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Strong Factorizations of Operators with Applications to
Fourier and Cesàro Transforms

O. Delgado, M. Mastyło, & E. A. Sánchez Pérez

Abstract. Consider two continuous linear operators T : X1(μ) →
Y1(ν) and S : X2(μ) → Y2(ν) between Banach function spaces re-
lated to different σ -finite measures μ and ν. By means of weighted
norm inequalities we characterize when T can be strongly factored
through S, that is, when there exist functions g and h such that T (f ) =
gS(hf ) for all f ∈ X1(μ). For the case of spaces with Schauder ba-
sis, our characterization can be improved, as we show when S is, for
instance, the Fourier or Cesàro operator. Our aim is to study the case
where the map T is besides injective. Then we say that it is a rep-
resenting operator—in the sense that it allows us to represent each
element of the Banach function space X(μ) by a sequence of gen-
eralized Fourier coefficients—providing a complete characterization
of these maps in terms of weighted norm inequalities. We also pro-
vide some examples and applications involving recent results on the
Hausdorff–Young and the Hardy–Littlewood inequalities for opera-
tors on weighted Banach function spaces.

1. Introduction

Let X1(μ), X2(μ), Y1(ν), Y2(ν) be Banach function spaces related to differ-
ent σ -finite measures μ and ν. We consider two continuous linear operators
T : X1(μ) → Y1(ν) and S : X2(μ) → Y2(ν). In this paper, in terms of weighted
norm inequalities, we provide a characterization of when T can be factored
through S via multiplication operators, that is, when there are functions g and
h satisfying that T (f ) = gS(hf ) for all f ∈ X1(μ).

This problem was studied in [6] for the case where μ and ν are the same
finite measure. However, the results developed there do not allow us to face the
problem we study here, in which different σ -finite measures μ and ν appear in
order to consider the relevant case of the classical sequence spaces �p . The reason
is that we are interested in considering standard cases as the Fourier and Cesàro
operators, which will be in fact our main examples.
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In this direction, we will show that in the case where the Köthe dual Y1(ν)′
of Y1(ν) and X1(μ) have a Schauder basis the norm inequality that characterizes
the factorization of T through S can be weakened. After showing this, we will
develop with some detail some examples regarding Fourier operators, operators
factoring though infinite matrices, and the Cesàro operator. This will allow us to
introduce the notion of representing operator and to study it in the second part of
the paper.

Let us explain briefly this notion. With the notation introduced, assume that
Y1(ν) and Y2(ν) have unconditional bases U1 := {vi : i ∈ N} and U2 := {ei : i ∈
N}, respectively. Suppose that there exists a Schauder basis B := {fi : i ∈ N} for
the space X2(μ) and write αi(f ) for the ith basic coefficient of f ∈ X2(μ), i ∈ N.
We will say that an operator T : X1(μ) → Y1(ν) is a representing operator (asso-
ciated with the basis B of X2(μ)) if each element x ∈ X1(μ) can be represented
univocally by a sequence of coefficients (βi(x)) such that

∑∞
i=1 βi(x)vi ∈ Y1(ν),

where the coefficients βi(x) can be computed by means of the associated values
of αi by a simple transformation provided by multiplication operators.

Thus the last part of the paper is devoted to find a characterization of such
operators in terms of vector norm inequalities they must satisfy. We provide also
classical and recently published examples of such kind of maps, using, for in-
stance, an improvement of the Hausdorff–Young inequality given in [8] or the
continuity of the Fourier operator Hp : Lp[−π,π] → �p(W), where �p(W) is a
weighted �p-space, which can be found in [1].

2. Preliminaries

Let (�,	,μ) be a σ -finite measure space and denote by L0(μ) the space of all
measurable real functions defined on �, where functions that are equal μ-a.e. are
identified. By a Banach function space we mean a Banach space X(μ) ⊂ L0(μ)

with norm ‖ · ‖X such that if f ∈ L0(μ), g ∈ X(μ), and |f | ≤ |g| μ-a.e., then
f ∈ X(μ) and ‖f ‖X ≤ ‖g‖X . In particular, X(μ) is a Banach lattice for the μ-
a.e. pointwise order, in which the convergence in norm of a sequence implies the
convergence μ-a.e. for some subsequence. Note that every positive linear operator
between Banach lattices is continuous, (see [11, p. 2]). So, all inclusions between
Banach function spaces are continuous. General information about Banach func-
tion spaces can be found, for instance, in [18, Ch. 15], considering the function
norm ρ defined there as ρ(f ) = ‖f ‖X if f ∈ X(μ) and ρ(f ) = ∞ otherwise.

A Banach function space X(μ) is said to be saturated if there is no A ∈ 	 with
μ(A) > 0 such that f χA = 0 μ-a.e. for all f ∈ X(μ). This is equivalent to the
existence of a function g ∈ X(μ) such that g > 0 μ-a.e.

Given two Banach function spaces X(μ) and Y(μ), the Y(μ)-dual space of
X(μ) is defined by

XY = {h ∈ L0(μ) : f h ∈ Y(μ) for all f ∈ X(μ)}.
Every h ∈ XY defines a continuous multiplication operator Mh : X(μ) → Y(μ)

via Mh(f ) = f h for all f ∈ X(μ). The space XY is a Banach function space with
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norm
‖h‖XY = sup

f ∈BX

‖hf ‖Y , h ∈ XY ,

if and only if X(μ) is saturated ([12]). As usual, BX denotes the closed unit ball of
X(μ). If X(μ) is saturated, then XL1

is just the classical Köthe dual space X(μ)′
of X(μ), and X(μ)′ is also saturated. This does not hold in general for XY . For
issues related to generalized dual spaces, see [3] and the references therein.

A saturated Banach function space X(μ) is contained in its Köthe bidual
X(μ)′′ with ‖f ‖X′′ ≤ ‖f ‖X for all f ∈ X(μ). It is known that ‖f ‖X′′ = ‖f ‖X

for all f ∈ X(μ) if and only if X(μ) is order semicontinuous, that is, if for
any f,fn ∈ X(μ) such that 0 ≤ fn ↑ f μ-a.e., it follows that ‖fn‖X ↑ ‖f ‖X .
Even more, X(μ) = X(μ)′′ with equal norms if and only if X(μ) has the Fa-
tou property, that is, if for any fn ∈ X(μ) such that 0 ≤ fn ↑ f μ-a.e. and
supn ‖fn‖X < ∞, we have that f ∈ X(μ) and ‖fn‖X ↑ ‖f ‖X .

Denote by X(μ)∗ the topological dual of a saturated Banach function
space X(μ). Every function h ∈ X(μ)′ defines an element η(h) ∈ X(μ)∗ via
〈η(h), f 〉 = ∫

hf dν for all f ∈ X(μ). The map η : X(μ)′ → X(μ)∗ is a contin-
uous linear injection, since the norm of every h ∈ X(μ)′ can be computed as

‖h‖X′ = sup
f ∈BX

∣∣∣∣∫ hf dμ

∣∣∣∣,
and so η is an isometry. It is known that η is surjective if and only if X(μ) is
σ -order continuous, that is, if for every (fn) ⊂ X(μ) with fn ↓ 0 μ-a.e. it follows
that ‖fn‖X ↓ 0. Note that σ -order continuity implies order semicontinuity.

The σ -order continuous part Xa(μ) of a saturated Banach function space
X(μ) is the largest σ -order continuous closed solid subspace of X(μ) that can
be described as

Xa(μ) = {f ∈ X(μ) : |f | ≥ fn ↓ 0 μ-a.e. implies ‖fn‖X ↓ 0}.
Also, a function f ∈ Xa(μ) if and only if f ∈ X(μ) satisfies that ‖f χAn‖X ↓ 0
whenever (An) ⊂ 	 is such that An ↓ with μ(

⋂
An) = 0. Note that Xa(μ) can

be the trivial space as in the case of X(μ) = L∞(μ) when μ is nonatomic. It
is always a Banach space. In the case where Xa(μ) is saturated, Xa(μ) is order
dense in L0(μ), and so by the monotone convergence theorem it follows easily
that Xa(μ)′ = X(μ)′ with equal norms.

The π -product space XπY of two Banach function spaces X(μ) and Y(μ) is
defined as the space of functions h ∈ L0(μ) such that |h| ≤ ∑

n |fngn| μ-a.e. for
some sequences (fn) ⊂ X(μ) and (gn) ⊂ Y(μ) satisfying

∑
n ‖fn‖X‖gn‖Y < ∞.

