms
that are known to provide the best cost-benefit ratio to the perfect prediction algo-
rithm. The main objective of this comparison is to show that the benefits achieved
by real proposals are still far from the performance capabilities of web prefetching.
These algorithms are the Prediction by Partial Match (PPM) [Palpanas 99], the De-
pendency Graph (DG) [Padmanabhan 96], the Double Dependency Graph (DDG)
[Domènech 06a], and the Referrer Graph (RG) [de la Ossa 10a].

The algorithms parameters were individually tuned according to their intrinsic
characteristics in order to obtain the best cost-benefit ratio with the lowest resource
consumption in each individual case.

Figures 6.4(a) and 6.4(b) illustrate the cost and benefit obtained by the studied
prediction algorithms in Trace A and B, respectively. In the real algorithms, the
number represented in each line indicates the configured threshold, which defines the
algorithm aggressiveness. The maximum number of hints allowed per prediction is
10, which is enough to obtain the best results [de la Ossa 10a]. The perfect prediction
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(a) Trace A

(b) Trace B

Figure 6.4: Page Latency Saving obtained by perfect and real prediction algorithms
with different aggressiveness
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algorithm is represented by horizontal lines. The number in each line indicates the
maximum number of hints allowed per prediction. Four different values have been
studied (1, 5, 10 and unbounded).

The page latency saving quantifies the benefit, while the byte traffic increase
measures the incurred cost. Experiments were run for different values of the prediction
algorithms threshold parameter, because this is the most appropriate parameter to
modify the aggressiveness of the algorithm prediction. Only those hints with a higher
probability than the given threshold are returned to the web client.

DDG and RG obtain better cost-benefit ratio than PPM and DG. This difference
is specially noticeable in Trace A, but it can also be appreciated in trace B. RG is
preferable when the byte traffic is restricted, while DDG is preferable when higher
byte traffic is acceptable to obtain higher page latency savings.

As depicted in both figures, all those real prediction algorithms are far from the
maximum page latency savings that can be achieved by the perfect prediction al-
gorithm in these traces. In Trace A, the best real prediction algorithms (RG and
DDG) can obtain a page latency saving of 14% with a byte traffic increase of 10%
and provide up to ten hints per prediction, while the perfect prediction algorithm
obtains 32% latency saving by just providing one perfect hint per prediction. If this
algorithm is allowed to provide up to ten hints per prediction, then it obtains almost
50% of page latency saving. In trace B, the real algorithms can only obtain up to
12% page latency saving, and the perfect prediction algorithm is almost four times
better. When comparing the results of both traces, it can be observed that trace A
allows us to obtain higher latency savings not only for the real algorithms used in
the experiments, but also for a perfect prediction algorithm. That is, trace A is more
suitable for web prefetching than trace B.

6.6 Conclusions

This chapter has focused on the maximum performance that web prefetching can
achieve, and has analyzed the main constraints to reach it in a real scenario. To
this end, we defined a perfect prediction algorithm. Experimental results, obtained
using two recent real traces, show that the baseline perfect prediction algorithm could
provide latency savings ranging from 39% to 52%, depending on the input trace. The
results also show that the latency savings obtained by the current realistic prediction
algorithms are far from those potentially reachable. Consequently, more research
efforts are needed to reduce this gap.

Regarding how experimental conditions impact on performance, we can conclude:
i) providing just five or ten perfect hints makes it possible to obtain the maximum
page latency savings; ii) an idle time of about 10 seconds is enough to prefetch all the
provided hints; and iii) most page latency savings are obtained by providing primary
objects as hints, in contrast to secondary objects.

Two techniques were studied with the aim of improving the performance over
the baseline perfect prediction algorithm. Predict on Secondary (POS) proposes to
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provide hints both in primary object requests and in secondary object requests. This
technique only allowed us to obtain additional page latency savings of 1% in both
traces. Predict at Prefetch (P@P) provides hints both in primary object requests and
in prefetch requests. Results show that this technique obtains noticeable additional
savings in page latency: about 6% in the first trace and 12% in the second trace.

Therefore, we claim that a lot of research efforts should be addressed to improve
current web prefetching techniques. Moreover, we feel that these results should en-
courage the industry to efficiently handle web prefetching in commercial products.

Partial results of the work presented in this chapter were published in [de la Ossa 09a,
de la Ossa 09b] and submitted to a SCI Journal [de la Ossa 10b] in February 2010.



Chapter 7

Referrer Graph: a low-cost
prediction algorithm

7.1 Introduction

This chapter presents the Referrer Graph (RG) web prediction algorithm and a prun-
ing method for the associated graph as a low-cost solution to predict next web users
accesses. RG is aimed at being used in a real web system with prefetching capa-
bilities without degrading its performance. The algorithm learns from user accesses
and builds a Markov model. These kinds of algorithms use the sequence of the user
accesses to make predictions. Unlike previous Markov model based proposals, the
RG algorithm differentiates dependences in objects of the same page from objects of
different pages by using the object URI and the referrer in each request.

A prune mechanism is devised in order to further reduce the increase in resource
usage. In this context, Section 7.4 describes and evaluates how the proposed mech-
anism noticeably reduces computational resources while sustaining the performance.
This mechanism, referred to as pruning algorithm, removes from the graph, both pe-
riodically and continuously, those nodes, arcs, and occurrences that lose their value
over time. In this way, RG can run continuously during unbounded periods of time.

The remaining of this chapter is organized as follows. Section 7.2 describes the
RG prediction algorithm. Section 7.3 shows and analyzes the experimental results.
Section 7.4 presents and evaluates a graph pruning mechanism. Finally, Section 7.5
presents some concluding remarks.

67
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7.2 Referrer Graph

7.2.1 General Description

The Referrer Graph (RG) prediction algorithm builds a graph based on client requests.
Each requested web object is represented by a node in the graph. For each web request
that reports its referrer, an arc is created from the referred node (predecessor) to the
requested nodes (successor). The resulting graph is used to make predictions that
produce hints which are returned to the web client.

The idea of a prediction algorithm that considers the site structure accessed by
users is motivated by the fact that users commonly navigate following hyperlinks on
web pages. This model considers that two objects are related to each other if there
is a hyperlink between them. Hence, the model considers structural information
about the website instead of the sequence of the requested objects. In general, the
algorithms that use the sequence of requests to build the graph need a window of last
accesses for each client session in order to establish arcs among the previous accesses
and the current one. RG does not need this window because this algorithm keeps the
relationship between objects based on their direct reference, which is known thanks
to the referrer field in the request 1. Each HTTP object request includes information
about the requested object and its referrer, so in order to establish an arc it is not
necessary to keep track of previous accesses of the same client session.

Many prediction algorithms use the sequence of user accesses and identify each
navigation session by the IP address of the client. This is a problem when different
browsing sessions use the same IP address, which happens when several clients use
the same proxy server, when they connect from the same local network masked by a
single IP address, or when the same user has several parallel browsing sessions. Those
events cause an erroneous learning of user patterns in the algorithms. On the contrary,
RG handles each web request independently of the context of the whole navigation
session. Therefore, RG does not need to keep track of each user navigation session,
and it is not negatively affected by any of these circumstances.

Conceptually, the RG algorithm is similar to DDG, but instead of using the se-
quence of accesses to build the associated graph, RG extracts information from indi-
vidual accesses to reconstruct the website structure and the access patterns, and it
builds a graph of object dependences by using the popularity of the objects and the
relationships among them. Below, we detail how RG works.

7.2.2 Theoretical Example

This example shows the different learning in RG and a prediction algorithm based on
the sequence of accesses.

1Note that in the original HTTP specification document, the header field was misspelled as
“referer”, instead of the correct English word “referrer”.
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Given a user sequence of web object requests:

User requests = A⇒ B⇒ C (7.1)

And considering that the prediction algorithm predicts the hints B and X for A, the
client performs the following actions:

Client actions = fetch A⇒ prefetch B⇒ cache hit B⇒ fetch C (7.2)

The prediction engine receives only two requests:

Predictor receives = (A with referrer φ)⇒ (C with referrer B) (7.3)

A prediction algorithm that learns from the sequence of accesses, like DDG, generates
two arcs in its graph:

Sequence learning = (φ→ A)⇒ (A→ C) (7.4)

It generates and arc from A to C because that is the perceived sequence of accesses.
On the contrary, RG generates the arc considering the individual requests, not their
sequence, so it learns:

Referrer learning = (φ→ A)⇒ (B→ C) (7.5)

In this case, RG builds the arc correctly even when some intermediate requests are
missing.

