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TRANSLATION INVARIANT MAPS ON FUNCTION SPACES

OVER LOCALLY COMPACT GROUPS

A. DEFANT, M. MASTY LO, E. A. SÁNCHEZ-PÉREZ, AND I. STEINWART

Abstract. We prove that under adequate geometric requirements, transla-

tion invariant mappings between vector-valued quasi-Banach function spaces

on a locally compact group G have a bounded extension between Köthe-

Bochner spaces Lr(G,E). The class of mappings for which our results apply

includes polynomials and multilinear operators. We develop an abstract ap-

proach based on some new tools as abstract convolution and matching among

Banach function lattices, and also on some classical techniques as Maurey-

Rosenthal factorization of operators. As a by-product we show when Haar

measures which appear in certain factorization theorems for nonlinear map-

pings are in fact Pietsch measures. We also give applications to operators

between Köthe-Bochner spaces.

1. Introduction

Our aim is to establish an abstract approach to study Lr-boundedness of (non

linear in general) translation invariant mappings between scalar- and vector-valued

quasi Banach spaces. We point out that the class of translation invariant mappings

is of interest in various areas of harmonic analysis and functional analysis. The the-

ory of translation invariant operators is a sort of interplay between operator theory

and function theory on locally compact groups applied with the Haar measure. As

an example, we mention that a combination of well-known theorems due to Nikishin

and Stein with the theory of locally compact groups found deep applications in the

factorization theory of operators and in the theory of orthogonal series.

Relevant results on this topic were proved in the seventies and eighties using

different techniques. Among others, we mention here the works of Colzani [3]

Cowling and Fournier [5, 6], Herz and Riviéra [18, 19], Larsen [23], Oberlin [28] and

Shtĕınberg [33]. Special attention was paid to quasi-Banach spaces, and interesting

2010 Mathematics Subject Classification. 47B38, 46E30.

Key words and phrases. Banach function lattices, translation invariant operators, Haar

measure.

The second named author was supported by National Science Centre, Poland, project,

no. 2015/17/B/ST1/00064. The third named author was supported by Ministerio de Economı́a,

Industria y Competitividad (Spain) and FEDER (project MTM2016-77054-C2-1-P2).

1



2 A. DEFANT, M. MASTY LO, E. A. SÁNCHEZ-PÉREZ, AND I. STEINWART

representation results for translation invariant operators were obtained for this

case. We refer to the papers by Oberlin ([26, 27]), Colzani and Sjögren [4], and

Sjögren [34], where translation invariant operators on Lp-spaces (0 < p < 1) and

related spaces including Lorentz spaces are investigated. All these papers present

interesting results with useful applications, and use techniques coming from classical

analysis.

The aim of the present paper is to use some modern techniques to address this

classical topic, presenting a unified approach for understanding it in a general frame-

work and using it to generalize the main results to broad classes of operators and

quasi-Banach lattices of measurable functions. Thus, the analysis of the following

question summarizes the main objective of our study: Let G be a locally compact

group with left Haar measure λ. Consider a translation invariant m-homogeneous

map Φ from a Banach function lattice X(λ) to a Banach function lattice Y (λ).

Under which requirements can we state that Φ extends to a translation invariant

m-homogeneous map from Lr(λ) to Lr/m(λ)?

We emphasize that our technique differs from the ones used in the above men-

tioned papers. The main idea is as follows. Given a bounded mapping between

vector-valued quasi-Banach spaces we intend to prove boundeness between a new

scale of spaces. This is deduced under the hypothesis that the operator satisfies

certain invariance properties and vector-valued geometrical inequalities.

Our method is inspired by the classical book by Garćıa Cuerva and Rubio de

Francia [15], and uses factorization arguments having their roots in the fundamental

work of Maurey and Rosenthal.

2. Preliminaries

We will use standard notation from Banach space theory. If (E, ‖ · ‖) is a quasi-

Banach space, we write SE = {x ∈ X : ‖x‖E = 1} for its unit sphere. Throughout

the paper let (Ω,Σ, µ) denote a complete and σ-finite measure space. As usual

L0(Ω,Σ, µ) (L0(µ) or L0(Ω) for short) denotes the space of all equivalence classes

of real-valued measurable functions on Ω. Given 0 < m <∞, a mapping Φ: E → F

between quasi-Banach spaces is said to be an m-homogeneous operator whenever

Φ(λx) = λmΦ(x) for every λ ≥ 0 and all x ∈ X. Such operators are said to be

bounded if there is C > 0 such that ‖Φ(x)‖ ≤ C‖x‖ for all x ∈ E. Clearly, linear

operators are 1-homogeneous.

2.1. Quasi-Banach function lattices. A quasi-Banach function lattice (lattice

for short) (X, ‖ · ‖X) over (Ω,Σ, µ) (over µ for short) is defined to be a subspace

of L0(µ), endowed with a complete quasi-norm ‖ · ‖X and such that there exists

h ∈ X with h > 0 a.e., and if f ∈ L0 satisfies |f | ≤ |g| a.e. for some g ∈ X, then

f ∈ X and ‖f‖X ≤ ‖g‖X .
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A quasi-Banach function lattice X on (Ω,Σ, µ) is said to be order continuous if

for every non-negative sequence fn ↓ 0 a.e. it holds that ‖fn‖X → 0.

The Köthe dual space X ′ of a Banach function lattice X over (Ω,Σ, µ) is defined

as the space of all f ∈ L0(µ) such that
∫

Ω
|fg| dµ < ∞ for every g ∈ X. It is

a Banach function lattice over (Ω,Σ, µ) when equipped with the norm

‖f‖X′ = sup
‖g‖X≤1

∫
Ω

|fg| dµ .

It is well known that a Banach lattice X is order continuous if and only if the map

X ′ 3 g 7→ x∗g ∈ X∗ given by x∗g(f) =
∫

Ω
fg dµ for all f ∈ X is an order isometric

isomorphism of X ′ onto X∗ (see, e.g., [21]). This fact motivates to identify X ′

with the subspace of the Banach dual space X∗ defined by the so called integral

functionals—the ones given by the shown formula.

An important class of Banach lattices are the so called rearrangement invariant

spaces (r.i. for short). We recall the definition; given f ∈ L0(µ), its distribution

function is defined by µf (t) := µ({ω ∈ Ω : |f(ω)| > t}), t ≥ 0. Then a quasi-

Banach function lattice X over (Ω,Σ, µ) is said to be a r.i. space whenever g ∈ X
and ‖f‖X = ‖g‖X provided µf = µg and f ∈ X. Clearly for a r.i. quasi-Banach

space X, ‖χA‖X depends only on µ(A) for any measurable set A of finite measure.

If (Ω,Σ, µ) is a nonatomic measure space, then for every t ∈ R+ with t ≤ µ(Ω),

we may define the function φX by φX(t) = ‖χA‖X , where A is any measurable set

with µ(A) = t. This function is called the fundamental function of X. For every

r.i. Banach space X on a non-atomic measure space (Ω,Σ, µ) we have (see [1]),

φX(t)φX′(t) = t, 0 ≤ t < µ(Ω).

Important examples of r.i. spaces are Lorentz spaces, Marcinkiewicz spaces and

Orlicz spaces. Let (Ω,Σ, µ) be a measure space and let 0 < p, q <∞. The Lorentz

(resp., Marcinkiewicz) space Lp,q = Lp,q(µ) (resp., Lp,∞ = Lp,∞(µ)) is defined to

be the r.i. quasi-Banach space of all measurable functions f ∈ L0(µ) such that the

following quasi-norm is finite:

‖f‖p,q =
(∫ ∞

0

(
t
1
p−

1
q f∗(t)

)q
dt
)1/q

(resp.,

‖f‖p,∞ = sup
0<t<µ(Ω)

t1/pf∗(t) ).

It is well known that Lp,q is normable whenever 1 < p <∞ and 1 ≤ q ≤ ∞. More

precisely, (Lp,q, ‖·‖′p,q) is a r.i. Banach space equipped with the norm ‖·‖′p,q ≡ ‖·‖p,q
given by

‖f‖′p,q :=
(∫ ∞

0

(
t
1
p−

1
q f∗∗(t)

)q
dt
)1/q

, f ∈ Lp,q,

(with obvious modification for q =∞) where f∗∗(t) = 1
t

∫ t
0
f∗(s) ds.
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The Orlicz space LΦ(µ) is generated by the Luxemburg norm

‖f‖Φ = inf
{
λ > 0 :

∫
Ω

Φ(|f |/λ) dµ ≤ 1
}
,

where Φ is an Orlicz function, that is, an increasing convex function on [0,∞) such

that Φ(0) = 0.

In the paper we present some results concerning so-called mixed spaces. Fix

two measure spaces (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) and let (Ω = Ω1 × Ω2,Σ = Σ1 ×
Σ2, µ = µ1 × µ2) be the product measure space. Let X be a function lattice on

(Ω1,Σ1, µ1) and Y a Banach function lattice on (Ω2,Σ2, µ2). The norm in Y is

said to be µ1-measurable if for any Σ-measurable function f the function vf given

by vf (s) = ‖f(s, ·)‖Y for all s ∈ Ω1 is µ1-measurable (we put ‖f(s, ·)‖Y = +∞ if

f(s, ·) /∈ Y ). We note that if the measure µ1 is discrete or µ1 is arbitrary, and Y

has the weak Fatou property, then the norm in Y is µ1-measurable.

