
 

 

Spatiotemporal analysis of gap-
filled high spatial resolution time 

series for crop monitoring 
 

  
 

University of Natural Resources and Life Sciences 
(BOKU) 

Departament of Landscape, Spatial and Infraestructure Sciences 
Institute of Geomatics 

 
Master's Degree in Agricultural Engineering/ 

Máster en ingeniería agronómica 
Academic year: 2019 - 2020 

 
 

Student: 
Clara Rajadel Lambistos 

from: Universitat Politècnica de València (UPV) 
Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural 

(ETSIAMN) 
 

Supervisors from BOKU: 
Dr. Emma Izquierdo-Verdiguier and Professor Dr. rer. nat. Clement 

Atzberger 
 

Tutores de la UPV: 
Miguel Sánchez Marco y Aurea Cecilia Gallego Salguero 

 
 

Vienna, 18th of November 2020 
 



 

Abstract 
 
 
Spatiotemporal analysis of gap-filled high spatial resolution time series for crop monitoring. 
 
Reliable crop classification maps are important for many agricultural applications, such as field 
monitoring and food security. Nowadays there are already several crop cover databases at 
different scales and temporal resolutions for different parts of the world (e. g. Corine Land cover 
in Europe (CORINE) or Cropland Data Layer (CDL) in the United States (US)). However, these 
databases are historical crop cover maps and hence do not reflect the actual crops on the 
ground. Usually these maps require a specific time (annually) to be generated based on the 
diversity of the different crop phenologies. The aims of this work are two: 1- analyzing the multi-
scale spatial crop distribution to identify the most representative areas. 2- analyzing the 
temporal range used to generate crop cover maps to build maps promptly. The analysis is done 
over the contiguous US (CONUS) in 2019. To address these objectives, different types of data 
are used. The CDL, a robust and complete cropland mapping in the CONUS, which provides 
annual land cover data raster geo-referenced. And, multispectral high-resolution gap-filled data 
at 30-meter spatial resolution used to avoid the presence of clouds and aerosols in the data. 
This dataset has been generated by the fusion of Landsat and Moderate Resolution Imaging 
Spectroradiometer (MODIS). To process this large amount of data is used Google Earth Engine 
(GEE) which is a cloud-based application specialized in geospatial processing. GEE can be used 
to map crops globally, but it requires efficient algorithms. In this study, different machine 
learning algorithms: Random Forest and Support Vector Machine are analyzed to generate the 
promptest classification crop maps. This study presents the first results and the potential to 
generate crop classification maps using as less possible temporal range information at 30 meters 
spatial resolution.  
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Resumen 
 
 
Análisis espacio temporal de series temporales de imágenes de alta resolución espacial libres 
de huecos para el monitoreo de cultivos. 
 
La obtención de mapas fiables de clasificación de cultivos es importante para muchas 
aplicaciones agrícolas, como el monitoreo de los campos y la seguridad alimentaria. Hoy en día 
existen distintas bases de datos de cobertura terrestre con diferentes escalas espaciales y 
temporales cubriendo diferentes regiones terrestres (por ejemplo, Corine Land cover (CORINE) 
en Europa o Cropland Data Layer (CDL) en Estados Unidos (EE. UU.)). Sin embargo, estas bases 
de datos son mapas históricos y por lo tanto no reflejan los estados fenológicos actuales de los 
cultivos. Normalmente estos mapas requieren un tiempo específico (anual) para generarse 
basándose en las diferentes fenologías de cada cultivo. Los objetivos de este trabajo son dos: 1- 
analizar la distribución espacial de los cultivos a diferentes regiones espaciales para identificar 
las áreas más representativas. 2- analizar el rango temporal utilizado para acelerar la generación 
de mapas de clasificación. El análisis se realiza sobre el contiguo de Estados Unidos (CONUS, de 
sus siglas en inglés) en 2019. Para abordar estos objetivos, se utilizan diferentes fuentes de 
datos. La capa CDL, una base de datos robusta y completa de mapas de cultivo en el CONUS, que 
proporciona datos anuales de cobertura terrestre rasterizados y georeferenciados. Así como, 
datos multiespectrales a 30 metros de resolución espacial, preprocesados para rellenar los 
posibles huecos debido a la presencia de nubes y aerosoles en los datos. Este conjunto de datos 
ha sido generado por la fusión de sensores Landsat y Moderate Resolution Imaging 
Spectroradiometer (MODIS). Para procesar tal elevada cantidad de datos se utiliza Google Earth 
Engine (GEE), que es una aplicación que procesa la información en la nube y está especializada 
en el procesamiento geoespacial. GEE se puede utilizar para obtener mapas de cultivos a nivel 
mundial, pero requiere algoritmos eficientes. En este estudio se analizan diferentes algoritmos 
de aprendizaje de máquina (machine learning): bosques aleatorios (RF) y máquinas de vectores 
de soporte (SVM) para analizar la posible aceleración de la obtención de los mapas de 
clasificación de cultivo. Este estudio presenta los primeros resultados para la generación de 
mapas de clasificación de cultivos utilizando la menor cantidad posible de información, a nivel 
temporal, con una resolución espacial de 30 metros.  
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1. Introduction 
 
Classification crop maps are used by the scientific community, agro-markets, governments, 
farmers, etc. to facilitate making decisions related to food and agriculture. However, crops are 
a dynamic landcover that needs permanent monitoring. This is especially important because 
their patterns are affected by external factors as climate change. All variables affecting crops, 
either inherent or external, make prompt classifications a big urgency.  New technologies of 
remote sensing imagery are used to capture specific crop growth stages [28]. This section 
develops challenging topics in agriculture related to food security and agro-economy. The 
objective is to highlight the importance of monitoring crops and building remote sensing 
techniques. Moreover, up-to-date cloud computing technologies are presented to get valuable 
information from current satellite imagery. One of them is GEE centered on parallel 
geoprocessing. 
 
 

1.1. Challenges in agriculture 
 
Crop yielding primarily depends on weather conditions [12]. This makes plant behavior very 
unpredictable in time and it is reinforced by climate change that affects plants in biotic (pests 
and diseases) and abiotic manners (temperatures, droughts, etc) [27].  Therefore, climate 
change impacts the stability of food security and agro-market prices, conditioning at the same 
time future crop decisions. Climate change has not the same effect over every location on Earth. 
The template regions can be favoured by new conditions as warmer climates or longer periods 
of growth, while the tropical regions are supposed to lose production. One example of that is 
the case of cereals in Finland which production will increase in the future [8]. The variability and 
vulnerability depending on zones to climate change makes important monitoring crops. Climate 
change does not only vary depending on the areas, but also its effects can be contradictory. For 
example, incoming elevated CO2 concentrations will boost the productivity of crops, but also 
change temperatures (Figure 1) and water availability [32]. High temperatures make crops grow 
quicker with less time to weight their grains and resulting in a lower final production. As well, 
they favour weeds growth and competence in resources with cropped species [27]. The result is 
a difficult understanding of how plants will behave. Weather disasters are also favoured with 
climate change, and these unpredictable events appear each year, for example, the August 10 
windstorm derecho was a fast-unfolding disaster that affected millions of acres of corn, 
soybeans and other Midwestern farmland in the United States in 2020 [36]. Other consequences 
derived from climate change are droughts, floods, pests, and diseases. Moreover, farmer's 
decisions on which crops plant next season are conditioned by climate change, as well their crop 
practices, which leads to the emergence of new and different cultivation trends. This makes the 
variability between years in crop productions higher and more unpredictable. Crop instability 
affects the major actors in agriculture that are consumers and producers. The following sections 
detail its impact on food security and farmers. 
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Figure 1 - Changes in mean surface temperatures (Kelvin) in the month of July in the United States 

between the periods of time: 2005-2009 and 2015-2019. 

 

1.1.1. Food security 
 
Climate change affects food security in the relocation of crop productions with impacts on 
prices, trade flows and food access [8]. The main concern is to achieve food security overall and 
that requires planning and logistics. Regarding food accessibility, not all countries are able to 
feed their population with enough quantity and diversity of food. Moreover, even if a country 
produces enough groceries, it does not ensure its availability at local level. Within countries, 
some areas may have suitable soils and may be more resilient to weather changes. The seasonal 
variability in food availability is reinforced by damages in plants from climate change. For this 
reason, through international and local trades, food surpluses need to be transported and 
distributed in the deficient areas and their markets [48]. On the other hand, food accessibility 
depends on market prices, locations, and "social contracts''. Detecting where crops are 
produced and in which quantities, helps to plan better their distribution and anticipate social 
policies. Strategies derived from crop monitoring can improve food availability and accessibility. 
 
 
1.1.1.1. Future food demand 
 
Supplying enough nourishment to all of us in the future will be even more challenging as growth 
dynamics is experiencing a huge rise in terms of population. According to FAO statistics, there 
will be around 9.7 billion people over the world in 2050. Population growth is highly noticeable 
in countries from Asia and Africa compared to Europe, North America, Oceania and Latin 
America. These last developed countries need to increase food incomes and their exports are 
relatively constant [9]. Moreover, Figure 2 shows how climate change impact is more concerning 
in tropical zones, where population is exponentially increasing. This will lead to an increase in 
imports of agricultural products in these areas. The world food production will need to grow up 
to 60-70% by 2050 [14]. Countries in temperate regions need to produce high quantities of 
nutrients to feed the population. Techniques to predict yearly and fast the production of crops 
and its locations are necessary. 
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Figure 2 - Changes in agriculture production in 2050: Climate change relative to the baseline [9]. 

 
 
1.1.1.2. Importance of cereals 
 
Cereals are major contributors into the intake of calories in those countries where the 
population is expanding [14]. They contain high energy values provided by the carbohydrates, 
mainly starches (65 - 75%), proteins (6-12%), and fat (1-5%) [39]. Therefore, cropping and 
monitoring cereals such as corn, rice, soybeans or wheat is of great relevance. Moreover, 
according to the National Agricultural Statistics Service (NASS) of the United States (US) 
Department of Agriculture (USDA) from 2008 to 2016, the production, domestic consumption, 
and exports of cereals in the US has increased between 16 - 18% while imports remain constant 
[45]. Indeed, the Corn Belt in the US provides more than one third of all the corn globally [32]. 
But feeding is not the only contribution of cereals, they also are inputs in many processes of 
other industries [29].  In this work, soybeans, corn, wheat, alfalfa, cotton and sorghum in the US 
are studied. Figure 3 shows the Normalized Difference Vegetation Index (NDVI) of these cereals 
in 2018. The NDVI characterizes the canopy vigor and serves as reference to evaluate the 
phenology in crops [52]. The peak of growth of these crops take place between May and August. 
Previous studies of crop classifications using remote sensing techniques claim that the 
classification maps can be acquired after the growing peak when crop phenology is best 
distinguished [11]. In this work, the best period/month of the year to crop classification by 
remote sensing images is analyzed. This is interesting because crop yielding data before harvest 
contributes to optimize grain distribution and planification.  
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Figure 3 - NDVI profiles for 7different crop classes over the US in 2019. 

 
 

1.1.2. Agro-economy 
 
Individuals taking part in the agro-market suffer from crop variability and difficulty to predict 
final productions in time. In 2019 in the US, the total crop cash receipts in agriculture were 
$194.6 billion (Figure 4) being the 43.3% of this sum belonging to corn and soybeans [46]. In the 
figure wheat and cotton also appear as important cereals in terms of economy. This verifies the 
importance of these cereals on the economy and the need of providing timely information of 
their cropping. Examples of the need of crop near real time statistics are presented below.  

 

 
Figure 4 - 2019 crop cash receipts ($ billion) [46]. 