7.2.3 Data Structures

RG builds a first-order Markov model, since only the previous access is used to define
the context of the current request. The graph is directed, loopless, and cyclic.

A Markov model is a directed cyclic graph where the next node only depends on the
current state. The node represents the context of the user, that is, the recent accesses.
Nodes are connected by arcs, which represent the transition between contexts. The
arc weight represents the transition confidence of moving from the predecessor node
to the successor node. The order of a Markov model indicates how many past accesses
are used to define the context in a node.

In the proposed model, a node represents a web object, and it is identified by
the object URI. A directed arc from a predecessor to a successor node represents the
relationship between both nodes.

To illustrate several working aspects of the RG algorithm, let us assume a Calendar
website, as shown in Figure 7.1. The main page (Calendars) is linked to some other
secondary pages that focus on different types of calendars: there is a different page for
each year calendar (C2007, C2008 and C2009 ); there is page with the rules used to
build the Gregorian calendar (Gregorian), another page with the rules for the Mayan
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Figure 7.1: Example website

calendar (Mayan), and a third one with the rules for the Julian calendar (Julian).
Images and logos are embedded objects of their own pages.

Figure 7.2 shows an example graph built by RG for a simple navigation performed
in the Calendar website. In the graph there is a primary arc that has node Calendars
as a predecessor, and node Julian as a successor. This means that a user requested the
object represented by node Julian, and that request indicated as referrer the object
represented by node Calendars.

Initially, the graph is empty. Then it is built and updated through a learning pro-
cess. We define the occurrence of a node as the number of requests to the represented
object, and the occurrence of an arc as the number of requests to the successor node
which provided the predecessor node as a referrer. For each web request, if the graph
already contains a node representing that object, the node occurrence is increased.
Otherwise, the node is created with occurrence set to one. In addition, an arc is
created or, if it already exists, its occurrence is increased. To avoid the uncontrolled
growth of the graph, it can be periodically pruned by removing those nodes and arcs
that become less representative.

Nodes and arcs can be classified in two main types: primary and secondary. Pri-
mary nodes represent objects that are requested explicitly by users, while secondary
nodes represent embedded objects that are requested by the web client, not by the
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/Calendars.html

/Julian.html /logo1.png

/caesar.jpg

Figure 7.2: Simple graph with two primary and two secondary nodes

user. A secondary node is not predecessor of any arc and its object’s MIME type
corresponds to a typical embedded object (image, video, script, style sheet, etc). A
secondary node is promoted to primary when an arc having that node as predecessor
is established. Thus, it is not possible that an arc has a secondary node as predecessor.
On the contrary, primary nodes can never be promoted back to secondary.

An arc inherits the type of its successor node. When a secondary node is promoted
to primary, the arcs that have this node as successor are also promoted to primary.

A web page visited by a user consists of a main object and several embedded
objects. The graph represents this page as a primary node, several secondary nodes,
a primary arc from the referrer node to the primary node, and secondary arcs from
the primary node to the secondary nodes.

In the proposed data structure, the graph stores for each node: the object URI,
node type, node occurrence, list of referrers, list of primary arcs, and list of secondary
arcs. The data stored for an arc is the destination URI, arc occurrence, and arc
transition confidence.

A secondary node keeps a list of referrer nodes because this allows to quickly find
them if the node is promoted to primary.

7.2.4 Learning Process

The learning part of RG is summarized in Figure 7.3 and consists of three main steps:
updating the requested node, updating the arc from the referrer node to the requested
node, and promoting the referrer node, if required.

When an object is requested, its corresponding node is found, and the occurrence
and the list of referrers of the node are updated. If the node has not been created
yet, it is created with a type according to the object MIME type, and inserted in
the graph. If this information is not available, or the MIME type does not allow to
discern the node type, then it is built as a secondary node.
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If the node is secondary, it adds the referrer URI to a list. This is useful in case of
node promotion, as it helps to quickly find the nodes that link to this node and the
arcs that have this node as successor.

If the request provides the requested object as referrer, or if the referrer is a node
that does not exist in the graph (this includes the case of external referrers), then
the learning process ends. This ensures that arcs have a different node as predecessor
and successor.

If the referrer already has a node in the graph and there is an arc from the referrer
to the requested object, the arc occurrence is increased. In addition, all the arcs that
have the referrer as the predecessor node are updated: the arc transition confidence
is calculated as the arc occurrence divided by the predecessor node occurrence. If the
predecessor is a secondary node, it is promoted to primary and all the arcs with that
node as successor are promoted to primary, too.

7.2.5 Prediction Process

Figure 7.4 shows the main steps of the algorithm that makes predictions and provides
hints. When a user requests an object, the corresponding node is looked for in the
graph. If the node does not exist or it is secondary, no prediction is made and no
hints are provided. On the contrary, if the node exists and is primary, all its primary
arcs are analyzed. Those arcs that have a transition confidence greater than a given
threshold are included in a list of primary arcs, ordered by transition confidence. Then
the successor nodes of such arcs are looked for and their secondary arcs are analyzed.
Those secondary arcs with a transition confidence (multiplied by the previous primary
arc transition confidence) greater than a secondary threshold are included in a list of
secondary result arcs, also ordered by arc transition confidence.

The lists of primary and secondary arcs are then concatenated. The URIs associ-
ated to these arcs are the hints that will be provided as predictions. The definitive
list of hints can be cut to provide only the first N hints.

7.2.6 Working Example

This section presents an example of a set of clients sessions browsing the Calendar
website, the graph built by the learning process, and the hints provided by the pre-
diction algorithm.

Table 7.1 lists the web requests performed during the client session, which are pro-
cessed by the learning process of RG. Figure 7.5 shows the corresponding graph. The
primary and secondary nodes are depicted with solid and dashed lines, respectively.
Nodes are labeled with the URI and their occurrence, while arcs are labeled with the
arc occurrence and transition confidence. Table 7.2 shows the hints that RG would
provide using the graph previously shown if a client performed different requests. The
main threshold and the secondary threshold are not enforced in this example.
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Figure 7.3: Algorithm for learning from user access and building the RG graph
1: Input:
2: rg: RG graph
3: uri: URI requested
4: referrer: Referrer provided in the request
5: mime: MIME type of the requested object
6: Output:
7: rg: RG graph with improved knowledge
{ UPDATING NODE: Updating the requested node b }

8: b← find node with uri ∈ rg or build new node, with type based on mime
9: b occurrence ← b occurrence + 1

10: if b type = secondary then
11: Add to b list of referrers: referrer
12: end if
13: Store b in rg
{ UPDATING ARC: Updating arc ~ab }

14: if uri = referrer or referrer /∈ rg then
15: return rg
16: end if
17: a← find node with referrer ∈ rg
18: ~ab ← find arc with uri ∈ a or build new arc
19: ~ab occurrence ← ~ab occurrence +1
20: Store ~ab in a
21: for all arcs ~at ∈ a in rg do
22: ~at transition confidence ← ~at occurrence / a occurrence
23: end for
{ PROMOTION: Promoting Referrer node a }

24: if a type = secondary then
25: a type ← primary
26: for all uris urix ∈ a list of referrers in rg do
27: x← find node with urix ∈ rg
28: ~xa ← find secondary arc with referrer ∈ x
29: x secondary arcs ← remove ~xa from x secondary arcs
30: x primary arcs ← x primary arcs

S
~xa

31: Store x in rg
32: end for
33: end if
34: Store a in rg
35: return rg
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Table 7.1: Web requests in an example
of a client session

URI requested URI of referrer
/Calendars.html -
/logo1.png /Calendars.html
/logo2.png /Calendars.html
/Gregorian.html /Calendars.html
/popegxiii.jpg /Gregorian.html
/Julian.html /Gregorian.html
/caesar.jpg /Julian.html
/Calendars.html -
/logo1.png /Calendars.html
/Maya.html /Calendars.html
/tzolkin.jpg /Maya.html
/Calendars.html www.search.com
/logo1.png /Calendars.html
/Gregorian.html /Calendars.html
/popegxiii.jpg /Gregorian.html
/Julian.html /Gregorian.html
/caesar.jpg /Julian.html
/Calendars.html /Julian.html

Table 7.2: Hints provided depending on the requested URI

URI Hints URI and probability
/Calendars.html /Gregorian.html 50%, /Maya.html 25%,

/popegxiii.jpg 50%, /tzolkin.png 25%
/Gregorian.html /Julian.html 100%, /caesar.jpg 100%
/Julian.html /Calendars.html 50%, /logo1.png 37.5%,

/logo2.png 12.5%
/Maya.html -
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Figure 7.4: Algorithm for giving hints based on RG graph
1: Input:
2: rg: RG graph
3: u: last user access
4: th: primary threshold
5: thsec: secondary threshold
6: Output:
7: h: Set of hints
8: for all output primary arcs a ∈ u in rg do
9: if a transition confidence ≥ th then

10: hptemp← hptemp
S
{a}

11: for all output secondary arcs e ∈ a in rg do
12: if e transition confidence ·a transition confidence ≥ thsec then
13: hstemp← hstemp

S
{e}

14: end if
15: end for
16: end if
17: end for
18: hpsorted← sort hptemp by higher probability
19: hsuniq ← delete duplicates in hstemp
20: hssorted← sort hsuniq by higher probability
21: h← hpsorted

S
hssorted

22: return h

7.3 Experimental Results

This section compares the cost-benefit and the resource consumption of the RG pre-
diction algorithm against other three well-known algorithms. These algorithms are
the Prediction by Partial Match (PPM) [Palpanas 99], the Dependency Graph (DG)
[Padmanabhan 96], and the Double Dependency Graph (DDG) [Domènech 06a].

