
María Gómez Lacruz

Cent ro de Invest igación en
Métodos de Producción de Sof tware

Designing Self-Adaptive
Systems through

Models at Run-time

Supervisors:
Dr. Joan Fons i Cors
Dr. Vicente Pelechano Ferragud

Maŕıa Gómez Lacruz

Designing Self-Adaptive
Systems through Models at
Run-time

Master Thesis, July 2011

Maŕıa Gómez Lacruz

Designing Self-Adaptive
Systems through Models at
Run-time

Master Thesis, July 2011

Designing Self-Adaptive Systems through Models at Run-time:

This report was prepared by
Maŕıa Gómez Lacruz

Supervisors
Dr. Joan Fons i Cors
Dr. Vicente Pelechano Ferragud

Members of the Master Thesis Committee
Dr. Oscar Pastor López, Universidad Politècnica de València
Dr. Vicente Pelechano Ferragud, Universitat Politècnica de València
Dra. Alicia Villanueva Garćıa, Universitat Politècnica de València

Date: July-2011
Comments: A document presented in partial fulfilment of the

requirements for the degree of Master in Soft-
ware Engineering, Formal Methods and Informa-
tion Systems by Universitat Politècnica de Valèn-
cia.

Centro de Investigación en Métodos de Producción de Software
Universitat Politècnica de València
Caḿı de Vera s/n, 46022 València
Spain

Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

A mis padres y mi hermano

Abstract

Adaptability is emerging as an underlying capability of software sys-
tems. There is an increasing demand for systems that dynamic-

ally adapt their behavior at run-time in response to changes in the
surrounding physical environment, without or with minimal human in-
tervention. These changes that occur while the system is in operation
require the system adaptation to occur at run-time. Therefore, new
challenges about how to specify, design, verify and realize these systems
arise.

Previous research has applied different engineering techniques to
build dynamically adaptive systems. These approaches have obtained
successful frameworks to support dynamic reconfiguration at run-time.
However they lack dedicated design techniques or methodologies to sys-
tematically develop self-adaptive systems. The implications and reper-
cussions of run-time reconfigurations are very difficult to foresee and
control at design time. Thus, this master thesis provides a model-based
method for the systematic design of trustworthy self-adaptive systems.
The purpose of the method is (1) to analyze run-time reconfiguration
effects at design time, and (2) to automatically refine reconfigurations
to avoid faulty situations through execution.

Potential design issues and guidelines to assist engineers in the design
of self-adaptive systems have been highlighted. We have identified a

series of design properties (Safe Reconfigurations and Reachability, Re-
dundancy, Reversibility, Contextual Consistency and Contextual De-
terminism) that capture assertions about desirable behavior of the sys-
tem. For each property, we have defined refinements to automatically
incorporate interesting behavior issues in self-adaptive system specific-
ations. We believe that dealing with these properties is essential for
reliable systems as a next step in obtaining self-adaptive systems that
fulfill many of the user’s needs.

We provide a set of tools that support the design method proposed.
These tools ease the modeling of self-adaptive systems, and automate
the analysis and refinement of reconfigurations.

To evaluate the approach, we have applied the design method in a
Smart Hotel self-adaptive system. This case study has demonstrated the
difficulty to foresee the behavior of self-adaptive systems at design time.
The proposed approach significantly enhances the ability to develop and
maintain self-adaptive systems, by providing mechanisms to analyze
run-time reconfiguration effects and automatically refine specifications
before execution.

Index

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Thesis Goals . 4

1.4 The Proposed Solution 5

1.5 Research Methodology 6

1.6 Thesis Context . 7

1.7 Thesis Structure . 7

2 Background 11

2.1 Autonomic Computing 12

2.1.1 The MAPE-K Autonomic Loop 14

2.2 Model Driven Development 15

2.2.1 Models@run-time 16

2.3 Software Product Lines 17

2.3.1 Dynamic Software Product Lines 19

2.4 Conclusions . 21

3 State of the Art 23

3.1 Self-adaptive systems development approaches 23

3.1.1 Hallsteinsen et al. Approach 24

3.1.2 Morin et al. Approach 25

3.1.3 Parra et al. Approach 26

3.1.4 Cetina et al. Approach 28

3.2 Analysis and Discussion 30

3.3 Conclusions . 30

4 A Design Method for Self-Adaptive Systems 33

4.1 Proposal Overview . 34

4.1.1 Design Method Overview 37

4.2 Design Method . 39

4.2.1 Possibility Space Obtention 39

4.2.2 Reconfiguration Analysis 41

4.2.3 Variability Refinement 43

4.3 Conclusions . 44

5 Design Properties Catalog 47

5.1 Safe Reconfigurations and Reachability Property 49

5.1.1 Definition . 50

5.1.2 Safe Reconfigurations and Reachability Refinement 51

5.2 Redundancy Property 53

5.2.1 Definition . 54

5.2.2 Redundancy Avoidance Refinement 55

5.3 Reversibility Property 57

5.3.1 Definition . 57

INDEX vii

5.3.2 Reversibility Refinement 58

5.4 Contextual Consistency Property 63

5.4.1 Definition . 63

5.4.2 Contextual Consistency Refinement 64

5.5 Contextual Determinism Property 66

5.5.1 Definition . 67

5.5.2 Contextual Determinism Refinement 68

5.6 Discussion through the application of properties 71

5.7 Conclusions . 71

6 Case Study: the Smart Hotel 73

6.1 Overview of the Smart Hotel Case Study 74

6.2 Application of the Design Method 75

6.2.1 Obtaining the Possibility Space 76

6.2.2 Reconfiguration Analysis and Refinement 76

6.3 Conclusions . 94

7 Tool Support 95

7.1 The Feature Model Metamodel 96

7.2 The Configuration Metamodel 98

7.3 The Resolution Metamodel 99

7.4 The State Machine Metamodel 101

7.5 Automating the Design Process 102

7.6 Conclusions . 105

8 Conclusions 107

8.1 Contributions . 107

8.2 Publications . 109

8.3 Future Work . 109

Bibliography 111

viii INDEX

List of Figures

1.1 Research methodology followed in this thesis 7

1.2 Roadmap of this master thesis 8

2.1 Approaches involved in this master thesis 12

2.2 IBM’s MAPE-K reference model for autonomic control
loops (Kephart & Chess, 2003) 14

2.3 MDA software development lifecycle (Miller & Mukerji,
2003) . 16

2.4 SPL life-cycle approach (Hallsteinsen et al., 2008) . . . 19

3.1 Hallsteinsen et al. approach 25

3.2 Morin et al. approach overview 26

3.3 Parra et al. approach . 28

3.4 Cetina et al. approach 29

4.1 Stages involved in the design method for self-adaptive
systems . 38

4.2 Overview of the first step in the design method 40

x LIST OF FIGURES

4.3 Obtaining the Possibility Space from a variability spe-
cification . 41

4.4 Overview of the second step of the design method 42

4.5 Overview of the last step of the design method 43

5.1 Design properties catalog 48

5.2 Safe Reconfigurations and Reachability property 51

5.3 Safe Reconfigurations and Reachability refinement . . . 53

5.4 Redundancy Property 55

5.5 Redundancy Avoidance Refinement 57

5.6 Reversibility Property 59

5.7 Total Reversible System Refinement 61

5.8 Feasible Possibility Spaces after applying the Nonrevers-
ible System refinement 63

5.9 Contextual Consistency Property 64

5.10 Contextual Consistency Refinement 66

5.11 Contextual Determinism Property 67

5.12 Contextual Determinism Refinement 69

6.1 Feature Model describing the Smart Hotel case study . . 75

6.2 Possibility Space of the Smart Hotel 77

6.3 Possibility Space with invalid configurations and unsafe
reconfigurations identified 79

6.4 Possibility Space after applying Safe Reconfigurations
and Reachability refinement 82

6.5 Possibility Space after applying the Redundancy Avoid-
ance Refinement. 84

6.6 Possibility Space after applying the “Nonreversible Sys-
tem” refinement removing R1 86

6.7 Possibility Space after applying the “Nonreversible Sys-
tem” refinement removing R2 87

LIST OF FIGURES xi

6.8 Possibility Space after applying the“Total Reversible Sys-
tem” refinement . 89

6.9 Possibility Space after applying the “Contextual Consist-
ency” refinement . 90

7.1 The Feature Model metamodel 97

7.2 MFM environment . 98

7.3 The Configuration metamodel 99

7.4 Graphical editor for Configuration Models 99

7.5 The Resolution metamodel 100

7.6 Graphical editor for Resolution models 100

7.7 The State Machine metamodel 101

7.8 Graphical editor for State Machine models 102

7.9 Overall view of the transformation process 104

xii LIST OF FIGURES

List of Tables

6.1 Initial set of resolutions of the Smart Hotel 75

6.2 Configurations defined by the Possibility Space 78

6.3 Resolutions modified to avoid unsafe reconfigurations . . 80

6.4 New resolutions generated by the refinement 81

6.5 Redundant reconfigurations in the Possibility Space . . 83

6.6 Resolutions modified by the refinement to avoid redund-
ancy . 84

6.7 Resolution R1 after applying the Nonreversible System
refinement removing R1 86

6.8 Resolution R2 after applying the Nonreversible System
refinement removing R2 87

6.9 New resolutions generated by the Total Reversible refine-
ment . 88

6.10 Generated Resolutions after applying Contextual Con-
sistency refinement . 92

6.11 New defined resolution 93

xiv LIST OF TABLES

Chapter 1

Introduction

Software systems are becoming an inherent part of daily human life. The
increasing complexity, distribution, and dynamism of current software
systems, has led the software engineering community to look for new
ways to design and manage systems and services. In this attempt,
the capability of the system to adjust its behavior in response to the
environment in the form of self-adaptation has become one of the most
promising research directions (Brun et al., 2009). The “self-” prefix
indicates that the system is able to perform changes autonomously,
without or with minimal human intervention, during its execution.

There is an increasing demand for software systems that dynam-
ically adapt their behavior at run-time in response to changes in
their user preferences, requirements, supporting computing infrastruc-
ture and in the surrounding physical environment (Cheng et al., 2009;
Salehie & Tahvildari, 2009). Changes can also be induced by failures
or unavailability of parts of a software system itself. In these circum-
stances, it is necessary for a software system to change its structure
and/or behavior as necessary to continue achieving its goals. These

2 Introduction

changes that occur while the system is in operation require the system
adaptation to occur at run-time. This poses challenging question about
how to specify, design, verify and realize this system (Zhang & Cheng,
2006).

This thesis provides an approach to design self-adaptive sys-
tems. The approach gives a way for modeling how a system should
self-adapt to avoid faulty situations, and guaranteing a series of desir-
able properties through execution. In this work, modeling techniques
are applied in order to face the development of such complex systems
from a higher abstraction level.

The reminder of this chapter is organized as follows: Section 1.1
explains the purpose of this work. Section 1.2 details the problem that
the present thesis resolves. Section 1.3 introduces the goals defined for
this work. Section 1.4 describes the approach followed in this thesis to
fulfill the detected goals. Section 1.5 introduces the research methodo-
logy that has been followed. Section 1.6 explains the context in which
the work has been performed. Finally, Section 1.7 gives an overview of
the structure of this document.

1.1 Motivation

Self-adaptability is emerging as a necessary underlying capability for
many applications, particularly for areas such as environmental monit-
oring, disaster management and other applications deployed in dynam-
ically changing environments (Bencomo et al., 2008a). Such applica-
tions inevitably have to reconfigure themselves according to fluctuations
in their environment. Current software development approaches are not
adequate to develop systems that dynamically adapt to environment
fluctuations. As a result, innovative alternatives are required (Bencomo
et al., 2008b).

The engineering of self-adaptivity is one of the most challenging
issues to address in current systems due to its complexity, as well as
the unpredictability of changes in the environment. Although numer-
ous research efforts (Cetina et al., 2008; Parra et al., 2009; Trinidad

1.2 Problem Statement 3

et al., 2007; Hallsteinsen et al., 2006; Istoan et al., 2009) have focused
on designing self-adaptive software, there are still some major open
problems in this area.

Previous research has applied different engineering techniques to
build dynamically adaptive systems. These approaches have obtained
successful frameworks to support dynamic reconfiguration at run-time.
However they lack dedicated design techniques or methodologies to sys-
tematically develop reconfigurable systems from requirements to a val-
idated and verified reconfigurable system.

A fundamental principle of self-adaptive systems is variability man-
agement. Current approaches use variability modeling from design-time
at run-time. In general terms, the development of self-adaptive systems
first focus on characterizing the variability by means of variability mod-
els and, afterwards, leverage those models at run-time to allow the sys-
tem to adapt itself. Nevertheless, dynamic adaptation can often lead to
inappropriate or unpredictable behavior. For traditional software sys-
tems, once a product is obtained, it can be tested intensively before it
reaches the users. However, the case of self-adaptive systems is different
since different configurations are obtained at run-time. Therefore, it is
difficult to evaluate the design of an adaptive system and also it is dif-
ficult to test the system behavior since it depends on specific events or
context situations. In addition, a failure in reconfigurations directly im-
pacts the user experience because the reconfiguration is performed when
the system is already under the user’s control (Cetina et al., 2010).

The goal of this master thesis is to develop an appropriate approach
to model, analyze and validate the behavior of self-adaptive systems
before its execution.

1.2 Problem Statement

In spite of numerous excellent research efforts, the development of self-
adaptive systems is still in its infancy. The work presented in this
thesis seeks to improve the development of self-adaptive systems by
focusing on the design stage. In particular, the challenges that this

4 Introduction

thesis addresses can be stated by the following three research questions:

Research question 1. How to carry out a systematic design approach
to develop trustworthy self-adaptive systems?

Research question 2. How to specify assertions about desirable be-
havior that self-adaptive systems should perform during execu-
tion?

Research question 3. How can dynamic adaptation be validated and
adjusted at design-time to avoid failures during execution?

These research questions are analyzed and answered in the following
sections.

1.3 Thesis Goals

The main goal of this master thesis is to define a methodological ap-
proach to systematically design self-adaptive systems.

First of all, research question 1 deals with the important issue of
design for adaptability. This work defines a systematic design method
to build complex and dependable self-adaptive software systems. Tech-
niques and tools are provided in order to aim software engineers to
minimize error-proneness of this kind of complex development.

Regarding research question 2, given the adaptation specification
of self-adaptive systems it is difficult to foresee the behavior that the
system will perform at run-time. We have identified a series of design
properties that capture assertions about desirable behavior of the sys-
tem. For each property, we have defined refinements to automatically
incorporate interesting behavior issues in adaptation specifications. We
believe that dealing with these properties is essential for reliable sys-
tems as a next step in obtaining self-adaptive systems that fulfill many
of the user’s needs.

Regarding research question 3, another goal of this work is to
determine how to validate the behavior that the system will perform

1.4 The Proposed Solution 5

at run-time. Since the models that form the basis for reconfiguration
strategies are available at design time, it is possible to conduct a thor-
ough analysis to validate configurations in an early stage of the devel-
opment process without first implementing them. This work provides
support for validating adaptation, if problems are foreseen, the models
can be adjusted through refinements to avoid the appearance of failures
during execution. We have automated this step with tool support.

1.4 The Proposed Solution

Model Driven Engineering (MDE) (Schmidt, 2006) proposes the use of
models as the basis for system development. A model is a simplification
of a system, built with an intended goal in mind, that should be able to
answer questions in place of the actual system (Bézivin & Gerbé, 2001).
The use of models in engineering has a twofold benefit. On the one
hand, models guide the development of a system. On the other hand,
models allow to reason about the system avoiding to deal with technical
details.

In a context where the possible combinations of the system and
the context situations are constantly increasing, the implementation of
ad-hoc solutions to cover all possible combinations is not feasible. At
design time, engineers can avoid designing by hand all of the sys-
tem’s possible configurations and transitions by explicitly defining a self-
adaptive system as a Dynamic Software Product Line (DSPL)(Morin
et al., 2009). Engineers model the dynamic adaptation of the system
and the possible variants as a DSPL. These models are defined offline
before the initial system deployment, and are leverage at run-time to
drive the dynamic adaptation process. The quality and correctness of
models are crucial and must be checked as early as possible.

In this work, we introduce a design process based on the founda-
tions of MDE and DSPL to design dependable self-adaptive systems.
Specifically, this approach provides the following contributions:

A design method is defined to guide engineers in the construction
of trustworthy self-adaptive systems in a systematic way. The method

6 Introduction

comprises from specification to the final running system. The purpose
of the design method is (1) to analyze the run-time reconfiguration
effects with respect to a set of stated valuable properties (2) to assure
that the system perform the desirable behavior at run-time through
refinements. We have proposed several design properties to manage
important concerns of system execution. Dealing with design properties
optimizes self-adaptive system design and, consequently, execution since
the design models are also used at run-time to drive the behavior of the
system.

1.5 Research Methodology

In order to perform the work of this thesis, we have followed the design
methodology for performing research in information systems as de-
scribed by (March & Smith, 1995) and (Vaishnavi & Kuechler, 2004).
Design research involves the analysis of the use and performance of
designed artifacts to understand, explain and, very frequently, to im-
prove on the behavior of aspects of Information Systems (Vaishnavi &
Kuechler, 2004).