 
Commodities and speculations 
There are many factors which affect the price of crop commodities and its volatility, but the 
most important are seasonality (reinforced by climate change), energy prices, and excessive 
speculations [29]. The volatility on prices or "price risk" affects planted acreages in the way that 
high volatility tends to reduce acreages in some crops.  Therefore, among others, global acreages 
depend on seasonal estimations [20]. Crop monitoring is fundamental to inform farmers, policy 
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makers, and stakeholders. Objective estimations will lead to reduced risks in decisions and 
prevent excessive speculations, which also affect consumers with rise in prices. Being timely is 
crucial for making the best use of monitoring information because of the seasonality of crops. 
Nowadays, estimations are mostly based on surveys, but remote sensing can offer a more 
objective and timelier alternative to predict crop planted areas [2].    

 
Crop insurances 
Farmers rely on crop insurances to save their crop productions because averages in final cereal 
yieldings are extremely related with weather conditions. Since 2015 the main cause of crop loss 
in the US are weather-related causing even 85% of corn and soybeans losses [13]. Moreover, in 
low and middle-income countries farmers are most affected by climate change because their 
farming systems are more vulnerable [27]. Indemnity insurances depend on climatic variables, 
such as, rainfalls, temperatures, droughts, etc. Normally these variables are accepted within a 
range and out of this threshold farmers are compensated for their crop losses. It takes a long 
time to compensate farmers until damages are proved. Timely crop monitoring techniques 
through satellites can make the process of insurance much faster and economically affordable 
by assurance companies [9]. 
 
 

1.2. Crop forecasting 
 
Agriculture land covers are dynamic, and agro-marketplace needs objective and timeliness crop 
forecasts to define basis in commodity markets. This information is valuable for farmers, 
agribusinesses, economic firms, university researches, government policy makers, and media. In 
the US, the USDA provides monthly acreage estimates depending on the crop for the US and 
also at global scale (for example winter wheat monthly estimates begin in May). USDA uses 
several information sources such as the NASS that estimates yearly the acreage of crops 
cultivated in the US [47]. For performing these estimates, NASS selects sample farms using 
satellite imagery, among others, and collects the data using survey methods (mail, phone, 
personal interview, or internet). However, surveys and field trips for obtaining this information 
usually are expensive and cost-timing [49]. Therefore, this process is time-demanding and 
requires excessive administrative intervention. As well, at global scales, objective farm surveys 
are not available. In this case, results are obtained from weather analysis, country reports, and 
satellite imagery. As well, not all countries have the robust data historial as the US and thus they 
can not obtain their own forecasts with good accuracy using these methods. For all these 
reasons, speed the crop forecasting process and make it more objective and simpler is highly 
needed. Moreover, even though the US generates around 20% of grain in the world, it still does 
not provide timely spatial estimates of production, that means no crop maps are generated on 
real time [8]. All of this is possible through improving remote sensing methods to obtain valuable 
satellite data. Remote sensing can not only help in identifying crops over large scales, but also 
in optimizing the selection of farm samples as those used by the NASS.  
 
 

1.2.1. Remote sensing 
 
In the previous sections, it is shown that crops are conditioned by several parameters, making 
them highly variable in space and time. Even there exist other monitoring practices (surveys, 
historical data, etc.) monitoring crop productions through large areas using remote sensing 
provides objective, valuable, and reliable data. The resultant information allows us to make 
evidence-based decisions being this useful for governments, stakeholders, farmers etc. [2]. 
Therefore, crop classification maps from remote sensing are important for many agricultural 
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applications, such as field monitoring and food security. Principal requisites asked for obtaining 
maps are the temporal, spatial and spectral resolutions of the satellite sensors. Using heavy 
volumes of time-series imagery is important because agriculture is a dynamic landcover. As well 
is important, even the maps cover large areas having fine spatial resolutions, especially if they 
contain small farms. Once satellite images are obtained, they need to be processed by users to 
obtain the desired data. Nowadays, a high number of algorithms have been developed to 
perform classification and forecasting tasks. In the literature are used from basic algorithms as 
decision trees [51] to more complex models developed by deep learning processes. Some 
examples are artificial neural networks [38], support vector machines [15], convolutional neural 
networks [28] or random forests [37]. Nowadays, the most available maps over the world are 
provided by the European Space Agency (ESA) global land cover map (Figure 5) on the internet. 
However, its resolution is not enough when analyzing land covers at country level. At continental 
scale in the US is provided the Cropland Data Layer (CDL)1 by the USDA. In this case, it provides 
a good resolution of 30 m, but this type of map is not currently available for almost all of the 
world. A methodology to obtain crop classification maps with good spatial resolutions and 
applicable over all the world is necessary to monitor agriculture. 
 

 
Figure 5 - ESA (European Space Agency) global land cover map (ESA website global land cover map2) 

1.2.2. Prompt crop classification maps 
 
Multi-temporal remote sensing provides the best opportunity to accurately and repeatedly 
obtain crop classification maps. However, even landcover maps over years provide valuable 
information, they are more useful when used in real time. To get the best value of them, crop 
classification maps have to be timely, provided before the harvest and uploaded regularly until 
the end of the season. This allows individuals involved in agriculture to forecast and make 
decisions on time. The prediction of crops before their harvest can prevent famine and help with 
food security strategies [33]. In the literature other works have obtained early classification 
maps, for example, Dahal, Wylie and Howard (2018) obtained an accuracy around 70% with 500 
m of spatial resolution over the US by the beginning of September to classify major crops. 
Another example is the case of Konduri et al. (2020) mapping corn and soybeans with 231 m of 
spatial resolution over the US with 90% of accuracy in August.  There are also studies mapping 
winter wheat by the end of April as the work of Skakun et al. (2017). Science should keep 

 
1 CropScape viewer: https://nassgeodata.gmu.edu/CropScape/ 
2 ESA website global land cover map: 
http://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/ESA_global_land_cover_
map_available_online 
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investigating how to provide timely maps obtaining good classification accuracies and with the 
best spatial resolutions. 
 
 

1.2.3. Current potential tools 
 
Currently, there are many efficient and potential tools to monitor and forecast crops promptly. 
Moreover, free satellite imagery datasets are easily available on the internet. For example, 
Landsat products are characterized for being free, with -high 30 m spatial resolution, and the 
longest running continuous program [50]. Among others, its imagery data can be processed in 
Google Earth Engine (GEE) [19] which is a cloud computing geospatial platform (Figure 6). GEE 
contains a wide catalog of satellite imagery (Landsat, Sentinel, and Moderate Resolution Imaging 
Spectroradiometer) allowing detection of changes and map trends to scientists. It also contains 
datasets with climate and weather data and digital elevation models (DEMS) which helps in crop 
monitoring tasks (GEE website3). This web application is developed in Javascript and contains 
specific functions to analyze huge quantities of images in short periods. As well, GEE has its 
python version (GEE Python API). The python API can be used downloading the package "ee". 
This is helpful because Python contains useful libraries for machine learning and supervised 
classifications, such as Scikit-learn, which can complement classification tools in GEE. Moreover, 
Python can be used in the open-source web application Jupyter Notebook4 which easily allows 
to share live code and obtain instant visualizations. There exists some Geographic Information 
System (GIS) software which can also be used to work with satellite data. One example is QGIS5 
that is used to create, edit, and visualize geospatial information. There is no need to use only 
one of these tools, all of them contribute improving remote sensing tasks in different manners. 
A blend of them provides a robust set of tools for analyzing different crop mapping techniques. 

 

 
Figure 6 - Google Earth Engine interface. 

 
 

 
3 Google Earth Engine website: https://earthengine.google.com 
4 Jupyter Notebook: https://jupyter.org 
5 QGIS: https://qgis.org 
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1.3. Objectives 
 
Monitoring crops over large areas is vital for many reasons mentioned in the previous sections. 
The aim of this work is to obtain prompt classification maps over a continental magnitude, in 
this case over the US, and as soon as possible. In this way, maps are available when they are 
most needed and not later when their contribution is minor. To achieve this, first is proposed 
analyzing the multi-scale spatial crop distribution in the US to identify the most representative 
crop areas. The reduction is done over climatic regions and counties in the US. By selecting these 
reduced areas data collection is simplified diminishing costs and time of sampling. Secondly, it 
is pursued to analyze the temporal range used to generate crop cover maps to build promptly 
maps. This allows obtaining crop classification maps before the end of the year and probably 
before harvests. Different parameters concerning the classification will be analyzed and 
compared: study areas (climatic regions and counties), input datasets (satellite imagery and 
others), and classification algorithms.  
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2. Area of study and data 
 
This chapter presents the study area used in this work and a detailed explanation about all the 
databases used in this thesis. It covers from the dependent variables (i. e. classes, targets) 
obtained from the Crop Data Layer to the independent variables (i. e. features or bands) 
calculated from different remote sensing satellites or using weather data. The input datasets 
used are all free available on the internet. As well, two spatial datasets are presented to divide 
the area of the CONUS into climatic regions and counties. 
 
 

2.1. Area of study 
 
The study area of this work is the contiguous (CONUS) United States (US) formed by the 48 
adjoining states in the US and excluding Alaska, Hawaii, and all other offshore insular areas. The 
CONUS represents a continental magnitude that can serve as an example to apply in other large 
areas on the Earth as it contains 7,663,941 km2 of land cover. The CONUS is chosen due to its 
presence of extensive areas dedicated to important cereals such as corn or soybeans. Figure 7 
shows the main four agriculture zones in which the CONUS is divided: midwest, centre, south 
and west. The Midwest of the CONUS contains one of the most grain productive areas in the 
world. In this region, known as the Corn Belt, primarily are produced soybeans and corn which 
are key points in exportations, as well as oat, sorghum and wheat [31]. In the center of the 
CONUS is located the Great Plains, this is a flat area where are concentrated most of the country 
crop products. Climate in both areas is characterized for its variability with cold winters and hot 
summers. Recently, these zones are getting warmer due to gas emissions and also precipitation 
is rising [26]. The south of the CONUS is mainly destined for cotton and tobacco production. This 
area suffers from extreme weather events (floods, droughts, heat waves, etc.) and its agriculture 
has not experienced a big increase in recent years [22]. Finally, west of the CONUS is a 
mountainous area where agricultural practice is more restricted by geographical conditions. In 
general, over all the CONUS ranges of temperatures decrease from the south to the north.   

 
Figure 7 - Percent land use cultivation in the CONUS. (USDA Land Use Strata website6). 

 
 

2.2. Data 
 

 
6 USDA Land Use Strata website: https://www.nass.usda.gov/Research_and_Science/stratafront2b.php 
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2.2.1. Cropland Data Layer (CDL) 
 
The Cropland Data Layer (CDL) is a cropland cover product geo-referenced since 2008 
throughout the CONUS and created using moderate resolution satellite imagery and extensive 
agricultural ground truth. This georeferenced shapefile has been developed by the United States 
Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) to provide 
timely, accurate, and useful statistics in service to U.S. agriculture [6]. It is available as an annual 
database containing land cover information at a spatial resolution of 30 m. Its format is 
presented as raster GeoTIFF files, but a vector shapefile is also included for each state. CDL image 
is an accessible product in GEE platform under the name "USDA NASS Cropland Data Layers” 
and also it is possible to download the data on the NASS CropScape web application (USDA 
CropScape and CDL - metadata website7). The main aim of CDL generation is the identification 
of 100 different crops as well as non-cropped categories, classifying each pixel of the CONUS 
with a different type of land cover. The CDL product assessment provides high accuracy values 
compared with the ground truth. Since 2008 the methodology to generate the CDL has been 
standardized making it a robust and useful dataset [24]. The annual information provided by 
CDL is available the February of the following year once the classification has taken place. The 
CDL is appropriated and helpful data in several processes such as crop statistics measurements 
and as a training dataset in supervised classification methods. In this work, CDL 2018 and 2019 
are used because they are the most current years available in the temporal series. 
 