In what follows if the norm in Y is µ1-measurable we denote by X[Y ] the mixed

space to be the Banach function lattice of all f ∈ L0(µ) such that vf ∈ X, equipped

with the norm ‖f‖ =
∥∥‖f(·, t)‖Y

∥∥
X

.

Given quasi-Banach lattices X and Y over (Ω,Σ, µ), we define the space of

multiplication operators M(X,Y ) to be the space of all functions in L0(µ) defining

(bounded and linear) operators from X to Y by pointwise multiplication, equipped

with the operator quasi-norm.

Convexity and concavity of Banach function lattices will play a key role in our

study. We recall that for 0 < p < ∞, the Banach function lattice (X, ‖ · ‖) is

p-convex, respectively, p-concave, if there are positive constants C(p) and C(p) such

that ∥∥∥( n∑
i=1

|fi|p
)1/p∥∥∥

X
≤ C(p)

( n∑
i=1

‖fi‖pX
)1/p

,

respectively, ( n∑
i=1

‖fi‖pX
)1/p

≤ C(p)

∥∥∥( n∑
i=1

|fi|p
)1/p∥∥∥

X
,

for every choice of elements f1, . . . fn ∈ X. The least constant C(p) (resp., C(p)) is

denoted by M (p)(X) (resp., M(p)(X)).

If X is a quasi-Banach function lattice and 0 < p < ∞, then the p-th power of

X is defined as

Xp :=
{
f ∈ L0(µ) : |f |1/p ∈ X

}
.

This is a quasi-Banach function lattice over Ω when endowed with the quasi-norm

‖f‖Xp := ‖|f |1/p‖pX , f ∈ Xp, and a Banach space whenever X is p-convex (with

a norm that is equivalent to ‖ · ‖Xp). More precisely, ‖ · ‖Xp defines a norm if

and only if X is p-convex with p-convexity constant 1. Note also that X is order

continuous if and only if Xp is so for any/all 0 < p <∞.
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Throughout the paper, given a quasi-Banach space E and a quasi-Banach func-

tion lattice X over (Ω,Σ, µ), we define the quasi-Banach space X(µ,E) (X(E) for

short) to be the space of all strongly measurable functions f : Ω → E (i.e., f is

the limit in E of a sequence of simple measurable functions) such that the function

Ω 3 ω 7→ ‖f(ω)‖E ∈ X equipped with the quasi-norm (norm provided E and X

are Banach spaces) ‖f‖X(E) = ‖‖f(·)‖E‖X .

2.2. Groups acting on lattices. We recall briefly the basic facts which we will

use. A topological group is a group with a topology such that the maps (x, y) 7→ xy

and x 7→ x−1 are continuous.

Let G be a locally compact group. If x, y ∈ G and B ⊂ G, we write xy for the

multiplication of both elements and xB for the set defined by the (left) multipli-

cation of x by all the elements of B. Consider a left Haar measure on G, that is,

a (positive) measure λ on the σ-algebra B(G) of Borel sets of G that is nonzero on

all nonempty open sets and is left invariant, meaning that λ(xB) = λ(B) for all

Borel sets B and all x ∈ G. If λ is a left Haar measure on G, then ρ(B) := λ(B−1)

defines a measure on B(G) which satisfies ρ(Bx) = ρ(B) for all B ∈ B(G) and all

x ∈ G. Here as usual B−1 = {x−1 : x ∈ B}. The measure ρ is called a right

Haar measure on G. Left and right Haar measures are unique up to multiplication

by positive constants. Throughout the paper we will consider normalized Haar

measures.

A locally compact group G is called unimodular if λ = ρ. It is well known

that compact groups and Abelian groups are unimodular. The group G is said

to be amenable if for every compact subset K in G and every ε > 0 there exists

a compact U ⊂ G with λ(KU) ≤ (1 + ε)λ(U). We remark that both commutative

and compact groups are amenable.

Let (Ω,Σ, µ) be a measure space. We say that the group G with left Haar

measure λ acts transitively on Ω (the group G acts on Ω for short) if there is an

operation G × Ω 3 (x, ω) 7→ x � ω ∈ Ω such that (xy) � ω = x � (y � ω), 1 � ω = ω

and G � ω = Ω for all x, y ∈ G and ω ∈ Ω.

The measure µ is called G-invariant if the group action is also measurable and

µ(x � A) = µ(A) for all x ∈ G and all A ∈ Σ; in this case we say that G acts

invariantly over (Ω,Σ, µ).

The construction explained above involves two different actions: the multiplica-

tion on the group G and the action of the group in a measure space. In most of the

cases we are interested in, both structures coincide, in the sense that the measure

space on which G acts is G itself. However, this is not necessarily the case.

Now we present some examples; the first two ones are relevant for the rest of the

paper since in general a group acts on itself in two different ways.
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Example 2.1.

(1) Every locally compact group G acts on itself by (x, y) 7→ x � y := xy. We

will say then that G acts from the left to itself. Clearly, the left Haar

measure is G-invariant with respect to this action.

(2) Every locally compact group G acts also on itself by (x, y) 7→ x�y := yx−1.

When we consider this action we will say that G acts from the right on

itself. The right Haar measure is G-invariant with respect to this action.

(3) The next example is more concrete than the other ones; our aim is to

show that our construction may provide results in different scenarios. The

group SO(n) of orthogonal matrices of rank n, n ≥ 2 acts on the (n − 1)-

dimensional unit sphere Sn−1 by (A, x) 7→ Ax. This allows us to identify

the classical notions of rotation invariant spaces and operators with our

definition of SO(n)-invariant spaces and operators.

2.3. Translation invariance. If x ∈ G, we denote the translation of functions

f ∈ L0(Ω) by x as τx, i.e.,

τxf(ω) := f(x � ω), ω ∈ Ω.

A quasi-Banach function lattice X over Ω is said to be weak -G-invariant if τx(f) ∈
X for all f ∈ X and x ∈ G. If we also have ‖τx(f)‖ = ‖f‖, then X is called

G-invariant.

Assume now that G acts on two measure spaces with the measures µ and ν,

respectively. A map Φ: X(µ) → Y (ν) between weak-G-invariant quasi-Banach

function spaces X(µ) and Y (ν) is called translation G-invariant if Φ ◦ τx = τx ◦ Φ

for all x ∈ G.

In the case of spaces of vector-valued functions, an operator Φ: X(µ,E) →
Y (ν, F ) is said to be G-invariant if for all x ∈ G we have

‖τx(Φf)(·)‖F = ‖Φ(τxf)(·)‖F , x ∈ G.

In what follows, if G is a locally compact group with left Haar measure λ (resp.,

right Haar measure ρ), E is a quasi-Banach space and X is a quasi-Banach function

lattice on (G,λ) (resp., (G, ρ) we will writeX(λ,E) (resp., X(ρ,E)) instead ofX(E)

or X(G,E) for the aim of clarity.

3. Abstract convolution

Below we explain the main tool of the present paper, that consists of a generalized

convolution of functions with functions, as well as more generally functions with

functionals. Consider a quasi-Banach function lattice X over (Ω,Σ, µ), and a locally

compact group G with the left Haar measure λ acting transitively on Ω by the

action �. Given two nonnegative measurable functions g : G → R and h : Ω → R,
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we define g ~ h : Ω→ [0,∞] by(
g ~ h

)
(ω) :=

∫
G

g(x)h(x−1 � ω) dλ(x) ;

note that the function g ~ h by the Fubini-Tonelli theorem (on iterated integrals)

is measurable. If we want to stress the action � of G on Ω, then we write g ~� h

instead of g ~ h.

In what follows we will need the following elementary observation.

Proposition 3.1. Let G be a locally compact group with left Haar measure λ.

Consider the action of G on itself from the right (as shown in Example 2.1(2)), and

define g ~ h with respect to this action.

(i) Suppose that X is a G-invariant Banach function space over (G,λ) with

respect to the left action of the group on itself. Then for two nonnegative

functions g ∈ X and h ∈ X ′

‖g ~ h‖L∞(λ) ≤ ‖g‖X‖h‖X′ .

(ii) For every nonnegative f ∈ L1(λ) and y ∈ G,

(χG ~ f)(y) = ‖f‖L1(λ).

Proof. (i) For every y ∈ G,

|(g ~ h)(y)| =
∣∣∣∣ ∫
G

g(x)h(x−1 � y) dλ(x)

∣∣∣∣
=

∣∣∣∣ ∫
G

g(x)h(yx) dλ(x)

∣∣∣∣ =

∣∣∣∣ ∫
G

g(y−1x)h(x) dλ(x)

∣∣∣∣
≤ ‖τy−1(g)‖X ‖h‖X′ = ‖g‖X ‖h‖X′ ,

and so the required estimate follows. (ii) Clearly, L1(λ) is G-invariant with respect

to the left action, hence for every y ∈ G as desired(
χG ~ f

)
(y) =

∫
G

|f(x−1 � y)| dλ(x) =

∫
G

|f(yx)| dλ(x) = ‖f‖L1(λ).

