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Abstract

In this paper, estimators of the Nakagami-lognormal (NL) distribution based on the method of log-moments have
been derived and thoroughly analyzed. Unlike maximum likelihood (ML) estimators, the log-moment estimators of
the NL distribution are obtained using straightforward equations with a unique solution. Also, their performance has
been evaluated using the sample mean, confidence regions and normalized mean square error (NMSE). The NL
distribution has been extensively used to model composite small-scale fading and shadowing in wireless
communication channels. This distribution is of interest in scenarios where the small-scale fading and the shadowing
processes cannot be easily separated such as the vehicular environment.
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1 Introduction
In wireless communications, the composite Nakagami-
lognormal (NL) distribution has been extensively
employed to model the mixture of small-scale fading
and shadowing [1–14]. This distribution was initially
proposed in [1] to obtain the outage probability in scenar-
ios involving multiple co-channel interferers. In several
other works, different performance parameters in a NL
fading channel using different diversity techniques have
been obtained [2–4]. Outage probabilities in diversity
channels using non-coherent frequency-shift keying
(NCFSK) and differential phase-shift keying (DPSK)
matched filter receivers over NL channels were analyzed
in [2]. In [3], both the average level crossing rate (LCR)
and average time fade duration (AFD) were derived for
selection diversity receivers, over an arbitrary number
of independent but non-identical NL fading signals. An
approximation of both the probability density function
(PDF) of the signal-to-noise ratio (SNR) and the average
bit error rate (BER) in maximum ratio combining (MRC)
receivers over correlated NL channels has been derived by
using the two-point lossless moment generating function
(MGF) in [4]. The performance of adaptive modulation
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systems under MRC over NL channels was analyzed in
[5, 6]. In the last few years, the NL distribution has been
employed to model the wireless channel in emerging
cellular networks [7–10]. In [7], the performance of relay
deployments has been investigated where the NL distri-
bution is used to model the relay link, whereas the access
link between a mobile terminal and its serving relay node
is modeled by a Rician-lognormal distribution. An adap-
tive selection/maximal-ratio (ASM) combining system
over independent non-identical composite NL fading
channels using the mixture gamma distribution has been
analyzed in [8] corresponding to cooperative relaying
networks. In [9], the authors assess the performance of
offload macro users to small macro networks under two
different composite fading scenarios, NL channel fading
and timeshared shadowed/unshadowed channel fading in
the framework of heterogeneous networks with stochas-
tic geometry. The coverage probability and average rate
of a typical user in a cellular network under NL channels
have been analyzed in [10], modeling the base station
deployments with stochastic geometry.
Recently, the interest in the NL distribution has

increased due to the difficulty in separating the small-
scale fading and the shadowing processes in small sta-
tionary scenarios such as vehicular environments [11, 12].
However, the PDF of the NL distribution involves an infi-
nite integral which can be approximated by a weighted
mixture of gamma distributions using Gaussian-Hermite
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integration [13]. In [11], the authors use an approxima-
tion of the NL PDF based on an expansion using central
differences [15] to evaluate the amount of fading, outage
probability and the average channel capacity over a com-
bined NL shadowing and non-shadowing fading channel.
An expression in the form of a finite series for the aver-
age signal error probability (ASEP) for M-ary phase shift
keying (MPSK) has been derived for tight bounds in [14].
Moreover, in a measurement campaign conducted in a
macrocellular urban environment [12], the NL was the
best-fit distribution when compared with other distribu-
tions proposed to model the composite small-scale fading
and shadowing, namely the Rayleigh-lognormal [16], α-μ
[17] or generalized-K [18].
In order to analyze the performance of cellular networks

over different conditions (modulations schemes, diversity
techniques, etc) in a given scenario where the propaga-
tion channel is modeled as a NL distribution, one first
needs to estimate the parameters of the NL distribution
in real environments from measurement campaigns. The
values of the NL parameters strongly influence the out-
age probability, ASEP, BER, average channel capacity, and
other performance parameters of such a scenario. There-
fore, efficient and robust estimators of the NL distribution
need to be derived in order to obtain the parameters of
this distribution from measurement campaigns.
The NL distribution is a tri-parametric distribution and