On the one hand, the CDL 2018 was used to analyze statistically multi-scale crop distribution 
over the CONUS and then, to identify the most representative areas based on its crop 
percentages. In addition, CDL 2018 was used in the benchmarking of the crop promptly 
classification maps over the temporal analysis range. On the other hand, the CDL 2019 was used 
in the benchmarking of the forecast processing in order to study the potential of the prompt 
classification maps in real-time. Figure 8 represents the CDL in 2019 as an example of this land 
cover layer over the CONUS.  
 

  
 

Figure 8 - Annually derived Cropland Data Layer (CDL) in 2019, CONUS. Legend: the 7 crops of interest in 
this thesis. 

 

 
7 USDA CropScape and CDL - metadata website: 
https://www.nass.usda.gov/Research_and_Science/Cropland/metadata/meta.php 
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2.2.2. Satellite data: Landsat and MODIS 
 
Landsat program is a group of satellites that provide global time series images. The program 
started in 1972 with the launch of Landsat 1 satellite and it is still producing images with Landsat 
8 satellite. This group of satellites (i. e. from Landsat 1 to Landsat 8) follows a Landsat Data 
Continuity Mission (LDCM), offering the assurance that the currently studied applications can be 
used in the future. Landsat mission series are mainly managed by the United States Geological 
Survey (USGS) and the National Aeronautics and Space Administration (NASA). They are a 
valuable data source to scientists through cloud computing by using algorithmic approaches. 
Within their multiple applications, they are used to monitor and detect changes on the Earth's 
surface [50].  
 
Landsat 7 and Landsat 8 were used to generate monthly gap filled and smoothed reflectance 
images at 30 m spatial resolution over the CONUS in this thesis. The Enhanced Thematic Mapper 
Plus (ETM+) on Landsat-7 at 30 m spatial resolution includes an additional 15-m spatial 
resolution panchromatic channel and a 60 m TIR band. The Landsat-8's Operational Land Display 
(OLI) has reinforced the previous trend of refined spectral bandpass and the addition of new 
channels with 12-bit quantification. It has an improved cirrus channel that serves to detect 
better clouds. They are all compatible with each other and technological advances are 
incorporated as new models are launched. The applications offered by Landsat satellites have 
increased considerably with improved data quality since the launch of Landsat 8. However, the 
spectral reflectances of the OLI sensor show differences compared with those in the ETM+ 
sensor (Figure 9), so if they are blended these differences should be adjusted. Moreover, Landsat 
satellites are sensitive to atmospheric effects, which makes gap-free surface reflectance images 
difficult to obtain. Correction of the gaps over the land is needed to perform satellite 
applications on the Earth and for that, multiple atmospheric correction algorithms have been 
developed. One of them is the Landsat Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) implemented for Landsat-7 and the Landsat Surface Reflectance Code (LaSRC) for 
Landsat-8. Moreover, recently, data quality has been improved by the fusion of sensors and 
using temporal series [50].  
 

 
Figure 9 - Wavelength of Landsat 7 and 8 bands in the spectrum (USDA Landsat 8 - Wavelenghts image8). 

 
8 USDA Landsat 8 - Wavelenghts image: https://www.usgs.gov/media/images/landsat-8-wavelengths 
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On the other hand, data acquired by NASA's Moderate Resolution Imaging Spectroradiometer 
(MODIS) are also used in the fusion process (more details in Section 3.2.1. Data Fusion: 
HISTARFM) to obtain the gap-filled monthly reflectances at 30 meters. MODIS instruments 
acquire data in 36 spectral bands. Their imagery is also transformed to obtain atmospheric 
correction, among others, by the proposed Multi-Angle Implementation of Atmospheric 
Correction (MAIAC) algorithm [30]. MODIS data are extensively used along with the Landsat 
missions due to their consistency and their complementary specifications. While Landsat data 
provides 30 m of spatial resolution and a revisit rate of 16 days, MODIS is daily provided and 
depending on the spectral characteristics of interest, it has spatial resolutions of 250 m, 500 m, 
and 1000 m. Their fusion, when retaining the spatial patterns of Landsat images and the 
temporal regularity of MODIS, allows them to produce monthly gap-free high-resolution images. 
The Landsat satellites used in this work are Landsat-7, and -8, as they are the ones that coincide 
in time with the MODIS Terra and Aqua platforms that were launched in 1999 and 2002 
respectively (Table 1).  
 

Table 1 - Characteristics of Landsat and MODIS sensors used in this work. 

Mission/Platform Instrument Time span Revisit time 
(days) 

Spatial resolution 
(m) 

Landsat 7 Enhanced 
Thematic Mapper 

plus (ETM+) 

1999 - present 16 30 

Landsat 8 Operational Land 
Imager (OLI) 

2013 - present 16 30 

Terra MODIS 2000 - present 1 500 
Aqua MODIS 2002 - present 1 500 

 
For their fusion, the reflectances in the visible, the infrared (NIR), and short-wave infrared 
(SWIR) wavelengths will be combined. These are the most multispectral bands used in the 
scientific community, and they are needed for calculating vegetation indices. The range of 
reflectance covered by the two respective Landsat and two MODIS sensors is shown in Table 2 
along with their spatial resolution. Both sets of images, Landsat and MODIS, can be obtained 
from the GEE platform.  
 

Table 2 - Landat and MODIS spectral channels and band-passes used in the fusion. 

Band Name  Landsat 7 Landsat 8 Terra Aqua 
Blue  0.45-0.52 0.45-0.51 0.46-0.48 0.46-0.48 
Green  0.52-0.60 0.53-0.59 0.55-0.57 0.55-0.57 
Red  0.63-0.69 0.64-0.67 0.62-0.67 0.62-0.67 
Near Infrared  0.77-0.90 0.85-0.88 0.84-0.88 0.84-0.88 
SWIR I  1.55-1.75 1.56-1.65 1.63-1.65 1.63-1.65 
SWIR II  2.09-2.35 2.10-2.30 2.11-2.16 2.11-2.16 
Resolution (m)  30 30 500 500 

 
No se encuentran elementos de tabla de ilustraciones. 

2.2.3. Weather data: Daymet 
 
Crop stages are highly correlated with soil and plant evapotranspiration, external temperatures, 
radiation and other agrometeorological parameters [4]. For this reason, the classification 
accuracy can be improved by measuring these parameters. However, obtaining data from 
weather stations has two problems: i) they provide rainfall and temperature data, but they do 
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not always include other important climate parameters for crop analysis. ii) their spatial 
coverage is not sufficient in large areas. Therefore, gridded weather data, as Daymet, are usually 
commonly used since they provide continuous and completed spatial weather parameters 
georeferenced in the CONUS [35]. 
 
Daymet data are used as an input variable to analyze the improvement of the accuracy and look 
for a robust classification model. Daymet dataset is supported by NASA through the Earth 
Science Data and Information System (ESDIS) and the Terrestial Ecology Program and it is 
available in GEE. The continued development of the Daymet algorithm and processing is also 
supported by the Office of Biological and Environmental Research within the U.S. Department 
of Energy's Office of Science. It contains daily weather estimates from January 1, 1980, to the 
most recent full calendar year and is provided with a spatial resolution of 1 km for the CONUS 
among other areas such as Canada and New Mexico. Daymet datasets are a daily weather data 
(1 - 365 days of the year (DOYs)), so they are provided at the beginning of the next year. Daymet 
includes 7 variables all of them used in this work: duration of the daylight period, daily total 
precipitation, incident shortwave radiation flux density, snow water equivalent, daily maximum 
and minimum temperature, and daily partial pressure of vapor. These variables are represented 
in Table 3 together with their specifications [43]. To avoid the curse of dimensionality problems 
and to be consistent with the reflectance data, the monthly variable values were calculated.  
 

Table 3 - Description of the weather data parameters in Daymet [43]. 

Name Description Min* Max* Units 
dayl Duration of the daylight period. 

Based on the period of the day 
during which the sun is above a 
hypothetical flat horizon. 

0 86400 seconds 

prcp Daily total precipitation, sum of all 
forms converted to water 
equivalent. 

0 200 mm 

srad Incident shortwave radiation flux 
density, taken as an average over the 
daylight period of the day. 

0 800 W/m^2 

swe Snow water equivalent, the amount 
of water contained within the 
snowpack. 

0 1000 kg/m^2 

tmax Daily maximum 2-meter air 
temperature. 

-50 50 °C 

tmin Daily minimum 2-meter air 
temperature. 

-50 50 °C 

vp Daily average partial pressure of 
water vapor. 

0 10000 Pa 

 
 
 
 

2.2.4. Ancillary data: Climatic regions and counties 
 
Mapping croplands over large areas is challenging because of the large volumes of data needed 
and the discontinuous availability of cloud-free data. Obtaining samples involves elevated high 
computational costs and time for training the algorithm and obtaining the subsequent 
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classification map. For avoiding these issues, from a spatial point of view, the area of study can 
be reduced [53]. In this study, to simplify the calculations, two databases are used as ancillary 
data to split spatially the huge area of the CONUS in smaller regions. It is suggested to divide the 
CONUS into its 9 climatic regions and its 3007 counties. The aim is to select a few regions and 
study them separately (Figure 10). Both splits represent homogeneous divisions but with two 
different sizes and have been obtained with the computing platform GEE. The states which 
belong to the same climatic region are grouped according to table 4. In the case of the counties, 
they are directly downloaded from the shapefile "TIGER: US Census Counties 2018" offered by 
the U.S. Census Bureau and available in GEE. This shapefile identifies each entity by linking it 
with a geographic identifier in the data and is primarily used for censuses and surveys. 
 
 
 

 
Table 4 - States corresponding to the same climatic region. 

         
         

1 2 3 4 5 6 7 8 9 
Washington 

Oregon 
Idaho 

Montana 
Wyoming 

North 
Dakota 
South 

Dakota 
Nebraska 

Minnesota 
Iowa 

Wisconsin 
Michigan 

Missouri 
Illinois 
Indiana 

Ohio 
Kentucky 

West 
Virginia 

Tennessee 

Pennsylvania 
New York 
Vermont 

New 
Hampshire 

Maine 
Massachusetts 
Rhode Island 
Connecticut 
New Jersey 
Delaware 
Maryland 

Virginia 
North Carolina 
South Carolina 

Georgia 
Alabama 
Florida 

Kansas 
Oklahoma 
Arkansas 

Mississippi 
Louisiana 

Texas 

Utah 
Colorado 
Arizona 

New 
Mexico 

California 
Nevada 

 
 

 
Figure 10 - Split of the CONUS taking into account the Climatic regions (A) and the counties (B). 
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3. Methodology 
 
 

3.1. Introduction 
 
The methodology of this work is based on a common processing chain in remote sensing fields. 
It covers the basic steps to generate classifications maps: fusion data, feature 
extraction/selection, classification and validation (Figure 11 in green). The process was 
developed in order to accelerate the classification looking for a spatial representativeness and 
the lower temporal acquisitions as far as possible. The reduction of spatial and temporal range 
was done losing the less information in the available data providing robust classification models. 
 
The original data used in the training and test steps in the classification are the surface 
reflectance from the fusion of Landsat and MODIS sensors (described in the Section 3.2.1. Data 
fusion: HISTARFM), and weather data (for more information, see Section 2.2.3. Weather data: 
Daymet). The feature extraction step is focused on spectral indices (i.e. vegetation indices) that 
are highly recommended for distinguishing different agricultural crops. After that, a selection of 
features was done by means of a feature selection method focused on the similarity (or 
unsimilarity) of the features taking into account the crop classes. A benchmarking classification 
was done using the traditional machine learning supervised classification algorithms, and at last, 
they were validated by statistical measures.  
 