This completes the proof. �

We also need to convolute functions with functionals, and start with an informal

idea of what we aim at. Given g ∈ L0(λ) and ϕ ∈ X∗ we define the abstract

convolution g ? ϕ : X → R of the function g with the functional ϕ by(
g ? ϕ

)
(f) :=

∫
G

g(x)ϕ(f(x � ·)) dλ(x), f ∈ X

whenever the integral make sense. We show below that this definition coincides

with the previously defined convolution of functions if ϕ is an integral functional.
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Remark 3.2. Assume that X is a G-invariant Banach function lattice, the function

G 3 x 7→ ϕ(f(x � ·)) is measurable for all f ∈ X, and g ∈ L1(λ). Then g ? ϕ ∈ X∗

and ‖g ? ϕ‖X∗ ≤ ‖g‖1‖ϕ‖X∗ . Indeed,∫
G

|g(x)ϕ(f(x � ·))| dλ(x) ≤
∫
G

|g(x)|‖ϕ‖X∗‖f(x � ·)‖X dλ(x)

≤ ‖g‖1‖ϕ‖X∗‖f‖X .

Now let us explain the two main cases we are going to consider: the first one

involving order continuous Banach function spaces X as domain spaces of the func-

tionals ϕ, and the second one for functionals ϕ on Banach spaces of continuous

functions on a compact set.

3.1. Order continuous case. Recall that if X is an order continuous Banach

function lattice over Ω, µ, then every ϕ ∈ X∗ has a density h′ ∈ X ′, i.e., ϕ(f) =∫
Ω
fh dµ for every f ∈ X.

Lemma 3.3. Let G be a locally compact group with left Haar measure λ acting

transitively on (Ω,Σ, µ) by the action �, and let X be a G-invariant Banach function

lattice X over (Ω,Σ, µ). Then for every g ∈ L1(λ) and ϕ ∈ X∗ with density h ∈ X ′

we have that

g ? ϕ ∈ X∗

with density g ~� h ∈ X ′ and ‖g ? ϕ‖ ≤ ‖g‖1‖h‖X′ .

Proof. Take some f ∈ X. The G-invariance of X shows that for every x ∈ G∫
Ω

∣∣f(x � ω)h(ω)
∣∣ dµ(ω) ≤ ‖f(x � ·)‖X ‖h‖X′ = ‖f‖X ‖h‖X′ .

Since g is integrable, the iterated integral∫
G

(∫
Ω

f(x � ω)h(ω) dµ(ω)

)
g(x) dλ(x)

exists, and moreover by the translation invariant action of G on Ω it equals∫
G

(∫
Ω

h(x−1 � ω)f(ω) dµ(ω)

)
g(x) dλ(x) .

Hence the Fubini-Tonelli theorem implies∫
Ω

f(ω) g ~ h(ω)dµ(ω) =

∫
G

g(x)

(∫
Ω

h(x−1 � ω)f(ω) dµ(ω)

)
dλ(x)

=

∫
G

g(x)

(∫
Ω

h(ω)f(x � ω) dµ(ω)

)
dλ(x)

=

∫
G

g(x)ϕ(f(x � ·)) dλ(x) =
(
g ? ϕ

)
(f) ,

and so the above inequality yields the statement. �
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3.2. Non-order continuous case. Let G be a compact group with left Haar mea-

sure λ (recall that then the group is unimodular), and X = C(G). In what follows

we consider the left action of the group on itself, that is x �ω = xω. Then C(G) of

course is G-invariant(note that now x and ω are both elements of G, so we write y

instead of ω to emphasise this fact).

Take ϕ ∈ C(G)∗ and g ∈ L1(λ), both nonnegative and of norm one. By Riesz’s

Theorem, there is a Borel probability measure P on G such that ϕ(f) :=
∫
G
f dP

for all f ∈ C(G). Then for every f ∈ C(G) the real-valued function

G 3 x 7→ ϕ(f(x � ·)) =

∫
G

f(xy) dP (y)

is Borel-measurable. Hence g ? ϕ ∈ C(G)∗ with norm ‖g‖1‖ϕ‖ = 1 by Remark 3.2

(take f = 1 to see that we in fact have equality). Moreover, by Fubini’s theorem(
g ? ϕ

)
(f) =

∫
G

g(x)ϕ(f(x � ·))dλ(x)

=

∫
G

g(x)

(∫
G

f(xy)dP (y)

)
dλ(x)

=

∫
G

(∫
G

g(xy−1)f(x)dλ(x)

)
dP (y)

=

∫
G

f(x)

(∫
G

g(xy−1)dP (y)

)
dλ(x) ,

(3.1)

which shows that g ? ϕ is a λ-continuous Borel probability on G with the density

h(x) =

∫
G

g(xy−1)dP (y), x ∈ G .

We summarize these facts in the following

Lemma 3.4. Let ϕ ∈ C(G)∗ and g ∈ L1(λ), both nonnegative and of norm 1.

Then g ? ϕ is a λ-continuous Borel probability measure on G.

4. Matching lattices

We now introduce a key definition in our study. Let G be a locally compact

group with left Haar measure λ, and let X and Y be Banach function lattices over

(G,λ). X is said to match Y if there exists a constant c > 0 such that for all

compact sets K ⊂ G there are nonnegative functions g ∈ X and h ∈ SY ′ such that

‖g‖X ≤ c and g ~ h(x) = 1 for all x ∈ K.

Notice that the group action of G on itself here may be, either the right or the

left one.

We point out that the just introduced notion is inspired by [19, Lemma 3] of

Herz and Riviére. In our language the authors prove that Lp(λ) matches Lp(λ)

provided G is an amenable group G. We now generalize this result.
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4.1. Mixed spaces.

Lemma 4.1. Let G1 and G2 be amenable, locally compact groups with nonatomic

(left) Haar measures λ1 and λ2 and let X1, Y1 and X2, Y2 be r.i. Banach function

spaces over λ1 and λ2, respectively. If both norms in X2 and Y2 are λ1-measurable,

then X1[X2] matches the mixed space Y1[Y2] with respect to the right action of

G1 × G2 on itself whenever the fundamental functions satisfy φX1
(s)φX2

(t) =

φY1
(s)φY2

(t) for all s ∈ (0, λ1(G1)), t ∈ (0, λ2(G2)).

Proof. Obviously, it suffices to show the assertion for compact sets K = K1×K2 ⊂
G1 ×G2. Let us fix compact sets U1 ⊂ G1 and U2 ⊂ G2 such that

λj(K
−1
j Uj) ≤ 2λj(Uj), j = 1, 2.

Since φXj
are quasi-concave functions, φXj

(t) ≤ 2φXj
(t/2) for all t ∈ (0, λj(Gj))

(j = 0, 1). Then we get for U = U1 × U2,

‖χK−1U‖X1[X2] =
∥∥‖χK−1

1 U1×K−1
2 U2
‖X2

∥∥
X1

= φX1
(λ1(K−1

1 U1))φX2
(λ2(K−1

2 U2))

≤ 4φX1
(λ1(U1))φX2

(λ2(U2)).

Therefore, for g := φX1(λ1(U1))−1 φX2(λ2(U2))−1χK−1U , we obtain ‖g‖X1[X2] ≤ 4.

Applying the well-known Köthe duality formula (Y1[Y2])′ = Y ′1 [Y ′2 ] (with equality

of norms), we get that∥∥χU∥∥(Y1[Y2])′
=
∥∥χU∥∥Y ′1 [Y ′2 ]

= φY ′1 (λ1(U1))φY ′2 (λ2(U2))

and so h := φY ′1 (λ1(U1))−1 φY ′2 (λ1(U2))−1χU belongs to the unit sphere of (Y1[Y2])′.

Fix now x ∈ K and let G := G1×G2, λ := λ1×λ2. Then we have (use Example

2.1(2)) that

g ~ h(x) =

∫
G

g(y)h(xy) dλ(y) ≤ φX1
(λ1(U1))−1φY ′1 (λ1(U1)))−1

× φX2
(λ2(U2))−1φY ′2 (λ2(U2))−1

∫
G

χK−1U (x−1y)χU (y) dλ(y)

=
λ1(U1)

φX1
(λ1(U1))φY ′1 (λ1(U1))

λ2(U2)

φX2
(λ2(U2))φY ′2 (λ2(U2))

.

Our hypotheses on the fundamental functions imply that the last expression is

equal to 1. We conclude that the requirements in the definition of matching are

satisfied for g and h, and so this completes the proof. �

An immediate consequence of the above lemma is the following corollary.

Corollary 4.2. Let 1 ≤ p1, p2, q1, q2 <∞ and G1, G2 be amenable, locally compact

groups with (left) Haar measures λ1 and λ2. Then the mixed space Lp1(λ1)[Lp2(λ2)]
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matches the mixed space Lq1(λ1)[Lq2(λ2)] with respect to the right action of G1×G2

on itself whenever 1/p1 + 1/p2 = 1/q1 + 1/q2.

4.2. Rearrangement invariant spaces.

Lemma 4.3. Let G be an amenable locally compact group with nonatomic left Haar

measure λ. If X and Y are r.i. Banach function spaces over λ such that φX = φY ,

then X matches Y with respect to the right action of G on itself.

Proof. Recall that for the case of Banach function spaces, φX(s)φX′(s) = s for all

s ∈ (0, λ(G)). Since φX is quasi-concave, φ(t) ≤ 2φX(t/2) for all t ∈ (0, λ(G)).