The algorithms parameters were individually tuned according to their intrinsic
characteristics in order to obtain the best cost-benefit ratio with the less resource
consumption. We found that, in both traces, the best configuration was the use of a
lookahead window size of 2 in both DG and DDG, and a first-order Markov model in
PPM.

7.3.1 Page Latency Saving and Byte Traffic Increase

Figure 7.6 illustrates the cost and benefit obtained by the studied prediction algo-
rithms. The page latency saving quantifies the benefit, while the byte traffic increase
measures the incurred cost. Experiments were run for different values of the predic-
tion algorithms threshold parameter, because this is the most appropriate parameter
to modify the aggressiveness of the algorithm prediction. Only those hints with a
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Figure 7.5: Graph generated by RG after some simple navigation sessions

higher probability than the threshold are returned to the web client. The numbers
inside the figure show the threshold values used in the experiment run.

DDG and RG obtained better cost-benefit ratio than PPM and DG. This difference
is specially noticeable in trace A (see Fig. 7.6(a)), but it can also be seen in trace B
(see Fig. 7.6(b)). This difference arises because DDG and RG discern among primary
and secondary objects in the graph; thus, they can provide more useful hints. As
observed, RG is the preferable algorithm under low-cost constrains, while DDG is the
best when no constrains are imposed.

In [de la Ossa 09a] we studied the maximum page latency savings that prefetching
can provide under real conditions. Results showed that latency savings can be as high
as 52% and 39% for trace A and trace B, respectively. These results were achieved
by providing just five or ten perfect hints.

We performed experiments using the methodology described in [de la Ossa 09a] to
obtain the maximum page latency saving that could be achieved using web prefetching
in those traces. The results showed that the maximum page latency savings that web
prefetching can obtain are 52% for trace A, and 39% for trace B.

7.3.2 Resource Consumption

To increase the prediction accuracy, the prediction algorithms store a lot of informa-
tion about user’s navigation and, consequently, have to perform a deeper information
analysis handling a high number of variables to make predictions. As a consequence,
prediction algorithms become more and more complex. In other words, the algorithms
require more computational and memory resources both to learn from the user be-
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(a) Trace A

(b) Trace B

Figure 7.6: Page latency saving versus byte traffic increase
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haviour and to make predictions. Therefore, the research must concentrate not only
on the precision of the prediction algorithms, but also on their resource consumption.
A prediction algorithm whose resource consumption increases exponentially is not
appropriate for real usage. When two prediction algorithms provide similar precision,
it is preferable the one with lower resource consumption.

We quantified the resource consumption of the previously mentioned algorithms.
To quantify the memory consumption we measured the number of arcs in the graph
that is built by each prediction algorithm. The number of nodes in the graphs built
by the algorithms DG, DDG and RG is identical because all the algorithms receive
the same number of object requests, and all of them create a node for each requested
object. As an approximation to the computational consumption, we measured the
service time required by the algorithms to make predictions.

The algorithms DG, DDG, and RG create the same nodes in their graphs, although
they are connected in a different way. However, PPM builds a data structure that is
completely different. Consequently, its data structure is not directly comparable to
the other algorithms, as each requested object is represented with one or more nodes
in the PPM tree.

Figure 7.7 shows the number of arcs in the graph of each algorithm during the
experiment measured in number of user requests.

The data structure created by any algorithm strongly depends on the website
navigation tree. This is the cause of the big difference in cost between trace A and
trace B.

The algorithm that always created fewer arcs in its graph was RG. The reason
is that RG creates an arc between two nodes when a web request of the second
node references the first one. This is the main difference between RG and the other
algorithms, where an arc is created between two nodes when they are requested se-
quentially during a short lapse of time.

Figure 7.8 depicts the prediction service time during the experiment, that is,
the time consumed by the implementation of the prediction algorithm to make a
prediction. This time consists of two main components: the learning phase time and
the prediction phase time. A server equipped with a 64-bit Intel Xeon Processor
3.2GHz, 2M Cache, 4 cores, with 4 GB of RAM was used to perform the experiments.

As one can observe, the prediction service time (Fig. 7.8) is directly related to the
number of arcs in the graph (Fig. 7.7). The reason is that those algorithms consume
most of their prediction time looping over the arcs in the graph and performing actions
with each arc.

RG was the implemented algorithm that required less time to make predictions,
followed by DDG, DG and PPM. However, in all cases the service time increased as
the experiment progressed. The reason is that the traces included requests for several
months. During the months when the trace was captured, new pages were added
to the website. Therefore, the prediction algorithms were continuously adding more
nodes to the graph, as well as arcs between old and new nodes. As a consequence,
the prediction service time increased. To avoid the continuous increase of this time,
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(a) Trace A

(b) Trace B

Figure 7.7: Number of arcs in graph when threshold is 0.1



80 Chapter 7. Referrer Graph: a low-cost prediction algorithm

(a) Trace A

(b) Trace B

Figure 7.8: Prediction service time when threshold is 0.1
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we propose to prune the graph, that is, to reduce the graph complexity, as described
below.

7.4 Graph Pruning

This section presents a method for pruning the graph built by RG. First, the main
questions related to the growing of the graph and data structures associated with
the prediction algorithm are discussed. Then, the proposed pruning algorithm is
presented, and the design choices are explained in detail. An example of RG pruning
illustrates how the algorithm works in practice. Finally, the benefits of RG pruning
against the baseline RG are evaluated.

7.4.1 General Issues

The graph associated with a prediction algorithm is dynamically built over time and
updated with the corresponding information when a user access is performed. As a
result, the graph grows and continually needs more computational resources. The
problem arises when some information stored in the graph becomes stale or useless.
This fact can happen due to two main reasons: i) the changes on web navigation
patterns, and ii) the removal of some website pages. The first case appears because
users’ interests vary over time. This may happen depending, among others, on the
kind of contents the site provides (e.g., sports news, financial news, program docu-
mentation,...). The second case occurs because, when some pages are removed from
a website, some knowledge in the graph becomes useless since users will no longer
visit such pages. Furthermore, keeping obsolete and useless information in the graph
not only wastes memory and computational resources in the prediction engine, but
also has a negative impact on the performance because the precision can noticeably
decrease. That is, if such information was used by the prediction algorithm, it could
provide useless hints. The process of pruning a graph consists of walking on the graph
to check which parts have become obsolete, and therefore suitable for being removed.

The design of a pruning algorithm must address two major concerns: resource
consumption, and prediction accuracy. The first one means that pruning must not
increase the resource consumption of the original prediction algorithm. That is, the
sum of resource consumption due to the prediction and the pruning algorithms must
not exceed the consumption when pruning is not performed. This entails that the
pruning algorithm itself must be a low-consumption process and removing information
results in a simpler graph that consumes less computational resources. The second
concern means that pruning must not have adverse impact on the effectiveness of the
web prediction. In other words, pruning the graph implies the removal of information,
so if useful information was pruned, prediction accuracy would be adversely affected.
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7.4.2 Proposed Pruning Algorithm

The graph built by RG has two elements that grow over time: nodes that represent
pages, and arcs that represent transitions between pages. Node and arc occurrences
are counters that increase continuously, as they represent the number of times a page
or a transition have been observed. According to the implementation of the data
structures, the action of pruning a node also prunes the arcs having that node as
predecessor. On the other hand, occurrences are internally represented with integer
values, so an integer overflow can raise arithmetic exceptions because an arc or a node
is being highly accessed over time. In this sense, an effective pruning could help to
avoid such exceptions.

