
Slicing-based
debugging of Web applications

in Rewriting Logic

Master’s Thesis

Presented by:

Francisco Frechina Navarro

Supervisors:

Maŕıa Alpuente Frasnedo
Daniel Omar Romero
Valencia - July, 14th 2011

Abstract

The pervasiveness of computing on the Internet has led to an explosive
growth of Web applications that, together with their ever-increasing com-
plexity, have turned their design and development in a major challenge.

Unfortunately, the huge expansion of development and utilization of
Web computation has not been paired by the development of methods,
models and debugging tools to help the developer diagnose, quickly and
easily, potential problems in a Web application. There is an urgent de-
mand of analysis and verification facilities capable to prevent insecure
software that could cause unavailability of systems or services, or pro-
vide access to private data or internal resources of a given organization.

The main goal of this MSc thesis is to improve the debugging of
Web applications by embedding novel analysis and verification techniques
that rely on the program semantics. As a practical realization of the
ideas, we use Web-TLR that is a verification engine for dynamic Web
applications based on Rewrite Logic. We extend Web-TLR with a novel
functionality that supports effective Web debugging for realistic Web
applications involving complex execution traces. This functionality is
based on a backward trace slicing technique that is based on dynamic
labeling.

In order to extend the class of programs covered by the debugging
methodology we formalize a generalization of the slicer to Conditional
Rewriting Logic theories, greatly simplifying the debugging task by pro-
viding a novel and sophisticated form of pattern matching

Resumen

La omnipresencia de la informática en Internet ha llevado al crecimiento
explosivo de aplicaciones para la Web que, unido a su cada vez más
creciente complejidad, han convertido su diseño y desarrollo en un desaf́ıo
importante.

Lamentablemente, la enorme expansión del desarrollo y utilización
de la computación Web no ha venido acompañada por el desarrollo de
métodos, modelos y herramientas de depuración que ayuden al desarro-
llador a diagnosticar, de manera fácil y rápida, potenciales problemas en
la aplicación Web. Existe una demanda urgente de herramientas para
el análisis y verificación capaces de evitar software inseguro que pueda
provocar la indisponibilidad de sistemas o servicios, o que permita el
acceso a datos privados o recursos internos de una organización.

El objetivo principal de este trabajo final de master es perfeccionar
la depuración de aplicaciones Web mediante la incorporación de nuevos
análisis y técnicas de verificación basadas en la semántica del programa.
Como realización práctica de estas ideas, utilizamos Web-TLR que es un
motor de verificación de aplicaciones Web dinámicas basado en la Lógica
de Reescritura. Extendemos Web-TLR con una novedosa funcionalidad
de depuración Web para aplicaciones Web reales con trazas de ejecución
complejas. Esta funcionalidad está basada en una técnica de rebanado
de trazas hacia atrás (backward trace slicing) basada en un etiquetado
dinámico de los pasos.

Con el fin de extender los programas cubiertos por nuestra metodolo-
ǵıa de depuración, formalizamos una generalización del rebanador para
teoŕıas de lógica de reescritura condicionales, simplificando considerable-
mente la tarea de depuración y apostando por una novedosa y sofisticada
forma de ajuste de patrones (pattern matching).

vi

Contents

Introduction 1

Summary of Contributions of this Master’s Thesis 1

Preliminaries 5

Conditional Term Rewriting Systems 6

Conditional Rewrite Theories 7

I Debugging of Web Applications 9

1 Specification and Verification of Web Applications in RL 11

1.1 A Navigation Model for Web Applications 13

1.1.1 Graphical Navigation Model 14

1.2 Formalizing the Navigation Model as a Rewrite Theory . 15

1.2.1 The Web Scripting Language 16

1.2.2 The Web Application Structure 17

1.2.3 The Communication Protocol 18

1.3 Modeling Multiple Web Interactions and Browser Features 23

1.3.1 The Extended Equational Theory (Σext,Eext) . . 23

1.3.2 The Extended Rewrite Rule Set Rext 24

1.4 Model Checking Web Applications Using LTLR 28

1.4.1 The Linear Temporal Logic of Rewriting 28

1.4.2 LTLR properties for Web Applications 30

2 Debugging of Web Applications with Web-TLR 35

2.1 Extending the Web-TLR System 36

2.1.1 Filtering Notation 39

2.2 Implementation of the extended Web-TLR system in RWL 40

2.3 A Case Study in Web Verification 42

2.4 A Debugging Session with Web-TLR 45

viii Contents

II Conditional Slicing for Rewriting Logic 53

3 Conditions in Rewrite Theories 55
3.1 Conditions in Maude . 55
3.2 Conditional Rewriting Inference Process 57

4 Backward Trace Slicing for Conditional Rewrite Theories 61
4.1 Term Slices . 61
4.2 Extended Pattern Matching for Term Slices 63
4.3 Backward Conditional Slicing 65

4.3.1 Backward Slicing for a Rewrite Step 66
4.3.2 Backward Slicing for Execution Traces 70

4.4 Soundness of the Slicing Technique 73
4.5 Slicing of a Maude Example Trace 76

Conclusions 87
Future Work . 88

Bibliography 89

A Operational Semantics of the Web Scripting Language 93

B Specification of the Evaluation Protocol Function 97

C Maude trace 99

List of Figures

1.1 The navigation model of a Webmail application. 15

2.1 One Web state of the counter-example trace of Section 2.4. 37
2.2 The navigation model of an Electronic Forum 43
2.3 Specification of the electronic forum application in Web-

TLR . 44
2.4 Trace slice T •. 47
2.5 Snapshot of the Web-TLR System. 49
2.6 Snapshot of the Web-TLR System for the case of no

counter-examples. 51

4.1 A term slice. 63
4.2 A term slice concretization. 75

x List of Figures

Introduction

A Web application is an application hosted in a Web server that obeys
a client-server architecture. It is accessed over a network (such as the
internet) by means of a Web browser. In the last years, Web applica-
tions have been playing a crucial role to support financial and e-commerce
transactions, fast and secure information interchange, social interactions,
etc. In this scenario, Web applications are subject to an ever-increasing
complexity with regard to their design and development, which demands
highly sophisticated verification, debugging and repairing tools to assist
developers in the construction process. Obviously, the specification and
debugging of Web applications require the development of specific tech-
niques that address the specific challenges of the World Wide Web. In
recent years, much effort has been invested towards this endeavour al-
though there is still much zoom for improving the current techniques and
tools for verifying and debugging Web systems.

Summary of Contributions of this Master’s

Thesis

As the major contribution, this master’s thesis formalizes a novel slicing-
based technique for rewriting logic computation that can be applied to
the debugging of dynamic Web applications that are specified as condi-
tional theories in rewriting logic [MOM02].

The MSc thesis is organized in two main parts. In the following, we
briefly summarize the main contributions of each part.

Part I: Debugging of Web Applications

In this part, a tool for the debugging of dynamic Web applications is de-
veloped. This tool is an extension of the rewriting logic framework pro-
posed in [ABER10; Rom11], which allows one to naturally simulate the
navigation of a user when running/executing the Web application, check

2 Introduction

important related properties (e.g., mutual exclusion problems [MM08]),
and evaluate the eventually included Web scripts. Our extension in-
tegrates the system Web-TLR of [ABER10] with the backward trace
slicing technique of [ABER11a] in order to empower the tool with a new
facility that supports the debugging of Web applications.

Part II: Conditional Slicing for Rewriting Logic

In this part, this MSc thesis formalizes a conditional slicing technique
for Rewriting Logic Theories. Our backward conditional slicing facility
allows us to systematically trace back conditional rewrite sequences mod-
ulo algebraic axioms (such as associativity and commutativity) by means
of an algorithm that simplifies the traces by detecting control and data
dependencies, automatically dropping useless data that do not influence
the final result. Our methodology is particularly suitable for analyzing
complex, textually-large system computations such as those delivered
as counter-example traces by Maude model-checkers. We greatly sim-
plify the slicing process described in [ABER11a; Rom11], by replacing
the dynamic labeling by a novel and more convenient extended pattern
matching algorithm.

To conclude this introduction, let us detail how we organized the manus-
cript. Each part of the thesis consists of two chapters whose contents are
as follows.

Chapter 1. Specification and Verification of Web Applications
in Rewriting Logic

This chapter contains the preliminaries of this work. It summarizes the
Rewriting Logic framework for the formal specification of the operational
semantics of Web applications first proposed in [ABR09]. The main idea
is to define a rewrite theory that precisely formalizes the interactions
among Web servers and Web browsers through a communicating pro-
tocol abstracting the main features of the HyperText Transfer Protocol
(HTTP). The model also supports a scripting language encompassing
the main features of the principal Web scripting languages (e.g., PHP,
ASP, Java servlets), which is powerful enough to model complex Web
application dynamics as well as advanced navigation capabilities such as

Introduction 3

adaptive navigation (that is, a form of navigation through a Web appli-
cation that can be dynamically customized according to both user and
session information). A detailed characterization of browser actions (e.g.,
forward/backward navigation, refresh, and new window/tab openings)
via rewrite rules completes the proposed specification.

The rewriting logic formalization is particularly suitable for verifica-
tion purposes, since it allows one to carry out in-depth analyses of several
subtle aspects of Web interactions. In particular, the Web models can be
naturally model-checked by using the Linear Temporal Logic of Rewrit-
ing (LTLR) [Mes08], which is a Linear Temporal Logic [MP92] supporting
model-checking of rewrite theories.

The results in this chapter are original contribution of [ABR09; Rom11]
and only included in this thesis for the sake of making the manuscript
self-contained.

Chapter 2. Debugging of Web Applications with Web-TLR

Web-TLR [ABER10] is a Web verification engine that is based on the
well-established Rewriting Logic–Maude/LTLR tandem for Web system
specification and model-checking. In Web-TLR, Web applications are
expressed as rewrite theories that can be formally verified by using the
Maude built-in LTLR model-checker. Whenever a property is refuted,
a counterexample trace is delivered that reveals an undesired, erroneous
navigation sequence. Unfortunately, the analysis (or even the simple
inspection) of such counterexamples may be unfeasible because of the
size and complexity of the traces under examination.

In this chapter, we endow Web-TLR with a new Web debugging fa-
cility that supports the efficient manipulation of counterexample traces.
This facility is based on a backward trace-slicing technique for rewriting
logic theories proposed in [ABER11a; Esp11] that allows the pieces of
information that we are interested in to be traced back through inverse
rewrite sequences. The slicing process drastically simplifies the com-
putation trace by dropping useless data that do not influence the final
result. By using this facility, the Web engineer can focus on the relevant
fragments of the failing application, which greatly reduces the manual
debugging effort and also decreases the number of iterative verifications.

The original contribution of this chapter is the parameterization and
integration of the generic slicer of [ABER11a] into Web-TLR, which was

4 Introduction

proposed in [ABE+11]. We would like to emphasize that the coupling
of the slicing technique within Web-TLR is non-trivial and required to
exploit the metaprogramming capabilities of Maude in order to provide
the system within the backward-tracing slicing tool. In addition, we
have exploited the AC pattern matching of Maude to implement both
the filtering language and the slicing process itself.

Chapter 3. Conditions in Rewrite Theories

This chapter investigates the way in witch conditional rewriting steps are
performed in the high-performance reflective language Maude. Maude
can be seen as an effective mechanization of RWL that is particularly
suitable for developing domain-specific applications [EMS03; MEM06].

The precise way in which Maude proves the conditional rewriting
steps motivates our conditional slicing technique given in the last chap-
ter of the MSc thesis. Then, a motivating explanation of conditional
rewriting is given in order to understand and appreciate our conditional
slicing for rewrite theories.

Chapter 4. Backward Trace Slicing for Conditional Rewrite
Theories

In this chapter, we formalize a conditional slicing technique for rewriting
logic that is particularly suitable for analyzing complex, textually-large
system computations. Our technique can be mechanized by means a
backward trace slicing process for conditional rewrite theories witch relies
on a novel extended pattern matching algorithm also defined in this work.
We analyze the execution trace, and inductively compute the origins of
the observed relevant information at each rewrite step by applying a
backward slicing for rewrite steps that takes into account the conditions
of the applied rules. After getting rid of the irrelevant information finally
a simplified trace is finally obtained.

The original contribution of this chapter is, firstly, the considera-
tion of conditional rules in the slicing algorithm, and even most impor-
tant, the simplification and improvement of the backward trace slicing of
[ABER11a] by avoiding the complex labeling process in favour of a novel
and more convenient extended pattern matching algorithm.

Preliminaries

In this section we recall some basic notions regarding conditional term
rewriting systems and rewriting logic that will be used in the rest of the
master’s thesis. For details, we refer to [TeR03].

By V ariables we denote a countably infinite set of variables and Σ
denotes a set of function symbols, or signature. We consider varyadic
signatures as in [DP01] (i.e., signatures in that symbols have an un-
bounded arity, that is, they may be followed by an arbitrary number of
arguments). Given a term t, we say that t is ground if no variables occur
in t. τ(Σ,V) and τ(Σ) denote the non-ground term algebra and the term
algebra built on Σ ∪ V and Σ, respectively.

A many-sorted signature (Σ, S) consists of a set of sorts S and a
S∗ × S-indexed family of sets Σ = {Σs̄×s}(s̄,s)∈S∗×S, which are sets of
function symbols (or operators) with a given string of argument sorts
and result sort. Given an S-sorted set V = {Vs | s ∈ S} of disjoint sets
of variables, τ(Σ,V)s and τ(Σ)s are the sets of terms and ground terms of
sort s, respectively. An equation is a pair of terms of the form s = t, with
s, t ∈ τ(Σ,V)s. In order to simplify the presentation, we often disregard
of sorts when no confusion can arise.

Terms are viewed as labeled trees in the usual way. Positions are
represented by sequences of natural numbers denoting an access path in
a term. The empty sequence Λ denotes the root position. By root(t),
we denote the symbol occurring at the root position of t. We let Pos(t)
denote the set of positions of t. By notation w1.w2, we denote the con-
catenation of positions (sequences) w1 and w2. Positions are ordered by
the prefix ordering, that is, given the positions w1, w2, w1 ≤ w2 if there
exists a position x such that w1.x = w2. ≤Lex denoted the lexicographic
ordering between positions, that is, Λ ≤Lex w for every position w, and
given the positions w1 = i.w′1 and w2 = j.w′2, then w1 ≤Lex w2 iff i < j
or (i = j and w′1 ≤Lex w′2). Given S ⊆ Σ ∪ V , OS(t) denotes the set
of positions of a term t that are rooted by symbols in S. Moreover,
for any position x, {x}.OS(t) = {x.w | w ∈ OS(t)}. t|u is the subterm
at the position u of t. t[r]u is the term t with the subterm rooted at

6 Preliminaries

the position u replaced by r. By pathw(t), we denote the set of sym-
bols in t that occur in the path from its root to the position w of t,
e.g., path(2.1)(f(a, g(b), c)) = {f, g, b}. By Var(t) (resp. FSymbols(t)),
we denote the set of variables (resp. function symbols) occurring in the
term t.

Syntactic equality between objects is represented by ≡. Given a set
S, sequences of elements of S are built with constructors ε :: S∗ (empty
sequence) and . :: S × S∗ → S∗.

A substitution σ is a mapping from variables to terms
{x1/t1, . . . , xn/tn} such that xiσ = ti for i = 1, . . . , n (with xi 6= xj
if i 6= j), and xσ = x for all other variables x. By ε, we denote
the empty substitution. Given a substitution σ, the domain of σ is
the set Dom(σ) = {x|xσ 6= x}. Given the substitutions σ1 and σ2,
such that Dom(σ2) ⊆ Dom(σ1), by σ1/σ2 we define the substitution
{X/t ∈ σ1 | X ∈ Dom(σ1) \ Dom(σ2)} ∪ {X/t ∈ σ2 | X ∈ Dom(σ1) ∩
Dom(σ2)}∪ {X/X|X 6∈ Dom(σ1)}. An instance of a term t is defined as
tσ, where σ is a substitution.

A context is a term γ ∈ τ(Σ ∪ 2,V) with zero or more holes 2, and
2 6∈ Σ. We write γ[]u to denote that there is a hole at position u of γ. By
notation γ[], we define an arbitrary context (where the number and the
positions of the holes are clarified in situ), while we write γ[t1, . . . tn] to
denote the term obtained by filling the holes appearing in γ[] with terms
t1, . . . , tn. By notation t2, we denote the context obtained by applying
the substitution σ = {x1/2, . . . , xn/2} to t, where Var(t) = {x1 . . . , xn}
(i.e., t2 = tσ).

Conditional Term Rewriting Systems

A conditional term-rewriting system (CTRS for short) is a pair (Σ, R),
where Σ is a signature and R is a finite set of reduction (or rewrite) rules
of the form (λ → ρ ⇐ C), λ, ρ ∈ τ(Σ,V), λ 6∈ V . The conditions C is
a (possibly empty) sequence e1, . . . , en, n ≥ 0, of equations. Variables in
C or ρ that do not occur in λ are called extra variables. We will often
write just R instead of (Σ, R). If a rewrite rule has no condition, we write
λ → ρ. Note that function symbols are allowed to be arbitrarily nested
in left-hand sides. Following Middeldorp and Hamoen [MH94], a CTRS

Preliminaries 7

whose rules (λ → ρ ⇐ C) do not contain extra variables, i.e., V ar(ρ) ∪
V ar(C) ⊆ V ar(λ)), is called a 1-CTRS. A CTRS with extra variables
only in the conditions of their rewrite rules, i.e., V ar(ρ) ⊆ V ar(λ), is
called a 2-CTRS, while a 3-CTRS may also have extra variables in the
rhs’s provided these occur in the corresponding conditions, i.e., V ar(ρ) ⊆
(V ar(λ) ∪ V ar(C)).

A rewrite step is the application of a rewrite rule to an expression.
A term s conditionally rewrites to a term t via r ∈ R, s

r→R t (or

s
r,σ,w−−−→R t), if there exists a position w in s such that λ matches s|w via a

substitution σ (in symbols, s|w ≡ λσ) and the condition C holds; then t
is obtained from s by replacing the subterm s|w ≡ λσ with the term ρσ,
in symbols t ≡ s[ρσ]w. When no confusion can arise, we will omit any
subscript (i.e., s → t). We denote the transitive and reflexive closure of
→ by →∗. t is the irreducible form of s w.r.t. R (in symbols s →!

R t) if
s→∗R t and t is irreducible.

The rule λ→ ρ⇐ C (or equation λ = ρ⇐ C) is collapsing if ρ ∈ V ;
it is left-linear if no variable occurs in λ more than once. We say that
a CTRS R is terminating, if there exists no infinite rewrite sequence
t1 →R t2 →R A CTRS R is confluent if, for all terms s, t1, t2, such
that s →∗R t1 and s →∗R t2, there exists a term t s.t. t1 →∗R t and
t2 →∗R t. When R is terminating and confluent, it is called canonical .
In canonical CTRSs, each input term t can be univocally reduced to a
unique irreducible form.

The conditional equation s = t⇐ C holds in a canonical CTRS R, if
there exists an irreducible form z ∈ τ(Σ,V) w.r.t. R such that s →!

R z
and t→!

R z and the condition C holds.

Conditional Rewrite Theories

The static state structure as well as the dynamic behavior of a concurrent
system can be described by meas of a Rewriting Logic (RWL) specifica-
tion encoding a conditional rewrite theory [Mes92]. A conditional rewrite
theory is a triple R = (Σ, E,R), where:

(i) (Σ, E) is an order-sorted conditional equational theory equipped
with a partial order < modeling the usual subsort relation. The

8 Preliminaries

signature Σ specifies the operators and sorts defining the type struc-
ture ofR, while E = ∆∪B consists of a set of (oriented and possibly
conditional) equations ∆ together with a collection B of equational
axioms (e.g., associativity, commutativity, and unity) that are as-
sociated with some operator of Σ. The equational theory (Σ, E)
induces a congruence relation on the term algebra τ(Σ,V), which
is usually denoted by =E. Intuitively, the sorts and operators con-
tained in the signature Σ allow one to formalize system states as
ground terms of the term algebra τ(Σ, E) that is built upon Σ
and E.

(ii) R defines a set of (possibly conditional) labeled rules of the form
(l : t ⇒ t if c) such that l is a label, t, t′ are terms, and c is an
optional boolean term representing the rule condition. Basically,
rules in R specify general patterns modeling state transitions. In
other words, R formalizes the dynamics of the considered system.

Variables may appear in both equational axioms and rules. By nota-
tion x : S, we denote that variable x has sort S.

The system evolves by applying the rules of the conditional rewrite
theory to the system states by means of rewriting modulo E, where E is
the set of equational axioms. This is accomplished by means of pattern
matching modulo E. More precisely, given a conditional equational the-
ory (Σ, E), a term t and a term t′, we say that t matches t′ modulo E (or
that t E-matches t′) via substitution σ if there exists a context C such
that C[tσ] =E t

′, where =E is the congruence relation induced by the con-
ditional equational theory (Σ, E). Hence, given a rule r = (l : t⇒ t′ if c),
and two ground terms s1 and s2 denoting two system states, we say that
s1 rewrites to s2 modulo E via r (in symbols s1

r→ s2), if there exists
a substitution σ such that s1 E-matches t via σ, s2 = C[t′σ] and cσ
holds (i.e., it is equal to true modulo E). A computation over R is a

sequence of rewrites of the form s0
r1→ s1 . . .

rk→ sk, with r1, . . . , rk ∈ R,
s0, . . . , sk ∈ τ(Σ, E).

Part I

Debugging of Web
Applications

Chapter 1

Specification and Verification
of Web Applications in RWL

Over the past decades, the Web has evolved from being a static medium
to a highly interactive one. Currently, a number of corporations (includ-
ing book retailers, auction sites, travel reservation services, etc.) interact
with their clients primarily through the Web by means of complex inter-
faces which combine static content with dynamic data produced “on-the-
fly” by the execution of server-side scripts (e.g., Java servlets, Microsoft
ASP.NET and PHP code).