Now we use that G is amenable. Consider a compact subset K, and a compact

subset U of G such that λ(K−1U) ≤ 2λ(U). Then

‖χK−1U‖X = φX(λ(K−1U)) ≤ 2φX(λ(K−1U)/2) ≤ 2φX(λ(U)).

Let g = 1
φX(λ(U))χK−1U and h = 1

φY ′ (λ(U))χU . Then

‖g‖X =
1

φX(λ(U))
‖χK−1U‖X ≤ 2

and

‖h‖Y ′ =
φY ′(λ(U))

φY ′(λ(U))
= 1.

Our hypothesis is equivalent to φX′ = φY ′ , and so for all x ∈ K we get (consid-

ering the right action of G on itself)

(g ~ h)(x) =
1

φX(λ(U))φY ′(λ(U))

∫
G

χK−1U (x−1y)χU (y) dλ(x−1y)

=
1

φX(λ(U))φY ′(λ(U))

∫
G

χK−1U (x−1y)χU (y) dλ(y)

=
λ(U)

λ(U)
= 1.

This gives the result. �

From this lemma we obtain examples of pairs of Lorentz spaces which match.

Corollary 4.4. Let 1 < p < ∞, 1 ≤ q1, q2 ≤ ∞ and let G be an amenable,

locally compact group with nonatomic left Haar measure λ. Then the Lorentz space

Lp,q1(λ) over G matches the Lorentz space Lp,q2(λ) with respect to the right action

of G on itself.

Proof. Since
∥∥χA∥∥p,q = λ(A)1/p for all measurable A ⊂ G, 1 ≤ p, q ≤ ∞ where

00 := 1. Then the fundamental function coincides in both spaces (up to a constant

C), and so Lemma 4.3 gives the result after renorming one of the spaces by this

constant C. �
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5. Improving norm inequalities by convolution

Let X and Y be Hausdorff topological vector spaces and let X be a quasi-Banach

space such that X ↪→ X with continuous inclusion. If T : X → Y is a continuous

mapping and X0 is a “test” subset, it is of powerful interest to study a class of

quasi-Banach spaces U and V such that X0 ⊂ U and V ↪→ Y and T is continuous

from (X0, ‖ · ‖U ) to V . In this case we say that T extends from U to V on a test

set X0. If T has continuous extension from U to V , then we say for short that T

extends from U to V .

Let E and F be quasi-Banach spaces. In several areas of modern analysis we

may find relevant maps from quasi-Banach spaces U ↪→ L0(µ,E) to L0(ν, F ),

where L0(µ,E) and L0(ν, F ) denote the spaces of strongly measurable E-valued

(F -valued) functions over the corresponding measure spaces. In the case of scalar-

valued measurable functions, many important operators in harmonic analysis de-

fined between couples of quasi-Banach spaces have continuous extensions to other

couples of quasi-Banach spaces. We note here that it is well known that if the

group G is amenable, then every convolution operator of weak type (2, 2) is in fact

of strong type (2, 2). The mentioned extension problem was studied by many au-

thors (see [6, 5, 18, 23, 28]). In particular, in Colzani’s paper [5] it is proved that if

G is a locally compact non-compact group equipped with the left Haar measure and

0 < p < ∞, 0 < q ≤ ∞, then every left or right translation invariant operator (in

our terminology this means G-invariant) on the Lorentz space Lp,q(G) is bounded

in Lp(G); that is, it can be defined as an operator from Lp(G) to Lp(G). We also

mention here a remarkable result by Shtĕınberg [33], which states that if G is a com-

pact group and 0 < p < 2, then every translation invariant sublinear operator that

maps the Marcinkiewicz space Lp,∞(G) to L0(G) extends from Lp(G) to Lp(G).

This result was firstly conjectured by Pisier for translation invariant operators that

are bounded on the Marcinkiewicz spaces Lp,∞(G) (see [30]).

In the case of particular locally compact groups, translation invariant operators

have a special form. It is immediate that for the locally compact group Rn with

the usual additive structure, convolution operators commute with translations. It

is also well-known that the converse is true. More precisely, the following result

holds: If 1 ≤ p, q ≤ ∞ and T : Lp(Rn)→ Lq(Rn) is a bounded linear operator that

commutes with translations (notation: T ∈ Mp,q(Rn)), then there exists a unique

tempered distribution v such that T (f) = f ? v for Schwartz functions f (see, e.g.,

[17, Theorem 2.5.2]). It should also be noticed that Mp,q(Rn) is non-trivial only

in the case 1 ≤ p ≤ q ≤ ∞, and only in the cases p = 1, p = 2 and p =∞ there are

complete characterizations of the spaces Mp,p(Rn) (see [17, pp. 139–141]).
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In this section we are interested in the study of translation invariant mappings

in vector-valued function spaces (m-homogeneous operators, polynomials and mul-

tilinear mappings) which extend to the scale of vector-valued Lr-spaces.

5.1. Homogeneous mappings. The following results are our main tools. The

first one is based on some well-known separation arguments that are in the core of

the Maurey-Rosenthal factorization theory for homogeneous maps; it can be proved

by using a slight modification of [12, Theorem 3.2]. For the sake of completeness

we include a proof.

Proposition 5.1. Let 0 < r <∞ and 0 < m <∞. Assume that X(E) and Y (F )

are vector-valued quasi-Banach function spaces over measure spaces (Ω,Σ, µ) and

(Υ,Ξ, ν), respectively. Assume that X is r-convex with constant Mr(X) = 1 and

order continuous, and Y is r/m-convex with constant Mr/m(Y ) = 1. Furthermore,

let Φ: X(E)→ Y (F ) be an m-homogeneous map such that for all f1, ..., fn ∈ X(E),

∥∥∥( n∑
k=1

‖Φfk(·)‖r/mF

)m/r∥∥∥
Y
≤
∥∥∥( n∑

k=1

‖fk(·)‖rE
)1/r∥∥∥m

X
. (5.1)

Then for every nonnegative weight h ∈ (Y r/m)′ with ‖h‖(Y r/m)′ = 1 there exists

a nonnegative weight ω ∈ L0(µ) with ‖ω‖(Xr)′ ≤ 1 such that for all f ∈ X(E),∫
Υ

‖Φf(·)‖r/mF hdν ≤
∫

Ω

‖f(·)‖rEω dµ. (5.2)

Proof. Fix a nonnegative weight h ∈ (Y r/m)′ with ‖h‖(Y r/m)′ = 1. First we remark

that our hypothesis on r/m-convexity of Y yields,

M(Y, Lr/m)r/m = (Y r/m)′

isometrically (see, e.g., [29, Proposition 2.29 (ii),(iv)]). Thus, we can consider the

multiplication operator Mhm/r : Y → Lr/m, for which ‖Mhm/r‖ = 1. Define the

mapping

Ψ := (Mhm/r ⊗ IdF ) ◦ Φ: X(E)→ Lr/m(F ),

change the scalar multiplication on X(E) by λ◦u := λ1/m for all λ ≥ 0, u ∈ X(E),

and consider the homogeneous embeddings (in the sense of [8])

r1 : (X(E), ◦)→ Xm, f 7→ ‖f(·)‖mE

and

r2 : Lr/m(F )→ Lr/m, g 7→ ‖g(·)‖F .
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Then Ψ: (X(E), ◦) → Lr/m(F ) is 1-homogeneous, and for every choice of finitely

many f1, . . . , fn ∈ X(E) we get that

∥∥∥∥( n∑
k=1

∥∥Ψfk(·)
∥∥r/m
F

)m/r∥∥∥∥
Lr/m

=

∥∥∥∥Mhm/r

( n∑
k=1

∥∥(Φfk)(·)∥∥r/mF

)m/r∥∥∥∥
Lr/m

≤
∥∥∥( n∑

k=1

‖Φfk(·)‖r/mF

)m/r∥∥∥
Y
≤
∥∥∥( n∑

k=1

‖fk(·)‖rE
)1/r∥∥∥m

X
.

This shows that Ψ satisfies all the assumptions of [8, Theorem 2] which yields

nonnegative weights w ∈ L0(µ) with ‖w‖(Xr/m)′ ≤ 1 and w1 ∈ L0(ν) with ‖w1‖∞ ≤
1 such that for all f ∈ X(E) we have

∫
Υ

‖hm/rΦ(f)(·)‖r/mF

w1
dν ≤

∫
Ω

‖f(·)‖rEw dµ .

Since ‖w1‖∞ ≤ 1, this inequality immediately gives the conclusion. �

Although simple, the next result shows one the main tools of our paper: Con-

volution with proper functions preserves and sometimes even improves the weights

in domination inequalities like in (5.2).

Lemma 5.2. Let G be a locally compact group with left Haar measure λ which

acts invariantly on (Ω,Σ, µ) and (Υ,Ξ, ν). Let E and F be quasi-Banach spaces,

and X and Y weak-G-invariant quasi-Banach function lattices over (Ω,Σ, µ) and

(Υ,Ξ, ν), respectively.