The design cycle consists of 5 process steps: (1) awareness of the
problem, (2) suggestion, (3) development, (4) evaluation, and (5) con-
clusion. The design cycle is an iterative process; knowledge produced
in the process by constructing and evaluating new artifacts is used as
input for a better awareness of the problem.

Following the cycle defined in the design research methodology, we
started with the awareness of the problem (see Figure 1.1): we identified
the problem to be resolved and we stated it clearly.

Next, we performed the second step which is comprised of the sug-
gestion of a solution to the problem, and comparing the improvements
that this solution introduces with already existing solutions. To do this,
the most relevant approaches were studied in detail. Once the solution
to the problem was described, we plan to develop and validate it (steps 3
and 4). These two steps will perform in several phases (see Figure 1.1).

Finally, we will analyze the results of our research work in order

1.6 Thesis Context 7

Problem
awareness

Solution
suggestion

State of the
art review

Reconfiguration
analysis

technique

Refinement
technique

Conclusions
Design method for

self-adaptive
systems

Tool support
for automation

Step 1 Step 2 Step 3 and 4 Step 5

Figure 1.1: Research methodology followed in this thesis

to obtain several conclusions as well as to delimitate areas for further
research (step 5).

1.6 Thesis Context

This Master Thesis has been developed in the context of the research
center Centro de Investigación en Métodos de Producción de Software
(ProS) of the Universitat Politècnica de València. The work that has
made the development of this thesis possible is in the context of the
following research projects:

• EVERYWARE: project referenced as TIN2010-18011, supported
by Ministerio de Ciencia e Innovación (MICINN).

• VALi+d: program for training of researchers, supported by Con-
selleria d’Educación of Generalitat Valenciana.

1.7 Thesis Structure

Figure 1.2 shows a roadmap for this thesis. It consists of eight chapters
as follows:

Chapter 2, Background. This Chapter presents the main concepts
and characteristics of the approaches related with this thesis, in order to

8 Introduction

1- Introduction
2- Bacground

3- State of the Art
5- Properties Catalog

4- Design Method

6- Case Study

7- Tool Support

8- Conclusion

Preface Background Contribution Final remarks

Figure 1.2: Roadmap of this master thesis

provide to the reader a basic background for understanding the overall
thesis work. Specifically, this chapter presents Autonomic Computing,
Model Driven Development and Software Product Lines.

Chapter 3, State of the Art. This chapter shows an analysis of
the most important approaches that have been proposed to face self-
adaptivity.

Chapter 4, A design method for Self-Adaptive Systems. This chapter
introduces the design method for the development of self-adaptive sys-
tems through variability refinementsw. This overview covers the main
building blocks of the approach as well as the process to apply it.

Chapter 5, Properties Catalog. This chapter terms a catalog of
desirable design properties for self-adaptive systems and particular re-
finements to assure each property automatically.

Chapter 6, Case Study. This chapter introduces how the approach
has been evaluated throughout the case study of a Smart Hotel.

Chapter 7, Tool support. This chapter shows an overview of the
tools proposed to support the design method.

Chapter 8, Conclusions and Future Work. This chapter presents

1.7 Thesis Structure 9

the main contributions and results of this work. In addition, this chapter
discusses future research directions.

10 Introduction

Chapter 2

Background

In this chapter the background of the master thesis is introduced. This
thesis deals with the design of self-adaptive systems that can be ad-
apted when context conditions change. As it is shown in Figure 2.1,
our approach combines aspects of three research areas: Autonomic
Computing, Models@run-time and Dynamic Software Product
Lines. Therefore, this chapter presents the main concepts and charac-
teristics of these disciplines in order to provide a basic background for
understanding the overall thesis work.

The rest of this chapter is organized as follows. Section 2.1 presents
the foundations of Autonomic Computing. Section 2.2 presents Model
Driven Development, which is a paradigm where we can construct a
model of a software system that can then be transformed into the real
functional software. In addition, the Models@run-time approach is in-
troduced as a subfield of the previous one. Next, 2.3 introduces Software
Product Lines as a paradigm of software reuse which intends to produce
a set of products that share a common set of assets in an specific do-
main. Furthermore, Dynamic Software Product Lines, are detailed as a

12 Background

DSPL

SPL
MDD

MODELS@

RUN.TIME

AUTONOMIC
COMPUTING

Figure 2.1: Approaches involved in this master thesis

special case of Software Product Lines. Finally, Section 2.4 concludes
the chapter.

2.1 Autonomic Computing

In 2001, IBM released a manifesto (Horn, 2001) describing the vision of
Autonomic Computing. The purpose is to countermeasure the complex-
ity of software systems by making systems self-managing. The paradox
has been spotted, that systems need to become even more complex to
achieve this. The complexity, it is argued, can be embedded in the sys-
tem infrastructure, which in turn can be automated. The similarity of
the described approach with the autonomic nervous system of the body,
which relieves basic control from our consciousness, gave birth to the
term Autonomic Computing.

In Kephart’s and Chess’ Vision of Autonomic Computing (Kephart
& Chess, 2003), the following four fundamental properties about auto-
nomic computing were discussed: self-configuration, self-optimization,
self-healing and self-protection. All of these four fundamental proper-

2.1 Autonomic Computing 13

ties work together to build the essence of autonomic computing: self-
management. As a result, the system components and devices will seem
completely natural and the users are unaware of the complexity of en-
tire autonomic computing system. Now the self-* properties has grown
into a wide range list (Sterritt et al., 2005). Here is a brief description
of the fundamental properties:

Self-configuration. An autonomic computing system configures itself
according to high-level goals, that is, by specifying what is desired,
not necessarily how to accomplish it. This can mean being able
to install and set itself up based on the needs of the platform and
the user.

Self-optimization. An autonomic computing system optimizes its use
of resources. It may decide to initiate a change to the system
proactively (as opposed to reactive behavior) in an attempt to
improve performance or quality of service.

Self-healing. Autonomic computing systems should have the ability
to discover, diagnose and repair failed components without the
disruption of system services. Systems and critical services must
not be crashed, disrupted even under the extreme conditions. To
achieve it, autonomic computing systems must have the ability to
recovery from an unexpected situation automatically.

Self-protection. Autonomic computing systems should have the abil-
ity to anticipate, detect, identify and protect against attacks from
anywhere. Autonomic systems will be self-protecting in two senses.
They will defend the system as a whole against large-scale, correl-
ated problems arising from malicious attacks or cascading failures
that remain uncorrected by self-healing measures. They also will
anticipate problems based on early reports from sensors and take
steps to avoid or mitigate them.

14 Background

Figure 2.2: IBM’s MAPE-K reference model for autonomic control
loops (Kephart & Chess, 2003)

2.1.1 The MAPE-K Autonomic Loop

To achieve autonomic computing, IBM has suggested a reference model
for autonomic control loops (Kephart & Chess, 2003), which is known
as MAPE-K (Monitor, Analyze, Plan, Execute, Knowledge) loop and
is depicted in Figure 2.2.

In the MAPE-K autonomic loop, the managed element represents
any software or hardware resource that is given autonomic behavior by
coupling it with an autonomic manager. The managed element can for
example be a specific part or software component or a complete system.
The data collected by the sensors allows the autonomic manager to
monitor the managed element and execute changes through effectors.
The autonomic manager is a software component that ideally can be
configured by human administrators using high-level goals and uses the
monitored data from sensors and internal knowledge of the system to
plan and execute, based on these high-level goals, the low-level actions
that are necessary to achieve these goals.

2.2 Model Driven Development 15

2.2 Model Driven Development

Model Driven Development(MDD) or Model Driven Engineering (MDE)
is a modern software development paradigm where applications are spe-
cified at a more abstract level using models. Then, by means of trans-
formation techniques, one or more concrete implementations are gener-
ated (Stahl et al., 2006; Bézivin, 2004).

With the increase of complexity of today software systems, MDD has
become an accepted and widely applied development approach provid-
ing a number of benefits over more traditional, code oriented, software
development. Through the utilization of MDD, software developers are
able to separate specific domain knowledge from technology concerns.
Formal models and transformations allow traceability between models
and their target implementations, providing reliable links through sys-
tem requirements, design, implementation and testing. Thus, MDD
maximizes the productivity and quality of software.

Model Driven Architecture (MDA) is a framework proposed by the
Object Management Group (OMG) in 2001 to provide standard guidelines
in engineering software systems with MDD approaches (Miller & Mukerji,
2003). MDA does not explicitly specify a detailed development pro-
cess, rather it gives only generic method guidelines defining the sys-
tem models and facilitating transformations between different model
types. MDA specifies system in three layered models: system require-
ments are specified in the CIM (Computation-Independent Model); the
Platform-Independent Model (PIM) is the model that describes the sys-
tem design independent of the implementation platform; the Platform-
Specific Model (PSM), on the other hand, describes the system design
in the form of a platform-dependent model. From PIM following an
OMG standard mapping, PSMs are generated from where application
code is generated. Figure 2.3 illustrates the software development life-
cycle according to MDA.

MDA is actually a consolidation of several OMG standards for us-
ing models extensively in software development. PIMs are defined using
platform independent modeling languages like UML (Unified modeling
language). UML Profile which is a standardized set of extensions for

16 Background

Figure 2.3: MDA software development lifecycle (Miller & Mukerji, 2003)

UML models to define PIMs with a specific domain details. For per-
forming automated mapping between different models a model based
transformation language QVT (OMG, 2005) is a standard. Meta Ob-
ject Facility (OMG, 2006) is a standard for defining metamodels for
other languages like UML. These and several other standards define the
core infrastructure of the MDA and provide the architecture for modern
system modeling.

2.2.1 Models@run-time

In the model-driven software development area, research effort has fo-
cused primarily on using models at design, implementation and deploy-
ment stages of development. Nevertheless the software models produced
during development can be effectively leveraged during run-time (Blair
et al., 2009). A promising approach to manage complexity in run-time
environments is to develop adaptation mechanisms that leverage soft-

2.3 Software Product Lines 17

ware models, referred to as models@run.time (Morin et al., 2009).

The aim of models@run.time is to extend the applicability of model-
driven engineering (MDE) techniques to the run-time environment. The
models@run.time approach considers a model in the same way that
defines MDE but with some slight differences. A run-time model is a
causally connected self-representation of the associated system that em-
phasizes the structure, behavior, or goals of the system from a problem
space perspective.

Models at run-time are considered as a key enabling technology for
systems that control themselves as they operate. Run-time models can
be used in different ways: to support dynamic state monitoring and
control of systems during execution, to support semantic integration
of heterogeneous software elements at run-time, to fix design errors, to
fold new design decisions into a running system to support controlled
ongoing design, to support unanticipated modifications and to support
dynamic evolution of software design (Blair et al., 2009).

Summarizing, the use of models at run-time brings new opportunit-
ies for autonomic capabilities by reutilizing the efforts invested at design
time. The modeling effort made at design time is not only useful for
producing the system but also provides a richer semantic base for auto-
nomic behavior during execution.

2.3 Software Product Lines

One increasing trend in software development is the need to develop
multiple, similar software products instead of just a single individual
product. Because of cost and time constraints it is not possible for
software developers to develop a new product from scratch for each new
customer, therefore, software reuse must be increased.

The Software Engineering Institute (SEI) proposed Software Product
Line Engineering (SPLE) as a solution to increase reuse in software de-
velopment. A Software Product Line (SPL) is a set of software systems
that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed

18 Background

from a common set of core assets in a prescribed way (Clements &
Northrop, 2001). SPL is rapidly emerging as a viable and important
software development paradigm allowing companies to realize improve-
ments in time to market, cost, productivity, quality, and other business
drivers.

A fundamental characteristic of product line engineering is a shift
from a single system point-of-view to a set of products. As a result, the
differences or variations among products become a primary concern.
Thus management of variation, so called variability management, is
a core capacity of SPLE. The idea is to separate all products in the
product line into three parts and to manage them throughout develop-
ment:

Commonality: parts which are common to all products in the product
line. On the requirements side these are common requirements;
in the implementation this results in common components.

Reusable variation: aspects that are common to some, but not all,
products in the product line. These are the powerhouse of product
line engineering, by providing a plug-and-play mechanism, it is
easy to assemble new products by reuse of existing variability.

Product specifics: no matter how well designed a product line is
there will always be requirements that are specific to individual
products. Here, it is key not to waste any effort on generic devel-
opment for aspects that will be used only once.

In addition to variability management, a second key principle of
product line engineering is the use of a two-lifecycle approach. Fig-
ure 2.4 illustrates the SPL development approach. The development is
separated into Domain Engineering process and Application Engineer-
ing process:

Domain Engineering is responsible for all analysis of the product line
as a whole and for producing any common and reusable variable
parts.

2.3 Software Product Lines 19

Figure 2.4: SPL life-cycle approach (Hallsteinsen et al., 2008)

Application Engineering is then responsible for the production of
product-specific parts, the integration and for all aspects partic-
ular to individual products.

The approach has been successfully used to develop a wide variety of
product lines in a number of different domains, ranging from avionics
over medical equipment to information systems, in a wide variety of
organizations.

2.3.1 Dynamic Software Product Lines

In emerging domains such as ubiquitous computing, service robotics or
ambient intelligence, applications are increasing in complexity, and a
higher degree of adaptability is demanded (Istoan et al., 2009). To cope
with these challenges, there is a need for new development techniques
that produce software capable of adapting to dynamic environments.

Dynamic Software Product Lines (DSPLs) (Hallsteinsen et al., 2008)

20 Background

provides a systematic way to build self-managing systems, i.e., software
systems that can optimize themselves relative to changes in their oper-
ating environment and in customer needs. DSPLs exploits traditional
SPL concepts (such as variability modeling, common assets shared by
product variants, and automated product derivation) to provide a sys-
tematic basis for the engineering of adaptive systems.

The central shift from the traditional view on software product lines
to dynamic software product lines is that variation points are bound at
run-time, first when software is launched to adapt it to the current
situation, and subsequently re-bound during operation to adapt the
software to changes in the situation. Although traditional SPL engin-
eering recognizes that variation points are bound at different stages of
the development, and possibly also at run-time, the focus has been on
variation points that are bound before the software is delivered.

The main idea of DSPLs is to achieve systems capable of modifying
their own behavior with respect to changes in their operating environ-
ment by dynamically rebinding variation points at run-time. In a DSPL,
a configurable product (CP) is produced from a product line similarly
to standard SPL. However, the reconfiguration ability implies the usage
of two artifacts to control it: the decision maker and the reconfigurator.
The decision maker is in charge of capturing all the information in
its environment that suggests a change such information from external
sensors or even from users. The analyzer must know the whole struc-
ture of a CP so it makes a decision on which features must be activated
and deactivated. The reconfigurator is responsible of executing the
decision by using the standard SPL run-time binding. A CP may be
considered as an extension to traditional SPL products where there are
no bound features but the decision maker and the reconfigurator and
the remaining features are bound at run-time. As a consequence, new
features may be added to an existing product or even existing features
may be updated at run-time.

In summary, a DSPL should have the following properties:

• It exhibits dynamic (run-time) variability: (re-)configuration and
binding at run-time;

2.4 Conclusions 21

• Variable properties change several times during lifetime;

• It deals with environmental changes;

• It deals with changes from users (e.g., changes in functional and/or
quality requirements);

• It may exhibit changes of variation points during run-time, e.g.,
addition of variation points during run-time (optional);

• It may support context-awareness (optional), situation awareness;

• It behaves autonomic and exhibits self-adaptive properties (op-
tional);

• It is capable of automatic decision making (optional);

• It may be a subset of SPL that has an individual environment/-
context situation.

Interest in DSPLs is growing as more developers apply the SPL
approach to dynamic systems e.g (Cetina et al., 2008; Parra et al., 2009;
Trinidad et al., 2007; Hallsteinsen et al., 2006; Istoan et al., 2009).

2.4 Conclusions

This chapter introduces the foundations in which our approach relies.
It provides an overview of different techniques that are related with
the work developed in this master thesis. The analysis has considered
three disciplines: Autonomic Computing, Model Driven Development
and Software Product Lines.

22 Background

Chapter 3

State of the Art

This chapter introduces the most important approaches that support
design and development of self-adaptive systems. Once we have carried
out a thorough analysis, we have identified a series of weaknesses in
current approximations. The work proposed in this master thesis deals
with the identified weaknesses.

The reminder of the Chapter is organized as follows. Section 3.1
presents different approaches proposed to build self-adaptive systems.
Section 3.2 summarizes the conclusions extracted after analyzed these
approximations. Finally, Section 3.3 concludes the chapter.

3.1 Self-adaptive systems development approaches

In this section we have analyzed the most relevant approaches for de-
velopment of self-adaptive systems. The approaches are presented chro-
nologically according to the year in which they appeared.