Typically, a Web application consists of a series of Web scripts whose
execution may involve several interactions between a Web browser and a
Web server. In a typical scenario, the browser/server interact by means
of a particular “client-server” protocol in which the browser requests the
execution of a script to the server, then the server executes the script, and
it finally packs its output into a response that the browser can display.
This execution model -albeit very simple- hides some subtle intricancies
which may yield erroneous behaviors.

Actually, Web browsers typically support backward and forward nav-
igation through Web application stages, and allow the user to open dis-
tinct (instances of) Web scripts in distinct windows/tabs which are run
in parallel. Such browser actions may be potentially dangerous, since
they can change the browser state without notifying the server, and may
easily lead to errors or undesired responses. For instance, [MM08] re-
ports on a frequent error, called the multiple windows problem, which
typically happens when a user opens the windows for two items in an
online store, and after clicking to buy on the one that was opened first,
he frequently gets the second one being bought. Moreover, clicking re-
fresh/forward/backward browser buttons may sometimes produce error
messages, since such buttons were designed for navigating stateless Web
pages, while navigation through Web applications may require multiple

12 Chapter 1. Specification and Verification of Web Applications in RL

state changes. These problems have occurred frequently in many popular
Web sites (e.g., Orbitz, Apple, Continental Airlines, Hertz car rentals,
Microsoft, and Register.com) [GFKF03]. Finally, näıvely written Web
scripts may allow security holes (e.g., unvalidated input errors, access
control flaws, etc. [Pro07]) producing undesired results that are difficult
to debug.

Although the problems mentioned above are well known in the Web
community, there is a limited number of tools supporting the automated
analysis and verification of Web applications. The aim of this chapter is
to explore the application of formal methods to the formal modeling and
automatic verification of complex, real-size Web applications.

First we summarize a fine-grained, operational semantics of Web ap-
plications that is based on a formal navigational model which is suitable
for the verification of real, dynamic Web sites. This model is formalized
within the Rewriting Logic (RWL) framework [MOM02], a rule-based,
logical formalism particularly appropriate to modeling concurrent sys-
tems [Mes92]. Specifically, we describe a rigorous rewrite theory which:

i) completely formalizes the interactions between multiple
browsers and a Web server through a request/response protocol
that supports the main features of the HyperText Transfer Proto-
col (HTTP);

ii) models browsers actions such as refresh, forward/backward naviga-
tion, and window/tab openings;

iii) supports a scripting language which abstracts the main common
features (e.g., session data manipulation, data base interactions) of
the most popular Web scripting languages.

iv) formalizes adaptive navigation [HH06], that is, a navigational model
in which page transitions may depend on user’s data or previous
computation states of the Web application.

Also we show how rewrite theories specifying Web application mod-
els can be model-checked using the Linear Temporal Logic of Rewriting
(LTLR) [BM08; Mes08]. The LTLR allows us to specify properties at a
very high level using RWL rules and hence can be smoothly integrated
into our RWL framework.

1.1. A Navigation Model for Web Applications 13

Finally, we overview an implementation of the verification framework
in Maude [CDE+07], using a built-in model-checker for LTLR. To the
best of our knowledge, this tool represents the first attempt to provide a
formal RWL verification environment for Web applications which allows
one to verify several important classes of properties (e.g., reachability, se-
curity, authentication constraints, mutual exclusion, liveness, etc.) w.r.t.
a realistic model of a Web application which includes detailed browser-
server protocol interactions, browser navigation capabilities, and Web
script evaluations.

This chapter is organized as follows. Section 1.1 summarizes a gen-
eral model for Web interactions which informally describes the navigation
through Web applications using HTTP. The model supports both Web
script evaluations and adaptive navigation. In Section 1.2, we show a
rewrite theory formalizing a simplified version of the navigation model
of Section 1.1. In this preliminary model, we assume that a Web server
interacts with a single browser which is not equipped with the usual nav-
igation buttons. Section 1.3 provides an extended rewrite theory which
generalizes the rewrite theory formalized in Section 1.2 in order to deal
with multiple Web browsers which fully support the most common navi-
gation features of modern browsers. In Section 1.4, we introduce LTLR,
and we show how we can use it to formally verify Web applications.
Formal Maude specifications encoding the operational semantics of the
Web scripting language and the protocol evaluation mechanism can be
respectively found in Appendix A and Appendix B.

1.1 A Navigation Model for Web Applica-

tions

A Web application is a collection of related Web pages, hosted by a
Web server, containing Web scripts and links to other Web pages. A
Web application is accessed by using a Web browser which allows one to
navigate through Web pages by clicking and following links.

Communication between the browser and the server is given through
the HTTP protocol, which works following a request-response scheme.
Basically, in the request phase, the browser submits a URL to the server
containing the Web page P to be accessed together with a string of input

14 Chapter 1. Specification and Verification of Web Applications in RL

parameters (called the query string). Then, the server retrieves P and, if
P contains a Web script α, it executes α w.r.t. the input data specified by
the query string. According to the execution of α, the server defines the
Web application continuation (that is, the next page P ′ to be sent to the
browser), and enables the links in P ′ dynamically (adaptive navigation).
Finally, in the response phase, the server delivers P ′ to the browser.

Since HTTP is a stateless protocol, we assume that HTTP is cou-
pled with some session management technique, implemented by the Web
server, which allows us to define Web application states via the notion
of session, that is, global stores that can be accessed and updated by
Web scripts during an established connection between a browser and the
server. Web application continuations as well as adaptive navigations
are dynamically computed w.r.t. the current session (i.e., the current
application state).

1.1.1 Graphical Navigation Model

The navigation model of a Web application can be graphically depicted
at a very abstract level by using a graph-like structure as follows. Web
pages are represented by nodes which may contain a Web script to be
executed (α). Solid arrows connecting Web pages model navigation links
which are labeled by a condition and a query string. Conditions provide
a simple mechanism to implement a general form of adaptive navigation:
specifically, a navigation link will be enabled (i.e., clickable) whenever
the associated condition holds. The query string represents the input
parameters which are sent to the Web server. Finally, dashed arrows
model Web application continuations, that is, arcs pointing to Web pages
which are automatically computed by Web script executions. Conditions
labeling continuations allow us to model any possible evolution of the
Web application of interest.

Example 1.1.1
Consider the graphical navigation model given in Figure 1.1, which repre-
sents a generic Webmail application that provides some typical functions
such as login/logout features, email management, system administration
capabilities, etc. The Web pages of the application are pairwise connected
by either navigation links (i.e., solid arrows) or continuations (i.e., dashed

1.2. Formalizing the Navigation Model as a Rewrite Theory 15

Figure 1.1: The navigation model of a Webmail application.

arrows). For example, the solid arrow between the welcome page and the
home page, whose label is decorated with the string “∅,{user=x,pass=y}”,
defines a navigation link which is always enabled and requires two input
parameters. The home page has got two possible continuations (dashed
arrows) login=ok and login=no. According to the user and pass values
provided in the previous transition, only continuation one is chosen. In
the former case, the login succeeds and the home page is delivered to the
browser, while in the latter case the login fails and the welcome page is
sent back to the browser.

An example of adaptive navigation is provided by the navigation link
connecting the home page to the administration page. In fact, navigation
through that link is enabled only when the condition role=admin holds,
that is, the role of the logged user is admin.

1.2 Formalizing the Navigation Model as a

Rewrite Theory

In this section, we present a rewrite theory which specifies a navigation
model that allows us to formalize the navigation through a Web appli-
cation via a communicating protocol abstracting HTTP. Initially and to
keep the model simple, we assume that the server interacts with a sin-
gle browser which does not support browser actions (e.g., windows/tabs
openings, refresh actions, etc.). Section 1.3 generalizes the model to

16 Chapter 1. Specification and Verification of Web Applications in RL

a more realistic scenario by defining server interactions with multiple
browsers, and by equipping browsers with some standard navigation fa-
cilities.

This formalization of a Web application, first proposed in [ABR09],
consists of the specification of the following three components: the Web
scripting language, the Web application structure, and the communica-
tion protocol.

1.2.1 The Web Scripting Language

In [Rom11] a scripting language is considered which includes the main
features of the most popular Web programming languages. Basically, it
extends an imperative programming language with some built-in primi-
tives for reading/writing session data (getSession, setSession), accessing
and updating a data base (selectDB, updateDB), and capturing values
contained in a query string sent by a browser (getQuery). The lan-
guage is defined by means of an equational theory (Σs, Es), whose sig-
nature Σs specifies the syntax as well as the type structure of the lan-
guage, while Es is a set of equations modeling the operational seman-
tics of the language through the definition of an evaluation operator
[[]] : ScriptState→ ScriptState, where ScriptState is defined by the oper-
ator

(, , , ,) : (Script× PrivateMemory × Session× Query × DB)→ ScriptState

Roughly speaking, the operator [[]] takes in input a tuple (α,m, s, q, db)
that consists of a script α, a private memory m, a session s, a query string
q and a data base db, and returns a new script state (skip,m′, s′, q, db′) in
which the script has been completely evaluated (i.e., it has been reduced
to the skip statement) and the private memory, the session and the data
base might have been changed because of the script evaluation. In this
framework, sessions, private memories, query strings and data bases are
modeled by sets of pairs id = val, where id is an identifier whose value
is represented by val. The full formalization of the operations semantics
of our scripting language as a system theory in Maude can be found in
Appendix A.

1.2. Formalizing the Navigation Model as a Rewrite Theory 17

1.2.2 The Web Application Structure

The Web application structure is modeled by an equational theory
(Σw, Ew) such that (Σw, Ew) ⊇ (Σs, Es). (Σw, Ew) contains a specific
sort Soup for modeling multisets (i.e., a soup of elements whose opera-
tors are defined by using commutativity, associativity and unity axioms)
as follows:

∅ :→ Soup (empty soup)
, : Soup× Soup→ Soup [comm assoc Id : ∅] (soup concatenation).

The structure of a Web page is defined with the following operators
of (Σw, Ew)

(, , { }, { }) : (PageName× Script× Continuation× Navigation)→ Page
(,) : (Condition× PageName)→ Continuation
, [] : (PageName× Query)→ Url

(,) : (Condition× Url)→ Navigation

where the following subsort relations are enforced: Page < Soup,
Query < Soup, Continuation < Soup, Navigation < Soup,
Condition < Soup. Each subsort relations S < Soup allows us to auto-
matically define soups of sort S.

Basically, a Web page is a tuple (n, s, {cs}, {ns}) ∈ Page such that
n is a name identifying the Web page, s is the Web script included
in the page, cs represents a soup of possible continuations, and ns de-
fines the navigation links occurring in the page. Each continuation ap-
pearing in {cs} is a term of the form (cond, n′), while each navigation
link in ns is a term of the form (cond, n′, [q1, . . . , qn]). A condition is
a term of the form {id1 = val1, . . . , idk = valk}. Given a session s, we
say that a continuation (cond, n′) is enabled in s, iff cond ⊆ s, and a
navigation link (cond, n′, [q1, . . . , qn]) is enabled in s iff cond ⊆ s. A
Web application is defined as a soup of Page defined by the operator
〈 〉 : Page→ WebApplication.

Example 1.2.1
Consider again the Web application of Example 1.1.1. Its Web applica-
tion structure can be defined as a soup of Web pages

wapp = 〈p1, p2, p3, p4, p5, p6, p7, p8〉

18 Chapter 1. Specification and Verification of Web Applications in RL

as follows:

p1 = (welcome, skip, {∅}, {(∅, home, [user, pass])})
p2 = (home, αhome, {(login = no,welcome), (changeLogin = no, changeAccount),

(login = ok, home)},
{(∅, changeAccount, [∅]), (role = admin, administration, [∅])
(∅, emailList, [∅]), (∅, logout, [∅])})

p3 = (emailList, αemailList, {∅}, {(∅, viewEmail, [emailId]), (∅, home, [∅])})
p4 = (viewEmail, αviewEmail, {∅}, {(∅, emailList, [∅]), (∅, home, [∅])})
p5 = (changeAccount, skip, {∅}, {(∅, home, [newUser, newPass])})

p6 = (administration, αadmin, {(adm = no, home), (adm = ok, administration)},
{∅, adminLogout, [∅]})

p7 = (adminLogout, αadminLogout, {(∅, home)}, {∅})
p8 = (logout, αlogout, {(∅,welcome)}, {∅})

where the application Web scripts might be defined in the following way

αhome =

login := getSession(”login”) ;
if (login = null) then

u := getQuery(user) ;
p := getQuery(pass) ;
p1 := selectDB(u) ;
if (p = p1) then

r := selectDB(u.”-role”) ;
setSession(”user”, u) ;
setSession(”role”, r) ;
setSession(”login”, ”ok”)

else
setSession(”login”, ”no”) ;
f := getSession(”failed”) ;
if (f = 3) then

setSession(forbid,”true”)
fi ;
setSession(”failed”, f+1) ;

fi fi

αadmin =

u := getSession(”user”) ;
adm := selectDB(”admPage”) ;
if (adm = ”free”)∨(adm = u)
then

updateDB(”admPage”, u) ;
setSession(”adm”, ”ok”)

else
setSession(”adm”, ”no”)

fi

αemailList =
u := getSession(”user”) ;
es := selectDB(u . ”-email) ;
setSession(”email-found”, es)

αviewEmail =
u := getSession(”user”) ;
id := getQuery(idEmail) ;
e := selectDB(id) ;
setSession(”text-email”, e)

αadminLogout = updateDB(”admPage”, ”free”) αlogout = clearSession

1.2.3 The Communication Protocol

The communication protocol can be defined by means of a rewrite theory
(Σp, Ep, Rp), where (Σp, Ep) is an equational theory that formalizes the

1.2. Formalizing the Navigation Model as a Rewrite Theory 19

Web application states, and Rp is a set of rewrite rules that specify Web
script evaluations as well as request/response protocol actions.

The equational theory (Σp, Ep)

The rewrite theory is built on top of the equational theory (Σw, Ew) (i.e.,
(Σp, Ep) ⊇ (Σw, Ew)) which models the entities into play (i.e., the Web
server, the Web browser and the protocol messages). Besides, it provides
a formal mechanisms to evaluate enabled continuations as well as enabled
adaptive navigations which may be generated “on-the-fly” by executing
Web scripts. More formally, (Σp, Ep) includes the following operators.

B(, { }, { }) : (PageName× Url× Session)→ Browser
S(, { }, { }) : (WebApplication× Session× DB)→ Server
B2S(, []) : (PageName× Query)→ Message
S2B(, { }, { }) : (PageName× Url× Session)→ Message
empty : → Message
|| || : Browser ×Message× Server→WebState

We model a browser as a term B(n, {url1, . . . , urll}, {id1 = val1, . . . , idm =
valm}), where n is the name of the Web page which is currently dis-
played on the Web browser, while url1, . . . , urll is a soup of sort Url
that represents the navigation links which appear in the Web page n,
and {id1 = val1, . . . , idm = valm} is the last session the server has sent
to the browser. The sever is formalized by using a term of the form
S(〈p1, . . . , pl〉, {id1 = val1, . . . , idm = valm}, {id1 = val1, . . . , idk = valk}),
where 〈p1, . . . , pl〉 defines the Web application currently in execution,
{id1 = val1, . . . , idm = valm} is the session which is needed to keep track
of the Web application state, and {id1 = val1, . . . , idk = valk} specifies
the data base hosted by the Web server.

We assume the existence of a bidirectional channel that supports the
communication between the server and browser by message passing. In
this context, terms of the form B2S(n, [id1 = val1, . . . , idm = valm]) model
request messages, that is, messages sent from the browser to the server
asking for the Web page n with query parameters [id1 = val1, . . . , idm =
valm]. Instead, terms of the form S2B(n, {url1, . . . , urll}, {id′1 = val′1, . . . ,
id′m = val′m}) model response messages, that is, messages sent from the
server to the browser including the computed Web page n together with

20 Chapter 1. Specification and Verification of Web Applications in RL

the navigation links {url1, . . . , urll} occurring in n, and the current session
information1. We denote the empty channel by the constant empty. Us-
ing the operators so far described, we can precisely formalize the notion of
Web application state as a term of the form br||m||sv, where br ∈ Browser,
m ∈ Message, and sv ∈ Server. Intuitively, a Web application state can
be interpreted as a snapshot of the system with captures the current
configurations of the browser, the server and the channel.

The equational theory (Σp, Ep) also defines the operator

eval(, , ,) : WebApplication× Session× DB×Message
→ Session× DB×Message

whose semantics is specified by means of Ep (see Appendix B for the
precise formalization of eval). Given a Web application w, a session s, a
data base db, and a request message B2S(n, [q]), eval(w, s, db,B2S(n, [q]))
generates a triple (s′, db′,m′) that consists of the updated session s′, the
updated data base db′, and the response message m′ = S2B(n′, {url1, . . . ,
urlm}, s′). Intuitively, the generation of such a triple proceeds as follows.
Let αn be the Web script occurring in the Web page n of w.

1. The server evaluates αn by applying the evaluation function [[]]
to the script state (αn, ∅, s, q, db). This delivers a new script state
(skip,m′, s′, q, db′) in which the script’s private memory, the session
and the data base have been updated.

2. Then, eval returns the new session s′, the new database db′, and a
response message S2B(n′, {url1, . . . , urlm}, s′) which is built by glu-
ing together a Web page name n′ corresponding to a continuation
(cond′, n′) enabled w.r.t. s′, the navigation links of n′ enabled w.r.t.
s′, and the session s′.

Roughly speaking, the operator eval allows us to execute a Web script
and dynamically determine (i) which Web page n′ is generated by com-
puting an enabled continuation, and (ii) which links of n′ are enabled
w.r.t. the current session.

1Session information is typically represented by HTTP cookies, which are textual
data sent from the server to the browser to let the browser know the current applica-
tion state.

1.2. Formalizing the Navigation Model as a Rewrite Theory 21

The rewrite rule set Rp

Following [Rom11], Rp is defined by means of a collection of rewrite rules
of the form

label : WebState⇒ WebState

representing the standard request-response behavior of the HTTP proto-
col. More specifically, Rp specifies browser requests, script evaluations,
and server responses by means of the following three rules:

Req : B(n, {(n1, [qs1]), urls}, {s}) || empty || sv⇒
B(emptyPage, ∅, {s}) ||B2S(n1, [qs1]) ||sv

Evl : B(emptyPage, ∅, {s}) ||m || S(〈w〉, {s}, {db})⇒
B(emptyPage, ∅, {s}) ||m′ || S(〈w〉, {s′}, {db′})

where m = B2S(n1, [qs1]) and (s′, db′,m′) = eval(w, s, db,m)

Res : B(emptyPage, ∅, {s}) || S2B(n′, {urls′}, {s′}) || sv⇒
B(n′, {urls′}, {s′}) || empty || sv

where emptyPage : → PageName is a constant representing a Web page
without content, and n, n1, n

′ : PageName, urls, urls′ : URL, sv : Server,
qs1 : Query, m,m′ : Message, s, s′ : Session, db, db′ : DB, w : WepApplication
are variables.

Basically, by means of rule Req, the browser requests the navigation
link (n1, [qs1]) appearing in the current Web page n by sending a request
message B2S(n1, [qs1]) to the channel. When this happens, the emptyPage
is loaded into the browser in order to avoid further browser requests until
a response is obtained from the server. Rule Evl retrieves a given request
message m from the channel and evaluates it. Such an evaluation updates
the session and the data base on the server side with values s′ and db′, and
generates the response message m′ which is sent to the channel. Finally,
through rule Res, the response message S2B(n′, {urls′}, {s′}) is withdrawn
from the channel and sent to the browser, which is then updated by using
the information received.

It is worth noting that the whole protocol semantics is elegantly de-
fined by means of only three, high-level rewrite rules without making any
implementation detail explicit. Implementation details are automatically
managed by the rewriting logic engine (i.e., rewrite modulo equational

22 Chapter 1. Specification and Verification of Web Applications in RL

theories). For instance, in the rule Req, no tricky function is needed to
select an arbitrary navigation link (n1, [qs1]) from the URLs available in a
Web page, since they are modeled as associative and commutative soups
of elements (i.e., Url < Soup) and hence a single URL can be extracted
from the soup by simply applying pattern matching modulo associativity
and commutativity.

Example 1.2.2
Consider the Web application structure wapp specified in Example 1.2.1
together with the following two Web application states

was1 = B(welcome, {(home, [user = Alice, pass = pA])}, ∅) || empty ||
S(wapp, ∅, {data})

was2 = B(welcome, {(home, [user = Bob, pass = wrong pB])}, ∅) || empty ||
S(wapp, ∅, {data})

where {data} is the data base {pwdAlice = pA, pwdBob = pB, roleAlice =
user}. Then, by applying the rewrite rules of Rp to was1, we obtain a
computation trace modeling a successful login.

was1
Req→ B(emptyPage, ∅, ∅) ||B2S(home, [user = Alice, pass = pA]) ||

S(wapp, ∅, {data})
Evl→ B(emptyPage, ∅, ∅) || S2B(home, {urls}, {login = ok})||

S(wapp, {login = ok}, {data})
Res→ B(home, {urls}, {login = ok}) || empty || S(wapp, {login = ok}, {data})

where urls = (changeAccount, [∅]), (emailList, [∅]), (logout, [∅])

Note that, since the role of Alice is user, the link to the administration
page is not enabled. On the other hand, by applying rules of Rp to was2,
we get a computation modeling a login failure.

was2
Req→ was3

Evl→ was4
Res→ B(welcome, {(home, [user = Bob, pass = wrong pB])},

{login = no}) || empty || S(wapp, {login = no}, {data})

1.3. Modeling Multiple Web Interactions and Browser Features 23

1.3 Modeling Multiple Web Interactions

and Browser Features

In a real scenario, a Web server concurrently interacts with multiple
browsers through distinct connections. Besides that, the browser struc-
ture is in general more complex than the one presented in Section 1.2
—in fact, browsers are equipped with browser navigation features which
may produce unexpected Web application behaviors as explained at the
beginning of this chapter (see also [MM08]).