For h ∈ XπY , consider the subadditive and homogeneous functional

π(h) = inf

{∑
n

‖fn‖X‖gn‖Y

}
,

where the infimum is taken over all sequences (fn) ⊂ X(μ) and (gn) ⊂ Y(μ)

such that |h| ≤ ∑
n |fngn| μ-a.e. and

∑
n ‖fn‖X‖gn‖Y < ∞ (see [17, Prop. 1.4]

but notice that the functional defined there considers only finite sums). The space
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XπY is a saturated Banach function space with norm π if and only if X(μ),
Y(μ), and XY ′

are saturated, and in this case, (XπY)′ = XY ′
with equal norms

(see [5, Prop. 2.2]). The calculus of product spaces is nowadays well known (see
[3; 5; 10; 17]); the reader can find all the information needed on this construction
in these papers.

Banach function spaces on the measure space (N,P(N), λ) with counting mea-
sure λ are usually called Banach sequence spaces. The classical Banach sequence
space �p for 1 ≤ p ≤ ∞ is saturated and is σ -order continuous if and only if
p < ∞. As usual, for each n ∈ N, we denote by (en) the standard unit vector
basis in c0.

We recall the well-known easily verified formula (�p)�
q = �spq with equal

norms, where

1 ≤ spq =

⎧⎪⎨⎪⎩
pq

p−q
if 1 ≤ q < p < ∞,

q if 1 ≤ q < p = ∞,

∞ if 1 ≤ p ≤ q ≤ ∞.

(2.1)

In particular, (�p)′ = (�p)�
1 = �p′

, where p′ denote the conjugate exponent of p

( 1
p

+ 1
p′ = 1). Note that �p has the Fatou property as (�p)′′ = �p . Also note that

spq = 1 if and only if q = 1 and p = ∞.

3. Strong Factorization of Operators on Banach Function Spaces

Let (�,	,μ), (�,�, ν) be σ -finite measure spaces, let X1(μ), X2(μ), Y1(ν),
Y2(ν) be saturated Banach function spaces, and let T : X1(μ) → Y1(ν),
S : X2(μ) → Y2(ν) be nontrivial continuous linear operators. For h ∈ X

X2
1 , we

say that T factors strongly through S and Mh if there exists g ∈ Y
Y ′′

1
2 such that the

diagram

X1(μ)
T

Mh

Y1(ν)
i

Y1(ν)′′

X2(μ)
S

Y2(ν)

Mg

(3.1)

commutes. Here i denotes the inclusion map. Note that if Y1(ν) has the Fatou
property, then this diagram looks as

X1(μ)
T

Mh

Y1(ν)

X2(μ)
S

Y2(ν)

Mg

In the case where μ and ν are the same finite measures and under certain ex-
tra conditions, [6, Thm. 4.1] characterizes when T factors strongly through S

and Mh. In this section, we extend this theorem to our more general setting and
improve it by relaxing the conditions. The extension will be obtained from the
following broader factorization result.
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Theorem 3.1. Assume that Y
Y ′′

1
2 is saturated and consider a function h ∈ X

X2
1 .

The following statements are equivalent:

(a) There exists a constant C > 0 such that
n∑

i=1

∫
T (xi)y

′
i dν ≤ C

∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

for all n ∈ N, x1, . . . , xn ∈ X1(μ), and y′
1, . . . , y

′
n ∈ Y1(ν)′.

(b) There exists ξ∗ ∈ (Y2πY ′
1)

∗ satisfying the following factorization between the
operators T and S:

X1(μ)
T

Mh

Y1(ν)
i

Y1(ν)′′ η
Y1(ν)′∗

X2(μ)
S

Y2(ν)

Rξ∗

where η is the continuous linear injection of Y1(ν)′′ into Y1(ν)′∗, and Rξ∗
is the continuous linear operator defined by 〈Rξ∗(y2), y

′
1〉 = 〈ξ∗, y2y

′
1〉 for

y2 ∈ Y2(ν) and y′
1 ∈ Y1(ν)′.

Proof. Note that the condition of Y
Y ′′

1
2 being saturated assures that Y2πY ′

1 is a
saturated Banach function space. Also note that the map Rξ∗ : Y2(ν) → Y1(ν)′∗
defined in (b) is a well-defined continuous linear operator as

|〈Rξ∗(y2), y
′
1〉| ≤ ‖ξ∗‖(Y2πY ′

1)
∗‖y2y

′
1‖Y2πY ′

1
≤ ‖ξ∗‖(Y2πY ′

1)
∗‖y2‖Y2‖y′

1‖Y ′
1

for all y2 ∈ Y2(ν) and y′
1 ∈ Y1(ν)′.

(a) ⇒ (b) For any n ∈N, x1, . . . , xn ∈ X1(μ), and y′
1, . . . , y

′
n ∈ Y1(ν)′, we take

the convex function φ : B(Y2πY ′
1)

∗ →R given by

φ(ξ∗) =
n∑

i=1

∫
T (xi)y

′
i dν − C

n∑
i=1

〈ξ∗, S(hxi)y
′
i〉

for all ξ∗ ∈ B(Y2πY ′
1)

∗ . Considering the weak* topology on (Y2πY ′
1)

∗, we have that
φ is a continuous map on a compact convex set. Moreover, by the Hahn–Banach
theorem there exists ξ∗

φ ∈ B(Y2πY ′
1)

∗ such that∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

=
〈
ξ∗
φ ,

n∑
i=1

S(hxi)y
′
i

〉
,

and so by (a) it follows that φ(ξ∗
φ) ≤ 0.

Since the family F of functions φ defined in this way is concave, Ky Fan’s
lemma (see, e.g., [15, E. 4]) guarantees the existence of an element ξ∗ ∈ B(Y2πY ′

1)
∗

such that φ(ξ∗) ≤ 0 for all φ ∈ F . In particular, for all x ∈ X1(μ) and y′ ∈ Y1(ν)′,
we have that ∫

T (x)y′ dν ≤ C〈ξ∗, S(hx)y′〉.



172 O. Delgado, M. Mastyło, & E. A. Sánchez Pérez

By taking −y′ instead of y′ we obtain that

−
∫

T (x)y′ dν ≤ −C〈ξ∗, S(hx)y′〉,

and so

〈η(T (x)), y′〉 = 〈RCξ∗(S(hx)), y′〉.
Therefore η(T (x)) = RCξ∗(S(hx)) for all x ∈ X1(μ), and the factorization in (b)
holds for Cξ∗ ∈ (Y2πY ′

1)
∗.

(b) ⇒ (a) For each n ∈ N and all x1, . . . , xn ∈ X1(μ) and y′
1, . . . , y

′
n ∈ Y1(ν)′,

we have that
n∑

i=1

∫
T (xi)y

′
i dν =

n∑
i=1

〈η(T (xi)), y
′
i〉 =

n∑
i=1

〈Rξ∗(S(hxi)), y
′
i〉

=
n∑

i=1

〈ξ∗, S(hxi)y
′
i〉 =

〈
ξ∗,

n∑
i=1

S(hxi)y
′
i

〉

≤ ‖ξ∗‖(Y2πY ′
1)

∗

∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

.

Note that ‖ξ∗‖(Y2πY ′
1)

∗ > 0 as T is nontrivial. �

Note that the condition of Y
Y ′′

1
2 being saturated is obtained, for instance, if

Y2(ν) ⊂ Y1(ν)′′, which is equivalent to L∞(ν) ⊂ Y
Y ′′

1
2 . Also note that condition

(a) of Theorem 3.1 is equivalent to∣∣∣∣ n∑
i=1

∫
T (xi)y

′
i dν

∣∣∣∣ ≤ C

∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

, n ∈ N,

for all x1, . . . , xn ∈ X1(μ) and y′
1, . . . , y

′
n ∈ Y1(ν)′. Indeed, we only have to take

−y′
1, . . . ,−y′

n instead of y′
1, . . . , y

′
n in Theorem 3.1(a).

As a consequence of Theorem 3.1, we obtain the following generalization and
improvement of [6, Thm. 4.1].

Corollary 3.2. Assume that Y
Y ′′

1
2 is saturated and that y2y

′
1 ∈ (Y2πY ′

1)a for all

y2 ∈ Y2(ν) and y′
1 ∈ Y1(ν)′. Given h ∈ X

X2
1 , the following statements are equiva-

lent:

(a) The operator T factors strongly through S and Mh.
(b) There exists a constant C > 0 such that

n∑
i=1

∫
T (xi)y

′
i dν ≤ C

∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

, n ∈ N,

for all x1, . . . , xn ∈ X1(μ) and y′
1, . . . , y

′
n ∈ Y1(ν)′.
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Proof. First note that (Y2πY ′
1)a is saturated. Indeed, by taking 0 < y2 ∈ Y2(ν) and

0 < y′
1 ∈ Y1(ν)′ we have that 0 < y2y

′
1 ∈ (Y2πY ′

1)a . Then

(Y2πY ′
1)

′
a = (Y2πY ′

1)
′ = Y

Y ′′
1

2 .