24 State of the Art

3.1.1 Hallsteinsen et al. Approach

Hallsteinsen et al. (Hallsteinsen et al., 2006) present the MADAM ap-
proach to build adaptive systems. The MADAM approach is based on
ideas from software product line engineering. Adaptive applications are
built as component based system families with the variability modeled
explicitly as part of the family architecture. MADAM uses property
annotations on components to describe their Quality of Service. At run-
time, the adaptation is performed using these properties and a utility
function for selecting the component that best fits the current context.
The adaptation platform of the MADAM approach provides (1) a con-
ceptual model and (2) reference architecture for adaptive applications
as follows.

1. The conceptual model (see Figure 3.1 left) is based on entities
which interact with other entities by providing and making use of
services through ports. A port represents a service offered by an
entity or a service needed by an entity. Entities may be composed
of smaller entities, allowing for a hierarchic structure. To model
variation, both in the application and in its context, the concep-
tual model provides the concept of entity type. An entity type
defines a class of entities with equivalent ports which may replace
each other in a system. With these concepts the conceptual model
is able to model an adaptive application architecture as a possibly
hierarchic composition of entity types, which defines a class of ap-
plication variants as well as a class of contexts in which they may
operate.

2. The reference architecture (see Figure 3.1 right) provides com-
ponents for monitoring user needs and available resources, for de-
riving a more suitable variant when the user needs or available
resources change, and for transforming the current variant into
the preferred one by reconfiguration at the component level. To
enable the derivation of the variant that best fits a given context,
the MADAM approach is based on property annotations associ-
ated with ports. Property annotations allow to reason about how

3.1 Self-adaptive systems development approaches 25

well an application variant matches its context, by comparing the
properties of the services provided by the application with the
properties required by the user. The match to user needs is ex-
pressed in a utility function. By default the utility function is a
weighted mean of the differences between properties representing
user needs and properties describing the service provided by the
application, where the weights represent priorities of the user.

Figure 3.1: Hallsteinsen et al. approach

3.1.2 Morin et al. Approach

Morin et al. (Morin et al., 2008) present a new approach where they
address challenges in adaptive system construction and execution by
combining certain aspect-oriented and model driven techniques. Mod-
els cope with complexity through abstractions and are used both to
specify the dynamic variability at design time and to manage run time
adaptations. The variant models capture the variability of the adaptive
application. The actual configurations of the application are built at
run-time by selecting and composing appropriate variants. An adapta-
tion model specifies which variant have to be selected depending on the
context of the running application. Specifically, they propose to model
the variants instead of the configurations. Then, the configurations can

26 State of the Art

then be built by automatically combining the variants. In practice this
is achieved using Aspect-Oriented Modeling techniques for architecture
models. Aspect oriented techniques are utilized to model the adaptation
concerns separately from the other aspects of the system.

Figure 3.2 presents the conceptual model of this approach. The
approach is divided in two phases; design time and run-time. At design-
time, the application base and variant architecture models are designed
and the adaptation model is built. At run-time, the adaptation model is
processed to produce the system configuration that should be executed.

Figure 3.2: Morin et al. approach overview

3.1.3 Parra et al. Approach

Parra et al. (Parra et al., 2009) introduces a Context-Aware Dynamic
Software Product Line for building service oriented applications and ad-
apting them at run-time in accordance with their using context. This
DSPL, named CAPucine for Context-Aware Service-Oriented Product
Line is based on a model-driven approach. CAPucine distinguish two
different processes for product derivation. The first process uses a fea-
ture model (see Figure 3.3) that represents the product family. For

3.1 Self-adaptive systems development approaches 27

every feature in the Feature model, there is an associated asset that
corresponds to a partial model of the product itself. The assets, rep-
resented as models, get composed and transformed in order to generate
the product. The second process relates to dynamic adaptation. This
process introduces context-aware assets that operate at run-time. These
context-aware assets contain three kinds of data: the context when the
assets can be modified, the place where the assets must be applied and
the change that must be performed. The realization of these context-
aware assets combines two run-time platforms. On the one hand, COS-
MOS is a context-aware framework connected to the environment by the
use of sensors. On the other hand FraSCAti is a Service Component
Architecture (SCA) platform with dynamic properties that enables to
bind and unbind components at run-time. CAPucine allows designing
and processing context-aware applications based on an SCA platform
which is dynamic, introspectable, and reconfigurable in accordance with
the context environment.

Overall, the platform architecture is depicted in Figure 3.3 right.
The Context Manager element is composed of several nodes. Every
node is in charge of recovering context information from different sources
like a sensor layer who captures raw data from the environment, user
preferences, and the Run-time Platform who provides information about
current state and configuration of applications. Eventually, the Context
Manager can also perform a precessing of data, so that, it is presented as
single values which can be evaluated in the condition of each context-
aware asset. The Decision Maker element is in charge of evaluating
the context and decide whether or not to modify the application. It is
linked to a repository of rules. The rules represent the clauses of each
context-aware asset. Finally, the Run-time Platform element is where
Application Components are executed. It controls the life cycle of all
the application components and has access to their control mechanisms.

28 State of the Art

Figure 3.3: Parra et al. approach

3.1.4 Cetina et al. Approach

Cetina et al. (Cetina et al., 2009a) designs self-adaptive pervasive sys-
tems by combining the main ideas of Model Driven Development and
Dynamic Software Product Lines. This approach reuses design vari-
ability models during run-time to achieve autonomic behavior. The
run-time variability models support the self-reconfiguration of systems
when triggered by changes in the environment. The question when to
adapt is solved at run-time when checking a set of context conditions.
The approach performs reconfiguration in terms of features and uses
a Model-based Reconfiguration Engine (MoRE) to translate contextual
changes into changes in the activation/deactivation of features. Then,
these changes are translated into the reconfiguration actions that modify
the system components accordingly. Cetina et al. have applied their
approach to the smart-homes domain.

The overall reconfiguration steps are outlined in Figure 3.4. The
Context Monitor uses the run-time state as input to check context con-
ditions (step 1). If any of these conditions are fulfilled (e.g., home
becomes empty), then MoRE uses model operations to query the run-
time models about the necessary modifications to the architecture (step
2). The response of the models is used by the engine to elaborate a

3.1 Self-adaptive systems development approaches 29

Reconfiguration Plan (step 3). This plan contains a set of Reconfig-
uration Actions, which modify the system architecture and maintain
the consistency between the models and the architecture (step 4). The
execution of this plan modifies the architecture in order to activate/de-
activate the features specified in the resolution (step 5).

The reconfiguration of the system is performed by executing recon-
figuration actions that deal with the activation/deactivation of compon-
ents, the creation and destruction of channels among components and
the update of models accordingly to keep them in sync with the sys-
tem state. MoRE makes use of the OSGi framework for implementing
the reconfiguration actions. This Framework implements a complete
components model that extends the dynamic capabilities of Java.

Figure 3.4: Cetina et al. approach

30 State of the Art

3.2 Analysis and Discussion

The different approaches in the self-adaptiveness area are mainly fo-
cused on supporting reconfiguration at run-time. These proposals nor-
mally observe events form the environment and provide automatic re-
configuration of the system. According to the approaches evaluated in
this chapter, we have identified common weaknesses that this master
thesis tries to solve:

• The approaches provide an execution platform or mechanism to
realize reconfiguration at run-time, but they lack a dedicated
methodology enabling developers to systematically develop the
reconfigurable systems. That is, developer guidance from the re-
quirements to a validated and verified reconfigurable system.

• The approaches lack support for notable concerns such as valida-
tion analysis, debugging or tracking capabilities.

• All of the analyzed approaches are also missing the evaluation of
the safety and reliability of run-time reconfigurations. These prop-
erties are essential for the development of reliable self-adaptive
systems.

The approach proposed in this master thesis complements the pre-
vious approaches by providing a design method that deals with the
identified weaknesses.

3.3 Conclusions

This chapter presents the state of the art in the disciplines that are
related to this work. Although self-adaptiveness has become increas-
ingly interesting and popular, its achievement in a systematic manner
it remains a relatively immature topic. There is still a lack of propos-
als to provide mechanisms that allow the development of self-adaptive
systems from requirements to a validated system.

3.3 Conclusions 31

The present work provides support for the design and validation of
self-reconfiguration at run-time. Since many approaches already address
them, our approach is not focused in achieve autonomic behavior but
describing the ways in which self-adaptive systems must be developed to
guarantee valuable issues at run-time. We believe it is indispensable to
come to a software engineering approach which supports self-adaptive
system engineers from design time to run-time addressing the former
open challenges.

32 State of the Art

Chapter 4

A Design Method for
Self-Adaptive Systems

Increasingly, software needs to dynamically adapt its behavior at run-
time in response to changing conditions in the supporting computing,
communication infrastructure, and in the surrounding physical environ-
ment (McKinley et al., 2004). Self-adaptive software systems are able
to reconfigure their structure and modify their behavior at run-time
in order to adapt to environmental changes, repair faults, or optim-
ize their operation. Development of adaptive systems introduces addi-
tional challenges compared to the development of traditional software
systems. Adaptive systems are generally more difficult to specify, verify,
and validate due to their high complexity. Therefore, new innovative
approaches for building, running, and managing dynamically reconfig-
urable systems are required.

This chapter introduces a methodological approach for the design
of self-adaptive systems. The goal of this method is to provide a mech-
anism to automatically achieve well-designed adaptive systems through
systematic specification refinements. We mean as well-designed sys-

34 A Design Method for Self-Adaptive Systems

tems, the ones that will never produce errors during adaptation and
fulfill established assertions about design.

We combine model-driven and DSPLs to better cope with the com-
plexities during the construction and execution of adaptive systems.
The use of these techniques allows us to use high-level abstractions and
simplify the representation and management of system variants. We use
models at run-time (Blair et al., 2009) as if they were the policies that
drive the autonomic adaptation of the system at run-time. One of the
main advantages is that the adaptation rules do not have to be manually
written for each possible reconfiguration. The specification obtained at
design drives the later system execution. Therefore, techniques to val-
idate the adaptation of the system at design-time are needed to prevent
the occurrence of errors during execution. We provide mechanisms to
validate the adaptation at design-time. If during the validation process
errors arise, the model is refined to avoid such problems. The model
validated (and refined if needed) at design-time is used at run-time to
drive the system behavior safely.

The reminder of the chapter is structured in the following man-
ner. Section 4.1 first introduces the concepts used in the method to de-
scribe the self-adaptive system in an abstract manner, and then provides
an overview of the design method. Section 4.2 provides detail on the
stages involved in the design method. Finally, Section 4.3 concludes the
chapter.

4.1 Proposal Overview

To deal with the challenges of adaptation, the design method proposed
in this master thesis builds on the central ideas of Model Driven De-
velopment (models as first-order citizens) and Software Product Lines
(variability management).

Abstraction is one of the fundamental principles of software engin-
eering in order to master complexity (Kramer, 2007). We make use of a
model-driven approach to promote abstraction in self-adaptive systems
development. The self-adaptive systems community has considered the

4.1 Proposal Overview 35

use of models to describe adaptation for long. Models allow the applica-
tion of verification and validation methods during the development pro-
cess and can support self-adaptation at run-time (Cheng et al., 2009).
The models@run-time community is particularly concerned with this
research area and uses model-driven techniques for validating and mon-
itoring run-time behavior (Blair et al., 2009).

In a context where the possible combinations of situations are con-
stantly increasing, the implementation of ad-hoc solutions to cover all
possible variants is not feasible. DSPLs represent an efficient way for
modeling adaptive capabilities in software systems (Hallsteinsen et al.,
2008). A key characteristic in DSPLs is the intensive use of variabil-
ity at run-time in order to adapt the system configuration caused by a
context or an environment change.

The starting point of the proposed design method is a specification
of a self-adaptive system made up of two parts:

1. A variability model, which provides an intensional description
for each of the possible system configurations. From the differ-
ent variability modeling techniques (e.g. Feature Modeling (Kang
et al., 1990), UML profiles with stereotypes (Gomaa & Shin, 2008)
etc.) in this thesis it is chosen Feature Modeling because it is the
most popular technique in product line engineering. Specifically,
a Feature Model (FM) whose features can be activated or deactiv-
ated at run-time. Each configuration consist of the features that
are active in the FM.

Feature Modeling is a technique to specify the variants of a system
in terms of features (coarse-grained system functionality) (Czar-
necki & Kim, 2005). Features are hierarchically linked in a tree-
like structure through variability relationships. There are four
relationships related to variability concepts:

• Optional. A feature can be selected or not whenever its par-
ent feature is selected. Graphically it is represented with a
small white circle on top of the feature.

• Mandatory. A feature must be selected whenever its parent

36 A Design Method for Self-Adaptive Systems

feature is selected. It is represented with a small black circle
on top of the feature.

• Or-relationship. A set of child features have an or-relationship
with their parent feature when one or more child features can
be selected simultaneously. Graphically it is represented with
a black triangle.

• Alternative. A set of child features have an alternative re-
lationship with their parent feature when only one feature
can be selected simultaneously. Graphically it is represented
with a white triangle.

In addition, cross-tree constraints between features are allowed:

• Require. The selection of a feature implies the selection of
another feature. Graphically it is represented with a one-way
arrow.

• Exclude. The selection of a feature excludes the selection of
another feature. Graphically it is represented with a two-way
arrow).

2. A set of resolutions, which defines reconfigurations among the
different system configurations in a declarative manner. Finding
the optimal formalism for modeling adaptation policies remains
an open research question (Cetina et al., 2009b). For illustration
purposes, we propose using resolutions as a general concept to
represent reconfigurations. A resolution (R) is a list of pairs (F,S)
in which F indicates a feature in the FM and S the feature state
(True or False depending on whether or not the feature is active).
Each resolution is associated with a context condition and rep-
resents the sequence of actions in terms of feature activation/de-
activation produced in the system when a context condition is
fulfilled:

[guard] R = { (F, S) |F ∈ [FM] ∧ S ∈ {True, False} }

Using resolutions, the reconfigurations must not be specified for
every feature combination. Furthermore, resolutions may have

4.1 Proposal Overview 37

guards to constrain the configurations where can be executed. A
guard is a Boolean expression that has to be evaluated before
applying the resolution. For instance:[

!c2
]
R1condx = {(F1,True), (F2,False)}

This resolution indicates that when the context condition condx is
fulfilled, feature F1 must be activated and F2 must be deactivated.
The guard

[
!c2

]
avoids the application of resolution R1 when the

system is on configuration c2.

Typically, once the designer have modeled the system, the variability
specification is used at run-time to drive the system autonomic beha-
vior. Nevertheless, designers can insert invalid or undesirable behavior
into the system unintentionally. In order for an adaptive program to
be trusted, it is important to have mechanisms to ensure that the pro-
gram functions correctly during and after adaptations (Zhang & Cheng,
2006). Therefore, we propose a design method to analyze and adjust
variability specifications before using them at run-time.

4.1.1 Design Method Overview

In this section we provide an overview of the method proposed for
designing self-adaptive systems.

Self-adaptive systems are driven by reconfigurations at run-time ori-
ginated by context events. Reconfigurations can have a great number
of repercussions and situations. Designers must usually deal with large-
scale systems with a large number of possible configurations and recon-
figurations among them. Given a variability specification that models
and adaptive system, it is difficult to foresee the behavior that the sys-
tem will perform at run-time. Therefore, we propose to extend the
design time by applying the design method defined in this thesis. This
new stage assures that systems will never reach inconsistent states or
originate errors during execution. Figure 4.1 shows an overview of the
typical self-adaptive system development approach (a) and the exten-
ded version presented in this master thesis (b). The design method

38 A Design Method for Self-Adaptive Systems

Possibility
Space

Obtention

Reconfiguration
Analysis

Refinement

RUNTIME

DESIGN TIME

Variability
Modeling

1 2 3

RUNTIME

DESIGN TIME

Variability
Modeling

a) Traditional self-adaptive system development approach

b) Extended self-adaptive system development

Figure 4.1: Stages involved in the design method for self-adaptive systems

involves three new sequential steps: (1) Possibility Space Obtention,
(2) Reconfiguration Analysis, and (3) Variability Refinement.

The key steps to apply the design method are briefly introduced:

1. Possibility Space Obtention. In this step it is obtained a rep-
resentation that eases the analysis of the system behavior. From
the initial variability specification, a state machine model is de-
rived. This state machine represents the Possibility Space of the
system. The Possibility Space contains all the feasible config-
urations that the system can reach through execution, and the
reconfigurations among them.

2. Reconfiguration Analysis. In the second step, making use of
the representation obtained in previous step, the possible recon-
figurations are analyzed with respect to different design properties
identified.

3. Variability Refinement. Finally, in the last step, the system
specification is refined in order to guarantee the design properties.

4.2 Design Method 39

The design method is iterative. Steps 2 and 3 may be repeated as
many times as necessary to assure different design properties. The sys-
tem design is successively refined until it meets the requirements of the
system application domain and/or the users. When no further changes
are required, the system specification is used to guide the execution of
the system at run-time.

4.2 Design Method

This section provides a more detailed description on the design method
proposed in this master thesis.

We have defined a design method for self-adaptive systems for the
purpose of analyzing the effects of run-time reconfigurations at design
time and providing refinements to guarantee design properties before
using the models at run-time. The next subsections provide further
details on the steps involved in the design method.