In the rest of the section, following [Rom11], we define a rewrite
theory (Σext, Eext, Rext) extending the rewrite theory (Σp, Ep, Rp) pre-
sented in Section 1.2 in order to manage such aspects. The augmented
model generalizes the communication protocol in order to support mul-
tiple browser connections as well as the following browser navigation
features: forward/backward/refresh actions, new tab/windows openings.

1.3.1 The Extended Equational Theory (Σext,Eext)

First of all, we assume that (Σext, Eext) includes two new sorts Queue
and List for modeling queues and bidirectional lists, respectively. The
former data structure allows us to model the communication channel as
well as the response/request messages which have to be processed by the
server; while the latter is used to specify the browser history list that is
needed to implement browser navigation through forward and backward
buttons. Moreover, (Σext, Eext) contains the sort Nat defining natural
numbers and the sort Id modeling univocal identifiers.

Extended definitions of Browser, Server, and Message are then defined
by means of the following operators:

B(, , , { }, { }, , ,) : (Id× Id× PageName× URL× Session×Message
×History × Nat)→ Browser

S(, { }, { }, ,) : (WebApplication× UserSession× DB×Message
×Message)→ Server

H(, { },) : (PageName× URL×Message)→ History
B2S(, , , [],) : (Id× Id× PageName× Query × Nat)→ Message

S2B(, , , { }, { },) : (Id× Id× PageName× URL× Session
×Nat)→ Message

BS(, { }) : (Id× Session)→ BrowserSession

24 Chapter 1. Specification and Verification of Web Applications in RL

where we enforce the following subsort relations History < List,
BrowserSession < Soup, Message < Queue, and Browser < Soup.

An extended browser is a term of the form

B(idb, idt, n, {url}, {s},m, h, i)

where idb is an identifier representing the browser; idt is an identifier
modeling an open windows or tab which refers to browser idb; n and
url are respectively the current page displayed in the window/tab idt

and the enabled navigation links appearing in Web page n; s is the last
session received from the server; m is the last message sent to the server
(this piece information is used to implement the refresh action); h is a
bidirectional list recording the history of the visited Web pages; i is an
internal counter used to distinguish among several response messages due
to refresh actions (e.g., if a user pressed twice the refresh button, only
the second refresh is displayed in the browser window).

An extended server is a term

S(w, {BS(idb1, {s1}), . . . ,BS(idbn, {sn})}, {db}, fiforeq, fifores)

which extends the previous server definition of Section 1.2 by adding
a soup of browser sessions in order to manage distinct connections, and
two queues of messages fiforeq,fifores, which respectively model the request
messages which still have to be processed by the server and the pending
response messages that the server has still to send to the browsers.

In an analogous way, both request and response messages are aug-
mented with information regarding the browser internal counter, and
the browser and window/tab identifiers.

It is worth noting that the considered extension keep unmodified both
the scripting language specification and the Web application structure
which are indeed completely independent of the communicating protocol
chosen.

1.3.2 The Extended Rewrite Rule Set Rext

Both the extended communication protocol supporting multiple browser
connections, and the browser navigation features, are formalized by means
of the rewrite rules included in Rext.

1.3. Modeling Multiple Web Interactions and Browser Features 25

The extended communication protocol

The protocol is specified via rewrite rules of the form label : Webstate⇒
Webstate, where the notion of Web application state has been adapted ac-
cording to the equational theory (Σext, Eext). More specifically, a web ap-
plication state is a term br||m||sv, where br is a soup of extended browsers,
m is a channel modeled as a queue of messages, and sv is an extended
server. The protocol specification is as follows:

ReqIni : B(idb, idt, pc, {(np, [q]), urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, emptyPage, ∅, {s},midb,idt, hc, i), br || (m,midb,idt) || sv

where midb,idt = B2S(idb, idt, np, [q], i) and
hc = push((pc, {(np, [q]), urls},midb,idt), h)

ReqFin : br || (midb,idt,m) || S(w, {bs}, {db}, fiforeq, fifores)⇒
br ||m || S(w, {bs}, {db}, (fiforeq,midb,idt), fifores)

where midb,idt = B2S(idb, idt, np, [q], i)

Evl : br ||m || S(w, {BS(idb, {s}), bs}, {db}, (midb,idt, fiforeq), fifores)⇒
br ||m || S(w, {BS(idb, {s′}), bs}, {db′}, fiforeq, (fifores,m

′))

where (s′, db′,m′) = eval(w, s, db,midb,idt)

ResIni : br ||m || S(w, {bs}, {db}, fiforeq, (midb,idt, fifores))⇒
br || (m,midb,idt) || S(w, {bs}, {db}, fiforeq, fifores)

ResFin : B(idb, idt, emptyPage, ∅, {s}, lm, h, i), br || (S2B((idb, idt, p
′, urls,

({s′}), i),m) || sv⇒ B(idb, idt, p
′, urls, {s′}, lm, h, i), br ||m || sv

where idb, idt : Id, br : Browser, sv : Server, urls : URL, q : Query,
h : History, w : WebApplication, m,m′,midb,idt, fiforeq, fifores : Message,
i : Nat, pc, p

′, np : PageName, s, s′ : Session, and bs : BrowserSession are
variables.

Roughly speaking, the request phase is split into two parts, which
are respectively formalized by rules ReqIni and ReqFin. Initially, when a
browser with identifier idb requests the navigation link (np, [q]) appearing
in a Web page pc of the window/tab identified by idt, rule ReqIni is fired.
The execution of ReqIni generates a request message midb,idt, which is
enqueued in the channel and saved in the browser as the last message sent.

26 Chapter 1. Specification and Verification of Web Applications in RL

The history list is updated as well. Rule ReqFin simply dequeues the first
request message midb,idt of the channel and enqueues it to fiforeq, which is
the server queue containing pending requests. Rule Evl consumes the first
request message midb,idt of the queue fiforeq, evaluates the message w.r.t.
the corresponding browser session (idb, {s}), and generates the response
message which is enqeued in fifores; that is, the server queues containing
the responses to be sent to the browsers. Finally, rules ResIni and ResFin
implement the response phase. First, rule ResIni dequeues a response
message from fifores and sends it to the channel m. Then, rule ResFin
takes the first response message from the channel queue and sends it to
the window/tab of the corresponding browser.

Example 1.3.1
Consider the scenarios given in Example 1.2.2 that represent Alice’s suc-
cessful login and Bob’s login failure. Let A be Alice’s browser identifier,
and let B be Bob’s browser identifier. Assume that the two browsers in-
teract simultaneously with the same server, starting from an initial state
s0.

Then, a possible computation between the browsers and the server is
as follows.

s0
ReqIni(A)→ s1

ReqFin(A)→ s2
ReqIni(B)→ s3

ReqFin(B)→ s4
Evl(B)→ s5

Evl(A)→ s6
ResIni(B)→ s7 . . .

where, by abuse of notation, we write r(A) (resp. r(B)) to represent the
fact that the variable representing the browser identifier in the rule r is
instantiated with A (resp. B).

Browser navigation features

The browser navigation features are formalized in [ABR09] as follows.

Refresh : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, emptyPage, ∅, {s},midb,idt, h, i + 1), br || (m,midb,idt) || sv

where lm = B2S(idb, idt, np, q, i) and midb,idt = B2S(idb, idt, np, q, i + 1)

OldMsg : B(idb, idt, pc, {urls}, {s}, lm, h, i), br || (S2B(idb, idt, p
′, urls′, {s′}, k),

m) || sv⇒ B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv if i 6= k

1.3. Modeling Multiple Web Interactions and Browser Features 27

NewTab : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, pc, {urls}, {s}, lm, h, i),B(idb, idnt, pc, {urls}, {s}, ∅, ∅, 0), br ||m || sv

where idnt is a new fresh value of the sort Id.

Backward : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

where (ph, {urlh}, lmh) = prev(h)

Forward : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv⇒
B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

where (ph, {urlsh}, lmh) = next(h)

where idb, idt, idnt : Id, br : Browser, sv : Server, urls, urls′, urlsh : URL,
q : Query, h : History m, lm, lmh,midb,idt : Message, i, k : Nat,
pc, p

′, np, ph : PageName, and s, s′ : Session are variables.

Rules Refresh and OldMsg model the behavior of the refresh button
of a Web browser. Rule Refresh applies when a Web page refresh is
invoked. Basically, it increments the browser internal counter i by one
unit and a new version of the last request message lm, containing the
updated internal counter, is inserted into the channel queue. Note that
the browser internal counter keeps track of the number of repeated refresh
button clicks. Rule OldMsg is used to consume all the response messages
in the channel, which might have been generated by repeated clicks of
the refresh button, with the exception of the last one. This allows us to
deliver just the response message corresponding to the last click of the
refresh button (by using the rules ResIni and ResFin).

Finally, rules NewTab, Backward and Forward specify the behaviors of
the browser buttons with regard to the generation of new tabs/windows,
and the forward and backward navigation through the browser history
list. The rules are quite intuitive: an application of NewTab simply
generates a new Web application state containing a new fresh tab in the
soup of browsers, while Backward (resp. Forward)) extracts the previous
(resp. next) Web page from the history list and sets it as the current
browser Web page.

It is worth noting that applications of rules in Rext might produce
and infinite number of (reachable) Web application states. For instance,
infinite applications of the rule newTab generate an infinite number of

28 Chapter 1. Specification and Verification of Web Applications in RL

states each of which represents a distinct finite number of open tabs.
Therefore, in order to make the analysis and verification feasible on our
framework, we set some restrictions that limit the number of reachable
states (e.g., we fixed upper bounds on the length of the history list, and
on the number of windows/tabs the user can open).

An alternative approach we plan to pursue in future work, is to define
a state abstraction through an equational theory, following the approach
of [MPMO08], which will allow us to deal with infinite-state systems in
an effective way.

1.4 Model Checking Web Applications

Using LTLR

The formal specification framework presented so far is particularly suit-
able for verification purposes, since its fine-grained structure allows us
to specify a number of subtle aspects of the Web application semantics
which can be naturally verified by using model-checking techniques. To
this respect, the Linear Temporal Logic of Rewriting (LTLR)[Mes08] can
be fruitfully employed to model-check Web applications that are formal-
ized via the extended rewrite theory (Σext, Eext, Rext) of Section 1.3. In
particular, the chosen “tandem” LTLR/(Σext, Eext, Rext) allows us to for-
malize properties which are either not expressible or difficult to express
by using other verification frameworks.

1.4.1 The Linear Temporal Logic of Rewriting

LTLR is a sublogic of the family of the Temporal Logics of Rewriting
TLR∗ [Mes08], which allows one to specify properties of a given rewrite
theory in a simple and natural way. In the following, we provide an intu-
itive explanation of the main features of LTRL; for a thorough discussion,
we refer to [Mes08].

LTLR extends the standard Linear Temporal Logic (LTL) with state
predicates and spatial action patterns. Given a system modeled as a
rewrite theory R, a state predicate is an equation of a specific sort
Prop whose form is statePattern |= property(a1, . . . , an) = booleanValue.
Roughly speaking, a state predicate formalizes a property

1.4. Model Checking Web Applications Using LTLR 29

property(a1, . . . , an) = booleanValue over all the states specified by R
which match the statePattern.

Example 1.4.1
Let (Σp, Ep, Rp) be the rewrite theory specified in Section 1.2, which
models the Web application states as terms b||m||s of sort WebState where
b is a browser, m is a message, and s is a server. Then, we can define the
state predicate

B(page, {urls}, {session})||m||s |= curPage(page) = true

which holds (i.e., evaluates to true) for any state such that page is the
current Web page displayed in the browser.

Note that, in standard LTL propositional logic, state propositions are
defined via atomic constants. Instead, LTLR supports parametric state
propositions via state predicates, which allows us to define complex state
propositions in a very concise and simple way.

Spatial action patterns allow us to localize rewrite rule applications
w.r.t. a given context and a partial substitution. Spatial action patterns
have the general form C[l(t1, . . . , tn)], where l is a rule label, C is a
context in which the rule with label l has to be applied, and t1, . . . , tn are
terms that constrain the substitutions which instantiate the parameters
of the rule l. When the context is empty, the spatial action reduces
to [l(t1, . . . , tn)], and specifies the applications of rule l where only the
substitution constraints have to be fulfilled.

Example 1.4.2
Let (Σext, Eext, Rext) be the rewrite theory introduced in Section 1.3 that
specifies our extended model for Web applications. Then, the spatial
action pattern ReqIni(id\A) asserts that the general action2

ReqIni(id, pc, np, q, urls, br,m, sv)

corresponding to applying the ReqIni rule has taken place with the rule’s
variable id instantiated to A. Therefore, ReqIni(id\A) allows us to iden-
tify all the applications of the rule ReqIni referring to the browser with
identifier A.

2Note that the variables of a given rewrite rule are listed in their textual order of
appearance in the left–hand side of the rule.

30 Chapter 1. Specification and Verification of Web Applications in RL

The syntax of the LTLR language generalizes the one of LTL[MP92]
by adding state predicates and spatial action patterns to standard con-
structs representing logical connectives and LTL temporal operators.
More precisely, LTLR is parametrized as LTLR(SP,Π), where SP is
a set of spatial action patterns, and Π is a set of state predicates. Then,
LTLR formulae w.r.t. SP and Π can be defined by means of the following
BNF-like syntax.

ϕ ::= δ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ϕUϕ | ♦ϕ |�ϕ

where δ ∈ SP , p ∈ Π, and ϕ ∈ LTLR(SP,Π).

1.4.2 LTLR properties for Web Applications

This section shows the main advantages of coupling LTLR with Web
applications specified via the extended rewrite theory (Σext, Eext, Rext)
for verification purposes.

Concise and parametric properties

As LTLR is a highly parametric logic, it allows one to define complex
properties in a concise way by means of state predicates and spatial action
patters.

As an example, consider the Webmail application given in Exam-
ple 1.1.1 and the property “Incorrect login info is allowed only 3 times,
and then login is forbidden”.

This property might be formalized as the following standard LTL
formula:

♦(welcomeA)→ ♦(welcomeA ∧©(¬(forbiddenA) ∨ (welcomeA∧
©(¬(forbiddenA) ∨ (welcomeA ∧©(¬(forbiddenA)∨

©(forbiddenA ∧�(¬welcomeA))))))))

where welcomeA and forbiddenA are atomic propositions respectively de-
scribing (i) user A displaying the welcome page, and (ii) forbidden login
for user A. Although the property to be modeled is rather simple, the
resulting LTL formula is textually large and demands a hard effort to be

1.4. Model Checking Web Applications Using LTLR 31

specified. Moreover, the complexity of the formula would rapidly grow
when a higher number of login attempts was considered3.

By using LTLR we can simply define a login property which is para-
metric w.r.t. the number of login attempts as follows. First of all, we
define the state predicates: (i) curPage(id,pn) which holds when user id4

is displaying Web page pn; (ii) failedAttempt(id,n) which holds when user
id has performed n failed login attempts; (iii) userForbidden(id) which
holds when a user is forbidden from logging on to the system. Formally,

B(id, idt, pn, {urls}, {s}, lm, h, i), br ||m|| sv |= curPage(id, pn) = true

br ||m || S(wapp, {BS((id, {failed = n}), bs}, {db}, fiforeq, fifores)

|= failedAttempt(id, n) = true
br ||m || S(wapp, {BS((id, {forbid = true}), bs}, {db}, fiforeq, fifores)

|= userForbidden(id) = true

Then, the security property mentioned above is elegantly formalized
by means of the following LTLR formula

♦(curPage(A,welcome) ∧©(♦failedAttemp(A, 3)))→ �userForbidden(A)

Observe that the previous formula can be easily modified to deal
with a distinct number of login attempts —it is indeed sufficient to
change the parameter counting the login attempts in the state predicate
failedAttempt(A, 3). Besides, note that we can define state predicates (and
more in general LTLR formulae) which depend on Web script evaluations.
For instance, the predicate failedAttempt depends on the execution of the
login script αhome which may or may not set the forbid value to true in
the user’s browser session.

Unreachability properties

Unreachability properties can be specified as LTLR formulae of the form

�¬ 〈State〉

3Try thinking of how to specify an LTL formula for a more flexible security policy
permitting 10 login attempts.

4We assume that the browser identifier univocally identifies the user.

32 Chapter 1. Specification and Verification of Web Applications in RL

where State is an unwanted state the system has not to reach. By using
unreachability properties over the extended rewrite theory
(Σext, Eext, Rext), we can detect very subtle instances of the multiple win-
dows problem mentioned in [MM08].

Example 1.4.3
Consider again the Webmail application of Example 1.1.1. Assume that
the user may interact with the application by using two email accounts,
MA and MB. Now, let us consider a Web application state in which the
user is logged in the home page with her account MA, together with the
following sequence of actions: (1) the user opens a new browser window;
(2) the user changes the account in one of the two open windows and
logs in by using MB credentials; (3) the user accesses the emailList page
from both windows.

After applying the previous sequence of actions, one expects to see
in the two open windows the emails corresponding to the accounts MA
and MB. However, the Webmail application of Example 1.1.1 shows
the emails of MB in both windows. This is basically caused by action
(2), which makes the server override the browser session with MB data
without notifying the state change to the windows associated with the
MA account.

This unexpected behavior can be recognized by using the following
LTLR unreachability formula

�¬ inconsistentState

where inconsistentState is a state predicate defined as:

B(id, idA, pA, {urlsA}, {(user = MA), sA}, lmA, hA, iA),

B(id, idB, pB, {urlsB}, {(user = MB), sB}, lmB, hB, iB), br ||m|| sv

|= inconsistentState = true if(MA 6= MB)

Roughly speaking, the property �¬ inconsistentState states that we
do not want to reach a Web application state in which two browser
windows refer to distinct user sessions. If this happens, one of the two
session is out-of-date and hence inconsistent.

Finally, it is worth nothing that by means of LTLR formulae ex-
pressing unreachability statements, we can formalize an entire family of
interesting properties such as:

1.4. Model Checking Web Applications Using LTLR 33

• mutual exclusion
(e.g., �¬ (curPage(A, administration) ∧ curPage(B, administration));

• link accessibility
(e.g., �¬ curPage(A,PageNotFound));

• security properties,
(e.g., �¬ (curPage(A, home) ∧ userForbidden(A))).

Liveness through spatial actions

Liveness properties state that something good keeps happening in the
system. In our framework, we can employ spatial actions to detect good
rule applications. For example, consider the following property “user A
always succeeds to access her home page from the welcome page”. This
amount to saying that, whenever the protocol rule ReqIni is applied to
request the home page of user A, the browser will eventually display the
home page of user A. This property can be succinctly specified by the
following LTLR formula:

�([ReqIni(Idb\A, pc\welcome, np\home)]→ ♦curPage(A, home))

34 Chapter 1. Specification and Verification of Web Applications in RL

Chapter 2

Debugging of Web
Applications with Web-TLR

Model checking is a powerful and efficient method for finding flaws in
hardware designs, business processes, object-oriented software, and hy-
permedia applications. One remaining major obstacle to a broader ap-
plication of model checking is its limited usability for non-experts. In
the case of specification violation, it requires much effort and insight to
determine the root cause of errors from the counterexamples generated
by model checkers [WNF10].

Web-TLR [ABER10] is a software tool designed for model-checking
Web applications that is based on rewriting logic [MOM02]. Web ap-
plications are expressed as rewrite theories that can be formally verified
by using the Maude built-in LTLR model-checker [BM08]. Whenever a
property is refuted, a counterexample trace is delivered that reveals an
undesired, erroneous navigation sequence. Web-TLR is endowed with
support for user interaction in [ABER10], including the successive explo-
ration of error scenarios according to the user’s interest by means of a
slideshow facility that allows the user to incrementally expand the model
states to the desired level of detail, thus avoiding the rather tedious task
of inspecting the textual representation of the system. Although this
facility helps the user to keep the overview of the model, the analysis
(or even the simple inspection) of the delivered counterexamples is still
unfeasible because of the size and complexity of the traces under ex-
amination. This is particularly serious in the rewriting logic context of
Web-TLR because Web specifications may contain equations and alge-
braic laws that are internally used to simplify the system states, and tem-
poral LTLR formulae may contain function symbols that are interpreted
in the considered algebraic theory. All of this results in execution traces
that may be difficult to understand for users who are not acquainted with
rewriting logic technicalities.

36 Chapter 2. Debugging of Web Applications with Web-TLR

In this chapter we aim at improving the understandability of the
counterexamples generated by Web-TLR. This is achieved by means of
a complementary Web debugging facility that supports both the efficient
manipulation of counterexample traces and the interactive exploration
of error scenarios. This facility is based on a backward trace-slicing
technique for rewriting logic theories formalized in [ABER11a] that allows
the pieces of information that we are interested in to be traced back
through the inverse rewrite sequence. The slicing process drastically
simplifies the computation trace by dropping useless data that do not
influence the final result. We provide a convenient, handy notation for
specifying the slicing criterion that is successively propagated backwards
at locations selected by the user. Preliminary experiments reveal that the
novel slicing facility of the extended version of Web-TLR is fast enough
to enable smooth interaction and helps the users to locate the cause of
errors accurately without overwhelming them with bulky information.
By using the slicing facility, the Web engineer can focus on the relevant
fragments of the failing application, which greatly reduces the manual
debugging effort.

This chapter is organized as follows. In Section 2.1 we present an
extended implementation of the Web-TLR system for debugging Web
applications by using backward slicing. In Section 2.3, we introduce a
Case Study in Web Verification. In Section 2.4, we illustrate our method-
ology for interactive analysis of counterexample traces and debugging of
Web Applications.

