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Abstract. We present a collection of well-conditioned integral equation methods for the solution
of electrostatic, acoustic, or electromagnetic scattering problems involving anisotropic, inhomoge-
neous media. In the electromagnetic case, our approach involves a minor modification of a classical
formulation. In the electrostatic or acoustic setting, we introduce a new vector partial differential
equation, from which the desired solution is easily obtained. It is the vector equation for which we
derive a well-conditioned integral equation. In addition to providing a unified framework for these
solvers, we illustrate their performance using iterative solution methods coupled with the FFT-based
technique of [F. Vico, L. Greengard, M. Ferrando, J. Comput. Phys., 323 (2016), pp. 191-203] to
discretize and apply the relevant integral operators.
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1. Introduction. In this paper, we develop fast, high order accurate integral
equation methods for several classes of elliptic partial differential equations (PDEs)
in three dimensions involving anisotropic, inhomogeneous media. In the electrostatic
setting, we consider the anisotropic Laplace equation

(1.1) V- e(x)Vo(x) =0, =€ R?,

where €(x) is a real, 3 x 3 symmetric matrix, subject to certain regularity conditions
discussed below. We also assume €(x) is a compact perturbation of the identity oper-
ator I, that is, e(x) — I has compact support. A typical objective is to determine the
response of the inclusion to a known, applied static field, with the response satisfying
suitable decay conditions at infinity.

For acoustic or electromagnetic modeling in the frequency domain, we consider
the anisotropic Helmholtz equation

(1.2) V- H(x)Vh(x) +wio(x) =0, =R
and the anisotropic Maxwell equations
V x E(x) = iwpu(x)H (x)

1.3 ’
(13) V x H(x) = —iwe(x)E(x), x € R,
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respectively. Here, e(x) and p(x) are complex-valued 3 x 3 matrices, subject to
regularity and spectral properties to be discussed in detail. We again assume that
e(x) and p(x) are compact perturbations of the identity. A typical objective is to
determine the response of the inclusion to an impinging acoustic or electromagnetic
wave, with the response satisfying suitable radiation conditions at infinity. For a
thorough discussion of the origins and applications of these problems, we refer the
reader to the textbooks [9, 18, 22].

Instead of discretizing the PDEs themselves, we will develop integral represen-
tations of the solution that satisfy the outgoing decay/radiation conditions exactly,
avoiding the need for truncating the computational domain and imposing approxi-
mate outgoing boundary conditions. The resulting integral equations will be shown
to involve equations governed by operators of the form I+ B+ K, where I is the iden-
tity, B is a linear contraction mapping, K is compact. A simple argument based on
the Neumann series allows us to extend the Fredholm alternative to this setting (and
therefore to prove existence for the original, anisotropic, elliptic PDEs themselves).
Moreover, our formulations permit high-order accurate discretization and FFT-based
acceleration on uniform grids. In the electromagnetic case, our approach is closely
related to some classical formulations. For the Laplace and Helmholtz equations,
however, our approach appears to be new and depends on the construction of a vector
PDE from which the desired solution is easily obtained. It is the vector PDE for
which we will derive a new, well-conditioned integral equation. One purpose of the
present paper is to describe all of these solvers in a unified framework. Given that
resonance-free second kind integral equations are typically well-conditioned, they are
suitable for discretization coupled with simple iterative methods such as GMRES [30]
and Bi-CGStab [34] without any preconditioner. We use the method of [35] to dis-
cretize and apply the integral operators with high order accuracy and demonstrate
the performance of our scheme with several numerical examples.

We will use the language of scattering theory throughout. Thus, for the scalar
equations, we write ¢ = ¢"° + ¢°°* where ¢'™ is a known function that satisfies
the homogeneous, isotropic Laplace or Helmholtz equation in free space away from
sources. In the electrostatic case, ¢ is assumed to satisfy the decay condition
(1.4) lim %" = o(1),

r—00
where 7 = |z|. In the acoustic case [10], ¢*°*" is assumed to satisfy the Sommerfeld
radiation condition

(1.5) lim r

r—>00

( 8 qZ)scat

s scat —
o wo ) 0.

In the electromagnetic setting (1.3), we write E = E™+E** and H = H™ +H***,
with E™¢ H™¢ corresponding to a known solution of the homogeneous, isotropic
Maxwell equations in free space away from sources. E*', H*' are assumed to
satisfy the Silver-Miiller radiation condition [10]:
(1.6) lim (H** x @ — rE*") = 0.
r—00

2. The anisotropic Helmholtz equation. We first consider the acoustic scat-
tering problem, and assume that the matrix e(x) is a compact perturbation of the
identity with entries in C1(IR?). We also assume that e(x) can be diagonalized in the
form

é(x) = U(z)D(x)U" (z),
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where U(x) is a unitary complex matrix and D(x) is a diagonal matrix with positive
definite real part (with entries bounded away from zero) and a positive semidefinite
imaginary part (see [29]). After proving a uniqueness result, we introduce a related
vector Helmholtz equation that will be used to establish existence using Fredholm
theory. At the end of the section, we discuss some of the issues raised in relaxing this
assumption as well as the modifications required in the zero frequency limit, leading
to the electrostatic case.