The spatial reduction consists of reducing the study area from continental to regional 
magnitudes by selecting smaller areas within the CONUS whose crop distribution is similar to 
the crop distribution in the CONUS. Then the selected areas are classified (following the 
classification process). These results are considered to be similar as if the entire CONUS was 
classified (the spatial reduction methodology is represented in orange in Figure 11).  
 
The temporal analysis consists of looking for the minimum period of time required to classify 
crops without loss accuracy in the results. This analysis was done in the CONUS as well as the 
best small areas obtained in the spatial analysis. 
 
To assess the capacity of the model, a forecasting experiment over the CONUS is presented. It 
consists in obtaining crop type label data from 2018 for classifying in 2019. This experiment 
simulates a real case when CDL is not available in the year of classification. 

 

Figure 11 - Methodology flowchart. Orange: spatial reduction, Green: Steps of classification process. 
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3.2. Classification process 
 
 

3.2.1. Data fusion: HISTARFM 
 
Continuous and smoothed data is fundamental to the classification step since the gaps and 
missing data are a hindrance to obtain the classification maps. New models of data fusion are 
available currently and they allow us to obtain continuous regions with free cloud data. Fast and 
simple gap-filled methods such as Harmonic Analysis of Time Series (HATS, [17]) or Spatial and 
Temporal Adaptive Reflectance Fusion Model (STARFM, [16]) are restricted to small areas 
whereas new methods cover continental scales at high spatial resolution (e. g. Landsat temporal 
series).  
 
The common way to obtain monthly smoothed spectral bands at 30 m is fusing Landsat and 
MODIS temporal series (see Section 2.2.2 Satellite data: Landsat and MODIS for more 
information of the data), however that is a great challenge. Focusing on crop mapping, 
especifically when mapping cropping cycles over large areas, acquiring fine resolution images 
has a difficulty because of unfavourable atmospheric conditions (clouds, aerosols, shadows, and 
strong angular effects). To acquire these images and avoid these problems, two solutions are 
proposed: i) take advantage of the existing high variety of sensors to combine them and thus 
mitigate individual limitations; ii) pre-process the images and improve the areas with noise and 
gaps [34]. 
 
In this work, we focus on combining Landsat and MODIS to obtain the spectral bands using the 
HIghly scalable temporal adaptive reflectance fusion model (HISTARFM) proposed by Moreno-
Martínez, A et al. (2020) [34]. This model is based on the Kalman Filter (KF) proposed by Sedano 
et al. (2014) which is able to classify over large scales as it does not need a special parameter 
tuning [40]. The fusion images obtained by HISTARFM are free of spatial gaps due to clouds and 
aerosols and therefore, they are highly valuable for image processing applications such as crop 
image classification. The fusion steps are summarized as follows: 
 

● Landsat and MODIS images are aggregated in monthly temporal resolution by 
calculating their mean values. 

● A Bayesian estimator is used to predict Landsat observations for a given month. It blends 
the climatology of Landsat reflectances and MODIS reflectances. For that, first MODIS 
reflectances are downscaled applying a Landsat-MODIS fusion using a pixel-wise linear 
regression model. The outputs of the combination are used to estimate reflectance 
means and covariances. 

● The reflectance predictions of the Bayesian estimator are then corrected by a Kalman 
Filter. It avoids errors from the Bayesian model using a bias correction.  Two estimators 
are used because sometimes forecastings can lead to errors if the prediction models are 
biased. Finally, an unbiased mean reflectance value and its covariance error are 
estimated. 
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Figure 12 - Images of cropland cover at the same location from Landsat 8 (top), MODIS Terra (middle), 

and the fusion Landsat-MODIS with HISTARFM (botton). All images were obtained from GEE. 

Six spectral bands (B1, B2, B3, B4, B5, and B7) gap-free monthly reflectance Landsat are obtained 
at 30 m spatial resolution. All these images are available in GEE9 (with a user account) and they 

 
9 https://code.earthengine.google.com/?asset=projects/KalmanGFwork/GFLandsat_V1 
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were directly used from the platform to download the surface reflectance values for the training 
and testing datasets. Figure 12 shows an example of Landsat and MODIS images in August 2018, 
and the resultant image from their fusion with HISTARFM. 
 
 

3.2.2. Feature extraction 
 
The state-of-art of crop classification shows different approaches to increase the accuracy [1] 
[55] [56] [57]. These works have improved the results including informative features into the 
training data to train the supervised classifiers. Vegetation indices are ones of the most 
informative features in crop classification [23] so the combination gap-filled bands obtained by 
the HISTARFM method is used to obtain vegetation indices as new features for the classification. 
The near-infrared (NIR) is widely used to study the plant canopy along with important vegetation 
parameters such as water, pigments, carbohydrates, proteins, and other content [3]. 
Applications are also derived from the relation between NIR and visible, especifically between 
NIR and red. From this relation is created the Normalized Difference Vegetation Index (NDVI) 
which is the vegetation index VI most used [44]. However, using only single combinations of 
bands results in a lack of sensitivity. This limitation is even more noticeable when studying 
heterogeneous canopies because of their diversity. In this work several vegetation indices from 
different band combinations are used: basic VI, VI considering atmospheric effects, adjusted soil 
VI, etc. Finally, a total of 35 VI have been extracted from the spectral bands (see Table 5, [52]). 
 
 
 

Table 5 - Vegetation Indices [52]. 

Index Name Definition Other 

BGI 2 Blue Green Pigment 
Index 2 𝐵𝐺𝐼2 = 	

𝐵
𝐺  

CRI500 Carotenoid Reflectance 
Index 𝐶𝑅𝐼500 = 	

(1/𝐵)
(1/𝐺) 

 

GDVI Green Difference 
Vegetation Index 𝐺𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝐺  

DVI Difference Vegetation 
Index 𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅  

EVI Enhanced Vegetation 
Index 𝐸𝑉𝐼 = 2.5 ∗

𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝐶1𝑅 − 𝐶2𝐵 + 𝐿 

C1=6 
C2=7.5 
L=0.5 

ExG Excess Green Index 𝐸𝑋𝐺 = 	2𝐺 − 𝑅 − 𝐵  

GEMI Global Environmental 
Vegetation Index 

𝐺𝐸𝑀𝐼 = 	 (1 − 0.25) −
(𝑅 − 0.125)
(1 − 𝑅)  

	= 	
2(𝑁𝐼𝑅! − 𝑅!) + 1.5𝑁𝐼𝑅 + 0.5𝑅

𝑁𝐼𝑅 + 𝑅 + 0.5  
 

GLI Green Leaf Index 𝐺𝐿𝐼 = 	
2𝐺 − 𝑅 − 𝐵
2𝐺 + 𝑅 + 𝐵  

GNDVI 
Green Normalized 
Difference Vegetation 
Index 

𝑁𝐼𝑅 − 𝐺
𝑁𝐼𝑅 + 𝐺  

GRVI Green Ratio Vegetation 
Index 𝐺𝑅𝑉𝐼 = 	

𝑁𝐼𝑅
𝐺   

Greenness 

index (G) 
Greenness index 𝐺 =	

𝐺
𝑅  

IPVI Infrared Percentage 
Vegetation Index 𝐼𝑃𝑉𝐼 = 	

𝑁𝐼𝑅
𝑁𝐼𝑅 + 𝑅  
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MCARI Modified Chlorophyll 
Absorption Ratio Index 

𝑀𝐶𝐴𝑅𝐼 = 	
1.5 ∗ [2.5(𝑁𝐼𝑅 − 𝑅) − 1.3(𝑁𝐼𝑅 − 𝐺)]
?(2𝑁𝐼𝑅 + 1)! − (6𝑁𝐼𝑅 − 5𝑅) − 0.5

  

MNLI Modified Nonlinear 
Index 𝑀𝑁𝐿𝐼 = 	

(𝑁𝐼𝑅! − 𝑅)(1 + 𝐿)
𝑁𝐼𝑅! + 𝑅 + 𝐿  L=0.5 

MSAVI2 
Modified Secondary 
Soil-Adjusted 
Vegetation Index 

𝑀𝑆𝐴𝑉𝐼2 = 0.5 ∗ B(2𝑁𝐼𝑅 + 1)

− ?(2𝑁𝐼𝑅 + 1)! − 8(𝑁𝐼𝑅 − 𝑅)D 
 

MSI Moisture Stress Index 𝑀𝑆𝐼 = 	
𝑆𝑊𝐼𝑅1
𝑁𝐼𝑅   

MTVI Modified Triangular 
Vegetation Index 𝑀𝑇𝑉𝐼 = 1.2 ∗ [1.2 ∗ (𝑁𝐼𝑅 − 𝐺) − 2.5(𝑅 − 𝐺)]  

MTVI2 Modified Triangular 
Vegetation Index 

𝑀𝑇𝑉𝐼2 =
1.5 ∗ [1.2(𝑁𝐼𝑅 − 𝐺) − 2.5(𝑅 − 𝐺)]
?(2𝑁𝐼𝑅 + 1)! − (6𝑁𝐼𝑅 − 5𝑅) − 0.5

  

NDGI Normalized Differential 
Greenness Index 𝑁𝐷𝐺𝐼 =

𝐺 − 𝑅
𝐺 + 𝑅  

NDVI Normalized Vegetation 
Index 𝑁𝐷𝑉𝐼 = 	

𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅  

NDWI Normalized Difference 
Water Index 𝑁𝐷𝑊𝐼 =	

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1
𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1  

NGBDI 
Normalized Green-Blue 
Difference 
Index 

𝑁𝐺𝐵𝐷𝐼 =
𝐺 − 𝑅
𝐺 + 𝐵  

NGRDI 
Normalized Green-Red 
Difference 
Index 

𝑁𝐺𝑅𝐷𝐼 = 	
𝐺 − 𝑅
𝐺 + 𝑅  

NMDI Normalized Multi-Band 
Drought Index 𝑁𝑀𝐷𝐼 = 	

𝑁𝐼𝑅 − (𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2)
𝑁𝐼𝑅 + (𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2) 

 

NLI Non-linear Vegetation 
Index 𝑁𝐿𝐼 = 	

𝑁𝐼𝑅! − 𝑅
𝑁𝐼𝑅! + 𝑅  

OSAVI 
Optimized Soil-
Adjusted Vegetation 
Index 

𝑂𝑆𝐴𝑉𝐼 = 	
(1 + 𝑋)	(𝑁𝐼𝑅 − 𝑅)
𝑁𝐼𝑅 + 𝑅 + 𝑋  X=0.16 

PSNDC 

Pigment Specific 
Normalized Difference 
c 

𝑃𝑆𝑁𝐷" =
𝑁𝐼𝑅 − 𝐵
𝑁𝐼𝑅 + 𝐵  

PSSRC Pigment Specific Simple 
Ratio for Carotenoids 𝑃𝑆𝑆𝑅" =	

𝑁𝐼𝑅
𝐵   

RVI Ratio Vegetation Index 𝑅𝑉𝐼 = 	
𝑅
𝑁𝐼𝑅  

SAVI Soil-Adjusted 
Vegetation Index 𝑆𝐴𝑉𝐼 = 	

(𝑁𝐼𝑅 − 𝑅)(1 + 𝐿)
(𝑁𝐼𝑅 + 𝑅 + 𝐿)  L = 0.5 

SGI Sum Green Index 𝑆𝐺𝐼 = 	
𝑁𝐼𝑅
𝑅   

SR2 Simple Ratio 2 𝑆𝑅2 = 	
𝑁𝐼𝑅
𝐺   

TDVI 
Transformed 
Difference Vegetation 
Index 

𝑇𝐷𝑉𝐼 = 	H0.5 + I
𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅J  

VARI Visible Atmospherically 
Resistant Index 𝑉𝐴𝑅𝐼 = 	 (𝐺 − 𝑅)(𝐺 + 𝑅 − 𝐵)  

VDVI Visible-Band Difference 
Vegetation Index 𝑉𝐷𝑉𝐼 = 	

2𝐺 − 𝑅 − 𝐵
2𝐺 + 𝑅 + 𝐵  
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3.2.3. Feature selection 
 
Feature selection is a previous step in a classification process to reduce the dimensionality 
excluding redundant information and selecting the most relevant features [5]. This reduces 
computational complexity in the classification by reducing the number of input features. In this 
case, the feature selection is performed for the three input datasets: spectral features, spectral 
indices, and weather data. There are many methods to select features grouped as: a) filter 
methods, b) wrapper methods, and c) embedded methods. In this study is used a filter method, 
that means that only the subset of relevant features is taken. It is based on the coefficient of 
correlation of Pearson (R) that is defined by the relation between the covariance of the features 
divided by the product of their standard deviations (expression 1). This parameter measures the 
linear correlations and ranges between -1 and 1, meaning 0 no correlation and 1 and -1 positive 
and negative correlations, respectively. The correlation between all the features, taking into 
account the crop classes, is calculated and the features with the largest average R (the most 
correlated) are discarded [21]. A threshold is applied to the correlation, in this case the value is 
2.5 times the standard deviation of the data for the three datasets. Features whose correlations 
raise this value are discarded. If the threshold increases less features are selected and if the 
threshold decreases, the number of features is higher. 