4.2.1 Possibility Space Obtention

The first step in the design method is to obtain a representation that
eases the understanding and analysis of the behavior that the system
will perform at run-time. Figure 4.2 summarizes the first step in the
design method.

The execution of an adaptive system can be abstracted as a state ma-
chine model (Bencomo et al., 2008c; Zhang & Cheng, 2006) where each
state represents a distinct configuration of the same system and each
transition represents a reconfiguration between configurations. This
graphical representation offers an overall view of the whole process of
run-time reconfiguration and reduces both effort and complexity during
analysis.

Given a variability specification, made up of a feature model and
a set of resolutions, we can derive a state machine model that repres-
ents the behavior of the system generated by that specification. We
denote by Possibility Space that state machine model. The Possibility

40 A Design Method for Self-Adaptive Systems

Possibility
Space

Obtention

DESIGN TIME

Variability
Modeling

1

Resolutions

Figure 4.2: Overview of the first step in the design method

Space represents all feasible configurations that the system can reach
because the fulfillment of each resolution. The derivation process
works as follows: given an initial system configuration (active features
in the FM), all the resolutions are applied to the initial configuration,
obtaining new configurations. Then, for each new configuration, all the
resolutions are applied again. The process is repeated until there are
no new configurations generated.

Figure 4.3 shows an example of a Possibility Space (4.3b) derived
from a variability specification (4.3a) that contains a variability model
with four features (F1, F2, F3 and F4) and three resolutions (Rx, Ry
and Rz). It can be observed how the definition of 3 resolutions generates
a Possibility Space with 8 possible configurations and 12 reconfigura-
tions among them. The number of configurations and transitions grows
rapidly; the number of configurations explodes in a combinatorial way
with regard to the number of variants, and the number of transitions
is quadratic with regard to the number of configurations (Morin et al.,
2009).

In the case of large systems, the specification of adaptive systems
involves great complexity and becomes a tedious task prone to errors.
Therefore, it would be interesting to have design methods and tools
to assist designers in the definition of this kind of systems. The state

4.2 Design Method 41

 Resolutions
Rx = { (F2, True)}
Ry = { (F3, True)}
Rz = { (F4, True)}

F1

F2 F3 F4 F1 F2
F3 F4

F1

F1 F2

F1 F3

F1 F4

F1 F2
F3

F1 F2
F4

F1 F3
F4

b) Possibility Spacea) Variability Specification

Figure 4.3: Obtaining the Possibility Space from a variability specification

machine representation eases the visualization of the system behavior
and lets designers perform extensive validation of the system’s dynamic
variability before its execution.

4.2.2 Reconfiguration Analysis

Once the Possibility Space has been obtained, the following step is to
analyze the reconfiguration effects. Figure 4.4 shows an overall view of
the second step in the design method.

The reconfiguration analysis is based on the STAIRS approach (Hau-
gen et al., 2005; Haugen & Sttølen, 2003), that provides a foundation
for specification analysis, verification, and testing. STAIRS defines an
incremental system development based on refinements. STAIRS focuses
on refinement, which is a development step where the specification is
made more complete by information being added to it, in such a way
that any valid implementation of the refined specification will also be a
valid implementation of the original specification (Runde et al., 2005).

Although STAIRS is applied to analyze UML interactions by means

42 A Design Method for Self-Adaptive Systems

Possibility
Space

Obtention

Reconfiguration
Analysis

DESIGN TIME

Variability
Modeling

1 2

Resolutions

X

Figure 4.4: Overview of the second step of the design method

of sequence diagrams, the approach can be applied to other types of
behaviors (Haugen et al., 2005). We apply STAIRS in behavior specific-
ations in the form of state machines. In state machines, the behavior
of the system is described as transitions. In our case the transitions
represent feasible system reconfigurations. We denote R as the set of
all the reconfigurations in the Possibility Space. Following STAIRS, a
reconfiguration can be categorized as:

• positive, meaning that it is valid, legal, or desirable;

• negative, meaning that it is invalid, illegal, or undesirable;

• inconclusive, meaning that it is considered irrelevant.

In our approach, this categorization corresponds with the result of
checking interesting design properties of the Possibility Space. We have
proposed a series of desirable design properties (such as Redundancy,
Reversibility, Determinism etc.) based on previously established design
issues. The catalog of properties is presented in detail in chapter 5.

The process to follow in this step is as follows: initially, we assume
that all the reconfigurations in R are positive because the designer has
specified the desirable behavior of the system. Nevertheless, design-
ers can define undesirable or illegal behavior unintentionally; thus the

4.2 Design Method 43

reconfiguration effects should be evaluated. In the Reconfiguration Ana-
lysis step, the designer selects a design property to check if the recon-
figurations fulfill determined assertions about design behavior defined
by the property. Accordingly, the set R is subdivided into two subsets
R+ and R− depending on whether or not the reconfigurations satisfy
the property. R+ contains the positive behavior (reconfigurations that
fulfill the property) and R− contains the negative behavior (reconfigur-
ations that violate the property). The negative behavior (R−) should
be avoided from the specification. For each property, we have defined a
refinement to detect the reconfigurations that violate the property and
keep them out of the specification. Next step is in charge of applying
the corresponding refinements to avoid the negative behavior.

4.2.3 Variability Refinement

The last step in the design method is to refine the specification in order
to avoid the negative behavior. Figure 4.5 summarizes the last step in
the design method.

Possibility
Space

Obtention

Reconfiguration
Analysis

Refinement

RUNTIME

DESIGN TIME

Variability
Modeling

1 2 3

Resolutions

X

Resolutions

Figure 4.5: Overview of the last step of the design method

44 A Design Method for Self-Adaptive Systems

The purpose of the refinement is to reduce the allowed behavior to
capture new design decisions or to match the problem more adequately.
The refinement is responsible for avoiding negative behavior from the
specification guaranteeing the invariant: all original positive beha-
vior remains positive. That means eliminating R− from the specific-
ation but keeping R+ intact. This invariant is very important because
we do not want to remove negative behavior at the expense of losing
reconfiguration capabilities. In this sense, the refinement does not re-
move resolutions. It only ignores negative reconfigurations from the
specification by adding guards to the resolutions that trigger negative
reconfigurations. The guards constrain the possibilities of reconfigura-
tion, avoiding the execution of reconfigurations in undesirable configur-
ations. Moreover, the refinement can add new reconfigurations to fulfill
a property. The steps 2 and 3 can be successively repeated to ensure
different properties. Chapter 5 presents the design properties defined
and provides detailed guidelines to perform the associated refinements.

4.3 Conclusions

This chapter introduces a systematic design method for self-adaptive
systems based on refinements. The explosion of configurations is one
of the main problems when designing self-adaptive systems. The high-
number of possible configurations and reconfigurations might lead to
several undesirable consequences during execution. Therefore, the main
aim of the design method is to analyze and to adjust variability spe-
cifications in order to guarantee trustworthy adaptations at run-time.

The design method involves three sequential steps: (1) Possibility
Space Obtention, (2) Reconfiguration Analysis, and (3) Variability Re-
finement. Summarizing, first the behavior of the system is analyzed
before run-time with respect to different design properties. We have
defined a series of refinements in order to force the system to fulfill each
property automatically. The refinements always keep the invariant that
all original valid reconfigurations remain valid, so that reconfiguration
capacity is not lost. The design method is an iterative process that

4.3 Conclusions 45

may be repeated systematically to ensure different properties through
refinements.

46 A Design Method for Self-Adaptive Systems

Chapter 5

Design Properties Catalog

In this chapter, we term a series of desirable design properties for self-
adaptive systems and particular refinements to assure each property
automatically.

Depending on the application domain of the system, designers can
chose the adequate properties that the system should satisfy throughout
its execution. Dealing with these properties is essential to achieve reli-
ably self-adaptive systems that satisfy the requirements of a particular
domain. These properties are only an example; designers may include
as many properties as they consider to cover different aspects of design
and execution of self-adaptive systems. All the properties have been
successfully applied in a case study presented in Chapter 6.

Figure 5.1 summarizes the design properties in form of a feature
model. We have identified the following design properties:

1. Safe Reconfigurations and Reachability. This property guarantees
that after reconfigurations the system never reaches invalid states.
Invalid states refer to inconsistent configurations where variability

48 Design Properties Catalog

Design
properties

Safe

reconfig.

& reach.

Reversibility

Totalrev. Nonrev.

Redundancy Contextual

Consistency Determinism

Figure 5.1: Design properties catalog

constraints are violated. The refinement associated to this prop-
erty guarantees that all reconfigurations are safe (do not lead to
invalid states) and that no configuration is reached through invalid
states.

2. Redundancy. This property guarantees that the specification does
not contain duplicated behavior. Redundancy is generally re-
garded as an undesirable property of model specifications. Re-
dundancy implies designs or implementations of low quality and
higher resource consumption.

3. Reversibility. In the context of adaptive systems where the re-
configurations are driven by the environment and the system is
not under the users control, it might be interesting to add rollback
capabilities enabling the system to reverse the effect of unexpected
reconfigurations. This property involves two refinements:

(a) Total Reversible System: For each reconfiguration, there is
another reconfiguration that leads directly to the source con-
figuration.

5.1 Safe Reconfigurations and Reachability Property 49

(b) Nonreversible System: For each reconfiguration, there is not
another reconfiguration that leads directly to the source con-
figuration.

4. Contextual Consistency. It could be desirable for the same action
or set of actions to always produce the same effect in the system,
independently of the current system state. This property guar-
antees that when a determined context condition is fulfilled, the
system evolves (independently from its current state) to a pre-
defined or controlled configuration.

5. Contextual Determinism. This property involves predictability in
the reconfiguration process to future states. The refinement as-
sociated to this property assures that for each possible context
condition, every state in the system has exactly one reconfigura-
tion that leads to the next state. Thus, from a given state, when
a determined context condition is fulfilled, the system can only
reconfigure to one destination state.

The rest of the chapter is organized as follows. Section 5.1 presents
the Safe Reconfigurations and Reachability property and the associated
refinement to achieve systems free on unsafe reconfigurations and un-
safely reachable configurations. Section 5.2 introduces the Redundancy
property and the refinement to guarantee systems without duplicated
behavior. Section 5.3 explains the Reversibility property and its two
associated refinements to achieve either a Total Reversible or a Non-
reversible system. Next, Section 5.4 describes the Contextual Consist-
ency property and its associated refinement. Next, Section 5.5 details
the Contextual Determinism property and the refinement to achieve de-
terminist systems. Finally, Section 5.7 concludes the chapter.

5.1 Safe Reconfigurations and Reachability Prop-
erty

In this section, the Safe Reconfigurations and Reachability property is
explained in detail.

50 Design Properties Catalog

5.1.1 Definition

As explained in previous section, the behavior of the system is driven
by a set of resolutions. Resolutions are triggered by the fulfillment of
context conditions. The combination of resolutions can originate incon-
sistent configurations, these are configurations where variability con-
straints are violated. The aim of this property is to guarantee that sys-
tems will never reach invalid configurations during execution. To check
that the defined resolution set is actually within the variability model
constraints, developers can apply existing feature model analysis tools.
There are a number of tools supporting these analysis capabilities such
as AHEAD Tool Suite (Ahead, 2009), FaMa Framework (Trinidad et al.,
2008), Feature Model Plug-in (Plugin, 2009) and pure::variants (Pure,
2009). In this master thesis we have used the Feature Model Analyzer
FaMa because is an open source project. FaMa validates a partial con-
figuration consistency with a given feature model. Further, FaMa can
combine multiple resolutions to ensure that there are no invalid config-
urations in a given situation.

Figure 5.2 shows a specification made up of (1) a Feature Model
(FM) with 3 features: F1, F2 and F3, where only feature F1 is active;
and a variability constraint of type “require” between features F2 and
F3. (2) A set of resolutions, R1cond1 and R2cond2, expressing the actions
to carry out (activate feature F2 and activate feature F3 respectively)
when context conditions cond1 and cond2 are fulfilled. The FM and the
set of resolutions define a Possibility Space composed by 4 different con-
figurations (S1, S2, S3, S4). It can be observed that eventually, when
the system is on configuration S1 and the context condition condx is
fulfilled, the resolution R1 is triggered. R1 activates feature F2 evolving
the system to configuration S2. S2 is an invalid configuration since fea-
ture F2 is active but feature F3 is inactive, therefore the variability
constraint (“F2 requires F3”) is violated.

In order to avoid inconsistent configurations during execution, a
refinement has been defined.

5.1 Safe Reconfigurations and Reachability Property 51

 Resolutions

R1 = { (F2, True)}

R2 = { (F3, True)}

F1

F2 F3

Possibility Space
Variability Specification

requires

F1 F1 F2

F1 F3
F1 F2

F3

S1

S3 S4

S2

Figure 5.2: Safe Reconfigurations and Reachability property

5.1.2 Safe Reconfigurations and Reachability Refinement

This refinement is in charge of guaranteing safe reconfigurations during
the whole system execution. The aim of the refinement is twofold:

1. Avoid unsafe reconfigurations. We consider unsafe reconfigura-
tions the ones that evolve the system from a valid configuration
to an invalid configuration. These reconfigurations are undesirable
and have to be eliminated from the specification.

2. Avoid unsafely reachable configurations. When some reconfigur-
ations are removed other configurations can be unreachable. In
order to not loose reconfiguration capability, the refinement guar-
antees that all the configurations are safely reachable.

The pseudo-code of the refinement is the following:

52 Design Properties Catalog

Algorithm 1 Safe Reconfigurations and Reachability Refinement

Require: a set S = {S1, ... , Sn} ∈ PS and a set R= {R1, ... , Rn}
of resolutions

Ensure: S without invalid configurations and unsafely unreachable
configurations; R without unsafe reconfigurations.

1: for all s ∈ S do
2: Rout ⇐ reconfigurations triggered from s
3: for all Ri ∈ Rout do
4: sr ⇐ configuration reachable by Ri
5: if sr is invalid then
6: Remove Ri by modifying the guard: [!s] Ri
7: Rout−sr ⇐ reconfigurations triggered from sr
8: for all Rj ∈ Rout−sr do
9: Create a new resolution: [sr] Ri + Rj

10: end for
11: end if
12: end for
13: end for

Starting from the initial configuration, the refinement iteratively
checks the reconfigurations triggered in each configuration of the Pos-
sibility Space. If some reconfiguration reaches an invalid configuration,
that reconfiguration is removed. The refinement introduces guards to
those resolutions that trigger unsafe reconfigurations in order to avoid
them from the specification. When some reconfigurations are removed
could happen that other valid configurations are unreachable. Since the
old unsafe reconfiguration lead to the current unreachable configuration,
the refinement calculates a new safe reconfiguration which directly leads
to the unreachable configuration from the valid source of the old unsafe
reconfiguration. These new resolutions are calculated as the sequential
composition of actions of the old unsafe resolution and each of the res-
olutions triggered from the invalid configuration. The condition of the
new resolution is set as the conjunction of conditions of the resolutions
implied in the composition. It also introduces guards to the new resol-

5.2 Redundancy Property 53

Possibility Space

F1 F1 F2

F1 F3
F1 F2

F3

S1

S3 S4

S2

REFINEMENT

Step 1

F1

F1 F3
F1 F2

F3

S1

S3 S4

Step 2

F1

F1 F3
F1 F2

F3

S1

S3 S4

 Resolutions

[!S1] R1 = { (F2, True)}

 R2 = { (F3, True)}

 Resolutions

[!S1] R1 = { (F2, True)}

 R2 = { (F3, True)}

[S1] R1+R2 = { (F2, True),

 (F3, True)}

Figure 5.3: Safe Reconfigurations and Reachability refinement

ution in order to avoid the generation of new configurations because of
the application of this resolution from other configurations.

Figure 5.3 illustrates the application of the refinement to the spe-
cification shown in Figure 5.2. In configuration S1 the reconfiguration
triggered by R1 is unsafe because evolves the system to an invalid con-
figuration (S2). Then, the refinement avoids the execution of resolution
R1 in configuration S1 by modifying its guard. Next, in order to not
loose reconfiguration capabilities, the refinement generates a new resol-
ution from S1 to S4, as the composition of the previous resolutions R1
and R2. The guard of this new resolution is set to enable its execution
only in configuration S1. The resolutions are modified as follows:[

!S1
]
R1cond1 ={(F2,True)}[

S1
]
R1+R2cond1∧cond2 ={(F2,True), (F3, True)}

5.2 Redundancy Property

In this section, the Redundancy property is explained in detail.

54 Design Properties Catalog

According to (Bellotti & Edwards, 2001), simplicity is highly appre-
ciated by users in context-aware systems (as is the case for self-adaptive
systems). Furthermore, as stated in (Dey, 2009), one of the biggest chal-
lenges to the usability of context-aware applications is the difficulty that
users have to understand what a system is doing. Redundancy property
reduces the number of reconfigurations by avoiding duplicated behavior,
thus improving both simplicity and understanding of the system beha-
vior.