DEFINITION 2.1. By the anisotropic Helmholtz scattering problem, we mean the

determination of a function ¢°**(x) € HL .(R3) that satisfies the equation:

(2.1)  V-e Y x)Ve*(x) + w?¢*(x) = =V - (¢ () — )V (), =€ R,
where ¢ is a known function with
A¢inc(m) + w2¢inc(m) =0

in the support of e(x)—1I, and ¢>°** (x) must satisfy the Sommerfeld radiation condition
(1.5) uniformly for all directions ﬁ

THEOREM 2.2 (uniqueness). The anisotropic Helmholtz scattering problem has
at most one solution.

Proof. The result follows from arguments analogous to those presented in [15,
section 2]. Let Br be an open ball centered at the origin that covers the support of
e(x) —I. We can write (2.1) in weak form by making use of the Dirichlet-to-Neumann
operator T' for the exterior of the sphere S = 0Bp:

; Vip(x) - e (z) V™ () — w?i(x)¢*™ (a)dV

= YT ]S — | Vip(x) - (7' () — V™ (x)dV.

3BR BR

(2.2)

Assuming the right-hand side of (2.1) is zero we obtain

(2.3) PI(¢*)dS = [ V() - ()" (z) V™™ (x) — p(x)w? ™ (x)dV

aBR BR

for all p € H'(BR). Letting 1) = ¢5¢at and taking complex conjugates, we have

(2.4) /8 ) e 90 4g /B Ve . (2)e(@) TV F (@) — w?|¢* (z) 2V

on

so that

(2.5) %( (bsc‘"‘ta(gm;dé’) = i‘s( quscat . (ac)e(:c)—lv¢“at(w)).
8BRr n Br

Moreover from our assumptions about €, namely. that e(x) = U(x)D(x)U*(x), the
right-hand side can be written as

3

Vo (z) - e(x) Ve (z) = {(x) - D (@)(w) = Y _ ()]’ Dy (),

i=1
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where ¢(x) = U*(2)V¢*®*. Thus,

agbscat
Cx scat >
(2.6) \5( - ¢ o dS) > 0.

From Rellich’s lemma [10], we may conclude that ¢*°#(z) = 0 for all z € R3/Bg. It
then follows from [13, Theorem 1 in section 6.3.1] that ¢>** € H?(Bg). As a result,
(2.1) is satisfied in a strong sense and we can use the unique continuation theorem
[17, Theorem 17.2.6] to conclude that ¢>2*(z) = 0 for all z € R3. O

The essential idea underlying the derivation of a well-conditioned formulation
involves recasting the scalar problem of interest in terms of a vector-valued PDE.

DEFINITION 2.3. By the vector Helmholtz scattering problem we mean the deter-
mination of a vector function F**(x) € H EOC(RS) satisfying the equation

(27) AFscat + OJQFscat + (6_1 _ I)vv 3 Fscat — _(6_1 _ I)vv . Finc,

where F(x) is a known function defined on the support of e(x) — I satisfying the
homogeneous equation AF™ + w?F™° = 0, and the standard radiation condition

(28)  Vx P (@) x & 4 2V Fe () — iwF*(z) = o( 1 ) |z = oo,

|| Jae[
is satisfied uniformly in all directions ﬁ
Note that in the vector Helmholtz scattering problem, the entries of e~! are not
acted on by a differential operator. Thus, we will consider solutions of (2.7) in a
strong sense, without loss of generality.

LEMMA 2.4. IfFsa(z) € HE (R3) satisfies the vector Helmholtz scattering prob-
lem in a strong sense, then ¢°°**(z) := V-F**(x) € H! (R3) satisfies the anisotropic
Helmholtz scattering problem in a weak sense, with the right-hand side given by the
incoming field ¢ := V - Finc,

Proof. Letting Br be an open ball centered at the origin that covers the support
of e(x) — I, it is clear that the governing equation in the region E = R3\Bpg is
simply the isotropic, homogeneous Helmholtz equation. Thus, by standard results
on the regularity of coefficients [14, Corollary 8.11], the solution F5' is infinitely
differentiable in £. We may, therefore, interpret the radiation condition in the strong
sense. From the representation [10, Theorems 4.11 and 4.13] applied to the region FE,
we find that ¢**(x) := V - F*°**(z) satisfies the radiation condition (1.5).