(b) ⇒ (a) By Theorem 3.1 there exists ξ∗ ∈ (Y2πY ′
1)

∗ such that

〈η(T (x)), y′〉 = 〈Rξ∗(S(hx)), y′〉 = 〈ξ∗, S(hx)y′〉
for all x ∈ X1(μ) and y′ ∈ Y1(ν)′. Denote by ξ̃∗ the restriction of ξ∗ to (Y2πY ′

1)a .
Since (Y2πY ′

1)a is σ -order continuous and ξ̃∗ ∈ (Y2πY ′
1)

∗
a , we can identify ξ̃∗

with a function g ∈ (Y2πY ′
1)

′
a = Y

Y ′′
1

2 , that is, 〈̃ξ∗, z〉 = ∫
gzdν for all z ∈

(Y2πY ′
1)a . Then, for all x ∈ X1(μ) and y′ ∈ Y1(ν)′, we have that

〈η(T (x)), y′〉 = 〈ξ∗, S(hx)y′〉 = 〈̃ξ∗, S(hx)y′〉
=

∫
gS(hx)y′ dν = 〈η(gS(hx)), y′〉,

and so T (x) = gS(hx).

(a) ⇒ (b) Let g ∈ Y
Y ′′

1
2 = (Y2πY ′

1)
′ be such that T (x) = gS(hx) for all x ∈

X1(μ). Consider the continuous linear injection η̃ : (Y2πY ′
1)

′ → (Y2πY ′
1)

∗. Then
η̃(g) ∈ (Y2πY ′

1)
∗ satisfies

〈Rη̃(g)(S(hx)), y′〉 = 〈̃η(g), S(hx)y′〉 =
∫

gS(hx)y′ dμ

=
∫

T (x)y′ dμ = 〈η(T (x)), y′〉

for all x ∈ X1(μ) and y′ ∈ Y1(ν)′, and so Theorem 3.1(b) holds for ξ∗ = η̃(g). �

Remark 3.3. We notice that the condition y2y
′
1 ∈ (Y2πY ′

1)a for all y2 ∈ Y2(ν)

and y′
1 ∈ Y1(ν)′ holds when Y2πY ′

1 is σ -order continuous. This condition is also
obtained, for instance, if any of Y2(ν) or Y1(ν)′ is σ -order continuous. Indeed,
suppose that Y2(ν) is σ -order continuous and take y2 ∈ Y2(ν) = (Y2)a(ν) and
y′

1 ∈ Y1(ν)′. For every (An) ⊂ 	 such that An ↓ with ν(∩An) = 0, we have that

‖y2y
′
1χAn‖Y2πY ′

1
≤ ‖y2χAn‖Y2 · ‖y′

1‖Y ′
1
→ 0,

and so y2y
′
1 ∈ (Y2πY ′

1)a . We get the case where Y1(ν)′ is σ -order continuous in a
similar way.

This shows sufficient conditions for the product to be (σ -)order continuous. In
[10, Cor. 1] a full characterization of when a related construction—the space Y1 �
Y2, defined as a pointwise product of couples of functions—is order continuous is
given.

Remark 3.4. Note that if the σ -order continuous part Xa(μ) of a saturated Ba-
nach function space X(μ) is also saturated, then ‖x‖X = ‖x‖X′′ for all x ∈ Xa(μ).
Indeed, for every x ∈ Xa(μ), we have that ‖x‖X = ‖x‖X′′

a
since Xa(μ) is order
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semicontinuous and ‖x‖X′′
a

= ‖x‖X′′ since Xa(μ)′ = X(μ)′ with equal norms.
Then, the norm in Corollary 3.2(b) can be computed as∥∥∥∥ n∑

i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

=
∥∥∥∥ n∑

i=1

S(hxi)y
′
i

∥∥∥∥
(Y2πY ′

1)
′′
=

∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
(Y

Y ′′
1

2 )′

= sup
f ∈B

Y
Y ′′

1
2

∫ ∣∣∣∣f n∑
i=1

S(hxi)y
′
i

∣∣∣∣dν.

4. Strong Factorization Involving Schauder Basis

Let (�,	,μ), (�,�, ν) be σ -finite measure spaces, let X1(μ), X2(μ), Y1(ν),
Y2(ν) be saturated Banach function spaces, and let T : X1(μ) → Y1(ν) and
S : X2(μ) → Y2(ν) be nontrivial continuous linear operators. In this section, we
assume the existence of a Schauder basis (γn) for Y1(ν)′ and denote by (γ ∗

n ) the
sequence of coefficient functionals with respect to this basis.

Theorem 4.1. Assume that Y
Y ′′

1
2 is saturated and that any of Y2(ν) or Y1(ν)′ is

σ -order continuous. Given h ∈ X
X2
1 , the following statements are equivalent:

(a) The operator T factors strongly through S and Mh.
(b) There exists a constant C > 0 such that

n∑
i=1

∫
T (xi)γi dν ≤ C

∥∥∥∥ n∑
i=1

S(hxi)γi

∥∥∥∥
Y2πY ′

1

, n ∈ N,

for all x1, . . . , xn ∈ X1(μ).

Moreover, if Y2(ν) ⊂ Y1(ν)′′ and the functions (γn) have pairwise disjoint sup-
ports, then conditions (a)–(b) follow from the following condition:

(c) There exists a constant C > 0 such that∫
T (x)γn dν ≤ C

∫
|S(hx)γn|dν, n ∈N,

for every x ∈ X1(μ).

In the case where Y
Y ′′

1
2 = L∞(ν), we have that (c) is equivalent to (a)–(b).

Proof. (a) ⇔ (b) By Remark 3.3 we only have to prove that condition (b) of the
present theorem implies condition (b) of Corollary 3.2. The converse implication
follows by taking y′

i = γi . Let x1, . . . , xn ∈ X1(μ) and y′
1, . . . , y

′
n ∈ Y1(ν)′. Fix

m ∈ N and denote (y′
i )

m = ∑m
k=1〈γ ∗

k , y′
i〉γk . It follows that

n∑
i=1

∫
T (xi)(y

′
i )

m dν =
n∑

i=1

m∑
k=1

〈γ ∗
k , y′

i〉
∫

T (xi)γk dν

=
m∑

k=1

∫ ( n∑
i=1

〈γ ∗
k , y′

i〉T (xi)

)
γk dν
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=
m∑

k=1

∫
T

( n∑
i=1

〈γ ∗
k , y′

i〉xi

)
γk dν

≤ C

∥∥∥∥ m∑
k=1

S

(
h

n∑
i=1

〈γ ∗
k , y′

i〉xi

)
γk

∥∥∥∥
Y2πY ′

1

= C

∥∥∥∥ m∑
k=1

n∑
i=1

〈γ ∗
k , y′

i〉S(hxi)γk

∥∥∥∥
Y2πY ′

1

= C

∥∥∥∥ n∑
i=1

S(hxi)(y
′
i )

m

∥∥∥∥
Y2πY ′

1

. (4.1)

Since (y′
i )

m → y′
i in Y1(ν)′ as m → ∞ and∣∣∣∣∫ zy′

i dν −
∫

z(y′
i )

m dν

∣∣∣∣ =
∣∣∣∣∫ z(y′

i − (y′
i )

m) dν

∣∣∣∣ ≤ ‖z‖Y1‖y′
i − (y′

i )
m‖Y ′

1

for every z ∈ Y1(ν), we have that
∑n

i=1

∫
T (xi)(y

′
i )

m dν → ∑n
i=1

∫
T (xi)y

′
i dν

as m → ∞. On the other hand, since

‖zy′
i − z(y′

i )
m‖Y2πY ′

1
= ‖z(y′

i − (y′
i )

m)‖Y2πY ′
1
≤ ‖z‖Y2‖y′

i − (y′
i )

m‖Y ′
1

for every z ∈ Y2(ν), we have that
∑n

i=1 S(hxi)(y
′
i )

m → ∑n
i=1 S(hxi)y

′
i in Y2πY ′

1
as m → ∞. Then, taking the limit as m → ∞ in (4.1), we obtain

n∑
i=1

∫
T (xi)y

′
i dν ≤ C

∥∥∥∥ n∑
i=1

S(hxi)y
′
i

∥∥∥∥
Y2πY ′

1

.