5.2.1 Definition

We understand as redundancy to be the duplication of behavior. Two
or more different resolutions are redundant if they produce the same
effect on the system. That is to say, they evolve the system from the
same source configuration to the same target configuration by means of
different actions. Since these reconfigurations are wasteful of resources
(such as storage and execution time), lead to inconsistent specifications,
and make maintenance more complex, they should be eliminated. The
elimination of redundancy optimizes design and can actually improve
execution time and understandability of the system behavior (Nance
et al., 1999).

For example, given a FM with four features (F1, F2, F3 and F4),
with F1 active, a designer defines the following set of resolutions:

R1cond1 ={(F2,True), (F3,True)}
R2cond2 ={(F4,True), (F2,False), (F3,True),(F4,False),(F2,True)}
R3cond3 ={(F2,True)}
R4cond4 ={(F4,True)}
R5cond5 ={(F4,False)}

The above resolutions generate the Possibility Space illustrated in
Figure 5.4. It can be observed that the Possibility Space contains two re-
dundant resolutions R1 and R2 because both evolve the system between
the same pairs of configurations: S1-S2 and S3-S2. Therefore, a refine-
ment can be applied to avoid redundant resolutions and improve the
system specification and execution.

5.2 Redundancy Property 55

F1

F1 F4

F1 F2

F3

F1 F2
F1 F2

F4

F1 F2

F3 F4S1 S3

S4

S2

S5

S6

F2 F3

F1

F4

 Resolutions
R1 = { (F2, True), (F3, True)}

R2 = { (F4, True), (F2, False), (F3, True),

 (F4, False), (F2, True)}

R3 = {(F2, True)}

R4 = {(F4, True)}

R5 = {(F4, False)}

Possibility Space

Variability Specification

Figure 5.4: Redundancy Property

5.2.2 Redundancy Avoidance Refinement

This refinement eliminates redundant reconfigurations in a self-adaptive
system specification. By reducing the number of duplicated reconfig-
urations, this refinement improves simplicity and, consequently under-
standing of the system execution. The refinement, first finds redundant
resolutions. Then, it selects the simplest resolution and removes the
others. We consider the simplest resolution as the one that involves the
minimum number of change actions. Finally, in order to guarantee the

56 Design Properties Catalog

invariant eliminating negative behavior without altering positive beha-
vior, the condition and guard of the simplest resolution are modified
to include the possibilities of reconfiguration of the removed redundant
resolutions.

The pseudo-code of the refinement is the following:

Algorithm 2 Redundancy Avoidance Refinement

Require: a set R= {R1, ... , Rn} of resolutions
Ensure: R’ without redundant resolutions
1: for all Ri ∈ R do
2: Find the redundant resolutions of Ri,

R−⇐ redundant resolutions of Ri
3: Select the simplest resolution Rs ∈ R−
4: for all Rj ∈ R−/ Rj 6= Rs do
5: Modify the condition of Rs: cond(Rs) = cond(Rs)∨cond(Rj)
6: Modify the guard of Rs: guard(Rs) = guard(Rs)∨guard(Rj)
7: Remove Rj
8: end for
9: end for

The above Possibility Space (Figure 5.4), contains two redundant
resolutions: R1 and R2. R1 implies two actions ({(F2,T), (F3,T)})
whereas R2 implies five actions ({(F4,T), (F2,F), (F3,T), (F4,F), (F2,T)}).
Therefore, the refinement eliminates R2 and modifies the guard and
condition of R1 in order to not loose reconfiguration possibilities. The
refinement modifies the set of resolutions as follows:

R1cond1∨cond2 ={(F2,True), (F3,True)}[
!S1; !S3

]
R2cond2 ={(F4,True), (F2,False), (F3,True),

(F4,False),(F2,True)}
R3cond3 ={(F2,True)}
R4cond4 ={(F4,True)}
R5cond5 ={(F4,False)}

The resulting Possibility Space is shown in Figure 5.5. The removed
resolutions by the refinement are represented with red dashed lines.

5.3 Reversibility Property 57

F1

F1 F4

F1 F2

F3

F1 F2

F1 F2

F4

F1 F2

F3 F4S1 S3

S4

S2

S5

S6

Possibility Space without redundancy

Figure 5.5: Redundancy Avoidance Refinement

5.3 Reversibility Property

In this section, the Reversibility property and its associated refinements
are explained in detail.

As stated in (Cetina et al., 2010), recovering from a failed recon-
figuration is a key design issue in DSPLs in making users feel more
comfortable with systems. Designing systems with rollback capabilities
is a daunting task especially in the case of large systems. This property
automatically guarantees rollback capabilities to reconfigurations.

5.3.1 Definition

An interesting concern in self-adaptive system execution is recovery
from an undesired or unexpected reconfiguration (Cetina et al., 2010).
This property allows reconfigurations to be undone and restore past
states. We define reversibility as the possibility to return to a previ-
ous state after a reconfiguration has been applied. If there exists a

58 Design Properties Catalog

reconfiguration R1 that evolves the system from configuration S1 to S2
and there exists another reconfiguration that returns the system from
S2 to S1, the reconfigurations are said to be reversible. Based on this
property we classify systems under two main categories:

• “Total Reversible System”: for all reconfigurations occurring in the
system, there exists a reversible reconfiguration.

• “Nonreversible System”: after each reconfiguration, the system
cannot be restored in its previous configuration.

For example, given a FM with four features F1, F2, F3 and F4, where
F1 is active, a designer defines the following set of resolutions:

R1cond1 = {(F2,True), (F3,True)}
R2cond2 = {(F2,True)}
R3cond3 = {(F4,True)}
R4cond4 = {(F4,False)}

The above resolutions generate the Possibility Space illustrated in Fig-
ure 5.6. It can be observed that the Possibility Space contains reversible
reconfigurations between configurations S1-S4, S2-S6, and S3-S5. These
reconfigurations are triggered by resolutions R3 and R4. In order to deal
with reversibility two different refinements have been defined.

5.3.2 Reversibility Refinement

Depending on the type of reversible system that is required, the de-
signer can apply one of the following refinements making either a Total
Reversible System or a Nonreversible System.

5.3.2.1 Total Reversible System Refinement

The purpose of this refinement is to ensure that, for all configurations
contained in the Possibility Space, there will exist a reconfiguration that
leads directly to the previous configuration. The refinement generates

5.3 Reversibility Property 59

S1
S3

S4

S5

S6

F2 F3

F1

F4

 Resolutions
R1 = { (F2, True), (F3, True)}

R2 = { (F2, True)}

R3 = {(F4, True)}

R4 = {(F4, False)}

Possibility Space

Variability Specification

F1
F1 F2

F1 F2

F3

F1 F4

F1 F2

F3 F4

F1 F2

F4

S2

Figure 5.6: Reversibility Property

new reconfigurations that assure that every reconfiguration has a re-
verse reconfiguration. The new reconfigurations define compensation
actions to reverse a reconfiguration. The compensation actions are cal-
culated by means of the Relative Complement operator (\) which is also
known as the set-theoretic difference. Given a resolution Ri that evolves
the system from configuration Csource to configuration Cdestination, the
reversible reconfiguration Ri (that evolves system from Cdestination to
Csource) is calculated as follows: the features that are active in the
destination configuration and are inactive in the source configuration
should be deactivated. This set of features is denoted Deactivate. The

60 Design Properties Catalog

features that are active in the source configuration and are inactive in
the destination configuration should be activated. This set of features is
denoted Activate. The refinement introduces guards to the new gener-
ated resolutions to avoid the generation of new configurations because
of the application of this resolution from other configurations.

The pseudo-code of the refinement is the following:

Algorithm 3 Total Reversible System Refinement

Require: a set R= {R1, ... , Rn} of resolutions
Ensure: a set R’ with reversible resolutions
1: for all Ri ∈ R do
2: Calculate the features to deactivate:

Deactivate= {(F, S) ∈ Cdest|S = True}\
{(F, S) ∈ Csource|S = True}

3: Calculate the features to activate:
Activate= {(F, S) ∈ Csource|S = True}\
{(F, S) ∈ Cdest|S = True}

4: Add a new resolution Ri = Activate ∪Deactivate
5: Set condition and guard of the new resolution
6: end for

Given the Possibility Space of Figure 5.6, it can be observed that the
system is not totally reversible because there exist reconfigurations that
do not have a reverse reconfiguration (the reconfigurations triggered by
resolutions R1 and R2). The designer may apply the previous refine-
ment algorithm to obtain a Total Reversible System. The refinement
modifies the set of resolutions as follows:[

S2;S6
]
R1cond5={(F2,False), (F3,False)}[

S2
]

R1cond6={(F3,False)}[
S3;S5

]
R2cond7={(F2,False)}

Figure 5.7 shows the Possibility Space after applying this Total Revers-
ible refinement. The generated resolutions are represented with thick
lines.

5.3 Reversibility Property 61

S1
S3

S4

S5

S6

F1

F1 F2

F3

F1 F2

F1 F4

F1 F2

F4

F1 F2

F3 F4

S2

Possibility Space with reversibility

Figure 5.7: Total Reversible System Refinement

5.3.2.2 Nonreversible System Refinement

The purpose of this refinement is to ensure that there is no reconfigur-
ation that leads directly to the previous configuration. For each pair of
reversible reconfigurations, the refinement removes one of the two recon-
figurations. In order to keep the invariant don’t lose positive behavior,
those resolutions are not actually removed. The refinement modifies
their guards to constrain when those reconfigurations can be executed.
The pseudo-code of the refinement is the following:

62 Design Properties Catalog

Algorithm 4 Nonreversible System Refinement

Require: a set R= {R1, ... , Rn} of resolutions
Ensure: R without reversible resolutions
1: for all Ri ∈ R do
2: Find a reversible resolution of Ri,

RR ← reversible resolution of Ri
3: if RR 6= ø then
4: Remove Ri or RR by modifying the guard
5: end if
6: end for

Given the Possibility Space of Figure 5.6, it can be observed that
the space contains reversible reconfigurations between configurations
S1-S4, S2-S6, and S3-S5. These reconfigurations are triggered by res-
olutions R3 and R4. If the designer requires a Nonreversible System,
the Nonreversible System refinement can be applied to achieve it. Then
the refinement removes resolution R3 or R4. The designer can choose
which of these two resolutions should be removed. Consequently, two
different Possibility Spaces can be obtained:

• If the designer decides to remove R3, the refinement modifies the
guard of the resolution R3 to be avoided from the specification:[

!S1; !S2; !S3
]
R3cond3 = {(F4,True)}

This guard avoids the application of resolution R3 when the sys-
tem is on configuration S1, S2 or S3. The Possibility Space after
applying the refinement is shown in Figure 5.8 (left).

• If the designer decides to remove R4, the refinement modifies the
guard of the resolution R4 to be avoided from the specification:[

!S4; !S5; !S6
]
R4cond4 = {(F4,False)}

This guard avoids the application of resolution R4 when the sys-
tem is on configuration S4, S5 or S6. The Possibility Space after
applying the refinement is shown in Figure 5.8 (right).

5.4 Contextual Consistency Property 63

S1
S3

S4

S5

S6

Option 1: Removing R3

F1
F1 F2

F1 F2

F3

F1 F4

F1 F2

F3 F4

F1 F2

F4

S1
S3

S4

S5

S6

Option 2: Removing R4

F1
F1 F2

F1 F2

F3

F1 F4

F1 F2

F3 F4

F1 F2

F4

Figure 5.8: Feasible Possibility Spaces after applying the Nonreversible Sys-
tem refinement

The choice between alternatives has no implications initially and de-
pends only on the designer’s decisions.

5.4 Contextual Consistency Property

In this section the Contextual Consistency property is explained in de-
tail.

5.4.1 Definition

This property guarantees that when a determined context condition is
fulfilled, the system evolves (independently from its current state) to a
predefined or controlled configuration.

If the designer wants that when an exceptional context condition
is fulfilled the system always reconfigures to a new configuration, he
would have to foresee the needed reconfigurations and to specify them
manually. As the number of possible configurations increases, this task
is becoming tedious and prone to errors. Therefore, we have defined a
refinement to generate all the needed reconfigurations automatically.

Given a FM with four features (F1, F2, F3 and F4), where F1 is

64 Design Properties Catalog

active, a designer defines the following set of resolutions:

R1cond1 = {(F2,True)}
R2cond2 = {(F3,True)}

The above resolutions generate the Possibility Space illustrated in Fig-
ure 5.9.

F2 F3

F1

F4

 Resolutions
R1 = { (F2, True)}
R2 = { (F3, True)}

Possibility Space

Variability Specification

F1 F1 F2

F1 F3
F1 F2

F3

S1

S3 S4

S2

Figure 5.9: Contextual Consistency Property

5.4.2 Contextual Consistency Refinement

This refinement generates from each configuration in the Possibility
Space a new reconfiguration that evolves the system to a new configur-
ation (Snew) when a context condition condexc is fulfilled.

5.4 Contextual Consistency Property 65

The pseudo-code of the refinement is the following:

Algorithm 5 Contextual Consistency Refinement

Require: a set S = {S1, ... , Sn} ∈ PS, a set R= {R1, ... , Rn} of
resolutions and a new configuration snew

Ensure: R containing resolutions from every configuration ∈ PS to
snew

1: for all s ∈ S do
2: Add a new resolution Rnew from s to snew
3: Calculate the features to activate:

Activate= {(F, S) ∈ snew|S = True}\
{(F, S) ∈ s|S = True}

4: Calculate the features to deactivate:
Deactivate= {(F, S) ∈ s|S = True}\
{(F, S) ∈ snew|S = True}

5: [s]Rexc = Activate ∪Deactivate
6: end for
7: Add a new resolution from snew to the initial configuration of the

system

The refinement generates new resolutions that trigger reconfigura-
tions from each configuration in the Possibility Space to the new pre-
defined configuration. The set of reconfiguration actions to reach the
new configuration from each existing configuration is calculated as the
union of two subsets: (1) Activate (features that are active in the new
configuration and are inactive in the source configuration); (2) Deactiv-
ate (features that are inactive in the new configuration and are active
in the source configuration). The features of these two subsets are cal-
culated by the Relative Complement operator (\). The guard of the
new resolutions is set in order to trigger the resolutions only in the ad-
equate configurations. Furthermore, a new resolution from the destin-
ation configuration to the initial configuration of the system is created.
This resolution initializes the reconfiguration process after reaching the
new exceptional configuration. The reconfiguration actions of this last
resolution are calculated in the same way that the other resolutions

66 Design Properties Catalog

generated by the refinement.

Figure 5.10 shows the Possibility Space after applying the refinement
to the specification illustrated in Figure 5.9. The new resolutions are
represented with thick lines.

F1 F1 F2

F1 F3
F1 F2

F3

S1

S3 S4

S2

F1 F4

Possibility Space with consistency to S5

S5

Figure 5.10: Contextual Consistency Refinement

The refinement generates the following new resolutions:

[
s1
]
R3condexc={(F4,True)}[

s2
]
R4condexc={(F2,False), (F4, True)}[

s3
]
R5condexc={(F3,False), (F4, True)}[

s4
]
R6condexc={(F2,False), (F3, False), (F4, True)}[

s5
]
R7cond!exc={(F4, False)}

5.5 Contextual Determinism Property

In this section, the Contextual Determinism property is explained in
detail.

5.5 Contextual Determinism Property 67

F2 F3

F1

F4

 Resolutions
R1cond1 = { (F2, True), (F4, True)}

R2cond2 = { (F3, True)}

R3cond2 = { (F4, False)}

Possibility Space

Variability Specification

S1

S5

S2

F1

F1 F2

F4

F1 F2

F1 F3

F1 F2

F3
F1 F2

F3 F4

S3

S4

S6

Figure 5.11: Contextual Determinism Property

5.5.1 Definition

A system is determinist if in each state in which the execution can follow
different reconfigurations, conditions on those multiple reconfigurations
are different. If two conditions would be satisfiable simultaneously then
two different reconfigurations of the system would be carried out con-
currently and the system will reach an inconsistent state. Therefore,
non-determinist behavior is unacceptable in this kind of systems. Sum-
marizing, a system is determinist if between the same pair of states two
(or more) different reconfigurations cannot be triggered at the same
time.

Given a FM with four features (F1, F2, F3 and F4), with F1 active,
a designer defines the following set of resolutions:

68 Design Properties Catalog

R1cond1 = {(F2,True), (F4, True)}
R2cond2 = {(F3,True)}
R3cond2 = {(F4,False)}

The above resolutions generate the Possibility Space illustrated in Fig-
ure 5.11. It can be observed that the system is non-determinist since in
configuration S2 when the context condition cond2 is fulfilled, resolu-
tions R2 and R3 are triggered simultaneously. Then the system has to
evolve to configurations S4 and confc5 at the same time, reaching an
inconsistent state. We have defined a refinement to guarantee that the
behavior of the system is always determinist.

5.5.2 Contextual Determinism Refinement

This refinement checks if the resolutions will generate non-determinist
behavior during execution. In that case, the refinement modifies the set
of resolutions in order to avoid the simultaneous reconfigurations.