2.1 Extending the Web-TLR System

Web-TLR is a model-checking tool that implements the theoretical
framework of [ABR09]. The Web-TLR system is available online via its
friendly Web interface at http://www.dsic.upv.es/grupos/elp/soft.
html. The Web interface frees users from having to install applications on
their local computer and hides unnecessary technical details of the tool
operation. After introducing the (or customizing a default) Maude spec-
ification of a Web application, together with an initial Web state st0 and
the LTLR formula ϕ to be verified, ϕ can be automatically checked at st0.
Once all inputs have been entered in the system, we can automatically

http://www.dsic.upv.es/grupos/elp/soft.html
http://www.dsic.upv.es/grupos/elp/soft.html

2.1. Extending the Web-TLR System 37

{[B(bidAlfred, tidAlfred, ’Admin, ’Index ? query-empty, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”),
s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”)), (’pass / ”secretAlfred”)

: ’user / ”alfred”, m(bidAlfred, tidAlfred, ’Admin ? query-empty, 1), history-empty, 1) : B(bidAnna, tidAnna, ’Admin, ’Index
? query-empty, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-
write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”)), (’pass / ”secretAnna”) : ’user / ”anna”, m(bidAnna, tidAnna, ’Admin
? query-empty, 1), history-empty, 1)]bra-empty[mes-empty][S((’Access, setSession(s(”adm”), s(”no”)); setSession(s(”mod”), s(”no”));
setSession(s(”reg”), s(”no”)); ’u := getQuery(’user); ’p := getQuery(’pass); ’p1 := selectDB(’u); ’createlvl := selectDB(s(”create-level”));
’writelvl := selectDB(s(”write-level”)); ’readlvl := selectDB(s(”read-level”)); if ’p = ’p1 then ’r := selectDB(’u ’. s(”-role”)); setSes-
sion(s(”reg”), s(”yes”)); if ’createlvl = s(”reg”) then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl = s(”reg”) then setSession(s(”can-
write”), s(”yes”))fi ; if ’readlvl = s(”reg”) then setSession(s(”can-read”), s(”yes”))fi ; if ’r = s(”adm”) then setSession(s(”adm”),
s(”yes”)); setSession(s(”mod”), s(”yes”)); setSession(s(”can-create”), s(”yes”)); setSession(s(”can-write”), s(”yes”)); setSession(s(”can-
read”), s(”yes”))else setSession(s(”adm”), s(”no”)); if ’r = s(”mod”) then setSession(s(”mod”), s(”yes”)); if ’createlvl = s(”mod”)
then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl = s(”mod”) then setSession(s(”can-write”), s(”yes”))fi ; if ’readlvl = s(”mod”)
then setSession(s(”can-read”), s(”yes”))fi else setSession(s(”mod”), s(”no”))fi fi fi, {(s(”reg”) ’== s(”no”) => ’Login) : (s(”reg”) ’==
s(”yes”) => ’Index)}, { nav-empty}) : (’Add-Comment, skip, {cont-empty}, {(TRUE -> ’View-Topic ? query-empty)}) : (’Admin,
setSession(s(”adminPage”), s(”busy”)), {cont-empty}, {(TRUE -> ’Index ? query-empty)}) : (’Delete-Comment, skip, {cont-empty},
{(TRUE -> ’View-Topic ? query-empty)}) : (’Delete-Topic, skip, {cont-empty}, {(TRUE -> ’Index ? query-empty)}) : (’Index,
setSession(s(”adminPage”), s(”free”)); ’r := getSession(s(”reg”)); if ’r = null then setSession(s(”reg”), s(”no”)); setSession(s(”mod”),
s(”no”)); setSession(s(”adm”), s(”no”)); setSession(s(”can-create”), s(”no”)); setSession(s(”can-write”), s(”no”)); setSession(s(”can-
read”), s(”no”))fi ; ’createlvl := selectDB(s(”create-level”)); ’writelvl := selectDB(s(”write-level”)); ’readlvl := selectDB(s(”read-level”));
if ’createlvl = s(”all”) then setSession(s(”can-create”), s(”yes”))fi ; if ’writelvl = s(”all”) then setSession(s(”can-write”), s(”yes”))fi ; if
’readlvl = s(”all”) then setSession(s(”can-read”), s(”yes”))fi, {cont-empty}, {(s(”adm”) ’== s(”yes”) -> ’Admin ? query-empty) : (s(
”can-create”) ’== s(”yes”) -> ’New-Topic ? ’topic ’= ””) : (s(”can-read”) ’== s(”yes”) -> ’View-Topic ? ’topic ’= ””) : (s(”mod”)
’== s(”yes”) -> ’Delete-Topic ? ’topic ’= ””) : (s(”reg”) ’== s(”no”) -> ’Login ? query-empty) : (s(”reg”) ’== s(”yes”) -> ’Logout ?
query-empty)}) : (’Login, skip, {cont-empty}, {(TRUE -> ’Access ? (’pass ’= ””) : ’user ’= ””) : (TRUE -> ’Index ? query-empty)})
: (’Logout, setSession(s(”reg”), s(”no”)); setSession(s(”mod”), s(”no”)); setSession(s(”adm”), s(”no”)); setSession(s(”can-create”),
s(”no”)); setSession(s(”can-write”), s(”no”)); setSession(s(”can-read”), s(”no”)), {(TRUE => ’Index)}, {nav-empty}) : (’New-Topic,
skip, {cont-empty}, {(TRUE -> ’View-Topic ? query-empty)}) : (’View-Topic, skip, {cont-empty}, {(TRUE -> ’Index ? query-empty)
: (s(”can-write”) ’== s(”yes”) -> ’Add-Comment ? query-empty) : (s(”mod”) ’== s(”yes”) -> ’Delete-Comment ? query-empty)}),
us(bidAlfred, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”)) : (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-
write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”))) : us(bidAnna, (s(”adm”), s(”yes”)) : (s(”adminPage”), s(”busy”))
: (s(”can-create”), s(”yes”)) : (s(”can-read”), s(”yes”)) : (s(”can-write”), s(”yes”)) : (s(”mod”), s(”yes”)) : (s(”reg”), s(”yes”))),
mes-empty, readymes-empty, (s(”alfred”) ; s(”secretAlfred”)) (s(”alfred-role”) ; s(”adm”)) (s(”anna”) ; s(”secretAnna”)) (s(”anna-role”)
; s(”adm”)) (s(”create-level”) ; s(”reg”)) (s(”marc”) ; s(”secretMarc”)) (s(”marc-role”) ; s(”mod”)) (s(”maude”) ; s(”secretMaude”))
(s(”maude-role”) ; s(”mod”)) (s(”rachel”) ; s(”secretRachel”)) (s(”rachel-role”) ; s(”reg”)) (s(”read-level”) ; s(”all”)) (s(”robert”) ;
s(”secretRobert”)) (s(”robert-role”) ; s(”reg”)) (s(”write-level”) ; s(”reg”)))] , ’ReqFin }

Figure 2.1: One Web state of the counter-example trace of Section 2.4.

check the property by just clicking the button Check, which invokes the
Maude built-in operator tlr check[BM08] that supports model checking
of LTLR formulas in rewrite theories. If the property is not satisfied, an
interactive slideshow that illustrates the corresponding counterexample
(expressed in the form of an execution trace) is generated. The slideshow
supports both forward and backward navigation through the execution
trace and combines a graphical representation of the application’s navi-
gation model with a detailed textual description of the Web states.

Although Web-TLR provides a complete picture of both, the applica-
tion model and the generated counterexample, this information is hardly
exploitable for debugging Web applications. Actually, the graphical rep-
resentation provides a very coarse-grained model of the application’s dy-
namics, while the textual description conveys too much information (e.g.,
see Figure 2.1). Therefore, in several cases both representations may re-
sult in limited use.

38 Chapter 2. Debugging of Web Applications with Web-TLR

In order to assist Web engineers in the debugging task, in [ABE+11]
we extend Web-TLR by including a trace-slicing technique whose aim is
to reduce the amount of information recorded by the textual description
of the counterexamples. Roughly speaking, this technique (originally de-
scribed in [ABER11a]) consists in tracing back, along an execution trace,
all the symbols of a (Web) state that are of interest (target symbols),
while useless data are discarded. The basic idea is to take a Rewriting
Logic execution trace and traverse it backwards in order to filter out data
that are definitely related to the wrong behavior. This way, we can focus
our attention on the most critical parts of the trace, which are eventually
responsible for the erroneous application’s behaviour. It is worth noting
that our trace slicing procedure is sound in the sense that, given an exe-
cution trace T , it automatically computes a trace slice of T that includes
all the information needed to produce the target symbols of T we want
to observe. In other words, there is no risk that our tool eliminates data
from the original execution trace T which are indeed relevant w.r.t. the
considered target symbols. Soundness of backward trace slicing has been
formally proven in [ABER11b].

The backward trace-slicing technique was originally implemented as
a stand-alone application written in Maude that can be used to sim-
plify general Maude traces (e.g., the ones printed when the trace is set
on in a standard rewrite). In this master’s thesis, we have coupled the
on-line Web-TLR system with the slicing tool in order to optimize the
counterexample traces delivered by Web-TLR. To achieve this, the ex-
ternal slicing routine is fed with the given counterexample, the selected
Web state s where the backward-slicing process is required to start, and
the slicing criterion for s —that is, the symbols of s we want to trace
back. Interestedly to note that, for model checking Web applications
with Web-TLR, we have developed a specially–tailored, handy filtering
notation that allows us to easily specify the slicing criterion and automat-
ically select the desired information by exploiting the powerful, built-in
pattern-matching mechanism of Rewriting Logic. The outcome of the
slicing process is a sliced version of the textual description of the origi-
nal counterexample trace which facilitates the interactive exploration of
error scenarios when debugging Web applications.

2.1. Extending the Web-TLR System 39

2.1.1 Filtering Notation

In order to select the relevant information to be traced back, we intro-
duce a simple, pattern-matching filtering language that frees the user
from explicitly introducing the specific positions of the Web state that
s/he wants to observe. Roughly speaking, the user introduces an infor-
mation pattern p that has to be detected inside a given Web state s.
The information matching p that is recognized in s, is then identified by
pattern matching and is kept in s•, whereas all other symbols of s are
considered irrelevant and then removed. Finally, the positions of the Web
state where the relevant information is located are obtained from s•. In
other words, the slicing criterion is defined by the set of positions where
the relevant information is located within the state s that we are observ-
ing and is automatically generated by pattern-matching the information
pattern against the Web state s.

The filtering language allows us to define the relevant information
as follows: (i) by giving the name of an operator (or constructor) or a
substring of it; and (ii) by using the question mark “?” as a wildcard
character that indicates the position where the information is considered
relevant. On the other hand, the irrelevant information can be declared
by using the wildcard symbol “ ” as a placeholder for uninteresting ar-
guments of an operator.

Let us illustrate this filtering notation by means of a rather intuitive
example. Let us assume that the electronic forum application allows one
to list some data about the available topics. Specifically, the following
term t specifies the names of the topics available in our electronic forum
together with the total number of posted messages for each topic.

topic info(topic(astronomy,]posts(520)), topic(stars,]posts(58)),
topic(astrology,]posts(20)), topic(telescopes,]posts(290)))

Then, the pattern topic(astro,]posts(?)) defines a slicing criterion that
allows us to observe the topic name as well as the total number of mes-
sages for all topics whose name includes the word astro. Specifically, by
applying such a pattern to the term t, we obtain the following term slice

topic info(topic(astronomy,]posts(520)), •, topic(astrology,]posts(20)), •)

which ignores the information related to the topics stars and telescopes,

40 Chapter 2. Debugging of Web Applications with Web-TLR

and induces the slicing criterion

{Λ.1.1, Λ.1.2.1, Λ.3.1, Λ.3.2.1}.

Note that we have introduced the fresh symbol • to approximate any
output information in the term that is not relevant with respect to a
given pattern.

2.2 Implementation of the extended Web-

TLR system in RWL

The enhanced verification methodology described in this chapter has
been implemented in the Web-TLR system using the high-performance,
rewriting logic language Maude [CDE+07]. In this section, we discuss
some of the most important features of the Maude language that we have
been conveniently exploited for the optimized extension of Web-TLR.

Maude is a high-performance, reflective language that supports both
equational and rewriting logic programming, which is particularly suit-
able for developing domain-specific applications [EMS03; EMM06]. In
addition, the Maude language is not only intended for system prototyp-
ing, but it has to be considered as a real programming language with
competitive performance. The salient features of Maude that we used in
the implementation of our extended framework are as follows.

Metaprogramming

Maude is based on rewriting logic [MOM02], which is reflective in a
precise mathematical way. In other words, there is a finitely presented
rewrite theory U that is universal in the sense that we can represent any
finitely presented rewrite theoryR (including U itself) in U (as a datum),
and then mimick the behavior of R in U .

In the implementation of the extended Web-TLR system, we have
exploited the metaprogramming capabilities of Maude in order to provide
the system with our backward-tracing slicing tool for RWL theories in
RWL itself. Specifically, during the backward-tracing slicing process,
all input Web-TLR modules are raised to the meta-level and handled

2.2. Implementation of the extended Web-TLR system in RWL 41

as meta-terms, which are meta-reduced and meta-matched by Maude
operators.

AC Pattern Matching

The evaluation mechanism of Maude is based on rewriting modulo an
equational theory E (i.e., a set of equational axioms), which is accom-
plished by performing pattern matching modulo the equational theory E.
More precisely, given an equational theory E, a term t and a term u,
we say that t matches u modulo E (or that t E-matches u) if there is a
substitution σ such that tσ =E u, that is, tσ and u are equal modulo
the equational theory E. When E contains axioms that express the asso-
ciativity and commutativity of one operator, we talk about AC pattern
matching. We have exploited the AC pattern matching to implement
both the filtering language and the slicing process.

Equational Attributes

Equational attributes are a means of declaring certain kinds of equational
axioms in a way that allows Maude to use these equations efficiently in
a built-in way. Semantically, declaring a set of equational attributes for
an operator is equivalent to declaring the corresponding equations for
the operator. In fact, the effect of declaring equational attributes is to
compute with equivalence classes modulo these equations. This avoids
termination problems and leads to much more efficient evaluation.

The overloaded operator : of our implementation is given with the
equational attributes assoc, comm, and id. This allows Maude to handle
simple objects and multisets of elements in the same way. For example,
given two terms b1 and b2 of sort Browser, the term b1 : b2 belongs to the
sort Browser as well. Also, these equational attributes allow us to get rid
of parentheses and disregard the ordering among elements. For example,
the communication channel is modeled as a term of sort Message where
the messages among the browsers and the server can arrive out of order,
which allows us to simulate the HTTP communication protocol.

42 Chapter 2. Debugging of Web Applications with Web-TLR

Flat/unflat Transformations

In Maude, AC pattern matching is implemented by means of a special
encoding of AC operators, which allows us to represent AC terms terms
by means of single representatives that are obtained by replacing nested
occurrences of the same AC operator by a flattened argument list under
a variadic symbol, whose elements are sorted by means of some linear
ordering1. The inverse of the flat transformation is the unflat trans-
formation, which is nondeterministic in the sense that it generates all
the unflattended terms that are equivalent (modulo AC) to the flattened
term. For example, consider a binary AC operator f together with the
standard lexicographic ordering over symbols. Given the AC-equivalence
f(b, f(f(b, a), c)) =AC f(f(b, c), f(a, b)), we can represent it by using
the “internal sequence” f(b, f(f(b, a), c)) →∗flatAC

f(a, b, b, c) →∗unflatAC

f(f(b, c), f(a, b)), where the first subsequence corresponds to the flat-
tening transformation that obtains the AC canonical form of the term,
whereas the second one corresponds to the inverse, unflattening trans-
formation.

These two processes are typically hidden inside the AC-matching al-
gorithms2 that are used to implement the rewriting modulo relation. In
order to facilitate the understanding of the sequence of rewrite steps, we
exposed the flat and unflat transformations visibly in our slicing process.
This is done by breaking up a rewrite step and adding the intermediate
flat/unflat transformation sequences into the computation trace delivered
by Maude.

2.3 A Case Study in Web Verification

We tested our tool on several complex case studies that are available at
the Web-TLR Web page and within the distribution package. In order
to illustrate the capabilities of the tool, in the following we discuss the
verification of an electronic forum equipped with a number of common
features, such as user registration, role-based access control including
moderator and administrator roles, and topic and comment management.

1Specifically, Maude uses the lexicographic order of symbols.
2See [CDE+09] (Section 4.8) for an in-depth discussion on matching and simplifi-

cation modulo AC in Maude.

2.3. A Case Study in Web Verification 43

Add-CommentIndex Login AccessLogout

Delete-CommentNew-Topic Delete-Topic View-TopicAdmin

reg=yes

reg=yes

reg=no

reg=no

true,

[user=x,

pass=y]

true

a
d
m
=
y
e
s

ca
n-
cr
ea
te
=y

es

m
od=no

can-read=yes ca
n-
w
ri
te
=
ye
s

mod=yes

a a a
Logout Index Access

a
Admin

Figure 2.2: The navigation model of an Electronic Forum

The navigation model of such an application, that includes both the
navigation links and the Web continuations, is given in Figure 2.2. This
shows the navigation links and the Web application continuations. For
example, the navigation link (solid arrow) that connects the Login and
Access Web pages is always enabled and requires two input parameters
(user and pass). Moreover, the Access Web page has got two possible
continuations (dashed arrows) whose labels are reg=yes and reg=no, re-
spectively. The former continuation specifies that the login attempt suc-
ceeds, and thus, the Index Web page is delivered to the browser; in the
latter case, the login fails and the Login page is sent back to the browser.
Figure 2.3 details the formal description of the navigation model of the
electronic forum application and the Web scripts involved.

In LTLR, we can define the state predicate curPage(idb, page) by
means of a boolean-value function as follows,

[B(idb, idt, page, urls, session, sigma, lm, h, i), br][m][sv] |= curPage(idb, page)

which holds (i.e., evaluates to true) for any Web state such that page is
the current Web page displayed in the browser with identifier idb.

By defining elementary state predicates, we can build more complex
LTLR formulas that express mixed properties containing dependencies
among states, actions, and time. These properties intrinsically involve
both action-based and state-based aspects that are either not express-
ible or difficult to express in other temporal logic frameworks (see Sec-
tion 1.4.2). For example, consider the administration Web page Admin
of the electronic forum application. Let us consider two administrator
users whose identifiers are bidAlfred and bidAnna, respectively. Then, the

44 Chapter 2. Debugging of Web Applications with Web-TLR

Formal description of the navigation model of the electronic forum:

PIndex = (Index, αindex, {∅}, {(reg = no)→ (Login?[∅]) : (reg = yes)→ (Logout?[∅])
: (adm = yes)→ (Admin?[∅]) : (can-read = yes)→ (View-Topic?[topic])
: (can-create = yes)→ (New-Topic?[topic]))
: (mod = yes)→ (Del-Topic?[topic])})

PLogin = (Login, skip, {∅}, {(∅ → (Index?[∅])) : (∅ → (Access?[user, pass]))})
PAccess = (Access, αaccessScript, {((reg = yes)⇒ Index) : ((reg = no)⇒ Login)}, {∅})
PLogout = (Logout, αlogout, {(∅ ⇒ Index)}, {∅})
PAdmin = (Admin, αadmin, {∅}, {(∅ → (Index?[∅]))})

PAddComment = (AddComment, skip, {∅}, {(∅ → ViewTopic?[∅])})
PDelComment = (DelComment, skip, {∅}, {(∅ → ViewTopic?[∅])})

PViewTopic = (ViewTopic, skip, {∅}, {(∅ → (Index?[∅]))
: ((can-write = yes)→ (AddComment?[∅]))
: ((mod = yes)→ (DelComment?[∅]))})

PNewTopic = (NewTopic, skip, {∅}, {(∅ → ViewTopic?[∅])})
PDelTopic = (DelTopic, skip, {∅}, {(∅ → Index?[∅])})

Electronic forum Web scripts:

αaccess
setSession(”adm”,”no”);
setSession(”mod”, ”no”) ;
setSession(”reg”, ”no”) ;
’u := getQuery(’user) ;
’p := getQuery(’pass) ;
’p1 := selectDB(’u) ;
’createlvl := selectDB(”create-level”) ;
’writelvl := selectDB(”write-level”) ;
’readlvl := selectDB(”read-level”) ;
if (’p = ’p1) then

setSession(”user”, ’u) ;
’r := selectDB(’u ’. ”-role”) ;
setSession(”reg”, ”yes”) ;
if (’createlvl = ”reg”) then

setSession(”can-create”, ”yes”) fi ;
if (’writelvl = ”reg”) then

setSession(”can-write”, ”yes”) fi ;
if (’readlvl = ”reg”) then

setSession(”can-read”, ”yes”) fi ;
if (’r = ”adm”) then

setSession(”adm” , ”yes”) ;
setSession(”mod” , ”yes”) ;
setSession(”can-create”, ”yes”) ;
setSession(”can-write”, ”yes”) ;
setSession(”can-read”, ”yes”)

else
setSession(”adm” , ”no”) ;
if (’r = ”mod”) then

setSession(”mod”, ”yes”) ;
if (’createlvl = ”mod”) then

setSession(”can-create”, ”yes”) fi ;
if (’writelvl = ”mod”) then

setSession(”can-write”, ”yes”) fi ;
if (’readlvl = ”mod”) then

setSession(”can-read”, ”yes”) fi
else

setSession(”mod”, ”no”)
fi fi fi

αindex

setSession(”adminPage”, ”free”) ;
— Set default levels
’r := getSession(”reg”) ;
if (’r = null) then

setSession(”reg”, ”no”) ;
setSession(”mod”, ”no”) ;
setSession(”adm”, ”no”) ;
setSession(”can-create”, ”no”) ;
setSession(”can-write”, ”no”) ;
setSession(”can-read”, ”no”)

fi ;
— Set capabilities available
’createlvl := selectDB(”create-level”) ;
’writelvl := selectDB(”write-level”) ;
’readlvl := selectDB(”read-level”) ;
if (’createlvl = ”all”) then

setSession(”can-create”, ”yes”)
fi ;
if (’writelvl = ”all”) then

setSession(”can-write”,”yes”)
fi ;
if (’readlvl = ”all”) then

setSession(”can-read”, ”yes”)
fi

αlogout

setSession(”reg”, ”no”) ;
setSession(”mod”, ”no”) ;
setSession(”adm”, ”no”) ;
setSession(”can-create”, ”no”) ;
setSession(”can-write”, ”no”) ;
setSession(”can-read”, ”no”)

αadmin setSession(”adminPage”, ”busy”)

Figure 2.3: Specification of the electronic forum application in Web-
TLR

2.4. A Debugging Session with Web-TLR 45

mutual exclusion property “no two administrators can access the admin-
istration page simultaneously” can be defined as follows.