the integral form of its PDF presents an inherent diffi-
culty in estimating the parameters. To the best of the
authors’ knowledge, no assessment of the NL estimators
has been carried out previously. There are different tech-
niques to estimate the parameters of a distribution. The
log-moments method has been proposed to estimate the
parameters of other distributions used in wireless com-
munications, such as the Rayleigh, Nakagami-m, K and
Suzuki in [19, 20]. The results of [19] show that the
variance of the log-moment estimators approaches the
minimal values reached by the maximum likelihood (ML)
method while avoiding some of the analytical drawbacks.
In contrast, as demonstrated in this paper, the method of
moments (MM) applied to the NL distribution provides
an unstable solution.
Motivated by the aforementioned observations, in

this paper, a comprehensive analysis for the NL esti-
mators based on the log-moments method is carried
out. The advantages of the estimators are the fol-
lowing: (i) the parameters of the NL distribution are
derived using direct equations from these estimators
and therefore their calculation is significantly straight-
forward and simple; (ii) a unique solution of this set
of parameters is found for the given estimators; and
(iii) the results are robust for a range of values of
NL parameters obtained across different measurement
campaigns.

This paper is organized as follows: Firstly, in Section 2,
the log-cumulants of the NL distribution are derived and
the estimators of the NL distribution are obtained using
the log-moments method. Next, in Section 3, a proce-
dure to generate NL random variables (RVs) is derived
and several numerical results are analyzed. Finally, the
conclusions are discussed in Section 4.

2 Methods
The derivation of the log-moments of the NL distribu-
tion can be carried out by means of its log-cumulants.
Therefore, firstly we obtain the log-cumulants of the NL
distribution and then the estimators of the three parame-
ters of the NL distribution are calculated by using the log-
moments method. Finally, the accuracy and robustness of
the fading parameter estimators of the NL distribution are
briefly discussed.

2.1 Log-cumulants of the Nakagami-lognormal
Distribution

Let r be a NL RV corresponding to the received field
strength expressed in V/m. The PDF of r is given by
([2], (1)):

pr (r) =
∫ ∞

0
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where m is the shape factor or fading parameter of the
Nakagami-m fast fading process, �(z) = ∫ ∞

0 uz−1e−udu is
the Gamma function ([21], (6.1.1)), and:

η = Kηd , (2)
σ = Kσd (3)

where:

K = ln(10)
10

(4)

ηd and σd are the mean, in dBV/m, and the standard
deviation, in dB, respectively, of the associated Gaussian
shadowing process.
The cumulative distribution function (CDF) of the NL

distribution can be expressed as:
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where γ (a, z) = ∫ z
0 ua−1 exp(−u)du is the lower incom-

plete Gamma function ([21], (6.5.2)).
The nth moment of r is calculated as:
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where E(·) denotes the expectation operator. Note that (6)
is equivalent to ([22], (2.59)) by substituting 2n instead
of n in (6) which corresponds to the nth moment of
the gamma-lognormal distribution. Thus, the first three
moments of a NL distribution are given by:
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In order to derive the log-moments of the NL distribu-
tion, we can calculate the first characteristic function of
the second kind for the NL distribution by means of the
Mellin transform framework of [19]. The first character-
istic function of the second kind is defined as ([19], (8)):

φ(s)
r =

∫ ∞

0
us−1pr(u)du (10)

and the first characteristic function of the second kind can
alternatively be derived as ([19], (13)):

φ(s)
r = M(r)

n
∣∣
n=s−1 (11)

Substituting (6) into (11), we obtain the first characteristic
function of the second kind of the NL distribution as:

φ(s)
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The characteristic function of the second kind, defined as
the natural logarithm of the first characteristic function of
the second kind, can be calculated as:


(s)
r = ln

(
φ(s)
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)
(13)

The log-cumulants of order n can be obtained from 

(s)
r

as ([19], (13)):
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From (12) and (13), we can calculate:
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where ψ(x) = ∂ ln�(x)
∂x is the psi (digamma) function

([21], (6.3.1)) and ψ(n) = ∂nψ(x)
∂xn is the polygamma func-

tion of nth order ([21], (6.4.1)).
Hence, substituting s = 1 in (15), (16) and (17), the log-

cumulants of the NL distribution can be derived as:

κ
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1 = 1

2
(η − ln(m) + ψ(m)) (18)
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)n
ψ(n−1)(m), n ≥ 3 (20)

Applying the additive properties of the log-cumulants
([19], (17)), the log-cumulant of n-th order in the NL
distribution can also be calculated as the sum of the
log-cumulants of n-th order of both the Nakagami-m
and the lognormal distribution. The log-cumulants of the
Nakagami-m distribution are given by ([19], p. 149) and
the first two log-cumulants of the lognormal distribution
are given by ([23], (12)). Note that the log-cumulants of
the lognormal distribution are equal to 0 for orders higher
than 2.
Using the transformation β = ln r, the PDF of the log

NL distribution can be obtained from (1) as:
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∫ ∞
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2.2 Estimators of the Nakagami-lognormal Distribution
The estimators of the NL distribution based on the log-
moments method are derived next. In the log-moments
method, the moments of the distribution in logarithmic
units are related to the parameters of the distribution.
Using the log-cumulants of the NL distribution derived
previously, the log-moments estimators are obtained.
The relations between log-cumulants and log-moments

are identical to the relations existing between moments
and cumulants ([19], Section 2.3). For instance, the three
first log-cumulants can be written as:

κ
(r)
1 = M(β)

1 = E (β) (22)

κ
(r)
2 = μ

(β)
2 = E

((
β − β̄

)2) (23)

κ
(r)
3 = μ

(β)
3 = E

((
β − β̄

)3) (24)

where β = ln r, M(β)
1 is the first log-moment and μ

(β)
2

and μ
(β)
3 are the second and third central log-moments,

respectively.
In the NL distribution, from (20) and (24) with n = 3,

an estimator of m can be derived by using a numerical
approximation of the inverse function of ψ(2)(·) as:
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m̂ = 1.4
(−v̂

)−0.391+0.0096 ln(−v̂) , −16.8 ≤ v̂ < 0 (25)

where v̂ is given by:

v̂ = 8μ̂(β)
3 (26)

μ̂
(β)
n is the nth sample central moment of the log NL

distribution defined as:
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)n
(27)

= 1
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1
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where:

M̂(β)
1 = 1

N

N∑
i=1

ln ri (28)

is the sample mean of the log NL distribution, ri, i =
1, . . . ,N are the samples of the realization corresponding
to the field strength in linear units, and N is the num-
ber of samples. Note that in (25), m̂

(
v̂ = −16.8

) ≈ 0.5
and limv̂→0−m̂ → ∞.
From (18), (19), (22), and (23), we can estimate the other

parameters of the NL distribution as:

σ̂ =
√
4μ̂(β)

2 − ψ(1) (
m̂

)
(29)

η̂ = 2M̂(β)
1 + ln

(
m̂

) − ψ
(
m̂

)
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Both the ψ(1)(·) trigamma and ψ(·) digamma functions
can be calculated using either the psi or Polygamma
functions of Matlab� and Mathematica, respectively.
These functions have been implemented using Euler-
Maclaurin summation, functional equations, and recur-
sion ([24], p. 58).
Figure 1 shows the fading parameter estimator, m̂, of

the Nakagami-m process as a function of the v̂ estimator
in logarithmic units using (25). Figure 1 is split into two
plots to illustrate the small variation of m̂ for values of v̂
from− 16.5 to− 1 in the upper plot and the steep increase
of m̂ for values of v̂ from − 1 to 0 in the lower plot. The
slope of this function is not substantially high for− 16.5 ≤
v̂ ≤ −0.155 which corresponds to values of m̂ from 0.5 to
3. For v̂ higher than− 0.155, equivalent to m̂ > 3, the slope
of the function increases significantly, i.e., slight variations
of v̂ provide high modifications in the estimated values of
the fading parameter. For instance, ∂m̂