Now let 1 € H'(Bg). From (2.7), we have

(2.9) V- (AFS““ + W FSA (e - )VV - Ft> = Vi (e =I)VV - Fre,
Combined with the vector identity AFs? = —V x V x F5¢t 1. YV . Fs¢at this yields
(2.10) V- (— V x ¥ x Foeat | 2pseat +e—1vv.Fmt) = V(e = )VV - Fire,

Integrating over the volume Bpr and using the divergence theorem, we obtain
(2.11)

/ Vi - e IVV - F5ot (27 . Fseatgy — bm - (v XV x Fsat _ wQFSC"“)dV
Br OBRr

— [ V(e —=1)VV.-Feqv.
Br
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This can be rewritten in the form

(2.12)
V- e 'VV - Fo — 29V - FqY
Br
= yn- (f AFset _ 2Fseat | Y FSC"“>dV | Yy (1= I)VV - Firqv.
E)BR BR

Since AFs°8(z) + w?F5°(x) = 0 for © € dBg, we have the simpler equation
Vi) - e 1VV - FSeat _ )2V . Fseatqy
Br

= YTV - F5dS — Vi - (e = I)VV - FqV.
8BR BR

(2.13)

It follows ¢*° := V . F5° gatisfies (2.2) for ¢'¢ = V - Fi%¢, the desired result. 0

THEOREM 2.5 (uniqueness). The Vector Helmholtz scattering problem has at most
one solution.

Proof. Let F*** ¢ H?

2 (R?) be a solution of the homogeneous equation

(2.14) AF 4 WP 4 (e = )VV - F** =

that satisfies the radiation condition. From Lemma 2.4, V - F5°2¢ satisfies the homoge-
neous equation (2.3). Theorem 2.2 then shows that V - F5¢* = (. Therefore, we have
that AFs©at(z) + w?F5°(z) = 0 for all € R3, so that F5®* = ( for all x € R3. O

In order to make use of the Fredholm alternative to complete our proof of exis-
tence, we introduce the following operators:

1 civle—yl
Vo(J) = /}R3 mj(y)dvya V() = /]R3 mJ(y)dVy,
(2.15)
J J
To(J) := =+ VV - W(J), To(J) ==+ VV -V, (J).

2 2

It is well known that the operator 7, — To is compact on L?(R3) (see [11, 29]).
We will also require the following two lemmas.

LEMMA 2.6. Let H, denote the operator mapping L?(R?) — L?(R?) with

(2.16) H(J):x— p(x)J(x),
where
(2.17) pe(x) = (e(x) + 1) (e(x) — I).

Then, ||H6HL2(]R3) < 1.

Proof. For z € C, let f(z) = jjr} f maps the open half-space £z > 0 to |f(2)| <
1. Since e(x) is assumed to be real symmetric and uniformly elliptic, it is expressible in
diagonal form as e(x) = U(x)D(x)U*(x), with the diagonal elements of D(x) positive
and bounded away from zero [13]. It follows that p.(x) = U(x)f(D)(x)U*(x) €

L>(R3), with eigenvalues strictly bounded by one, proving the desired result. 0
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LEMMA 2.7. The operator 275 is an isometry on L*(R?®). That is, ||27o| r2(rs) =

Proof. Using the Helmholtz decomposition (see, for example, [8, Theorem 14]),
we can write J = Vi + V x P. It is straightforward to check that 275(V x P) =
V x P, while 275(V¢) = —V¢. Thus, 275(J) = —V¢ + V x P and the result follows
immediately from the orthogonality of the Helmholtz decomposition. 0

THEOREM 2.8 (existence). The anisotropic scalar and vector Helmholtz scatter-
ing problems have solutions.

Proof. Note first that the vector field F' := V,,(J) is a solution of (2.7) if and
only if

(2.18) —J+ (e =DVV -V, (J)= (e =T)VV - F™™,
Adding and substracting J /2, this is equivalent to

(2.19) ~J+ (et =1) (—‘; + 7;,(J)> = (e =NVV.F"

Multiplying by —2(e~! + I)~! we have
(2.20) J+2H.To(J) + 2H(To, — To)(J) = —2H.VV - F™™,

where H., is defined in (2.16), where we have used the fact that H.—1 = —H, . Using
Lemmas 2.6 and 2.7, we observe that the left-hand side of the resulting integral
equation (2.20) is of the form (I + B + K)J, where [ + B + K : L?(Bgr) — L?(Bg)
with B(J) = 2H:To(J), ||Bl|z2(By) < 1, and K compact. Since I + B is invertible,
we can apply Fredholm theory directly.