Assume that Y2(ν) ⊂ Y1(ν)′′ and that the functions (γn) have pairwise disjoint
supports. Let us see that (c) implies (b). The condition Y2(ν) ⊂ Y1(ν)′′ is equiva-

lent to L∞(ν) ⊂ Y
Y ′′

1
2 = (Y2πY ′

1)
′, and so Y2πY ′

1 ⊂ (Y2πY ′
1)

′′ ⊂ L∞(ν)′ = L1(ν).
Denote by K the continuity constant of the inclusion Y2πY ′

1 ⊂ L1(ν). For all
n ∈ N and x1, . . . , xn ∈ X1(μ), noting that

∑n
i=1 |S(hxi)γi | = |∑n

i=1 S(hxi)γi |
pointwise (as (γk) have disjoint supports), we have that

n∑
i=1

∫
T (xi)γi dν ≤ C

n∑
i=1

∫
|S(hxi)γi |dν = C

∫ ∣∣∣∣ n∑
i=1

S(hxi)γi

∣∣∣∣dν

≤ CK

∥∥∥∥ n∑
i=1

S(hxi)γi

∥∥∥∥
Y2πY ′

1

.

If, moreover, L∞(ν) = Y
Y ′′

1
2 , then (a) implies (c), as if g ∈ Y

Y ′′
1

2 is such that T (x) =
gS(hx) for all x ∈ X1(μ), then it follows that∫

T (x)γn dν =
∫

gS(hx)γn dν ≤
∫

|gS(hx)γn|dν ≤ ‖g‖∞
∫

|S(hx)γn|dν.

�
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Remark 4.2. Note that the condition Y2(ν) ⊂ Y1(ν)′′ appearing in the statement
of Theorem 4.1—and also in Theorem 4.3—follows immediately from the as-

sumption that Y
Y ′′

1
2 is saturated if we consider symmetric Banach function spaces

on I = [0,1]. Indeed, in this case, since Y
Y ′′

1
2 is saturated, we have in particular

that Y
Y ′′

1
2 �= {0}, which is equivalent to Y2(ν) ⊂ Y1(ν)′′ by [9, Prop. 2.3].

Now suppose that there is also a Schauder basis (βn) for X1(μ) and denote by
(β∗

n) the sequence of its coefficient functionals. Then, the equivalent inequalities
for the strong factorization can be relaxed.

Theorem 4.3. Assume that Y
Y ′′

1
2 is saturated and that any of Y2(ν) or Y1(ν)′ is

σ -order continuous. Given h ∈ X
X2
1 , the following statements are equivalent:

(a) The operator T factors strongly through S and Mh.

(b) There exists g ∈ Y
Y ′′

1
2 such that T (βn) = gS(hβn) for each n ∈N.

(c) There exists a constant C > 0 such that
n∑

i=1

m∑
j=1

rij

∫
T (βj )γi dν ≤ C

∥∥∥∥ n∑
i=1

m∑
j=1

rij S(hβj )γi

∥∥∥∥
Y2πY ′

1

, n,m ∈N,

for every (rij ) ⊂ B�∞ .

Moreover, if Y2(ν) ⊂ Y1(ν)′′ and the functions (γn) have pairwise disjoint sup-
port, then conditions (a)–(c) follow from the following condition:

(d) There exists a constant C > 0 such that the inequality
m∑

j=1

rj

∫
T (βj )γn dν ≤ C

∫ ∣∣∣∣ m∑
j=1

rj S(hβj )γn

∣∣∣∣dν

for all n,m ∈N and (rj ) ⊂ B�∞ .

In the case where L∞(ν) = Y
Y ′′

1
2 , we have that (d) is equivalent to (a)–(c).

Proof. (a) ⇒ (b) Let g ∈ Y
Y ′′

1
2 be such that T (x) = gS(hx) for all x ∈ X1(μ). In

particular, for x = βn, we obtain (b).

(b) ⇒ (c) Since g ∈ Y
Y ′′

1
2 = (Y2πY ′

1)
′ for all n,m ∈ N and (rij ) ⊂ B�∞ , it fol-

lows that
n∑

i=1

m∑
j=1

rij

∫
T (βj )γi dν =

n∑
i=1

m∑
j=1

rij

∫
gS(hβj )γi dν

=
∫

g

n∑
i=1

m∑
j=1

rij S(hβj )γi dν

≤
∫ ∣∣∣∣g n∑

i=1

m∑
j=1

rij S(hβj )γi

∣∣∣∣dν
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≤ ‖g‖(Y2πY ′
1)

′

∥∥∥∥ n∑
i=1

m∑
j=1

rij S(hβj )γi

∥∥∥∥
Y2πY ′

1

.

(c) ⇒ (a) Let us show that the condition (b) of Theorem 4.1 holds. Let
x1, . . . , xn ∈ X1(μ), which can be assumed to be nonnull. Fix m ∈ N large enough
such that (xi)

m = ∑m
j=1〈β∗

j , xi〉βj �= 0 and denote α = max i=1,..,n
j=1,...,m

|〈β∗
j , xi〉|. By

taking rij = 〈β∗
j ,xi 〉
α

it follows that

n∑
i=1

∫
T ((xi)

m)γi dν =
n∑

i=1

m∑
j=1

〈β∗
j , xi〉

∫
T (βj )γi dν

= α

n∑
i=1

m∑
j=1

rij

∫
T (βj )γi dν

≤ αC

∥∥∥∥ n∑
i=1

m∑
j=1

rij S(hβj )γi

∥∥∥∥
Y2πY ′

1

= C

∥∥∥∥ n∑
i=1

m∑
j=1

〈β∗
j , xi〉S(hβj )γi

∥∥∥∥
Y2πY ′

1

= C

∥∥∥∥ n∑
i=1

S(h(xi)
m)γi

∥∥∥∥
Y2πY ′

1

. (4.2)

Denoting by ‖T ‖ the operator norm of T , since (xi)
m → xi in X1(μ) as m → ∞

and ∣∣∣∣∫ T (xi)z dν −
∫

T ((xi)
m)z dν

∣∣∣∣ =
∣∣∣∣∫ T (xi − (xi)

m)z dν

∣∣∣∣
≤ ‖z‖Y ′

1
‖T (xi − (xi)

m)‖Y1

≤ ‖z‖Y ′
1
‖T ‖‖xi − (xi)

m‖X1

for every z ∈ Y1(ν)′, we have that
∑n

i=1

∫
T ((xi)

m)γi dν → ∑n
i=1

∫
T (xi)γi dν

as m → ∞. On other hand, we have

‖S(hxi)z − S(h(xi)
m)z‖Y2πY ′

1
= ‖S(h(xi − (xi)

m))z‖Y2πY ′
1

≤ ‖z‖Y ′
1
‖S(h(xi − (xi)

m))‖Y2

≤ ‖z‖Y ′
1
‖S‖‖h(xi − (xi)

m)‖X2

≤ ‖z‖Y ′
1
‖S‖‖h‖

X
X2
1

‖xi − (xi)
m‖X1

for every z ∈ Y1(ν)′, we have that
∑n

i=1 S(h(xi)
m)γi → ∑n

i=1 S(hxi)γi in Y2πY ′
1

as m → ∞. Then, taking the limit as m → ∞ in (4.2), we obtain

n∑
i=1

∫
T (xi)γi dν ≤ C

∥∥∥∥ n∑
i=1

S(hxi)γi

∥∥∥∥
Y2πY ′

1

.
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Assume that Y2(ν) ⊂ Y1(ν)′′ and that the functions (γn) have pairwise disjoint
supports. We have already noted that in this case, Y2πY ′

1 ⊂ L1(ν) (denote by K its
continuity constant),

∑n
i=1 |fiγi | = |∑n

i=1 fiγi | pointwise for every n ∈ N, and
(fi) ⊂ L0(ν). Let us show that (d) implies (c). For all n,m ∈ N and (rij ) ⊂ B�∞ ,
we have that

n∑
i=1

m∑
j=1

rij

∫
T (βj )γi dν ≤ C

n∑
i=1

∫ ∣∣∣∣ m∑
j=1

rij S(hβj )γi

∣∣∣∣dν

= C

∫ ∣∣∣∣ n∑
i=1

m∑
j=1

rij S(hβj )γi

∣∣∣∣dν

≤ CK

∥∥∥∥ n∑
i=1

m∑
j=1

rij S(hβj )γi

∥∥∥∥
Y2πY ′

1

.