�¬(curPage(bidAlfred,Admin) ∧ curPage(bidAnna,Admin)) (2.1)

Any given LTLR property can be automatically checked by using the
built-in LTLR model-checker [BM08]. If the property of interest is not
satisfied, a counter-example that consists of the erroneous trace is re-
turned. This trace is expressed as a sequence of rewrite steps that leads
from the initial state to the state that violates the property. Unfortu-
nately, the analysis (or even the simple inspection) of these traces may
be unfeasible because of the size and complexity of the traces under ex-
amination. Typical counter-example traces in Web-TLR consist in a
sequence of around 100 states, each of which contains more than 5.000
characters.

The detailed specification of the electronic forum, together with some
example properties are available at http://www.dsic.upv.es/grupos/

elp/soft.html.

2.4 A Debugging Session with Web-TLR

In this section, we illustrate our methodology for interactive analysis of
counterexample traces and debugging of Web applications.

Let us consider an initial state that consists of two administrator
users whose identifiers are bidAlfred and bidAnna, respectively. Let us
also recall the mutual exclusion Property 2.1 given in Section 2.3

�¬ (curPage(bidAlfred,Admin) ∧ curPage(bidAnna,Admin))

which states that “no two administrators can access the administration
page simultaneously”.

Note that the predicate state curPage(bidAlfred,Admin) holds when
the user bidAlfred logs into the Admin page (a similar interpretation is
given to predicate curPage(bidAnna,Admin)). By verifying the above
property with Web-TLR, we get a huge counterexample that proves
that the property is not satisfied. The trace size weighs around 190kb.

In the following, we show how the considered Web application can
be debugged using Web-TLR. First of all, we specify the slicing crite-
rion to be applied on the counterexample trace. This is done by using

http://www.dsic.upv.es/grupos/elp/soft.html
http://www.dsic.upv.es/grupos/elp/soft.html

46 Chapter 2. Debugging of Web Applications with Web-TLR

the wildcard notation on the terms introduced in Section 2.1.1. Then,
the slicing process is invoked and the resulting trace slice is produced.
Finally, we analyze the trace slice and outline a methodology that helps
the user to locate the errors.

Slicing Criterion

The slicing criterion represents the information that we want to trace
back through the execution trace T that is produced as the outcome of
the Web-TLR model-checker.

For example, consider the final Web state s shown in Figure 2.1. In
this Web state, the two users, bidAlfred and bidAnna, are logged into
the Admin page. Therefore, the considered mutual exclusion property
has been violated. Let us assume that we want to diagnose the erroneous
pieces of information within the execution trace T that produce this bug.
Then, we can enter the following information pattern as input,

B(?, , ?, , , , , ,)

where the operator B restricts the search of relevant information in-
side the browser data structures, the first question symbol ? represents
that we are interested in tracing the user identifiers, and the second
one calls for the Web page name. Thus, by applying the considered
information pattern to the Web state s, we obtain the slicing criterion
{Λ.1.1.1, Λ.1.1.3, Λ.1.2.1, Λ.1.2.3} and the corresponding sliced state

s• = [B(bidAlfred, •,Admin, •, •, •, •, •, •) : B(bidAnna, •,Admin, •, •, •, •, •, •)][•][•]

Note that Λ.1.1.1 and Λ.1.2.1 are the positions in s• of the user iden-
tifiers bidAlfred and bidAnna, respectively, and Λ.1.1.3 and Λ.1.2.3 are
the positions in s• that indicate that the users are logged into the Admin

page.

Trace Slice

Let us consider the counterexample execution trace T = s0 → s1 →
. . . → sn, where sn = s. The slicing technique proceeds backwards,

2.4. A Debugging Session with Web-TLR 47

T • = s•0 . . . → s•n−6

ScriptEval→ s•n−5

flat/unflat→ s•n−4
ResIni→ s•n−3

flat/unflat→ s•n−2
ResFin→ s•n−1

flat/unflat→ s•n

where

s•n = [B(bidAlfred, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗][∗]

s•n−1 = [B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗) : B(bidAlfred, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗][∗]

s•n−2 = [B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗) : B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1)]∗
[S2B(bidAlfred, tidAlfred, Admin, ∗, ∗, 1) : ∗][∗]

s•n−3 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)]∗
[∗ : S2B(bidAlfred, tidAlfred, Admin, ∗, ∗, 1)][∗]

s•n−4 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗]
[S(∗, ∗ : us(bidAlfred, ∗), ∗, (rm(S2B(bidAlfred, tidAlfred, Admin, ∗, ∗, 1), ∗, ∗) : ∗), ∗]

s•n−5 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗]
[S(∗, us(bidAlfred, ∗) : ∗, ∗, (∗ : evalScript(WEB-APP, SESSION,
B2S(bidAlfred, tidAlfred, Admin?query-empty, 1), DB)), ∗)]

s•n−6 = [B(bidAlfred, tidAlfred, ∗, ∗, ∗, ∗, ∗, ∗, 1) : B(bidAnna, ∗, Admin, ∗, ∗, ∗, ∗, ∗, ∗)] ∗ [∗]
[S(WEB-APP, (∗ : us(bidAlfred, SESSION)),
B2S(bidAlfred, tidAlfred, Admin?query-empty, 1) : ∗, ∗, DB]

Figure 2.4: Trace slice T •.

from the observable state sn to the initial state s0, and for each state
si recursively generates a sliced state s•i that consists of the relevant
information with respect to the slicing criterion.

By running the backward-slicing tool with the execution trace T and
the slicing criterion given above as input, we get the trace slice T • as
outcome, where useless data that do not influence the final result are
discarded. Figure 2.4 shows a part of the trace slice T •.

It is worth observing that the slicing process greatly reduces the size
of the original trace T , and allows us to center on those data that are
likely to be the source of an erroneous behavior.

Let |T | be the size of the trace T , namely the sum of the number of
symbols of all trace states. In this specific case, the size reduction that is
achieved on the the subsequence s(n−6) . . . sn of T , in symbols T[s(n−6)..sn]

48 Chapter 2. Debugging of Web Applications with Web-TLR

is:
|T •[s•

(n−6)
...s•n] |

|T[s(n−6)...sn] |
=

121

1458
= 0.083 (i.e., a reduction of 91.7%)

Trace Slice Analysis

Let us analyze the information recorded in the trace slice T •. In order
to facilitate understanding, the main symbols involved in the description
are underlined in Figure 2.4.

- The sliced state s•n is the observable state that records only the
relevant information defined by the slicing criterion.

- The slice state s•n−1 is obtained from s•n by the flat/unflat transfor-
mation.

- In the sliced state s•n−2, the communication channel contains a re-
sponse message for the user bidAlfred. This response message
enables the user bidAlfred to log into the Admin page. Note that
the identifier tidAlfred occurs in the Web state. This identifier
signals the open window that the response message refers to. Also,
the number 1 that occurs in the sliced state s•n−2 represents the ack
(acknowledgement) of the response message. Finally, the reduction
from s•n−2 to s•n−3 corresponds again to a flat/unflat transformation.

- In the sliced state s•n−4, we can see the response message stored in
the server that is ready to be sent, whereas, in the server config-
uration of the sliced state s•n−5, the operator evalScript occurs.
This operator takes the Web application (WEB-APP), the user session
(SESSION), the request message, and the database (DB) as input.
The request message contains the query string that has been sent
by the user bidAlfred to ask for admission into the Admin page.
Observe that the response message that is shown in the slice state
s•n−4 is the one given as the outcome of the evaluation of the oper-
ator evalScript in the sliced state s•n−5.

- Finally, the sliced state s•n−6 shows the request message waiting to
be evaluated.

2.4. A Debugging Session with Web-TLR 49

Slicing Process

Selected State

State Browser Messages Server Rule

S41

B(bidAlfred, tidAlfred, 'Admin, url-empty, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-write"),
s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")), Z, m(bidAlfred, tidAlfred, 'Index ?
query-empty, 1), history-empty, 1) : B(bidAnna, tidAnna, 'Admin, 'Index ? query-
empty, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) : (s("can-create"), s("yes")) :
(s("can-read"), s("yes")) : (s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"),
s("yes")), Z, m(bidAnna, tidAnna, 'Admin ? query-empty, 1), history-empty, 1)

m(bidAlfred,
tidAlfred, 'Index
? query-empty,
1)

S(WebSite, us(bidAlfred, (s("adm"), s("yes")) : (s("adminPage"),
s("busy")) : (s("can-create"), s("yes")) : (s("can-read"), s("yes")) :
(s("can-write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes")))
: us(bidAnna, (s("adm"), s("yes")) : (s("adminPage"), s("busy")) :
(s("can-create"), s("yes")) : (s("can-read"), s("yes")) : (s("can-
write"), s("yes")) : (s("mod"), s("yes")) : (s("reg"), s("yes"))),
mes-empty, readymes-empty, Db)

'ReqIni

Filtering

Filtering
pattern: B(?, _, ?, _, _, _, _, _, _) Check

Trace Slice

Positions: {!, !.1.1.1, !.1.1.3, !.1.2.1, !.1.2.3}

State State detail Rule

S!n-15
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(WebSite,:(us(bidAlfred,
Session),us(bidAnna,Session)),m(bidAnna,tidAnna,?(Admin,query-empty),s(0)),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s(0)),*,*),DB)))

Start

S!n-14
((:(B(bidAlfred,tidAlfred,*,*,*, *,*,*,s(0)),B(bidAnna,tidAnna, *,*,*,*,*,*,s(0))), *,*,S(WebSite,:(us(bidAlfred,Session),us(bidAnna,Session)),:
(m(bidAnna,tidAnna,?(Admin, query-empty),s(0)),*),rm(m(bidAlfred, tidAlfred,Admin,?(*,*),*,s(0)),*,*),DB)))

EquationalSimplification-
Flat-UnFlat

S!n-13
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(*,:(us(bidAlfred, *),us(bidAnna,*)),*,:(rm(m(bidAlfred,
tidAlfred,Admin,?(*,*),*,s(0)),*,*),evalScript(WebSite,Session,m(bidAnna, tidAnna,?(Admin,query-empty),s(0)),DB)), *)))

ScriptEval

S!n-12
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,*,S(*,:(us(bidAnna, *),us(bidAlfred,*)),*,:(rm(m(
bidAlfred,tidAlfred,Admin,?(*,*), *,s(0)),*,*),rm(m(bidAnna, tidAnna,Admin,?(*,*),*,s(0)), *,*)),*)))

EquationalSimplification-
Flat-UnFlat

S!n-11
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(*,m(bidAlfred,tidAlfred, Admin,?(*,*),*,s(0))),S(
,:(us(bidAnna,),*),*,rm(m(bidAnna,tidAnna,Admin,?(*,*),*, s(0)),*,*),*)))

ResIni

S!n-10
((:(B(bidAlfred,tidAlfred,*,*,*, *,*,*,s(0)),B(bidAnna,tidAnna, *,*,*,*,*,*,s(0))), *,m(bidAlfred,tidAlfred,Admin,?(*, *),*,s(0)),S(*,:(*,us(bidAnna,*)),*,:
(rm(m(bidAnna,tidAnna, Admin,?(*,*),*,s(0)),*, *),*),*)))

EquationalSimplification-
Flat-UnFlat

S!n-9
((:(B(bidAlfred,tidAlfred,*,*, *,*,*,*,s(0)),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(m(bidAlfred,tidAlfred,Admin, ?(*,*),*,s(0)),m(bidAnna,
tidAnna,Admin,?(*,*),*,s(0))), *))

ResIni

S!n-8
((:(B(bidAnna,tidAnna,*,*, *,*,*,*,s(0)),B(bidAlfred, tidAlfred,*,*,*,*,*,*, s(0))),*,:(m(bidAlfred,tidAlfred,Admin, ?(*,*),*,s(0)),m(bidAnna,
tidAnna,Admin,?(*,*),*,s(0))), *))

EquationalSimplification-
Flat-UnFlat

S!n-7 ((:(B(bidAnna,tidAnna,*,*,*,*,*, *,s(0)),B(bidAlfred,*,Admin,?(*,*),*,*,*,*,*)), *,m(bidAnna,tidAnna,Admin,?(*,*), *,s(0)),*)) ResFin

S!n-6 ((:(B(bidAlfred,*,Admin,?(*,*), *,*,*,*,*),B(bidAnna, tidAnna,*,*,*,*,*,*, s(0))),*,:(m(bidAnna,tidAnna,Admin,?(*,*),*,s(0)),*),*))
EquationalSimplification-
Flat-UnFlat

S!n-5 ((:(B(bidAlfred, *,Admin,?(*,*),*,*, *,*,*),B(bidAnna,*,Admin,?(*,*),*,*,*,*,*)), *,*,*)) ResFin

S!n-4 ((:(B(bidAnna,*,Admin,?(*,*), *,*,*,*,*),B(bidAlfred, *,Admin,:(*,?(*,*)),*, *,*,*,*)),*,*,*))
EquationalSimplification-
Flat-UnFlat

S!n-3 ((:(B(bidAnna, *,Admin,?(*,*),*,*, *,*,*),B(bidAlfred,*,Admin, *,*,*,*,*,*)),*, *,*)) ReqIni

S!n-2 ((:(B(bidAlfred,*, Admin,*,*,*,*,*,*), B(bidAnna,*,Admin,:(*,?(*, *)),*,*,*,*,*)),*, *,*))
EquationalSimplification-
Flat-UnFlat

S!n-1 ((:(B(bidAlfred,*,Admin,*,*,*, *,*,*),B(bidAnna,*,Admin, *,*,*,*,*,*)),*, *,*)) ReqIni

S!n deleted
EquationalSimplification-
Flat-UnFlat

Slicing Process http://localhost:8080/webtlr/debug.jsp

1 de 1 11/04/11 16:19

Figure 2.5: Snapshot of the Web-TLR System.

Note that the outcome delivered by the operator evalScript, when
the script αadmin is evaluated, is not what the user would have expected,
since it allows the user to log into the Admin page, which leads to the
violation of the considered property. This identifies the script αadmin as
the script that is responsible for the error. Note that this conclusion is

50 Chapter 2. Debugging of Web Applications with Web-TLR

correct because αadmin has not implemented a mutual exclusion control
(see Figure 2.3). A snapshot of Web-TLR that shows the slicing process
is given in Figure 2.5.

This bug can be fixed by introducing the necessary control for mutual
exclusion as follows. First, a continuation (”adminPage” = ”busy”) →
Index?[∅]) is added to the Admin page, and the αadmin is replaced by a new
Web script that checks whether there is another user in the Admin page.
In the case when the Admin page is busy because it is being accessed by
a given user, any other user is redirected to the Index page. If the Admin
page is free, the user asking for permission to enter is authorized to do so
(and the page gets locked). Furthermore, the control for unlocking the
Admin page is added at the beginning of the script αindex.

Hence, the fixed Web scripts are as follows:

PAdmin = (Admin, αadmin,
{(”adminPage” = ”busy”)→ Index?[∅])},
{(∅ → (Index?[∅]))})

where the new αAdmin is:

αadmin

’u := getSession(”user”) ;
’adm := selectDB(”adminPage”) ;
if (’adm != ’u) then

setSession(”adminPage”, ”busy”)
else

setSession(”adminPage”, ”free”)) ;
updateDB(”adminPage”, ’u))

fi

and the piece of code that patches αindex is:

αindex

’adm := getSession(”adminPage”) ;
if (’adm = ”free”) then

updateDB(”adminPage”, ”free”)
fi ;
. . .

2.4. A Debugging Session with Web-TLR 51

����������	
���
������

�

���
���
���
��

������������������	
��
���
��������

��
���������������	
��
���������������������������	
��
������		���������

��
�
�����������	�
���

����������������������������������� �!����"�#��$

Figure 2.6: Snapshot of the Web-TLR System for the case of no counter-
examples.

Finally, by using Web-TLR again we get the outcome “Property is
fulfilled, no counter-example given”, which guarantees that now the Web
application satisfies Property 2.1. Figure 2.6 shows a snapshot of WEB-
TLR for the case when a property is fulfilled.

52 Chapter 2. Debugging of Web Applications with Web-TLR

Part II

Conditional Slicing for
Rewriting Logic

Chapter 3

Conditions in Rewrite
Theories

In order to understand our conditional slicing technique for rewrite
theories, in this chapter we first recall some preliminary notions about
the evaluation of conditional rules and equations in Maude.

Conditional rewrite rules and equations can have in Maude very general
conditions involving equations, memberships, and other rewrites; that is,
in their mathematical notation rules can be of the form (the form of the
conditions is similar for equations):

l : t→ t′ if (
∧
i

ui = vi) ∧ (
∧
j

wj : sj) ∧ (
∧
k

pk → qk)

with no restriction on which new variables may appear in the right-hand
side or the condition of the equation or rule. There is no need for the
condition listing first equations, then memberships, and then rewrites:
this is just a notational abbreviation, since they can be listed in any
order.

In Section 3.1 we explain how conditions are evaluated in Maude and
the detailed syntax they follow. An example is given in Section 3.2.

3.1 Conditions in Maude

Conditions in Maude can occur in rules and equations and are evaluated
from left to right, and therefore the order in which they appear, although
mathematically inessential, is very important operationally.

Conditional equations are declared with this syntax:

ceq <Term-1> = <Term-2>

if <EqCondition-1> /\ ... /\ <EqCondition-k>

[<StatementAttributes>] .

56 Chapter 3. Conditions in Rewrite Theories

And the syntax of conditional rules is this:

crl [<Label>] : <Term-1> => <Term-2>

if <Condition-1> /\ ... /\ <Condition-k>

[<StatementAttributes>] .

Let us give an illustrative example of a conditional specification in
Maude.

Example 3.1.1
mod M is

inc QID .

vars X Y Z : Nat .

ops f g : Nat Nat -> Nat .

op h : Nat -> Nat .

eq h(X) = X + 2 .

crl [r1] : f(X,Y) => g(X,Z)

if X < 5 /\ Z := h(Y) /\ Y > 1 .

endm

Note that we can treat equations in the same way that rules since
equations are implicitly oriented from left to right.

Conditions can consist of a single statement or can be a conjunc-
tion formed with the conjunction connective ⁄\ which is assumed to be
associative.

The satisfaction of the conditions is attempted sequentially from left
to right. Furthermore, the concrete syntax of conditions has two variants,
namely:

• Matching Conditions t := t′, and

• Boolean Conditions of the form t in the kind [Bool], abbreviating
the equation t = true.

3.2. Conditional Rewriting Inference Process 57

In Example 3.1.1 there is a rule, labelled by r1, with a set of matching
conditions {Z := h(Y)} and a set of boolean conditions {X < 5, Y > 1}

Matching conditions, MC in the following, have to be handled op-
erationally in a special way and they must satisfy special requirements.
Let us illustrate it by using the matching condition Z := h(Y) given in
Example 3.1.1. The variable Z in r1 does not appear in the left-hand
side of r1. In the execution of r1, this variable becomes instantiated by
matching the subject term bound to the variable Z against the canonical
form of h(Y). Roughly speaking, we can treat matching equations as an
assignment of values to fresh variables. Note that in order to obtain the
canonical form of h(Y), the matching condition Z := h(Y) can be seen as
an internal execution trace. This is, let t := s be a matching condition.
There will be an internal execution trace such that s→∗ t.

Boolean conditions, BC in the following, with the form t cmp t′ where
cmp ∈ {<,<=, >,>=,=}, have the usual operational interpretation,
that is, for the given substitution σ, σ(t) and σ(t′) are both reduced to
canonical form and are compared for equality, modulo the algebraic laws
specified as equational attributes in the module’s operator declarations
such as associativity, commutativity, and identity.

3.2 Conditional Rewriting Inference Pro-

cess

The conditional rewriting inference process can be controlled with great
flexibility in Maude by means of strategies. The Maude interpreter pro-
vides a default strategy for executing expressions in system modules that
applies the rules, until no more rules can be applied, in a top-down fair
way, and is provided by the rewrite command, in abbreviated form, rew.
Since we assume that the equations E in a module are decomposed as
the union E = ∆ ∪ B with B being a set of equational axioms (e.g.,
associativity, commutativity, and unity) declared as attributes of some
operators, and ∆ a set of (oriented and possibly conditional) equations
modulo B. If conditions are evaluated to true and before the application
of each rewrite rule, the expression is simplified to its canonical form by
using the equations; that is, it is simplified by applying the equations ∆
modulo B. Then, a rule is applied to such a simplified expression modulo

58 Chapter 3. Conditions in Rewrite Theories

the axioms B according to the default strategy.
Roughly speaking, given two terms S0 and S1 and a conditional rule r,

S0 rewrites to S1 via r if:

(i) S0 can be matched within the left-hand side of r in a position w
for some substitution σ,

(ii) the conditions in r are evaluated to true, and

(iii) S1 only changes from S0 at the position w by replacing S0|w by the
instance of the right-hand side of r using σ.

Moreover, when the conditions are evaluated, fresh variables could be
created and they could be used in the right-hand side of r.

The following example illustrates the conditional rewriting notions.

Example 3.2.1
Consider the following piece of Maude code:

mod M is

inc QID .

vars X Y Z : Nat .

ops f g : Nat Nat -> Nat .

op h : Nat -> Nat .

op m : Nat Nat Nat -> Nat .

eq h(X) = X + 2 .

crl [r1] : f(X,Y) => g(X,Z)

if X < 5 /\ Z := h(Y) /\ Y > 1 .

crl [r2] : m(X,Y,Z) => f(Z + Y,h(X))

if X > 0 /\ Z < 10 .

endm

and the execution command:

rew in M : m(2,1,3) .