Uniqueness for (2.20) follows from Theorem 2.5 and the uniqueness of the rep-
resentation F' = V,,(J). It is shown in [11] that the operator V,, maps L?(Bg) to
H?(Bg), so that Fs** .= V), (J) € H_(R?) for all J € L?*(Bg). If, moreover, J
satisfies (2.20), then by construction F5¢ satisfies (2.7), and V - F*** € H]} (R3)
satisfies (2.3). ad

To summarize: by solving the integral equation
(2.21) (1+2HTo +2H(T, - T5))J = —2HV 6™,

we obtain a solution to the vector Helmholtz scattering problem of the form Fs¢3t =
Vo(J). The function ¢** = V . F5' provides a solution to the corresponding
anisotropic Helmholtz scattering problem. (The same result holds in 2 dimensions as
well.)

Remark 1 (smoothness of the coefficients). In this section, we have assumed coef-
ficients €;;(z) € C*(R3), in order to be able to apply the unique continuation property.
This regularity condition can be relaxed in various ways and the unique continuation
property still holds. There is a vast literature on this subject for second order elliptic
PDEs (see [19] for a good summary), following the early work of Carleman [7] and
Miiller [25]. While it is known that €;;(z) € L>°(R?) is too large a class of coefficients
(due to counterexamples [20, 24, 27]), there has been a lot of effort at establishing
more general results [4, 5, 21, 31]. The class of coefficients which are piecewise smooth
where the jumps occur on C? boundaries was studied in [15]. In [6], piecewise ho-
mogeneous objects were studied. It would be of great practical interest if the unique
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continuation property holds for piecewise smooth coefficients, whose jumps occur on
piecewise C? boundaries, allowing our integral formulation to be applicable to domains
with edges. This would follow naturally, since the existence theorem (Theorem 2.8)
only requires €;;(z) € L>°(R?) and a uniqueness result for the anisotropic Helmholtz
scattering problem.

Remark 2 (the anisotropic Laplace equation). All of the results obtained in this
section apply in the zero frequency limit, where the governing equation is the anisotro-
pic Laplace equation V - e(x)V¢*(x) = —V - (e(x) — I)V¢™(x). The principal
difference is that the real symmetric, positive definite matrix e(x) need only have
bounded entries. Uniqueness can be proven using the Dirichlet-to-Neumann map
on the ball Br that contains the support of e¢(ax) — I, combined with Dirichlet’s
principle, rather than the Rellich lemma. Existence can be established, as above, by
reformulating the problem as a vector Fredholm equation of the second kind. Since
w = 0, it takes the simpler form

(2.22) (I —2H.To)J = 2H.V$™,

rather than (2.21).

Remark 3. From a practical viewpoint, the integral equations (2.22) and (2.21)
can be discretized using a Nystrém method and solved iteratively to obtain a numerical
solution of the original scalar problem. It is worth noting that no estimate involving
derivatives of €;;(x) are required. Because they are Fredholm equations of the second
kind, the order of accuracy obtained in the solution is the same as the order of
accuracy used in the underlying quadrature rule [3]. Of course, if there are jumps
in e(x), then adaptive discretization methods are recommended for resolution, but
additional unknowns and surface integral operators are not required to account for
the effect of these discontinuities.

3. The anisotropic Maxwell’s equations. In this section we assume that
e(x) and p(x) are real, symmetric 3 x 3 matrices, uniformly positive definite with
entries €;;(x), wij(z) € C*(R3). We also assume that e(z) — I and p(z) — I have
compact support, where I is the 3 x 3 identity matrix.

DEFINITION 3.1. By the anisotropic Mazwell scattering problem, we mean the
determination of functions E**", H***" ¢ H,.(curl,R?) (see [8] for further details)
such that

V x B* () — iwp(z) H** (x) = +iw(p(z) — D H™(2),

(3.1) cat : scat ; '
V x H5® (:13) + ZUJG(:B)Ebca (:13) — _w)(e(iv) - I)Elnc(w),

where the incoming field E™¢, H™ satisfy the free space Mazwell’s equations with
e(x) = I, u(x) = I, and the radiation condition,

(3.2) H*(z) x & — B (g) = o(i) as || — oo,

|| []
is satisfied uniformly in all directions ﬁ

THEOREM 3.2 (uniqueness). The anisotropic Mazwell scattering problem has at
most one solution.