 
 
 

(1) 

𝑅!" 	= 	
𝐶!"

%𝐶!! ∗ 𝐶""
 

 
* Where C refers to the covariance matrix. The covariance indicates the level to which two 
variables vary together (Numpy documentation10). 
 
 

3.2.4. Classification 
 
The efficiency of the results depends on the classification performance. Different types of 
classifiers are in the literature and they are split depending on either if they use labels in the 
training step: supervised, semi-supervised and unsupervised or whether they estimate statistics 
parameters from the training data: parametric and non-parametric. Several works are focused 
on supervised and non-parametric models to classify crops in remote sensing fields. In this 
thesis, the benchmarking of supervised and non-parametric classifiers is analyzed. The two most 
well-known machine learning classifiers in remote sensing [37] [15] are chosen for the analysis: 
Random Forest and Support Vector Machine.  
 
 
3.2.4.1. Random Forest 
 
Random forest (RF) is a supervised algorithm used in classification or regression tasks. RF is an 
ensemble of decision trees (i. e. ensemble classifier) that are fully grown and not pruned. RF 
ensemble avoids the overfitting in new samples of the decision tree classifier and combines its 
results by the maximum vote rule (i. e. selecting the most popular class) [7]. RF is fast and easy 
to implement providing accurate predictions even with high dimensionalities. The bagging 
process avoids overfitting because the variance in the classification is diminished. Moreover, it 

 
10 Numpy documentation: https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html 
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provides insight on the importance of each feature, and there is no need of preprocessing the 
data nor pruning [55]. 
 

 
Figure 13 - Random Forest classifier with Pj partitions. Each tree has a root node νn and internal nodes 

(νL and νR). The partitions are recurrent split until reaching the terminal nodes (in blue). Each sample of 
the partition gets assigned a label (classes 1 or 2 in this case). ωL and ωR are the fraction of samples that 

fall in each node. 

 
Two subsets of data are required in the RF classifier, train and test data. In each tree of the RF 
(see Figure 13) a different subset of training is chosen taking as many samples as in the original 
training set, but randomly and with replacement, which is known as bootstrapping. That means 
that samples can be used more than once in the same tree. The samples that are not included 
in the bootstrap form the out-of-bag (OOB) and are used to calculate the OOB error. All trees 
follow the same process as an unpruned decision tree. From a partition of the original data, the 
best feature and cutoff is selected by means of the Gini Index. Therefore, the number considered 
a split candidate in each node (i.e. the number of features of the data partition) has to be 
optimized as well as the number of trees in the RF. But additionally, the number of minimum 
samples required to be a leaf node and the minimum number of samples required to split an 
internal node are optimized. 
 
Once the algorithm is trained, the testing data is used to validate the classification. For that, all 
the trees are aggregated, and the final classification is determined by the majority vote of all 
them. Table 6 shows the four RF parameters to be optimized in this work and their range of 
values.  
 

Table 6 - Random Forest parameters 

Parameters Abbreviation Range 
Number of decision trees Ntree 50 - 200 
Number of features to split in each node mtry 2 - Xtrain 

Minimum samples leafs minsamples_lf 1 - 4  
Minimum samples splits minsamples_sp 2 - 4 

 
In this work, to generate a RF classifier, the RF is trained with a set of samples (training set) and 
is tested in an independent set of samples (test set). To avoid the randomness in the results of 
RF, ten repetitions per month are done, and the mean value is obtained.  
 
 
3.2.4.2. Support Vector Machines 
 
In classification, the classes can be linearly (Figure 14 A) or nonlinearly (Figure 14 B) separated. 
Remote sensing data usually are non-linear separated and for that reason, Support Vector 
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Machines (SVM) is a robust classifier method in the field [23]. The basic idea of the SVM is to 
map the data into a high dimensional space (called Hilbert space) and find the best hyperplane 
which splits the classes of the data linearly. The hyperplane is found by means of the Support 
Vectors (SV); these are the closer samples of the different classes to the hyperplane (Figure 14 
C). The objective of SVM is to look for the hyperplane with maximum distance (i.e. large margin) 
to the SV without misclassifying the training samples. However, the SVM has the possibility to 
be permissive with the misclassifications by the parameter C. High values of C provide lower 
margin and then, the classification of the training samples correctly are the most important 
assuming that the training set contains the maximum variability. The main problem with it is the 
high possibilities to get overfitting.  Otherwise, low values of C provide a larger margin of the 
hyperplane assuming a high number of misclassification samples in the training.  
 
SVM always provides binary classifications either one-against-rest for multi-class cases or using 
only two classes. In this thesis, it is used the one-against-rest approach because seven classes 
are studied at once. Each class is discriminated from the others by a binary classifier. 
 
Taking into account that the transformation to the Hilbert space is unknown, SVM uses a trick 
(i.e. kernel trick) to obtain the similarity between samples in the Hilbert space. The similarity is 
calculated by the dot products of the samples, that is the kernel function. Whether the kernel 
function is linear, the SVM provides a linear classifier. However, if the kernel function is non-
linear, the SVM provides a non-linear classifier. Several kernel functions are able to be used in 
the SVM, but the most common is the Radial Basis Function (RBF).  RBF is defined as:  

(2) 

𝑘(𝑥! , 𝑥"+ 	= 	𝑒𝑥𝑝 .−
𝑑(𝑥! , 𝑥"+

#

2𝜎#
3 

 
* Where here 𝜎	is the bandwidth of the kernel and d is the euclidean distance. 
 

  
 

Figure 14 - From left to right: Lineal data (A), Non-linear data (B), Hyperplane (C). 

  
In this work, the separation of the dataset into training and testing subsets is repeated 10 times 
per month and then the mean value is calculated. Moreover, two parameters of the SVM have 
to be optimized (see Table 7): the cost (C) and the bandwidth of the kernel (σ). Note that the 
bandwidth parameter is related with the 𝛾 value as follows: 

(3) 
γ	 = 	1/(2 ∗ ([0.5 − 30] ∗ 𝜎)# 
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Table 7 - Support Vector Machine parameters. 

Parameters Abbreviation Range 
C  C 0.1 - 1000 
Gamma 𝛾 1/(2 ∗ ([0.5 − 30] ∗ 𝜎)# 

 
 

3.2.5. Validation 
 
In remote sensing assessing the classification accuracies is an important task and there are many 
measures developed to calculate it. Moreover, the consistency of using a set of measures is 
better than using only one. To assess the accuracy during the training of both algorithms are 
calculated the Confusion Matrix, the Overall Accuracy (OA), and the Kappa Coefficient using the 
Sklearn Python library. The accuracies are used to analyze results from different experiments 
depending on the input data, area of study, and classification algorithms. 
  
Confusion Matrix: in Figure 15 appears an example of a confusion matrix, the columns represent 
the reference data and are compared with the rows which are the predicted data obtained by 
the classifier. The main diagonal of the confusion matrix represents the data that is correctly 
assigned to its label [42].  
 

 
Figure 15 - Example of confusion matrix. (Notation: Cor: corn, Cot: cotton, Sor: sorghum, Soy: soybeans, 

SW: spring wheat, WW: winter wheat, and A: alfalfa). 

 
Overall Accuracy: is the sum of the diagonal of the confusion matrix divided by the total of 
elements. In other words, it is the probability that a new individual will be correctly classified. 
Given the confusion matrix N = (nij) the overall accuracy is defined by the expression 4 [18]: 

(4) 

𝑂$ 	= 	
∑ 𝑛!!%
!	'	(
|𝑇|

 

 
* Being |T| the number of testing samples. 
 
 
 
Kappa Coefficient: follows the Cohen's kappa [10] shown in expression 5. It measures the 
observed correct classifications against if they were classified randomness. The value of Kappa 
is calculated by: 

(5) 
𝑘	 = 	 (𝑝) − 𝑝*)/(1 − 𝑝*) 
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* Where 𝑝) is the empirical probability of agreement on the label assigned to any sample the 
overall accuracy) and represents the percentage of samples correctly classified by chance. Table 
8 represents the quality of the classification algorithm for the kappa values. 

Table 8 - Meaning of Kappa values. 

Kappa Interpretation 
< 0 Poor 
0 - 0.2 Slight 
0.21 - 0.40 Fair 
0.41 - 0.60 Moderate 
0.61 - 0.80 Substantial 
0.81 - 1 Almost perfect 

 
 

3.3. Case studies 
 
The classification process explained in the previous section was used to perform different case 
studies. The first case study is the spatial reduction that focuses on selecting smaller areas within 
the CONUS with a crop distribution similar to the entire CONUS. Next is proposed a temporal 
analysis to identify the month at the earliest when a near-real time crop classification map can 
be obtained. The last case study is the forecast analysis to analyze how the best results of the 
previous cases would perform using training samples from one year before the testing takes 
place. 
 
 

3.3.1. Spatial reduction: crop distribution in representative areas 
 
The main objective of this analysis is to simplify the obtention of training samples over the 
CONUS from a spatial point of view. The main idea is to find climatic regions and/or counties 
(see Section 2.2.4. Ancillary data: Climatic regions and counties) whose crop areas represent the 
whole in the CONUS. The spatial reduction is interesting for two reasons: i) reducing the 
sampling area diminishes considerably time and economic costs of sampling, and ii) it allows to 
consider the possibility of studying  the methods of this work in other continental areas in the 
Earth where an annual cropland dataset is not available. 
 
In this study, the CDL is used to determine the crop distribution in the CONUS in 2018. Within 
the CDL, there is a long list of land covers, but to simplify the study only are considered the seven 
most extensive crops: corn, soybeans, winter wheat, alfalfa, spring wheat, cotton, and sorghum. 
The percentage of each crop is calculated over the area in the CONUS, climatic regions, and 
counties using the expression 6. Finally, areas with similar percentages to the CONUS are 
selected.  

(6) 

𝐶𝑟𝑜𝑝	𝑜𝑣𝑒𝑟	𝑎𝑟𝑒𝑎 ∗ 	(%) 	= 	
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑟𝑜𝑝	𝑖𝑛	𝑡ℎ𝑒	𝑎𝑟𝑒𝑎 ∗

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑎𝑟𝑒𝑎 ∗
	𝑥100 

  
* Where "Crop over area" is either referred to the CONUS, each climatic region or each county. 
 