The design of a pruning algorithm is determined by two main decisions: i) what
to prune, and ii) when to prune.

The first decision consists in selecting those elements that must be pruned from
the graph. This process must cover the pruning of the three main elements of the
graph: nodes, arcs, and occurrence values. Notice that pruning nodes and arcs means
to remove them from the graph, while pruning occurrences refers to decreasing their
value. In order to perform a fair pruning when decreasing the occurrence values, the
overall consistency must be kept, that is, these values must be kept proportional to
each other. To this end, the occurrences of the arcs are all reduced at the same time,
then the occurrence of the predecessor nodes is reduced in the same ratio.

The second decision refers to the points in time at which pruning is performed.
This can be done either continuously, periodically, or both. In a continuous prun-
ing, when an element of the graph is accessed, only that element and the directly
related elements are checked for pruning. This process is performed dynamically and
synchronously with the learning process, so computational consumption extends over
time. On the other hand, in a periodic pruning all the graph contents are checked
for pruning at fixed intervals. In the latter case, the computational consumption
concentrates on the lapse of time when pruning is triggered.

Figure 7.9 summarizes the pruning process devised for the RG algorithm. Con-
tinuous pruning is used for arcs, and periodical pruning for nodes. Notice that the
pruning and learning algorithms (Figure 7.3) must be interleaved as follows: first,
updating the requested node and the arc from its referrer; second, pruning arcs and
reducing occurrences; then, promoting the referrer node; and finally pruning nodes.
Consequently, the order in the complete algorithm includes the following steps:

1. UPDATING NODE (Figure 7.3)

2. UPDATING ARC (Figure 7.3)

3. PRUNING ARCS AND REDUCING OCCURRENCES (Figure 7.9)

4. PROMOTION (Figure 7.3)

5. PRUNING NODES (Figure 7.9)
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The criterion used for pruning arcs and occurrences, as highlighted in Figure 7.9
(PRUNING ARCS AND REDUCING OCCURRENCES), is the following. When a
request indicates as its referrer a node that already exists in the graph, and the node
occurrence exceeds a threshold (node occ th), its outgoing arcs are checked for prun-
ing. An arc is pruned when its transition confidence is lower than the primary thresh-
old ; otherwise the arc occurrence value is reduced by a factor (occ reduction factor).
As mentioned in Section 7.2.4, the arc transition confidence is calculated as the ratio
of its occurrence value to the occurrence value of its predecessor node. Proceeding in
this way, the occurrence value estimates the arc popularity. Once all the arcs leaving a
node have been updated, the occurrence of the node is also reduced by the mentioned
factor to maintain this popularity.

Node pruning is highlighted in Figure 7.9 (PRUNING NODES). A global access
counter is used to determine the point in time at which the pruning of all nodes
in the graph must start. This counter increases its value each time a web request
occurs. When this counter surpasses a given value (pruning th), the node pruning
process starts. Nodes are pruned when they i) do not reach a minimum popularity
or ii) have not been accessed for a long time. A node is considered popular enough
to be maintained in the graph if its node occurrence value is higher than a minimal
configured value (node occ th) in the pruning algorithm.

To determine the elapsed time since a node was accessed, a new variable is asso-
ciated with each node (last access field). When a node is accessed, this field gets the
value of the global access counter mentioned above (which also increases its value).
Thus, if the last access value of a node is lower than a configured access threshold
(access th) set in the pruning algorithm, then the node is pruned. Otherwise the node
last access field is set to zero. When the node pruning process finishes, the global
access counter is reset, thus becoming ready to start a new learning process. When a
node is pruned, all the arcs leaving that node or having this node as their destination
are also removed.

Finally, notice that node pruning requires to walk on the entire graph because the
nodes most likely to be pruned are the less requested ones.

7.4.3 Example of RG Pruning

To illustrate the pruning method, this section presents an example of a graph built by
RG and the graph that results from the pruning of arcs and nodes. The graph built
corresponds to the navigations performed by a set of clients to the Calendar website
proposed in Figure 7.1.

In this scenario, navigation sessions have also been assumed to build the RG graph
shown in Figure 7.10(a). As known, nodes represent the visited pages, and arcs show
the transitions among them. Each node shows the value of its occurrence and its last
access, and each arc shows its occurrence and its transition confidence.

The corresponding navigations were as follows: many clients accessed the website
by first visiting its main page, which is, consequently, very popular (see occurrence of
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Figure 7.9: Algorithm for pruning the RG graph
1: Input:
2: rg: RG graph
3: referrer: Referrer provided in the request
4: th: Primary threshold
5: accesscounter: Global counter of accesses
6: Output:
7: rg: RG graph with improved knowledge
{ PRUNING ARCS AND REDUCING OCCURRENCES }

8: a← find node with referrer ∈ rg
9: if a occurrence ≥ node occ th then

10: for all arcs ~ar ∈ a in rg do
11: if ~ar transition confidence < th then
12: prune arc ~ar
13: else
14: ~ar occ ← ~ar occ ∗ occ reduction factor
15: end if
16: end for
17: a occ ← a occ ∗ occ reduction factor
18: end if
19: Store a in rg
{ PRUNING NODES }

20: if accesscounter ≥ pruning th then
21: for all nodes n ∈ rg do
22: if n occ < node occ th or n last access < access th then
23: prune node n
24: else
25: n last access ← 0
26: end if
27: end for
28: accesscounter ← 0
29: end if
30: return rg

Calendars). Few visitors were interested in the 2008 calendar or in the Mayan one.
In fact, the last accesses to those pages were performed a long time ago (compare the
global access counter with the corresponding last access value). The page showing the
Gregorian calendar is quite popular but few users requested it before accessing the
main page, possibly because one of the visitors shared the page URL with his or her
friends, so the new visitors requested the Gregorian page directly, without requesting
Calendars before. This can be observed in the graph by comparing the high value
of the Gregorian node occurrence to the low occurrence value of the arc that links
the Calendars node to the Gregorian one. The numerical values of these fields show
possible consistent values with the users behavior described above.
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The pruning algorithm parameters for this demonstration are set as follows:
threshold = 15%, node occ th = 50, occ reduction factor = 0.1, pruning th = 1000,
access th = 500. In this example, let us suppose that the RG algorithm receives a
new prediction request for Calendars. Then, a prediction is performed, the graph is
updated to reflect the new access, and the pruning mechanism is triggered.

The pruning process starts by checking the arcs that leave the node Calendar.
Two of the arcs are pruned because their transition confidence is lower than the
primary threshold: the arc to the Gregorian node, and the arc to the Mayan one.
Then, the remaining arcs and nodes update their occurrences using the reduction
factor mentioned above. Then, when the global access counter reaches the pruning
threshold (pruning th), the process starts and all nodes in the graph are checked for
pruning. Besides its popularity, the node C2008 is removed because its last access was
performed a long time ago. The Mayan node is also deleted but, unlike the previous
one, it is deleted because it has a very low occurrence (which means it has not been
popular since the last node pruning process). Of course, the arcs that arrive at or
leave the pruned nodes are also removed from the graph. The graph resulting from
the pruning is shown in Figure 7.10(b).

In summary, the initial graph of five nodes is reduced to only three nodes, and
only one arc remains from the four initial arcs. Those elements of the graph were
removed because they were not popular or had not been accessed for a long time.

7.4.4 Experimental Results of Pruning

This section evaluates the benefits of pruning. Graph complexity, prediction time,
and page latency savings have been measured and compared to the original algorithm.
To carry out the experiments, the node occ th and the access th were set to 10 and
250, 000 accesses, respectively. For the sake of clarity, the results of each trace are
presented in a separate plot across the performed experiments because both traces
present quite different characteristics.

Figure 7.11 shows, for both traces, the increase in the number of nodes in the
graph as the experiment progresses. Regardless of the trace, when using the original
RG algorithm (upper curve), the number of nodes increases noticeably during the
experiment. As expected, when applying pruning, the graph complexity is reduced
each time pruning is performed.

Figure 7.12 illustrates how the number of arcs evolves in the graph when applying
pruning and in the original algorithm. When pruning arcs, these are continually
removed during the experiment, whereas when pruning nodes, these are removed at
fixed intervals. The reduction in the number of arcs is caused by the periodic node
pruning, because the removal also affects the number of arcs, that is, when a node is
removed from the graph all its outgoing arcs are also removed.