Proof. The proof is standard and based on the Rellich lemma [11]. Assume the
right-hand side of (3.1) is zero. Taking a ball Bg that contains the support of e(x) — I
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and pu(x) — I, we have

R / nx B S | =R iw [ . pHS 4 B e BV | = 0.
E)BR BR

Since E*" H**" are analytic in R?/Bpg, we have that E>*(z) = H**(z) = 0 for
all x € R3/Bgr. Using the unique continuation property [23], we obtain E***'(zx) =
H>***(x) =0 for all z € R3. d

In order to establish existence, we extend the technique described earlier.

THEOREM 3.3 (existence). The anisotropic Maxwell scattering problem has a so-
lution.

Proof. We begin by rewriting the anisotropic Maxwell scattering problem in a
manner such that the variable coefficient terms only appear in the right-hand side:

V x B (z) — iwH** () = +iw(p(z) - I) (H™ () + H**(2)),

(3.4) . _ . ) . .
V x H** () + iw B (z) = —iw(e(z) — I) (E™(z) + E**(x)) .

We now define the right-hand sides as volume (polarization) currents:

(55) Jv(z) = —iw(e(z) — I) (E™(z) + E**(x)),
My (z) == —iw(u(z) — I) (H™(x) + H**(z)).

Assume now that E>*, " ¢ C1(R?) and that they satisfy the constant coef-
ficient Maxwell system:

V x B () — iwH*™(z) = — My (),

(3.6) et o eent
V x H*®*(x) + iwE>*** () = Jy (x).

Then, applying the Stratton—-Chu formulas [11, eq. 6.5], the following representation
formula holds:

(3.7) B\ (V- -V, Iy
: HEt )~ Vv x V, L(VV - +w?)V, My )

Conversely, if B3, H Jy,, My satisfy (3.7), then it is a straightforward compu-
tation to show that they satisfy (3.6). Assuming that Jy, My are defined by (3.5),
it is then immediate to see that E®°**, H>®*" satisfy (3.4), and equivalently (3.1).
Thus, we have proven that the PDE system with inhomogeneous coefficients (3.1) is
equivalent to the integral formulation (3.5)—(3.7). It is also easy to show that the
equivalence holds true for fields in Hj,.(curl, R?).

Eliminating E** H***" from (3.5)-(3.7), we obtain the following integral equa-
tion:

J — H2T,(J) = 2H.w*V,,(J) — iw2H.N x V(M) = 2H.E™,

3.8 :
38 M — H,2T7,(M) — 2H,w*V,(M) + iw2H,N x V,(J) = 2H, H™,

where H, is defined in (2.16) and H,(z) := (u(z) + 1)~ (u(x) — I). We also make
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the change of variables

M
= —JV M = v

) I
—w —w

(3.9) J:

to avoid low frequency breakdown (that is, instability of the representation as w — 0).
Using an approach similar to that in previous sections (in the function space
L?(BRr) x L*(Bg)), we can write (3.8) in the form

J 2H, E™°
(I+O+K) ( M > - < QHMHinC ) )

where C' is a contraction and K is compact. We now use the standard representation
for electromagnetic fields in terms of electric and magnetic currents:

Escat — vv . VW(J) +W2Vw(‘]) —|— zwv X Vw(M)v

(3.10) ¢ 2
H5 — v . VW(M) +w Vw(M) — 1wV X VW(J)

Since the operators involved in (3.10) map L?(Bg) into Hj,.(curl, R?), uniqueness
of the anisotropic Maxwell scattering problem implies uniqueness and, hence, exis-
tence for the integral equation (3.8). Finally, this yields existence for the anisotropic
Maxwell scattering problem itself. ]

To summarize, solving the integral system

J — H2T,(J) — 2H.w*V,,(J) — iw2HN x V,(M) = 2H E™,

3.11 .
(3:11) M — H,27,(M) — 2H,w*V,,(M) + iw2H,V x V,(J) = 2H,H™,

and computing

ESC?Lt _ vv . VW(J) +w2Vw(J) + ZUJV X Vw(M>7

(3.12) ¢ 2 ;
H — vV . VW(M) +w Vw(M) — 1wV X Vw(J)v

provides a solution to the anisotropic Maxwell scattering problem.
For the particular case u = I, we have the following, simpler integral equation:

(3.13) J — H2T,(J) — 2H.w*V,,(J) = 2H.E™,
and the corresponding representation

E* = VV -V, (J) 4wV, (J),
(3.14) cat .
H** = —jwV x V,(J).
A closely related integral formulation (using a slightly different scaling) is widely
used [33, 37, 32], and known as the “JM” volume integral formulation.