We obtain the execution trace1 T = m(2, 1, 3)→ f(4, 4)→ g(4, 6)

Let us explain step by step how the rewriting inference process is
performed along the trace T given in Example 3.2.1.

1In Appendix C we give the detailed trace delivered by Maude for this example.

3.2. Conditional Rewriting Inference Process 59

As we have seen before, there exist three steps in the rewriting infer-
ence process. In the trace T given in Example 3.2.1 there are two rewrite
steps, and for each of them we have to perform the rewriting inference
process as follows:

For the initial term S0 = m(2, 1, 3) and by following the default strat-
egy for executing expressions, Maude looks in a top-down fair way for
a rule whose left-hand side matches with S0. Then, following step (i),
Maude found a matching between S0 and the left-hand side of r2 for a
substitution σ = {x/2, y/1, z/3}. Since r2 has a set of boolean conditions
{x > 0, z < 10}, by (ii), Maude checks from left to right if both of them
are evaluated to true. Note that σ must be applied to the set of conditions
in order to evaluate them. So finally, 2 > 0 and 3 < 10 are evaluated
to true and the rule can be applied, following (iii), witch delivers the
outcome f(+(3, 1), h(2)). Note that the rewriting inference process has
not yet finished because equational simplification is still needed. In order
to accomplish this simplification, the equation h(x) = x+2 has to be ap-
plied, and the resulting simplification is 2 + 2, hence the simplified term
is S1 = f(4, 4). Note that if the equation would have had conditions, we
would have proceed recursively in the same way.

In order to obtain the normal form of S1, Maude continues looking for
a rule whose left-hand side matches with S1. Following step (i), Maude
finds a matching between S1 and the left-hand side of r1 for a substitution
σ = {x/4, y/4}. Note that z is unbound because it is a fresh variable.
In r1 there exists a set of boolean conditions {x < 5, y > 1}, and a set
of matching conditions {z := h(y)}. By (ii), Maude has to check from
left to right if all boolean conditions are evaluated to true. In order to
do this, Maude applies σ and evaluates the set of boolean conditions, so
that 4 < 5 and 4 < 5 are evaluated to true. With respect to the set
of boolean conditions, Maude has to rewrite the right-hand side of each
matching condition, to its canonical form. In our case, h(y) is simplified
by applying the equation h(x) = x + 2. The resulting simplification is
6 and has to match the left-hand side of the matching condition. This
matching is given by a substitution σ′ = {z/6} and Maude takes it to
update the unbound variables in σ = {x/4, y/4, z/6}}, and the condition
is evaluated to true hence the rule can be applied, following (iii), which
yields as outcome g(4, 6) that can not be further simplified.

60 Chapter 3. Conditions in Rewrite Theories

Chapter 4

Backward Trace Slicing for
Conditional Rewrite Theories

In this chapter, we formalize a backward trace slicing technique for con-
ditional rewrite theories. Our formulation is purely based on conditional
rules, since (conditional) equations in ∆ are treated as (conditional)
rewrite rules that are used to simplify terms.

In Section 4.1, we formalize the notion of term slice. Section 4.2 in-
troduces an extension of the classical pattern matching algorithm that
is sensible to the slicing information. In Section 4.3, the backward con-
ditional slicing technique is formalized and Section 4.4 demonstrates the
soundness of the conditional slicing technique. Finally, Section 4.5 de-
ploys a detailed example that illustrates how the conditional slicing tech-
nique performs in Maude.

4.1 Term Slices

A term slice is the portion of a term that contains relevant information.
That is, given a term t and a set of relevant positions P , a term slice
of t with respect to P is the portion of t that contains the information
specified in P while the irrelevant information is removed.

Let us show how we can slice a term with respect to a set of relevant
positions.

Definition 4.1.1 (term slice) Let t ∈ τ(Σ,V) be a term, and let P be
a set of relevant positions s.t. P ⊆ Pos(t). Let • 6∈ Σ be a fresh variable
symbol appearing nowhere else. A term slice of t with respect to P is
defined as follows:

62 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

slice(t, P) = sl rec(t, P,Λ), where

sl rec(t, P, p) =


t if ((t ∈ Σ) or (t ∈ V)) and p ∈ P
f(sl rec(t1, P, p.1), . . . , sl rec(tn, P, p.n))

if t = f(t1, . . . , tn) and
there exists w s.t. (p.w) ∈ P

• otherwise

Note that each irrelevant subterm of t is replaced by a fresh variable
symbol •. Roughly speaking, in Definition 4.1.1 all symbols that occur
within the path from the root to any relevant position in t are preserved.

Let us provide an illustrative example.

Example 4.1.2
Let s = d(f(g(x, h(b)), y), a) be a term, and let P = {1.1.2, 1.2} be a set
of relevant positions. By applying the Definition 4.1.1, we have:

slice(s, P) = d(f(g(•, h(•)), y), •)

In the following, we use the notation t• to denote a term slice of the
term t. Given a term slice t•, we can get the relevant positions from it,
by considering the positions of t• where there is not a •. Formally.

Definition 4.1.3 (relevant positions) Let t• be a term slice. The set
of relevant positions of t• is defined as follows:

relevant-positions(t•) = {p ∈ Pos(t•) | t•|p 6= •}

Note that the set of relevant positions of a term slice given by Defi-
nition 4.1.3 considers all the positions from the root symbol down to the
leaves of t, whereas for computing a term slice (Definition 4.1.1), only the
positions of the leaves are considered, because Definition 4.1.1 implicitly
uses all positions on the path from the root to the position of interest.

Let us show how we can retrieve the set of relevant positions of a
term slice by means of one example.

4.2. Extended Pattern Matching for Term Slices 63

d

f

g

X h

b

y

a

d

f

g

• h

•

y

•

term t term slice t• of t
w.r.t. {1.1.2, 1.2}

Figure 4.1: A term slice.

Example 4.1.4
Consider the term slice t• = d(f(g(•, h(•)), y), •) from Example 4.1.2.
Then, by using Definition 4.1.3 we obtain the following set of relevant
positions:

relevant-positions(t•) = {Λ, 1, 1.1, 1.1.2, 1.2}

Figure 4.1 illustrates the notion of term slice for the terms t and t•

of Example 4.1.4.

4.2 Extended Pattern Matching for Term

Slices

Pattern matching is a technique that binds variables of a pattern to
different parts of any term that fits in it. In the following, we formalize an
extended pattern matching algorithm that allows us to deal with the fresh
variable symbols • that stand for undetermined information in terms.

Let F • = {•1, •2, . . . , •n} be a set of fresh variable symbols appearing
nowhere else such that •i 6∈ Σ for i = 1 . . . , n. We use the symbols •i to

64 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

mark the irrelevant information in a term while being able to keep track
of distinct irrelevant pieces of a term. When no confusion can arise, we
will omit any subscript i, and we simply use •. By notation Σ•, we denote
the set Σ ∪ F •.

Now we are ready to define the extended pattern matching that com-
putes the matching of a term slice t with relation to a pattern s. More
formally:

For f/n ∈ Σ, we define f(•) = f(•1, . . . , •n).

Definition 4.2.1 (extended pattern matching) Given s, t ∈ τ(Σ ∪
V ∪ F •),

if ∃σ1 = {•1/t1, . . . , •n/tn}, with ti = f(•), i = 1, . . . , n,
and (tσ1) matches s with σ•,

then
σ• is a •-matcher of t in s.

else
if ∃σ2 = {•1/t1, . . . , •n/tn}, with ti ∈ τ(Σ ∪ V ∪ F •), i = 1, . . . , n,

and (tσ2) matches s with σ•,
then
σ• is a •-matcher of t in s.

fi
fi

We denote the •-matcher σ• of t in s as match•(s, t).

Our extended matching algorithm has been specially devised to serve
the conditional slicing technique, where a particular value represents in-
formation that is relevant to analyze. In other words, if there is a term
with a particular value, this value should be preserved.

The following examples illustrate the notions of the extended pattern
matching.

Example 4.2.2
Given terms s = f(x, y) and t = g(f(a, b)), there is no •-matcher for s
and t, since f 6= g.

4.3. Backward Conditional Slicing 65

Example 4.2.3
Given terms s = f(g(x, y)) and t = f(•), we have:

σ1 = {•/g(•1, •2)}, and then match•(s, t) = {x/•1, y/•2}

Example 4.2.4
Given terms s = f(g(x), x) and t = f(•, y), we have:

σ2 = {•/g(y)}, and then match•(s, t) = {x/y}

Example 4.2.5
Given terms s = f(g(x), x, x) and t = f(•1, h(a), •2), we have:

σ2 = {•1/g(h(a)), •2/h(a)}, and then match•(s, t) = {x/h(a)}

4.3 Backward Conditional Slicing

In this section, we formalize the backward conditional slicing for RWL
computations.

First, we formalize the slicing criterion, which essentially represents
the information we want to trace back along the execution trace in order
to find out the “origins” of the data we want to observe. Given a term
t, we denote by Ot the set of observed positions of t. Formally.

Definition 4.3.1 (slicing criterion) Given a rewrite theoryR = (Σ,∆, R)
and an execution trace T : s→∗ t in R, a slicing criterion for T is any
set Ot of positions of the term t.

In the following, we show how conditional slicing can be performed
by means a backward conditional slicing technique for conditional rewrite
theories by systematically applying the match• function that was intro-
duced in Definition 4.2.1. Informally, given a slicing criterion OSn for

66 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

an execution trace T = S0 → S1 → . . . → Sn, at each rewrite step
Si−1 → Si, i = 1, . . . , n, our technique inductively computes the associ-
ation between the relevant information of Si and that in Si−1. For each
such rewrite step, the conditions of the rule applied are evaluated by
considering the relevant and irrelevant information in Si to be propa-
gated back to Si−1. The technique proceeds backwards, from the final
term Sn to the initial term S0. A simplified trace is obtained where each
Si is replaced by the corresponding term slice S•i . Finally, we ascertain
the conditions that guarantee the soundness of our conditional slicing
technique (given in Section 4.4).

4.3.1 Backward Slicing for a Rewrite Step

Let us briefly recall how a conditional rewrite rule is executed. Given
two terms (states) S0 and S1 and a conditional rule r, S0 rewrites to S1

via r if (i) A subterm of S0 occurring at position w matches the left-hand
side of r with substitution σ, (ii) the uninstantiated conditions in r using
σ are evaluated to true, and (iii) S1 consists of S0 with the subterm of
S0 occurring at the position w replaced with the corresponding instance
of the right-hand side of r by using σ. Moreover, when the conditions
are evaluated, fresh variables could be considered and transfered to the
right-hand side of r. Thus, our backward rewrite step slicing take it in
account and reproduce precisely those steps in a backward special way.
Namely, we slice S1 by matching it within the right-hand side of the rule
in order to obtain the relevant information into S1, then we consider the
conditions of the rule looking for information that should be tracked due
to it is relevant, and finally, we slice S0 by matching it within left-hand
side of the rule preserving the relevant information.

The idea behind our slicing technique consists in considering that all
the information is irrelevant, then, through the analysis of the rewrite
step with respect to the slicing criterion, we will particularize the values
that depend on the slicing criterion.

Given a rewrite step S0
r,σ−→ S1, the backward rewrite step slicing is

defined by applying the following steps. (Step 1) Initialize σ• and Slice
S1; (Step 2) Particularize σ• by evaluating the MC and the BC of the
rule; and (Step 3) Slice S0 by using the particularized σ•.

In the following we describe the backward rewrite step slicing for

4.3. Backward Conditional Slicing 67

conditional rewrite rule r with respect to the slicing criterion O. Let us
consider a rewrite step S0

r,σ−→ S1 where r = λ → ρ if (MC,BC) and
σ a substitution. Let w be a position in S0 such that S0|w = λσ and
S1|w = ρσ.

Step 1. Initialize σ• and Slice S1

The substitution σ• is the way that we use to transport relevant infor-
mation among different rewrite steps. First, an initial σ• is given. Then,
S1 is sliced and used for particularize σ•.

Initialize σ•. An initial σ• is given by considering the value • for each
variables of the rule. That is:

σ• = {x/• | x ∈ V ar(r)}

Slice the term S1. Since the relevant information in S1 is defined by
the positions given by the slicing criterion O, the slice of the term S1 is
given as follows:

S•1 = slice(S1,O)

where slice function was formalized in Definition 4.1.1.

Particularization of σ•. The particularization of σ• consists in updat-
ing with a relevant value (information) bound to the variables in σ•.

The extended matching algorithm allows us to get the information
from S•1 |w that is considered relevant and we will use to particularize σ•.
That is

σ•′ = match•(ρ, S•1 |w)

σ• = {(x/t) ∈ (σ• ∪ σ•′) | @(x/t′) ∈ (σ• ∪ σ•′)
such that (t′ 6= •) ∧ (t 6= t′)}

Step 2. Particularize σ• by evaluating the MC and the BC of
the rule

First, we are going to consider the evaluation of MC and then BC. This
is because the evaluation of MC is handled as an internal execution that
could inject relevant information to be considered for evaluating BC. In
order to evaluate MC, we recursively apply our backward execution trace
slicing given in Definition 4.3.4.

68 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

Matching Conditions. Let t := s be a matching condition from r with
internal execution trace Ti = s →∗ t (see Section 3.1). Let σ• be the
substitution particularized in Step 1.

In order to continue particularizing σ• with relevant information by
evaluating the MC, we only have to analyze t because if there exists
any variable candidate to be particularized in σ•, it has to be there (see
Chapter 3, Section 3.2). For this, we should obtain the relevant positions
of tσ• in order to apply recursively the backward-slicing function given
in Definition 4.3.4 with the internal execution trace and the relevant
positions as arguments. The outcome of the backward-slicing function
is the sliced trace s• →∗ t•. Then, we have to investigate if there exist any
relevant information in s• by considering the extended pattern matching
from s• in s. Finally the resulting σ•Ti is used to particularize σ•. The
statements that particularize σ• and evaluate the MC are as follows:

OTi = relevant-position(tσ•)
(s• →∗ t•, C•) = backward-slicing(s→∗ t,OTi)

σ•Ti = match•(s, s•)
σ• = {(x/t) ∈ (σ• ∪ σ•Ti) | @(x/t′) ∈ (σ• ∪ σ•Ti)

such that (t′ 6= •) ∧ (t 6= t′)}

Note that the set of conditions C• of an internal trace is not considered
in the particularization, this is because this conditions are local to the
internal trace and do not affect to the considered rewrite step.

Since a rule has a set of matching conditions, this step is iteratively
executed for each of them until the whole set of conditions is treated.

Boolean Condition. By using the above σ•, the boolean conditions
are evaluated as follows:

C• = {cσ• | c ∈ BC}

The set C• constrains the domain for the concretization (see Defini-
tion 4.4.1) of the term slices.

Step 3. Slice the term S0 by using the particularized σ•

Along the above steps, the substitution σ• have been particularized with
respect to the slicing criterion. In this step, we use σ• to derive the term

4.3. Backward Conditional Slicing 69

slice S•0 as follows:
S•0 = S•1 |w[λσ•]

Roughly speaking, the term slice S•0 is formed by instantiating the left-
hand side λ of the rule r via the substitution σ• at position w. Note that
the redex pattern of the rule is preserved, which is the basis for ensuring
the soundness, given in Section 4.4, of our conditional slicing technique.

Finally, note that if w 6∈ Pos(S•1), then S•0 = S•1 . That means that
the information carried out along this rewrite step does not affect to the
given relevant information.

In the following, we collect the above steps to formulate the backward
slicing for a rewrite step.

Definition 4.3.2 (Backward rewrite step slicing) Let S0
r,σ−→ S1 be

a rewrite step where r = λ→ ρ if (MC,BC) and σ a substitution. Let
w be a position in S0 such that S0|w = λσ and S1|w = ρσ. Let O be a
slicing criterion. Let t := s be a matching condition of r with internal
execution trace Ti = s→∗ t. The backward rewrite step slicing, slice-step
for abbreviation, is defined as follows:

(S•0 → S•1 , C
•) = slice-step(S0 → S1,O)

where slice-step is given by performing the following statements:

σ• = {x/• | x ∈ V ar(r)}
S•1 = slice(S1,O)
If w 6∈ Pos(S•1)

then S•0 = S•1 ; C• = ∅
else
σ•′ = match•(ρ, S•1 |w)

σ• = {(x/t) ∈ (σ• ∪ σ•′) | @(x/t′) ∈ (σ• ∪ σ•′)
s.t. (t′ 6= •) ∧ (t 6= t′)}

OTi = relevant-position(tσ•)
(s• →∗ t•, C•) = backward-slicing(s→∗ t,OTi)
σ•Ti = match•(s, s•)
σ• = {(x/t) ∈ (σ• ∪ σ•Ti) | @(x/t′) ∈ (σ• ∪ σ•Ti)

s.t. (t′ 6= •) ∧ (t 6= t′)}
C• = {cσ• | c ∈ BC}
S•0 = S•1 |w[λσ•]

fi

70 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

Note that S•0 (resp. S•1) is the term slice from S0 (resp. S1) with respect
to O. Moreover, C• is the set of conditions that ensures the soundness of
the backward execution trace slicing given in Definition 4.4. Finally, the
backward-slicing function is proposed within Definition 4.3.4 as well.

4.3.2 Backward Slicing for Execution Traces

In the above section, we have investigated how a rewrite step can be
sliced. In this section, we extend this process to execution traces.

Given an execution trace T = S0 → S1 → . . . → Sn and a slicing
criterion OSn that represents the information that we want to trace back
along the trace, we have to process each rewrite step by applying the
backward rewrite step slicing of Section 4.3.1. Roughly speaking, the
slice-step function given in Definition 4.3.2, is applied to the rewrite
step Si−1 → Si, and S•i−1 and S•i are obtained. Then, the term slice S•n−1

is used to get the relevant positions for recursively applying the slice-step
to the precedent rewrite step Si−2 → Si−1, and so on. Moreover, in order
to ensure the soundness of the technique, the sets C• of conditions are
carried on through the rewrite steps.

First, let us describe how the conditions from the subsequent (i.e.,
previously sliced) step are considered for slicing the current step.

Renaming of Variables. The set of conditions C• passed back from
the previously sliced rewrite step involves information that is local to that
rewrite step. On the other hand, the name of the variables used in the
rule applied in a rewrite step can be different for distinct rewrite steps.
Therefore, in order to consider the set of conditions transferred from the
previous rewrite step and avoid incorrect binding, we need to recognize
when two variables with diferent names are the same and properly rename
them to make them coincide.

Since the symbols • are handled as variables, the extended pattern
matching algorithm is used to make the renaming of variables as follows.

Let us consider a rewrite step S0
r,σ−→ S1 where r = λ→ ρ if (MC,BC)

and σ is a substitution. Let w be a position in S0 such that S0|w = λσ
and S1|w = ρσ. Let S•p and C•p be the term slice and the set of conditions
from the previous rewrite step, respectively. Then, the backward rewrite

4.3. Backward Conditional Slicing 71

step slicing is extended with the following computations.

σ•r = match•(S•p |w, ρ)

C•′ = {cσ•r | c ∈ C•p}
C• = C• ∪ C•′

Roughly speaking, first a substitution is obtained by matching S•p |w
within the left-hand side ρ of the applied rule r. It allows us to maintain
a binding among variables of the previous rewrite step those local vari-
ables of the rule applied in the current rewrite step. Then, the carried
conditions C•p are evaluated and joined to the evaluated conditions of
the current rewrite step. Note that in this case, the extended match-
ing algorithm defined in Definition 4.2.1 is not used to particularize any
substitution. It is only used to maintain a binding among variables of
different rewrite steps. Finally, we extend the Definition 4.3.2 as follows:

Definition 4.3.3 (Extended backward rewrite step slicing) Let

S0
r,σ−→ S1 be a rewrite step where r = λ → ρ if (MC,BC) and σ is a

substitution. Let w be a position in S0 such that S0|w = λσ and S1|w = ρσ.
Let O be a slicing criterion. Let t := s be a matching condition from r
with internal execution trace Ti = s →∗ t. Let S•p and C•p be the term
slice and the set of conditions from the previously considered rewrite step,
respectively. The extended backward rewrite step slicing, ex-slice-step for
abbreviation, is defined as follows:

(S•0 → S•1 , C
•) = ex-slice-step(S0 → S1,O, S•p , C•p)

72 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

where ex-slice-step is given by performing the following statements:

σ• = {x/• | x ∈ V ar(r)}
S•1 = slice(S1,O)
If w 6∈ Pos(S•1)

then S•0 = S•1 ; C• = ∅
else
σ•′ = match•(ρ, S•1 |w)

σ• = {(x/t) ∈ (σ• ∪ σ•′) | @(x/t′) ∈ (σ• ∪ σ•′)
s.t. (t′ 6= •) ∧ (t 6= t′)}

OTi = relevant-position(tσ•)
(s• →∗ t•, C•) = backward-slicing(s→∗ t,OTi)
σ•Ti = match•(s, s•)
σ• = {(x/t) ∈ (σ• ∪ σ•Ti) | @(x/t′) ∈ (σ• ∪ σ•Ti)

s.t. (t′ 6= •) ∧ (t 6= t′)}
C• = {cσ• | c ∈ BC}
S•0 = S•1 |w[λσ•]

σ•r = match•((S•p)|w, ρ)
C•′ = {cσ•r | c ∈ C•p}
C• = C• ∪ C•′

fi

If w 6∈ Pos(S•1), then S•0 = S•1 .

Note that S•0 (resp. S•1) is the term slice for S0 (resp. S1) with respect
to O, and C• is a set of conditions that ensure the soundness of the
backward execution trace slicing given in Definition 4.3.4. Note also that
backward-slicing function is given in Definition 4.3.4.