If moreover L∞(ν) = Y
Y ′′

1
2 , then (a) implies (d), as if g ∈ Y

Y ′′
1

2 is such that T (x) =
gS(hx) for all x ∈ X1(μ), then it follows that

m∑
j=1

rj

∫
T (βj )γn dν

=
m∑

j=1

rj

∫
gS(hβj )γn dν =

∫
g

m∑
j=1

rjS(hβj )γn dν

≤
∫ ∣∣∣∣g m∑

j=1

rjS(hβj )γn

∣∣∣∣dν ≤ ‖g‖∞
∫ ∣∣∣∣ m∑

j=1

rjS(hβj )γn

∣∣∣∣dν. �

5. Examples: The Fourier and Cesàro Operators

In this section, we show how the results obtained in the previous one can be ap-
plied in concrete contexts. In particular, we will deal with the Fourier operator
acting in different weighted Lp-spaces, we will show factorization through infi-
nite matrices, and, as a particular case, we will analyze the case provided by the
Cesàro operator.

5.1. Strong Factorization Through the Fourier Operator

Consider the measure space given by the interval T = [−π,π], its Borel σ -
algebra, and the Lebesgue measure m, and denote by (φn) the real trigonometric
system on T, that is,

φn(x) =

⎧⎪⎪⎨⎪⎪⎩
1√
2π

if n = 1,

coskx√
π

if n = 2k,

sinkx√
π

if n = 2k + 1.
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Note that
∫ π

−π
φi(x)φj (x) dm = 0 if i �= j and

∫ π

−π
φi(x)φi(x) dm = 1. Each

function f ∈ L1(m) is associated with its Fourier series S(f ) = ∑
n≥1 anφn with

an = ∫
T

f φn dm. If f ∈ Lr(m) for 1 < r < ∞, then S(f ) converges to f in
Lr(m), and so (φn) is a Schauder basis on Lr(m).

Let F be the Fourier operator defined by

F(f ) =
(∫

T

f φn dm

)
, f ∈ L1(m).

The Hausdorff–Young inequality (see, e.g., [7, (8.5.7)]) guarantees that

F : Lr(m) → �r ′

is a well-defined continuous operator for every 1 < r ≤ 2.
Fix 1 < r ≤ 2, r ≤ p < ∞, 1 < q ≤ ∞, and let T : Lp(m) → �q be a nontrivial

continuous linear operator. We have that (φn) is a Schauder basis for Lp(m) (as
1 < p < ∞) and (en) is a Schauder basis for (�q)′ (as q > 1). Also, Lp(m) ⊂
Lr(m) (as r ≤ p), and so χT ∈ (Lp)L

r
.

Proposition 5.1. The following statements are equivalent:

(a) The operator T factors strongly through F , that is, there exists g ∈ �
sr′q such

that

Lp(m)

i

T
�q

Lr(m)
F

�r ′

Mg

(see (2.1) in the preliminaries for the definition of sr ′q ).
(b) T (φn)i = 0 for all i �= n and (T (φi)i) ∈ �

sr′q .
(c) There exists a constant C > 0 such that

n∑
i=1

m∑
j=1

rij T (φj )i ≤ C

(min{n,m}∑
i=1

|rii |s
′
r′q

) 1
s′
r′q , n,m ∈N,

for every (rij ) ⊂ B�∞ .

Moreover, in the case where r ′ ≤ q , conditions (a)–(c) are equivalent to

(d) There exists a constant C > 0 such that
m∑

j=1

rjT (φj )n ≤ C

{
|rn| if n ≤ m,

0 if n > m,

for each n,m ∈N and all (rj ) ⊂ B�∞ .

Proof. Note that both �r ′
and (�q)′ are σ -order continuous (as r, q > 1) and that

(�r ′
)(�

q )′′ = (�r ′
)�

q = �
sr′q , where sr ′q is defined as in (2.1). For the equivalence

among (a), (b), and (c), let us see that conditions (b) and (c) are just respectively
conditions (b) and (c) of Theorem 4.3 rewritten for X1(μ) = Lp(m), X2(μ) =
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Lr(m), Y1(ν) = �q (ν being the counting measure λ on N), Y2(ν) = �r ′
, S = F ,

h = χT, (βn) = (φn), and (γn) = (en).
(b) ⇒ Theorem 4.3(b). Take g = (T (φi)i) ∈ �

sr′q . Then, for all n, i ∈ N, we
have that T (φn)i = T (φi)iF(φn)i = giF(φn)i , and so T (φn) = gF(φn).

Theorem 4.3(b) ⇒ (b). Let g ∈ �
sr′q be such that T (φn) = gF(φn) for all

n ∈N. Then

T (φn)i = giF(φn)i =
{

gi if i = n,

0 if i �= n,

and so (T (φi)i) = g ∈ �
sr′q .

(c) ⇔ Theorem 4.3(c). From Remark 3.4, noting that (�r ′
π(�q)′)′′ =

((�r ′
)(�

q )′′)′ = (�
sr′q )′ = �

s′
r′q with equals norms and s′

r ′q < ∞ (as sr ′q > 1), for all
n,m ∈N and (rij ) ⊂ B�∞ , it follows that∥∥∥∥ n∑

i=1

m∑
j=1

rijF(φj )e
i

∥∥∥∥
�r′π(�q)′

=
∥∥∥∥ n∑

i=1

m∑
j=1

rijF(φj )e
i

∥∥∥∥
(�r′π(�q)′)′′

=
∥∥∥∥ n∑

i=1

m∑
j=1

rijF(φj )e
i

∥∥∥∥
�
s′
r′q

=
∥∥∥∥ n∑

i=1

m∑
j=1

rijF(φj )ie
i

∥∥∥∥
�
s′
r′q

=
( n∑

i=1

∣∣∣∣ m∑
j=1

rijF(φj )i

∣∣∣∣s′
r′q

) 1
s′
r′q

=
(min{n,m}∑

i=1

|rii |s
′
r′q

) 1
s′
r′q

and
n∑

i=1

m∑
j=1

rij

∫
T (φj )e

i dλ =
n∑

i=1

m∑
j=1

rij T (φj )i .

In the case where r ′ ≤ q , we have that sr ′q = ∞, and so (�r ′
)(�

q )′′ = �∞. Then
(d) is equivalent to (a)–(c) as (d) is rewritten condition (d) of Theorem 4.3. Indeed,

m∑
j=1

rj

∫
T (φj )e

n dλ =
m∑

j=1

rjT (φj )n

and ∫ ∣∣∣∣ m∑
j=1

rjF(φj )e
n

∣∣∣∣dλ =
∣∣∣∣ m∑
j=1

rjF(φj )n

∣∣∣∣ =
{

|rn| if n ≤ m,

0 if n > m.
�
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5.2. Strong Factorization for Infinite Matrices and the Cesàro Operator

Consider the measure space (N,P(N), λ) with λ being the counting measure
on N. Let X1(λ), X2(λ), Y1(λ), Y2(λ) be saturated Banach function spaces in
which (en) is a Schauder basis and T : X1(λ) → Y1(λ), and let S : X2(λ) → Y2(λ)

be nontrivial continuous linear operators. Then the operators T and S can be de-
scribed by infinite matrices (aij ) and (bij ), respectively, namely aij = T (ej )i and
bij = S(ej )i . We also require that (en) is a Schauder basis for Y1(λ)′.

Proposition 5.2. Assume that Y
Y ′′

1
2 is saturated and that any of Y2(λ) or Y1(λ)′

is σ -order continuous. Given h ∈ X
X2
1 , the following statements are equivalent:

(a) The operator T factors strongly through S and Mh.

(b) There exists g ∈ Y
Y ′′

1
2 such that

aij

bij
= gihj whenever bij �= 0 and aij = 0

whenever bij = 0.
(c) There exists a constant C > 0 such that

n∑
i=1

m∑
j=1

rij aij ≤ C

∥∥∥∥ n∑
i=1

( m∑
j=1

hj rij bij

)
ei

∥∥∥∥
Y2πY ′

1

, n,m ∈ N,

for every (rij ) ⊂ B�∞ .

Moreover, if Y2(λ) ⊂ Y1(λ)′′, then conditions (a)–(c) follow from the following
condition:

(d) There exists a constant C > 0 such that the inequality
m∑

j=1

rj anj ≤ C

∣∣∣∣ m∑
j=1

hj rj bnj

∣∣∣∣, n,m ∈ N,

for every (rj ) ⊂ B�∞ .

In the case where �∞ = Y
Y ′′

1
2 , we have that (d) is equivalent to (a)–(c).