Remark 4 (nonsmooth coefficients and lossy materials). The unique continuation
property for the Maxwell system (3.1) has been extended to the case ¢;;(x), u;j(x) €
C'(R?) in [12] and to the case of Lipschitz coefficients €;;(x), wi;(x) € WH>(Bg) in
[26, 36]. In both settings, e(x) and pu(x) are assumed to be real (no dissipation).
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Lossy materials for which the unique continuation property has been shown to
hold [28] include the case when u(z) = I and €(z) has entries €;;(z) € C3(R3) with
e(x) = Ui(x)D.(x)U{ (), where Ui(x) is a unitary complex matrix and D.(z) is
diagonal with diagonal entries whose real parts are positive and bounded away from
zero and whose imaginary parts are nonnegative.

Note that in the proof of existence described in the previous theorem, e(x) and
u(z) are assumed to be real symmetric, with entries in C2(R3). Assuming the unique
continuation property holds, extension to the complex dissipative case where both
matrices e(x) and p(x) have L entries is straightforward. By this, we mean that
e(x) = Ur(x)D(x)Us (), p(x) = Us(x)D,(x)Us (x), where D, and D,, have diago-
nal entries with strictly positive real part and nonnegative imaginary part. For further
discussion, see [1, 2, 16].

4. Numerical results. We illustrate the performance of our approach by solv-
ing the integral equations (2.21) and (3.13). We begin with a uniform n x n x n mesh
on which we discretize the incoming field, the material properties, and the unknown
solution vectors J and/or M. We apply the various integral operators that arise using
Fourier methods, as described in [35]. Very briefly, the method proceeds by (a) trun-
cating the governing free-space Green’s function (limited to the user-specified range
over which we seek the solution), (b) transforming the truncated kernel—yielding a
smooth function in Fourier space, and (c) imposing a high frequency cutoff defined by
the grid spacing of the resolving mesh. Assuming that the data are well-resolved on
this mesh, the method achieves high-order (superalgebraic) convergence. The linear
systems are solved iteratively, using Bi-CGStab [34].

For the sake of simplicity, we let pu(x) = I and study the influence of € on the
behavior of the numerical method. There are three parameters to consider. First
is the contrast, defined as the maximum ratio between the eigenvalues of € and the
background dielectric constant. Second is the level of anisotropy, determined by the
ratio of the eigenvalues of € (as well as rotations of € to nondiagonal form).

We assume that the computational domain is set to [0,1]3. We define a bump
function

_(.7:—0.5)8 _(y70.5)8 _(z—o.s)g
W(.T, Y, Z) —=e 0.25 e 0.25 e 0.25

which has decayed to zero at the edge of the computational domain to machine pre-
cision.

4.1. Isotropic scattering from a highly oscillatory structure. In our first
example, we consider the interaction of an electromagnetic wave E™° = (0, 0, exp(iwx))
with a highly oscillatory but locally isotropic permittivity:

(4.1) e(x,y,2) = (1 + W(z,y,2)(1 4 .1sin(wz) sin(wy) sin(wz)))[,

where I is the 3 x 3 identity matrix and w = 408. Note that the contrast is approx-
imately 2 and that the magnitude of the oscillation is relatively small: 10% of the
magnitude of the bump function W (z,y, z) itself. Nevertheless, resolving € at 2 points
per wavelength requires at least 200 points in each component direction. We plot the
z component of the scattered field E**®* in Figure 1 after solving the integral equation
(3.13).

Since we do not have an exact solution for this problem, we carry out a numerical
convergence study, using a 326 x 326 x 326 grid followed by a 650 x 650 x 650 grid,
suggesting that six digits of accuracy have been achieved on the coarser grid in both
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Fic. 1. The z-component of the electric field, when solving the Mazwell scattering problem (3.1)
with w = 408, u = I, and e defined in (4.1). The solution is obtained from the representation (3.14)
and the corresponding integral equation (3.13), discretized with 6503 points.

the Ly and Lo, norms. The calculation required 61 matrix-vector multiplies and 152
minutes on an Intel Xeon 2.5 GHz workstation with 60 cores and 1.5 terabytes of
memory.

4.2. Strong isotropic and anisotropic scattering. To study the behavior of
our integral equation formulation at higher contrast over a range of frequencies, we
consider two additional locally isotropic examples and two anisotropic ones. For the
isotropic cases, we let

6222(1;’3/72) = (1 + W(:c,y,z))], 6444(95731’ Z) = (1 + 3W($7 y,Z))I

Note that €990 has a maximum contrast of 2, while €444 has a maximum contrast of
4. For the anisotropic examples, we let

eg 0 0 61(90,21,2) = 1+W(ﬂc,y,z),
(4.2) €asa(z,y,2)=| 0 e O with ex(z,y,2) =14 2W(x,y, 2),
0 0 €3 63(1:7:%’2) = 1+3W(x,y,z),
and
€1 0 0
(4.3) €dense(,,2) = Ra(@)R1(0) [ 0 e 0 | Ri(6) Ra(9),
0 0 €3

where €1, €2, €3 are defined in (4.2), and the rotation matrices R; and Ry are given
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F1G. 2. Number of iterations for convergence of Bi-CGStab with a tolerance of 10714, as a
function of the frequency w when applied to the Helmholtz integral equation (2.21) (left) and the
Mazwell integral equation (3.13) (right). The labels D222, D234, R234, and D444 correspond to
€222, €234, €dense, aNd €444, Tespectively.