4.4. Soundness of the Slicing Technique 73

Algorithm 1 Trace slicing.
1: function backward-slicing (S0 → S1 → . . .→ Sn, O)
2: Let C•n = {}
3: Let On = O
4: for i = n to 1 do
5: (S•i−1 → S•i , C

•
i−1)← step-slicing(Si−1

ri,σi,wi−−−−−−→ Si,Oi, C•i)

6: Oi−1 ← relevant-positions(S•i−1)

7: end for
8: return (S•0 → S•1 → . . .→ S•n, C

•
0)

9: end function

Now, we are ready to define the backward execution trace slicing.

Definition 4.3.4 (backward execution trace slicing) Let T = S0 →
S1 → . . . → Sn be an execution trace, and let OSn be a slicing criterion
for T . Then, the backward execution trace slicing, backward-slicing for
abbreviation, is defined as follows:

(S•0 →∗ S•n, C•0) = backward-slicing(S0 →∗ Sn,OSn)

where

(S•i−1 → S•i , C
•
i−1) =


ex-slice-step(Sn−1 → Sn,OSn , slice(Sn,OSn), ∅)

i = n
ex-slice-step(Si−1 → Si,Oi, S•i , C•i)

i = 1, .., n− 1
s.t. Oi = relevant-positions(S•i)

In Algorithms 1, 2, and 3 we provide the optimized pseudocode of
our conditional slicing technique.

4.4 Soundness of the Slicing Technique

A fundamental property of our conditional slicing technique is that, given
a sliced trace T • = t•0 →∗ t•n, for any concretization of the term slice t•0
with respect to a set of conditions C•, the trace slice T • can be repro-
duced. We say that a term t′ is a concretization of a term slice t• with
respect to a set of conditions C•, if there exits an extended matching of
t′ in t• such that C• holds. More formally,

74 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

Algorithm 2 Step slicing.

1: function step-slicing (Si−1
r,σ,w
−−−−→ Si, Oi, C•i)

2: Let ri = λi → ρi if (MCi, BCi) be the rule applied in the rewrite step i.
3: S•i ← slice(Si,Oi)
4: if w 6∈ Pos(S•i) then
5: return S•i → S•i if C•i
6: end if
7: σ•i ← match•((S•i)|w, ρi)

8: C•i
′ ← σ•i (C•i)

9: σ•i
′ ← match•(ρi, (S•i)|w)

10: σ•i
′′ ← {x/t | x ∈ V ar(ri) ∧ (t = • ∧ @t’ s.t. (x/t’) ∈ σ•i

′) ∨ ((x/t) ∈ σ•i
′)}

11: σ•i
′′′ ← mc-slicing(σ•i

′′,MCi)
12: C•i ← σ•i

′′′(C•i
′ ∧ BCi)

13: return (S•i)|w[λiσ
•
i
′′′]→ S•i if C•i

14: end function

Algorithm 3 Matching condition slicing.
1: function mc-slicing (σ•, {t1 := s1, . . . , tn := sn})
2: for i = n to 1 do
3: Let s→∗ t be the internal trace Ti of a matching condition t := s
4: OTi ← relevant-positions(σ•(t))
5: (s• →∗ t•, C•)← backward-slicing(s→∗ t,OTi)
6: σ•Ti ← match•(s, s•)

7: σ• ← σ•Ti ∪ {(x/t) | (x/t) ∈ σ
• ∧ @t′ s.t. (x/t′) ∈ σ•Ti}

8: end for
9: return σ•

10: end function

Definition 4.4.1 (term slice concretization) Let t′ ∈ τ(Σ) be a term.
Let t• be a term slice and C• be a set of conditions for t•. We say that t′

is a concretization of t• w.r.t. C• (in symbols t• ∝C• t′) if the following
conditions hold:

1) ∃σ• such that σ• = match•(t•, t′)
2) ∀c ∈ C•, cσ• ≡ true

Figure 4.2 illustrates the notions of term slice concretization for a
given term t w.r.t. the set of positions {1.1.2, 1.2}.

Example 4.4.2
Let t• = f(•1, g(4, •2)) be a term slice and let C• = {•1 > 5 ∧ •2 = 7} be
a set of conditions for t•. Let t′1 = f(3, g(4, 7)) and t′2 = f(6, g(4, 7)) be
two terms. By considering Definition 4.4.1, we have:

• t′1 is not a concretization of t• w.r.t. C• since there exists a condition

4.4. Soundness of the Slicing Technique 75

d

f

g

X h

b

y

a

d

f

g

• h

•

y

•

d

f

g

c h

c

a

j

b

term t term slice t• of t a concretization t′ of t•

w.r.t. {1.1.2, 1.2}

Figure 4.2: A term slice concretization.

in C• that is not satisfied. Namely,

σ•1 = match•(t•, t′1) = {•1/3, •2 /7}
(•1 > 5)σ•1 ≡ (3 > 5) ≡ false ∧ (•2 = 7)σ•1 ≡ (7 = 7) ≡ true

• t′2 is a concretization of t• w.r.t. C•.

σ•2 = match•(t•, t′2) = {•1/6, •2 /7}
(•1 > 5)σ•2 ≡ (6 > 5) ≡ true ∧ (•2 = 7)σ•2 ≡ (7 = 7) ≡ true

Now we are ready to demonstrate the soundness of our conditional
slicing technique. Roughly speaking, the soundness property ensures that
the rules involved in the sliced step of T • can be applied again, at the
corresponding positions, to every concrete trace T ′ that we can obtain
by instantiating all the fresh symbols in t•0 with arbitrary terms.

Theorem 4.4.3 (soundness) Let R be a rewrite theory. Let T be an
execution trace in the rewrite theory R, and let O be a slicing criterion
for T . Let T • : t•0

r1→ t•1 . . .
rn→ t•n and C•0 be the corresponding trace slice

and the set of conditions w.r.t. O. Then, for any concretization t′0 of t•0
w.r.t. C•0 , it holds that T ′ : t′0

r1→ t′1 . . .
rn→ t′n is an execution trace in R,

and t•i ∝C
•
i t′i, for i = 1, . . . , n.

76 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

The proof of Theorem 4.4.3 is similar to the corresponding proof for
unconditional theories of [Rom11]. It relies on the fact that redex pat-
terns are preserved by backward trace slicing (see Step 3 in Section 4.3.1).
Therefore, for i = 1, . . . , n, the rule ri can be applied to any concretiza-
tion t′i−1 of the term t•i−1 since the redex pattern of ri does appear in t•i−1,
and hence in t′i−1.

Note that our basic framework enjoys neededness of the extracted in-
formation (in the sense of [TeR03]) as well, since the information captured
by every sliced rewrite step in a trace slice is all and the only information
that is needed to produce the relevant information in the reduced term
for the subsequent step.

4.5 Slicing of a Maude Example Trace

In this section, we introduce a Maude example that allows us to explain
how our conditional slicing performs.

Example 4.5.1

We consider the following Maude module:

mod M is

inc QID .

vars X Y Z : Nat .

ops f g n k : Nat Nat -> Nat .

ops h p : Nat -> Nat .

op m : Nat Nat Nat -> Nat .

eq h(X) = X + 2 .

eq k(X,Y) = p(sd(X,2)) .

crl [r1] : f(X,Y) => g(X,Z)

if X < 5 /\ Z := h(Y) /\ Y > 1 .

crl [r2] : m(X,Y,Z) => f(X,Y)

if X < 8 /\ Z < 10 .

crl [r3] : n(X,Y) => m(X,Z,h(Y))

if p(Z) := k(X + 2,Y) .

endm

4.5. Slicing of a Maude Example Trace 77

Then an execution trace in this program is:

T = S0
r3−→ S1

eq.simpl.−−−−−→ S2
r2−→ S3

r1−→ S4

this is,

T = n(4, 1)
r3−→ m(4, 4, h(1))

eq.simpl.−−−−−→ m(4, 4, 3)
r2−→ f(4, 4)

r1−→ g(4, 6)

Assume we want to simplify the trace by using our conditional slicing
technique.

Our backward execution trace slicing accepts an execution trace and
a slicing criterion. Then, by using Algorithms 1 and 2, we slice the trace
by slicing each rewrite step. If the rule applied in a rewrite step has
matching conditions, we use Algorithm 3 in order to take into account
possible relevant information within them.

Our technique starts by using the backward-slicing function defined
in Algorithm 1. We are going to slice the trace T with relation to the
slicing criterion OS4 = {2}.

As mentioned before, in order to slice a trace, Algorithm 1 applies,
for each of these rewrite steps, the step-slicing function defined in Al-
gorithm 2. This function gives us the mechanism to slice a rewrite step
Si−1

r,σ,w−−−→ Si where r = λ→ ρ if (MC, BC). See lines 1-2 of Algorithm 2.

Slicing the Rewrite Steps

For the last rewrite step f(4, 4)
r1−→ g(4, 6), in the sequence, and by

using the step-slicing function defined in Algorithm 2, we undertake the
function call:

step-slicing(f(4, 4)
r1,σ,w−−−→ g(4, 6), {2}, {}) where w = λ

Since this is the first considered rewrite step, the input set of condi-
tions is empty.

In Algorithm 2, line 3 computes the slice S•i of the term Si in the
rewrite step Si−1 → Si with relation to Oi. This is, we know that there
is in Oi all the relevant information that we want to trace back, so we
can apply the slice function, defined in Definition 4.1.1, to the term Si
to discard all the positions that we do not want to trace.

78 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

S•4 ← slice(g(4, 6), {2}) that is, S•4 = g(•, 6)

In order to know if the information carried out along this rewrite
step does not affect to the relevant information of the trace, lines 4-6
check if w is in Pos(S•i), in that case the process continues, otherwise, in
line 5 the function returns S•i → S•i telling us that there is no relevant
information in this rewrite step.

In our case, we have that w = λ and Pos(g(•, 6)) = {λ, 2}. Since
λ ∈ {λ, 2}, the algorithm continues.

Lines 7-8 deal with the renaming of variables. Throughout each
rewrite step slicing, the set of conditions has been extended with boolean
conditions occurring in previous sliced rewrite steps. So, when we are do-
ing the slicing of a rewrite step, we have to rename the variables of set
of conditions that come from previous rewrite steps. Actually we are us-
ing the extended matching function defined in Definition 4.2.1 to match
the sliced term (Si)

•
|w of the rewrite step within right-hand side ρ of the

rule applied. Algorithm 2 uses the computed abstract substitution σ•4 to
rename the variables as follows:

σ•4 ← match•(g(•, 6), g(X,Z)) that is, σ•4 = {•/X}
C•4
′ ← σ•4({}) that is, C•4

′ = {}
In this last rewrite step we have an empty set of conditions, so no

rename is needed.
Lines 9-10 build a new abstract substitution σ•4

′′ that is used in the
mc-slicing function defined in Algorithm 3. We need to use again the
extended matching function defined in Definition 4.2.1 to match the sliced
term (S4)•|w within the right-hand side ρ of the rule. This matching allows

us obtain σ•4
′ where the irrelevant variables have been marked as •. Line

10 builds the σ•4
′′ ensuring that all variables that exist in the rule are in

σ•4
′ and marks them as irrelevant if they did not exist before.

σ•4
′ ← match•(g(X,Z), g(•, 6)) that is, σ•4

′ = {X/•, Z/6}
and after applying line 10, σ•4

′′ = {X/•, Y/•, Z/6}

Note that the binding Y/• is added to σ•4
′′ because the variable Y

exists in the rule r1 and this is the rule applied in the considered rewrite
step.

4.5. Slicing of a Maude Example Trace 79

Line 11 has to deal with matching conditions MC4 = {Z := h(Y)} of
the rule r1 applied in the considered rewrite step. We need to particu-
larize σ•4

′′ in order to retrieve all the relevant information from the set of
matching conditions. In order to do this, we have to use the mc-slicing
function defined in Algorithm 3 by invoking the call:

mc-slicing(σ•4
′′,MC4)

We explain in the next section how obtain a particularized σ•i
′′′ by

applying the mc-slicing function to the set of matching conditions MCi.
In our example, this function returns:

σ•4
′′′ = {X/•, Y/4, Z/6}

Line 12 uses σ•4
′′′ to evaluate the set of conditions that are obtained

by joining the current set of conditions, and the set of boolean conditions
BC of the rule applied as follows:

C•4 ← σ•4
′′′({} ∧ {Y >1, X<5}) that is, C•4 = {4>1, •<5}

where 4>1 is true, so finally C•4 = {•<5}

Finally, line 13 builds S•i−1 by preserving the redex pattern and returns
the sliced rewrite step which is as follows:

f(•, 4)→ g(•, 6) if {•<5}

Note that we use σ•4
′′′ to build S•3 . Also, we return the evaluated set

of conditions C•4 in order to be used in the subsequent rewrite step.
Following Algorithm 1, once a rewrite step is sliced, we have to get

the slicing criterion that will be used in the next considered rewrite step;
see line 6. In order to do it, we use S•3 of the recently sliced rewrite step
to get the relevant positions, defined in Definition 4.1.3, as follows:

O3 ← relevant-positions(f(•, 4)) that is, O3 = {2}

Now we consider the precedent, third rewrite step:

step-slicing(m(4, 4, 3)
r2,σ,w−−−→ f(4, 4), {2}, {•<5}) where w = λ

80 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

Note that in this rewrite step we consider the set of conditions {•<5}
that comes from the previously considered (last) rewrite step.

We proceed in the same way described for the previously considered
rewrite step. First, we apply the slice function, defined in Definition 4.1.1,
by means of the slicing criterion O3 to the term S3 in order to discard
all positions that we do not want to trace.

S•3 ← slice(f(4, 4), {2}) that is, S•3 = f(•, 4)

Now, we check if w is in Pos(S•3). Effectively λ ∈ {λ, 2}, so we can
continue.

Next, renaming of variables:

σ•3 ← match•(f(•, 4), f(X, Y)) that is, σ•3 = {•/X}
C•3
′ ← σ•3({•<5}) that is, C•3

′ = {X<5}

Note how the renaming of variables in this sliced step is performed.
The corresponding σ•3

′′ that will be used in the mc-slicing function
defined in Algorithm 3 is obtained as follows:

σ•3
′ ← match•(f(X, Y), f(•, 4)) that is, σ•3

′ = {X/•, Y/4}
and after applying line 10, σ•3

′′ = {X/•1, Y/4, Z/•2}

Since there are no matching conditions in r2, we do not need to call
the mc-slicing function. So, our σ•3

′′ is ready to be applied to the set of
conditions obtained by joining the current set of conditions and the set
of boolean conditions BC of the rule applied as follows:

C•3 ← σ•3
′′({X<5} ∧ {X<8, Z<10}) that is, C•3 = {•1<5, •1<8, •2<10}

where C•3 can be simplified, so finally C•3 = {•1<5, •2<10}

Finally, the sliced rewrite step is:

m(•1, 4, •2)→ f(•1, 4) if {•1<5, •2<10}

Note how the set of conditions has been increased with conditions
from the previous rewrite step and the rename of variables has been
correctly performed.

4.5. Slicing of a Maude Example Trace 81

Note also that following Algorithm 1, we have to get the slicing cri-
terion that will be used in the next considered rewrite step as follows:

O2 ← relevant-positions(m(•1, 4, •2)) that is, O2 = {2}

Now for the second rewrite step:

step-slicing(m(4, 4, h(1))
eq.simpl.,σ,w−−−−−−−→ m(4, 4, 3), {2}, {•1<5, •2<10})

where w = 3

In this rewrite step we consider the set of conditions {•1<5, •2<10}
that comes from the previous sliced rewrite steps.

We proceed in the same way described before. First, we apply the
slice function, defined in Definition 4.1.1, to the term S2 in order to
discard all positions that we do not want to trace.

S•2 ← slice(m(4, 4, 3), {2}) that is, S•2 = m(•1, 4, •2)

Now, we check if w is in Pos(S•2). In this case, 3 6∈ {λ, 2}. Then, we
finish with the sliced rewrite step as follows:

m(•1, 4, •2)→ m(•1, 4, •2) if {•1<5, •2<10}

Note that in this rewrite step we just use S•2 to build the resulting
sliced rewrite step. This is because this rewrite steps does not have any
relevant information with respect to the analized trace. Conditions are
passed trough without changes.

Now again, following Algorithm 1, we have to get the slicing criterion
that will be used in the next considered rewrite step as follows:

O1 ← relevant-positions(m(•1, 4, •2)) that is, O1 = {2}

Finally consider the first rewrite step in the original trace:

step-slicing(n(4, 1)
r3.,σ,w−−−−→ m(4, 4, h(1), {2}, {•1<5, •2<10}) where w = λ

82 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

First, we apply the slice function, defined in Definition 4.1.1, to the
term S1 in order to discard all positions that we do not want to trace.

S•1 ← slice(m(4, 4, h(1)), {2}) that is, S•1 = m(•1, 4, •2)

Next, we check if w is in Pos(S•1). Effectively, λ ∈ {λ, 2}.
Then, rename of variables:

σ•1 ← match•(m(•1, 4, •2),m(X,Z, h(Y))) that is, σ•1 = {•1/X, •2/h(Y)}
C•1
′ ← σ•2({•1<5, •2<10}) that is, C•1

′ = {X<5, h(Y)<10}

Finally, we get the substitution σ•1
′′ that will be used in the mc-slicing

function defined in Algorithm 3 as follows:

σ•1
′ ← match•(m(X,Z, h(Y)),m(•1, 4, •2)) that is, σ•1

′ = {X/•1, Z/4, Y/•2}
and after apply line 10, σ•1

′′ = {X/•1, Z/4, Y/•2}

In the next section we explain how obtain a particularized σ•i
′′′ by

applying the mc-slicing function to the set of matching conditions MCi.
In our example, this function returns:

σ•1
′′′ = {X/4, Z/4, Y/•2}

Now, the substitution is ready to be applied to the set of conditions
that are obtained by joining the current set of conditions and the set of
boolean conditions BC of the rule applied as follows:

C•1 ← σ•({X<5, h(Y)<10} ∧ {}) that is, C•1 = {4<5, h(•2)<10}
where 4<1 is true, so finally C•1 = {h(•2)<10}

Note that there is no boolean conditions in r3.
Finally, the sliced rewrite step is:

n(4, •2)→ m(•1, 4, •2) if {h(•2)<10}

Following Algorithm 1, line 8 returns the full trace slice T • that is:

4.5. Slicing of a Maude Example Trace 83

T • = n(4, •2)→ m(•1, 4, •2)→ m(•1, 4, •2)→ f(•1, 4)→ g(•, 6) if {h(•2)<10}

Note that the simplification is obvious. The presented example is so
easy to appreciate the efficiency of our technique with relation to the
reduction of information in a trace. Anyway, is easily appreciate that
our technique will reduce complex traces that are out of the scope of this
easy explanation algorithm.

Matching Conditions

Given the execution trace T of the Example 4.5.1, the last and first
rewrite steps have matching conditions in the rules applied. Then, we
have to use the mc-slicing function defined in Algorithm 3 in order to
particularize the substitution σ• given as a parameter. Then this function
accepts a substitution σ• that will be particularized, and a set of matching
conditions to discover relevant information.

For the last rewrite step in the trace T given in the section above
by using the mc-slicing function defined in Algorithm 3, we undertake,
with the substitution σ•4 and the MC as parameters, the function call:

mc-slicing({X/•, Y/•, Z/6}, {Z := h(Y)})

We can handle the evaluation of the matching condition as if it were
an internal trace Ti (see Section 3.1) as follows:

Z := h(Y) that is, Ti = h(Y)→ +(X, 2)→ Z

Note that in this case, the internal trace has only two rewrite steps.
We have to get relevant positions (see line 4 of Algorithm 3) of the last
rewrite step of the internal trace with the application of the substitution
σ•4 as follows:

OTi4 = relevant-position(σ•4(Z)) that is, OTi4 = {λ}

Now by applying recursively the Algorithm 1 (see line 5 of Algo-
rithm 3), with the internal trace and the slicing criterion as parameters,
we obtain an internal trace slice as follows:

T •i = h(4)→ +(4, 2)→ 6

84 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

By using the extended matching to match the first state of the internal
trace slice T •i within the first state of the original internal trace Ti (see
line 6 of Algorithm 3), we obtain:

σ•Ti4 ← match•(h(Y), h(4)) that is, σ•Ti4 = {Y/4}

Finally by joining σ•Ti4 with σ•4 (see line 7 of Algorithm 3) we have:

σ•4 = {X/•, Y/4, Z/6}

Note that this σ•4 is the substitution returned by the mc-slicing func-
tion.

Since the input of mc-slicing function defined in Algorithm 3 is a set
of matching conditions, last statements must be iteratively executed for
each of them until the whole set of conditions has been processed. In
this case, there is only one matching condition.

Regarding the first rewrite step in the chain, we undertake with
the substitution σ•1 and the MC as parameters, the function call:

mc-slicing({X/•1, Z/4, Y/•2}, {p(Z) := k(X + 2, Y)})

The associated internal trace Ti of this matching condition is obtained
as follows:

p(Z) := k(X + 2, Y) that is, Ti = k(+(X, 2), Y)→ p(sd(X, 2))→ p(Z)

In this case, the internal trace has three rewrite steps.
In order to get relevant positions (following line 4 of Algorithm 3)

of the last rewrite step of the internal trace with the application of the
substitution σ•1, we use the statement:

OTi1 = relevant-position(σ•1(p(Z))) that is, OTi1 = {1}

Now by applying recursively the Algorithm 1 (see line 5 of Algo-
rithm 3), with the internal trace and the slicing criterion as parameters,
we obtain an internal trace slice as follows:

T •i = k(+(4, 2), •)→ k(6, 2)→ p(sd(6, 2))→ p(4)

4.5. Slicing of a Maude Example Trace 85

By using the extended matching to match the first state of the internal
trace slice T •i within the first state of the original internal trace Ti (see
line 6 of Algorithm 3), we obtain:

σ•Ti1 ← match•(k(+(X, 2), •), k(+(4, 2), Y)) that is, σ•Ti1 = {X/4, •/Y }

Finally by joining σ•Ti1 with σ•1 (see line 7 of Algorithm 3) we have:

σ•1 = {X/4, Z/4, Y/•2}

Then the substitution σ•1 is returned by the mc-slicing function and
there is no iteration more.