Figure 7.13 shows the average service time taken by the RG prediction algorithm
to perform predictions. In addition to the learning and predicting phases, this time
includes the pruning phase. In spite of this fact, compared to the original algorithm,
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uri: CALENDARS
occurrence: 499
last access: 998

uri: C2008
occurrence: 200
last access: 200

occurrence: 200
transition

confidence: 40%

uri: C2009
occurrence: 100
last access: 999

occurrence: 100
transition

confidence: 20%

uri: GREGORIAN
occurrence: 95
last access: 997

occurrence: 10
transition

confidence: 2%

uri: MAYAN
occurrence: 5

last access: 205

occurrence: 5
transition

confidence: 1%

access counter: 999

(a) Before pruning

(b) Graph after arc and node pruning

Figure 7.10: Graph learnt and graph after pruning
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(a) Trace A

(b) Trace B

Figure 7.11: Number of nodes in graph when threshold is 0.1
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(a) Trace A

(b) Trace B

Figure 7.12: Number of arcs in graph when threshold is 0.1
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(a) Trace A

(b) Trace B

Figure 7.13: Prediction latency when threshold is 0.1
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(a) Trace A

(b) Trace B

Figure 7.14: Page latency saving versus byte traffic increase
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the inclusion of the pruning mechanism significantly reduces the service time, which
drops by about 30% in trace A and 23% in trace B (quantified at the end of the
experiment).

These results mean that graph pruning does not have any adverse effect on the
service time; on the contrary, it contributes to noticeably reduce it, thanks to the
reduction of the graph complexity.

Finally, Figure 7.14 shows the page latency saving and byte traffic increase ob-
tained by the RG algorithm with and without pruning. In trace A, pruning the graph
results in almost no change in the performance achieved. It is observed that in trace
B, RG obtains slightly higher benefit when pruning, but at the expense of increasing
the cost. This is because pruning the graph deletes nodes and arcs with low transition
confidence, and this fact increases the transition confidence of the remaining arcs. As
a consequence, more hints are provided in the predictions, more hints are prefetched,
and some of them finally result in prefetching hits.

In summary, the proposed method for pruning the RG graph allows us to reduce
computational (i.e., less service time) and storage resources (i.e., graph complexity)
without decreasing the original performance.

7.5 Conclusions

This chapter has presented the Referrer Graph prediction algorithm and an associated
prune mechanism, which is aimed to be a precise and simple solution for web predic-
tion while consuming few computational resources. RG learns from user accesses and
builds a Markov model, differentiating dependences on objects of the same page from
objects of different pages. However, instead of using the sequence of user accesses as
other algorithms do, RG uses the object URI and referrer associated to each request.
This permits the design of a very simple algorithm because it does not need to keep
track of previous user accesses (the user browsing session). It also means that RG
establishes arcs to represent proven relations, instead of establishing arcs between ob-
jects for the circumstantial reason that they were requested sequentially by the same
user. Consequently, RG establishes fewer arcs than other proposals, so the Markov
model is smaller. This allows a faster management of the model when learning or
predicting. Furthermore, when several browsing sessions use the same IP address,
RG is not negatively affected, unlike the algorithms that use the sequence of accesses,
which perform an erroneous learning of user patterns.

The experimental results show that RG, compared to the best prediction algo-
rithms proposed in the open literature, obtains similar or even better page latency
savings when the traffic increase is a strong constraint, but requiring less computa-
tional and memory resources, thanks to its data structure and algorithmic simplicity.

In addition to the learning and prediction processes, a simple mechanism for prun-
ing nodes, arcs, and occurrences in the graph has been devised for RG. This allows
RG to learn from new user accesses over time without increasing the resource con-
sumption. Results show that the proposed pruning mechanism significantly reduces
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the graph complexity and consequently the service time to perform a prediction, and
has no adverse impact on the latency savings achieved, even improves them.

Some results of the work presented in this chapter were presented in [de la Ossa 10a]
and submitted to a SCI Journal [de la Ossa 11] in March 2011.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation has demonstrated that web prefetching can work in a real scenario
without requiring changes in the standard protocols. To this end, Delfos has been
designed, developed, and tested as a practical implementation that interacts with ex-
isting software. We have described how the different elements of the web architecture
interact in order to support web prefetching.

Delfos was then extended to support trace-driven experimentation, thus allowing
the comparison of the results obtained by different prediction algorithms and prefetch-
ing techniques when using a specific load. We described the evaluation methodology,
and the performance indexes that are measured by Delfos. These indexes include: i)
those related to the prediction accuracy like precision and recall, ii) those related to
cost-benefit like latency saving and traffic increase, and iii) those related to resource
consumption like computation and memory consumption. Detailed experimental re-
sults were presented to show the usefulness of Delfos as an evaluation framework.

We proposed Predict at Prefetch, a technique to improve web prefetching perfor-
mance by allowing the prediction engine to provide more hints to the client. Predict
at Prefetch was implemented and evaluated experimentally using Delfos.

We considered the key factors that could limit web prefetching in a real envi-
ronment. Then, using Delfos, we performed an empirical study to evaluate to what
extent these factors could affect web prefetching, for which reasons, and which values
are preferable.

The Referrer Graph prediction algorithm was proposed as a precise and simple so-
lution for web prediction that consumes few computational resources. It outperforms
other prediction algorithms. This algorithm uses the referrer information included in
each web request, instead of using the sequence of user accesses. In this sense, RG
is invulnerable to sequence alterations produced by elements like proxies, shared IP
addresses in a LAN, etc.
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We demonstrated that web prefetching can be implemented in the current web
architecture without modifying the standard protocols, reduces the users perceived
latency with a reasonable network traffic increase, and can work efficiently without
requiring noticeable computational or memory consumption.

8.2 Summary of Contributions

The main contributions of this work can be summarized in:

• Development of Delfos, a framework that implements web prediction and web
prefetching in a real scenario, interacting with existing web clients and servers.

• Development of an improvement of the framework for testing web prediction
and prefetching techniques.

• Proposal of the Predict at Prefetch technique that helps to improve the perfor-
mance of web prefetching by allowing the performance of predictions in more
cases.

• Study on the theoretical limits affecting web prefetching when it is implemented
in a real environment.

• Design of Referrer Graph, a new prediction algorithm that achieves similar
results to more complex algorithms, but is simpler and requires less resource
consumption.

8.3 Future Work and Open Research

Despite the mentioned contributions of this work, and as it occurs in a great number
of PhD dissertations in the IT field, there are several open issues that can be planned
as future work, for instance:

• To design a technique that allows the prefetch engine to notify the prediction
algorithm about prefetch hits. This prefetch hit notification technique would
permit the design of prediction algorithms that learn not only from web accesses,
but also from prefetch hits, for example, increasing the weight of arcs for which
a hit notification was provided. The objective is to increase the precision of the
prediction algorithm.

• This research work assumed that the prefetching engine uses one single net-
work connection to prefetch objects. This assumption takes into account the
behaviour of existing commercial prefetching implementations, for instance,
Mozilla web browsers. But it is technically possible to prefetch objects using
two simultaneous connections, which could probably improve the prefetching
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performance. Thus, we propose to experimentally evaluate how that change
would influence the performance of the prefetching technique.

• To investigate what new possibilities the new HTML 5 standard brings to web
prediction and prefetching techniques.

The experience obtained throughout this research work allows us to propose new
research challenges:

• Taking into account that collaborative prefetching between different elements
of the web architecture can achieve the highest values of latency savings
[Domènech 06e], the design of a low cost prediction and prefetching mechanism
able to work in a real web proxy is an interesting and promising research topic.

• In the research group, we are developing a research line that attempts to reduce
the latency of displaying web pages using a pre-validation technique for web
objects objects. Previous results of our research group [Domènech 10] show
that the number of conditional requests to validate web objects in cache is
very high and negatively affects the users perceived latency. Consequently, we
have developed and patented a mechanism that includes, in previous requests,
information about the freshness of the objects to be requested in the near future.
This technique uses a prediction algorithm to guess next user accesses to assure
the freshness of the predicted object in advance. A prediction algorithm that can
accurately reconstruct the tree of references between web objects will be more
appropriate for this purpose than the traditional ones. So, the RG algorithm
can provide a good start point to improve the precision of the prediction and
consequently to obtain better performance in this technique reducing the users
perceived latency with a low computational cost.
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Appendix A

CARENA

A.1 Introduction

The most straightforward and accurate way to model a single user consists in in-
strumenting its own browser to collect the logs and other navigation characteristics.
Furthermore, if the adequate information is collected, the gathered navigation session
can be entirely and accurately replayed again. This fact enables that one gathered
session can be replayed as many times as desired, like some workload generators do
[RadView , Peña 04, Peña 05].