The pseudo-code of the refinement is the following:

Algorithm 6 Contextual Determinism Refinement

Require: a set S = {S1, ... , Sn} ∈ PS and a set R= {R1, ... , Rn}
of resolutions

Ensure: a deterministic PS
1: for all s ∈ S do
2: Rout ⇐ reconfigurations triggered from s
3: for all Ri ∈ Rout do
4: Cond ⇐ associated conditions to the resolutions triggered by s
5: if Cond contains duplicated conditions then
6: Change one of the duplicated conditions

or
7: Eliminate reconfigurations associated to the duplicated con-

ditions
8: end if
9: end for

10: end for

5.5 Contextual Determinism Property 69

Option 1: Removing R2

S1

S5

S2

F1

F1 F2

F4

F1 F2

F1 F3

F1 F2

F3

F1 F2

F3 F4

S3

S4

S6

Option 2: Removing R3

S1

S5

S2

F1

F1 F2

F4

F1 F2

F1 F3

F1 F2

F3

F1 F2

F3 F4

S3

S4

S6

Option 3: Modifying a condition

S1

S5

S2

F1

F1 F2

F4

F1 F2

F1 F3

F1 F2

F3

F1 F2

F3 F4

S3

S4

S6

Figure 5.12: Contextual Determinism Refinement

For each state checks the set of context conditions that trigger recon-
figurations to different destination states. If this set contains duplicate
conditions the system is non-deterministic. The refinement can achieve
a deterministic system in two different ways:

1. Removing simultaneous reconfigurations (keeping only one of them).

2. Modifying the condition of some resolutions in order to avoid sim-
ultaneous reconfigurations.

As illustrated in Figure 5.11, the system is non-determinist from
configuration S2 (resolutions R2 and R3 are triggered simultaneously

70 Design Properties Catalog

when the context condition cond2 is fulfilled). The refinement offers
different alternatives to achieve a determinist system. The designer can
select which alternative has to be carried out. Consequently, different
Possibility Spaces can be obtained:

• If the designer decides to remove R2. The refinement modifies the
guard of the resolution R2 to avoid its execution on configuration
S2:

[
!s2

]
R2cond2 = {(F3,True)}

The Possibility Space after applying the refinement is shown in
Figure 5.12 (Option 1). The reconfigurations removed are repres-
ented with dashed lines.

• If the designer decides to remove R3. The refinement modifies the
guard of the resolution R3 to avoid its execution on configuration
s2:

[
!s2

]
R3cond1 = {(F4,False)}

The Possibility Space after applying the refinement is shown in
Figure 5.12 (Option 2). Dashed lines mean removed reconfigura-
tions by the refinement.

• If the designer decides to modify the condition that triggers one
of the simultaneous resolutions, for example R3, the refinement
modifies the resolution as follows:

R3cond3 = {(F4,False)}

Figure 5.12 (Option 3) shows the Possibility Space after applying the
last variant of the refinement.

5.6 Discussion through the application of properties 71

5.6 Discussion through the application of prop-
erties

As we stated in previous chapter (Chapter 4), the design method is an
iteratively process. This process intends to improve the design of self-
adaptive systems through systematic refinements. Designers are free to
select the properties that best suit the requirements of the system. Since
the properties are applied successively, the resulting Possibility Space
of one property is used as the starting point for the next property.

Designers are not forced to follow preestablished sequences of prop-
erties. The order of application of properties only depends on the de-
signer’s decisions. Initially, all the properties are independent among
them. That is to say, the effect produced by a property neither cause
side effects nor depend on other properties. Nevertheless, we plan to
carry out a thorough analysis to detect possible dependencies among
properties. As future work, we will provide guidance to the designers
when selecting properties, in order to guarantee orthogonal properties
through the refinement process.

5.7 Conclusions

This chapter identifies potential design properties for self-adaptive sys-
tems. Specifically, five valuable properties have been defined: Safe Re-
configurations and Reachability, Redundancy, Reversibility, Contextual
Consistency and Contextual Determinism. For each property, we have
defined the corresponding refinements to automatically fulfill the prop-
erties. The refinements always keep the invariant: improving the design
of the system but not a the expense of losing reconfiguration capability.
The suggested properties are only an example; designers could include
more properties to cover different aspects of systems design and execu-
tion. Dealing with design properties optimizes design and, consequently,
the system execution.

72 Design Properties Catalog

Chapter 6

Case Study: the Smart Hotel

In this chapter, we put in practice the design method proposed in
this master thesis. The method has been applied in a previous case
study: the Smart Hotel (Cetina et al., 2010). The Smart Hotel is a self-
adaptive system which reconfigures its services autonomically according
to changes in the surrounding context.

As starting point, we use a reduced version of the Smart Hotel spe-
cification. The original Smart Hotel presents 39 features and 8 resol-
utions. Since the number of possible configurations grows combinator-
ially with the number of variation points and variants, for illustration
purposes, we use a reduced version with 18 features and 4 resolutions.
Following the design method, all the design properties have been suc-
cessively applied. The case study illustrates the difficulty to specify
systems of this kind and the significant enhancement introduced after
applying different design properties.

The design approach proposed significantly improves the ability to
develop and maintain self-adaptive systems, by providing mechanisms
to analyze run-time reconfiguration effects and to automatically refine

74 Case Study: the Smart Hotel

specifications ensuring valuable execution issues.

The reminder of this chapter is structured as follows. Section 6.1
introduces the Smart Hotel system. Section 6.2 following the design
method proposed in this thesis, all the design properties have been
applied in the Smart Hotel specification. Finally, Section 6.3 concludes
the chapter.

6.1 Overview of the Smart Hotel Case Study

The Smart Hotel reconfigures its services and devices according to
changes in the surrounding context. In the Smart Hotel, different cus-
tomers use the same room over time. Each client has their own prefer-
ences for the room and it should be adjusted to improve the customer’s
stay. Furthermore, the preferences of a user change depending on the
activities performed. For example, preferences change depending on
whether the customer is sleeping or working. A hotel room changes its
features (activating or deactivating these features) in order to make the
stay as pleasant as possible. The Smart Hotel case study was deployed
with real devices (EIB-KNX and RFID).

In particular, the Smart Hotel uses variability models at run-time to
drive the reconfigurations of the system: how a system can activate or
deactivate its own features dynamically at run-time by fulfilling certain
context conditions. As starting point, we use a reduced version of the
original Smart Hotel specification in order to facilitate understanding
of the design method. According to the Feature Modeling technique,
the Smart Hotel Feature Model presents 18 features (Figure 6.1). The
Feature Model represents the different room configurations. The green
boxes represent the smart hotel active features (current features), while
the red boxes represent inactive fetures (potential variants that may be
activated in the future). The initial configuration of the Smart Hotel
consists of the following active features: SmartRoom, Security, Alarm,
InRoomDetection and VolumetricSensor.

The reconfigurations that can be performed by the Smart Hotel
are represented by the set of resolutions illustrated in Table 6.1. The

6.2 Application of the Design Method 75

Feature Model and the set of resolutions are used at run-time to drive
the Smart Hotel reconfigurations autonomically.

Figure 6.1: Feature Model describing the Smart Hotel case study

RES COND DESCRIPTION FEATURE STATE

R1 cond1
A person is entering in
the room

AutomatedIllumination True
InfrarredSensor False

LightiningByPresence True
PresenceSimulation False

R2 cond2
A person is leaving the
room

AutomatedIllumination False
InfrarredSensor True

LightiningByPresence False
PresenceSimulation True

R3 cond3 Sleeping
InRoomDetection False
VolumetricSensor False

R4 cond4 Listening to music ipod True

Table 6.1: Initial set of resolutions of the Smart Hotel

6.2 Application of the Design Method

This section exemplifies the application of the design method to improve
the design of the Smart Hotel. To illustrate the applicability, all the

76 Case Study: the Smart Hotel

design properties presented in this thesis have been applied to the Smart
Hotel specification.

6.2.1 Obtaining the Possibility Space

Given the Feature Model of the Smart Hotel (Figure 6.1) and the set of
resolutions (Table 6.1), it is difficult to foresee the implications that the
reconfigurations will have at run-time. By applying the design method
proposed, we can automatically obtain a graphical representation of
the run-time reconfigurations in a state machine model. This state ma-
chine model represents the Possibility Space of the system. From the
Smart Hotel specification above, the Possibility Space can be obtained
automatically as explained in Chapter 4 (Section 4.2.1). Figure 6.2 illus-
trates the Possibility Space derived from the Smart Hotel specification.

The definition of 4 resolutions generates a Possibility Space with 12
states and 28 reconfigurations among them. Each state represents a
feasible configuration of the system. Each configuration is conformed
by a set of active features in the FM. The definition of each configura-
tion is illustrated in Table 6.2. Each column contains a configuration of
the Possibility Space. Each row contains a feature of the feature model.
Green cells mean, active features in the configuration represented by
the column. The table only captures the features modified by the res-
olutions. The reminder of the features in the FM were inactive initially
and will keep inactive during execution.

6.2.2 Reconfiguration Analysis and Refinement

Once the Possibility Space of the Smart Hotel has been obtained, the
designer can analyze run-time reconfiguration effects to assure execution
issues. Therefore, the designer can select available design properties
in the catalog. The next subsections illustrate the application of all
the properties to the Smart Hotel specification. Following the design
method, the properties are applied iteratively. The resulting Possibility
Space of one property is used as the starting point for the next property.

6.2 Application of the Design Method 77

Figure 6.2: Possibility Space of the Smart Hotel

6.2.2.1 Property 1: Safe Reconfigurations and Reachability

The Feature Model of the Smart Hotel contains the following variability
constraint:

PresenceSimulation requires InRoomDetection

Given the textual description of the resolutions, it is difficult to foresee if
the system will violate the constraint during execution. Therefore, the
designer can select the Safe Reconfigurations and Reachability
property to guarantee that all the reconfigurations are safe. This is,
reconfigurations never lead to inconsistent states where the variability

78 Case Study: the Smart Hotel

XXXXXXXXXXXFeature
State

1 2 3 4 5 6 7 8 9 10 11 12

SmartRoom

Security

Alarm

InRoomDetection

VolumetricSensor

AutomatedIlumination

InfraredSensor

LightingByPresence

PresenceSimulation

ipod

Table 6.2: Configurations defined by the Possibility Space

constraint is violated.

Figure 6.3 illustrates the Smart Hotel Possibility Space with invalid
configurations and unsafe reconfigurations highlighted in color red. In
the Possibility Space there are two invalid configurations: S8 and S12,
since in both configurations feature PresenceSimulation is active while
feature InRoomDetection is inactive. Consequently, the reconfigura-
tions that reach S8 or S12 from valid configurations, are unsafe and
should be avoided from the specification. The Possibility Space contains
6 unsafe reconfigurations. The unsafe reconfigurations are triggered by
resolutions: R2 (from configurations S5, S6, S10 and S11) and R3 (from
configurations S3 and S8).

The refinement associated to this property, automatically avoids
these undesirable reconfigurations. The refinement works as follows:

• First, the refinement modifies the guards of resolutions R2 and R3
to avoid their execution in the configurations that trigger unsafe
reconfigurations. The set of resolutions is modified as shown in
Table 6.3.

6.2 Application of the Design Method 79

Figure 6.3: Possibility Space with invalid configurations and unsafe reconfig-
urations identified

• Second, when some reconfigurations are removed other config-
urations can be unreachable. In order to not loose reconfigur-
ation capability, the refinement calculates new safe reconfigura-
tions which directly lead from the valid source configurations of
the old unsafe reconfigurations, to the configurations reachable
from the unsafe removed. It also introduces guards to the new
resolution in order to avoid the generation of new configurations
because of the application of this resolution from other configur-
ations. The refinement generates the new resolutions shown in
Table 6.4. These new resolutions are calculated as explained in
Chapter 5 (Section 5.1). The Smart Hotel Possibility Space after

80 Case Study: the Smart Hotel

RES COND GUARD FEATURE STATE

R1 cond1

AutomatedIllumination True
InfrarredSensor False

LightiningByPresence True
PresenceSimulation False

R2 cond2
[!S10; !S5;
!S11; !S6]

AutomatedIllumination False
InfrarredSensor True

LightiningByPresence False
PresenceSimulation True

R3 cond3
[
!S3; !S8

] InRoomDetection False
VolumetricSensor False

R4 cond4 ipod True

Table 6.3: Resolutions modified to avoid unsafe reconfigurations

applying this refinement is shown in Figure 6.4. The new recon-
figurations generated are represented with thick lines.

6.2 Application of the Design Method 81

RES COND GUARD FEATURE STATE

R3+R1
cond3∧
cond1

[
S3;S8

]
InRoomDetection False
VolumetricSensor False

AutomatedIllumination True
InfraredSensor False

LightingByPresence True
PresenceSimulation False

R3+R4+R1
cond3∧
cond4∧
cond1

[
S3

]
InRoomDetection False
VolumetricSensor False

iPod True
AutomatedIlumination True

InfraredSensor False
LightingByPresence True
PresenceSimulation False

R2+R1
cond2∧
cond1

[
S10;S11

]
AutomatedIlumination False

InfraredSensor True
LightingByPresence False
PresenceSimulation True

AutomatedIlumination True
InfraredSensor False

LightingByPresence True
PresenceSimulation False

R2+R4+R1
cond2∧
cond4∧
cond1

[
S10

]
ipod True

AutomatedIlumination False
InfraredSensor True

LightingByPresence False
PresenceSimulation True

AutomatedIlumination True
InfraredSensor False

LightingByPresence True
PresenceSimulation False

Table 6.4: New resolutions generated by the refinement

82 Case Study: the Smart Hotel

R3+R4+R1

R2+R4+R1

R3+R1

R2+R1

R3+R1

Figure 6.4: Possibility Space after applying Safe Reconfigurations and
Reachability refinement

6.2.2.2 Property 2: Redundancy

Eventually, designers can define duplicated behavior unintentionally.
Duplicated behavior refers to resolutions that evolve the system between
the same source configuration and the same target configuration by
means of different actions. Other refinements, can also generate new
resolutions that are redundant with existing resolutions in the specific-
ation. The Redundancy property guarantees that the specification
does not contain duplicated behavior.

After applying the Safe Reconfigurations and Reachability refine-

6.2 Application of the Design Method 83

ment, the designer could select the Redundancy property. It can be
observed that the resulting Possibility Space (Figure 6.4) of previous
refinement contains redundant behavior. The reconfigurations triggered
by resolutions R1 and R2+R1 are redundant from configurations S10
and S11, because both evolve the system between the same configura-
tions: S10-S5 and S11-S6. Table 6.5 summarizes the redundant recon-
figurations.

RES SOURCE DEST COND GUARD

R1 S10 S5 cond1

R2+R1 S10 S5 cond2∧cond1
[
S10;S11

]
R1 S11 S6 cond1

R2+R1 S11 S6 cond2∧cond1
[
S10;S11

]
Table 6.5: Redundant reconfigurations in the Possibility Space

By applying the Redundancy Avoidance Refinement to the
previous refined Possibility Space (Figure 6.4), the redundant recon-
figurations can be avoided automatically . The refinement selects the
simplest resolution and removes the others. R1 implies 4 actions whereas
R2+R1 implies 8 actions. Therefore, the refinement eliminates R2+R1.
The refinement modifies the guard of resolution R2+R1 in order to
avoid its execution in the configurations that trigger redundant resol-
utions (S10 and S11). The resolution R2+R1 has a previous guard[
S10;S11

]
, then it only executes in configurations S10 and S11. Since,

this refinement avoids the execution of R2+R1 in configurations S10
and S11, this resolution will never execute. Furthermore, in order to
not loose reconfiguration capability, the refinement modifies the condi-
tion of R1 to include the possibilities of reconfiguration of the removed
resolution (R2+R1). Table 6.6 shows the resolutions modified by the
refinement.
The Possibility Space after applying the Redundancy Avoidance refine-
ment is shown in Figure 6.5. The reconfigurations removed are repres-
ented with red dashed lines.

84 Case Study: the Smart Hotel

RES COND GUARD

R2+R1 cond2∧cond1
[
S10;S11

]
[!S10;!S11]

R1 (cond1) or (cond2∧cond1)

Table 6.6: Resolutions modified by the refinement to avoid redundancy

R3+R4+R1

R2+R4+R1

R3+R1

R3+R1

Figure 6.5: Possibility Space after applying the Redundancy Avoidance Re-
finement.

6.2.2.3 Property 3: Reversibility

The designer can take into consideration rollback capabilities to recon-
figurations. Thus, the Reversibility property can be used. Given
the Possibility Space of Figure 6.5, it can be observed that the space

6.2 Application of the Design Method 85

contains reversible reconfigurations between configurations S2-S3 and
S9-S8. These reconfigurations are triggered by resolutions R2 and R1.
The reminder of reconfigurations do not have another reconfiguration
that leads directly to the source configuration.