86 Chapter 4. Backward Trace Slicing for Conditional Rewrite Theories

Conclusions

Web applications are subject to an ever-increasing complexity with re-
gard to their design and development, which demands highly sophisti-
cated debugging and repairing tools to assist developers in the construc-
tion process.

The antecedents of this work are on the one hand, a framework for the
formal specification of the operational semantics of Web applications for-
malized in [ABR09], and on the other hand, a backward trace-slicing tech-
nique for unconditional rewriting logic theories described in [ABER11a].
This MSc thesis contributes to this line of work by first formalizing a
novel, backward conditional slicing technique for rewrite theories, and
second adapting the general slicer to the framework of Web-TLR.

Debugging of Web Applications

In order to debug Web applications, we endowed the rewriting logic
framework Web-TLR with a backward trace-slicing facility. This in-
tegration greatly reduces the size of the counterexample traces making
their analysis feasible even in the case of complex, real-size Web applica-
tions.

The proposed extension of Web-TLR, see [ABE+11], provides a
friendly graphic interface where the developer can analyze different error
scenarios in an incremental, step-by-step manner. We have tested our
tool on several complex case studies that are available at the distribution
package (e.g., a Webmail application, and a forum Web application).
The results obtained are very encouraging and show impressive reduction
rates in all cases, ranging from 90% to 95%. Moreover, sometimes the
trace slices are so small that they can be easily inspected by the user who
can keep a quick eye on what’s going on behind the scenes. The tool is
available online at http://www.dsic.upv.es/grupos/elp/soft.html.

http://www.dsic.upv.es/grupos/elp/soft.html

88 Conclusions

Conditional Slicing Technique

In order to consider conditional rewriting computations, we have com-
pletely redesigned the backward trace slicing technique proposed in
[ABER11a] by getting rid of the complex labeling procedure in favour of
a simpler, novel and more convenient extended pattern matching algo-
rithm that is sensible to the slicing information.

Future Work

There are several interesting directions for resuming the research pre-
sented in this master’s thesis. Let us briefly comment on some of them.

• We plan to extend Web-TLR to deal with more sophisticated Web
systems based on Web service architectures (e.g., those conforming
to the REST framework [FT02]).

• We intend to integrate in Web-TLR an efficient implementation
of the conditional slicing algorithm.

Bibliography

[ABE+11] M. Alpuente, D. Ballis, J. Espert, F. Frechina, and
D. Romero. Debugging of Web Applications with WEB-
TLR. In Proc. of 7th Int’l Workshop on Automated Specifica-
tion and Verification of Web Systems WWV 2011. Electronic
Proceedings in Theoretical Computer Science (EPTCS),
2011.

[ABER10] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Model-
checking Web Applications with Web-TLR. In Proc. of 8th
Int’l Symposium on Automated Technology for Verification
and Analysis (ATVA 2010), volume 6252 of LNCS, pages
341–346. Springer, 2010.

[ABER11a] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Back-
ward Trace Slicing for Rewriting Logic Theories. In Proc. of
23rd Int’l Conference on Automated Deduction CADE 2011,
LNCS/LNAI. Springer, 2011. To appear.

[ABER11b] M. Alpuente, D. Ballis, J. Espert, and D. Romero. Dynamic
backward slicing of rewriting logic computations. CoRR,
abs/1105.2665, 2011.

[ABR09] M. Alpuente, D. Ballis, and D. Romero. Specification and
Verification of Web Applications in Rewriting Logic. In For-
mal Methods, Second World Congress FM 2009, volume 5850
of LNCS, pages 790–805. Springer, 2009.

[BM08] K. Bae and J. Meseguer. A Rewriting-Based Model Checker
for the Linear Temporal Logic of Rewriting. In Proc. of
9th Int’l Workshop on Rule-Based Programming RULE’08,
ENTCS. Elsevier, 2008.

[CDE+07] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott. All About Maude: A High-
Performance Logical Framework, volume 4350 of LNCS.
Springer-Verlag, 2007.

90 Bibliography

[CDE+09] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-
Oliet, J. Meseguer, and C. Talco. Maude Manual (Version
2.4). Technical report, SRI Int’l Computer Science Labo-
ratory, 2009. Available at: http://maude.cs.uiuc.edu/

maude2-manual/.

[DP01] N. Dershowitz and D. Plaisted. Rewriting. Handbook of Au-
tomated Reasoning, 1:535–610, 2001.

[EMM06] S. Escobar, C. Meadows, and J. Meseguer. A Rewriting-
Based Inference System for the NRL Protocol Analyzer and
its Meta-Logical Properties. Theoretical Computer Science,
367(1-2):162–202, 2006.

[EMS03] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL model checker and its implementation. In Model Check-
ing Software: Proc. 10 th Intl. SPIN Workshop, volume 2648
of LNCS, pages 230–234. Springer, 2003.

[Esp11] J. Espert. Verificación de aplicaciones web dinámicas con
web-tlr, 2011. Project fin de carrera, ETSInf-UPV.

[FT02] T. R. Fielding and R. N. Taylor. Principled Design of the
Modern Web Architecture. ACM Trans. Internet Technol.,
2(2):115–150, 2002.

[GFKF03] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen.
Modeling web interactions. In Proc. of 12th European Sym-
posium on Programming, ESOP 2003, volume 2618 of LNCS,
pages 238–252. Springer, 2003.

[HH06] M. Han and C. Hofmeister. Modeling and verification of
adaptive navigation in web applications. In Proc. of 6th Int’l
Conference on Web Engineering ICWE ’06, pages 329–336.
ACM, 2006.

[MEM06] J. Meseguer, S. Escobar, and C. Meadows. A rewriting-based
inference system for the nrl protocol analyzer and its meta-
logical properties. Theoretical Computer Science, 367:162–
202, November 2006.

http://maude.cs.uiuc.edu/maude2-manual/
http://maude.cs.uiuc.edu/maude2-manual/

Bibliography 91

[Mes92] J. Meseguer. Conditional Rewriting Logic as a Unified Model
of Concurrency. Theoretical Computer Science, 96(1):73–155,
1992.

[Mes08] J. Meseguer. The Temporal Logic of Rewriting: A Gen-
tle Introduction. In Concurrency, Graphs and Models: Es-
says Dedicated to Ugo Montanari on the Occasion of his 65th
Birthday, volume 5065, pages 354–382, Berlin, Heidelberg,
2008. Springer-Verlag.

[MH94] A. Middeldorp and E. Hamoen. Completeness results for
basic narrowing. Applicable Algebra in Engineering, Com-
munication and Computing, 5:213–253, 1994.

[MM08] R. Message and A. Mycroft. Controlling control flow in
web applications. In Proc. of 4th Int’l Workshop on Auto-
mated Specification and Verification of Web Sites WWV’08,
ENTCS, 200(3):119–131, 2008.

[MOM02] N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic: Roadmap
and Bibliography. Theoretical Computer Science, 285(2):121–
154, 2002.

[MP92] Z. Manna and A. Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New
York, NY, USA, 1992.

[MPMO08] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational
abstractions. Theoretical Computer Science, 403(2-3):239–
264, 2008.

[Pro07] Open Web Application Security Project. Top ten security
flaws, 2007. Available at: http://www.owasp.org/index.

php/OWASP_Top_Ten_Project.

[Rom11] D. Romero. Rewriting-based Verification and Debugging of
Web Systems. PhD thesis, Universidad Politécnica de Valen-
cia, 2011.

[TeR03] TeReSe, editor. Term Rewriting Systems. Cambridge Uni-
versity Press, Cambridge, UK, 2003.

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/OWASP_Top_Ten_Project

92 Bibliography

[WNF10] F. Weitl, S. Nakajima, and B. Freitag. From Coun-
terexamples to Incremental Interactive Tracing of Errors
(Schrittweise Fehleranalyse auf der Grundlage von Model-
Checking). it - Information Technology, 52(5):295–297, 2010.

Appendix A

Formal Specification of the
Operational Semantics of the

Web Scripting Language

The equational theory (Σs, Es), which we presented in Section 1.2.1, is
formally defined by means of the following Maude specification that con-
sists of two functional modules. The former module (called EXPRESSION)
specifies the syntax as well as the semantics of the language expressions.
The latter module (called SCRIPT) formalizes the syntax and semantics
of the language statements. The evaluation function

[[]] : ScriptState→ ScriptState

is encoded via the operator evlSt : ScriptState -> ScriptState

which is contained in the functional module SCRIPT.

(fmod EXPRESSION is inc MEMORY + QUERY + SESSION + DATABASE .

sorts Expression Test .

subsorts Test Value Qid < Expression .

--- Signature of the Expression operators

op TRUE : -> Test .

op FALSE : -> Test .

op _=_ : Expression Expression -> Test .

op _!=_ : Expression Expression -> Test .

op _’+_ : Expression Expression -> Expression .

op _’*_ : Expression Expression -> Expression .

op _’._ : Expression Expression -> Expression .

op getSession : Expression -> Expression .

op getQuery : Qid -> Expression .

op selectDB : Expression -> Expression .

op updateDB : Expression Expression -> Script .

op evlEx : Expression Memory Session Query DB -> Expression .

--- Semantics of the Expression operators

vars ex ex1 ex2 : Expression .

94 Appendix A. Operational Semantics of the Web Scripting Language

vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars sql : SqlDB .

vars t : Test .

--- Exp: value

eq evlEx (v, m, s, q, db) = v .

--- Exp: boolean conditions = and !=

ceq evlEx (ex1 = ex2, m, s, q, db) = TRUE

if ((evlEx(ex1, m, s, q, db)) == (evlEx(ex2, m, s, q, db))) .

ceq evlEx (ex1 = ex2, m, s, q, db) = FALSE

if ((evlEx(ex1, m, s, q, db)) =/= (evlEx(ex2, m, s, q, db))) .

ceq evlEx (ex1 != ex2, m, s, q, db) = FALSE

if ((evlEx(ex1, m, s, q, db)) == (evlEx(ex2, m, s, q, db))) .

ceq evlEx (ex1 != ex2, m, s, q, db) = TRUE

if ((evlEx(ex1, m, s, q, db)) =/= (evlEx(ex2, m, s, q, db))) .

--- Exp: evaluation of private memory identifiers

eq evlEx (qid, ([qid, v] : ms), s, q, db) = v .

ceq evlEx (qid, m, s, q, db) = null if qid in m =/= true .

--- Exp: arithmetic operators

eq evlEx (ex1 ’+ ex2, m, s, q, db)

= evlEx(ex1, m, s, q, db) + evlEx(ex2, m, s, q, db) .

eq evlEx (ex1 ’* ex2, m, s, q, db)

= evlEx(ex1, m, s, q, db) * evlEx(ex2, m, s, q, db) .

--- Exp: attribute selector

eq evlEx (ex1 ’. ex2, m, s, q, db)

= evlEx(ex1, m, s, q, db) v+ evlEx(ex2, m, s, q, db) .

-- Exp: getSession

eq evlEx (getSession(ex), m, s, q, db)

= getSessionValue(s, evlEx(ex, m, s, q, db)) .

-- Exp: getQuery

eq evlEx (getQuery(qid), m, s, (qid ’= str) : qs, db) = s(str) .

ceq evlEx (getQuery(qid), m, s, q, db) = null if qid in q =/= true .

--- Exp: selectDB

eq evlEx (selectDB(ex), m, s, q, db) = select(db, evlEx(ex, m, s, q, db)) .

--- Exp: null value

eq evlEx (ex, m, s, q, db) = null [owise] .

endfm)

(fmod SCRIPT is inc EXPRESSION .

95

--- Signature of the Statement operators

sorts Script ScriptState .

op skip : -> Script .

op _;_ : Script Script -> Script [prec 61 assoc id: skip] .

op _:=_ : Qid Expression -> Script .

op if_then_else_fi : Test Script Script -> Script .

op if_then_fi : Test Script -> Script .

op while_do_od : Test Script -> Script .

op repeat_until_od : Script Test -> Script .

op ‘[_‘,_‘,_‘,_‘,_‘] : Script Memory Session Query DB -> ScriptState .

op setSession : Expression Expression -> Script .

op clearSession : -> Script .

op evlSt : ScriptState -> ScriptState .

--- Semantics of the Statement operators

vars ex ex1 ex2 : Expression .

vars m ms : Memory .

vars db dbs : DB .

vars s ss : Session .

vars q qs : Query .

vars x y : Int .

vars qid : Qid .

vars v : Value .

vars str : String .

vars p p1 p2 ps : Script .

vars t : Test .

vars sql : SqlDB .

--- Statement: skip

eq evlSt ([skip, m, s, q, db]) = [skip, m, s, q, db] .

--- Statement: assignment (:=)

eq evlSt ([(qid := ex); ps, [qid, v] : ms, s, q, db]) =

evlSt ([ps, [qid, evlEx(ex, [qid, v] : ms, s, q, db)] : ms, s, q, db]) .

ceq evlSt ([(qid := ex); ps, ms, s, q, db]) =

evlSt ([ps, [qid, evlEx(ex, ms, s, q, db)] : ms, s, q, db])

if qid in ms =/= true .

--- Statement: if then else fi

ceq evlSt ([(if t then p1 else p2 fi) ; ps, m, s, q, db]) =

evlSt ([p1 ; ps, m, s, q, db]) if (TRUE == evlEx(t, m, s, q, db)) == true .

ceq evlSt ([(if t then p1 else p2 fi) ; ps, m, s, q, db]) =

evlSt ([p2 ; ps, m, s, q, db]) if (TRUE == evlEx(t, m, s, q, db)) =/= true .

--- Statement: while do od

ceq evlSt ([(while t do p od); ps, m, s, q, db]) =

evlSt ([p ; while t do p od ; ps, m, s, q, db])

if (TRUE == evlEx(t, m, s, q, db)) == true .

ceq evlSt ([(while t do p od); ps, m, s, q, db]) = evlSt ([ps, m, s, q, db])

if (TRUE == evlEx(t, m, s, q, db)) =/= true .

--- Statement: setSession

eq evlSt ([(setSession(ex1, ex2)); ps, m, s, q, db]) =

96 Appendix A. Operational Semantics of the Web Scripting Language

evlSt ([ps, m, setSessionValue (s, evlEx(ex1, m, s, q, db),

evlEx(ex2, m, s, q, db)) , q, db]) .

--- Statement: clearSession

eq evlSt ([clearSession ; ps, m, s, q, db])

= evlSt ([ps, m, session-empty, q, db]) .

--- Statement: updateDB

eq evlSt ([(updateDB (ex1, ex2)); ps, m, s, q, db]) =

evlSt ([ps, m, s, q, update (db, evlEx(ex1, m, s, q, db),

evlEx(ex2, m, s, q, db))]) .

endfm)

Appendix B

Formal Specification of the
Evaluation Protocol Function

The protocol evaluation function eval, which we presented in Section
1.2.3, is formally specified by means of the following Maude functional
module.

(fmod EVAL is inc WEB_MODEL .

vars page wapp wapps w : Page .

vars np qid np1 np2 nextPage : Qid .

vars q q1 : Query .

vars sc sc1 : Script .

vars cont conts : Continuation .

vars nav : Navigation .

vars ss nextS : Session .

vars cond conds : Condition .

vars url urls nextURLs : URL .

vars id idw : Id .

vars uss : UserSession .

vars db nextDB : DB .

vars m : Memory .

vars idmes : Nat .

op pageNotFound : -> Qid .

op pageNotContinuaton : -> Qid .

op holdContinuation : Qid Continuation Session -> Qid .

op holdNavigation : Qid Page Session -> URL .

op holdCont : Qid Continuation Session -> Qid .

op whichQid : Qid Qid -> Qid .

op getURLs : Navigation Session -> URL .

op evalScript : Page UserSession Message DB -> ReadyMessage .

--- Evaluation of the enabled continuations

eq holdContinuation(np, (cond => np) : conts, ss)

= holdCont (np, (cond => np) : conts, ss) .

ceq holdContinuation(np, conts, ss) = qid

if np1 := holdCont (np, conts, ss) /\ qid := whichQid (np, np1) [owise] .

eq holdCont (np, cont-empty, ss) = pageNotContinuaton .

ceq holdCont (np, (cond => qid) : conts, ss)

= qid if (holdCondition(cond,ss)) == true .

eq holdCont (np, (cond => qid) : conts, ss) = holdCont (np, conts, ss) [owise] .

eq whichQid (np, pageNotContinuaton) = np .

98 Appendix B. Specification of the Evaluation Protocol Function

eq whichQid (np, np1) = np1 [owise] .

--- Evaluation of the enabled navigations

eq holdNavigation(np, ((np, sc, { cont }, { nav }) : wapp), ss)

= getURLs (nav, ss) .

eq holdNavigation(np, wapp, ss) = url-empty [owise] .

eq getURLs (nav-empty, ss) = url-empty .

ceq getURLs ((cond -> url) : nav, ss) = url : getURLs (nav, ss)

if (holdCondition(cond,ss)) == true .

eq getURLs ((cond -> url) : nav, ss) = getURLs (nav, ss) [owise] .

--- Eval definition

ceq eval (((np, sc, { cont }, { nav }) : wapps), us(id, ss) : uss,

m(id, idw, (np ? q), idmes), db)

= rm(m(id, idw, nextPage, nextURLs, idmes), nextS, nextDB)

if [sc1, m, nextS, q1, nextDB] := eval([sc, none, ss, q, db]) /\

nextPage := holdContinuation (np, cont, nextS) /\

nextURLs := holdNavigation (nextPage, ((np, sc, { cont },

{ nav }) : wapps), nextS)

.

eq eval (wapp, us(id, ss) : uss, m(id, idw, (np ? q), idmes), db) =

rm(m(id, idw, pageNotFound, url-empty, idmes), ss, db) [owise] .

endfm)

Appendix C

A trace example of rules with
conditions

The execution trace delivered by Maude for the Example 3.2.1 is as
follows:

==

rewrite in M : m(2, 1, 3) .

*********** trial #1

crl m(X, Y, Z) => f(Z + Y, h(X)) if X > 0 = true /\ Z < 10 = true [label r2] .

X --> 2

Y --> 1

Z --> 3

*********** solving condition fragment

X > 0 = true

*********** equation

(built-in equation for symbol _>_)

2 > 0

--->

true

*********** success for condition fragment

X > 0 = true

X --> 2

Y --> 1

Z --> 3

*********** solving condition fragment

Z < 10 = true

*********** equation

(built-in equation for symbol _<_)

3 < 10

--->

true

*********** success for condition fragment

Z < 10 = true

X --> 2

Y --> 1

Z --> 3

*********** success #1

*********** rule

crl m(X, Y, Z) => f(Z + Y, h(X)) if X > 0 = true /\ Z < 10 = true [label r2] .

X --> 2

Y --> 1

Z --> 3

m(2, 1, 3)

--->

f(3 + 1, h(2))

100 Appendix C. Maude trace

*********** equation

(built-in equation for symbol _+_)

1 + 3

--->

4

*********** equation

eq h(X) = X + 2 .

X --> 2

h(2)

--->

2 + 2

*********** equation

(built-in equation for symbol _+_)

2 + 2

--->

4

*********** trial #2

crl f(X, Y) => g(X, Z) if X < 5 = true /\ Z := h(Y) /\ Y > 1 = true [label r1]

.

X --> 4

Y --> 4

Z --> (unbound)

*********** solving condition fragment

X < 5 = true

*********** equation

(built-in equation for symbol _<_)

4 < 5

--->

true

*********** success for condition fragment

X < 5 = true

X --> 4

Y --> 4

Z --> (unbound)

*********** solving condition fragment

Z := h(Y)

*********** equation

eq h(X) = X + 2 .

X --> 4

h(4)

--->

4 + 2

*********** equation

(built-in equation for symbol _+_)

2 + 4

--->

6

*********** success for condition fragment

Z := h(Y)

X --> 4

Y --> 4

Z --> 6

*********** solving condition fragment

Y > 1 = true

*********** equation

(built-in equation for symbol _>_)

101

4 > 1

--->

true

*********** success for condition fragment

Y > 1 = true

X --> 4

Y --> 4

Z --> 6

*********** success #2

*********** rule

crl f(X, Y) => g(X, Z) if X < 5 = true /\ Z := h(Y) /\ Y > 1 = true [label r1]

.

X --> 4

Y --> 4

Z --> 6

f(4, 4)

--->

g(4, 6)

rewrites: 11 in 1ms cpu (5ms real) (10156 rewrites/second)

result Nat: g(4, 6)

	Introduction
	Summary of Contributions of this Master's Thesis

	Preliminaries
	Conditional Term Rewriting Systems
	Conditional Rewrite Theories

	I Debugging of Web Applications
	Specification and Verification of Web Applications in RL
	A Navigation Model for Web Applications
	Graphical Navigation Model

	Formalizing the Navigation Model as a Rewrite Theory
	The Web Scripting Language
	The Web Application Structure
	The Communication Protocol

	Modeling Multiple Web Interactions and Browser Features
	The Extended Equational Theory (ext,Eext)
	The Extended Rewrite Rule Set Rext

	Model Checking Web Applications Using LTLR
	The Linear Temporal Logic of Rewriting
	LTLR properties for Web Applications

	Debugging of Web Applications with Web-TLR
	Extending the Web-TLR System
	Filtering Notation

	Implementation of the extended Web-TLR system in RWL
	A Case Study in Web Verification
	A Debugging Session with Web-TLR

	II Conditional Slicing for Rewriting Logic
	Conditions in Rewrite Theories
	Conditions in Maude
	Conditional Rewriting Inference Process

	Backward Trace Slicing for Conditional Rewrite Theories
	Term Slices
	Extended Pattern Matching for Term Slices
	Backward Conditional Slicing
	Backward Slicing for a Rewrite Step
	Backward Slicing for Execution Traces

	Soundness of the Slicing Technique
	Slicing of a Maude Example Trace

	Conclusions
	Future Work

	Bibliography
	Operational Semantics of the Web Scripting Language
	Specification of the Evaluation Protocol Function
	Maude trace