Furthermore, for 0 < r, s < ∞ let Φ: X(E) → Y (F ) be a G-invariant map

such that there exist nonnegative weights w1 ∈ L0(µ), w2 ∈ L0(ν) satisfying for all

f ∈ X(µ,E) ∫
Υ

‖Φf(·)‖sFw2 dν ≤
∫

Ω

‖f(·)‖rEw1 dµ .

Then for all nonnegative g ∈ L0(λ) and all f ∈ X(E) we have

∫
Υ

‖Φf(·)‖sF g ~ w2 dν ≤
∫

Ω

‖f(·)‖rE g ~ w1 dµ.

Proof. First note that the involved spaces are weak G-invariant, and so for every

x ∈ G the functions f(x� ·) and (Φf)(x� ·) belong to X(E) and Y (F ), respectively.
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Making use of Fubini’s theorem twice we have∫
Υ

∥∥Φf(·)
∥∥s
F
g ~ w2 dν

=

∫
G

(∫
Υ

∥∥(Φf)(v)
∥∥s
F
w2(x−1 � v) dν(v)

)
g(x) dλ(x)

=

∫
G

(∫
Υ

∥∥(Φf)(x � v)
∥∥s
F
w2(v) dν(v)

)
g(x) dλ(x)

=

∫
G

(∫
Υ

∥∥τx(Φf)(·)
∥∥s
F
w2 dν

)
g(x) dλ(x)

=

∫
G

(∫
Υ

∥∥Φ(τxf)(·)
∥∥s
F
w2 dν

)
g(x) dλ(x)

=

∫
G

(∫
Υ

∥∥(Φ(f(x � ·)
)
(v)
∥∥s
F
w2(v) dν(v)

)
g(x) dλ(x)

≤
∫
G

g(x)

(∫
Ω

∥∥f(x � ω)
∥∥r
E
w1(ω) dµ(ω)

)
dλ(x)

=

∫
G

g(x)

(∫
Ω

∥∥f(ω)
∥∥r
E
w1(x−1 � ω) dµ(ω)

)
dλ(x)

=

∫
Ω

∥∥f(·)
∥∥r
E
g w1dµ ,

which is the inequality we required. �

We consider now the case in which both measure spaces in the previous results

coincide with the group G, that is, (Ω,Σ, µ) = (Υ,Ξ, ν) = (G,B(G), λ). For the aim

of simplifying the presentation of the next results, let us introduce some notation.

We will say that the space X(λ,E) is a (weak) right-G-invariant space if it is

(weak) G-invariant when the right action of G on itself is considered. We will use

the expression (weak) left-G-invariant for the symmetric definition, considering the

left action.

An m-homogeneous map from the weak right-G-invariant space X(λ,E) to

the weak left-G-invariant space Y (λ, F ) is right-to-left G-invariant when it is G-

invariant for the right and left actions of the spaces X(λ,E) and Y (λ, F ), respec-

tively. Other combinations (like left-to-left, left-to-right and right-to-right) are

defined in the same way.

Combining Proposition 5.1 with Lemma 5.2 we get the following two abstract

factorization theorems for translation invariant m-homogeneous operators between

Banach function lattices.

Theorem 5.3. Let G be a locally compact group with left Haar measure λ and let

E, F be quasi-Banach spaces. For 0 < m, r < ∞, let X be an order continuous,

r-convex, left-G-invariant and weak right-G-invariant quasi-Banach function lattice

over G, and let Y be an r/m-convex, weak left-G-invariant quasi-Banach function
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lattice over G. Suppose that Xr matches Y r/m (the left action in G is considered

for the definition of ~ appearing in the matching property).

Then every m-homogeneous right-to-left G-invariant operator Φ: X(E)→ Y (F )

extends to a bounded m-homogeneous operator from Lr(E) to Lr/m(F ) provided that

there is a constant M > 0 such that for all choices of functions f1, ..., fn ∈ X(E)

we have ∥∥∥( n∑
k=1

‖Φfk(·)‖r/mF

)m/r∥∥∥
Y
≤M

∥∥∥( n∑
k=1

‖fk(·)‖rE
)1/r∥∥∥m

X
.

Proof. We may assume that M(X)(r) = M(Y )(r/m) = M = 1. Let K be a compact

subset of G. By definition there are c > 0 (independent of K) and nonnegative

functions g ∈ Xr and h ∈ (Y r/m)′ such that ‖h‖(Y r/m)′ = 1, ‖g‖Xr ≤ c and

g ~ h(x) = 1 for all x ∈ K (the left action is considered in the definition of ~).

By Proposition 5.1 we find a nonnegative weight w ∈ (Xr)′ with ‖w‖(Xr)′ ≤ 1

and such that for all f ∈ X(E) we have∫
G

‖Φf(·)‖r/mF h dλ ≤
∫
G

‖f(·)‖rEw dλ .

By Lemma 5.2 we may replace the weights by g ~ h and g ~ w preserving the

inequality, that is, for all f ∈ X(E) we have∫
G

‖Φf(·)‖r/mF g ~ h dλ ≤
∫
G

‖f(·)‖rE g ~ w dλ.

We use g ~ h = 1 in K and Proposition 3.1(1) to get,∫
K

‖Φf(·)‖r/mF dλ ≤
∫
G

‖Φf(·)‖r/mF g ~ h dλ

≤
∫
G

‖f(·)‖rE g ~ w dλ ≤ c

∫
G

‖f(·)‖rE dλ .

Since the last inequality holds for all compact sets K, we are done. �

For compact groups we give a variant of Theorem 5.3. It shows that under

certain assumptions the matching requirement can be removed in the statement of

the theorem. Note that in this case the operator is assumed to be right-to-right

G-invariant, in contrast with the previous result, in which the map is required to be

right-to-left G-invariant. A detailed analysis of the corresponding proofs shows that

this depends on the symmetry of the integrals that appear in the computations.

Although the next results look like similar to the previous one, the computations

are in fact different. The same comments apply to the results on polynomials,

multilinear and linear maps of the following sections.

Theorem 5.4. Let 0 < r,m <∞. Let G be a compact group with Haar measure λ,

X an r-convex and order continuous Banach function lattice over G, and Y an r/m-

concave Banach function lattice over G. Moreover let E, F be quasi-Banach spaces.
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Suppose that both lattices are weak right-G-invariant, and that Φ: X(E) → Y (F )

is a right-to-right G-invariant m-homogeneous operator satisfying (5.1).

Then Φ extends to a bounded m-homogeneous operator from Lr(E) to Lr/m(F ).

Proof. By [12, Theorem 3.2] the requirements above imply that there are measur-

able nonnegative functions ω2 and ω1 such that for all f ∈ X(E),∫
Υ

‖Φf(·)‖r/mF ω−1
2 dλ ≤

∫
Ω

‖f(·)‖rEω1 dλ.

We can write ω2 + 1 instead of ω2 preserving the inequality. This assures that ω−1
2

belongs to L1(λ), taking into account that G is compact and so λ is a probability

measure. We use Lemma 5.2 and Proposition 3.1(ii) to get

‖ω−1
2 ‖L1(λ)

∫
G

‖Φf(·)‖r/mF dλ =

∫
G

‖Φf(·)‖r/mF χG ~ ω
−1
2 dλ

≤
∫
G

‖f(·)‖rE χG ~ ω1 dλ

= ‖ω1‖L1(λ)

∫
G

‖f(·)‖rE dλ ,

which completes the proof. �

Corollary 5.5. Let G be a compact group with Haar measure λ, and E,F two

quasi-Banach spaces. Given 0 < p, q, r < ∞ let Φ be a right-to-right G-invariant

m-homogeneous operator from Lq
(
λ,E

)
into Lp

(
λ, F

)
satisfying (5.1). Then Φ

defines an m-homogeneous operator from Lr/m
(
λ,E

)
to Lr

(
λ, F

)
.

Proof. Note that λ is a probability measure, and so for p1 = min{p, r/m} and

q1 = max{q, r}, the inclusions Lp(λ) ↪→ Lp1(λ) and Lq1(λ) ↪→ Lq(λ) are con-

tractions. This means that Φ can be considered as an operator from Lq1(λ,E) to

Lp1(λ, F ). Also, we have that Lq1(λ) is r-convex and Lp1(λ) is r/m-concave. Since

the inequality (5.1) holds when the operator is considered between Lq(λ,E) and

Lp(λ, F ), it still holds whenever we consider it as an operator between Lq1(λ,E)

and Lp1(λ, F ). Since G is compact, it is unimodular, and hence it can be seen easily

that Ls(λ), 0 < s <∞ is G-invariant with respect to both actions of the group on

itself. As a consequence Corollary 5.4 implies the result. �

5.2. Polynomials. Let us show some particular examples of applications of The-

orem 5.3 for the case of Banach space valued m-homogeneous polynomials.

At first recall that if E1, . . . , Em and F are quasi-Banach spaces, then an m-

linear mapping T : E1 × · · · × Em → F is said to be bounded whenever there

exists a constant C > 0 such that ‖T (x1, . . . , xm)‖Y ≤ C‖x1‖E1 . . . ‖xm‖Em for all

(x1, . . . , xm) ∈ E1 × · · · × Em. If T acts in quasi-Banach function lattices, then it

is called positive whenever the image of each m-tuple of nonnegative functions is

again a nonnegative function.
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An m-homogeneous polynomial P between quasi-Banach spaces E and F is

the restriction of a bounded m-linear mapping ϕ :
∏m
k=1E → F to the diagonal

4 = {(x, . . . , x) : x ∈ E}, and its norm is given by

‖P‖ := sup
x∈BE

‖P (x)‖F .