Proof. We only have to see that conditions (b), (c), and (d) are just respectively
conditions (b), (c), and (d) of Theorem 4.3 rewritten for μ = ν being the count-
ing measure λ and (βn) = (γn) = (en). Note that for every i, j ∈ N, we have
that aij = T (ej )i and gihj bij = gihjS(ej )i = giS(hj e

j )i = giS(hej )i . So (b) ⇔
Theorem 4.3(b). Since

∫
T (ej )ei dλ = T (ej )i = aij and S(hej )ei = S(hj e

j )ei =
hjS(ej )ei = hjS(ej )ie

i = hjbij e
i , we have that (c) ⇔ Theorem 4.3(c). More-

over, as ∫ ∣∣∣∣ m∑
j=1

rjS(hej )en

∣∣∣∣dλ =
∫ ∣∣∣∣ m∑

j=1

rjhj bnj e
n

∣∣∣∣dλ =
∣∣∣∣ m∑
j=1

rjhj bnj

∣∣∣∣,
it follows that (d) ⇔ Theorem 4.3(d). �

Let C be the Cesàro operator that maps a real sequence x = (xn) into the sequence
of its Cesàro means C(x) = ( 1

n

∑n
i=1 xi). It is well known that C : �r → �r con-

tinuously for every 1 < r < ∞ (see [7, Thm. 326]), and it can be described by the
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infinite matrix (bij ) where bij = 1
i

if j ≤ i and bij = 0 if j > i, that is,

(bij ) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
1
2

1
2 0 0 0 · · ·

1
3

1
3

1
3 0 0 · · ·

1
4

1
4

1
4

1
4 0 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

Fix 1 ≤ p < ∞, 1 < q, r < ∞ and let T : �p → �q be the nontrivial continuous
operator described by the infinite matrix (aij ) with aij = T (ej )i . Note that (en)

is a Schauder basis on �p , �q , �r , and (�q)′.

Proposition 5.3. Let h ∈ �spr (see (2.1) for the definition of spr ). The following
statements are equivalent:

(a) The operator T factors strongly through C and Mh, that is, there exists g ∈
�srq such that

�p T

Mh

�q

�r C
�r

Mg

(b) There exists g ∈ �srq such that

aij =
{

gihj

i
if j ≤ i,

0 if j > i.

(c) There exists a constant C > 0 such that

n∑
i=1

m∑
j=1

rij aij ≤ C

( n∑
i=1

1

is
′
rq

∣∣∣∣min{i,m}∑
j=1

hj rij

∣∣∣∣s′
rq

) 1
s′rq

, n,m ∈ N,

for every (rij ) ∈ B�∞ .

Moreover, in the case where r ≤ q , conditions (a)–(c) are equivalent to the fol-
lowing condition:

(d) There exists a constant C > 0 such that

m∑
j=1

rj anj ≤ C
1

n

∣∣∣∣min{n,m}∑
j=1

hj rj

∣∣∣∣, n,m ∈N,

for every (rj ) ⊂ B�∞ .

Proof. Note that both �r and (�q)′ are σ -order continuous (as r < ∞ and q > 1),
(�r )(�

q )′′ = (�r )�
q = �srq , and (�p)�

r = �spr . Also note that if r ≤ q , then srq = ∞,
and so (�r )(�

q )′′ = �∞. Then we only have to see that (b), (c), (d) are just rewritten,
respectively, conditions (b), (c), (d) of Proposition 5.2 for X1(λ) = �p , X2(λ) =
�r , Y1(λ) = �q , Y2(λ) = �r , and S = C.
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As noted before, the elements of the matrix of C are bij = 1
i

if j ≤ i and bij = 0
if j > i, so (b) ⇔ Proposition 5.2(b).

By Remark 3.4 and noting that (�rπ(�q)′)′′ = ((�r )(�
q )′′)′ = (�srq )′ = �s′

rq with
equals norms and s′

rq < ∞ (as srq > 1), for all n,m ∈ N and (rj ) ⊂ B�∞ , it fol-
lows that∥∥∥∥ n∑

i=1

( m∑
j=1

hj rij bij

)
ei

∥∥∥∥
�rπ(�q )′

=
∥∥∥∥ n∑

i=1

( m∑
j=1

hj rij bij

)
ei

∥∥∥∥
(�rπ(�q )′)′′

=
∥∥∥∥ n∑

i=1

( m∑
j=1

hj rij bij

)
ei

∥∥∥∥
�
s′rq

=
( n∑

i=1

∣∣∣∣ m∑
j=1

hj rij bij

∣∣∣∣s′
rq

) 1
s′rq

=
( n∑

i=1

1

is
′
rq

∣∣∣∣min{i,m}∑
j=1

hj rij

∣∣∣∣s′
rq

) 1
s′rq

.

Hence (c) ⇔ Proposition 5.2(c).
(d) ⇔ Proposition 5.2(d) holds as

m∑
j=1

hj rj bnj = 1

n

min{n,m}∑
j=1

hj rj . �

We next present characterizations of matrices that factor strongly through the
Cesàro operator.

Proposition 5.4. Let h ∈ �spr and suppose that h1 �= 0. The following statements
are equivalent:

(a) The operator T factors strongly through C and Mh.
(b) aij = 0 for j > i, aij = hj ai1

h1
for j ≤ i, and (iai1) ∈ �srq .

(c) The matrix of T looks as⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1α1 0 0 0 0 · · ·
h1α2 h2α2 0 0 0 · · ·
h1α3 h2α3 h3α3 0 0 · · ·
h1α4 h2α4 h3α4 h4α4 0 · · ·
h1α5 h2α5 h3α5 h4α5 h5α5 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where (αn) ∈R
N is such that (nαn) ∈ �srq .

Proof. (a) ⇒ (b) By Proposition 5.3 there exists g ∈ �srq such that

aij =
{

gihj

i
if j ≤ i,

0 if j > i.
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Then ai1 = gih1
i

for all i and so aij = hj ai1
h1

for every j ≤ i. Also note that
(iai1)i = h1g ∈ �srq .

(b) ⇒ (c) Taking (αn) = (
an1
h1

), we have that hjαi = hj ai1
h1

= aij for all j ≤ i

and (nαn) = 1
h1

(nan1) ∈ �srq .
(c) ⇒ (a) Taking g = (iαi) ∈ �srq , it follows that

aij =
{

hjαi = gihj

i
if j ≤ i,

0 if j > i.

Then, by Proposition 5.3, (a) holds. �

If T factors strongly through C and Mh, then there exists hj �= 0 as T is nontriv-
ial. So, given 0 �= h ∈ �spr and denoting j0 = min{j ∈ N : hj �= 0}, similarly to
Proposition 5.4, we have that T factors strongly through C and Mh if and only if
its matrix looks as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0 0 0 0 · · ·
...

...
...

...
...

...

0 · · · 0 0 0 0 0 · · ·
0 · · · 0 hj0α1 0 0 0 · · ·
0 · · · 0 hj0α2 hj0+1α2 0 0 · · ·
0 · · · 0 hj0α3 hj0+1α3 hj0+2α3 0 · · ·
0 · · · 0 hj0α4 hj0+1α4 hj0+2α4 hj0+3α4 · · ·
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for some (αn) ∈ R

N such that (nαn) ∈ �srq (note that the element hj0α1 is posi-
tioned at the j0th row and the j0th column of the matrix).

6. Domination by Basis Operators and Representing Operators

As a result of the active research in several branches of the harmonic analysis, a lot
of information is known about weighted norm inequalities for classical operators
on weighted Banach function spaces, mainly regarding weighted Lp and Lorentz
spaces. The bibliography on the subject is extremely broad; we refer the reader
to [7] for the classical inequalities and to [2; 4] and the references therein for an
updated review of the state of the art. We will use also some concrete results and
ideas concerning weighted norm inequalities that can be found in the papers [1;
8; 13; 14].

We will show in what follows the characterization in terms of vector norm in-
equalities of what we call a representing operator for a Banach function space
X(μ). This is essentially a modification of a basis operator F : L(μ) → � (for
L(μ) being another Banach function space and � a Banach space having an un-
conditional basis) that allows us to identify each function in X(μ) with some easy
transformation of the basic coefficients of certain univocally associated function.
Our motivation is given by the fact that, although the coefficients are not associ-
ated with a basis of the space X(μ), such kind of operator—which we will call
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a representing operator—allows us to find an easy representation of the functions
of the space by means of some basic-type coefficients. If F is a basis operator,
then we write (αi(f ))∞i=1 ∈ � for the basic coefficients of a function f , that is,
F(f ) = (αi(f ))∞i=1.