Once the percentage of the crops is calculated in the CONUS, and in the climatic regions and 
counties, it is possible to determine which of them are representative for each crop (see Figure 
16). The reduction magnitude from the CONUS size to the representative areas is noticeable. 
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Figure 16 - Example of crop representative areas in the CONUS. 

 
To define which areas are most representative for each crop a statistical method is applied: for 
each crop of interest is selected the region whose crop percentage is closer to the CONUS 
percentage and its difference is less than 5%. At the end, each crop has its most representative 
area.  
 
In order to assess if these counties are still representative in the following years, it is calculated 
their temporal correlation with the CONUS for ten years (2009-2018). This correlation is based 
on crop area percentages and is calculated using the coefficient of determination R2.  
 

3.3.2. Temporal analysis: prompt crop classification mapping 
 
Prompt classification mapping is an important issue in agricultural crop mapping. Government 
agencies or insurance companies, as few examples, are interested in crop classification as soon 
as possible. Therefore, the analysis of this case study is focused on knowing the earliest month 
to crop mapping without loss accuracy in the classification process. Crop classification maps are 
influenced by the type of the input dataset, machine learning algorithm, and reference data. In 
this work, the best combination of these different variables has been studied.  
 
Regarding the input data set, the analysis is focused on the CONUS and the representative areas. 
In both cases, three types of categories are considered:  1- spectral features (SF), 2- SF and 
spectral indices (SI), and 3- SF, SI and weather data (WD). The SF are the gap-filled bands 
obtained by the HISTARFM method (Section 3.2.1. Data Fusion: HISTARFM), the SI are the 
vegetation indices extracted using the SF (Section 3.2.2. Feature Extraction) and the the WD are 
the Daymet weather data (Section 2.2.3. Weather Data: Daymet). As Figure 17 shows they are 
combined to be evaluated using RF and SVM classifiers. 
 

 
Figure 17 - Input datasets. SF means spectral features; SI means spectral indices; and WD means 

weather data. 
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In order to obtain the earliest month to the crop classification, accumulative months are added 
in the classification process in the three categories of the input data. The earliest month is going 
to be identified by the OA of the classifiers since adding new information (i.e. adding subsequent 
months) would not make a huge difference in the results. After that, a feature selection method 
is applied to select the most important features in the classification. Finally, the best category 
combination and the earliest month are used to generate the classification map. 
 
 

3.3.3. Forecasting analysis: near-real time prediction 
 
Previous case studies were focused on the spatial and temporal analysis of a specific year (2018) 
in order to know the best area, input data, earliest month, and classifier. Therefore, once the 
best conditions (data, area, algorithm and time) are selected, they are used to classify the crops 
doing a forecasting experiment (Figure 18). It consists in using training data from 2018 and then 
classifying in 2019, assuming that this is the current season year. The objective is to avoid the 
collection of training data by using target labels (CDL) from the year before. The assessment of 
the classifier is done using a test data set obtained randomly over the CONUS in 2019. 
Additionally, the classification map of 2019 is generated for the crops: soybeans, corn, cotton, 
spring wheat, winter wheat, sorghum and alfalfa, and the rest are masked. 
 

 
Figure 18 - Flowchart of the forecasting case. 

4. Results 
 
This chapter presents the results obtained for the three study cases described in the 
methodology chapter: the search of the representative areas (spatial reduction), the prompt 
crop classification mapping (temporal analysis) and the real time prediction (forecasting 
analysis). In the three cases the classification process, explained in the Section 3.2. Classification 
Process is used to compare the classification and/or to predict the classification maps. As the 
classification process is highly affected by the train and test selection, the analysis of the training 
and test selection is also shown. 
 
 

4.1. Spatial reduction 
 
Two approaches are developed to find representative small regions within the CONUS in 2018. 
The first is based on finding areas where the percentage of crops is similar to the overall CONUS; 
the second consists in studying if these small regions have a similar temporal evolution of crop 
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areas as the CONUS. The first case is used to analyze how the representative areas work using 
the available information of the year to be processed. The second serves to check if the selected 
regions can be used in following years. 
 
 

4.1.1. Crop percentages 
 
In 2018 the CONUS area was covered at 16.8% by crops and the rest was filled by other land 
covers such as shrublands, grasslands/pastures or forests (called non-crops). In this work only 
are studied the most expansive crops in 2018: soybeans, corn, winter wheat, alfalfa, spring 
wheat, cotton, and sorghum. "Other-hay/non-alfalfa" and "fallow/idle-cropland" were also 
included in the nine more extensive cropland covers, but they do not represent specific crop 
types. According to Figure 19 even the crops of interest are seven over 108 in total, they 
occupied rather more area (14,21%) than the others (1,7%). It is also observed that the most 
extensive crops are soybeans and corn having an important weight in the final crop productions. 
The percentages of these seven crops are also in Figure 20. 

 
Figure 19 - Non-crops, interest crops and other crops in the CONUS for 2018. 

 
 
For each crop of interest, it is going to select the climatic regions with the closest crop 
percentage to the CONUS in 2018. However, only alfalfa class has a difference of percentage 
lower than 5% compared to the CONUS for the climate region 5 (Northeastern region), whereas 
the rest of classes are out of the established threshold (5%). Therefore, the climatic regions are 
not representative of the crop area percentages in the CONUS. Figure 20 shows the climatic 
regions and counties with the closest crop percentages to the CONUS. It is noticeable that 
climatic regions are far from CONUS results. This happens because the climatic regions have 
larger areas than the counties and the crop classes are concentrated in determined areas in the 
CONUS. This leads to an excess or shortage of crop acreage percentages of the climatic regions 
compared to all the CONUS. 
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Figure 20 - Comparison of crop percentages in the CONUS and, in the closest climatic region/county for 

the crop of interest in 2018. 

 
However, as Table 9 shows, there are seven counties (one per crop of interest) whose 
percentages only differ 0,7% from the respective crop percentage in the CONUS. These results 
are far better than the proposed threshold (5% of difference). So, these seven counties serve as 
representation of the crop percentages in the CONUS. Figure 21 shows the spatial soybeans 
example for the CONUS and for the Waukesha county. As we see the distribution of soybeans 
are centered mainly in the northeastern part of the country, close to the Big Lakes. Waukesha 
county has a random distribution of soybeans in the county (i.e. there is no predominant area 
in the county). In the following sections the counties Waukesha, Baker, Midland, Madera, Lake, 
Bowie, and McPherson are chosen as representative areas of the CONUS and then, they are used 
in the classification process to analyze the prompt classification and compare the results with 
the CONUS.  
 
 
 
 
 

Table 9 - Comparison of CONUS and counties crop percentages (2018). 

Crop Percentage 
CONUS (%) 

County 
Name 

Percentage 
Counties (%) 

Difference 
(%)  

Soybeans 4,828538 Waukesha County 4,830390 0,038365 

Corn 4,792732 Baker County 4,790296 0,050803 
Winter Wheat 1,572511 Midland County 1,569186 0,211472 

Alfalfa 1,110682 Madera County 1,111094 0,037088 

Spring Wheat 0,849714 Lake County 0,853225 0,413214 
Cotton 0,737493 Bowie County 0,732842 0,630627 

Sorghum 0,322989 McPherson County 0,322623 0,112990 
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Figure 21 - Soybeans distribution in the entire CONUS (left) and Waukesha county (right) for 2018. 

 
 

4.1.2. Temporal correlation 
 
In this approach, the coefficient of determination R2, is calculated to extract the correlation 
between the counties and the CONUS in the last 10 years in terms of crop area with the CONUS. 
Figure 22 shows the R2 for all the counties and the CONUS for each crop of interest. The 
correlation in many counties follows similar behaviour as the CONUS does. It’s worth mentioning 
that the R2 of soybeans class is higher than 0.9 in quite a few counties, which are distributed in 
all the east of the CONUS. In the case of Alfalfa class, R2 is also quite high, especially in Montana 
state. Cotton class is focussed on determined areas in the south of the US, but the class still has 
several counties with R2 overcoming 0.9.  As well as the winter wheat class that has few counties 
whose R2 superior to 0.9 although most of them do not exceed 0.7. The corn and sorghum 
classes have the best correlations around 0.8 in counties scattered within the CONUS. And spring 
wheat class presents the worst correlations with a maximum equal to 0.75. This means all the 
interest crops have counties with high correlation area percentages regarding to the CONUS. 
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Figure 22 - Coefficient of determination (R2) between the area occupied for each crop in the CONUS and 

counties from 2009 to 2018. The colorbar represents the value of R2. 

 
Focusing on the selected counties in the previous section, Table 10 shows the R2.  In these cases, 
only the area of soybeans class in Waukesha county has a correlation higher than 0.6 with the 
CONUS between 2009 and 2018. And taking into account that the soybeans area difference 
between the county and the CONUS is 0.04%, one may conclude that the soybeans area 
percentage would be similar in 2019 over Waukesha and all the CONUS.  
 



 

 31 

 

Table 10 - R2 of the area crop percentage between CONUS and counties between 2009 - 2018. 

Crop County name R2 

Soybeans Waukesha County 0.61 
Corn Baker County 0.12 

Winter Wheat Midland County 0.41 
Alfalfa Madera County 0.29 

Spring Wheat Lake County 0.00 
Cotton Bowie County 0.29 

Sorghum McPherson County 0.09 
 
Note that, the following case studies are focused on one year (i.e. the processing year). 
Therefore, the classification benchmarking is presented in the next sections with all the CONUS 
and the selected counties (previous section), although the temporal correlation with the CONUS 
are not too high.   
 
 

4.2. Training and testing data 
 
The first classification step requires defining a representative training and test sets from the 
classification area. In this work, a set of 3500 samples from the CDL was randomly selected and 
after that, the 30% of this set were used for training the classifiers and the rest were used for 
testing (i.e. 70%). This process was done for both, the CONUS and the previously selected 
counties. Figures 23 and 24 show the random selection of the 3500 samples (500 points per 
class) represented in QGIS software. Figure 23 represents the training and testing subsets of all 
the CONUS. The figure shows that spring wheat samples are mostly placed in the north, alfalfa 
in the west, soybeans and corn in the northeast, cotton in the south, and sorghum and winter 
wheat in the centre of the CONUS. That is because the classes are influenced by the location in 
the CONUS. This is logic because these crops are mainly produced in those zones. Even that, 
each class also has point samples in other zones along the CONUS which justifies their 
representativeness. It is also shown that training and testing points are located in different plots 
leaving enough distance to have differences between training and testing datasets.  
 
Figure 24 represents the training and testing data over the selected counties (Waukesha, Baker, 
Midland, Madera, Lake, Bowie, and McPherson). 500 samples are obtained from smaller regions 
as are the seven counties and as we see in the figure, they are sufficiently separated between 
training and testing points.  
 
Relating to the counties, two ways were used to select the training and test samples. In the first 
one (the mixed case), all the classes were selected from different counties as shown in Figure 
24. In the second one (one class per county case), training data was chosen selecting each class 
from the county where the class is the main class. The objective of that is to get samples for a 
specific class only in small regions and generate a classifier for predicting in the entire CONUS. 
For each class the training samples are selected on its most representative county following the 
results in Section 4.1.1. Crop percentages and table 9. 
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Figure 23 - Training and testing samples over all the CONUS. 

 

 
Figure 24 - Training and testing samples over the selected counties. 

 
After obtaining the training and testing data in the CONUS and counties (mixed and one crop 
per county), the precision of the RF and SVM classifiers for different training-testing was 
analyzed. Results are presented in four different cases depending on the type of training and 
testing: A) training and testing in the CONUS, B) training and testing in the counties (mixed case), 
C) training in the counties (mixed case) and testing in the CONUS, and D) training in counties 
(only one crop per county) and testing over the CONUS.  
 