If P is defined between quasi-Banach function lattices X and Y , then we call it

positive whenever P (x) ∈ Y is nonnegative for all x ∈ X. It can be easily shown

that every positive m-homogeneous polynomial in quasi-Banach function lattices is

bounded.

Theorem 5.6. Let G be a locally compact group with left Haar measure λ. Let X

and Y be left G-invariant Banach function lattices on G such that X is also order

continuous. Let 1 ≤ r < ∞ and m ∈ N such that r ≥ m, and suppose that Xr

matches Y r/m (with respect to the left action of the group). Assume also that X is

r-convex and Y is r/m-convex.

Then every positive m-homogeneous polynomial P : X → Y that is right-to-

left G-invariant, extends to a positive m-homogeneous polynomial P : Lr(λ) →
Lr/m(λ).

Proof. We may assume that M (r)(X) = M (r/m)(Y ) = ‖P‖ = 1. The arguments

that are needed for the proof are similar to the ones used in the previous section.

Let K be a compact subset of G. Since Xr matches Y r/m, there is a constant c > 0

(independent of K) and there are nonnegative functions g ∈ Xr and h ∈ S(Y r/m)′

such that ‖g‖Xr ≤ c and g ~ h = 1 on K (the left action in G is considered in the

definition of ~).

Notice that ((Y r/m)′)m/r = M(Y,Lr/m) (see the proof of Proposition 5.1). Con-

sider the map Mhm/r ◦ P : X → Lr/m; it is of course a positive m-homogeneous

polynomial. Proposition 4.1 in [12] gives that for every finite sequence {xk}nk=1 in

X, ∥∥∥( n∑
k=1

|Mhm/r ◦ Pxk|r/m
)m/r∥∥∥

Lr/m

≤ mm

m!

∥∥∥( n∑
k=1

|xk|r
)1/r∥∥∥m

X
.

Notice now that M(Lr/m, Lr/m) = L∞, and so [12, Corollary 3.3] gives that there

are weights w1 and w2 such that x ∈ X(∫
K

|Mhm/r ◦ Px|r/m

w2
dλ
)m/r

≤ mm

m!

(∫
G

|x|rw1dλ
)m/r

,

where ‖w1‖(Xr)′ ≤ 1, and ‖wm/r2 ‖L∞ ≤ 1; in particular, ‖w2‖L∞ ≤ 1. Therefore,∫
K

|Px|r/mh dλ ≤
∫
K

|Px|r/mh
w2

dλ ≤
(mm

m!

)r/m ∫
G

|x|rw1 dλ.

An application of Lemma 5.2 and Proposition 3.1 (taking into account that P is G-

invariant when the right action is considered in X and the left action is considered
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in Y ), gives for all x ∈ X∫
K

|Px|r/m dλ =

∫
K

|Px|r/mg ~ h dλ

≤
(mm

m!

)r/m ∫
G

|x|rg ~ w1 dλ

≤
(mm

m!

)r/m
‖g ~ w1‖L∞

∫
G

|x|r dλ

≤
(mm

m!

)r/m
‖g‖Xr ‖w1‖(Xr)′

∫
G

|x|r dλ

≤ c
(mm

m!

)r/m ∫
G

|x|r dλ.

This clearly implies that P extends to a positive m-homogeneous polynomial from

Lr(λ) to Lr/m(λ). �

In particular, taking into account that for r ≤ s, Ls is r-convex, Ls/m is r/m-

convex and (Ls)r = Ls/r = (Ls/m)r/m and that by Lemma 4.1 (see also [19,

Lemma 3]) Ls/r matches with itself we get the following result.

Corollary 5.7. Let G be an amenable locally compact group with left Haar measure

λ, 1 ≤ r ≤ s < ∞, m ∈ N and 1 ≤ r/m. Let P : Ls(λ) → Ls/m(λ) be a right-

to-left G-invariant, positive m-homogeneous polynomial. Then P can be defined as

a polynomial from Lr(λ) to Lr/m(λ).

Using Corollary 4.2 and taking into account that the mixed space

Ls1(λ1)[Ls2 [λ2]

is r-convex for r ≤ min{s1, s2}, the following version of the previous result can

be obtained. Clearly,
(
Ls1(λ1)[Ls2(λ2)]

)r
= Ls1/r(λ1)[Ls2/r(λ2)]. For the proof,

notice that in Theorem 5.6, matching with respect to the left action of the group can

be changed by matching with respect to the right action (by Corollary 4.2),whenever

the operator is right-to-right G-invariant instead of right-to-left G-invariant.

Corollary 5.8. Let G1 and G2 be amenable locally compact groups with left Haar

measures λ1 and λ2, respectively. Let 1 ≤ r ≤ min{s1, s2} < ∞, m ∈ N and

1 ≤ r/m. Let P : Ls1(λ1)[Ls2(λ2)] → Ls1/m(λ1)[Ls2/m(λ2)] be a right-to-right

G1 ×G2-invariant, positive m-homogeneous polynomial.

Then P extends to a positive m-homogeneous polynomial from Lr(λ1 × λ2) to

Lr/m(λ1 × λ2).

5.3. Multilinear mappings. Motivated by the previous ideas we study in what

follows translation invariant multilinear operators. To do this we need to introduce

some notation.
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Let G be a locally compact group with left Haar measure λ which acts on

(Ωk,Σk, µk), 1 ≤ k ≤ m, and (Υ,Σ, ν). Assume that X1, . . . , Xm are weak-G-

invariant quasi-Banach function lattices over (Ωk, µk), respectively, and Y a weak-

G-invariant quasi-Banach function space over (Υ, ν). Moreover, let E1, . . . , Em and

F be quasi-Banach spaces. A multilinear map T : X1(E1)×· · ·×Xm(Em)→ Y (F )

is said to be translation invariant whenever∥∥τx(T (f1, ..., fm))(·)
∥∥
F

=
∥∥T (τxf1, ..., τxfm)(·)

∥∥
F

for all (f1, . . . , fm) ∈ X1 × · · · × Xm and all x ∈ G. In the case that the action

considered is the group on itself, we use the expression G-invariant as in the previous

sections, taking into account the right/left actions in the domain an the range

spaces.

We need the following technical lemma.

Lemma 5.9. Let 0 < r, r1, ..., rm <∞, and let

Φ: X1(E1)× · · · ×Xm(Em)→ Y (F )

be a G-invariant map for which there exist nonnegative weights w ∈ L0(ν) and

wk ∈ L0(µk), 1 ≤ k ≤ m, such that for all fk ∈ Xk(Ek), 1 ≤ k ≤ m,∫
Υ

‖Φ(f1, ..., fn)(·)‖rFw dν ≤
m∑
k=1

∫
Ω

‖fk(·)‖rkEk
wk dµk .

Then for all nonnegative gk ∈ L0(G) and all fk ∈ Xk(Ek), 1 ≤ k ≤ m, we have∫
Υ

‖Φ(f1, ..., fm)(·)‖rF
( m∑
k=1

gk ~ w
)
dν ≤

m∑
i,k=1

∫
Ω

‖fk(·)‖rkEk
(gi ~ wk) dµk.

Proof. We apply Fubini’s Theorem to deduce that∫
Υ

‖Φ(f1, ..., fm)(·)‖rF
( m∑
k=1

gk ~ w
)
dν

=

m∑
k=1

∫
G

gk(x)

(∫
Υ

(‖Φ(f1, ..., fm)(x � ω)‖rF )w(ω) dν(ω)

)
dλ(x)

=

m∑
k=1

∫
G

gk(x)

(∫
Υ

(‖τx
(
Φ(f1, ..., fm)

)
(ω)‖rF )w(ω) dν(ω)

)
dλ(x)

=

m∑
k=1

∫
G

gk(x)

(∫
Υ

(‖Φ(τxf1, ..., τxfm)(ω)‖rF )w(ω)dν(ω)

)
dλ(x)

≤
m∑
k=1

∫
G

gk(x)

( m∑
i=1

∫
Ω

‖fi(ω)‖rkEi
wi(ω) dµi(ω)

)
dλ(x)

=
m∑

i,k=1

∫
G

‖fi(·)‖rE
(
gk ~ wi

)
dµi ,

which proves the result. �
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We need to modify the definition of matching in the multilinear setting. We say

that a finite family {X1, ..., Xm} of Banach function lattices over (G,λ) matches a

Banach function lattice Y over (G,λ) if there exists a constant c > 0 such that for

every compact set K ⊂ G there are nonnegative functions gk ∈ Xk and h ∈ SY ′
for which ‖gk‖Xk

≤ c and gk ~ h(x) = 1 for all x ∈ K and for each 1 ≤ k ≤ m. We

note that this notion depends on the action that is considered. Note that whenever

X1 = . . . = Xm, then the results from Section 4 give various examples.