Definition 6.1. Let X(μ) be a Banach function space over μ, and let � be a
sequence space over the counting measure c on N. Let B be a Schauder basis
of a Banach function space L(μ) and suppose that the basic coefficients of the
functions of L(μ) are in a sequence space � defined as the Banach lattice gen-
erated also by an unconditional basis of a Banach space. Consider an operator
T : X(μ) → �. We will say that T is a representing operator for X(μ) (with
respect to F ) if it is an injective two-sides-diagonal transformation of the basis
operator F .

Thus, technically, a representing operator is an injective map such that there are a
sequence g = (gj ) ∈ �� with gj �= 0 for all j ∈ N and a function h ∈ X(μ)L(μ),
h �= 0 μ-a.e., such that for every x ∈ X(μ), the sequence T (x) = (β(x)j ) ∈ � can
be written as

β(x)j = Pj ◦ T (x) = gjF(hx)j = gjαj (hx),

where Pj gives the j th coordinate of T (x); that is, for the elements y ∈ h ·X(μ) ⊂
L(μ), we have that

αj (y) = F(y)j = g−1
j β(h−1y)j .

Equivalently, for each x ∈ X(μ), there is a sequence (βj ) ∈ � such that

x = T −1((βj )) = h−1F−1((g−1
j βj )).

Example 6.2. (i) An easy example of the introduced notion is the so-called
generalized Fourier series. Consider p = 2, an interval I of the real line,
the space L2(I ) endowed with Lebesgue measure dm, and a weight func-
tion w : I → R

+, w > 0. Note that the multiplication operator Mw1/2 :
L2(w dm) → L2(I ) defines an isometry. Take a sequence of functions (φn)n
belonging to L2(w dm) and such that the associated sequence (bn)n, where
bn = w1/2φn for all n, defines an orthonormal basis B in L2(I ), that is, it is
orthogonal, norm one, and complete. Note that this is equivalent to say that it
defines an orthonormal basis in the weighted space L2(w dm). Consider the
Fourier operator FB associated with the basis B of L2(I ). Then the opera-
tor T : L2(w dm) → �2 given by T := id�2 ◦ FB ◦ Mw1/2 is a representing
operator for L2(w dm).

Concrete examples of this situation are given by classical orthogonal bases
of polynomials in weighted L2-spaces. For example, for the trivial case of
the weight equal to 1 and the space L2[−1,1], we can define the func-
tions φn to be the Legendre polynomials, which are solutions to the Sturm–
Liouville problem and define the corresponding Fourier–Legendre series.
Other nontrivial cases, also for I = (−1,1), are given by the weight functions
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w(x) = (1−x2)−1/2(x) and w(x) = (1−x2)1/2(x) and the Chebyshev poly-
nomials of the first and second kinds, respectively. The Laguerre polynomials
give another example for I = (0,∞) and the weight function w(x) = e−x .

(ii) Take a function 0 < h ∈ X(μ)L
2(μ) and consider a sequence 0 < λ = (λi) ∈

�2. Let c be the counting measure in N. Consider the space �1(λc) = {(τi) :
(λiτi) ∈ �1} with the corresponding norm ‖(τi)‖�1(λc) = ∑ |λiτi |. Then we

have that �2 ↪→ �1(λc), and so the space of multiplication operators (�2)�
1(λc)

is not trivial. A direct computation shows also that (�2)�
1(λc) = �2(λ2c). Then,

for every τ = (τi) ∈ �2(λ2c) with τi �= 0 for all i ∈N, we have that the opera-
tor T : X(μ) → �1(λc) given by T (·) = τF(h·) is a representing operator for
the space X(μ).

Let J be a finite subset of N, and write PJ : � → � for the standard projection on
the subspace generated by the elements of B with subindexes in J . If T : X(μ) →
� is an operator, then consider the net {PJ ◦ T =: TJ : N ⊃ J finite}, where the
order is given by the inclusion of the set of subindexes, that is, PJ ◦ T ≤ PJ ′ ◦ T

if and only if J ⊂ J ′. By definition,

T = lim
J

PJ ◦ T

as a pointwise limit. In what follows, we will characterize representing operators
in terms of inequalities using this approximation procedure and a compactness
argument. Thus, considering the basic (biorthogonal) functionals b′

i ∈ L(μ)′, i ∈
N, associated with the basis of L(μ) that defines the Fourier operator that we are
considering. Let {ej : j ∈N} be the unconditional basis of � and y′

i ∈ �′, i ∈N.
Fix a function h ∈ X(μ)L(μ) and suppose that �� is nontrivial. Assume that

the conditions are given to obtain that �� = (�′)�′ = (�π�′)∗. The domination
inequality that must be considered in this case is given by the following expres-
sion:

n∑
i=1

∫
PJ ◦ T (xi)y

′
i dc ≤

∥∥∥∥ n∑
i=1

(∑
j∈J

〈hxi, b
′
j 〉ej

)
· y′

i

∥∥∥∥
�π�′

= sup
g∈B

��

( n∑
i=1

∑
j∈J

〈hxi, b
′
j 〉〈ej , gy′

i〉
)

,

that is, we are considering the sequence (
∑n

i=1〈hxi, b
′
j 〉(y′

i )j )j∈J ∈ �π�′ as the

functional of the dual of �� given by

( n∑
i=1

∑
j∈J

〈hxi, b
′
j 〉〈ej , ·y′

i〉
)

: �� →R.
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After taking into account the particular descriptions of the elements of the spaces
involved, we get the equivalent expression for the inequality

n∑
i=1

∑
j∈J

T (xi)j (y
′
i )j

≤ sup
g∈B

��

( n∑
i=1

∑
j∈J

〈hxi, b
′
j 〉〈ej , (gj (y

′
i )j )〉

)

= sup
g∈B

��

( n∑
i=1

∑
j∈J

〈hxi, b
′
j 〉gj (y

′
i )j

)
,

and so the initial inequality is equivalent to the following one:
n∑

i=1

∑
j∈J

T (xi)j (y
′
i )j ≤ sup

g∈B
��

( n∑
i=1

∑
j∈J

αj (hxi)gj (y
′
i )j

)
,

where αj (hxi) = ∫
hxib

′
j dμ, j ∈ J , are the j th Fourier coefficients of the func-

tion hxi associated with the basis B.
Thus the assumptions on the properties of X(μ)L(μ) and �� provide the fol-

lowing:

Theorem 6.3. Suppose that � and � satisfy that �π�′ is saturated and
(�π�′)∗ = ��, and let h be a measurable function such that 0 < |h| ∈ X(μ)L(μ).
The following statements are equivalent for an operator T : X(μ) → �.

(i) For every finite set J ⊂ N,
n∑

i=1

∑
j∈J

T (xi)j (y
′
i )j ≤ C sup

g∈B
��

( n∑
i=1

∑
j∈J

αj (hxi)gj (y
′
i )j

)
for all x1, . . . , xn ∈ X(μ) and y′

1, . . . , y
′
n ∈ �′.

(ii) The map T is a representing operator with respect to F , that is, there is
a sequence g ∈ �� such that (T (x))j = gj · αj (hx) for all x ∈ X(μ) and
j ∈N. In other words, T factors through F as

X(μ)
T

Mh

�

L(μ)
F

�.

Mg (6.1)

Proof. Let us see that (i) implies (ii). We can assume without loss of generality
that C = 1. Note that, as a consequence of Remark 3.3, the requirements on �

and � provide the conditions on these spaces for applying Corollary 3.2. Indeed,
as we explained in Section 2, �π�′ saturated implies that (�π�′)′ = ��′′

, and this
is also a saturated space. Since, by hypothesis,

(�π�′)′ ⊂ (�π�′)∗ = �� ⊂ ��′′ = (�π�′)′,
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we have that (�π�′)′ = (�π�′)∗, and so by the characterization of order continu-
ity we have that it is σ -order continuous. This, as explained in Remark 3.3, allows
us to apply Corollary 3.2.

By the computations previous to the theorem, we obtain that for each finite set
J , we have a norm one sequence gJ ∈ �� satisfying that

PJ ◦ T (x) = gJ · PJ ◦F(hx).