Figure 25 represents the OA mean for ten repetitions for the input data: spectral features, 
spectral indices, and weather data, using RF and SVM classifiers. The OA for the first case (A) is 
close to the 90% being the best OA obtained in this study.  For case B, the OA is up almost 80%. 
However, when the classifier is training using small areas and testing in a continental scale, cases 
C and D, the OAs decrease as expected. These are challenging cases because of crop 
phenological development variation across climate zones [25]. Figure 25 shows that the SVM is 



 

 33 

still getting an OA close to 70%. However, the case D suffers a huge decrease in the OA below 
to 50%. According to these results, only cases A and B are considered to obtain the training and 
test samples in the next case studies.  
 

 
Figure 25 - OA for different train and test areas selection. [Notation: A: training CONUS - testing CONUS; 
B: training selected counties - testing selected counties; C: training selected counties - testing CONUS; D: 

training selected counties (one crop per county) - testing CONUS]. 

 
 

4.3. Temporal analysis 
 
From the training and testing locations, three different datasets were generated depending on 
the type of spectral information and data were added:  

● Dataset 1: spectral features (SF) 
● Dataset 2: SF and spectral indices (SF + SI) 
● Dataset 3: SF, SI and weather data (SF + SI + WD) 

 
Figure 26 represents the OA using RF and SVM for each of these datasets. The results show a 
monthly OA mean of ten repetitions for each dataset during 2018. Regarding the type of dataset, 
the figure shows that the OA follows a similar tendency for the three datasets. Especifically, the 
SF+SI+WD clearly overcomes the two other datasets for all the months. That is, as input 
information increases so does the resulting accuracies. SI and WD provide new valuable 
information to the SF in the classification. Thus, SF+SI+WD provides the best results because the 
combination of the three dataset contains the most complete information in this study. That is, 
WD contributes to improve the accuracy. Therefore, satellite information can be complemented 
by the use of weather data to make more robust the classifiers and then obtain better 
accuracies. 
 
Highlighting the turning point (August) in the curves, the dataset 1 and 2 obtained similar OA 
and dataset 3 overcame them although the difference is not very big. For example, using an SVM 
the difference between use or not weather data is around 3%. The SF+SI dataset obtained an 
OA of 85.2% meanwhile the SF+SI+WD to 88.8%.  
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As it has commented, August is the month when the curves become stable. Therefore, it is 
possible to get a classification at early September (when all the August data have been collected) 
with a similar OA than using the full information of the year.  
 
Note that, the performance described for the three databases is equal when the classifiers were 
trained using the CONUS and the counties samples. 
 
Regarding the classifiers, the performance of both of them are similar for the three databases. 
However, the use of the training samples from the CONUS makes the classifiers get higher OA 
for all the months.  
 

 
Figure 26 - OA average versus the months for the three datasets using RF and SVM trained by CONUS 
and counties samples. [Notation: SF: spectral features; SI: spectral indices (vegetation indices); WD: 

weather data]. 

 
Focusing on the classifiers training with the CONUS samples and the SF+SI+WD database, the 
boxplot of RF and SVM for the different runs were depicted. Figure 27 shows that RF contains 
less variance in its results than SVM. This is because assuming the randomness of the RF, the 
training set was not changed for the different runs whereas for the SVM it was necessary. Note 
that the SVM has bigger variability in its results from May to June and its results are slightly 
lower than RF. Even in August, SVM provides the best accuracy (90.57%) the average of RF 
performs better (89.11%) than the average SVM (88.82%). Therefore, the final crop classification 
was calculated using the RF classifier.  
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Figure 27 - Boxplot of OA using RF (top) and SVM (bottom) trained with the CONUS samples and the 

database 3 in 2018. 

 
Table 11 summarizes the results for the turning point using different study areas, datasets and 
algorithms. As the table shows, best results are obtained with all the variables used in this study 
(SF + SI + WD), using training data from the CONUS and the RF classifier. Therefore, the final 
classifier was generated under these conditions. Table 11 shows the optimized parameters of 
this case. The results obtained with this classifier overcome 89% of OA with kappa coefficient 
equal to 0.88. The CM is represented in Figure 28 and shows good results in general for all the 
classes. However, there is a misclassification of soybeans, which is confused for corn and cotton 
classes. Additionally, the sorghum class is misclassified with cotton. 
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Table 11 - Optimized parameters of RF classifier for 
generating a crop classification map over the CONUS. 

Figure 28 - CM of the RF classifier using 
SF+SI+WD from January to August and 
training with samples from the CONUS.  

Month of classification August  
Input data Spectral features 

+ spectral indices 
+ weather data 

Algorithm Random Forest 
Number of trees 167 
Number of features to split 
per node 

119 

Minimum samples leaf 1 
Minimum samples splits 3 

 

 
 Notation: Cor: corn, cot: cotton, sor: 

sorghum, soy: soybeans, sw: spring wheat, 
ww: winter wheat, and a: alfalfa. 

 
 

4.3.1. Crop type response 
 
As commented in Section 3.2.4. Classification, the classifiers were generated month by month 
accumulating the information of the previous months. Therefore, the CMs of the month 
classifers are available for all the year and the temporal crop response to the classification is 
possible to analyze. In this work, the visualization of CM and the analysis of the monthly 
improvement per crop in the classification was done. Figure 29 depicts CMs for each month of 
2018 using the best classifier obtained in the classification. Note that test subsets contained the 
same 150 samples per class for all the months. On the one hand, the best class in August is 
Sorghum with 144 correct test points followed by Alfalfa class. On the other hand, the crop with 
less samples correctly classified is winter wheat with almost 86 % of the samples well classified. 
Corn class improves more its classification than the rest of the classes from January to August. 
But, at the same time, it is the class with a high number of misclassification because it is difficult 
to differentiate from soybeans since both classes are cultivated in the same region of the CONUS 
(see Figure 23 in Section 4.2. Training and testing data). These misclassifications start to 
decrease from July being low and constant. Cotton only improves 13 samples from January to 
August being the class with less increment classification improvement. This is due to the cotton 
class having a high number of samples well classified from January. The figure also shows that 
there are misclassification samples in soybeans, which was assigned as sorghum during all the 
year, and it does not improve adding more monthly information. Focusing on the end of the 
year, alfalfa, sorghum and soybeans are almost perfectly classified.  
 
Finally, it is noticeable that some crops can be classified before, for example, in May cotton, 
sorghum, wheats and alfalfa reach more than 70% of accuracy. To analyze the best month to 
classify each crop, their percentiles were calculated. From the 85% percentile the values 
stabilize, so this percentile can be used to look for the first month where this value is reached. 
Following this asumption, Table 12 shows that cotton, sorghum and alfalfa fulfill the idea of 
classifying in August, winter wheat could be better predicted the month before and corn one 
month after. However, the classification for spring wheat and soybeans improves in October. In 
this month, spring wheat shows a minimal improvement in the classification and it would change 
if another percentile was used. Apart from that, harvests could influence in soybeans 
classification.  
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Figure 29 - CM per month of 2018 for the best classification model. The notation is equal to the Figure 

28. 
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Table 12  - Months where 85% percentiles are reached. 

class p85 month 

Cor 129 7 

Cot 130 8 

Sor 144 8 

Soy 139 10 

SW 131 10 

WW 130 9 

A 141 8 

 
 

4.3.2. Feature selection 
 
Spectral indices, spectral features and weather data provide valuable information for training a 
RF classifier. However, all this information is not required to obtain robust models. Selecting the 
most important features allows us, in general, to obtain similar results than using the original 
dataset. Thus, a feature selection of the three databases is performed using the 3500 samples 
from January to August 2018 over all the CONUS. Figure 30 shows the first features with more 
importance for each database. For the three databases, the correlation differences between the 
most important feature and the last selected are not very big. In the three cases the tendency 
decreases very smoothly. The feature selection method based on correlation (see Section 3.2.3. 
Feature Selection) chose only ten features over 42 spectral bands for the SF database. In this 
case, NIR and red bands in May and June are important bands being the NIR the two most 
important bands. The blue, red and SWIR bands of June are also included in the selected 
features, being the features from June the large number. When the feature selection method 
was applied to the SF+SI database, seven over 322 features were selected, highlighting that all 
of them were vegetation indices. That indicates the importance to calculate the vegetation 
indices to crop classification mapping. In this case, most of the features were selected from May. 
It is noticeable that NDVI is not included in this list, even other studies endorse its ability to 
differentiate between crops [52]. The last case (i.e. adding WD), ten features over 364 were 
selected. Only one vegetation index was included in the most important features list (TDVI for 
January) and the rest of the features were focused on precipitation (from January to August). 
The duration of the daylight in January is the most important feature, so it was a reason for 
analyzing it (Figure 31). 
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Figure 30 - Feature importances of spectral features (SF), spectral indices (SI), and weather data (WD) 

databases. The number represents the month (for weather data starting from 0: ex. January = 0) 

Figure 31 represents the boxplots of the day length of January for each crop for training and test 
subsets. It is possible to see four groups of crops out of seven. Cotton presents higher values of 
daylight time followed by the sorghum. However, the variability of the Sorghum makes share 
values with winter wheat and soybeans. The crops: soybeans, corn, winter wheat and alfalfa 
have quite close similar durations of daylight. And the crop with less time of light during the day 
is the spring wheat. This division follows a location pattern in the CONUS. Generally spring wheat 
is in the north, where the daylight is lower, while cotton is in the south with longer periods of 
light.  
 

 
Figure 31 - Boxplots of the daylenght in January (in seconds) per crop of interest. 

 
The features selected (with SF+SI+WD data) were used to classify the seven crops of interest 
with a RF. The optimal parameters of the RF obtained by 5-fold cross-validation are shown in 
the Table 13 together with the OA and kappa obtained. As the table presents the OA is not very 
high (lower than 64%). Additionally, the CM is plotted in the Figure 32. It is possible to see that 
the RF had problems with all the classes but especifically, to differentiate the corn and soybeans 
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and winter wheat and sorghum. Therefore, this step was useful for analyzing which features are 
important and their importance but taking into account that RF does not suffer as much as other 
classifiers the dimensionality problem, the classification map was not generated with the 
features selected.  
 

Table 13 - Optimized parameters of RF classifier for 
generating a crop classification map over the 
CONUS using only the selected features: daylenght 
in January, precipitations from January to August, 
and TDVI in January. 
 

Figure 32 - CM obtained using a RF classifier 
generated using the optimized parameters of 
table 13 and the features selected from January 
to August. The notation used here is equal to 
Figure 28. 
 

Trees 167 

Features split 6 

Min samples node 2 

Min samples split 3 

OA [%] 63.55 

Kappa 0.58 
 

 
 
 

4.3.3. Classification map 
 
To finish the temporal analysis, the classification map of the best classifier is generated. In Figure 
33.A, the CDL with all the land-cover classes over the CONUS are represented. The classes of 
interest mask are plotted in Figure 33.B. And the classification map obtained using the RF 
classifier and masked with the crops of interest is shown in Figure 33.C. This image shows that 
the classified crops are distributed accordingly with the CDL. However, a deeper insight into the 
classification in different zones over the CONUS provides a better visualization of the results. 
The result is shown in Figure 34. 
 
In Figure 34 are represented classification maps in specific and small areas which contain the 
crops of interest. The area A) shows a clear misclassification of the winter wheat by spring 
wheat. In the case of D) corn is clearly misclassified with cotton. And in E) the clear misclassify 
class is soybeans by sorghum. Furthermore, soybeans and corn are not clearly distinguished (B). 
Therefore, the location of examples seems that alternates the performance of the classifier. For 
example, in area A the classifier misclassifies the winter wheat, whereas it is almost perfectly 
classified in area C. That is because area A is a non common area and area C is a common place 
for cultivating winter wheat (see Figure 23 in Section 4.2. Training and testing data). In any case, 
these are small numbers of misclassification compared to all the crop acreage in the CONUS and 
the high accuracy of the classifier.  
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Figure 33 - A: CDL, B: mask of crops of interest, and C: crop classification map masked with the crop of 

interest in 2018. 