The user behavior characterization can also be done by analyzing the log files
obtained either in a proxy or in a web server. These files collect information about
the web users’ activity. Nevertheless, they usually collect data for a large set of users,
so clustering techniques must be applied to identify typical patterns.

We analyzed a representative set of developed tools to capture web client behavior
information (both commercial and academic), and we found some shortcomings that
make them not suitable for our purposes. As a consequence, we developed an open-
source tool, called CARENA (CApture and REplay NAvigations). It is a browser
extension that captures the HTTP headers and visualizes them in real time. Our
tool gathers precise information about the user’s navigation behavior and has been
implemented on the top of Live HTTP Headers Mozilla extension [Savard 02]. The
CARENA code has been added in a modular way, which eases its migration to other
Live HTTP Headers releases. The main features of CARENA are: i) it captures the
user logs and additional information related with the navigation session, ii) it saves
the navigation session into a XML structured file, iii) it permits to import navigation
sessions and, iv) currently, it permits to replay, in a precise way, a single navigation
session since it accurately captures the user think times. The captured sessions could
be used to feed specific tools such as workload generators. See [Peña 04, Peña 05] for
further details.
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The remainder of this appendix is organized as follows. Section A.2 discusses
the main log information characteristics. Section A.3 discusses some related work.
Section A.4 explains the details of the proposed tool. Section A.5 shows a CARENA
working example.

A.2 Logging web user requests

In order to obtain precise workload models, different timing points of the web user ses-
sions should be identified and captured; e.g., the start of the document downloading.
Log analysis can provide valuable information about the web user behavior, although
the collected information varies depending on the network point where the logs are
collected; e.g., the server, the proxy or the browser.

Servers’ logs usually collect information for a large set of users; therefore they
collect much more information than logs gathered for a single web browser. Discerning
particular user behaviors from web servers logs requires clustering techniques and
specific software for analysis. In addition, the use of search engines makes it difficult
to distinguish between human and robot navigations.

Like server logs, proxy logs also collect information for a large set of users; there-
fore, they also present the drawback that this fact involves. These logs collect informa-
tion from both the client proxy side and the network side, and have been extensively
used for web caching and prefetching studies.

Finally, since browser logs collect navigation information for a single user, these
logs are the most precise to characterize particular user’s behavior. The main short-
coming is that monitoring browser navigations requires to instrument the browser
code of the users that are part of the experiment, and to have the additional support
for capturing, preparing and analyzing the extracted data by each browser. Despite
all these advantages, few attempts have been made to instrument browsers because
they do not usually offer open source code [Reeder 00].

A.3 Related work

From the beginning of the WWW, researchers have concentrate on identifying the
main features of user’s navigations in order to characterize this workload, to detect
user’s behavior patterns, or for performance evaluation purposes. Despite this in-
terest, only few tools have been developed to help researchers in these tasks. The
first attempts were proposed by Catledge and Pitkow in [Catledge 95] and Tauscher
and Greenberg in [Tauscher 97]. Both approaches instrumented the XMosaic Web
browser. The main goal was to capture all user and browser events generated. Each
activity record included timestamps, the visited URL, the page title, the final action,
the invoking method and the user id, among other events.

In [Catledge 95], Catledge and Pitkow studied the user behavior in order to under-
stand their strategies when navigating the Web; for this purpose, they analyzed the
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log files from a client-side point of view. They calculated the time between each event
for all events among the users, and determined session boundaries by analyzing these
times, adopting the heuristic approach in which a lapse of 25.5 minutes or greater
indicated the end of a ”session.” Their study concluded with the characterization of
user navigation patterns as serendipitous browsing, general browsing and searcher.

In [Tauscher 97], Tascher and Greenberg studied the history mechanisms that
web browsers use to manage the recently requested pages. Their main interest was
the analysis of re-visit patterns in the navigations. As a result, they formulated
some empirically-based principles of how users revisit pages using graphical browser
features like the Xmosaic.

The study developed by Choo et al. [Choo 99] attempts to understand how the
staff of seven different companies used the Web to seek information related to their
daily work. To gather relevant information about WWW user navigations, they used
a triangulation information approach, by collecting information from three sources
(e.g. questionnaire survey, web usage logs and personal interviews). To obtain the
user’s logs they developed the tool called WebTracker. It is a typical Windows ap-
plication that watches the browser and collects menu choices, button bar selections,
keystroke actions, and mouse clicks. All these actions are associated with the open
web page URL. The browser actions are recorded in an ASCII text file. By combin-
ing the information obtained from the recorded logs with those data extracted from
the questionnaires and interviews, they were able to reconstruct the whole navigation
process.

Reeder et al. [Reeder 00] developed a new tool called WebLogger, which captures
and records a significant number of user and application events during the browsing
session. These captures are documented into a log file at three conceptual levels, the
Input level (e.g. user actions on the mouse or keyboard), Interface level (e.g. user
actions on the interface elements of Internet Explorer (IE)) and Application level (e.g.
high-level actions of IE, such as retrieving an URL). This tool works under Windows
operating systems and was developed to interact with the Microsoft Internet Explorer
(IE) web browser. The information recorded contains the event name, a list of specific
parameters related with the event, the cumulative elapsed time since WebLogger
was started (millisecond precision), the differential elapsed time since the previous
recorded event (millisecond precision), and the current Windows system.

The HTTPLook [Sniffer ] and ieHTTPHeaders [Blunck 03] are shareware and free-
ware Internet tools respectively, developed to provide some information about HTTP
headers. These tools only work on Windows OS. The HTTPLook [Sniffer ] sniffes the
information transmitted between the client and the server. It captures and records
information related with the web object type, the used technology, the IP address,
messages arrival time and transmission time. ieHTTPHeaders [Blunck 03] is a bar
developed for the IE web browser that allows to show the sent and received HTTP
Headers. Since these two tools were not developed for research purposes, they do not
include analysis or statistical capabilities.
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Finally, a small set of web workload generators like [RadView ] and [LoadRunner ]
capture and record the user logs in order to obtain accurate information to partially
generate the workload. Both are proprietary tools.

After this thorough study, we can summarize that, in general, the output file
format of the tools mentioned in [Sniffer , Blunck 03, Catledge 95, Tauscher 97,
Reeder 00] is not so easy readable. Our tool, CARENA, solves this drawback because
its output XML format contributes to the identification of all the elements that
compose the navigation (e.g. frames, hidden frames, whole document, objects and
attributes), and the log file can be transformed into other generic format, (plain text,
rtf,...) or a specific one. This last feature has special interest in the GUERNICA
workload generator [Peña 04, Peña 05].

The information captured is quite limited in most of the studied tools [Sniffer ,
Blunck 03, Catledge 95, Choo 99, Reeder 00]. In general, just some user and browser-
specific events are captured (e.g. mouse click, keystroke action, open file action).
In contrast, CARENA captures more relevant and accurate information about the
network and the user; for instance: request and response HTTP headers size and
time stamp, object size, user think time, status of whole document, document retrieval
latency, start document load time stamp, end document load time stamp, etc.

None of the discussed tools establish an estimation of the user think time. In
some web workload generators this time is usually taken as a constant [Peña 04] while
others estimate it by statistical distributions [Peña 05]. Unlike these tools, CARENA
carefully and accurately calculates this time.

In this scenario, our proposal provides important improvements and, at the same
time, is presented as an open-source tool. In the next Section we present in detail the
main architecture and features of CARENA.

A.4 The CARENA Solution

CARENA is a tool for capturing web navigation sessions at the client browser. This
tool is implemented as a web browser extension that can easily be installed on any
Mozilla or Mozilla Firefox browser independently of the underlying operating system.
With this tool the user is able to capture all the navigation session, including the
page requests due to user clicks and their embedded objects. The navigation session
is arranged around a XML structure and it can be later saved into a file, imported
and replayed. Our work was done on top of Daniel Savard’s Live HTTP Headers
Mozilla extension [Savard 02]. Live HTTP Header is notified when Mozilla sends or
receives HTTP requests or responses and captures the headers. It shows these HTTP
headers on a window in real time, allowing to replay a single request, to edit it before
replaying or to save the headers to a text file. In CARENA we added several new
features to fulfill our requirements.

The main CARENA feature is that it retrieves additional information for each
requested object. So, for each object CARENA not only retrieves its HTTP request
and response headers, but also timestamps when the request is sent and the response
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is received; it parses the HTTP headers to obtain the HTTP method and version, the
response object size, the HTTP status messages, the object and referrer URLs and
finally it estimates the object latency from the request and response timestamps. If
the user interrupts the navigation by clicking on the Stop button, a status attribute
indicative of this fact is added to the representative XML structure of the webpage
and all the objects requested and not yet received.