by
1 0 0 cos(¢) —sin(¢) 0
(44) R1(@)=1] 0 cos(f) —sin(d) |, Ra(¢p) = | sin(¢) cos(¢) 0
0 sin(d) cos(9) 0 0 1

with ¢(z,y, z) = 7z and 0(z,y, z) = 7y.

We first examine the performance of Bi-CGStab, plotting the number of iterations
required to achieve a tolerance of 107* as a function of the frequency w for both the
Helmholtz and Maxwell scattering problems on a 150 x 150 x 150 grid (Figure 2).
As expected, the number of iterations increases with frequency. Moreover, for a fixed
frequency, the number of iterations increases with the contrast. Note, however, that
the anisotropy and rotation have only limited impact on the number of iterations.
Clearly, while the method is robust at low frequencies, these calculations remain
challenging in strong scattering regimes.

Additional details regarding numerical experiments are provided in Tables 1-4.
Note that the number of iterations is more or less constant for each fixed problem as
the mesh is refined (consistent with the expected behavior of a second kind Fredholm
equation). Note also that the number of iterations for the diagonally anisotropic case
€234 (Table 2) is about the same as for the case €gense, where the principal axes have
been rotated throughout the domain (Table 3). A slice of the z-component of the
electric field for the case €pense is shown in Figure 3.

In the example €444, the number of iterations is significantly worse than in any of
the other cases, even though it is locally isotropic. Thus, the behavior of the proposed
integral equation (3.13) appears to be controlled by the contrast and frequency more
than by anisotropy. The scatterer is approximately (5= V4)3 cubic wavelengths in
size—on the order of 1000 for the largest value of w. Thus, it is not surprising that
Bi-CGStab requires many iterations to converge.

5. Discussion. We have presented a collection of Fredholm integral equations
for electrostatic, acoustic, and electromagnetic scattering problems in anisotropic, in-
homogeneous media. In the acoustic and electrostatic cases, our approach appears
to be new, and involves recasting the scalar problem of interest in terms of a vector
unknown. We have shown that high-order accuracy can be achieved using the trun-
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TABLE 1
Summary of numerical results for the locally isotropic permittivity tensor esoa. The size is
defined to be the number of wavelengths of the incoming field across the unit box supporting the
perturbation €, namely, % Niot denotes the total number of unknowns, ng;qe denotes the number
of points in each linear dimension, Fo denotes the Lo error, E~ denotes the Loo error, Nmatvec
denotes the number of matriz-vector multiplies required, and time denotes the total time required
for the computation in seconds.

Size (%) Niot Nside Es Foo Nmatvee Time (5)
10—50 1.03 106 70 1.5 x 107 1.1 x 106 22 6.4
10—50 5.18 106 120 1.2x10711  78x 1011 22 27.7
1050 1.75107 180 1.6x 10716  1.0x10-1° 22 93.6
10—10 1.03 106 70 1.5 x 1077 1.1 x 106 22 6.6
1010 5.18 106 120 1.2x 10711 7.8 x10~11 22 27.5
10—10 1.75107 180 1.6x 10716 1.0x 1015 22 91.9

1 1.03 106 70 1.5 x 1077 8.2x 1077 27 8.1

1 5.18 106 120 1.1x10711  6.0x 10~ 11 27 33.3

1 1.75107 180 2.4 x 10716 86 x 10716 27 110.1

20 1.03 109 70 7.3x 1074 1.1 x 1073 469 134.1

20 5.18 106 120 4.9x10710  12x10°° 426 487.5

20 1.75107 180 1.9x 10714 1.8x 1014 426 1614.8
TABLE 2

Summary of numerical results for the anisotropic permittivity tensor ea34. See Table 1 for an
explanation of the column headers.