Theorem 5.10. Let G be a locally compact group with left Haar measure λ. Let

Xk, 1 ≤ k ≤ m be left G-invariant order continuous Banach function lattices on G,

and Y a left G-invariant Banach function lattice on G. Let 1 ≤ r ≤ rk < ∞ such

that 1/r = 1/r1 + · · ·+ 1/rm. Suppose that the family {Xr1
1 , . . . , Xrm

1 } matches Y r

(with respect to the left action of G), X1, ..., xm are ri-convex and Y is r-convex. If

E1, . . . , Em and F are quasi-Banach spaces and T : X1(E1)× · · · ×Xm(Em)→ Y

is a right-to-left G-invariant multilinear map, then T extends to a multilinear map

T : Lr1(λ,E1)× · · · × Lrm(λ,Em)→ Lr(λ, F )

provided that there exists a constant C > 0 such that for every choice of finitely

many sequences {x(i)
j }nj=1 in Xi, 1 ≤ i ≤ m, we have

∥∥∥( n∑
j=1

‖T (x
(1)
j , . . . , x

(m)
j )(·)‖rF

)1/r∥∥∥
Y

≤ C
∥∥∥( n∑

j=1

‖x(1)
j (·)‖r1E1

)1/r1∥∥∥
X1

· · ·
∥∥∥( n∑

j=1

‖x(m)
j (·)‖rmEm

)1/rm∥∥∥
Xm

.

Proof. As in previous results, we can assume without loss of generality that the

s-convexity constants of the spaces involved equal one. Fix a compact subset K of

G, and choose (according to the definition) a constant c > 0 (independent of K)

and nonnegative functions h ∈ S(Y r)′ and gi ∈ Xri
k with ‖gi‖Xri

i
≤ c such that

gi ~ h = 1 on K. Notice that ((Y r)′)1/r = M(Y,Lr) up to equivalence of norms

(see again the proof of Proposition 5.1). Consider the multilinear map

Mh1/r ◦ T : X1(E1)× · · · ×Xm(Em)→ Lr(F ) .

A minor modification of the proof of Theorem 3.5 in [24] (in fact this is a result

for scalar-valued functions which easily extends to the vector-valued case) and our

hypothesis on the vector-valued inequality for T give that there exists a constant

M and a nonnegative weight wi in the unit ball of (Xri)′ for each 1 ≤ i ≤ m such

that ∫
G

‖T (x1, ..., xm)(·)‖rFh dλ ≤M
m∑
i=1

r

ri

∫
G

‖xi(·)‖riEi
wi dλ.
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Now we apply Lemma 5.9 and Proposition 3.1 (taking into account the correct

election of either the right or the left action in each step) and obtain∫
K

‖T (x1, ..., xm)(·)‖rF dλ =

∫
K

‖T (x1, ..., xm)(·)‖rF
( m∑
k=1

r

rk
gk ~ h

)
dλ

≤M
m∑

k,i=1

r

rk

∫
G

‖xi(·)‖rEi
gk ~ wi dλ

≤ cM
m∑

k,i=1

r

rk

∫
G

‖xi(·)‖riEi
dλ.

In particular, if ‖xi‖Lri
(Ei) ≤ 1 for each 1 ≤ i ≤ m, then we get that(∫
G

‖T (x1, ..., xm)(·)‖rF dλ
)1/r

≤ cMm ,

and this completes the proof. �

Let us give an application for positive multilinear maps. At first note that for

any positive multilinear map T : X1 × · · · × Xm → Y in Banach function lattices

the following vector-valued inequality holds true (see [11, Theorem 6.2]):∥∥∥( n∑
j=1

|T (x
(1)
j , . . . , x

(m)
j )|r

)1/r∥∥∥
Y

≤ ‖T‖
∥∥∥( n∑

j=1

|x(1)
j |

r1
)1/r1∥∥∥

X1

· · ·
∥∥∥( n∑

j=1

|x(m)
j |rm

)1/rm∥∥∥
Xm

.

Applying this to the preceding theorem in the scalar case (i.e., Ei = F = R, 1 ≤
i ≤ m) we obtain the following consequence.

Corollary 5.11. Suppose that the Banach function lattices X1, . . . , Xm and Y

satisfy the assumptions of Theorem 5.10. Then every right-to-left G-invariant,

positive multilinear map T : X1 × · · · ×Xm → Y extends to a positive multilinear

map

T : Lr1(λ)× · · · × Lrm(λ)→ Lr(λ) .

6. Applications to operators

Finally, we collect a few applications to translation invariant linear operators

in vector-valued quasi-Banach function lattices which seem to be of independent

interest.

6.1. Linear operators in Köthe-Bochner spaces. We intend to apply Theorem

5.3, and for that we isolate pairs of spaces (X ,Y) such each operator from X to Y
satisfies the appropriate vector-valued norm inequality.
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Let us introduce some additional notation: Given a 1-homogeneous mapping

Φ: X(µ,E) → Y (ν, F ) between vector-valued quasi-Banach function spaces and

0 < r <∞ we denote by

mr(Φ) = mr(Φ: X(E)→ Y (F ))

the best constant M > 0 such for all possible choices of sequences {fk}nk=1 in X(E)

∥∥∥( n∑
k=1

‖Φfk(·)‖rF
)1/r∥∥∥

Y
≤M

∥∥∥( n∑
k=1

‖fk(·)‖rE
)1/r∥∥∥

X
.

The central tools for proving that mr(Φ) < ∞ are based on local Banach spaces

theory. In particular we use the notions of (Rademacher) type and cotype, as well

as stable type. For details we refer to the monographs [9, 14].

Lemma 6.1. Let 0 < p, q, r < ∞, and let E and F be Banach spaces. For any

linear operator T : Lq(µ,E) → Lp(ν, F ) we have mr(T ) < ∞ whenever one of the

following conditions is satisfied:

(i) 1 ≤ p, q <∞, r = 2 and E has type 2 and F has cotype 2.

(ii) 0 < p <∞, 0 < q < r < 2 and E has stable type r.

(iii) 1 < q < ∞, 2 < r < p < ∞, F ∗ has stable type r′ and moreover

T ∗(Lp′(ν, F
∗)) ⊂ Lq′(µ,E∗).

Proof. We sketch the proof, and start with (i). The definition of type 2 and cotype

2, combined with Kahane’s inequality on the equivalence of Banach space-valued

Rademacher averages (see, e.g., [14, p.211]), shows that the statement holds in the

case 1 ≤ p ≤ 2 ≤ q <∞. For the general case define p1 = min{2, p}, q1 = max{2, q}
as well as 1

r1
= 1

q −
1
q1

, 1
r2

= 1
p1
− 1

p .

Recall that r = 2. Given f1, . . . , fn ∈ Lq(µ,E) choose some nonnegative norm

one functions g1 ∈ Lr1(µ) and g2 ∈ Lr2(ν) such that

(∫ ( n∑
k=1

‖fk(·)‖2E
)q1/2

g−q11 dµ
)1/q1

=
(∫ ( n∑

k=1

‖fk(·)‖2E
)q/2

dµ
)1/q

and

(∫ ( n∑
k=1

‖Tfk(·)‖2F
)p1/2

gp12 dν
)1/p1

=
(∫ ( n∑

k=1

‖Tfk(·)‖2F
)p/2

dν
)1/p

.
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Then the desired inequality follows from the previous case:(∫ ( n∑
k=1

‖Tfk(·)‖2F
)p/2

dν
)1/p

=
(∫ ( n∑

k=1

‖(Mg2 ◦ T ◦Mg1)(g−1
1 fk)(·)‖2F

)p1/2
dν
)1/p1

≤
(∫ ( n∑

k=1

‖(g−1
1 fk)(·)‖2E

)q1/2
dµ
)1/q1

=
(∫ ( n∑

k=1

‖fk(·)‖2E
)q/2

dµ
)1/q

.

The proof of (ii) follows similar lines: check first of all the case 0 < p < q < r < 2

using the definition of stable type (and a variant of Kahane’s inequality for stable

measures), and then in the second step copy the previous trick. The last statement

follows by some standard duality arguments. �

Combining Lemma 6.1 with Theorem 5.3 we obtain the following result which is

of different nature than Corollary 5.8.

Theorem 6.2. Let G be an amenable locally compact group with (left) Haar mea-

sure λ, and let T : Lq
(
λ, Lu(ν1)

)
→ Lq

(
λ, Lv(ν2)

)
be a bounded right-to-left G-

invariant linear operator.

Then T extends to an operator from Lr
(
λ, Lu(ν1)

)
into Lr

(
λ, Lv(ν2)

)
whenever

one of the following conditions is satisfied:

(i) r = 2, 1 ≤ v ≤ 2 ≤ u ≤ ∞ and 1 < q <∞
(ii) r < 2, 1 ≤ q < r < u <∞
(iii) r > 2, 1 < v < r < q <∞ and 1 < u <∞

Recall that this result can be improved when the group G is compact by using

Corollary 5.5.

6.2. Homogeneous operators in Lorentz and Orlicz spaces. This subsection

provides application in the setting of Lorentz and Orlicz spaces. We start with the

observation that every r.i. space X over a compact group G is G-invariant. In fact,

consider the left action of G on itself, then for all f ∈ X and all t ≥ 0 we have

µf (t) = λ({y ∈ G : |f(y)| > t}), µτxf (t) = λ({y ∈ G : |f(xy)| > t}) .