The CARENA tool detects if an object was directly requested by the user or if it
was an embedded object. Objects are grouped in document structures; each structure
contains both the HTML object whose URL the user requested and all the objects
retrieved due to the request. The information stored for every document includes,
among others, the document URL, the number of retrieved objects, the time when the
first object was requested and the time when the last object of the mass documents was
received, the document latency, the document status indicating if any fail occurred,
and the user think time. All this information can be saved to an XML structured file
and imported at a later time. Those files can be easily treated or parsed by external
tools since they are plain text files with XML structure.

Navigation sessions can be later replayed by emulating the original user behavior
and requesting only the objects that the user really requested in its navigation session.
Proceeding this way, Mozilla automatically retrieves all the embedded objects. The
replay process takes into account the previously calculated user think time in order
to defer the emulated user requests as in the capture session.

A.4.1 Programming Environment

Mozilla can be used by developers as a platform for creating applications that can be
installed locally or run remotely over the Internet. It is a powerful and easy platform
development framework to develop cross-platform applications. One does not need to
get involved with the Mozilla source code to create a Mozilla application. A simple
Mozilla binary that you download and install is the only development platform needed.

Currently, an Integrated Development Environment (IDE) does not exist, but it
is possible to use many tools that make it easy the application development. Some of
these tools are: Venkman, DOM Inspector, XUL Maker, etc.

Venkman is a JavaScript debugger with support for breakpoints, local variable
inspection, watch variables, single step, stop on error, code reformatting, etc. DOM
Inspector is a tool for inspecting and editing the structure and widgets of the interface
while the application is running. This was very helpful in the design and analysis of
XML structures.

The Mozilla development framework is built around several technologies. Thanks
to the combination of these technologies, Mozilla allows developers to create appli-
cations on top of it. Mozilla structure consists of two layers, as depicted in Figure
A.1.

Gecko is the software component in Netscape, Mozilla and Mozilla-based browsers
that handles the parsing of the HTML, the layout of the pages, the document



102 Appendix A. CARENA

Figure A.1: Mozilla Structure

Figure A.2: XPCOM/XPConnect

object model, and even the rendering of the entire application interface. It is a
fast, standards-compliant rendering engine that implements the W3C DOM stan-
dards. Mozilla Navigator, Mozilla Mail, etc., are written in languages such as XUL,
JavaScript, and XPCOM; therefore, Gecko is the interpreter that executes them.
Some advantages of this are: modularity, platform independence and that the com-
ponents can be added or removed easily. XPCOM and XPConnect are complementary
technologies that enable the integration of external libraries with XUL applications.

XPCOM, which stands for Cross Platform Component Object Model, is a frame-
work for writing cross-platform, modular software. This means that it is a framework
which allows developers to break up monolithic software projects into smaller pieces.
These pieces, known as components, are then assembled back together at runtime.
XPCOM components can be written in C, C++, and JavaScript, and they can be used
from C, C++, and JavaScript. As an application, XPCOM uses a set of core XPCOM
libraries to selectively load and manipulate XPCOM components [Parrish 01].

XPConnect is a technology which enables simple interoperation between XPCOM
and JavaScript. XPConnect allows JavaScript objects to transparently access and
manipulate XPCOM objects. It also enables JavaScript objects to present XPCOM
compliant interfaces to be called by XPCOM objects. In other words, XPConnect is
the bridge between JavaScript and XPCOM components, as shown in Figure A.2.

XPFE (cross-platform front end) [Boswell 02] was designed as a flexible interface
working on any operating system. XPFE uses a number of existing web standards,
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Figure A.3: Cross-Platform Front End

such as Cascading Style Sheets, JavaScript, and XML (the XML component is a
new language called XUL, the XML-based User-interface Language). In its simplest
form, XPFE can be seen as the union of each technology. As shown in Figure A.3.
JavaScript creates the functionality for a Mozilla-based application, Cascading Style
Sheets format the look and feel, and XUL creates the application structure. Thanks
to the fact that XPFE is independent of the platform, the applications created with
XPFE are also platform independent.

XPInstall, or Mozilla Cross Platform Install, provides a standard way of packaging
XUL application components with an install script that Mozilla can download and
execute. XPInstall enables users to effortlessly install new XUL applications over the
Internet or from corporate intranet servers.

XUL (XML-based User-interface Language) is Mozilla’s XML-based User inter-
face Language, and it allows the building of feature-rich cross platform applications
that can run connected or disconnected from the Internet. It creates the structure
and content of an application. The XUL language defines attributes that allow the
programmer to define how to react to the actions. To define the dynamic behavior of
the application, one can define JavaScript functions that will be called when certain
user interface events happen.

JavaScript is the core scripting language used in Mozilla. Three distinct levels of
JavaScript are identified [Boswell 02], as shown in Figure A.4. The user interface level
manipulates content through the DOM. The client layer calls on the services provided
by XPCOM. JavaScript calls methods and gets data from scriptable components.
Finally, the application layer is available to create XPCOM components.

JavaScript interface implementation is an API to access HTML and XML docu-
ments. It provides web developers with a structural representation of the documents
and defines the way the structure is accessed by using JavaScript. Some methods like
getElementById, getElementsByTagName, createElement, and createTextNode are
provided by the DOM interface, which permits querying and handling documents.
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Figure A.4: Javascript Layers Architecture

The Observer Service allows a client listener to register and unregister for noti-
fications of specific string referenced topics. Service also provides a way to notify
registered listeners and a way to enumerate registered client listeners. The internal
Mozilla notification system [Mozilla 05] helps to capture data. This system notifies
the name of the event to the observer service, which deals with the lists of components
watching for events. When the observer receives notification for an event, it passes
that notification to all listening components for that event. With this technique, the
system simplifies the way to react when another component triggers an action.

CARENA deals with the following Mozilla events: object request, object response,
document start, document end and document failure. Mozilla notifies CARENA when
any of these events occurs; then, CARENA processes and stores the information on
the internal DOM structure and shows the headers in the CARENA window.

A.4.2 Capturing

CARENA uses an XML object structure for the captured information. This structure
is accessed trough the Mozilla DOM Core JavaScript interface implementation. HTTP
request and response headers for a requested web object are stored into a JavaScript
object that was created at the moment of the request. Headers are parsed to extract
information like file size, referrer web object, etc., and stored as object’s attributes.
Timestamps are retrieved using the core JavaScript Date object method getTime that
gets the system current local time.

When a web object is directly requested by the user, a new < document > element
is created into the XML structure, and a < object > element is added as the first
child. New < object > element children are created as soon as new requests are
issued as a result of the current user request. When an HTTP response is received,
CARENA locates the object in the XML structure where the HTTP request was
previously stored and then new data is added. This means that each time the user
clicks on a hyperlink or on a bookmark, or types a new address into the address bar,
a new < document > element is created in the XML structure; and all the embedded
objects of that web document will be added as children.
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When Mozilla reports that the document loading process has concluded (either
successfully or as a result of an error occurred in the reception of the document), new
attributes are added to the document element. These attributes include the number
of retrieved objects, the time when the last object of the document was completely
received, the document latency, the document status indicating if some fail occurs or
not, and the think time.

Frames and iframes are stored as document children, as happens with web objects
but using a different XML tag. Since a document loaded on a frame or iframe can
contain embedded web objects, frame elements can be parents of other objects.

When a HTTP response is a redirection (3XX status responses), we store the new
URL for that object as an element attribute. If the browser decides to follow the
redirection, the new request for the web object will be stored as a new object of the
current < document >.

A.4.3 Saving and Importing

Since we have the object requests, responses and additional information stored in
a XML structure, we can save it into a file. This file contains all the information
available in memory, including headers, URLs, referrers, timestamps, latency, and
what is most important, the relation among objects, documents and frames.

The XML session file can be used by external tools to easily read, modify or even
write their own navigation session files using existing XSL manipulation libraries. The
XML file can be easily opened, read and parsed to retrieve all suitable information.

In order to import a saved session, the user must select the XML file to be imported
in a dialog window. After cleaning the XML structure, the XML file is loaded and
parsed in order to fill up a new XML structure. During parsing, a content model
based on the XML DOM is built [Boswell 02]. Additionally the HTTP requests and
responses are displayed in the headers window. Once the importing process concludes,
all variables have exactly the same values they had when the file was firstly saved.

Session XML files can be easily edited and modified by other tools before import-
ing. This allows to modify previous navigation sessions think times, headers, requests,
etc., before replaying the session and comparing the results.