∂ v̂ = 22.02 for m̂ = 4.
The relative error of the expression (25) as the approxi-

mation of the inverse ofψ(2)(·) as a function ofm from 0.5
to 5 is plotted in Fig. 2 using Mathematica. The maximum
relative error in this interval of m from 0.5 to 5 is 0.55%
which occurs for m = 1.89 and the relative error remains
below 0.97% form until 23.7.
In contrast, it can be shown that the estimators of

the NL distribution using the MM (instead of the log-
moments method) do not provide stable results. Specifi-
cally, in the case of the MM, from (7), (8), and (9), m̂ can
be calculated as:

Fig. 1 Estimator of the Nakagami-m fading parameter, m̂, as a function of the v̂ estimator
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Fig. 2 Relative error of the estimator of the fading parameter,m, as a function ofm

m̂= exp(−1)√−û
−0.32050.0725+0.0272 ln(−û),−0.21≤ û < 0

(31)

where û is an estimator which uses the first three sample
moments of the NL distribution in linear units as:

û = 3 ln M̂(r)
1 − 3 ln M̂(r)

2 + ln M̂(r)
3 (32)

where M̂(r)
n is the sample n-th moment of the NL distribu-

tion defined as:

M̂(r)
n = 1

N

N∑
i=1

rni (33)

The unreliability of m̂ in theMM is due to the considerable
slope of m̂ as a function of û. For instance, ∂m̂

∂û = 46.89 and
141.30 for m̂ = 2 and m̂ = 3, respectively.
On the other hand, theML estimationmethod of the NL

distribution leads to a set of three non-linear equations
involvingN-fold definite integrals which have to be solved
by numerical methods without a unique solution. Also,
numerical methods based on iterative maximization algo-
rithms, such as those implemented in the mle function
of Matlab�, require starting points for the parameters
and fail to converge if the initial parameter values are far
from the ML estimators ([25], p. 323). This is the case for
other similar lognormal-based distributions such as the
three-parameter lognormal distribution where the search
for the local ML estimators must be conducted with great
care ([26], p. 122). Furthermore, like the MM estimators,

the ML estimators of the NL distribution are also highly
sensitive to slight changes of the data.
Based on these encouraging observations, we nowmove

on to the precise evaluation of the suitability of the log-
moment estimator of the NL distribution, by using the
normalized mean square error (NMSE), the sample mean,
and the sample confidence region introduced in the next
Section.

3 Numerical results and discussion
In what follows, we examine the performance of the
proposed estimators. This is carried out by numerically
generating samples from a NL distribution. Next, the per-
formance of the estimators will be assessed by calculating
the sample mean, the sample confidence region and the
NMSE for the range of parameters of the NL distribution
typically found in wireless communication channels.
In order to generate N NL distributed samples, first of

all, N Nakagami-m distributed samples are generated. If
t is a gamma RV, denoted by t ∼ G (m,ω) whose PDF is
given by:

pt (t) = 1
�(m)

(m
ω

)m
tm−1 exp

(
−mt

ω

)
t ≥ 0 (34)

then u = √
t follows a Nakagami-m distribution with

fading parameter m and E
(
u2

) = ω. Procedures of gen-
erating gamma distributed samples have been sufficiently
described in the literature [27].