 
 

 
Figure 34 - Comparison between the CDL (left) and the crops classified (right) in small areas over the 
CONUS in 2018 with RF and the input datasets: spectral features, spectral indices, and weather data. 
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Taking into account the spatial pattern followed by the classifier to distinguish between crops, 
Figure 35 represents the duration of the daylight in January (i.e. the most important feature 
(Section 4.3.2 Feature selection)) along the CONUS. The relevance of this feature is being 
explained by the location of the crops because it changes along the latitude (north - south). 
Spring wheat grows mainly in the north, in zones where the length of the day is shorter 
compared with those in the south where cotton is planted. Then, other crops are in these areas 
the classifier misclassifies them. As it has commented before, winter wheat is misclassified with 
spring wheat in the north (Figure 34: A) and soybeans are classified as cotton in the south (Figure 
34: D). Also, in the area B, there were misclassifications. However, looking at the 
misclassifications in the areas E and F, which have similar latitude, the soybeans are classified 
like sorghum. Therefore, the duration of the day light is not the unique variable classifying by 
location. Another variable that is dependent on the location and was in the list of the selected 
features is the precipitation.  
 

 
Figure 35 - Mean of day length in January 2018. Grey scales represent values from 29975 s (dark) to 

38354 s (light). 

Figure 36 shows that west areas of the CONUS have significantly less precipitations than in the 
east. This explains why soybeans are classified as sorghum even though they grow at the same 
latitude. When the samples are taken in central-west zones the classifier tends to overpredict 
sorghum instead of identifying such as soybeans. 
 

 
Figure 36 - Mean of the precipitations from January to August 2018. Grey scales represent values from 

0.09 mm (dark) to 7.66 mm (light). 

In order to analyze whether the classification follows the same spatial pattern without the 
weather dataset, an RF classifier was trained over the CONUS using only the SF+SI. Figure 37 
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presents the CM per month for the seven classes. It is observed that the misclassifications of 
soybeans as sorghum diminishes compared with the classification using weather data. As well, 
the cotton improves its accuracies while monthly data is added. That means, the weather data 
included location information and the classifier without these data probably was based on the 
phenological information. Therefore, it seems that without weather data the location pattern is 
not that much reinforced. However, the classifications are better using the three datasets in 
general. 

 

 
Figure 37 - CM obtained with a RF classifier using SF+SI data per month in 2018. Notation is equal to 

Figure 28. 
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4.4. Forecasting: training 2018 - testing 2019 
 
This section presents the results obtained by a RF classifier trained with the data from the year 
before of the prediction. That is, training with data from 2018 and predicting and testing with 
data from 2019. The objective is to demonstrate if it is possible to classify when the training and 
testing data are not from the same year. This is done because in the year of the classification 
the CDL is not still provided. The forecasting is performed using the RF classifier and all the input 
data: SF+SI+WD. In this case, the overall accuracy achieves 82.2% and the kappa coefficient is 
0.79. These results demonstrate that it is possible to classify crop types in one year using training 
data from the previous year. Figure 38 shows the map over all the CONUS for 2019 using training 
samples from 2018 and its comparison with the CDL map of 2019. The figure shows that the 
classification is based on location patterns even more noticeable in this case, especially for corn 
and soybeans. At the west are primarily classified corn while at the east soybeans at continental 
scale. Therefore, these forecasts are useful for estimating crop acreages because of their 
accuracy, but when looking into determined areas it is better to use more spatially distributed 
training data from the same year when the classification takes place. 
 

 
Figure 38 - Crop classification map over the CONUS in 2019. A: CDL (in 2019), B: crop of interest mask, 

and C: Crop classification map masked with the crops of interest in 2019. 
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5. Conclusions 
 
In this study a method for obtaining as fast as possible crop classification maps over the CONUS 
has been tested in 2018. The method is based on a spatial reduction (from continental to county 
level) and a temporal analysis to detect the earliest month when accuracies are optimal. The 
study has been completed with a forecasting experiment to obtain a crop classification map in 
2019 using available labelled data from 2018. It has been performed using a fusion of Landsat 
and MODIS satellite data (30 m of spatial resolution) and Daymet weather data. The process was 
developed with the cloud computing GEE application and python programming language.  
 
Results have been assessed calculating the OA and Kappa coefficient for each different study 
area (CONUS, climatic regions or counties), input data (spectral features, spectral indices, and 
weather data), algorithm of classification (RF or SVM), and month of classification. 
 
First was analyzed a spatial approach to find representative crop areas within the CONUS, it was 
shown that there are counties with similar crop percentages to the entire CONUS. Seven 
counties were selected representing each of them an area percentage of one different crop 
(soybeans, corn, winter wheat, spring wheat, cotton, sorghum, and alfalfa) over the CONUS in 
2018. However, their temporal correlation over ten years (2009-2018) of their crop percentages 
compared to the CONUS was low. That means that percentages calculated in following years 
over the same counties are probable to not be comparable with those in all the CONUS. 
Therefore, the selected counties were only used to study how to perform classification maps 
over small areas distributed in the CONUS. A better selection of representativeness should be 
analyzed in further studies, see Section 5.1. Further studies. 
 
Secondly, a temporal analysis was performed to obtain the promptest classification maps during 
the crop season. It was demonstrated that it is possible to obtain accurate crop classification 
maps of soybeans, corn, winter wheat, spring wheat, cotton, sorghum, and alfalfa over the 
CONUS with accuracies up to 90% at the end of August. From August accuracies are similar than 
the following month until the end of the natural year. The same study was performed over the 
seven selected counties in the previous section, and it was shown that classifications over the 
entire CONUS provided greater accuracies than when the area is reduced to the counties. 
However, the counties analysis facilitates the collection of samples and the accuracies obtained 
are still greater than 75%. For both cases, best accuracies were obtained using all the full input 
data, that is spectral features, spectral indices, and weather data. In particular, weather data 
gave the most valuable information to distinguish between crop types. Especifically, the 
duration of the daylight in January and the precipitations until August (month of classification) 
were the most important features in the classification over all the CONUS. When weather data 
was not included, the vegetation indices which best contributed to the classification were: SR2, 
GRVI, SGI, GEMI, GDVI, DVI, and MCARI. And even though the NDVI was inserted as a feature in 
the study it was not included in the list. Regarding the classification algorithms, both RF and SVM 
are robust classification algorithms that provided accuracies greater than 90% from August in 
2018 in the CONUS. However, RF provided better accuracy than SVM. Finally, it was shown that 
the OA are stabilized in all cases from August, being its end the selected time of the prompt 
classification. Even that, it was shown by individual analysis of the crops, that depending on the 
crop it is possible to obtain good classification a few months early or a few months later. For 
example, in May cotton, sorghum, wheats, and alfalfa reached 70% of accuracy.  
 
Hereafter, classification maps were obtained for the end of August 2018 with RF and using 
spectral features, spectral indices and weather data. It was shown that the classifier is influenced 
by location (latitude, longitude) patterns and affected to distinguish between crops. That means, 



 

 46 

over large areas specific crops are mainly planted in specified regions, and for that, it is a 
challenge to detect them when they are planted out from their most common area. On the one 
hand, in northern areas spring wheat is more probable to be planted; thus, the classifier tends 
to predict crops as spring wheat in this area, and the same occurs in the south with cotton. On 
the other hand, corn and soybeans tend to be misclassified with each other because of their 
similar locations and growth profile curves. As well, soybeans have been confused with sorghum 
since January and according to the confusion matrix this error remains permanent until 
December. This happens when soybeans are in areas where the sorghum is mainly produced. It 
was observed that weather data seems to favour the location-pattern classifications: duration 
of the daylight seems to differentiate between latitudes and precipitations between longitudes. 
But not only weather data is affecting this way to distinguish between crops, because the 
classification still depends on geographical position when weather data are not included. Other 
factors could be the phenology events that variate along the space depending on the 
environmental growing conditions [25]. Therefore, it is possible to conclude that crops always 
have differences inherents (environmental, phenological, etc.) depending on their locations 
when cropping over large areas. So, classifiers tend to distinguish crop types basing their 
decision in geospatial patterns, and in the cases where crops are out of their typical region, they 
can be misclassified. This means that the classification can be improved if more samples are 
taken for the training and they are more spatially distributed. It was demonstrated that selecting 
small areas within the CONUS is an alternative to avoid location troubles in classifications over 
large areas. For example, selecting representative counties which accuracies are up to 75%. In 
the following section (Section 5.1. Further studies) is presented a new alternative for selecting 
representative counties. 
 
The forecasting experiment showed that using training samples from the year before of the 
classification (2018) allows to obtain accuracies around 80% in the end of August 2019. However, 
in this case, maps are even more based on the location of the crops, favouring their classification 
in the main region where they are cropped (location patterns). Therefore, this approach is valid 
to obtain statistics because its accuracies are high. 
 
To sum up, optimal accuracies (up to 80%) can be achieved by the end of August, or even before 
depending on the crop type, using preprocessed HISTARFM satellite imagery and weather data 
over the US. Knowing the location and acreage planted of each crop during the growing season 
ultimately provides a better transparency in the food distribution. This can contribute to make 
decisions related with food security and agro-economy for governments, farmers, consumers 
and markets. Moreover, according to this thesis the information that crop classification maps 
provides is free for everyone with access to the internet. 
 
 

5.1. Further studies 
 
The results show great OA for classifying the main seven crops over the CONUS during the 
season (at the end of August). Even that, some proposals are presented below in order to 
complement or improve the results obtained in this thesis: 
 

●  Crop type correlation between counties and the CONUS 
Regarding the results in Section 4.4.1. Crop percentages, not all crop percentages in the 
selected counties are correlated temporarily with CONUS percentages. The future 
objective is to estimate crop percentages in the CONUS using temporarily correlated 
counties. Analyzing the crop area relation (R2) between the CONUS and counties over 
10 years provides a blend of counties with high temporal correlations that can predict 
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crop areas in all the CONUS. A selection of more than one county per crop could be 
made to calculate the average of their estimations. The resulting counties could be used 
to study total crop productions in the CONUS. 

 
● Binary classification in counties 

The previous proposal can be complemented by conducting a more specific 
classification over each county. Classification over counties when each county 
represents a concrete crop can be performed separately and using a binary method: i.e. 
corn vs non-corn. 
 

● Train the classifier over several years 
Due to the variation of the phenologies in crops along the time, one classifier that 
performs correctly in one year is not supposed to perform the same in the next year. 
Training the algorithm along several years helps to adapt to interannual variations in 
plant behaviour, and thus obtain a most robust method. 

 
 

5.2. Contributions 
 
This work has lead in several scientific publications and international conferences, as is described 
as follow: 
 

1. Conference of “Geo for Good summit” (online conference, from 20th to 21st of October, 
2020): a poster entitle “Looking for near-real time crop high resolution mapping 
classification using GEE” by Rajadel-Lambistos, C.; Izquierdo-Verdiguier, E.; and 
Moreno-Martínez, A. was presented. 

 
2. American Geoscience Union (online conference from 1st to 17th December, 2020): The 

work entlite “Early crop mapping at continental scales derived from reconstructed high 
spatial resolution images” by Rajadel-Lambistos, C.; Izquierdo-Verdiguier, E.; Moreno-
Martinez, A.; Atzberger, C.; Beguería, S.; Maneta, M.; Kimball, J.; Camps-Valls, G.;  and 
Running, S. W. was accepted to an Oral presentation on the 8th of Decembre. 

 
3. The paper entitled “Optimizing timing of crop classification by high spatial resolution 

images at continental scales" is in process status. 
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