A.4.4 Replying

The original Live HTTP Headers allow to select an HTTP header request, to modify
it and send it again. In CARENA we added the possibility of replaying the entire
navigation session, not only a single request. This new ’Replay All’ feature repeats the
page HTTP request headers previously stored in the XML structure. The same URLs
that the user directly requested when the navigation session was captured are now
sent. CARENA does not request the original embedded objects that were retrieved
when capturing the session; this job is done by the web browser that will retrieve any
embedded object as usual. If the original website has not changed since capturing,
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Figure A.5: Details of the user think time

then the embedded objects will be the same; otherwise, they will probably be different
ones, depending on the changes that the website had had.

The original user think time is used to accurately replay the navigation session.
This think time is usually a weakness in most current web workload generators; hence,
it is usually simplified or taken as a constant. The user think time estimation is one
of the main features of our tool, since it is precisely estimated in order to provide an
accurate navigation replaying. As shown in Figure A.5, the original user think time
is calculated as the difference between the captured values of tB and tA. tA stamps
the time at which the header part of the response arrives and the web page begins
to render on the user screen, and tB represents the time at which the user submits
a request for a new page. We could have calculated the think time as the difference
between the time when the last object of a document is completely received and the
next click, but due to the nature of incremental rendering of current browsers we
selected the method explained before.

The think time calculation may deviate in some situations. Some factors that may
affect the precision are the file size, the number of embedded objects, the relevance
of embedded objects, the user previous knowledge of the content, and the position of
the relevant links in the webpage.

When replaying navigations, many website or network failures can arise; for in-
stance, pages requested in original sessions may not exist in future sessions. In order
to prevent these kinds of failures, we use a timeout. When the timeout expires, the
tool assumes that the page is unavailable, therefore it executes the next request.

It is also possible to clear the browser disk and memory caches before starting the
replay, in order to make it even more accurate.
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Figure A.6: Navigating in Mozilla while CARENA captures the session

A.5 Working Example

Using CARENA to capture navigation sessions is extremely easy. It is started thro-
ugh the “Tools - Web developer” Mozilla menu. Once the Mozilla web browser and
CARENA are open, any object the web browser requests to the network will be
captured by our tool.

Figure A.6 shows an example while retrieving an example website. HTTP headers
are shown on the tool main window while browsing as soon as objects needed to
compose the page are being retrieved.

By using the “Save All” button, the navigation session can be saved to an XML
structured file that contains all the gathered information, including HTTP headers,
timestamps and additional information. Figure A.7 illustrates a navigation session
where the user has requested three documents, as shown in the example. The first
document requested consists of three frames, and the first object of this document
is the frame definition document while each document loaded in each frame appears
into the < frame > label.
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Figure A.7: Part of the XML structured file

<?xml version="1.0"?>

<CARENA>

<document url="http://www.mnlab.cs.depaul.edu/events/e2emon05/"

numObjects="4"

timeStart="1108463215920"

timeEnd="1108463217436"

docLatency="1516"

docStatus="EndDocumentLoad"

docThinkTime="11016">

<object url="http://www.mnlab.cs.depaul.edu/events/e2emon05/"

requestT="1108463215920"

status="HTTP/1.x 200 OK"

usercl="1"

loadFlags="589824"

method="GET"

version="1.1"

size="621"

referrer="undefined"

responseT="1108463216233"

latency="313">

<request requestL="423">

<reqHeader>GET /events/e2emon05/ HTTP/1.1</reqHeader>

<reqHeader>Host: www.mnlab.cs.depaul.edu</reqHeader>

...

<reqHeader>Connection: keep-alive</reqHeader>

</request>

<response responseL="296">

<respHeader>HTTP/1.x 200 OK</respHeader>

...

<respHeader>Content-Type: text/html</respHeader>

</response>

</object>

<frame url="http://www.mnlab.cs.depaul.edu/events/e2emon05/top.htm"

numObjects="3">

<object url="http://www.mnlab.cs.depaul.edu/events/e2emon05/top.htm"

requestT="1108463216249"

referrer="http://www.mnlab.cs.depaul.edu/events/e2emon05/"

status="HTTP/1.x 200 OK"

usercl="0"

loadFlags="65536"

method="GET"

version="1.1"

size="1604"

responseT="1108463216405"

latency="156">

<request requestL="488">

<reqHeader>GET /events/e2emon05/top.htm HTTP/1.1</reqHeader>

...

</request>

<response responseL="296">

<respHeader>HTTP/1.x 200 OK</respHeader>

...

</response>

</object>

...

</frame>

</document>

<document url="http://www.mnlab.cs.depaul.edu/events/e2emon05/dates.htm"

numObjects="1"

timeStart="1108463231405"

docFromFrame="http://www.mnlab.cs.depaul.edu/events/e2emon05/left.htm"

timeEnd="1108463231561"

docLatency="156"

docStatus="">

<object url="http://www.mnlab.cs.depaul.edu/events/e2emon05/dates.htm"

requestT="1108463231405"

referrer="http://www.mnlab.cs.depaul.edu/events/e2emon05/left.htm"

status="HTTP/1.x 200 OK"

usercl="1"

loadFlags="589824"

method="GET"

version="1.1"

size="824"

responseT="1108463231561"

latency="156">

...

</object>

</document>

</CARENA>
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Table A.1: Deviations from the original session
Deviation Repetition URI

type number /index.htm /organizers.htm /dates.htm

docLatency

1 0.00% −30.13% −30.13%
2 9.30% −40.38% −30.13%
3 8.31% −30.77% −19.87%
4 10.36% −40.38% −30.13%
5 9.30% −40.38% −30.13%

docThinkTime

1 −0.42% 0.54%
2 −0.71% 3.93%
3 −0.99% 0.57%
4 −1.70% 1.11%
5 −0.99% 3.93%

The “Import” button can be used to retrieve a saved session. And the replay of a
single request can be achieved by selecting it from the main window and by clicking
on the “Replay” button. The “Replay All” button allows replaying a whole session.
The session replied can be the one being captured or a previously saved one. Table
A.1 summarizes five repetitions of a session retrieving three documents, showing the
deviations of the latency and think time from the original session. It reveals that
while latencies suffer great deviations due to the instantaneous network and server
load, the think time is more accurate, because it only depends on the load of the user
machine.

A.6 Conclusions

In this appendix we have proposed a tool to help web performance evaluation studies
through a Mozilla extension that captures and replays browsing sessions. Our tool
not only measures time-related variables but also permits us to accurately replay
complete navigation sessions.

The capture functionality can be used to get accurate data about the client work-
load, to characterize the user think time, or to know about the structure of the visited
web pages, such as the number, type, size, etc. of embedded objects. By analyzing
the captured navigation sessions, a complete Web taxonomy can be performed. For
instance: i) HTTP headers patterns and frequencies, ii) Response times from the
client point of view, considering the whole web page or each web object individually,
iii) web structure and content; for example, number of objects per page, object and
page size, full page transmission time, and reutilization of objects in different parts
of the website, iv) web usage; that is, analyzing how people access web pages and use
them in order to obtain the navigational behavior and also to discover the user access
patterns, browser patterns, re-visit frequency of web pages and user think time. With
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the above results, suggestions about design structure and usability of WWW pages,
sites and browser can be made.

The replay functionality can be useful as a load generator for comparison purposes
in a wide range of web performance research projects; for instance, proxy management
algorithms or prefetching algorithms. It can also be used to automate functionality
test processes of web applications.

The output file characterizes a real web navigation session, but other applications
can be proposed. For instance: i) importing and replaying synthetically generated
navigation sessions, ii) importing previous navigation sessions and replaying them in
different network environments or conditions in order to compare the impact of those
differences, iii) importing a modified navigation session and replaying it with the same
network conditions in order to compare the impact of that modification.

The size of the navigation session file depends on the number of browsed pages, the
number of embedded objects they contain, and how many of them are already cached
on the browser. For instance, a page with 13 objects generates around 20 kilobytes,
and a page with 40 objects generates around 60 kilobytes (an object approximately
takes up to 1, 500 bytes on XML formatted file).

With respect to the overhead introduced by CARENA, the CPU time is negligible
with respect to the one used by Mozilla; the memory needed is barely noticeable since
CARENA code contains less than 2, 000 of JavaScript lines, and most of the require-
ments (i.e., XPCOM, XPFE, XUL, DOM, JavaScript machine) are already loaded
and used by Mozilla for browsing purposes. Furthermore, memory consumption for
data structures is not a problem when navigation sessions are shorter than several
hours.
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