Consider the net N := {gJ : J ⊂ N finite}, where the order is given by the in-
clusion of the finite sets used for the subindexes. We can assume without loss of
generality that the support of each function gJ is in J , that is, the coefficients
(gJ )k of the sequence gJ are 0 for k /∈ J . Since all the functions of the net are
in the unit ball, due to the product compatibility of the pair defined by � and �′,
we have that the net is included in the weak* compact set B�� . Therefore it has a
convergent subnet N0, that is, there is a sequence g0 ∈ B�� such that

lim
η∈N0

gη = g0

in the weak* topology given by the dual pair 〈�π�′,��〉.
Note now that for a fixed x ∈ X(μ), since we are assuming that � has a uncon-

ditional basis with associated projections PJ , we have

lim
J∈N finite

PJ ◦ T (x) = T (x).

Then

T (x) = lim
J∈N finite

PJ ◦ T (x) = lim
η∈N0

Pη ◦ T (x) = lim
η∈N0

gη ·F(hx) = g0 ·F(hx).

This gives (ii) and finishes the proof, since the converse holds by a direct compu-
tation. �

Let us provide an example. Consider again Example 6.2(ii) and recall that
(�2)�

1(λc) = �2(λ2c). Theorem 6.3 gives that an injective operator T : X(μ) →
�1(λc) is a representing operator by means of the Fourier operator if and only if
for every finite set J ⊂ N,

n∑
i=1

∑
j∈J

T (xi)j (y
′
i )j ≤ C sup

g∈B
�2(λ2c)

( n∑
i=1

∑
j∈J

αj (hxi)gj (y
′
i )j

)
for all x1, . . . , xn ∈ X(μ) and y′

1, . . . , y
′
n ∈ �1(λc)′.

Remark 6.4. Let us gives some sufficient conditions for the product sequence
space appearing in Theorem 6.3 to satisfy what is needed. Let 1 < p < ∞. The
requirement on the pair �p and � is

(�p)� = (�′)�p′ = (�pπ�′)∗.

For example, if �′ is p′-convex, then we have that �pπ�′ is saturated and thus a
Banach function space (see Proposition 2.2 in [16]). Moreover, the quoted result
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provides also the equality (under the assumption of saturation of the product)

(�pπ�′)′ = (�′π�p)′ = (�′)�p′ = (�p)�.

Consequently, if the product is order continuous, then we get the desired result.
Conditions under which this space is order continuous are given in Corollary 5.3
in [6]. If the norm of the product is equivalent to

‖λ‖π ∼ inf
{‖η‖�p · ‖γ ‖�′ : |λ| = η · γ,η ∈ �p, γ ∈ �′},

then the space is order continuous if �′ is assumed to be order continuous (recall
that p > 1, and so �p′

is order continuous too). Besides these sufficient condi-
tions, a complete characterization of order continuity in this case is given in [10,
Cor. 1]. The coincidence with the previous formula for the product space works,
for example, if � is p-concave, since this implies that �′ is p′-convex, which, to-
gether with the p-convexity of �p , provides the result. Concrete examples for �p

spaces have been given in Example 6.2.

7. Operators Associated to Trigonometric Series

Relevant historical examples are the ones associated with the Fourier series and
the corresponding Fourier coefficients. We finish the paper by explicitly writing
the results presented previously in this setting. We write x̂(·) for the ith Fourier
(real) coefficients of the function x with indexes in the set Z, writing the coeffi-
cients an associated with cos functions as x̂(i) with positive i and the coefficients
bn for the functions sin as x̂(i) with negative i.

• Due to the Hausdorff–Young inequality, we know that for 1 < p ≤ 2, the
Fourier transform Fp : Lp[−π,π] → �p′

that assigns to each function the se-
quence of its Fourier coefficients is well-defined and continuous. The Fourier
transform is defined as F2 : L2 → �2. Suppose that we want to check if a par-
ticular operator G2 : L2[−π,π] → �2 can be extended to Lp[−π,π] through
Fp; that is, if there is a factorization for G2 as

L2[−π,π] G2

i

�2

Lp[−π,π] Fp

�p′

Mλ

for the operator G2 for some multiplication operator given by a sequence λ.
We have shown that this is equivalent to the following inequalities for the

operator G2: For all x1, . . . , xn ∈ L2[−π,π] and λi ∈ �2,
∞∑

k=1

n∑
i=1

(G2(xi))k(λi)k

≤ C

∥∥∥∥( n∑
i=1

x̂i (k)(λi)k

)∥∥∥∥
�r

= C

( ∞∑
k=1

∣∣∣∣ n∑
i=1

x̂i (k)(λi)k

∣∣∣∣r)1/r

.
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• For 1 < p ≤ 2 again, Kellogg proved an improvement of the Hausdorff–Young
inequality, which assures that the corresponding Fourier coefficients of the
functions in Lp can be found in the smaller mixed norm space Lp′,2 ⊂ �p′

.
Fix 1 ≤ p,q ≤ ∞. The mixed norm sequence space Lp,q was defined in [8] as
the space of sequences λ = (λk)

∞−∞ such that

‖λ‖ =
( ∞∑

m=−∞

( ∑
k∈I (m)

|λk|p
)q/p)1/q

< ∞,

where I (m) = {k ∈ Z : 2m−1 ≤ k ≤ 2m} if m > 0, I (0) = {0}, and I (m) = {k ∈
Z : −2−m ≤ k ≤ −2−m−1} if m < 0. It is easy to see that Lp′,2 ⊂ �p′

, and so
we have a factorization for the Fourier map as

Lp[−π,π] Fp

i

�p′

Lp[−π,π] Kp

Lp′,2.

i

In Theorem 1 of [8], it is proved that the space of multiplication operators
(multipliers) from Lp′,2 to �p′

can in fact be identified with �∞. Consequently,
our results imply that for every finite set J ⊂ Z, the inequality

n∑
i=1

∑
j∈J

(Fpxi)j (λ
′
i )j ≤ C sup

g∈B�∞

( n∑
i=1

∑
j∈J

x̂i(j)gj (λ
′
i )j

)
holds for all x1, . . . , xn ∈ Lp[−π,π] and λ′

1, . . . , λ
′
n ∈ �p , which is obvious.

However, note that this is essentially a characterization, since any other oper-
ator Gp from Lp having values in a sequence space � such that (Lp′,2)� = �∞
and satisfying these inequalities has to be necessarily of the form g · Kp for a
certain sequence g ∈ �∞.

• The Hardy–Littlewood inequality, also for 1 < p ≤ 2, provides an example
of an operator Hp sending the Fourier coefficients of the functions in Lp to
a weighted �p space. For 1 < p < 2, consider the weighted sequence space
�p(W), where the weight W is given by W = (Wn) = (1/(n + 1)2−p). The
Hardy–Littlewood inequality can be understood as the fact that the Fourier op-
erator can be defined as Hp : Lp[−π,π] → �p(W) (see [1, S. 2], in particular,
Theorem B). Note that the multiplication operator Mγ : �p(W) → �p given by

the sequence γ = ((1/(n+ 1)
2−p
p ) defines an isometry. Therefore the factoriza-

tion scheme

Lp[−π,π] γ ·Hp

i

�p

Lp[−π,π] Hp

�p(W)

Mγ
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provides another example of the situation we are describing. Indeed, for every
multiplication operator Mτ for τ ∈ (�p(W))�

p
, we can give an operator τ ·Hp

satisfying this factorization. Our results implies that the class of all these op-
erators is characterized in the following way: if T : Lp[−π,π] → �p satisfies
the inequalities

n∑
i=1

∑
j∈J

(T (xi))j (λ
′
i )j ≤ C sup

g∈B
(�p(W))�

p

( n∑
i=1

∑
j∈J

x̂i(j)gj (λ
′
i )j

)
for each finite subset J ⊂ Z and all x1, . . . , xn ∈ Lp[−2π,2π] and λ′

1, . . . , λ
′
n ∈

�p′
, then it has a factorization as the one above for a certain τ ∈ (�p(W))�

p
.

• Let us recall Example 6.2(i). A representing operator T : L2(w dm) → �2 as-
sociated with a weight function w and an orthogonal basis B with respect to the
corresponding weight function was considered. It allowed a factorization as

L2(w dm)
T

M
w1/2

�2

L2[I ] FB
�2.

id

The corresponding vector norm inequality characterizing this factorization is
n∑

i=1

∑
j∈J

(T (xi))j (λ
′
i )j ≤ C

∥∥∥∥ n∑
i=1

∑
j∈J

(T (xi))j (λ
′
i )j

∥∥∥∥
�1

= C
∑
j∈J

∣∣∣∣ n∑
i=1

(FB(w1/2xi))j (λ
′
i )j

∣∣∣∣
for a given constant C > 0, for each finite subset J ⊂ N, and all x1, . . . , xn ∈
L2(w dm) and λ′

1, . . . , λ
′
n ∈ �2.
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