Size (%) Niot  Ngide FEs Fo Nmatvee  Time (s)
10—50 1.03106 70 3.1x 106 1.9 x 107° 37 10.9
10—50 5.18106 120 1.7x1079  85x107° 37 44.9
10—50 1.75107 180 1.7x 1013 99x10-13 37 148.8
10-10 1.03108 70 3.1x 106 1.9 x 107° 37 10.8
10—10 5.18 106 120 1.7 x 1079 8.5 x 107° 37 45.4
10—10 175107 180 1.7x 10713 9.9x 10713 37 148.5

1 1.03106 70 2.2 x10~6 1.0 x 1075 48 14.4
1 5.18 106 120 1.2 x 1079 4.3 x 1079 48 57.2
1 1.75107 180 1.2x 10713 6.4 x 10713 50 198.1
5 1.03 108 70 1.8x1076  7.7x10°6 2125 611.8
5 518106 120 9.6 x 10710 3.0x107? 2081 2378.1
5 1.75107 180 8.9 x10~'* 3.6x 10713 2105 7948.1

cated kernel method of [35] and the FFT. We have also shown that problems with low
or moderate contrast are rapidly solved using the Bi-CGStab iterative method, even
with nearly one billion unknowns on a single multicore workstation. Once the domain
is many wavelengths in size, however, and the contrast is large, we have found that
both Bi-CGStab and GMRES perform rather poorly. In our largest high-contrast
example, the scatterer is approximately 1000 cubic wavelengths in size, and it is not
surprising that multiple interior scattering events cause difficulties. This suggests two
avenues for further research: either the development of fast, direct solvers (for which
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TABLE 3

Summary of numerical results for the anisotropic permittivity tensor €jense. See Table 1 for

an explanation of the column headers.

Size (3£) Niot  Mside Es Eeo Nmatvee Time (s)
10—50 1.03108 70 1.3x1076  7.7x 106 37 10.6
10—50 5.18 106 120 4.1x10710  18x10~?° 37 45.3
10—50 1.75107 180 2.0x 107 1.6x 10713 37 149.2
10—10 1.03 106 70 1.3x1076  7.7x10°6 37 10.8
10—10 5.18 106 120 4.1x10710  18x10° 37 45.2
10—10 1.75107 180 20x 10~ 1.6x 1013 37 147.9

1 1.03106 70 1.3x1076  6.9x 106 50 14.7

1 518106 120 4.1x 10710 2.6 x107? 51 61.0

1 1.75107 180 1.9x107'% 1.1x10"13 51 202.0

5 1029000 70 1.7 x 1076 1.1 x 1075 1447 412.6

5 5.18 106 120 5.1x10710  29x10~° 1474 1697.6

5 1.75107 180 1.3 x 10713 23 x 10713 1478 5687.2
TABLE 4

Summary of numerical results for the locally isotropic permittivity tensor €q44. See Table 1 for

an explanation of the column headers.

Size (%) Niot MNgide FEs Foo Nmatvee Time (s)
1050 3.7510° 50 84x107%  4.5x10™4 37 5.0
10—50 3.00106 100 3.8x1078 21x1077 38 27.9
10—50 1.01107 150 1.5x10"' 93 x 10~ 38 87.7
10—50 3.19107 220 85x 1071 1.5x 10714 38 271.9
10—10 3.7510° 50 84x107%  45x10~% 37 5.1
1010 3.00106 100 3.8x1078  21x1077 38 27.9
10—10 1.01107 150 1.5x10"1 9.3 x 101! 38 88.7
10—10 3.19107 220 8.6x1071% 15x10"14 38 273.9

1 3.7510° 50 6.9x107% 25x10~% 61 7.9

1 3.00106 100 3.1x10°8 1.3 x 1077 69 49.5
1 1.01107 150 1.2x 1071  4.5x 107! 72 161.5
1 3.19107 220 1.6x10713 1.7x10"13 68 472.3
5 3.7510° 50 6.7x107°  2.4x10~¢ 5774 704.0
5 3.0010 100 29x107%  1.3x10°7 5418 3768.8
5 1.01107 150 1.2x107" 44 x 107! 5251 11489.8
5 3.19107 220 2.3x 10712 3.1 x10712 5410 36594.8

the truncated kernel method of [35] can provide explicit matrix entries) or a precon-
ditioning strategy suitable for this class of problems. We are currently investigating
both lines of research and will report on our progress at a later date. Another direc-
tion for further research is to relax the assumptions about the anisotropic material
parameters, which here have been assumed to be matrices whose eigenvalues have
positive real parts and nonnegative imaginary parts. In particular, our results do not
apply in their present form to negative index materials.
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F1G. 3. A slice of the z-component of the electric field at z = 1/2 (left) when solving the Mazwell

scattering problem with w = 107, u = I, and € = €4ense defined in (4.3) using a 150 x 150 X 150 grid.
A slice of the real part of the acoustic field at z = 1/2 (right) when solving the Helmholtz scattering
problem with w = 107, and € = €234 defined in (4.2) using a 150 x 150 x 150 grid.
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