Depending on the application domain, a different type of reversible
system could be required. Designers can apply one of the following
refinements making either a Total Reversible System or a Nonreversible
System:

• Nonreversible System Refinement

The purpose of this refinement is to ensure that the effects of each recon-
figuration cannot be undone by means of other reconfiguration at run-
time. In the Smart Hotel Possibility Space of Figure 6.5, there are two
reversible resolutions, R1 and R2, between configurations: S2-S3 and
S8-S9. Nevertheless, other configurations (S1, S10, S12 and S11) can
evolve by means of R1 or R2 to different configurations, but there are
no reversible reconfigurations to them. Designers can apply the Nonre-
versible System Refinement to automatically achieve specifications
free of reversible reconfigurations. The refinement adds guard to the
resolution R1 or R2 to avoid their execution in the configurations that
trigger reversible reconfigurations, but keeping them in the reminder
of configurations. In this way, reconfiguration capability is not lost.
By observing the textual description of the resolutions, it is difficult
to foresee the configurations where R1 and R2 will be reversible, and
the configurations where there will not be a reversible reconfiguration
after triggering R1 or R2. Thus, the design method can substantially
help designers by analyzing and automatically refining the specification
to fulfill this requirement. The designer can choose which of these two
resolutions should be removed. Consequently, two different Possibility
Spaces can be obtained:

• If the designer decides to remove reconfiguration R1, the refine-
ment modifies the guard of the resolution R1 to avoid its execution
on configuration S3 and S8. Figure 6.6 shows the resulting Pos-
sibility Space after applying the refinement. The reconfigurations
removed are represented with red dashed lines.

86 Case Study: the Smart Hotel

RES COND GUARD

R1 (cond1) or (cond2∧cond1)
[
!S3; !S8

]
Table 6.7: Resolution R1 after applying the Nonreversible System refinement

removing R1

R3+R4+R1

R2+R4+R1

R3+R1

R3+R1

Figure 6.6: Possibility Space after applying the “Nonreversible System” re-
finement removing R1

• If the designer decides to remove reconfiguration R2, the refine-
ment modifies the guard of the resolution R2 to avoid its execution
on configuration S2 or S9. Figure 6.7 shows the resulting Possib-
ility Space after applying the refinement. Red dashed lines mean
reconfigurations removed.

6.2 Application of the Design Method 87

RES COND GUARD

R2 cond2
[
!S10; !S5; !S11; !S6

][
!S2; !S9

]
Table 6.8: Resolution R2 after applying the Nonreversible System refinement

removing R2

R3+R4+R1

R2+R4+R1

R3+R1

R3+R1

Figure 6.7: Possibility Space after applying the “Nonreversible System” re-
finement removing R2

• Total Reversible System Refinement

If the designer is interested in guaranteeing that, for all reconfigurations
occurring in the system, it is always possible to undo the effect of the
reconfiguration, the Total Reversible System refinement can be

88 Case Study: the Smart Hotel

applied. To fulfill this requirement, the refinement generates six new
resolutions illustrated in Table 6.9.

RES GUARD FEATURE STATE

R3
[
S5;S11;S6

] InRoomDetection True
VolumetricSensor True

R4
[
S12;S9;S8;S11;S6

]
iPod False

R3+R1
[
S5;S6

] InRoomDetection True
VolumetricSensor True

AutomatedIlumination False
InfraredSensor True

LightingByPresence False
PresenceSimulation True

R3+R4+R1
[
S6

]
iPod False

AutomatedIlumination True
InfraredSensor False

LightingByPresence True
PresenceSimulation False

AutomatedIlumination False
InfraredSensor True

LightingByPresence False
PresenceSimulation True

R1
[
S2;S5;S6

] AutomatedIlumination False
LightingByPresence False

R2
[
S3;S8

] InfraredSensor False
PresenceSimulation False

Table 6.9: New resolutions generated by the Total Reversible refinement

The refinement also introduces guards to the new resolutions in or-
der to avoid the generation of new configurations because of the ap-
plication of this resolution from other configurations. Figure 6.8 shows
the Possibility Space after applying the refinement. The generated res-
olutions are represented with thick lines. As the figure shows, a great
number of reconfigurations are needed to fulfill this requirement. By

6.2 Application of the Design Method 89

visual inspection, it would be very difficult to foresee and to specify the
required resolutions.

R2

R1

R3

R4

R3

R3

R4

R2

R1

R4

R4

R1

R3+R1

R4

R3+R4
+R1

R3
+R
1

R1

R4+
R2+

R1

R3

Figure 6.8: Possibility Space after applying the “Total Reversible System”
refinement

90 Case Study: the Smart Hotel

6.2.2.4 Property 4: Contextual Consistency

This property guarantees that when a determined context condition is
fulfilled, the system evolves (independently from its current state) to
a predefined or controlled configuration. For example, if in the Smart
Hotel is detected a fire, the system must always reconfigure to a config-
uration“Emergency” independently of the current system configuration.
In the new configuration “Emergency” are active the following features:
SmartRoom, Security, Alarm, Siren and BlinkingLight.

R3+R4+R1

R2+R4+R1

R3+R1

R3+R1

Figure 6.9: Possibility Space after applying the “Contextual Consistency”
refinement

6.2 Application of the Design Method 91

The Contextual Consistency refinement generates from each
configuration in the Possibility Space a new reconfiguration that evolves
the system to the new configuration “Emergency”. Figure 6.9 illustrates
the Possibility Space after applying this refinement. The configuration
“Emergency” is represented by the state S13. The new generated recon-
figurations are represented with thick lines. The refinement generates
twelve new resolutions presented in Table 6.10.

RES COND GUARD FEATURE STATE

RS1−S13 condfire

[
S1

] InRoomDetection False
VolumetricSensor False

Siren True
BlinkingLight True

RS2−S13 condfire

[
S2

]
InRoomDetection False
VolumetricSensor False

AutomatedIlumination False
LightingByPresence False

Siren True
BlinkingLight True

RS3−S13 condfire

[
S3

]
InRoomDetection False
VolumetricSensor False

InfraredSensor False
PresenceSimulation False

Siren True
BlinkingLight True

RS5−S13 condfire

[
S5

] AutomatedIlumination False
LightingByPresence False

Siren True
BlinkingLight True

RS6−S13 condfire

[
S6

] AutomatedIlumination False
LightingByPresence False

iPod False
Siren True

BlinkingLight True

92 Case Study: the Smart Hotel

RS8−S13 condfire

[
S8

]
InRoomDetection False
VolumetricSensor False

InfraredSensor False
PresenceSimulation False

iPod False
Siren True

BlinkingLight True

RS9−S13 condfire

[
S9

]
InRoomDetection False
VolumetricSensor False

AutomatedIlumination False
LightingByPresence False

iPod False
Siren True

BlinkingLight True

RS10−S13 condfire

[
S10

] Siren True
BlinkingLight True

RS11−S13 condfire

[
S11

] iPod False
Siren True

BlinkingLight True

RS12−S13 condfire

[
S12

] InRoomDetection False
VolumetricSensor False

iPod False
Siren True

BlinkingLight True

RS13−S1 condnotfire

[
S13

] Alarm False
Siren False

BlinkingLight False
InRoomDetection True
VolumetricSensor True

Table 6.10: Generated Resolutions after applying Contextual Consistency re-
finement

6.2 Application of the Design Method 93

6.2.2.5 Property 5: Contextual Determinism

This property involves predictability in the reconfiguration process to
future states. A system is deterministic if for each possible context
condition, every state in the system has exactly one reconfiguration that
leads to the next state. Thus, when a determined context condition is
fulfilled, the system can only reconfigure to one destination state. On
the contrary, if more than one condition is fulfilled at the same time,
several reconfigurations will execute at the same time, and the system is
indeterministic. Indeterministic behavior is unacceptable in the Smart
Hotel, since two different room configurations at the same time has no
sense.

The Smart Hotel specification defines a deterministic system because
each resolution is associated to a different context condition. Let’s sup-
pose that now the hotel room is equipped with a new configuration
suitable for working. Then the designer defines a new resolution R5, as
illustrated in Table 6.11.

RES COND DESCRIPTION FEATURES STATE

R4 cond4 A person starts listening to music ipod True

R5 cond4 A person starts working laptop True

Table 6.11: New defined resolution

Unintentionally, the designer has set the condition that trigger R5
equal to the condition that trigger an existing resolution (R4). The
definition of the resolution R5 generates a nondeterministic Smart Hotel.
During execution, the fulfillment of the context condition cond4 will
lead to more than one reconfiguration (triggered by R4 and R5), there-
fore, to more than one destination state. Designers can apply the De-
terministic System refinement to guarantee that the Smart Hotel
is deterministic at run-time.

The refinement offers two options:

• Allows designers to choose the resolution that should be triggered
when the context condition is fulfilled.

94 Case Study: the Smart Hotel

• Modifies the condition of some resolutions in order to avoid the
simultaneous reconfigurations.

6.3 Conclusions

This chapter has illustrated the application of the design method pro-
posed in this work to refine the specification of an existing self-adaptive
system: the Smart Hotel. The above case study has demonstrated the
difficulty to foresee and control the behavior of self-adaptive systems
through variability specifications.

Reconfigurations at run-time can have a great number of repercus-
sions and situations. Thus, techniques to analyze the effects of run-time
reconfigurations can improve the system execution and make users feel
more comfortable with self-adaptive systems. Furthermore, the explo-
sion of states makes the design of self-adaptive systems a tedious task
that is prone to errors. The use of guidelines to specify self-adaptive
systems and analyze reconfigurations helps engineers to develop adapt-
ive systems of higher quality. All the design properties identified in this
master thesis haven been successively applied to the case study and the
benefits are immediate.

Chapter 7

Tool Support

The design method proposed in this master thesis follows a model-based
approach for the development of self-adaptive systems. A model is a
simplification of a system, built with an intended goal in mind, that
should be able to answer questions in place of the actual system (Bézivin
& Gerbé, 2001). In this work, a series of models are used to describe a
self-adaptive system and drive its behavior at run-time.

MDE proposes the use of metamodels to formalize concepts and
their relationships. A metamodel defines the constructs that can be
used to describe systems. Metamodels are useful to formalize and ex-
change models. We have defined several metamodels that formalize the
concepts used in our design method to model self-adaptive systems.

The modeling community has developed several projects to support
the MDE paradigm under the Eclipse Modeling Project. Different tasks
comprised by the MDE approach are supported: definition of a modeling
language (metamodeling), description of a system using this language
(modeling). Eclipse Modeling Framework (EMF)1 provides tool support

1http://www.eclipse.org/modeling/emf

96 Tool Support

for the definition of metamodels and the edition of models. For the
implementation of the graphical tools we have used the possibilities
offered by the Eclipse Graphical Modeling Framework (GMF) which
is part of the Eclipse Modeling Project. GMF provides a generative
component and run-time infrastructure for developing graphical editors
based on EMF.

This chapter formalizes the concepts used for describing self-adaptive
systems through metamodels. We have implemented some graphical ed-
itor tools based on Eclipse in order to facilitate the specification of this
kind of systems. Eclipse tools are defined by combining a set of plug-
ins with different functionalities. We have developed some plugins to
support the technique presented for the design of self-adaptive systems.
Furthermore, we have integrated existing plug-ins that provide feature
modeling capabilities that meet our requirements.

The following sections (7.1, 7.2, 7.3, 7.4) provide detail on the defin-
ition of the tools and the graphical environments to design self-adaptive
systems. Section 7.5 explains how the design method is automated by
using the tools defined and model transformations. Finally, Section 7.6
concludes the chapter.

7.1 The Feature Model Metamodel

In order to model the variability of a self-adaptive system we have used
Moskitt Feature Modeler (MFM). MFM is a free open-source tool that
is part of the Moskitt modeling suite2. MFM is defined as a set of
plug-ins that we could incorporate to enhance our tool support with
feature modeling capabilities. Figure 7.1 shows the different concepts in
the Feature Model metamodel and the relationships among them. The
metaclass FeatureModel is used as the root element of Feature models.
The Feature metaelement represents the different features of the Fea-
ture model. Each feature can have attributes that are represented by
the Attribute metaelement. Features are related among them through
relationships represented by the CardinalityBasedRelationship metaele-

2http://www.moskitt.org

7.1 The Feature Model Metamodel 97

ment. This metaelement is specialized in the different relationships that
the Feature model supports: Or, Alternative, Optional, and Mandatory.

Figure 7.2 shows the environment of the MFM.

Figure 7.1: The Feature Model metamodel

98 Tool Support

Figure 7.2: MFM environment

7.2 The Configuration Metamodel

The Configuration metamodel defines the concepts to represent feas-
ible configurations of a Feature Model. The metamodel is shown in
Figure 7.3.

The ConfigurationModel is the root element of the metamodel. The
ConfigurationModel has a FeatureModel from the Feature Model metamodel,
and is composed by a set of FeatureState metaelements. Each Fea-
tureState has a Feature from the FeatureModel and represents the state
of that feature. There are three types of states: Active, Deactive or
Discarded, meaning that the feature is active, inactive o it does not
matter its state in that configuration respectively.

A graphical editor is provided to describe possible configurations of
a feature model. Figure 7.4 illustrates the environment of the editor.
Features are represented with different colors depending on their state:
green features represent active features, red features represent deactive
features and orange features represent discarded features. With this
tool developers can determine the initial configuration of the system in
an intuitive manner.

7.3 The Resolution Metamodel 99

Figure 7.3: The Configuration metamodel

Figure 7.4: Graphical editor for Configuration Models

7.3 The Resolution Metamodel

The Resolution metamodel (see Figure 7.5) defines the concepts used
for describing resolutions. The metaclass ResolutionModel is the root
element of the metamodel. The ResolutionModel is composed by a set
of Resolution metaelements that represent different resolutions. Each
Resolution is composed by a Condition and a set of Actions. Further-
more, a Resolution can have a Guard.

An editor is provided to support the definition of the resolution

100 Tool Support

model using the EMF capabilities. Figure 7.6 shows the environment
of the editor.

Figure 7.5: The Resolution metamodel

Figure 7.6: Graphical editor for Resolution models

7.4 The State Machine Metamodel 101

7.4 The State Machine Metamodel

The State Machine metamodel defines the concepts for describing the
Possibility Space of the system. The metamodel is shown in Figure 7.7.
The StateMachineModel is the root element of the metamodel. A
StateMachineModel is composed by a set of State metaelements. Each
State has a set of Transitions, and each Transition has a source state
and a destination state.

Figure 7.8 shows the graphical editor for the state machine model.

Figure 7.7: The State Machine metamodel

102 Tool Support

Figure 7.8: Graphical editor for State Machine models

7.5 Automating the Design Process

One of the main reasons for following a Model Driven Engineering
(MDE) development is that it is focused on automation. Models can be
transformed automatically into new models or code by means of model
transformation techniques. This enables automation in system develop-
ment since software artifacts can be derived in a systematic way. Many
technologies and standards give support to this development paradigm.
The Object Management Group (OMG) defined Model Driven Architec-
ture (MDA)(Miller & Mukerji, 2003) to provide support to these ideas
with standards for metamodeling and the definition of model trans-
formations. Either following MDA or any other paradigm based on
MDE ideas, software development can be improved by the raise in the
abstraction level that the use of models provides.

The model-driven process defined in this work begins with the spe-
cification of a self-adaptive system by means of: a Feature Model, an

7.5 Automating the Design Process 103

initial Configuration Model and a Resolution Model. Using the tools
presented above, designers can define the initial system specification.
Then, this system specification is automatically transformed into a State
Machine model that represents the Possibility Space of the system. De-
signers can modify the obtained model to guarantee design properties
that fulfill assertions about behavior at run-time.

In order to automate the design method, we have implemented a
series of model-to-model transformations. Different model-to-model
transformation languages exist, such as QVT (OMG, 2005), ATL (Jou-
ault & Kurtev, 2006) or RubyTL (Cuadrado et al., 2006). For these
transformations, Atlas Transformation Language (ATL) was used. ATL
is a declarative language with Eclipse-based tools support for the edition
and execution of model transformations.

Figure 7.9 illustrates an overall view of the transformation process,
where are shown the input and output models of each transformation
and the metamodels to which they are conformed.

Using ATL, first we have implemented the transformation T0. This
transformation defines the mappings, by means of model-to-model rules,
to generate a State Machine Model (defined according to the State Ma-
chine metamodel). This transformation takes as input three models:
Feature Model, Configuration Model and Resolution Model ; and gener-
ates a State Machine Model. The mapping is unidirectional.

Once the State Machine model has been obtained, several transform-
ations can be applied successively to guarantee different design prop-
erties. For each of the properties presented in the catalog (Section 5),
the associated refinements have been implemented as model-to-model
transformations. All the transformations take as input two models: the
State Machine Model obtained in the previous transformation, and the
Resolution Model ; and generate a Refined State Machine Model and
a Refined Resolution Model. We denote this transformations T-REF.
There are six different transformations T-REF (T-safe, T-redun, T-rev,
T-non-rev, T-cons and T-det) that implement the different refinements
proposed. At the moment of writing this document, we have already
implemented transformations T0, T-redun, T-rev, T-non-rev, T-cons

104 Tool Support

Feature

Model

Configuration

Model

Resolution

Model

State Machine

Model

Resolution

MM

Configuration

MM

State Machine

MM

Feature Model

MM

T0

instance of

Refined

State Machine

Model

State Machine

MM

Refined

Resolution

Model

Resolution

MM

T_REF

T_safe T_redun

T_rev T_non-rev

T_detT_cons

Figure 7.9: Overall view of the transformation process

and T-det, and we are working on the implementation of the T-safe
refinement.