Reig et al. EURASIP Journal onWireless Communications and Networking          (2019) 2019:9 Page 6 of 10

Let u ∼ N (m, 1) be a Nakagami-m RV, whose shape
factor or fadingparameter ism andω = 1. If g is a Gaussian
RV with mean ηd and variance σ 2

d , then r = 10
g+20 logu

20

follows a NL RV whose PDF is given by (1).
In Fig. 3, several examples of PDFs of NL distributions

are plotted in logarithmic units with ηd = 0 dBV/m.
The curves of the PDFs corresponding to the distributions
generated following the previous procedure, depicted in
dashed lines, are compared to the PDFs calculated by
numerical integration of (21) plotted in solid lines. The
transformation β ′ = (K/2)β has been used in (21) to
express the variable β in base-10 logarithmic units. N =
100 000 NL distributed samples have been generated for
different combinations of m and σd , i.e., m = 3.2 and
σd = 6 dB; m = 1.3 and σd = 8 dB; and m = 1.3 and
σd = 3 dB. From Fig. 3, the PDFs of the generated NL RVs
match almost perfectly the PDFs of the analytical distri-
bution, thus validating this process of generating samples
for a NL distribution.
In order to evaluate the performance of the estimators

derived in the previous section, we generate N NL dis-
tributed samples and M trials or realizations of each NL
RV have been carried out.
Let the sample mean of a generic estimator over M

realizations, b̂, be defined as:

b̂M = 1
M

M∑
j=1

b̂j (35)

where b̂j corresponds to the jth trial of the b estimator for
a given distribution. The sample confidence region of the
b̂ estimator over M realizations, denoted by Cb̂M , can be
defined as:

Cb̂M = ±2σb̂M = ±2

√√√√ 1
M

M∑
j=1

b̂2j − b̂
2
M

= ±2

√√√√√ 1
M

M∑
j=1

b̂2j −
⎛
⎝ 1
M

M∑
j=1

b̂j

⎞
⎠

2 (36)

where σb̂M is the sample standard deviation of the b̂ esti-
mator over M realizations. The sample confidence region
is useful for examining the variations of an estimator in
terms of the other estimators and the number of samples
N [28].
Figure 4 shows the sample mean and the sample confi-

dence region of the estimators m̂ and σ̂ for N = 10, 000
samples and M = 10, 000 realizations. The left plot dis-
plays the sample mean and confidence region of m̂ as
derived for σd = 3 dB while the right plot displays σ̂ ,

Fig. 3 Probability density functions of the Nakagami-lognormal distribution withm = 1.3, σd = 3 dB;m = 1.3, σd = 8 dB; andm = 3.2, σd = 6 dB,
respectively. Number of samples in the simulations, N = 100, 000, and μd = 0 dBV/m
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Fig. 4 Sample mean and sample confidence limits of the estimators of the fading parameter,m, and the standard deviation of the shadowing, σd , in
the left plot and the right plot, respectively. Number of samples = 10,000 and number of trialsM = 10, 000. In the left plot, σd = 3 dB. In the right
plot,m = 2.3

as derived for an assumed value of m = 2.3. It can be
seen that both estimators are not biased since the slope
of the sample means is equal to 1. From the left plot,
it can be inferred that the confidence region is dras-
tically increased for fading parameters, m, higher than
4.3. Nevertheless, from values reported in a measurement
campaign conducted in a macrocellular environment, the
fading parameter typically ranges from 0.5 to 3.5 [29], and
therefore, we expect this estimator to be accurate when
estimating the fading parameter from real wireless chan-
nel measurements. In the right plot, it can be shown that
the confidence region does not vary substantially in the
range from 0.5 to 10 dB with only a slight increase.
The NMSE has been traditionally used to measure the

quality of an estimator [25]. In the case of an unbiased esti-
mator, the NMSE corresponds to the normalized sample
variance. We can define the NMSE of a generic estimator,
b̂, overM realizations as:

NMSEM(b̂) = 1
Mb2

M∑
j=1

(
b̂j − b

)2
(37)

where b is the parameter of the distribution generated and
b̂j, j = 1, . . . ,M is the estimated parameter in the jth trial.
In order to calculate the NL estimators with a suffi-

cient accuracy, a minimum number of samples should

be taken from a measurement record. In what fol-
lows, a threshold of NMSE equal to 10−1 has been
used.
Figure 5 shows the NMSE of the m̂ estimator as a func-

tion of the number of samples, N, from N = 1000 to
100,000, values of the fading parameter m = 0.5, 2.3,
and 3.5, and standard deviations of the associated Gaus-
sian process σd = 3 and 6 dB. Curves have been plotted
for M = 30, 000 trials. As expected, the NMSE of the m̂
estimator decreases with the number of samples, except
for m = 3.5 and number of samples N ≤ 8 000. In
order to achieve NMSE ≤ 10−1, if m = 3.5, the num-
ber of samples needs to be higher than 4000 and 76,000
for σd = 3 and 6 dB, respectively. In the case of m =
2.3, the number of samples for NMSE ≤ 10−1 needs
to be larger than 1500 and 16,000 for σd = 3 and 6
dB, respectively. In order words, the accuracy of the m̂
estimator is significantly high for small fading parame-
ters and even a low number of samples of the measure-
ment record. However, the number of samples required
for the threshold NMSE of 10−1 can be medium-high
if both the fading parameter and the standard devia-
tion of the shadowing are large. Furthermore, generally
speaking, the NMSE of the m̂ estimator increases as the
standard deviation of the lognormal distribution grows,
except for m = 3.5 and N ≤ 1190 samples in this case.
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Fig. 5 Normalized mean square error of the m̂ estimator of the fading parameter for the Nakagami-m process, as a function of the number of
samples, N, form = 0.5, 2.3, and 3.5 and standard deviations of the Gaussian process, σd = 3 dB and σd = 6 dB

Also, the NMSE of the m̂ increases substantially with the
fading parameter m for a sufficient number of samples.
Nevertheless, the slope of the NMSE of m̂ as a function
of the number of samples in logarithmic units tends to
stabilize for a number of samples given which increases

with m̂, independently of the standard deviation of the
shadowing, σd.
In Fig. 6, the NMSE of the standard deviation estima-

tor, σ̂d , is plotted as a function of the standard deviation
in dB, σd , for N = 10, 000 samples andM = 30, 000 trials.

Fig. 6 Normalized mean square error of the σ̂d estimator as a function of the standard deviation of the Gaussian process for N = 10, 000 samples
and fading parameters of the Nakagami-m process,m = 1.3, 2.7 and 3.8
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The values of the fading parameter of the Nakagami-
m process used in the simulations are m = 1.3, 2.7,
and 3.8. From these curves, it can be shown that the
NMSE remains below 10−1, except for σd ≤ 1.1 dB
and m = 1.3 even though the number of samples is
not excessively high, i.e., N = 10, 000, compared to
that required for the same value of the NMSE in the m̂
estimator.

4 Conclusions
In this paper, we have derived log-moment estimators for
the NL distribution. Moreover, the performance of those
estimators has been extensively analyzed. The results
show that the NMSE of the fading parameter estima-
tor is very dependent on both the shadowing standard
deviation and the fading parameter even when the num-
ber of samples is significant, N = 100, 000. This NMSE
increases substantially as either the shadowing standard
deviation or the fading parameter of the Nakagami-m
distribution grow, with values of NMSE of the fading
parameter estimator higher than 10−1 for fading param-
eters larger than approximately 2, a shadowing standard
deviation of 6 dB and N = 10, 000 number of samples.
On the other hand, the NMSE of the shadowing standard
deviation estimator remains significantly small for a num-
ber of samples not excessively high, i.e., N = 10, 000,
with values ranging from 5.3 × 10−4 to 1.2 × 10−1 for
m = 2.7, σd = 8 dB and m = 1.3, σd = 1 dB,
respectively.
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