Since λ is left-G-invariant,

µτxf (t) = λ({y ∈ G : |f(xy)| > t}) = λ({x−1z : z ∈ G, |f(z)| > t})

= λ(x {x−1z : z ∈ G, |f(z)| > t}) = µf (t),

and this clearly yields that X is left G-invariant. Similar arguments give that X

is right G-invariant whenever the right action is considered. In particular, Lorentz

and Orlicz spaces are G-invariant.
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Proposition 6.3. Let G be n unimodular amenable locally compact group with

Haar measure λ, and let E, F be quasi-Banach spaces. For 0 < r < p < ∞,

0 < r ≤ q1 < ∞ and 0 < r ≤ q2 < ∞, consider the Lorentz spaces Lp,q1(λ) and

Lp,q2(λ). Then every homogeneous and right-to-left G-invariant operator

Φ: Lp,q1(λ,E)→ Lp,q2(λ, F )

extends to a homogeneous bounded operator from Lr(λ,E) to Lr(λ, F ) provided that

there is some K > 0 such that for all choices of functions f1, ..., fn ∈ Lp,q1(µ,E)∥∥∥( n∑
k=1

‖Φfk(·)‖rF
)1/r∥∥∥

Lp,q2

≤ K
∥∥∥( n∑

k=1

‖fk(·)‖rE
)1/r∥∥∥

Lp,q1

.

Proof. We start the proof recalling results about concavity and convexity of Lorentz

spaces (see [7]):

(1) If 0 < u ≤ v ≤ ∞, then Lv,u is u-convex and s-concave for v < s.

(2) If 0 < v < u ≤ ∞, then Lv,u is u-concave and s-convex for s < v.

The r-th powers of the r-convex spaces Lp,q1(λ) and Lp,q2(λ) are Lp,q1(λ)r =

Lp/r,q1/r(λ) and Lp,q2(λ)r = Lp/r,q2/r(λ), respectively. Both of them are Banach

function spaces and Lp/r,q1/r(λ) matches with Lp/r,q2/r(λ), by Corollary 4.4. Since

both spaces are left and right G-invariant, Theorem 5.3 completes the proof. �

We conclude with an application for Orlicz spaces. At first we remark that

convexity and concavity of Orlicz spaces are well characterized; for this we refer to

[20] and the references therein.

Proposition 6.4. Let G be an unimodular amenable locally compact group with

Haar measure λ and let E, F be quasi-Banach spaces. For 0 < r < ∞ let ϕ be

a Young function, and suppose that t 7→ ϕ(t1/r) is equivalent to a convex function.

Assume that the Orlicz space Lϕ(λ) is order continuous. Then the homogeneous

and right-to-left G-invariant operator

Φ: Lϕ(λ,E)→ Lϕ(λ, F )

extends to a bounded and homogeneous operator from Lr(λ,E) to Lr(λ, F ) provided

that there is some K > 0 such that for all choices of functions f1, ..., fn ∈ Lϕ(λ,E)∥∥∥( n∑
k=1

‖Φfk(·)‖rF
)1/r∥∥∥

Lϕ

≤ K
∥∥∥( n∑

k=1

‖fk(·)‖rE
)1/r∥∥∥

Lϕ

.

Proof. This a direct consequence of the fact that the space Lϕ(λ) matches with

itself (Lemma 4.3), and that it is r-convex whenever t 7→ ϕ(t1/r) is equivalent to

a convex function. Then we finish the proof by using the same arguments of the

proof of Proposition 6.3 for Lorentz spaces. �
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6.3. Pietsch measures. We finish with an application to translation invariant

summing operators on C(G)-spaces over compact abelian groups. This class is of

special interest in harmonic analysis, in particular for some problems related to

Hardy Hp-spaces (see, e.g., the paper by Kwapień and Pe lczyński [22]).

Let F be a Banach space and G a compact group. In this context, a linear

operator T : C(G) → F is said to be translation invariant if (T ◦ τx)f = Tf for

all x ∈ G and f ∈ C(G). In what follows we show that our technique improves

a classical result on translation invariant summing operators due to Gordon [16] (see

also the paper by Pe lczyński [31]) which states the following: Let T : C(G)→ F be

a translation invariant, r-summing operator. Then the Haar measure λ is a Pietsch

measure for T , i.e., for all f ∈ C(G)

‖Tf‖F ≤ πp(T )

(∫
G

|f |p dλ
)1/p

. (6.1)

For the theory of summing operators we refer to the monograph [14], and to [2]

and [14, p.56] for extensions of the preceding result in the setting of multilinear

summing mappings on closed G-invariant subspaces of C(G).

We need a variant of Proposition 5.2 which may be considered as its non-order

continuous counterpart, and for the sake of completeness we include a short proof.

Lemma 6.5. Let G be a compact group with Haar measure λ, and let Y be a weak

left-G-invariant quasi-Banach function lattice over G. Let E and F be Banach

spaces, and let Φ: C(G,E) → Y (λ, F ) be a left-to-left G-invariant map such that

there exist ϕ ∈ Y ∗, ψ ∈ C(G)∗ and a constant K > 0 such that for all f ∈ C(G,E)

ϕ
(
‖(Φf)(·)‖F

)
≤ K ψ

(
‖f(·)‖E

)
.

Then for all nonnegative g ∈ C(G) and all f ∈ C(G,E) we have

(g ? ϕ)(‖(Φf)(·)‖F ) ≤ K (g ? ψ)(‖f(·)‖E).

Proof. Fix g, ϕ, and ψ as in the statement. From Lemma 3.4 we know that g ?ψ ∈
C(G)∗. Applying Fubini’s theorem we get that

(g ? ϕ)(‖(Φf)(·)‖F ) =

∫
G

g(x)ϕ(‖τx(Φf)(·)‖F ) dλ(x)

=

∫
G

g(x)ϕ(‖(τx ◦ Φ)(f)(·)‖F ) dλ(x)

=

∫
G

g(x)ϕ(‖Φ(τxf)(·)‖F ) dλ(x)

=

∫
G

g(x)ϕ(‖Φ(f(x ·))(·)‖F ) dλ(x)

≤ K
∫
G

g(x)ψ
(
‖f(x·)‖E

)
dλ(x) = K(g ? ψ)(‖f(·)‖E),

as required. �
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Remark 6.6. By Lemma 3.3 we know that if Y in the preceding proposition is also

order continuous, then the functional ϕ can be represented by a norm one functional

k ∈ Y ′. Thus g ? ϕ can be identified with g ~ k.

Using the preceding lemma the proof of the next result is similar to the proof of

Theorem 5.4 and so we skip it.

Theorem 6.7. Let G be a compact group with (left) Haar measure λ, and let Y be

an order continuous, weak left-G-invariant, r-convex Banach function lattice over

G. Suppose that E and F are quasi-Banach spaces and T : C(G,E)→ Y (λ, F ) is a

left-to-left G-invariant m-homogeneous operator T : C(G,E) → Y (λ, F ) satisfying

the inequality∥∥∥( n∑
k=1

‖Tfk‖r/mF

)m/r∥∥∥
Y
≤ K

∥∥∥( n∑
k=1

‖fk(·)‖rE
)1/r∥∥∥m

C(G)
.

Then T extends to a bounded operator from Lr(λ,E) into Lr/m(λ, F ).

As an application we recover the recent result of [2, 4.2]. In the case when m = 1

this yields the result of Gordon–Pe lczyński.

Corollary 6.8. Given a Banach space F and a compact group G, let P : C(G)→ F

be a translation invariant, r-dominated and m-homogeneous polynomial, i.e., there

is K > 0 such that for every choice of finitely many f1, . . . , fn ∈ C(G) we have( n∑
k=1

‖Pfk(·)‖r/mF

)m/r
≤ K sup

t∈G

( n∑
k=1

|fk(t)|r
)m/r

.

Then the Haar measure λ is a Pietsch measure for P , i.e.,

‖Pf‖F ≤ K
(∫

G

|f |r dλ
)m/r

, f ∈ C(G).

Proof. Consider the m-homogeneous operator P̂ : C(G)→ Lr(λ, F ) given by

P̂ = χG ⊗ Pf , f ∈ C(G).

Since P is translation invariant, we deduce that P̂ is left-to-left G-invariant. More-

over, since T is r-dominated, we get that for every choice of finitely many functions

f1, . . . , fn ∈ C(G)∥∥∥( n∑
k=1

‖P̂ fk(·)‖r/mF

)m/r∥∥∥
Lr/m

=
( n∑
k=1

‖Pfk(·)‖r/mF

)m/r
≤ K

∥∥∥( n∑
k=1

|fk|r
)1/r∥∥∥m

C(G)
.

Then Theorem 6.7 gives that P̂ in fact extends to an operator from Lr(λ) to

Lr/m(λ, F ). By the definition of P̂ we obtain that P is well-defined and bounded
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from Lr(λ) to F , and so

‖Pf‖F ≤ K
(∫

G

|f |r dλ
)m/r

, f ∈ C(G) ,

which completes the proof. �
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[22] S. Kwapień and A. Pe lczyński, Remarks on absolutely summing translation invariant oper-

ators from the disc algebra and its dual into a Hilbert space, Mich. Math. Journ. 25 (1978)

173–181.

[23] R. Larsen, An introduction to the theory of multipliers, Springer, Die Grundlagen der Math.

Wissenschaften 175 (1975).
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