7.6 Conclusions 105

7.6 Conclusions

This chapter introduces the set of tools that support the design method
proposed in this master thesis. We have used the Eclipse Modeling tech-
nologies. By applying MDE principles, we have formalized the concepts
involved in the modeling of self-adaptive systems and we have defined
a series of editors to ease their specification. The design method for
self-adaptive systems is automated by a series of model-to-model trans-
formations. The transformations have been implemented using the ATL
transformation language.

106 Tool Support

Chapter 8

Conclusions

The present work has introduced a model-driven development method
for designing self-adaptive systems. This chapter reviews our central
results and primary contributions, and proposes new areas for future
research in connection with the limitations of this work.

First, Section 8.1 presents the main contributions to the self-adaptive
systems community. Section 8.2 provides some information about the
conferences where the work has been submitted. Finally, Section 8.3
outlines the ongoing and future work.

8.1 Contributions

The main contribution of this work is a model-based method for the sys-
tematic design of trustworthy self-adaptive systems. The work provides
the following contributions:

Systematic design approach. Adaptability poses new challenges
to Software Engineering. A model-based development method

108 Conclusions

has been defined to guide developers in the design of self-adaptive
systems. The purpose of this method is (1) to analyze the run-time
reconfiguration effects at design time and (2) to automatically
refine reconfigurations to ensure valuable design issues.

Properties catalog. The explosion of configurations and reconfig-
urations is one of the major challenges that self-adaptive system
engineers have to face. The implications of run-time reconfigura-
tions are very difficult to foresee and control at design-time. Thus,
potential design issues and guidelines to assist engineers in the
design of self-adaptive systems have been highlighted. Five inter-
esting properties have been identified: Safe Reconfigurations and
Reachability, Redundancy, Reversibility, Contextual Consistency
and Contextual determinism. These properties can be automatic-
ally ensured through refinements. Dealing with design properties
optimizes self-adaptive design and, consequently, the execution.
The suggested properties are only an example; designers could in-
clude more properties to cover different aspects of systems design
and execution.

Tool support. We have provided a set of tools that support the
design method proposed in this master thesis. These tools ease
the modeling of self-adaptive systems, and automate the analysis
and refinement of system specifications.

Moreover, in order to evaluate the approach, we have applied the
design method to improve the design of a Smart Hotel self-adaptive sys-
tem. The case study has demonstrated the difficulty to foresee the be-
havior of self-adaptive systems through variability specifications. This
design approach significantly improves the ability to develop and main-
tain self-adaptive systems, by providing mechanisms to analyze run-time
reconfiguration effects and automatically refine specifications to ensure
valuable design issues. It is remarkable, that the method improves the
design but not a the expense of losing reconfiguration capability.

8.2 Publications 109

8.2 Publications

Part of the work proposed in this master thesis was submitted to the
following international conferences:

• SPLC 2011: 15th International Software Product Line
Conference. Although the review comments were very positive,
the paper was not selected for presentation at the conference. The
supervisors highlighted the originality and the relevance of the
research topic for the community. Therefore, we realize that the
work developed is a very promising research line.

• ASE 2011: 26th IEEE/ACM International Conference
On Automated Software Engineering (Tier-A according to
CORE conference ranking). The work improved with the feedback
provided by SPLC supervisors, was submitted to ASE conference.
ASE is one of the most prestigious conferences in the Software En-
gineering community. We are currently waiting for the acceptance
notification next 18th July 2011.

8.3 Future Work

The research presented here is not a closed work and there are several
interesting future directions. The following summarizes the research
activities that are planned to continue this work.

Improving adaptation visualization. At the moment, our tool
supports the visualization of the Possibility Space of the system.
We are aware of scalability problems inherent to approaches that
have to cope with combinatorial explosion of variants. Thus, we
are planning to improve the visualization of Possibility Spaces in
order to make feasible the management of large-scale models.

Providing a conceptual framework. We intend to provide a con-
ceptual framework to enable engineers to incorporate more design

110 Conclusions

properties as required. Furthermore, we plan to study dependen-
cies between design properties in order to guarantee orthogonal
properties.

Enabling End-user participation in the Design of self-adaptive
systems. Run-time reconfigurations may imply assumptions about
the desirable functionality of end-users. We plan to involve end-
users in the design of reconfigurations in order to minimize the
mismatch between user expectations and system behavior. Spe-
cifically, we intend to enable end-users and technical designers
participate cooperatively on a design method for self-adaptive sys-
tems.

Addressing other Application Domains. We also expect to apply
the design approach to develop systems in different application
areas, such as Service-Oriented Architecture (SOA) or Method
Engineering (ME).

ACKNOWLEDGEMENT

We would like to gratefully thank Dr. Carlos Cetina for his contribution
to the initial ideas of this master thesis.

Bibliography

Ahead (2009). Ahead tool suite.
http://www.cs.utexas.edu/users/schwartz/ats.html;. accessed
november 2009.

Bellotti, V., & Edwards, K. (2001). Intelligibility and accountability:
human considerations in context-aware systems. Hum.-Comput. In-
teract., 16 , 193–212.

Bencomo, N., Blair, G., & France, R. (2008a). Model-driven soft-
ware adaptation: report on the workshop m-adapt at ecoop 2007.
In Proceedings of the 2007 conference on Object-oriented technology ,
ECOOP’07, (pp. 132–141). Berlin, Heidelberg: Springer-Verlag.

Bencomo, N., Blair, G., & France, R. (2008b). Model-driven soft-
ware adaptation: report on the workshop m-adapt at ecoop 2007.
In Proceedings of the 2007 conference on Object-oriented technology ,
ECOOP’07, (pp. 132–141). Berlin, Heidelberg: Springer-Verlag.

Bencomo, N., Grace, P., Flores, C., Hughes, D., & Blair, G. (2008c).
Genie: supporting the model driven development of reflective,
component-based adaptive systems. In Proceedings of the 30th in-
ternational conference on Software engineering , ICSE ’08, (pp. 811–
814). New York, NY, USA: ACM.

112 BIBLIOGRAPHY

Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of the
OMG/MDA framework. In ASE ’01: Proceedings of the 16th IEEE
international conference on Automated software engineering , (p. 273).
Washington, DC, USA: IEEE Computer Society.

Blair, G., Bencomo, N., & France, R. B. (2009). Models@ run.time.
Computer , 42 , 22–27.

Brun, Y., Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu,
M., Müller, H., Pezzè, M., & Shaw, M. (2009). Software engineering
for self-adaptive systems. chap. Engineering Self-Adaptive Systems
through Feedback Loops, (pp. 48–70). Berlin, Heidelberg: Springer-
Verlag.

Bézivin, J. (2004). In search of a basic principle for model driven en-
gineering. Novatica Journal Special Issue, V (2), 21–24.

Cetina, C., Fons, J., & Pelechano, V. (2008). Applying Software
Product Lines to Build Autonomic Pervasive Systems. In Proceedings
of the 2008 12th International Software Product Line Conference,
(pp. 117–126). Washington, DC, USA: IEEE Computer Society.

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2009a). Autonomic
computing through reuse of variability models at runtime: The case
of smart homes. Computer , 42 (10), 37–43.

Cetina, C., Giner, P., Fons, J., & Pelechano, V. (2010). Designing
and prototyping dynamic software product lines: techniques and
guidelines. In Proceedings of the 14th international conference on
Software product lines: going beyond , SPLC’10, (pp. 331–345). Ber-
lin, Heidelberg: Springer-Verlag.

Cetina, C., Haugen, O., Zhang, X., Fleurey, F., & Pelechano, V.
(2009b). Strategies for variability transformation at run-time. In
Proceedings of the 13th International Software Product Line Confer-
ence, SPLC ’09, (pp. 61–70). Pittsburgh, PA, USA: Carnegie Mellon
University.

BIBLIOGRAPHY 113

Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson,
J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Seru-
gendo, G., Dustdar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi,
V., Karsai, G., Kienle, H., Kramer, J., Litoiu, M., Malek, S., Mir-
andola, R., MÃijller, H., Park, S., Shaw, M., Tichy, M., Tivoli,
M., Weyns, D., & Whittle, J. (2009). Software engineering for self-
adaptive systems: A research roadmap. In B. Cheng, R. de Lemos,
H. Giese, P. Inverardi, & J. Magee (Eds.) Software Engineering for
Self-Adaptive Systems, vol. 5525 of Lecture Notes in Computer Sci-
ence, (pp. 1–26). Springer Berlin / Heidelberg.

Clements, P., & Northrop, L. (2001). Software Product Lines: Practices
and Patterns. Addison-Wesley Longman Publishing Co., Inc.

Cuadrado, J. S., Molina, J. G., & Tortosa, M. M. (2006). Rubytl:
A practical, extensible transformation language. In A. Rensink, &
J. Warmer (Eds.) ECMDA-FA, vol. 4066 of Lecture Notes in Com-
puter Science, (pp. 158–172). Springer.

Czarnecki, K., & Kim, P. (2005). Cardinality-based feature modeling
and constraints: A progress report. In Proceedings of the Interna-
tional Workshop on Software Factories At OOPSLA 2005 .

Dey, A. K. (2009). Modeling and intelligibility in ambient environments.
J. Ambient Intell. Smart Environ., 1 , 57–62.

Gomaa, H., & Shin, M. (2008). Multiple-view modelling and meta-
modelling of software product lines. Software, IET , 2 (2), 94 –122.

Hallsteinsen, S., Hinchey, M., Park, S., & Schmid, K. (2008). Dynamic
Software Product Lines. Computer , 41 (4), 93 –95.

Hallsteinsen, S., Stav, E., Solberg, A., & Floch, J. (2006). Using Product
Line Techniques to Build Adaptive Systems. In Proceedings of the
10th International on Software Product Line Conference, (pp. 141–
150). Washington, DC, USA: IEEE Computer Society.

114 BIBLIOGRAPHY

Haugen, Ø., Husa, K., Runde, R., & Sttølen, K. (2005). STAIRS to-
wards formal design with sequence diagrams. Software and Systems
Modeling , 4 , 355–357. 10.1007/s10270-005-0087-0.

Haugen, Ø., & Sttølen, K. (2003). STAIRS - Steps to Analyze Interac-
tions with Refinement Semantics. In of Lecture Notes in Computer
Science, (pp. 388–402). Springer.

Horn, P. (2001). Autonomic computing: IBM’s Perspective on the State
of Information Technology.

Istoan, P., Nain, G., Perrouin, G., & Jezequel, J.-M. (2009). Dynamic
Software Product Lines for Service-Based Systems. Computer and
Information Technology, International Conference on, 2 , 193–198.

Jouault, F., & Kurtev, I. (2006). Transforming models with ATL. In
Satellite Events at the MoDELS 2005 Conference, LNCS 3844 , (pp.
128–138). Springer.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990).
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech.
Rep. CMU/SEI-90-TR-21, Software Engineering Institute.

Kephart, J., & Chess, D. (2003). The vision of autonomic computing.
Computer , 36 (1), 41 – 50.

Kramer, J. (2007). Is abstraction the key to computing? Commun.
ACM , 50 , 36–42.

March, S. T., & Smith, G. F. (1995). Design and natural science research
on information technology. Decis. Support Syst., 15 (4), 251–266.

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., & Cheng, B. H. (2004).
Composing adaptive software. Computer , 37 , 56–64.

Miller, J., & Mukerji, J. (2003). MDA Guide Version 1.0.1. Tech. rep.,
Object Management Group (OMG).

BIBLIOGRAPHY 115

Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., & Solberg, A. (2009).
Models@ Run.time to Support Dynamic Adaptation. Computer , 42 ,
44–51.

Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.-M., Solberg, A.,
Dehlen, V., & Blair, G. (2008). An aspect-oriented and model-driven
approach for managing dynamic variability. In K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, & M. Völter (Eds.) Model Driven Engineering
Languages and Systems, vol. 5301 of Lecture Notes in Computer Sci-
ence, (pp. 782–796). Springer Berlin / Heidelberg.

Nance, R. E., Overstreet, C. M., & Page, E. H. (1999). Redundancy
in model specifications for discrete event simulation. ACM Trans.
Model. Comput. Simul., 9 , 254–281.

OMG (2005). MOF QVT Final Adopted Specification. Object Modeling
Group. ptc/07-07-07.

OMG (2006). Meta Object Facility (MOF) Core Specification Version
2.0 .

Parra, C., Blanc, X., & Duchien, L. (2009). Context awareness for
dynamic service-oriented product lines. In Proceedings of the 13th
International Software Product Line Conference, SPLC ’09, (pp. 131–
140). Pittsburgh, PA, USA: Carnegie Mellon University.

Plugin (2009). Feature modeling plug-in. http://gp.uwaterloo.ca/fmp/;.
accessed november 2009.

Pure (2009). pure::variants. http://www.pure-systems.com/;. accessed
november 2009.

Runde, R. K., Haugen, Ø., & Stølen, K. (2005). The pragmatics of
stairs. In FMCO , (pp. 88–114).

Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape
and research challenges. ACM Trans. Auton. Adapt. Syst., 4 , 14:1–
14:42.

116 BIBLIOGRAPHY

Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven en-
gineering. Computer , 39 (2), 25–31.

Stahl, T., Voelter, M., & Czarnecki, K. (2006). Model-Driven Software
Development: Technology, Engineering, Management . John Wiley &
Sons.

Sterritt, R., Parashar, M., Tianfield, H., & Unland, R. (2005). A con-
cise introduction to autonomic computing. Advanced Engineering
Informatics, 19 (3), 181–187.

Trinidad, P., Benavides, D., Ruiz-Cortes, A., Segura, S., & Jimenez,
A. (2008). Fama framework. In Software Product Line Conference,
2008. SPLC ’08. 12th International , (p. 359).

Trinidad, P., Cortés, A. R., Peña, J., & Benavides, D. (2007). Map-
ping Feature Models onto Component Models to Build Dynamic Soft-
ware Product Lines. In International Workshop on Dynamic Software
Product Lines.

Vaishnavi, V., & Kuechler, W. (2004). Design research in information
systems. http://desrist.org/design-research-in-information-systems.

Zhang, J., & Cheng, B. H. C. (2006). Model-based development of dy-
namically adaptive software. In Proceedings of the 28th international
conference on Software engineering , ICSE ’06, (pp. 371–380). New
York, NY, USA: ACM.

www.pros.upv.es

Centro de Investigación en Métodos
de Producción de Software
Universitat Politècnica de València
Caḿı de Vera s/n
Edificio 1F
46022 València
Spain
Tel: (+34) 963 877 007 (Ext. 83530)
Fax: (+34) 963 877 359

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Goals
	1.4 The Proposed Solution
	1.5 Research Methodology
	1.6 Thesis Context
	1.7 Thesis Structure

	2 Background
	2.1 Autonomic Computing
	2.1.1 The MAPE-K Autonomic Loop

	2.2 Model Driven Development
	2.2.1 Models@run-time

	2.3 Software Product Lines
	2.3.1 Dynamic Software Product Lines

	2.4 Conclusions

	3 State of the Art
	3.1 Self-adaptive systems development approaches
	3.1.1 Hallsteinsen et al. Approach
	3.1.2 Morin et al. Approach
	3.1.3 Parra et al. Approach
	3.1.4 Cetina et al. Approach

	3.2 Analysis and Discussion
	3.3 Conclusions

	4 A Design Method for Self-Adaptive Systems
	4.1 Proposal Overview
	4.1.1 Design Method Overview

	4.2 Design Method
	4.2.1 Possibility Space Obtention
	4.2.2 Reconfiguration Analysis
	4.2.3 Variability Refinement

	4.3 Conclusions

	5 Design Properties Catalog
	5.1 Safe Reconfigurations and Reachability Property
	5.1.1 Definition
	5.1.2 Safe Reconfigurations and Reachability Refinement

	5.2 Redundancy Property
	5.2.1 Definition
	5.2.2 Redundancy Avoidance Refinement

	5.3 Reversibility Property
	5.3.1 Definition
	5.3.2 Reversibility Refinement

	5.4 Contextual Consistency Property
	5.4.1 Definition
	5.4.2 Contextual Consistency Refinement

	5.5 Contextual Determinism Property
	5.5.1 Definition
	5.5.2 Contextual Determinism Refinement

	5.6 Discussion through the application of properties
	5.7 Conclusions

	6 Case Study: the Smart Hotel
	6.1 Overview of the Smart Hotel Case Study
	6.2 Application of the Design Method
	6.2.1 Obtaining the Possibility Space
	6.2.2 Reconfiguration Analysis and Refinement

	6.3 Conclusions

	7 Tool Support
	7.1 The Feature Model Metamodel
	7.2 The Configuration Metamodel
	7.3 The Resolution Metamodel
	7.4 The State Machine Metamodel
	7.5 Automating the Design Process
	7.6 Conclusions

	8 Conclusions
	8.1 Contributions
	8.2 Publications
	8.3 Future Work

	Bibliography

